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Abstract— Although the challenge of gene regulatory network
inference has been studied for more than a decade, it is still
unclear how well network inference methods work when applied
to real data. Attempts to benchmark these methods on exper-
imental data have yielded mixed results, in which sometimes
even the best methods fail to outperform random guessing, and
in other cases they perform reasonably well. So, one of the most
valuable contributions one can currently make to the field of
network inference is to benchmark methods on experimental
data for which the true underlying network is already known,
and report the results so that we can get a clearer picture of
their efficacy. In this paper, we report results from the first,
to our knowledge, benchmarking of network inference methods
on single cell E. coli transcriptomic data. We report a moderate
level of accuracy for the methods, better than random chance
but still far from perfect. We also find that some methods
that were quite strong and accurate on microarray and bulk
RNA-seq data did not perform as well on the single cell data.
Additionally, we benchmark a simple network inference method
(Pearson correlation), on data generated through computer
simulations in order to draw conclusions about general best
practices in network inference studies. We predict that network
inference would be more accurate using proteomic data rather
than transcriptomic data, which could become relevant if high-
throughput proteomic experimental methods are developed in
the future. We also show through simulations that using a
simplified model of gene expression that skips the mRNA step
tends to substantially overestimate the accuracy of network
inference methods, and advise against using this model for
future in silico benchmarking studies.

I. INTRODUCTION

A. Network Inference Basics

In what is known as the “Central Dogma of Molecular
Biology” [9], genetic information encoded in a cell’s DNA is
transcribed into strands of messenger RNA (mRNA), which
are then translated into proteins, which then carry out various
functions within the cell. This process is also known as “gene
expression.” Sometimes, a protein produced by one gene can
positively or negatively affect the expression of another gene.
For example, some proteins called transcription factors bind
to the promoter regions of other genes and facilitate the
attachment of RNA-polymerase, thereby having a positive
effect on on the transcription of the gene. In this scenario,
we say that the first gene “activates” the second gene. In other
scenarios, a protein produced by one gene could block the
promoter region of another gene, preventing its transcription.
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We refer to this interaction as “inhibition.” These positive
and negative interactions between genes can form complex
networks that play roles in signaling, response to stimuli, cell
fate determination, and other important biological phenom-
ena [43]. Disruptions to these networks can cause diseases,
such as cancer [23].

Modern transcriptomic sequencing experiments such as
single cell RNA-seq (scRNA-seq) [24], [39] allow us to to
quantify the expression levels (in terms of mRNA abundance)
of tens of thousands of genes, across hundreds or thousands
of individual cells. A key research topic in computational
biology is the attempt to leverage data from these mRNA
sequencing experiments to infer the structure of the under-
lying gene regulatory networks producing them [22], [33].
This topic is known as “gene regulatory network inference”,
or simply “network inference.” The strategy behind most
network inference techniques is to calculate measures of
statistical dependence, such as correlation or mutual infor-
mation, between the mRNA levels of genes in a pair-wise
fashion, and attempt to predict whether or not an interaction
exists between the genes based on the strength of this
measure. Many computational methods have been developed
for this purpose [2], [3], [5], [7], [8], [14], [16], [19]–[21],
[27], [28], [37], [38], [40]–[42]. Recently, network inference
methods have been used to study a variety of problems in
cell biology, including cancer [11]–[13], [30], [34], [35].

B. Problem Formulation

We will now briefly give a formal definition of the network
inference problem. Let us consider a situation in which we
have N genes, and represent their expression levels with a
set of random variables {X1, X2, ..., XN}. We represent each
gene as a node in the network, and if a regulatory interaction
exists (either activation or inhibition) between two genes Xi

and Xj , we represent it with the edge Xi → Xj . For the
purposes of this section, we do not differentiate between
positive and negative edges. This is standard practice when
it comes to evaluation methodology [26], as the difficult
part of network inference is identifying whether a regulatory
interaction exists not, and determining whether a known
interaction is positive or negative is relatively easy.

We can then represent the network structure in matrix
form. Let us consider a matrix A, with dimensions N ×N .
In this matrix there is a row for each gene, and a column for
each gene. The element Ai,j (the i-th row and j-th column)
is set to 1 if the edge Xi → Xj exists, and 0 if the edge
does not exist.
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Fig. 1. Example network with three genes, in which Gene 2 regulates Gene
1, and Gene 1 regulates Gene 3. Equation 1 shows the matrix representation
of this network.

So the matrix A represents the true network structure.
The goal of network inference is to define a matrix Â, with
dimensions N × N , in which each element Âi,j represents
our prediction about whether the edge Xi → Xj exists or not
in the true network. Higher numbers mean that we are more
confident that the edges exists, and lower numbers mean that
we are less confident that it exists. Prediction values may be
expressed as probabilities bounded on [0, 1], or they may not
be.

Let us consider a quick example to illustrate these con-
cepts. Figure 1 shows an example network with three genes,
in which Gene 2 regulates Gene 1, and Gene 1 regulates
Gene 3.

