

1 **Title:** Transposable elements impact the population divergence of rice blast fungus

2 *Magnaporthe oryzae*

3

4 Lianyu Lin^{a, #}, Ting Sun^{a, #}, Jiayuan Guo^{a,b}, Lili Lin^a, Meilian Chen^b, Zhe Wang^a, Jiandong Bao^c,
5 Justice Norvienyeku^d, Dongmei Zhang^a, Yijuan Han^b, Guodong Lu^a, Christopher Rensing^e,
6 Huakun Zheng^{a*}, Zhenhui Zhong^{a*}, Zonghua Wang^{a,b *}

7

8 ^a State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life
9 Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

10 ^b Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China.

11 ^c State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of
12 Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural
13 Sciences, Hangzhou 310021, China.

14 ^d Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry
15 of Education, College of Plant Protection, Hainan University, Haikou 570228, China.

16 ^e Institute of Environmental Microbiology, College of Resource and Environment, Fujian
17 Agriculture and Forestry University, Fuzhou 350002, China.

18 # These authors contributed to this work equally.

19 * To whom correspondence should be addressed. Email: wangzh@fafu.edu.cn (Z.W.),
20 zhenhuizhong@gmail.com (Z.Z.), huakunzheng@163.com (H.Z.)

21

22 **ABSTRACT**

23 Dynamic transposition of transposable elements (TEs) in fungal pathogens have
24 significant impact on genome stability, gene expression, and virulence to the host. In
25 *Magnaporthe oryzae*, genome plasticity resulting from TE insertion is a major driving
26 force leading to the rapid evolution and diversification of this fungus. Despite their
27 importance in *M. oryzae* population evolution and divergence, our understanding of
28 TEs in this context remains limited. Here we conducted a genome-wide analysis of
29 TE transposition dynamics in the 11 most abundant TE families in *M. oryzae*
30 populations. Our results show that these TEs have specifically expanded in recently
31 isolated *M. oryzae* rice populations, with the presence/absence polymorphism of TE
32 insertions highly concordant with population divergence on Geng/Japonica and
33 Xian/Indica rice cultivars. Notably, the genes targeted by clade-specific TEs showed
34 clade-specific expression patterns and are involved in the pathogenic process,
35 suggesting a transcriptional regulation of TEs on targeted genes. Our study provides a
36 comprehensive analysis of TEs in *M. oryzae* populations and demonstrates a crucial
37 role of recent TE bursts in adaptive evolution and diversification of the *M. oryzae*
38 rice-infecting lineage.

39

40 **IMPORTANCE**

41 *M. oryzae* is the causal agent of the destructive blast disease, which caused massive
42 loss of yield annually worldwide. The fungus diverged into distinct clades during
43 adaptation toward two rice subspecies, Xian/indica and Geng/japonica. Although the
44 role of TEs in the adaptive evolution was well established, mechanisms underlying
45 how TEs promote the population divergence of *M. oryzae* remains largely unknown.
46 In this study, we reported that TEs shape the population divergence of *M. oryzae* by
47 differentially regulating gene expression between Xian/Indica-infecting and
48 Geng/Japonica-infecting populations. Our results revealed a TE insertion mediated
49 gene expression adaption that led to the divergence of *M. oryzae* population infecting
50 different rice subspecies.

51

52 **Key Words:** transposable element; population divergence; rice subspecies adaptation;
53 rice blast disease.

54

55 INTRODUCTION

56 Rice blast disease, caused by the ascomycete filamentous fungus *Magnaporthe oryzae*
57 (syn: *Pyricularia oryzae*), poses a significant threat to rice production worldwide,
58 resulting in annual yield losses of 10-30% (1, 2). The deployment of resistant rice
59 varieties is the most cost-effective and environmentally friendly strategy for
60 controlling rice blast disease. However, the effectiveness of such resistance can
61 rapidly be diminished due to rapid mutation accumulation in avirulence genes (3, 4).
62 Therefore, it is crucial to uncover the mechanisms by which *M. oryzae* rapidly
63 evolves and evades the rice immune system.

64 Based on the two-speed genome model, filamentous fungi genomes had been shown
65 to display a bipartite architecture comprising of a gene-rich compartment, which
66 evolves slowly containing core genes encoding essential functions and metabolisms,
67 and a repeat-rich compartment, which evolves rapidly containing important virulence
68 effectors involved in pathogenicity (5-10). To avoid recognition by the plant immune
69 system, some pathogen effectors such as avirulence genes were shown to be
70 influenced or silenced by transposon elements (9, 11). Transposable elements (TEs)
71 make up over 10% of the *M. oryzae* genome (12, 13). Recent evidence has revealed
72 that TEs can be inserted in or around important effectors and alter the virulence
73 spectrum of *M. oryzae*. For example, the insertion of POT3 into the promoter region
74 of AVR-Pita in *M. oryzae* led to the acquisition of virulence towards the resistant rice
75 cultivar Yashiro-mochi (14). TEs are also able to affect gene expression networks, and
76 TE-dependent transcriptional regulation of some essential effectors can facilitate the
77 pathogen's transition in its life cycle. For instance, in *Phytophthora sojae*, the
78 avirulence genes *PsAvr1a*, *1b*, and *3a/5* were found to be transcriptionally inactive
79 due to TE insertions in their promoter or 3' UTR regions (15).

80 These studies have demonstrated the crucial role of TE-mediated genomic variations
81 in pathogen adaptation. However, previous investigations have mainly focused on the
82 impact of TEs on specific effectors or secreted proteins (13, 16-20). To gain a better

83 understanding on the functions of TEs in the complex *M. oryzae*-rice pathosystem, we
84 conducted a comprehensive analysis of TE insertion polymorphisms in 275 *M. oryzae*
85 isolates (176 rice isolates and 99 non-rice isolates; **Table S1**), and systematically
86 investigated the roles of TEs in the regulation of gene expression and population
87 divergence in the *M. oryzae* rice population.

88 **RESULTS**

89 **Recent large-scale TE bursts in the *M. oryzae* genome**

90 To assess the activity of transposable elements (TEs) on the *M. oryzae* genome, we
91 estimated the insertion time of long terminal repeat (LTR)-retrotransposons (LTR-RTs)
92 by measuring the genetic distance between their 5' and 3' LTRs, which were identical
93 at the time of TE insertion and gradually accumulated mutations over time. Using a de
94 novo method that is based on the structure of LTR-RTs, we identified 1,129 intact
95 LTR-RTs in seven near chromosomal-level *M. oryzae* rice isolates, including 70-15,
96 Guy11, FJ81278, FJ98099, FJ72ZC7-77, AV1-1-1, and Sar-2-20-1 (12, 13, 21).
97 Surprisingly, 91.7% (1,036/1,129) of the LTR-RTs showed extremely low levels of
98 divergence between their LTR pairs (over 99% identity), and 69.4% (784/1,129) of
99 them possessed identical LTR pairs, indicating that these LTR-RTs were recently
100 inserted and could be still active in the *M. oryzae* genomes.

101 Then, we analyzed 11 TE families that are most abundant in the genomes of *M.*
102 *oryzae* rice isolates, including six LTR-RTs (RETRO5, RETRO6, RETRO7, Maggy,
103 MGLR-3, and Pyret), two non-LTR retrotransposons (MGL and Mg-SINE), and three
104 DNA transposons (POT2, POT3, and Occan) (**Fig S1**) (12, 22-25). To assess the
105 activity of these TE families, we calculated the Kimura 2-Parameter genetic distance
106 (k-value) to measure the divergence between TE sequences and their associated
107 consensus sequences (26). Low k-values indicate that the TE fragments were
108 generated through recent insertion events, while high k-values indicate that the TE
109 fragments are divergent copies generated through ancient transposition events (27).

110 Our analysis revealed that all 11 TE families, especially sequences of MGL, Mg-SINE,
111 Maggy, and a subset of POT2, POT3, and Occan, exhibit very low k-values, and more
112 than half of all TE contents consisted of newly emerged TEs (k-values less than 5)
113 (**Fig. 1a and b**), indicating a recent, large-scale burst of TEs in the genome of *M.*
114 *oryzae* rice isolates. Notably, we observed two or more k-value peaks in POT2,
115 Mg-SINE, and Pyret, indicating that these TEs families have undergone multiple
116 rounds of amplification.

117 Furthermore, we investigated these TE families in 275 genomes of *M. oryzae* isolates
118 (**Table S1**) (28, 29). We found that TEs only accounted for less than five percent of
119 the genomes of non-rice isolates, which is dramatically lower than that found in *M.*
120 *oryzae* rice isolates (**Table S1 and S2**). Interestingly, the k-values of TEs were much
121 larger and the proportion of newly emerged TEs was also much lower in *M. oryzae*
122 non-rice isolates, indicating that the TEs were generated by more ancient insertion
123 events and were inactive in *M. oryzae* non-rice isolates (**Fig. 1b and c**). Notably, the
124 *M. oryzae* non-rice isolates contained only a few copies of fragmented Maggy and
125 Mg-SINE, which were very abundant and possessed very low k-values in *M. oryzae*
126 rice isolates, suggesting that the two TEs specifically amplified in *M. oryzae* rice
127 isolates. In summary, our analysis demonstrated that the TEs were recently and
128 specifically expanded in the genome of *M. oryzae* rice isolates and maintained high
129 activity.

130 **Whole genome landscape of TE dynamics in *M. oryzae* population**

131 To examine the dynamics of transposable elements (TEs) in the *M. oryzae* rice
132 population, we conducted a genome-wide analysis of TE insertion sites in 90 rice
133 isolates that had previously been published (30), with two *M. oryzae* *Setaria viridis*
134 isolates as an outgroup (31). Using paired-end read mapping to the reference genome
135 method, we identified a total of 11,163 TE insertion sites, with an average of 1,312
136 sites per isolate. To verify these insertion sites, 17 insertion sites randomly selected
137 from Guy11 or FJ81278 isolates were proved to be presented as predicted through

138 PCR-based genotyping or PacBio (**Table S3,S4**). The number (1,312 versus 739) and
139 location of TE insertions differed dramatically between the rice and *S. viridis* isolates
140 (**Fig. S2**), reflecting the evolutionary divergence of these subspecies and their
141 corresponding TEs, which is consistent with the finding that these two subspecies
142 diverged ~10,000 years ago (31). More than half (6,040/11,163) of the TE insertion
143 sites were singletons specific to individual isolates (**Fig. 2**), indicating frequent TE
144 transposition events. Notably, the number of POT2 insertion sites was substantially
145 higher than those of other TE families, suggesting a higher activity and variability of
146 POT2 in the *M. oryzae* rice population.

147 Furthermore, we conducted a comprehensive analysis of the genomic distribution of
148 TE insertion sites in the *M. oryzae* rice population. Of the 11,163 TE insertion sites
149 identified, 77% (8,582/11,163) was found to be located within 1 kb of the flanking
150 regions of genes or intragenic regions, and over 40% of the genes (5,259/12,991) were
151 embedded by these TE insertions. Our enrichment analysis showed that the
152 distribution of the 11 TE families is non-random in the *M. oryzae* rice isolates, and
153 each family displayed a distinct preference for specific genomic regions. For instance,
154 Maggy, MGLR-3, RETRO5, RETRO7, Pyret, POT3, and Occan were predominantly
155 distributed in intergenic regions, while POT2 displayed a preference for the gene
156 flanking regions. Additionally, SINE, MGL, and RETRO6 were found to
157 preferentially target intragenic regions (adjusted p-value < 0.01, **Table S5**). These
158 findings provide valuable insights into the mechanisms underlying TE insertions and
159 their potential impact on gene regulation in *M. oryzae*.

160 **Higher frequency of POT2 and POT3 insertions in promoter of secreted proteins**

161 We observed that genes encoding secreted proteins were more closely associated with
162 TE junctions (**Fig. 3a**), and the proportion of genes encoding secreted proteins with
163 TE insertion within 1-kb flanking regions was significantly (p=7.6e-4) higher than in
164 those of non-secreted proteins (**Table 1**). Moreover, enrichment analysis for TEs
165 associated with genes encoding secreted proteins showed that POT2 and POT3 were

166 overrepresented in promoters of genes encoding secreted protein (adjusted p-value <
167 0.01, **Table S6**), implying that genes encoding secreted proteins are more prone to
168 disruption by POT2 and POT3.

169 Previous studies have shown that genes with presence/absence variation (PAV) tended
170 to be located near transposable elements (TEs) in fungal pathogen genomes, while
171 core genes were located further away from the TE-rich compartments (32-34). In this
172 study, we compared the genomic distribution of core genes and PAV genes and found
173 that PAV genes tended to be located closer to TE insertion sites than core genes (**Fig.**
174 **3b**). Our results were consistent with previous findings and suggested that PAV genes
175 may be more susceptible to TE-mediated disruption, potentially contributing to their
176 faster evolution in the context of host-pathogen interactions. Together, these findings
177 suggested that TEs play a role in the evolution of pathogen effectors and contribute to
178 the dynamic nature of host-pathogen interactions.

179 **Association of TEs with *M. oryzae* rice population divergence**

180 Considering that the *M. oryzae* rice population diverged within only one thousand
181 years (30) and that the large-scale TE burst happened recently, we thus raised the
182 question of whether the population divergence of *M. oryzae* is associated with recent
183 TE amplification events. To characterize correlations between the 90 isolates, we
184 estimated the distance for each of two isolates by calculating the identity of the TE
185 insertion sites. The pairwise TE insertion identities varied from 17.6% between
186 YN126441 and FJ12JN-084-3 to 87.2% between TW-PT3-1 and TW-PT6-1, with an
187 average of only 38.7%, thereby strongly implicating the high variability of TE
188 junctions between the different isolates. However, when we grouped these isolates
189 based on the pairwise TE insertion identities, we discovered two distinct clusters (**Fig.**
190 **4a**) matching the Clade2 and Clade3 isolates that we had previously defined based on
191 genome-wide SNPs (30). We noticed that the remaining isolates out of the two
192 clusters were also able to match the Clade1 isolates even though they showed a
193 relatively low pairwise TE insertion identity, which can be attributed to an earlier time

194 of divergence of Clade1 isolates from the *M. oryzae* rice population when compared
195 to the other two clade isolates. Furthermore, we found that the pairwise TE insertion
196 identity between intra-clade isolates was higher than that between inter-clade isolates
197 (**Table S7**). Surprisingly, the hierarchical tree constructed using TE insertion sites
198 showed a high degree of similarity to the phylogenetic tree constructed based on
199 whole-genome SNPs (**Fig. 4b**) (30), indicating that the recent TE amplification event
200 has been a major force driving population divergence of *M. oryzae*. Consistently,
201 principal component analysis of these TE insertion sites displayed a similar pattern
202 (**Fig. 4c**). Considering that the TEs were largely amplified recently in the *M. oryzae*
203 genome (**Fig. 1**), we presumed that the recent high activity of TEs has been one of the
204 major forces driving population divergence of *M. oryzae*.

205 **POT2 and Mg-SINE are critical for the divergence of Clade2 and Clade3 isolates**

206 TEs are able to exert either beneficial or deleterious effects on host genomes, and the
207 retention or elimination of TEs is largely determined by their impact on the host.
208 Positive selection has been shown to drive the frequency of a TE locus to increase or
209 decrease dramatically during a population bottleneck or in response to a new
210 environment (35). We hypothesized that a portion of clade-specific TE insertion sites
211 had been fixed in the intra-clade isolates, contributing to the adaptive evolution of the
212 clade isolates. To identify the clade-specific TE insertion sites, we empirically
213 screened out those that were present in at least 80% of the intra-clade isolates and
214 absent in more than 80% of the other two clade isolates. A total of 11 Clade1-specific,
215 212 Clade2-specific, and 168 Clade3-specific TE insertion sites were identified, with
216 the number of Clade1-specific TE insertion sites being too small for subsequent
217 analysis. Enrichment analysis revealed that POT2 and Mg-SINE TE families were
218 overrepresented in both Clade2 and Clade3 datasets, indicating that the retention of
219 insertion of these two TE families in subpopulations of *M. oryzae* rice isolates was
220 tightly associated with the divergence of the rice-infection population (**Fig. 5a and b**).

221 We investigated the influence of clade-specific TE junctions on genes, which, for this

222 purpose, we referred to as clade-specific TE-associated genes (*CSTs*). We identified a
223 total of 238 Clade2-specific and 173 Clade3-specific TE-associated genes.
224 Interestingly, less than 10% of these genes overlapped, suggesting that the Clade2-
225 and Clade3-specific TEs have distinct targeted genes (**Fig. S2**). Gene ontology (GO)
226 enrichment analysis revealed that the Clade2- and Clade3-specific TE-associated
227 genes were enriched under similar GO terms (adjusted p-value < 0.01, **Fig. 5c, d**). Of
228 note, the top enriched term in both datasets was 'GO:0004497, monooxygenase
229 activity,' which is correlated to cytochrome P450s on the fungal genome. We further
230 validated the GO enrichment results by performing enrichment analysis for these
231 genes using the Pfam database (**Table S8**). Several previous studies have shown that
232 fungal P450s possess detoxifying functions towards compounds produced by host
233 plants during pathogen infection, thereby enhancing the fitness of the pathogenic
234 fungus to specific host genotypes (31, 36-40). Therefore, we suggest that TE-induced
235 variations in different members of P450s partially contribute to the differential
236 pathogenicity of the two clade isolates.

237 **Genes associated with TE are significantly lower expressed**

238 Previous studies have demonstrated that transposable elements (TEs) were able to
239 affect gene expression by inserting into gene promoters or intragenic regions (41-43).
240 Therefore, we investigated whether TE insertion polymorphisms could shape the gene
241 expression networks in *M. oryzae* rice populations. To this end, we selected 16
242 isolates and extracted total RNA for sequencing (**Table S9**). We identified 2,282 genes
243 targeted by 4,236 TE insertion sites that were polymorphic between the 16 isolates.
244 We then grouped the genes based on whether they contained TE insertion sites
245 (TE-present or TE-absent) and compared the expression levels between these two
246 groups. We observed that the TE-present gene group displayed significantly
247 ($p=2.17e-26$) lower expression levels than the TE-absent gene group (**Fig. 6a**),
248 suggesting that TEs have negative effects on the expression of their target genes. We
249 have identified 131 genes that exhibited clade-specific expression patterns.

250 Furthermore, based on the expression levels of these genes, we were able to divide 16
251 isolates into three distinct clusters using principal component analysis. These findings
252 suggest that transposable element-mediated gene regulation had a profound impact on
253 population divergence (**Fig. 6b and c**). Interestingly, we found that only genes with
254 insertion polymorphisms of POT2 and Mg-SINE displayed transcriptional
255 suppression, while other TE families displayed little impact on the expression of their
256 target genes. Our results suggest that the insertion polymorphisms of POT2 and
257 Mg-SINE were able to shape the gene expression network of *M. oryzae* by inducing
258 transcriptional suppression.

259 ***CST6 and CST10 were required for the pathogenicity of *M. oryzae****

260 To further investigate the impact of clade-specific TE in the virulence divergence
261 within *M. oryzae* rice population, we selected 15 of the clade-specific TE -associated
262 genes (CSTs) for functional analyses (**Fig. 7a and Table S10**). We defined CSTs as
263 genes that have TE insertion exclusively present in one clade and absent in another
264 clade. Among them, CST1-7 are Clade1-specific, and are only transcriptionally active
265 in Clade 2 isolates, while CST8-15 are Clade2-specific, and are only transcriptionally
266 active in Clade 1 isolates. We amplified CST1-7 from a Clade 2 isolate, 95085, and
267 ectopically overexpressed them in a Clade 1 isolate FJ81278. Conversely, CST8-15
268 were amplified from a Clade 1 isolate, FJ81278, and ectopically overexpressed in a
269 Clade 2 isolate 95085 (CST8-11) or transiently expressed in tobacco leaves
270 (CST12-15). The functional analyses revealed a role of CST6 and CST10 in the
271 pathogenicity of *M. oryzae* by leaf punch inoculation assays on the two Japonica
272 cultivars (NPB and TP309) and the two Indica cultivar (CO39 and MH63) (**Fig. 7b**
273 **and c**). While the CST6-OE strain produced smaller lesions and reduced fungal
274 biomass compared with the wild type, suggesting a potential role as a negative
275 regulator of virulence (**Fig. 7b and c**). The CST10-OE strain was more aggressive
276 and produced larger lesions and increased fungal biomass compared with the wild
277 type, suggesting its function as a positive regulator of virulence (**Fig. 7d and e**).

278 These results suggest that CST can profoundly impact virulence in *M. oryzae*,
279 influencing its interaction with different rice species.

280 **DISCUSSION**

281 The high genomic plasticity and rapid evolution of the plant pathogen *M. oryzae*
282 presents a severe challenge for rice blast disease control (44, 45). Previous studies
283 have identified transposons as a major driving force for the adaptive evolution of
284 fungal pathogen genomes (10). Insertion polymorphisms of transposable elements
285 (TEs) have been shown to lead to genomic instability, increased chromosomal
286 recombination, and accelerated gene evolution (17, 46). However, the precise role of
287 TE dynamics during *M. oryzae* evolution has remained poorly understood. To address
288 this, we conducted a population-scaled TE analysis of *M. oryzae* to investigate how
289 TE insertion polymorphisms contributed in shaping population structure and
290 divergence.

291 Previous study estimated that the *M. oryzae* rice population diverged 175 to 2,700
292 years ago (45). Here, we employed two methods to assess the activity of transposable
293 elements (TEs) in the genome of *M. oryzae*. First, we estimated the insertion time of
294 LTR-RTs and secondly, we calculated the Kimura 2-parameter genetic distance for the
295 11 most abundant TE families. Both analyses indicate that TEs have undergone recent
296 amplification in the *M. oryzae* genome and have remained highly active. Previous
297 studies have suggested that the insertion of TEs having caused gene presence/absence
298 variations to be the main evolutionary mechanism driving the divergence of
299 host-specific *M. oryzae* lineages (16). In this study, we investigated the abundance
300 and activity of 11 TEs in pathogens from wheat and grass infecting lineages, and
301 found that these 11 TEs have undergone specific expansion in *M. oryzae* rice isolates
302 while remain inactive in non-rice isolates. Based on these results, we propose that the
303 recent burst of TE activity could be the primary factor responsible for the divergence
304 of *M. oryzae* from other host infecting lineages and rice subspecies.

305 To elucidate the role of TEs in genome evolution and divergence, we conducted a
306 genome-wide survey of TE insertion sites in 90 *M. oryzae* rice isolates (30). We
307 utilized PoPoolationTE2, which is a validated method for estimating TE insertion
308 frequency in populations (47). The TE insertion junctions varied widely among the 90
309 isolates, indicating the highly dynamic and active feature of TEs in *M. oryzae* rice
310 populations. Consistent with prior research, we found that the distribution of TE
311 junctions across the genome was not evenly distributed, and different TE families or
312 superfamilies displayed preferences for insertion into distinct genomic regions (7, 17,
313 19).

314 TEs have been shown to be a major contributor in causing genomic variations, and the
315 evolution of plant pathogens (19, 48, 49). Previous studies have reported that in the
316 major wheat pathogen *Zymoseptoria tritici*, recent TE bursts were associated with the
317 proximity to genes (48). And TE insertion repressed the expression of *REP9-1* (49) or
318 *Avr3D1* (50), and consequently resulted in the altered virulence in different isolates of
319 this fungus. In the polyphagous fungal pathogen *Rhizoctonia solani*, TEs mediated the
320 structural variations of regions encoding pathogenicity associated genes (51).
321 Similarly, TE insertions in or around *Avr* genes in *M. oryzae* were able to lead to
322 transcriptional silencing and loss of avirulence function (14, 52-56). Our analysis
323 revealed that TE junctions are frequently observed in the flanking regions of genes
324 encoding secreted proteins (SPs), and the proportion of genes encoding SPs with TE
325 insertions is higher than that of non-SPs. This is consistent with previous findings that
326 SPs are enriched in repeat-rich regions and are prone to rapid evolution (13, 57). We
327 propose that the variation in SPs, induced by TE insertion polymorphisms, is able to
328 facilitate adaptive evolution of *M. oryzae*. Presence/absence variations in genes
329 resulting from TE insertions have been identified to be associated with the divergence
330 of host-specific *M. oryzae* lineages (16). Consistent with this, we found that genes
331 exhibiting high gain/loss polymorphisms in the 90 isolates were preferentially located
332 near TE junctions, suggesting that TE-mediated presence/absence variation constitutes
333 a significant mechanism underlying differentiation of host-specific or intra-species *M.*

334 *oryzae* rice isolates.

335 Through the comparison of TE junctions in 90 *M. oryzae* rice isolates, we observed a
336 clustering pattern that was similar to the three previously defined *M. oryzae* clades.
337 This led us to investigate the potential role of TEs in *M. oryzae* rice population
338 divergence. We constructed a hierarchical tree based on the TE junctions and found
339 that it closely resembled the phylogenetic tree constructed using genome-wide SNPs.
340 Principal component analysis of the TE junctions also yielded a similar clustering
341 pattern. These findings suggested that the transposition of TEs was strongly
342 associated with *M. oryzae* rice population divergence. Given that both the junction of
343 the majority of TEs in the *M. oryzae* rice isolate genomes and the divergence of *M.*
344 *oryzae* rice population were occurred recently, we hypothesize the recent burst of TEs
345 to be a driving force contributing to the *M. oryzae* rice population divergence.

346 TE loci that undergo positive selection during evolution will be retained and will
347 exhibit high frequencies in a population. Based on the hierarchical tree and PCA
348 results, we postulate that the intra-clade isolates have a fixed set of TE insertion sites
349 that are specific to each clade. These clade-specific TE insertion sites are then able to
350 serve as molecular markers to distinguish isolates belonging to the three clades.
351 Interestingly, we found that POT2 and Mg-SINE were enriched in clade-specific TE
352 insertion sites, suggesting that these clade-specific insertions of POT2 and Mg-SINE
353 were beneficial for the adaptive evolution of clade isolates. Furthermore, we noted
354 that cytochrome P450 proteins were overrepresented in both Clade2- and
355 Clade3-specific TE-targeted genes. Given the essential roles of P450s in detoxifying
356 phytoalexins produced by host plants, we hypothesize that the differential
357 pathogenicity of clade isolates may be partially due to the variations in P450s induced
358 by clade-specific TE insertions.

359 TEs integrated within or flanking genes have been shown to induce gene silencing
360 through the formation of heterochromatic regions (10, 43). To investigate the
361 correlation between TE insertion and gene expression regulation in *M. oryzae*, we

362 performed RNA sequencing on 16 isolates from the three clades and conducted
363 functional studies on genes disrupted by clade-specific TEs. Our analysis revealed
364 that genes containing a TE insertion displayed significantly lower expression
365 compared to genes without TE insertion. Notably, only POT2 and Mg-SINE insertions
366 led to substantial suppression of gene expression. The initial functional analysis
367 suggests that these CSTs play a crucial role in the pathogenic process. Surprisingly,
368 these CSTs exhibit dual functionality, acting as both negative and positive regulators
369 of virulence, while the detailed mechanisms underlying these roles require further
370 investigation. Therefore, we hypothesized that clade-specific insertions of POT2 and
371 Mg-SINE contribute to the adaptive evolution of clade isolates by regulating
372 expression of specific genes and affecting adaptive traits.