A =

0 0 1
1 0 0
0 0 0

 (1)

The above matrix A (Equation 1) represents the true
network structure for the network shown in Figure 1. The
element A2,1 = 1 tells us that that the edge X2 → X1

exists, meaning that Gene 2 regulates Gene 1. The element
A1,2 = 0 tells us that that the edge X1 → X2 does not exist,
meaning that Gene 1 does not regulate Gene 2.

We then attempt to define a matrix Â with our network
predictions. For example, we could define this matrix so
that Âi,j = f(Xi, Xj) – this means that we calculate some
function f of statistical dependence between each gene pair
(Xi, Xj) where i ̸= j, and use its value as our prediction
score. The matrix below in Equation 2 shows an example of
what the network prediction matrix Â might look like.

Â =

 0 0.26 0.94
0.86 0 0.30
0.22 0.15 0

 (2)

For the purposes of this paper, we are ignoring self-
edges (Ai,i). Although it is indeed possible for a gene to
regulate itself [4], [29], uncovering these interactions requires
more sophisticated experimental techniques and cannot be
accomplished from statistical relationships between static
measurements of gene expression. In this paper, we omit
these self-edges and include only edges Xi → Xj where
i ̸= j in the evaluation.

Some network inference methods, including methods
based on Pearson correlation (which we will use throughout
this paper), produce undirected network predictions. This
means that in the network prediction matrix Ai,j = Aj,i.

In other words, for every edge prediction Xi → Xj , there
is an equally weighted edge prediction Xj → Xi, since the
method does not try to predict the direction of the edge.
In our benchmarking analysis, we will use a strict scoring
protocol (more on this in the next subsection) in which an
edge must be predicted in the correct direction to count as a
true positive. This means that for every true positive scored
by an undirected network prediction, it will also score a false
positive (except in rare cases where two genes both regulate
each other). With that being said, it is typically the case that
the true underlying GRNs are quite sparse, with true edges
making up only a small fraction of potential edges. So, if
an undirected method is effective enough at identifying true
edges, then it can still score well on the metrics described in
the next subsection, even though most true positives scored
will also score a false positive.

C. Evaluation

Given an underlying true network structure matrix A and
a network prediction matrix Â, generated with some network
inference method, we can then evaluate the performance
of the method by using two traditional machine learning
metrics for binary classifier evaluation: receiver operating
characteristic (ROC) curves and precision-recall (PR) curves.

Please recall that in the network prediction matrix Â, each
element Âi,j corresponds to our level of confidence that
the edge Xi → Xj exists. We could apply a threshold to
Â so that any elements above the threshold resolve to 1
and any elements below the threshold resolve to 0, giving
us a concrete network prediction in which each edge is
either predicted to exist or not. Higher thresholds applied
to Â would give us more conservative predictions, as only
the higher-confidence predicted edges would be kept in the
network prediction. Conversely, a lower threshold would give
us a less conservative prediction.

For any given threshold, we can compare the final pre-
dicted network to the true network A, and fill in the following
table with the number of true positives, false positives, false
negatives, and true negatives:

TABLE I
EVALUATION TABLE

Edge Exists Edge Does NOT Exist
Edge Predicted True Positive (TP) False Positive (FP)
Edge NOT Predicted False Negative (FN) True Negative (TN)

From this table, we can write the true positive rate (TPR)
and false positive rate (FPR) as follows:

TPR =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

We want to simultaneously have a high true positive rate
and a low false positive rate. However, this involves a trade-
off. Setting a low threshold helps us to increase our true

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.12.540581doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.12.540581
http://creativecommons.org/licenses/by-nc/4.0/


False Positive Rate

Tr
ue

 P
os

it
iv

e 
Ra

te

0 1

1

AUROC

Fig. 2. Example of a receiver operating characteristic (ROC) curve. The
true positive rate is plotted against the false positive rate for every possible
edge-weight threshold. The area under the curve (called AUROC) gives a
numerical measure of accuracy. A perfect AUROC score is 1.

positive rate, but also increases the false positive rate. Setting
a high threshold helps us to decrease the false positive rate
but also decreases the true positive rate. So, the choice
of a threshold is somewhat arbitrary and depends on the
researcher’s subjective preference about how to navigate the
trade-off between true positives and false positives.

The key advantage of receiver operating characteristic
(ROC) curves is that they give us a measure of the accuracy
of the network inference method, considering all possible
thresholds that could be applied to the prediction matrix
Â. To plot a ROC curve, we simply plot the true positive
rate against the false positive rate, across all of the possible
thresholds. The area under this curve (called AUROC for
short) gives us a single numerical score of the method’s
accuracy, taking into account all possible thresholds. A
perfect AUROC score is 1. Figure 2 shows an example of a
ROC curve.

In order to have a point of comparison, we can define a
“no skill control” ROC curve, using a classifier that simply
guesses the most common label for every item. In the case of
network inference, this means guessing that every possible
edge does not exist. In other words, we define a prediction
matrix Â, for which Âi,j = 0 for every value of i and
j such that i ̸= j. The AUROC of the no skill control
ROC curve is always 0.5, by definition. Notably, this is
also the AUROC one would get, on average, by randomly
guessing edge weights so that all potential edge predictions
are randomly ordered in terms of the prediction confidence.
So, if a network inference method achieves an AUROC score
higher than 0.5, we can say that it has outperformed the no
skill control, or that it has outperformed the average AUROC
that would be expected by random guessing.

We can also use a similar measure called a precision-recall
(PR) curve to score accuracy. To do this, we define precision
and recall as follows, again using the numbers from Table I:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)
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Fig. 3. Example of a precision-recall (PR) curve. The precision is plotted
against the recall (same as the true positive rate) for every possible edge-
weight threshold. The area under the curve (called AUPR) gives a numerical
measure of accuracy. A perfect AUPR score is 1.

You may notice that recall is the same measure as the true
positive rate, and is just given a different name, somewhat
confusingly, when plotted on a precision-recall curve. To plot
the curve, we plot the precision against the recall, across all
possible thresholds. As with the ROC curve, we can also
use the area under the PR curve (called AUPR for short)
as a single numerical measure of accuracy, for which 1 is a
perfect score. Figure 3 shows an example of a PR curve.

We can define a “no skill control” AUPR to serve as
a point of comparison. This no skill control AUPR is
simply the number of edges that actually exist in the true
network divided by the number of possible edges. this is
also the AUPR one would get, on average, by randomly
guessing edge weights so that all potential edge predictions
are randomly ordered in terms of the prediction confidence.
So if a network inference method achieves a higher AUPR
than the no skill control AUPR, we can say that it has
outperformed the average AUPR that one would expect from
random guessing. While the no skill control AUROC is 0.5
by definition, different networks can have different no skill
control AUPR scores, depending on how many true edges
they have and how many possible edges they have.

Network inference methods can be evaluated by testing
them on data for which the structure of the underlying
network is already known, and seeing how well they can
predict the true network structure. Often the data used for
evaluation comes from a model organism, such as E. coli
or S. cerevisiae (yeast). Previous benchmarking attempts on
model organisms have yielded mixed results. For example
in the famous 2012 paper “Wisdom of Crowds for Robust
Gene Network Inference” [26], the network inference meth-
ods tested performed reasonable well on the E. coli, but
failed to considerably outperform random guessing on the
S. cerevisiae data. A similar mixed result was found in [32].

Recent theoretical work has explored how network infer-
ence from transcriptomic data may be more or less fea-
sible under different conditions. Mahajan et al. 2022 [25]
shows through simulations and mathematical analysis that,
under conditions of only intrinsic noise in the processes of
transcription and translation, the correlation between mRNA
abundance and protein abundance even for the same gene
becomes quite weak if there is a large difference between
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the mRNA stability and protein stability. [25] also shows
that under these conditions the mRNA abundance for tran-
scription factor and target genes in a regulatory relationship
become uncorrelated when there is a large difference between
mRNA and protein stability. This is a pessimistic result for
the challenge of network inference, since most methods rely
on the assumption that mRNA abundance can be used as
a reliable proxy for protein abundance, and that regulatory
interactions between genes can be detected based on sta-
tistical dependencies between mRNA levels. However, as
we noted previously, [25] assumes only intrinsic noise in
gene expression. New results in [31] show that the network
inference problem may be more tractable under conditions
of extrinsic noise in the gene regulatory relationship.

It is also worth noting that many of the previous bench-
marking studies, including [26] and [32], used microarray
expression data, not single cell RNA-seq data, and it is not
clear if methods that perform well on one will necessarily
perform well on the other. So, one of the most pressing
problems in the study of network inference is to simply
continue benchmarking methods on real experimental data
to improve our understanding of how well they perform
under different conditions, in different organisms, and using
different experimental methods.

Ultimately, what matters is how well network inference
methods perform on real biological datasets, so benchmark-
ing on data from model organisms is preferable to bench-
marking on data from simulations, which may contain the
researchers’ own assumptions about the biological networks,
leading to an overestimate of the method’s accuracy (more
on this later). With that being said, in silico benchmarking
can still be useful, as it allows researchers to investigate
how network inference methods perform on simulations of
specific network motifs, parameter sets, noise conditions,
etc. In this paper we will use both types of benchmarking
to attempt to answer different questions. We will use in
silico data from simulations to answer questions about best
practices for network inference studies, including the hypo-
thetical question of how well network inference on proteomic
data would work compared to transcriptomic data, and the
question of whether or not it is advisable to use a simplified
one-step model of gene expression in in silico benchmarking
studies. We will use experimental single cell E. coli data
to test whether network inference methods can uncover
known gene regulatory relationships with more accuracy than
random guessing, and whether published methods known to
perform well on microarray data also perform well on single
cell data.

II. IN-SILICO BENCHMARKING

In this section, we report results of an in silico bench-
marking analysis. The goal of this section is primarily to use
results from simulations to draw conclusions about best prac-
tices in network inference research. Consistent with previous
work in [25] and [31], we use Pearson correlation (a linear
measure) to quantify the statistical dependence between
mRNA abundance levels. We also performed this analysis

Fig. 4. Visual representation of the network of 20 genes we used for our in
silico simulations. Blue lines show activation (positive) regulatory relation-
ships, while red lines show inhibition (negative) regulatory relationships.
The first 10 genes (G1, G2,...,G10) are connected in a topology that we
took from a subnetwork of the E. coli GRN reported by Fang et al. 2017
[15]. The other 10 genes (G11, G12, ..., G20) are decoys that do not have
any regulatory interactions with any other genes.

with two nonlinear measures (Spearman rank correlation and
mutual information), but those results are omitted from this
paper because they were so similar to the Pearson correlation
results as to not be especially interesting.