373 Through a comprehensive analysis of TEs in populations of the rice-infecting fungus
374 *M. oryzae*, we have revealed the crucial roles played by recent TE insertional bursts in
375 the adaptive evolution and diversification of this fungal lineage. We demonstrate that
376 recent TE insertions have led to the emergence of genes with clade-specific
377 expression patterns, contributing significantly to the divergence of *M. oryzae* rice
378 population and their adaptation to different rice subspecies. These findings highlight
379 the significance of TE-mediated genetic changes in the regulation of gene expression,
380 which in turn contributes to clade divergence and allows *M. oryzae* to adapt to diverse
381 environmental pressures, including those imposed by different rice cultivars. Our
382 findings highlight the significance of TE-mediated genetic changes in the regulation
383 of gene expression, which in turn contributes to clade divergence.

384

385 MATERIALS AND METHODS

386 RNA extraction, library generation, and sequencing

387 The fungal strains were cultured in liquid CM medium by incubation at 28°C under
388 shaking at 110 rpm for three days. The mycelium was filtered, washed with

389 double-deionized water, and dried before being ground in liquid nitrogen. Ground
390 samples were transferred into DNase/RNase-free Eppendorf tubes, suspended in 1 mL
391 Trizol, and vortexed vigorously. To eliminate proteins, 200 μ L of chloroform was
392 added to the mixture, which was then shaken for 15 s. After centrifugation at 12,000
393 rpm for 15 min at 4°C, 400 μ L of the supernatant was collected and mixed with 400
394 μ L of cold isopropanol. The mixture was kept at -20°C for at least two hours, then
395 centrifuged at 12,000 rpm for 15 min at 4°C. The supernatant was discarded, and the
396 precipitates were washed with 1 mL of 70% alcohol and centrifuged at 12,000 rpm for
397 5 min at 4°C. After air drying for 5 min at room temperature, the pellets were diluted
398 with 54 μ L of DNase/RNase-free deionized water and treated with 2 μ L of DNase I
399 at 37°C for 30 min. The mixture was brought up to 800 μ L with RNase-free water,
400 followed by the addition of an equal volume of chloroform. After gentle mixing, the
401 mixture was centrifuged at 12,000 rpm for 15 min at 4°C. About 500 μ L of the
402 supernatant was collected and mixed with 500 μ L of cold isopropanol. The mixture
403 was then kept at -20°C for more than three hours, followed by centrifugation at
404 12,000 rpm for 15 min at 4°C. The precipitates were washed with 1 mL of 70%
405 alcohol, air-dried for 5 min at room temperature, and eluted with DNase/RNase-free
406 deionized water. The RNA samples were then stored at -80°C for RNA sequencing
407 analysis.

408 **Estimation of TE activity**

409 LTR-Finder (58) with modified parameters of ‘-D 15000 -d 1000 -L 7000 -l 100 -p 20
410 -C -M 0.8’, LTR-harvest (59) with modified parameters of ‘-similar 80 -vic 10 -seed
411 20 -seqids yes -minlenltr 100 -maxlenltr 7000 -mintsd 4 -maxtsd 6 -motif TGCA
412 -motifmis 1’ and LTR-Retriever, and LTR-Retriever (60) with default parameter were
413 used for *de novo* identification of full-length LTR-RTs and estimation of insertion

414 time. Information on TE classification is based on previous research (12) and the
415 conserved domains of TE consensus sequences were predicted by Conserved Domain
416 Database (61). The Kimura 2-Parameter genetic distances (k-values) of TE fragments
417 were calculated by RepeatMasker (62) with option '-a'.

418 **Prediction of secreted proteins and PAV genes**

419 To identify putative secreted proteins, several criteria were employed, including the
420 presence of a signal peptide cleavage site, the absence of a transmembrane domain,
421 and a protein length of less than 400 amino acids. SignalP 4.0 and TMHMM 2.0 were
422 utilized for signal peptide and transmembrane domain prediction, respectively (63,
423 64). The transcript sequences of the 70-15 reference genome were aligned to the
424 previously published assemblies of 90 isolates using NCBI-blastn with default
425 parameters. Genes that exhibited more than 90% similarity with no gaps longer than
426 50 bp when compared to the assemblies were marked as "present". Genes that did not
427 meet these criteria were marked as "absent". PAV (presence-absence variation) genes
428 were defined as those that were absent in more than five isolates, while core genes
429 were defined as those present in all isolates.

430 **Identification of TE insertion sites in *M. oryzae* populations**

431 *M. oryzae* 70-15 TE is annotated by RepeatMasker with 11 TEs as TE library. The
432 pair-end reads were mapped to the *M. oryzae* 70-15 reference genome using BWA (65)
433 with default parameters. The alignment files were exported to PoPopulation2 (66) with
434 default parameter to identify TE insertion site for each isolate. The TE insertion sites
435 with score less than 0.3 were filtered, and the insertion sites located within 50 bp were
436 considered as one insertion event.

437 **Construction of TE hierarchical tree, principal component analysis**

438 The insertion sites that are present in at least 5 isolates were used for constructing
439 hierarchical tree and principal component analysis (PCA). The TE insertion sites in

440 presence/absence variation format were exported to the R package ‘hclust’ (67) for
441 construction of TE hierarchical tree. Vcftools (68) and Plink (69) were used for PCA.

442 **Functional enrichment analysis**

443 GO annotation information of *M. oryzae* was obtained from the JGI database (70).
444 Conserved domains of *M. oryzae* protein sequences were predicted using the Pfam
445 database (71). Fisher right-tailed test was used for enrichment analysis and a cutoff
446 p-value less than 0.05 was used to define significant enrichment.

447 **RNA-seq analysis**

448 The clean reads were mapped to the 70-15 reference genome using hisat2 v2.2.1 (72)
449 with default parameters. Stingtie v2.1.4 was used for expression quantification (73).
450 Gene expressions were normalized with transcripts per million (TPM). The
451 expression of each gene in the isolates with or without TE insertion were counted,
452 averaged and compared. Two-tailed Wilcoxon paired test was used to estimate the
453 significance of expression difference.

454 **Pathogenicity assay of the *CST*-overexpressing transformants**

455 The coding sequence (CDS) of *CST6* and *CST10* were amplified from the Clade 2
456 isolate, 95085, and the Clade 1 isolate, FJ81278, respectively, and were inserted into
457 the *pKNT-RP27* vector. The resulting constructs were then introduced into FJ81278
458 (*CST6*) or 95085 (*CST10*), respectively. The PEG-mediated protoplast transformation
459 was performed as described previously (74). To determine the role of selected *CST*
460 genes in the pathogenicity of *M. oryzae*, punch inoculation was performed as
461 previously described (75). In brief, 10 μ L spore solution (5×10^5 spores/mL in
462 sterilized water containing 0.02% Tween) was inoculated into wounded rice leaves.
463 The inoculated rice plants were placed in a greenhouse. Disease symptoms were
464 recorded 10 days post inoculation. DNA extracted from the diseased rice leaves was
465 subjected to the quantitative fluorescence analyses. The primers used in this study

466 were listed in Table S11.

467 DATA AVAILABILITY

468 All high-throughput sequencing data generated in this study are accessible at NCBI's
469 Gene Expression Omnibus (GEO) via GEO Series accession number GSE205351
470 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE205351>). The consensus
471 TE sequences of *M. oryzae* (https://github.com/S-t-ing/mBio-data-availability/blob/main/Mo.TE_Consensus.fasta), Genome-wide annotation of TEs in the genomes of
472 275 *Magnaporthe* isolates (<https://github.com/S-t-ing/mBio-data-availability/tree/main/gff>), and the TE insertion sites among the 90 *Magnaporthe* rice isolates
473 (<https://github.com/S-t-ing/mBio-data-availability/blob/main/TE%20insertion%2090%20isolates.xlsx>) were available online.

477

478 ACKNOWLEDGMENTS

479 This work was financially supported by the National Natural Science Foundation of
480 China (32272513 and 32172365) and Central Guidance on Local Science and
481 Technology Development Fund of Fujian Province (2022L3088). Open Access
482 funding provided by Fujian Agriculture and Forestry University.

483

484 REFERENCES

- 485 1. **Wilson RA, Talbot NJ.** 2009. Under pressure: investigating the biology of plant infection by
486 *Magnaporthe oryzae*. *Nat Rev Microbiol* 7:185-95.
- 487 2. **Asibi AE, Chai Q, Coulter JA.** 2019. Rice blast: A disease with implications for global food
488 security. *Agronomy* 9:451.
- 489 3. **Leach JE, Vera Cruz CM, Bai J, Leung H.** 2001. Pathogen fitness penalty as a predictor of
490 durability of disease resistance genes. *Annu Rev Phytopathol* 39:187-224.
- 491 4. **Wang B-h, Ebbolte DJ, Wang Z-h.** 2017. The arms race between *Magnaporthe oryzae* and rice:
492 Diversity and interaction of *Avr* and *R* genes. *Journal of Integrative Agriculture* 16:2746-2760.
- 493 5. **Dong S, Raffaele S, Kamoun S.** 2015. The two-speed genomes of filamentous pathogens:
494 waltz with plants. *Current opinion in genetics & development* 35:57-65.
- 495 6. **Chuong EB, Elde NC, Feschotte C.** 2017. Regulatory activities of transposable elements: from
496 conflicts to benefits. *Nat Rev Genet* 18:71-86.
- 497 7. **Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M,
498 Izsvák Z, Levin HL, Macfarlan TS.** 2018. Ten things you should know about transposable
499 elements. *Genome biology* 19:1-12.
- 500 8. **Gout L, Kuhn ML, Vincenot L, Bernard-Samain S, Cattolico L, Barbetti M, Moreno-Rico O,**

501 **Balesdent MH, Rouxel T.** 2007. Genome structure impacts molecular evolution at the AvrLm1
502 avirulence locus of the plant pathogen *Leptosphaeria maculans*. *Environ Microbiol* 9:2978-92.

503 9. **Raffaele S, Kamoun S.** 2012. Genome evolution in filamentous plant pathogens: why bigger
504 can be better. *Nat Rev Microbiol* 10:417-30.

505 10. **Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GC, Wittenberg AH, Thomma BP.**
506 2016. Transposons passively and actively contribute to evolution of the two-speed genome of
507 a fungal pathogen. *Genome Res* 26:1091-100.

508 11. **Seidl MF, Thomma B.** 2017. Transposable Elements Direct The Coevolution between Plants
509 and Microbes. *Trends Genet* 33:842-851.

510 12. **Dean RA, Talbot NJ, Ebbbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu**
511 **JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM,**
512 **Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H,**
513 **Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW.**
514 2005. The genome sequence of the rice blast fungus *Magnaporthe grisea*. *Nature* 434:980-6.

515 13. **Bao J, Chen M, Zhong Z, Tang W, Lin L, Zhang X, Jiang H, Zhang D, Miao C, Tang H, Zhang J,**
516 **Lu G, Ming R, Norvienyeku J, Wang B, Wang Z.** 2017. PacBio Sequencing Reveals
517 Transposable Elements as a Key Contributor to Genomic Plasticity and Virulence Variation in
518 *Magnaporthe oryzae*. *Mol Plant* 10:1465-1468.

519 14. **Kang S, Lebrun MH, Farrall L, Valent B.** 2001. Gain of virulence caused by insertion of a Pot3
520 transposon in a *Magnaporthe grisea* avirulence gene. *Mol Plant Microbe Interact* 14:671-4.

521 15. **Whisson S, Vetukuri R, Avrova A, Dixellius C.** 2012. Can silencing of transposons contribute to
522 variation in effector gene expression in *Phytophthora infestans*? *Mobile genetic elements*
523 2:110-114.

524 16. **Yoshida K, Saunders DG, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, Inoue Y, Chuma I, Tosa**
525 **Y, Cano LM, Kamoun S, Terauchi R.** 2016. Host specialization of the blast fungus
526 *Magnaporthe oryzae* is associated with dynamic gain and loss of genes linked to transposable
527 elements. *BMC Genomics* 17:370.

528 17. **Thon MR, Pan H, Diener S, Papalas J, Taro A, Mitchell TK, Dean RA.** 2006. The role of
529 transposable element clusters in genome evolution and loss of synteny in the rice blast
530 fungus *Magnaporthe oryzae*. *Genome Biol* 7:R16.

531 18. **Castanera R, Lopez-Varas L, Borgognone A, LaButti K, Lapidus A, Schmutz J, Grimwood J,**
532 **Perez G, Pisabarro AG, Grigoriev IV, Stajich JE, Ramirez L.** 2016. Transposable Elements
533 versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional
534 Profiles. *PLoS Genet* 12:e1006108.

535 19. **Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K.** 2019. Transposable
536 elements contribute to fungal genes and impact fungal lifestyle. *Sci Rep* 9:4307.

537 20. **Shirke MD, Mahesh HB, Gowda M.** 2016. Genome-Wide Comparison of *Magnaporthe*
538 Species Reveals a Host-Specific Pattern of Secretory Proteins and Transposable Elements.
539 *PLoS One* 11:e0162458.

540 21. **Zhong Z, Lin L, Zheng H, Bao J, Chen M, Zhang L, Tang W, Ebbolle DJ, Wang Z.** 2020.
541 Emergence of a hybrid PKS-NRPS secondary metabolite cluster in a clonal population of the
542 rice blast fungus *Magnaporthe oryzae*. *Environ Microbiol* doi:10.1111/1462-2920.14994.

543 22. **Sanchez E, Asano K, Sone T.** 2011. Characterization of *Inago1* and *Inago2* retrotransposons in
544 *Magnaporthe oryzae*. *Journal of general plant pathology* 77:239-242.

545 23. **Kachroo P, Leong SA, Chattoo BB.** 1994. Pot2, an inverted repeat transposon from the rice
546 blast fungus Magnaporthe grisea. *Mol Gen Genet* 245:339-48.

547 24. **Farman ML, Tosa Y, Nitta N, Leong SA.** 1996. MAGGY, a retrotransposon in the genome of the
548 rice blast fungus Magnaporthe grisea. *Mol Gen Genet* 251:665-74.

549 25. **Dobinson KF, Harris RE, Hamer JE.** 1993. Grasshopper, a long terminal repeat (LTR)
550 retroelement in the phytopathogenic fungus Magnaporthe grisea. *Mol Plant Microbe Interact*
551 6:114-26.