We report two main results related to best practices in
network inference research. The first result is that one can
expect a gain in accuracy by performing network inference
on proteomic, rather than transcriptomic, data. Currently,
network inference analyses are almost always performed
on transcriptomic data, because modern high-throughput
experimental techniques can more easily measure mRNA
abundance than protein abundance. However, in the future it
may be feasible to collect protein abundance measurements
in a high-throughput manner [10].

The second result reported in this section is related to best
practices for in silico benchmarking of network inference
methods. The process of gene expression involves two steps:
DNA → mRNA → Protein. However, sometimes in in
silico benchmarking research a simplified model of gene
expression is used, in which the intermediate step is om-
mitted: DNA → Gene Product. The “Gene Product” is then
used to represent both mRNA and protein abundance. We
show, through simulations, that using this type of simplified
model of expression for benchmarking tends to overestimate
the accuracy, and therefore is not advisable for in silico
benchmarking efforts.
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A. Simulating a Network

We generated our in silico datasets by running stochastic
simulations of a network with 20 genes. The network struc-
ture is shown in Figure 4. The first 10 genes, called G1, G2,
..., G10, are connected in a topology that we took from a
subnetwork of the E. coli GRN reported by Fang et al. 2017
[15], so as to have a realistic topology. The other 10 genes,
called G11, G12, ..., G20, are decoys that are not connected
to any other genes.

For each gene, we modeled the production and degradation
of both the mRNA and the protein, and we modeled the
regulatory interactions between genes with Hill functions [1].
We will not list the entire mathematical model here (which
involves 40 variables, tracking the mRNA and protein counts
for the 20 genes). Rather, we will give brief examples to
highlight the key concepts of the model.

First, we consider the case of a gene that is not regulated
by any other gene. Table II shows the stochastic model we
can use to track the mRNA count (M ) and protein count (P )
for this situation, where a gene is being expressed with no
regulation. In this model, k is the mRNA production rate, γ
is the mRNA degradation rate, kp is the protein production
rate, and γp is the protein degradation rate.

TABLE II
NO REGULATION MODEL

Event Count Update Propensity
mRNA1 production M → M + 1 k
mRNA1 degradation M → M − 1 γM
Protein production P → P + 1 kpM
Protein degradation P → P − 1 γpP

Let us now consider a scenario in which the expression
of one gene, which we will call Gene B, is activated by
another gene, which we will call Gene A. Table III shows
the stochastic model that we can use to track the counts of the
Gene A mRNA (Ma), Gene A protein (Pa), Gene B mRNA
(Mb) and Gene B protein (Pb). It is similar to the model
described in Table II, except that it includes two genes, and
the rate of transcription for the second gene is given by the
Hill function kb

Pn
a

cn+Pn
a

, which depends on the protein count
of the first gene, and uses the constant parameters c and n.

TABLE III
ACTIVATION

Event Count Update Propensity
mRNA A production Ma → Ma + 1 ka
mRNA A degradation Ma → Ma − 1 γaMa

Protein A production Pa → Pa + 1 kpaMa

Protein A degradation Pa → Pa − 1 γpaPa

mRNA B production Mb → Mb + 1 kb
Pn
a

cn+Pn
a

mRNA B degradation Mb → Mb − 1 γbMb

Protein B production Pb → Pb + 1 kpbMb

Protein B degradation Pb → Pb − 1 γpbPb

In order to model a scenario in which Gene A is inhibiting,
rather than activating Gene B, we use the model described
in Table III, except that we change the rate of mRNA B

production from kb
Pn

a

cn+Pn
a

to kb
1

cn+Pn
a

, to model the negative
regulation. For scenarios in which a gene is regulated by
more than one other gene, we make the simplifying assump-
tion that the regulatory effects can be modeled separately
and summed together.

To simulate the experimental workflow of a gene expres-
sion measurement experiment, we ran 100 simulations of
the network using Gillespie’s stochastic simulation algorithm
[18], with each run representing an experimental sample, and
recorded the counts of mRNA and protein for each gene,
for each run. We then performed the network inference,
calculating the pair-wise Pearson correlation scores for each
pair of genes. We performed this Pearson correlation network
inference once for the mRNA data and once for the protein
data. We note that Pearson correlation is a linear correlation
measure, and one of the simplest network inference methods.
We also performed this analysis with two nonlinear measures
(Spearman rank correlation and mutual information), but
those results are omitted from this paper because they were
so similar to the Pearson correlation results as to not be
especially interesting.

We then calculated the AUROC and AUPR accuracy
scores, described in the previous section, for both the mRNA
network inference prediction and protein network inference
prediction. We repeated this process 20 times to generate
distributions of the AUROC and AUPR scores, which were
used to calculate the error bars in the figures. Lastly, we
repeated this entire analysis for different assumptions about
the relative protein stability compared to mRNA stability.
Recent theoretical findings from [25] suggest that the chal-
lenge of network inference is more difficult when there is
a large difference between protein and mRNA stability, so
this stability ratio is relevant for our in silico benchmarking
study.

B. Network Inference from mRNA and Protein Measurements

The first topic we will address is the difference be-
tween the accuracy of network inference from transcrip-
tomic (mRNA abundance) and proteomic (protein abun-
dance) datasets. In practice, gene regulatory network infer-
ence is almost always performed using transcriptomic data
from experiments such as RNA-seq. However, in the future it
may be feasible to collect protein abundance measurements
in a high-throughput manner [10]. Would the development
of these proteomic experimental methods be useful from a
network inference standpoint?

Figure 5 shows the AUROC scores of network predictions
generated using Pearson correlation, for different protein/m-
RNA stability ratios (please note that the horizontal axis is
in base-2 log scale). The red dots show results for network
inference using protein abundance data, and the blue dots
show the results for mRNA abundance data. Error bars for
both show one standard deviation. Figure 6 is a similar plot,
but with AUPR scores rather than AUROC scores. Again, red
dots show results for network inference using protein data,
blue dots show results for mRNA data, and error bars show
one standard deviation.
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Fig. 5. Area under the receiver operating characteristic curve (AUROC)
scores for network inference predictions generated with Pearson correlation.
Blue dots show results using mRNA abundance data, and red dots show re-
sults using protein abundance data. Error bars show one standard deviation.
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Fig. 6. Area under the precision-recall curve (AUPR) scores for network
inference predictions generated with Pearson correlation. Blue dots show
results using mRNA abundance data, and red dots show results using protein
abundance data. Error bars show one standard deviation.

We note that in both Figure 5 and Figure 6, network
inference using the more stable molecule type tended to yield
greater accuracy. This difference in accuracy is especially
pronounced for the protein/mRNA stability ratios of 21, 22,
and 23, suggesting that using proteomic data could yield
substantial gains in accuracy over transcriptomic data, even
when the proteins are only moderately more stable relative
to the mRNAs.

Although it is less common biologically, we also simulated
a scenario in which the mRNAs were more stable relative to
the proteins (stability ratio of 2−1 on the horizontal axis). In
this scenario, network inference from mRNA data yielded
slightly more accurate results on average than network
inference from protein data, although there was substantial
overlap between the two.

The key insight here is that, in the context of network
inference from real-world biological datasets, one can prob-

ably expect more accurate results using protein abundance
data rather than mRNA abundance data, and it is better to
use the protein data if it is available. This is assuming that the
proteins are relatively more stable than the mRNA, which is
typically the case [1]. Currently, mRNA data is much more
readily available than proteomic data, but if high-throughput
proteomic measurement techniques are developed in the
future, then that could considerably increase the accuracy
and feasibility of gene regulatory network inference.

C. Omitting mRNA Step Over-estimates Method Accuracy

The next topic we sought to investigate through simulation
was the use of a simplified model of gene expression for
in silico network inference benchmarking. In the previous
subsection, we were running simulations using a stochastic
model that included both the mRNA and protein steps of
gene expression: DNA → mRNA → Protein. However,
sometimes in in silico benchmarking research a simplified
model of gene expression is used, in which the intermediate
step is ommitted: DNA → Gene Product. In the simplified
model, only the production and degradation of the Gene
Product is simulated, and the Gene Product level is used
as a proxy for both the mRNA and the protein, depending
on the situation.

It stands to reason that this simplified model of gene
expression is likely to overestimate the accuracy of network
inference methods when used for in silico benchmarking.
However, to our knowledge, this has not previously been
formally demonstrated and quantified. In this section, we
introduce a simplified version of the stochastic simulation
model described previously, in which the mRNA step is
omitted. In this model, Table II is rewritten as Table IV.
Rather than tracking the mRNA counts (M ) and protein
counts (P ) separately, we instead use the stochastic process
G to track the count of the “Gene Product”, which is
purposely defined ambiguously so that it can refer to either
the mRNA or the protein.

TABLE IV
NO REGULATION SIMPLIFIED MODEL

Event Count Update Propensity
Gene product production G → G+ 1 k
Gene product degradation G → G− 1 γG

For the scenario in which one gene (Gene A) activates
another (Gene B), Table III is rewritten as Table V.

TABLE V
ACTIVATION

Event Count Update Propensity
Gene A product production Ga → Ga + 1 ka
Gene A product degradation Ga → Ga − 1 γaGa

mRNA B production Gb → Gb + 1 kb
Gn

a
cn+Gn

a

mRNA B degradation Gb → Gb − 1 γbGb

Figure 7 shows the AUROC scores of network predictions
generated using Pearson correlation, with simulation data
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Fig. 7. Area under the receiver operating characteristic curve (AUROC)
scores for network inference predictions generated with Pearson correlation.
Blue dots show results using mRNA abundance data, and red dots show
results using protein abundance data. X-marks show results for simplified
model, omitting the mRNA step. Error bars show one standard deviation.

generated from the simplified model of gene expression
omitting the mRNA step. These results are shown alongside
the previous results from Figure 5, to serve as a point of
comparison. Note that the AUROC scores for the simplified
model were higher, on average, than both the mRNA data
and protein data AUROC scores from the previous section for
every protein / mRNA stability ratio (although in some cases
there was considerable overlap with the AUROC scores from
protein data). Figure 8 shows a similar result (including the
previous results from Figure 6), except with AUPR scores
instead of AUROC scores. Again, the AUPR scores for
the simplified model were higher, on average, than than
the scores for the more realistic model of gene expression
(although again, there was some overlap with the scores from
proteomic data), for every protein/mRNA stability ratio.