552 26. **Kimura M.** 1980. A simple method for estimating evolutionary rates of base substitutions
553 through comparative studies of nucleotide sequences. *J Mol Evol* 16:111-20.

554 27. **Chalopin D, Naville M, Plard F, Galiana D, Wolff JN.** 2015. Comparative analysis of
555 transposable elements highlights mobilome diversity and evolution in vertebrates. *Genome
556 Biol Evol* 7:567-80.

557 28. **Peng Z, Oliveira-Garcia E, Lin G, Hu Y, Dalby M, Migeon P, Tang H, Farman M, Cook D, White
558 FF, Valent B, Liu S.** 2019. Effector gene reshuffling involves dispensable mini-chromosomes in
559 the wheat blast fungus. *PLoS Genet* 15:e1008272.

560 29. **Gómez Luciano LB, Tsai JJ, Chuma I, Tosa Y, Chen Y-H, Li J-Y, Li M-Y, Lu M-YJ, Nakayashiki H,
561 Li W-H.** 2019. Blast fungal genomes show frequent chromosomal changes, gene gains and
562 losses, and effector gene turnover. *Molecular biology and evolution* 36:1148-1161.

563 30. **Zhong Z, Chen M, Lin L, Han Y, Bao J, Tang W, Lin L, Lin Y, Somai R, Lu L, Zhang W, Chen J,
564 Hong Y, Chen X, Wang B, Shen W-C, Lu G, Norvienyeku J, Ebbole DJ, Wang Z.** 2018. Population
565 genomic analysis of the rice blast fungus reveals specific events associated with
566 expansion of three main clades. *The ISME Journal* doi:10.1038/s41396-018-0100-6.

567 31. **Zhong Z, Norvienyeku J, Chen M, Bao J, Lin L, Chen L, Lin Y, Wu X, Cai Z, Zhang Q, Lin X,
568 Hong Y, Huang J, Xu L, Zhang H, Chen L, Tang W, Zheng H, Chen X, Wang Y, Lian B, Zhang L,
569 Tang H, Lu G, Ebbole DJ, Wang B, Wang Z.** 2016. Directional Selection from Host Plants Is a
570 Major Force Driving Host Specificity in Magnaporthe Species. *Sci Rep* 6:25591.

571 32. **Lorrain C, Feurtey A, Möller M, Haueisen J, Stukenbrock E.** 2021. Dynamics of transposable
572 elements in recently diverged fungal pathogens: lineage-specific transposable element
573 content and efficiency of genome defenses. *G3* 11:jkab068.

574 33. **Plissonneau C, Hartmann FE, Croll D.** 2018. Pangenome analyses of the wheat pathogen
575 Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. *BMC
576 Biol* 16:5.

577 34. **Badet T, Oggendorf U, Abraham L, McDonald BA, Croll D.** 2020. A 19-isolate
578 reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. *BMC
579 Biol* 18:12.

580 35. **Torres DE, Oggendorf U, Croll D, Seidl MF.** 2020. Genome evolution in fungal plant pathogens:
581 looking beyond the two-speed genome model. *Fungal Biology Reviews*.

582 36. Schuler MA. 2015. P450s in plants, insects, and their fungal pathogens, p 409-449,
583 Cytochrome P450. Springer.

584 37. **Ide M, Ichinose H, Wariishi H.** 2012. Molecular identification and functional characterization
585 of cytochrome P450 monooxygenases from the brown-rot basidiomycete Postia placenta.
586 *Arch Microbiol* 194:243-53.

587 38. **Nazir KH, Ichinose H, Wariishi H.** 2011. Construction and application of a functional library of
588 cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae. *Appl*

589 39. *Environ Microbiol* 77:3147-50.

590 39. **Doddapaneni H, Chakraborty R, Yadav JS.** 2005. Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus *Phanerochaete chrysosporium*: evidence for gene duplications and extensive gene clustering. *BMC Genomics* 6:92.

594 40. **Zhang S, Widemann E, Bernard G, Lesot A, Pinot F, Pedrini N, Keyhani NO.** 2012. CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus *Beauveria bassiana*. *J Biol Chem* 287:13477-86.

598 41. **Santana M, Queiroz M.** 2015. Transposable elements in fungi: a genomic approach. *Scientific J Genetics Gen Ther* 1:012.

600 42. **Krishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, McDonald BA, Sanchez-Vallet A.** 2018. Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. *BMC Biol* 16:78.

603 43. **Lewis ZA, Honda S, Khlafallah TK, Jeffress JK, Freitag M, Mohn F, Schubeler D, Selker EU.** 2009. Relics of repeat-induced point mutation direct heterochromatin formation in *Neurospora crassa*. *Genome Res* 19:427-37.

606 44. **Gladieux P, Condon B, Ravel S, Soanes D, Maciel JLN, Nhani A, Jr., Chen L, Terauchi R, Lebrun MH, Tharreau D, Mitchell T, Pedley KF, Valent B, Talbot NJ, Farman M, Fournier E.** 2018. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus *Magnaporthe oryzae*. *mBio* 9.

610 45. **Gladieux P, Ravel S, Rieux A, Cros-Arteil S, Adreit H, Milazzo J, Thierry M, Fournier E, Terauchi R, Tharreau D.** 2018. Coexistence of multiple endemic and pandemic lineages of the rice blast pathogen. *mBio* 9.

613 46. **Chadha S, Sharma M.** 2014. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen *Magnaporthe oryzae*. *PLoS One* 9:e94415.

615 47. **Kofler R, Gomez-Sanchez D, Schlotterer C.** 2016. PoPopulationTE2: Comparative Population Genomics of Transposable Elements Using Pool-Seq. *Mol Biol Evol* 33:2759-64.

617 48. **Oggenfuss U, Croll D.** 2023. Recent transposable element bursts are associated with the proximity to genes in a fungal plant pathogen. *PLoS Pathog* 19:e1011130.

619 49. **Wang C, Milgate AW, Solomon PS, McDonald MC.** 2021. The identification of a transposon affecting the asexual reproduction of the wheat pathogen *Zymoseptoria tritici*. *Mol Plant Pathol* 22:800-816.

622 50. **Fouché S, Badet T, Oggenfuss U, Plissonneau C, Francisco CS, Croll D.** 2020. Stress-driven transposable element de-repression dynamics and virulence evolution in a fungal pathogen. *Mol Biol Evol* 37:221-239.

625 51. **Francis A, Ghosh S, Tyagi K, Prakasam V, Rani M, Singh NP, Pradhan A, Sundaram RM, Priyanka C, Laha GS, Kannan C, Prasad MS, Chattopadhyay D, Jha G.** 2023. Evolution of pathogenicity-associated genes in *Rhizoctonia solani* AG1-A by genome duplication and transposon-mediated gene function alterations. *BMC Biology* 21:15.

629 52. **Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B.** 2009. The *Magnaporthe oryzae* avirulence gene *AvrPiz-t* encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene *Piz-t*. *Mol Plant Microbe Interact* 22:411-20.

633 53. **Zhang S, Wang L, Wu W, He L, Yang X, Pan Q.** 2015. Function and evolution of Magnaporthe
634 oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. *Sci Rep*
635 5:11642.

636 54. **Chen C, Chen M, Hu J, Zhang W, Zhong Z, Jia Y, Allaux L, Fournier E, Tharreau D, Wang G-L.**
637 2014. Sequence variation and recognition specificity of the avirulence gene AvrPiz-t in
638 Magnaporthe oryzae field populations. *Fungal Genomics & Biology* 4.

639 55. **Miki S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukuya S, Sato J, Hirayae K, Fujita Y,**
640 **Nakajima T, Tomita F, Sone T.** 2009. Molecular cloning and characterization of the AVR-Pia
641 locus from a Japanese field isolate of Magnaporthe oryzae. *Mol Plant Pathol* 10:361-74.

642 56. **Hu ZJ, Huang YY, Lin XY, Feng H, Zhou SX, Xie Y, Liu XX, Liu C, Zhao RM, Zhao WS, Feng CH,**
643 **Pu M, Ji YP, Hu XH, Li GB, Zhao JH, Zhao ZX, Wang H, Zhang JW, Fan J, Li Y, Peng YL, He M, Li**
644 **DQ, Huang F, Peng YL, Wang WM.** 2022. Loss and Natural Variations of Blast Fungal
645 Avirulence Genes Breakdown Rice Resistance Genes in the Sichuan Basin of China. *Front Plant*
646 *Sci* 13:788876.

647 57. **Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li J, Li C, Song MY, Cumagun CJ,**
648 **Deng Q, Lu G, Jeon JS, Naqvi NI, Zhou B.** 2015. Comparative genomics identifies the
649 Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in
650 rice. *New Phytol* 206:1463-75.

651 58. **Xu Z, Wang H.** 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR
652 retrotransposons. *Nucleic Acids Res* 35:W265-8.

653 59. **Ellinghaus D, Kurtz S, Willhoefft U.** 2008. LTRharvest, an efficient and flexible software for de
654 novo detection of LTR retrotransposons. *BMC Bioinformatics* 9:18.

655 60. **Ou S, Jiang N.** 2018. LTR_retriever: A Highly Accurate and Sensitive Program for Identification
656 of Long Terminal Repeat Retrotransposons. *Plant Physiol* 176:1410-1422.

657 61. **Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI,**
658 **Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ,**
659 **Marchler-Bauer A.** 2020. CDD/SPARCLE: the conserved domain database in 2020. *Nucleic*
660 *Acids Res* 48:D265-D268.

661 62. **Tempel S.** 2012. Using and understanding RepeatMasker. *Methods Mol Biol* 859:29-51.

662 63. **Petersen TN, Brunak S, von Heijne G, Nielsen H.** 2011. SignalP 4.0: discriminating signal
663 peptides from transmembrane regions. *Nat Methods* 8:785-6.

664 64. **Krogh A, Larsson B, von Heijne G, Sonnhammer EL.** 2001. Predicting transmembrane protein
665 topology with a hidden Markov model: application to complete genomes. *J Mol Biol*
666 305:567-80.

667 65. **Li H, Durbin R.** 2009. Fast and accurate short read alignment with Burrows-Wheeler
668 transform. *Bioinformatics* 25:1754-60.

669 66. **Kofler R, Pandey RV, Schlotterer C.** 2011. PoPoolation2: identifying differentiation between
670 populations using sequencing of pooled DNA samples (Pool-Seq). *Bioinformatics* 27:3435-6.

671 67. **Galili T.** 2015. dendextend: an R package for visualizing, adjusting and comparing trees of
672 hierarchical clustering. *Bioinformatics* 31:3718-20.

673 68. **Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G,**
674 **Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Analysis G.** 2011. The variant
675 call format and VCFtools. *Bioinformatics* 27:2156-8.

676 69. **Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de**

677 **Bakker PI, Daly MJ, Sham PC.** 2007. PLINK: a tool set for whole-genome association and
678 population-based linkage analyses. *Am J Hum Genet* 81:559-75.

679 70. **Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV,**
680 **Dubchak I.** 2014. The genome portal of the Department of Energy Joint Genome Institute:
681 2014 updates. *Nucleic Acids Res* 42:D26-31.

682 71. **Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE,**
683 **Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A.** 2021. Pfam: The protein families
684 database in 2021. *Nucleic Acids Res* 49:D412-D419.

685 72. **Kim D, Paggi JM, Park C, Bennett C, Salzberg SL.** 2019. Graph-based genome alignment and
686 genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* 37:907-915.

687 73. **Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL.** 2015. StringTie
688 enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat Biotechnol*
689 33:290-5.

690 74. **Zhang L-m, Chen S-t, Qi M, Cao X-q, Liang N, Li Q, Tang W, Lu G-d, Zhou J, Yu W-y, Wang Z-h,**
691 **Zheng H-k.** 2021. The putative elongator complex protein Elp3 is involved in asexual
692 development and pathogenicity by regulating autophagy in the rice blast fungus. *Journal of*
693 *Integrative Agriculture* 20:2944-2956.

694 75. **Han Y, Song L, Peng C, Liu X, Liu L, Zhang Y, Wang W, Zhou J, Wang S, Ebbole D, Wang Z, Lu**
695 **GD.** 2019. A *Magnaporthe* chitinase interacts with a rice jacalin-related lectin to promote
696 host colonization. *Plant Physiol* 179:1416-1430.