These results suggest that using the simplified model
without the mRNA step will tend to overestimate the ac-
curacy of network inference methods compared to a more
realistic model of gene expression (even assuming a best-
case scenario in which proteomic data is available), and so
the simplified model of gene expression generally should
not be used for benchmarking and method validation if it is
feasible to use the more realistic model instead. Ultimately,
the performance of network inference methods can only truly
be validated on real experimental datasets (as we will do in
the next section), but if experimental data is unavailable and
it is necessary to generate data through simulations, then it
is important to use a realistic model of gene expression that
includes both the transcription and translation steps to avoid
overestimating the method’s accuracy.

III. EXPERIMENTAL DATA BENCHMARKING

In the previous section, we used simulations of a gene
regulatory network to draw conclusions about best practices
for network inference studies, including the advantages of
using proteomic data rather than mRNA data, and problems
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Fig. 8. Area under the precision-recall curve (AUPR) scores for network
inference predictions generated with Pearson correlation. Blue dots show
results using mRNA abundance data, and red dots show results using protein
abundance data. X-marks show results for simplified model, omitting the
mRNA step. Error bars show one standard deviation.

that can result from using a simplified one-step model
of gene expression for in silico benchmarking. Although
working with simulated in silico data can be useful and
yield valuable insights, what ultimately matters the most
is the performance of network inference techniques on real
biological systems. In this section, we benchmark network
inference techniques on single cell mRNA abundance data
from E. coli [6], in an attempt to address two questions.

The first question is whether it is possible to predict gene
regulatory interactions with accuracy considerably greater
than random guessing, based on statistical dependencies
mRNA levels for this cell type (E. coli) and experimental
protocol (single cell PETRI-seq [6]). Although this may seem
like a low bar, success on this task constitutes a nontrivial
result since, as we noted earlier, previous benchmarking
attempts [26], [32] have yielded mixed results in which
sometimes even the best methods have failed to considerably
outperform random guessing, while other times performing
quite well. Furthermore, previous theoretical work suggests
that there are some conditions in which network inference
from mRNA data may be possible and other conditions in
which it may be impossible [25], [31].

The second question we hope to address is related to the
performance of published network inference methods that
were previously validated on microarray data. Most previous
benchmarking efforts have used microarray data [26], [32],
and we are interested to see if impressive accuracy on
microarray data translates to impressive accuracy on single
cell data. We benchmark GENIE3 [20], which was regarded
as one of the best network inference methods for use on
microarray data, as well as CLR [14], an older method
published in 2007. To serve as a point of comparison, we
also include PIDC [8], a relatively new method (published in
2017), developed for application on single cell data. We also
include three simplistic methods: Pearson correlation, mutual
information, and Spearman rank correlation, with the idea
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being that for a published method to show truly impressive
accuracy on this dataset, it must not only outperform the
no skill control, but must also outperform these simplistic
methods that can be easily implemented with a few lines of
code.

A. Experimental Dataset
In this section, we benchmark network inference tech-

niques on single cell mRNA abundance data from E. coli,
using data from Blattman et al. 2019 [6]. To our knowledge,
this is the first benchmarking of network inference methods
on single cell E. coli (previous benchmarking was done on
microarray and bulk RNA-seq data). This is because until
recently single-cell RNA-seq methods were not amenable to
prokaryotic cells, due to their low mRNA copy numbers, lack
of mRNA polyadenylation, and thick cell walls [6]. However,
Blattman et al. developed a clever new experimental method
for single cell RNA sequencing in prokaryotes, using in
situ combinatorial indexing to barcode transcripts in tens
of thousands of cells before sequencing. They have named
this method PETRI-seq (Prokaryotic Expression profiling by
Tagging RNA In situ and SEQuencing).

We downloaded data from three of the Blattman et al.
2019 [6] E. coli sequencing experiments, called Experiment
1.06, Experiment 1.10, and Experiment 1.12, all available
on the Gene Expression Omnibus under accession number
GSE141018. The available data was in the form of raw
counts, so we performed TPM normalizations for the three
datasets. We then performed an additional data processing
step, removing any genes that did not have any recorded
expression, and any samples that did not have any recorded
expression. It is interesting to note that, unlike the microarray
datasets used in previous benchmarking efforts [26], [32], the
PETRI-seq experimental datasets are quite sparse, with many
genes showing zero recorded expression for many cells, and
relatively uncommon occurrences of recorded expression.
This difference may be problematic for network inference
methods developed for use on microarray data.

For our “ground-truth” E. coli gene regulatory network,
we used the GRN reported by Fang et al. 2017 [15]. This is
referred to as the high confidence transcriptional regulatory
network (hiTRN) in their paper, and includes gene regula-
tory interactions from RegulonDB [17], as well as several
additional interactions supported by ChIP-seq evidence.

For our final data processing step, we selected the genes
in the experimental datasets that overlapped with the set
of genes in the gold-standard network (thereby excluding
any genes in the experimental datasets that did not have at
least one interaction according to the gold standard network).
Descriptions of these datasets after processing are shown in
Table VI.

TABLE VI
DATASET DESCRIPTIONS

Dataset Genes Samples Edges
1.06 573 9328 629
1.10 615 11225 668
1.12 529 2154 559

B. Network Inference Methods

We then used the three datasets described in the previous
subsection to infer the underlying network using six network
inference methods: Pearson correlation, mutual information,
Spearman correlation, GENIE3 [20], PIDC [8], and CLR
[14].

The first three methods are simple approaches that can
be easily implemented in any programming language, and
do not involve any special software. Pearson correlation is
the simplest method, a linear measure of correlation, and is
useful as a point of comparison to see if the more complex
and elaborate methods outperform it in terms of accuracy.
Mutual information is a non-linear measure of statistical
dependence based on information theory [36]. Spearman
correlation is a rank-based nonlinear correlation measure.

The next three methods are examples of more complex,
published network inference methods. GENIE3 [20] is a
network inference method that uses a tree-based regression
technique. It was published in 2010 and was considered to
be one of the strongest and most accurate network inference
methods at the time. However, it predates the popularization
of single cell RNA-seq experiments and was developed
primarily for use on microarray gene expression datasets,
so it was not clear how well it would perform on single
cell data. PIDC [8] is a network inference method based on
information theory. It is similar to mutual information, except
that the information-theoretic dependencies are computed in
a triplet-wise rather than pair-wise manner. PIDC is relative
new (published in 2017), and was developed for use on
single cell data. The context likelihood of relatedness (CLR)
algorithm [14], originally published in 2007 and validated on
microarray data, is another information-theoretic approach.
Here, we use the CLR implementation available in the PIDC
code package [8].

C. Results

We scored the network predictions for each method and
each replicate against the true underlying network using the
receiver operating characteristic (ROC) and precision-recall
(PR) curve methods described earlier in this paper. Figure
9 shows the resulting ROC curves for each experimental
replicate, using Pearson correlation, mutual information, and
Spearman correlation. A line showing the no skill control
ROC curve is also included. Note that the network inference
ROC curves modestly outperform the no skill control curve,
although they are still far from perfect.

Figure 10 shows the resulting ROC curves for each repli-
cate, for for Pearson correlation, GENIE3 [20], PIDC [8],
and CLR [14], as well as the no skill control line (shown in
black). This is a very similar plot to Figure 9, except that
the methods have been split up so as to not crowd the figure
with too many curves. However, the Pearson correlation ROC
curves have been kept in Figure 10 to serve as a point of
comparison. Note that the curves for Pearson correlation,
PIDC, and CLR appear to outperform the no skill control
for all of the replicates, while for GENIE3 it is less clear.
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Fig. 9. Receiver operating characteristic (ROC) curves for Pearson
correlation (red), mutual information (blue), Spearman correlation (yellow),
and the no skill control (black). Curves are shown for each method and for
each of the three single cell PETRI-seq E. coli replicates [6] (experiments
1.06, 1.10, and 1.12). All of the network inference methods outperform
the no skill control and show about the same level of accuracy, with
mutual information being very slightly better than Pearson correlation and
Spearman correlation.
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Fig. 10. Receiver operating characteristic (ROC) curves for Pearson cor-
relation (red), GENIE3 [20] (green), PIDC [8](orange), CLR [14] (purple),
and the no skill control (black). Curves are shown for each method and for
each of the three single cell PETRI-seq E. coli replicates [6] (experiments
1.06, 1.10, and 1.12). The curves for Pearson correlation, PIDC, and CLR
appear to outperform the no skill control for all of the replicates, while for
GENIE3 it is less clear.

Figure 11 shows the mean area under the ROC curve
(AUROC) for each method, calculated across the three
datasets, with error bars showing one standard deviation. We
have also included a bar showing the area under the no skill
control ROC curve, which is 0.5 by definition. Figure 12
shows a similar bar plot, but with the mean area under the
precision-recall curves (AUPR), calculated across the three
datasets, with error bars showing one standard deviation.
Table VII and Table VIII show the AUROC and AUPR
scores, respectively, for each of the methods and each of the
replicates. Note that the network inference method results
are very far from perfect, but considerably better than one
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Fig. 11. Bars show mean area under the reciever operating characteristic
curve (AUROC) scores for each method, computed across the three single
cell PETRI-seq E. coli replicates [6] (experiments 1.06, 1.10, and 1.12).
Error bars show one standard deviation. A bar for the no skill control
AUROC (which is 0.5 by definition) is also shown for comparison. All
of the network inference methods outperformed the no skill control, but
GENIE3 [20] and CLR [14] did not perform as well as the more simplistic
methods.
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Fig. 12. Bars show mean area under the precision-recall curve (AUPR)
scores for each method as well as the no skill control, computed across
the three single cell PETRI-seq E. coli replicates [6] (experiments 1.06,
1.10, and 1.12). Error bars show one standard deviation. All of the network
inference methods outperformed the no skill control, but GENIE3 [20] and
CLR [14] did not perform as well as the more simplistic methods. Mutual
information had the best performance.