697

698 **Figure legends**

699 **FIG 1 The distribution of 11 TE families in the *M. oryzae* population. a)** The Kimura
700 2-Parameter genetic distance of 11 TE families in three different *Magnaporthe* species were
701 shown in density plot. **b, c)** The k-value proportions of 11 TE families in *M. oryzae* rice isolates
702 (**b**) and non-rice isolates (**c**). The numbers of TE fragment were marked at the top of bars.
703

704 **FIG 2 The number of TE junctions in the *M. oryzae* rice population.** The circos diagram (from
705 outer to inner) displays chromosomes, gene distribution, distribution of DNA transposon,
706 Non-LTR-RT and LTR-RT junctions. The histogram shows the insertion site numbers of different
707 TE families. The non-transparent and transparent colors represent the numbers of isolate-specific
708 and isolate-shared TE junctions, respectively

709 **FIG 3 The TEs were in proximity to secreted proteins and PAV genes.** The distance of TEs to
710 the 5' and 3' ends of secreted proteins and non-secreted proteins (**a**) or core genes and PAV genes
711 (**b**).
712

713 **FIG 4 TE insertion was associated with the divergence of *M. oryzae* rice population. a)** The
714 heatmap showing the identity of TE insertion site between each two isolates. **b)** The hierarchical
715 tree built by using the TE insertion sites of *M. oryzae* population. Three distinct clades were
716 marked in red, blue and green colors respectively. **c)** Principal component analysis using the TE
717 insertion sites.
718

719 **FIG 5 Characteristics of clade-specific TEs in the *M. oryzae* rice population. a, b)** Enrichment
720 analysis of 11 TE families in Clade2- (**a**) and Clade3-specific (**b**) insertion sites. Fisher's exact test
721 was used for significance test. **c)** GO enrichment analysis for the clade2- (**c**) and clade3-specific (**d**)
722 TE-associated genes.
723

724 **FIG 6 The impact of clade-specific TE insertion on gene expression. a)** Comparison of gene
725 expressions between the isolates present or absent with TE insertion. **b)** PCA clustering of 16
726 isolates based on expression level of 131 clade-specific DEGs. **c)** Heatmap showing expression
727 level of 131 clade-specific DEGs in 16 isolates.
728

729 **FIG 7 CST6 and CST10 were required for the pathogenicity of *M. oryzae* rice isolates. a)** Heatmap showing expression level of 15 clade-specific TE-associated genes (CSTs) in 16 isolates.
730 **b)** Leaf punch inoculation assays were conducted to assess the impact of CST6 overexpression on
731 two Japonica cultivars (NPB and TP309) and the two Indica cultivar (CO39 and MH63). The
732 Clade3 isolate (FJ81278), lacking CST6 expression, was used as the wild-type control. **c)** Leaf
733 punch inoculation assays were conducted to assess the impact of CST10 overexpression on two
734 Japonica cultivars (NPB and TP309) and the two Indica cultivar (CO39 and MH63). The Clade3
735 isolate (95085), lacking CST10 expression, was used as the wild-type control. **d)** Relative fungal
736 biomass on leaf punch inoculation assays of CST6 overexpression on two Japonica cultivars (NPB
737 and TP309) and the two Indica cultivar (CO39 and MH63). **e)** Relative fungal biomass on leaf
738

740 punch inoculation assays of CST10 overexpression on two Japonica cultivars (NPB and TP309)
741 and the two Indica cultivar (CO39 and MH63).

742

743 **TABLE 1** The numbers of secreted protein and non-secreted protein that have TE
744 insertion in 1-kb flanking regions or within gene.

745

746 **SUPPLEMENTAL MATERIAL**

747 **FIG S1** Schematic of the 11 most abundant TE families on the genome of the *M. oryzae* rice
748 isolate. The conserved domains in the relative location of the TE consensus were highlighted using
749 different colors.

750

751 **FIG S2** The venn chart compares the TE insertion loci of 90 *M. oryzae* rice isolates
752 and two *S. viridis* isolates.

753

754 **FIG S3** The venn chart displays the intersection of clade2-specific and clade3-specific
755 TE-associated genes.

756

757 **TABLE S1** The proportions of 11 TE families on the genomes of 275 *M. oryzae*
758 isolates.

759

760 **TABLE S2** The proportions of 11 TE families on the genomes of a *M. oryzae* wheat
761 isolate and three grass isolates.

762

763 **TABLE S3** Validation of 17 TE insertion sites by PacBio.

764

765 **TABLE S4** Validation of 17 TE insertion sites by PCR amplification.

766

767 **TABLE S5** Insertion preference of various TEs in different genomic regions.

768

769 **TABLE S6** Enrichment analysis of TEs in the promoter of secreted proteins.

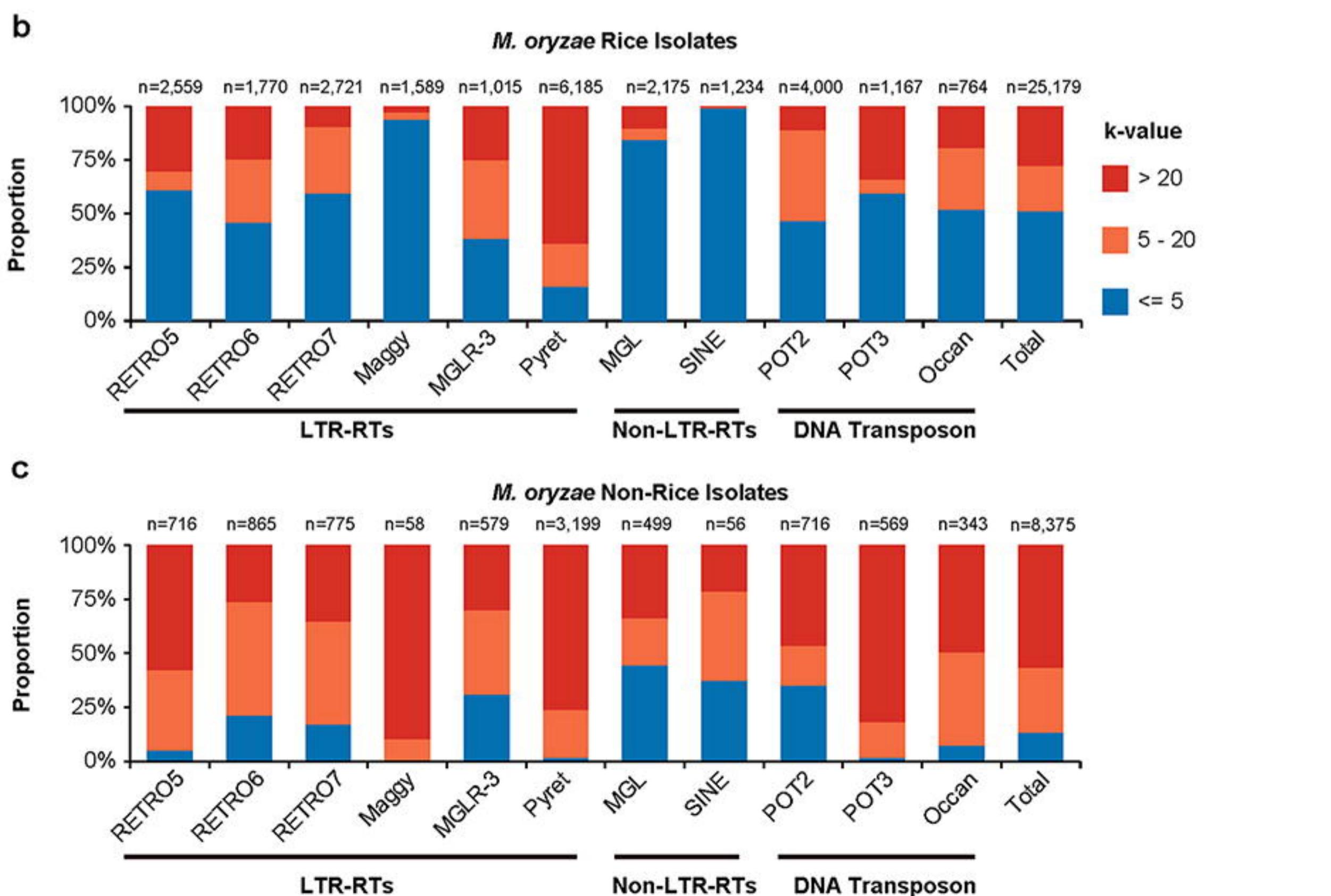
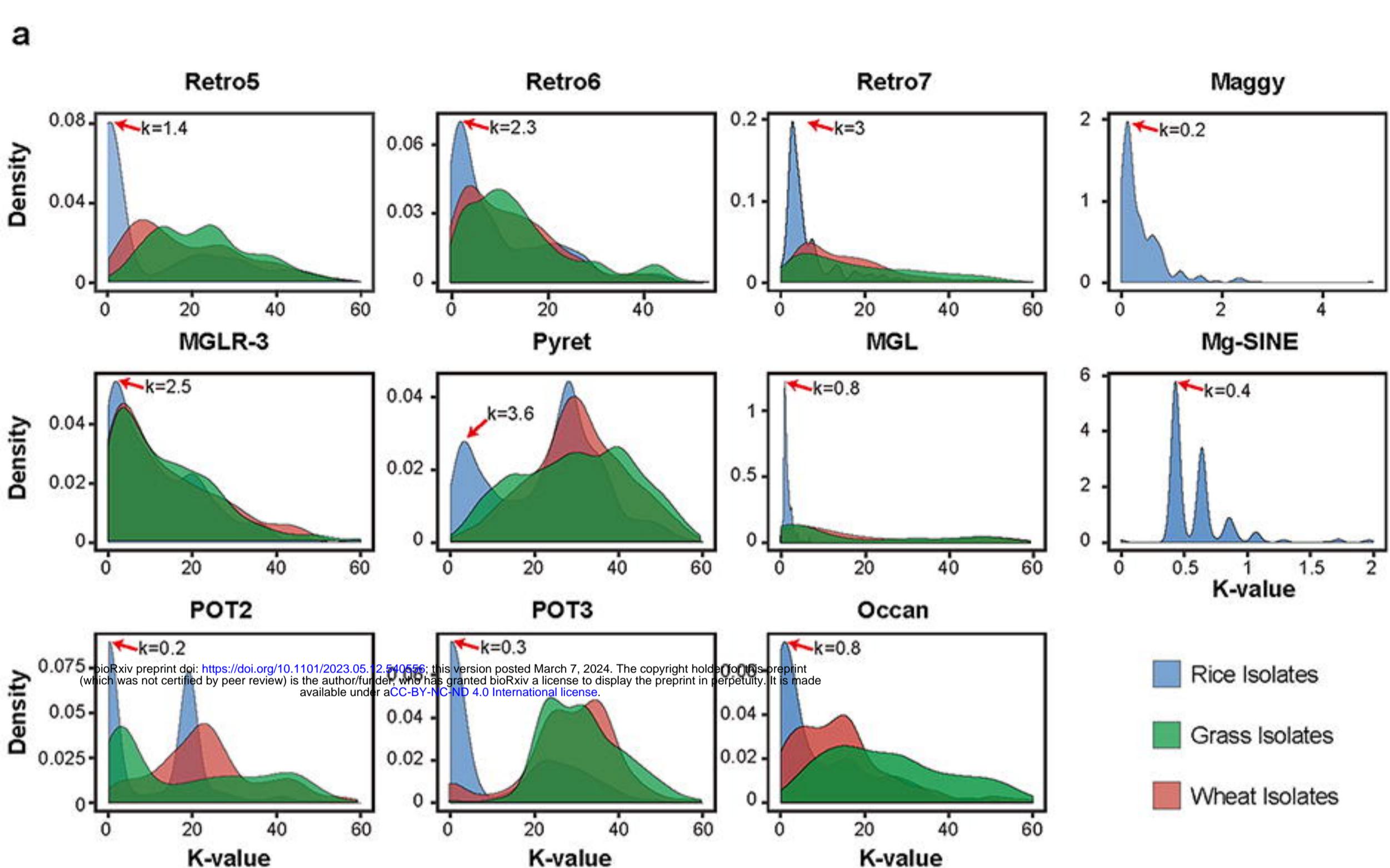
770

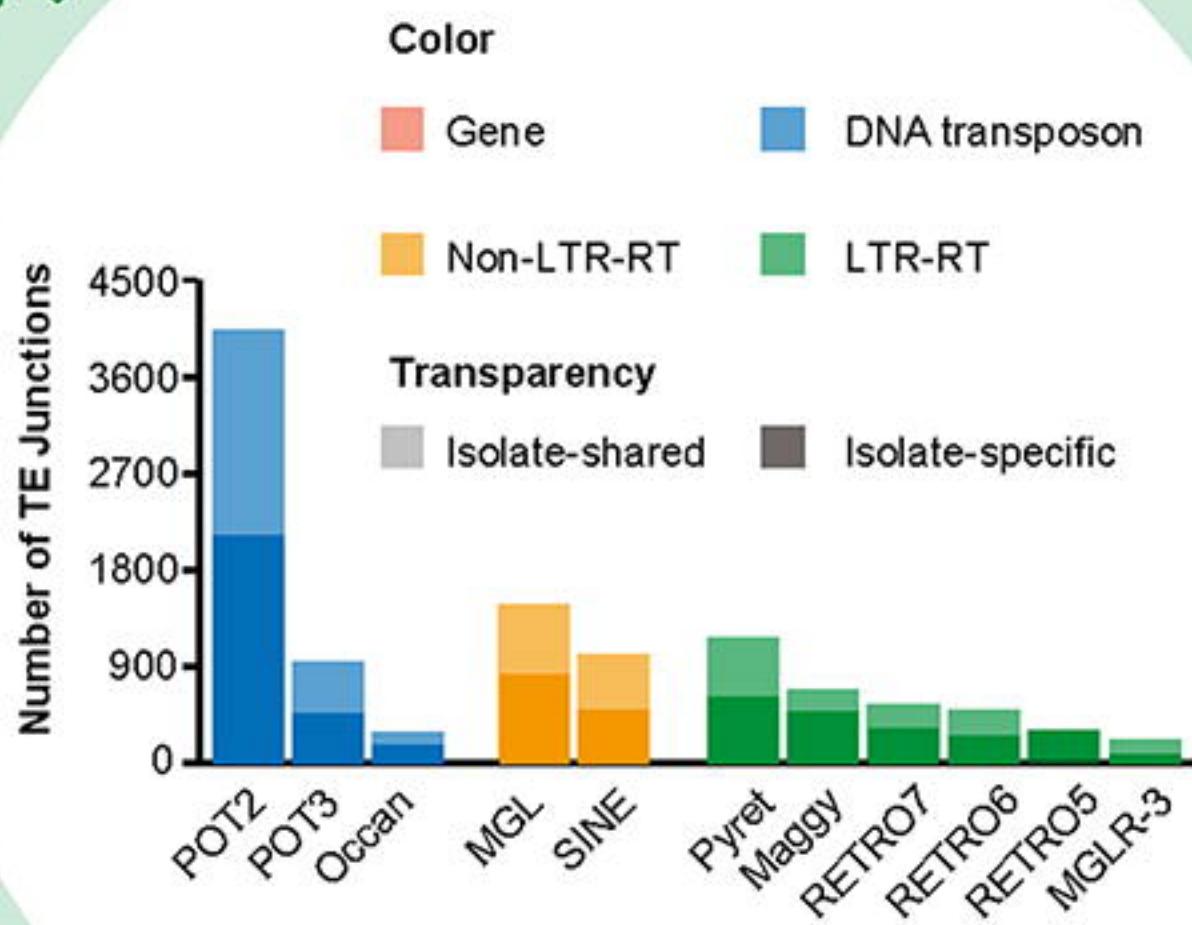
771 **TABLE S7** Identity of TE insertion sites between intra- or inter-clade isolates.