would expect from random guessing (represented by the no
skill scores). For both the AUROC scores and the AUPR
scores, all of the network inference methods outperformed
the no skill control, but GENIE3 [20] and CLR [14] did
not perform as well as the more simplistic methods. Mutual
information performed the best overall, for both the AUROC
and the AUPR scores.

IV. DISCUSSION

In this paper, we have presented network inference bench-
marking results using both simulated and experimental
datasets. A key conclusion from the simulation benchmark-
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TABLE VII
AUROC TABLE

Rep. 1 (1.06) Rep. 2 (1.10) Rep. 3 (1.12) Mean
Pearson Cor. 0.682 0.657 0.679 0.673
Mutual Info. 0.675 0.713 0.702 0.697
Spearman Cor. 0.668 0.668 0.688 0.675
GENIE3 0.505 0.641 0.651 0.599
PIDC 0.679 0.696 0.691 0.689
CLR 0.537 0.59 0.558 0.561
No Skill 0.5 0.5 0.5 0.5

TABLE VIII
AUPR TABLE

Rep. 1 (1.06) Rep. 2 (1.10) Rep. 3 (1.12) Mean
Pearson Cor. 0.0038 0.003 0.0036 0.0035
Mutual Info. 0.0038 0.0037 0.004 0.0038
Spearman Cor. 0.0032 0.0028 0.0035 0.0032
GENIE3 0.0019 0.0024 0.003 0.0024
PIDC 0.0033 0.003 0.0036 0.0033
CLR 0.0025 0.0025 0.0029 0.0026
No Skill 0.0019 0.0018 0.002 0.0019

ing is that one can expect substantial gains in network
inference accuracy by using proteomic rather than transcrip-
tomic datasets (assuming that the proteins are more stable
relative to the mRNAs – in rare cases where the mRNAs are
more stable, transcriptomic data should be used). Currently
it is difficult to find proteomic datasets that are usable for
network inference, but this may change in the future as high-
throughput proteomic experimental methods are developed
[10]. Another conclusion from the simulation benchmarking
is that it is not advisable to use the simplified model of
gene expression, in which the mRNA step is omitted, for
the purpose of benchmarking network inference methods as
making this simplification tends to overestimate the accuracy
of the network inference method being tested.

In addition to the simulation data benchmarking, this paper
also contains, to our knowledge, the first benchmarking of
network inference methods on single cell E. coli transcrip-
tomic data (since it was only recently that an RNA-seq
experimental protocol suitable for use on prokaryotes was
developed). Although the topic of network inference has
been widely studied for more than a decade, attempts to
validate methods on real datasets have been insufficient, and
have produced mixed results in which methods sometimes
work well and sometimes fail to outperform random chance.
So, one of the most valuable contributions one can currently
make to the field of network inference is to simply test out
existing methods on real experimental datasets and report the
results, so that we can get a clearer picture of how effective
these methods are.

The results of our benchmarking on experimental data
can be interpreted differently based on how high we set
the bar for effectiveness. If a network inference method
must reliably and consistently be able to uncover the true
network structure in order to be considered effective, then the
methods tested in this paper fail to meet this standard. Indeed,
even when constructing a network prediction with only the
highest-confidence predicted edges, one may still end up
with more false positives than true positives. However, if we

define effectiveness as the ability of a method to consistently
and reliably outperform random chance, then the methods
tested in this paper do meet this standard. Although far from
perfect, this level of accuracy may still be useful for biolo-
gists in terms of hypothesis generation. For example, if an
experimental biological is planning a knockout experiment,
they may find network inference to be a valuable tool for
choosing targets and generating hypotheses about regulatory
interactions, which can then be tested experimentally.

Another key result from our benchmarking on experimen-
tal data is that published methods may perform differently on
single cell datasets compared to bulk and microarray datasets.
For example, GENIE3 was considered to be one of the
strongest and most accurate methods for microarray data, but
failed to outperform the much simpler methods of Pearson
correlation, mutual information, and Spearman correlation
on the single cell E. coli data. This result is notable because
many of the most widely used network inference methods
were initially validated on microarray or bulk RNA-seq data,
and may need to be re-evaluated if they are to be used on
single cell datasets.

This paper is not meant to be a definitive, conclusive
statement on the efficacy of network inference from tran-
sriptomic data. On the contrary, we believe that due to the
mixed results reported by previous studies, one of the most
important research goals for the network inference topic is
the continued benchmarking of methods on experimental.
We have added to this body of information by reporting
benchmarking results from a single cell E. coli dataset, but
more research is needed so that we can get a clearer picture
of how well network inference from transcriptomic data
works under different conditions, with different organisms
and cell types, and using different experimental protocols.
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