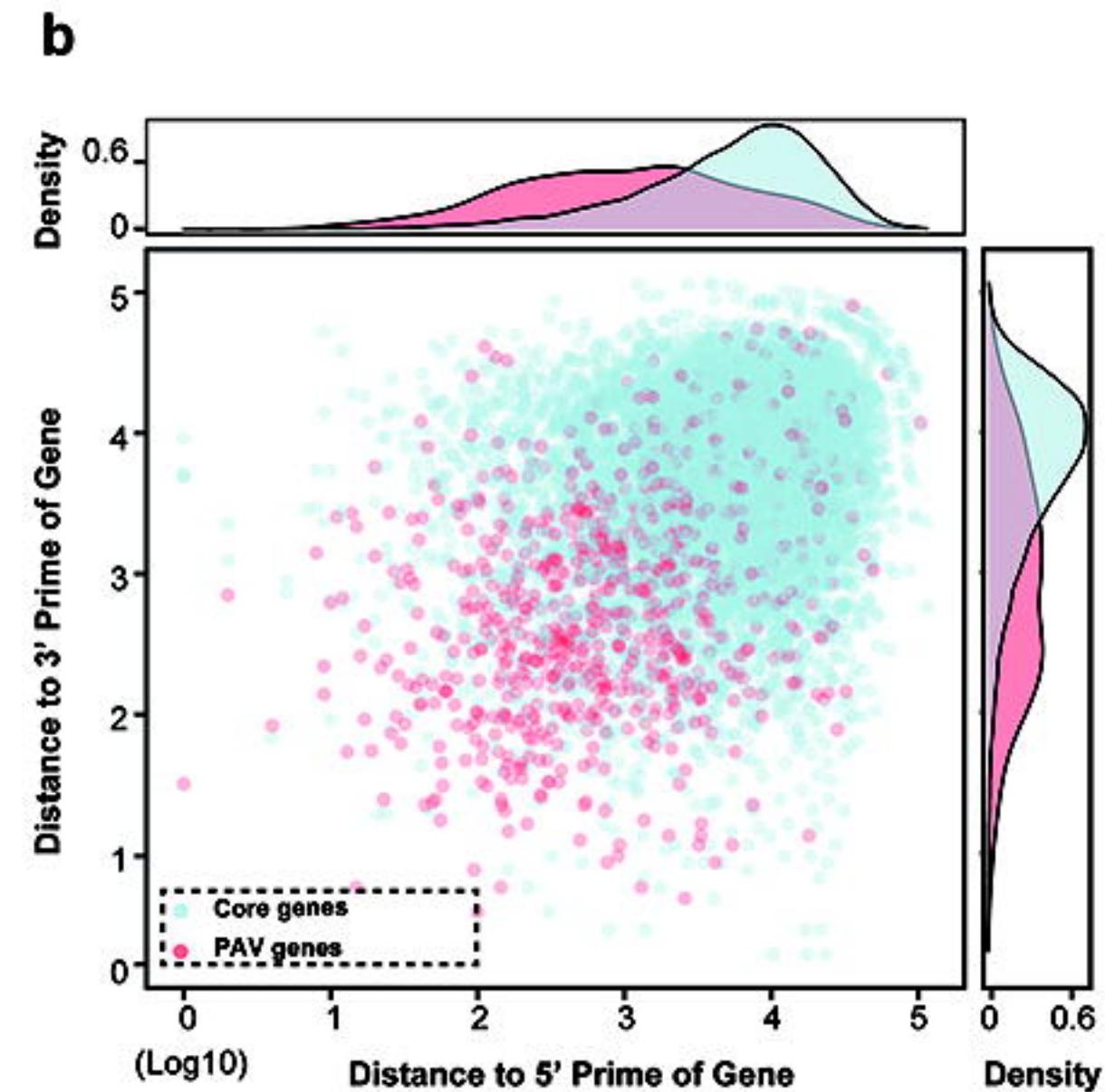
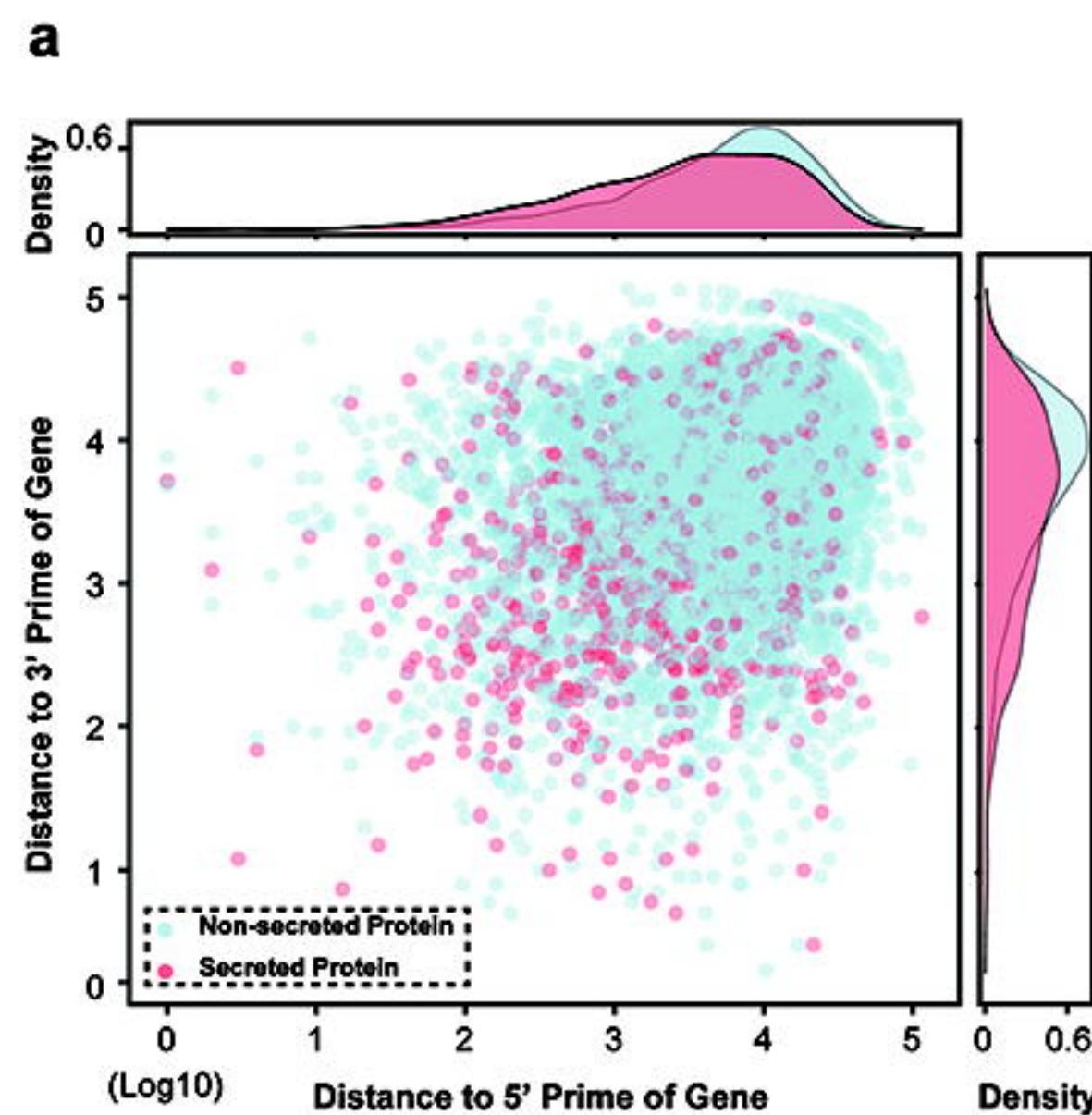
772

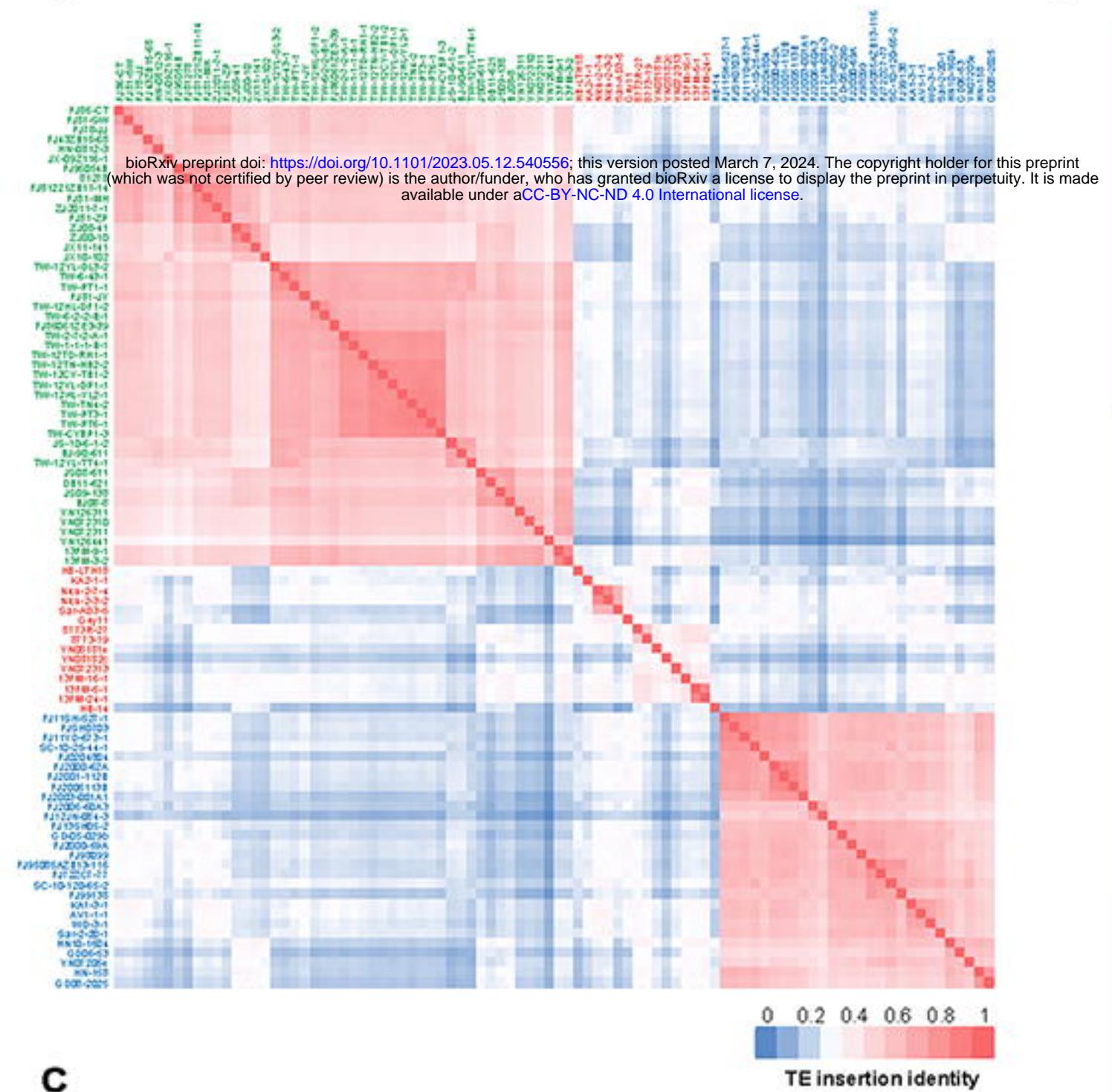
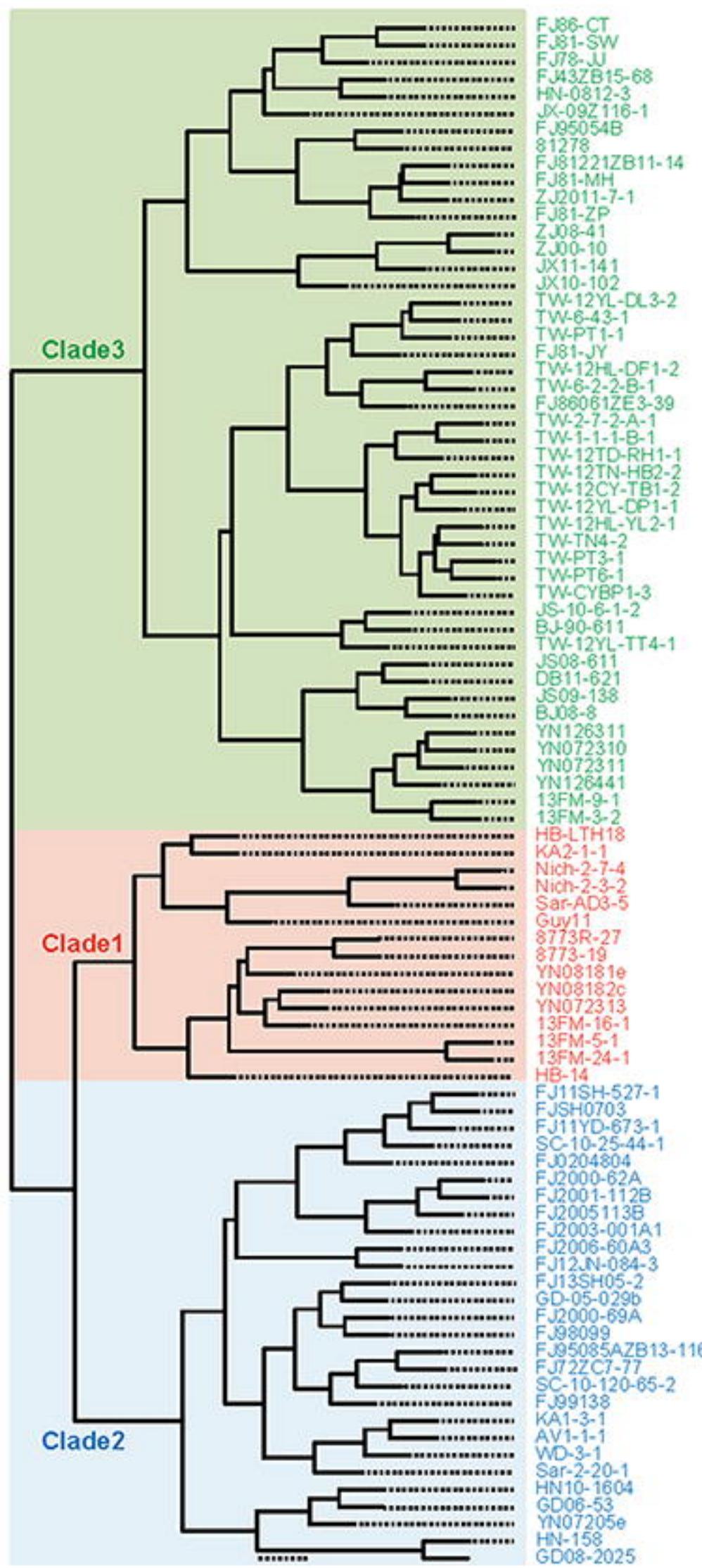
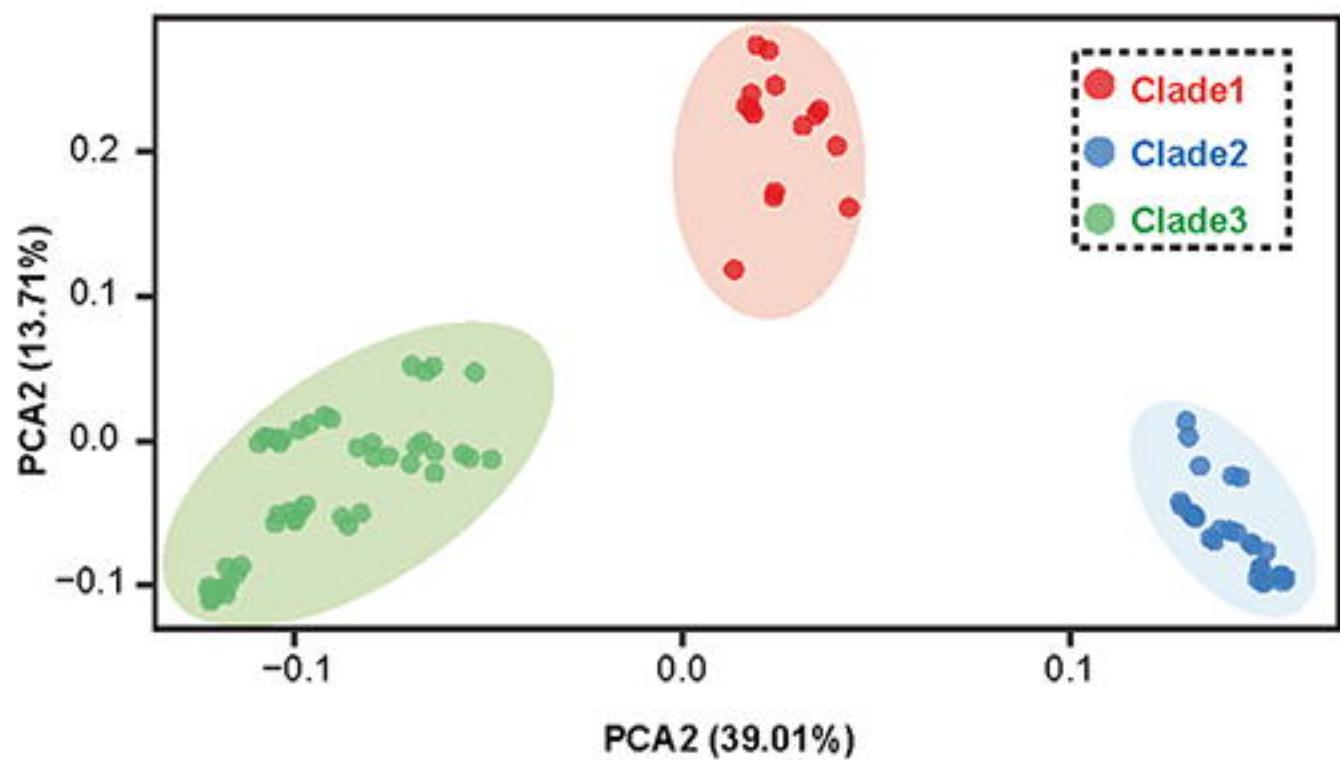
773 **TABLE S8** Enrichment analysis of the clade2- and clade3-specific TE-associated
774 genes using conserved domains.

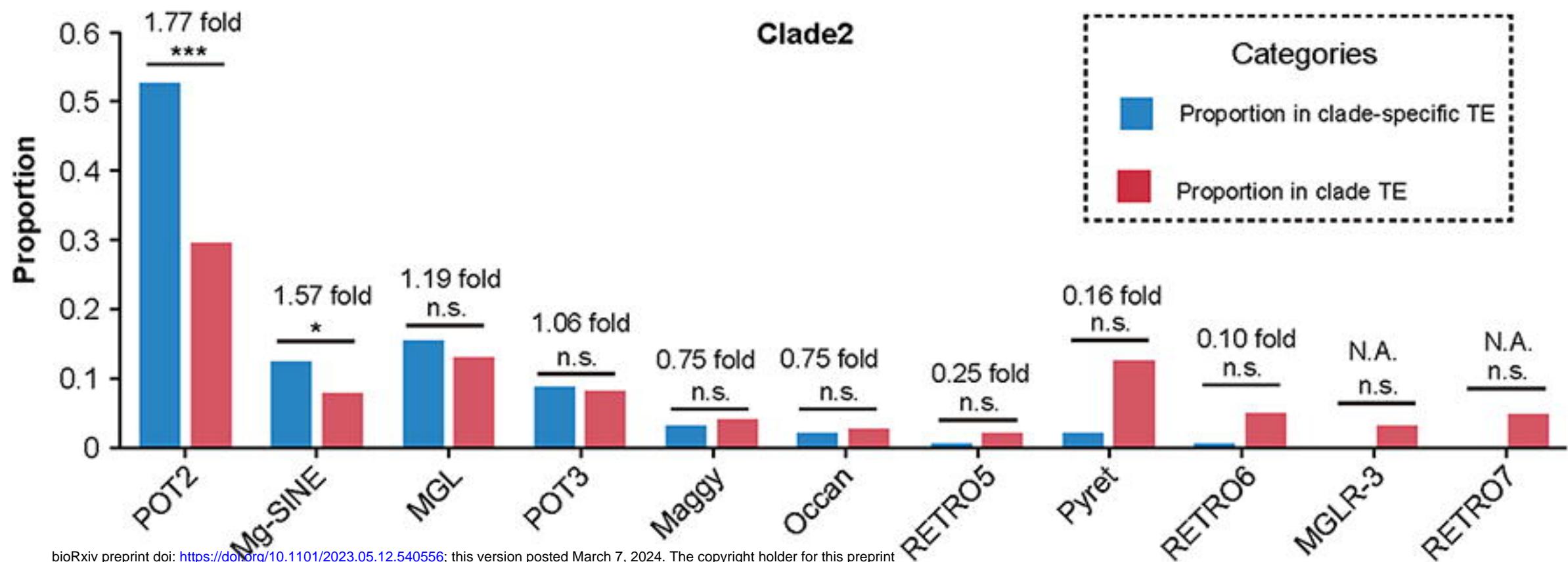
775

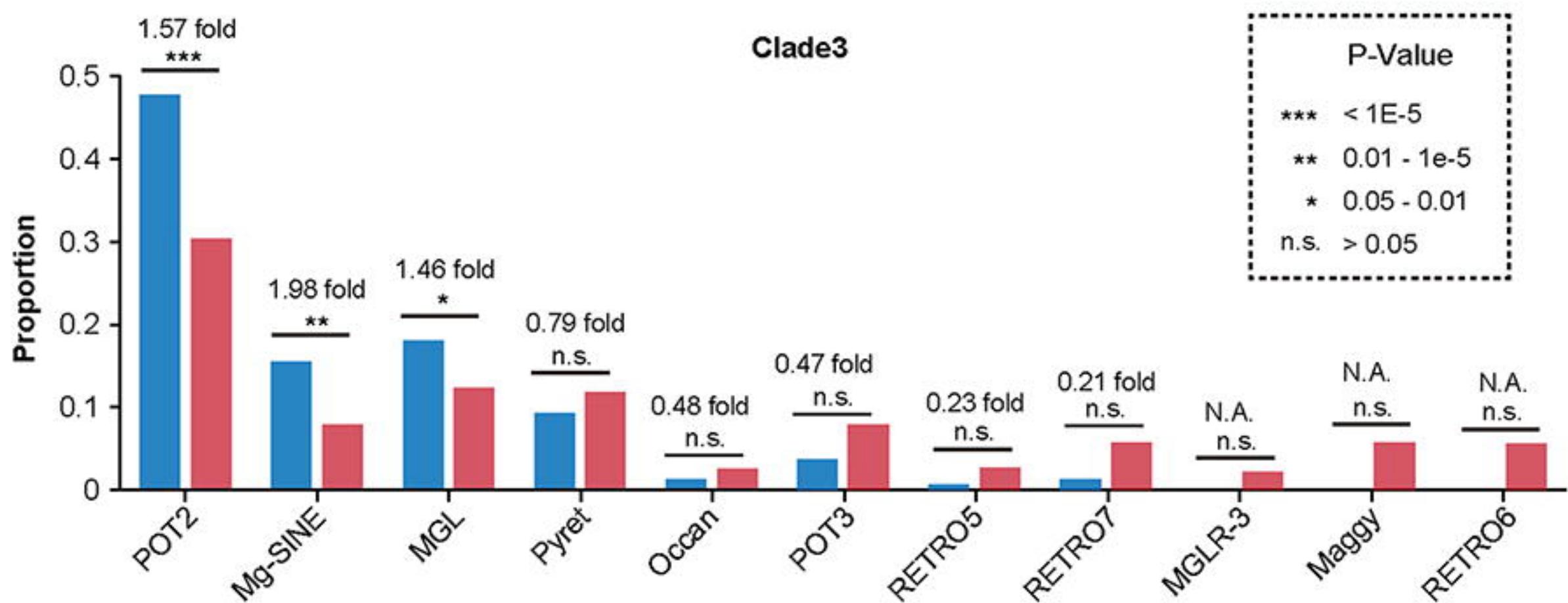
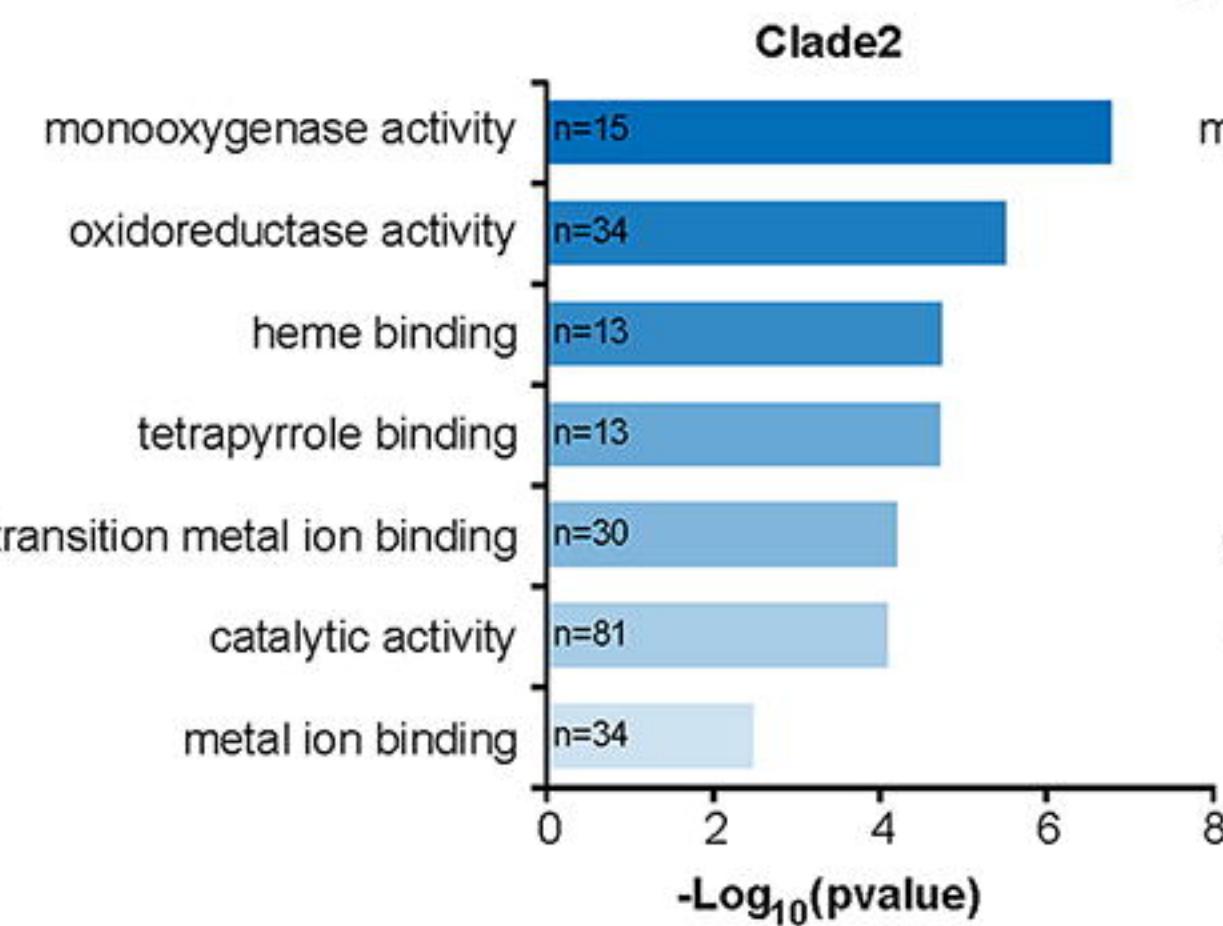
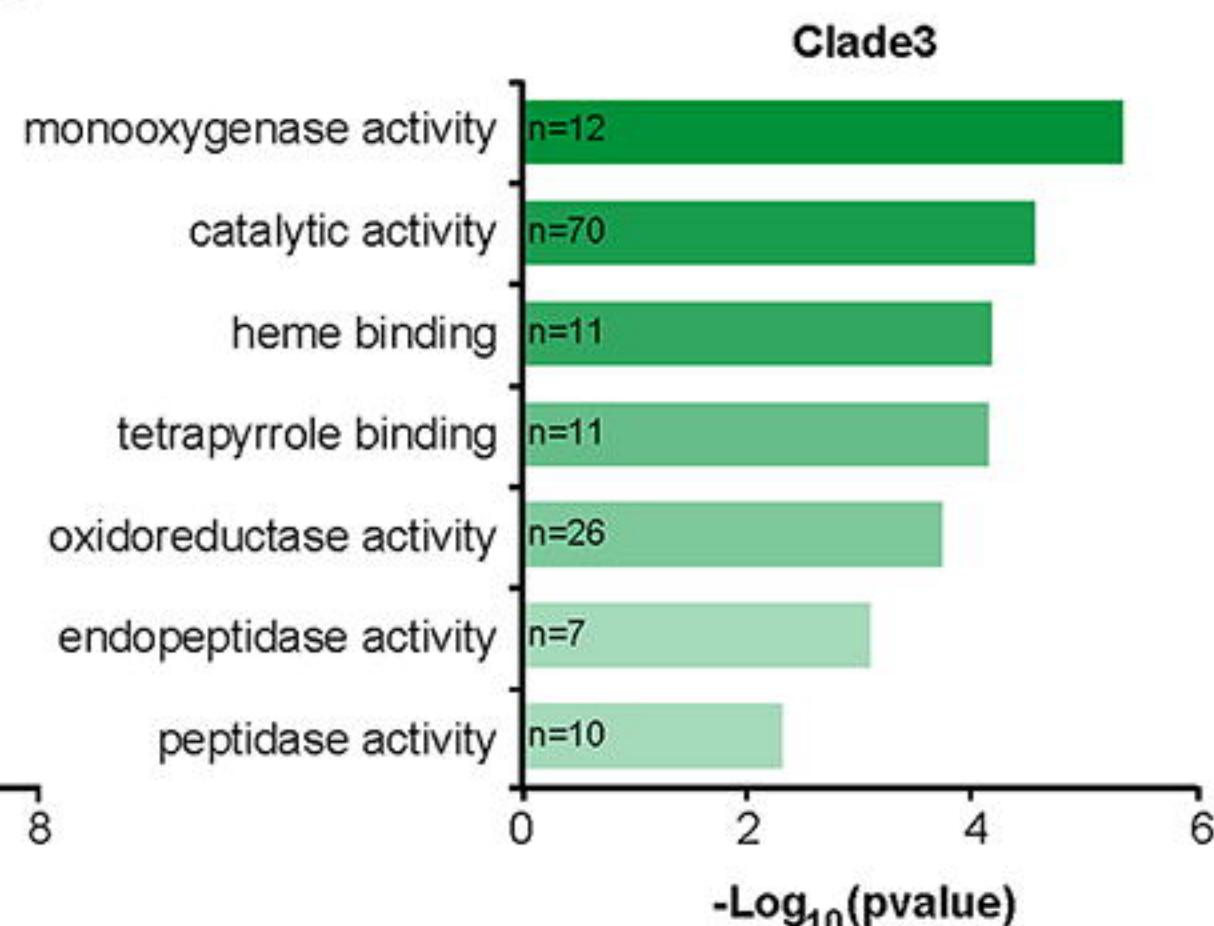


776 **TABLE S9** GEO information of 16 RNA seq samples.

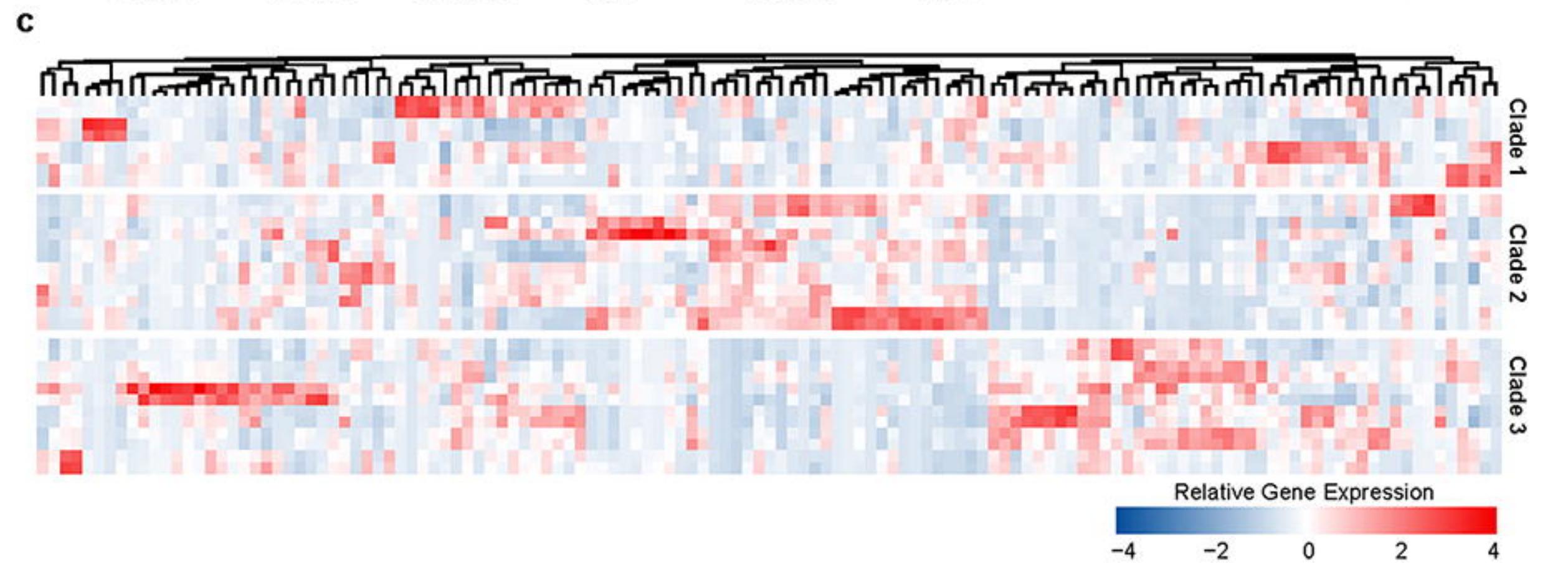
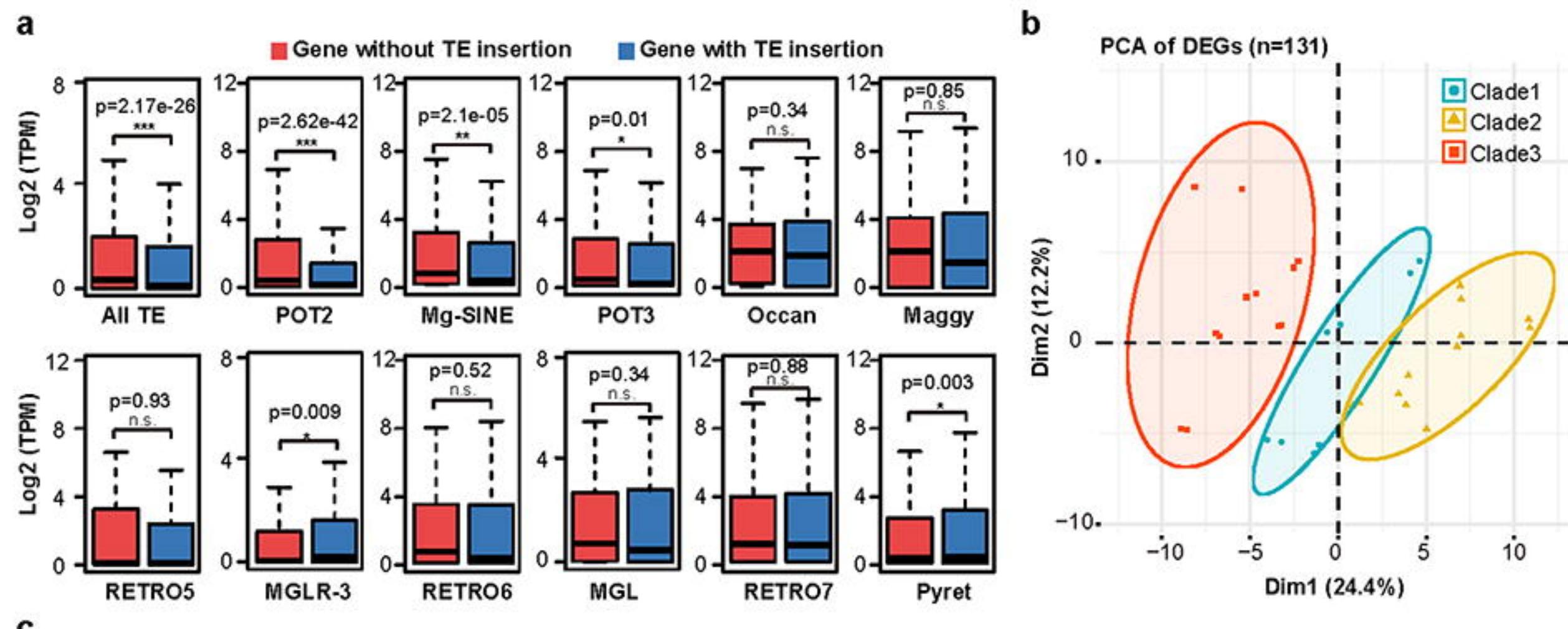

777

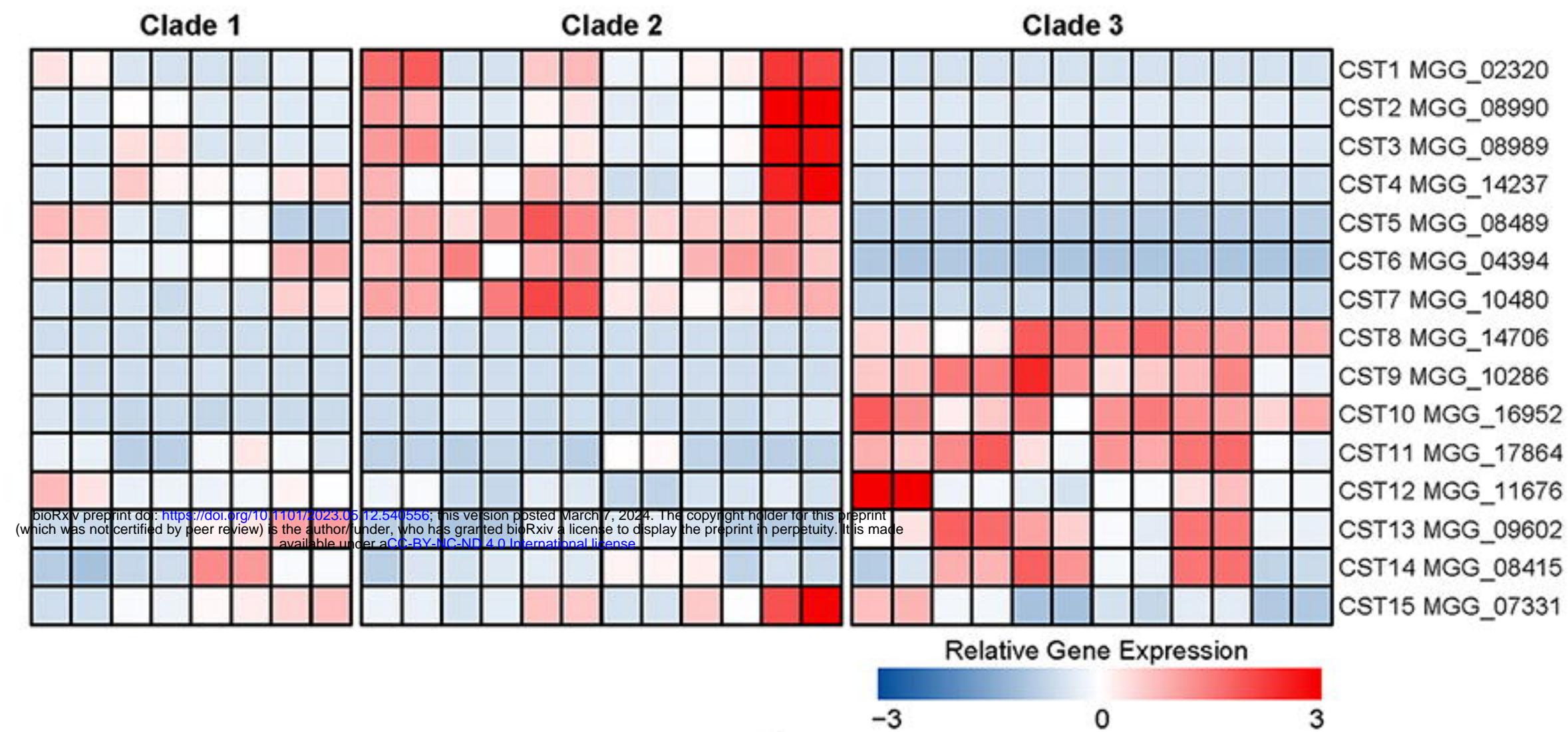
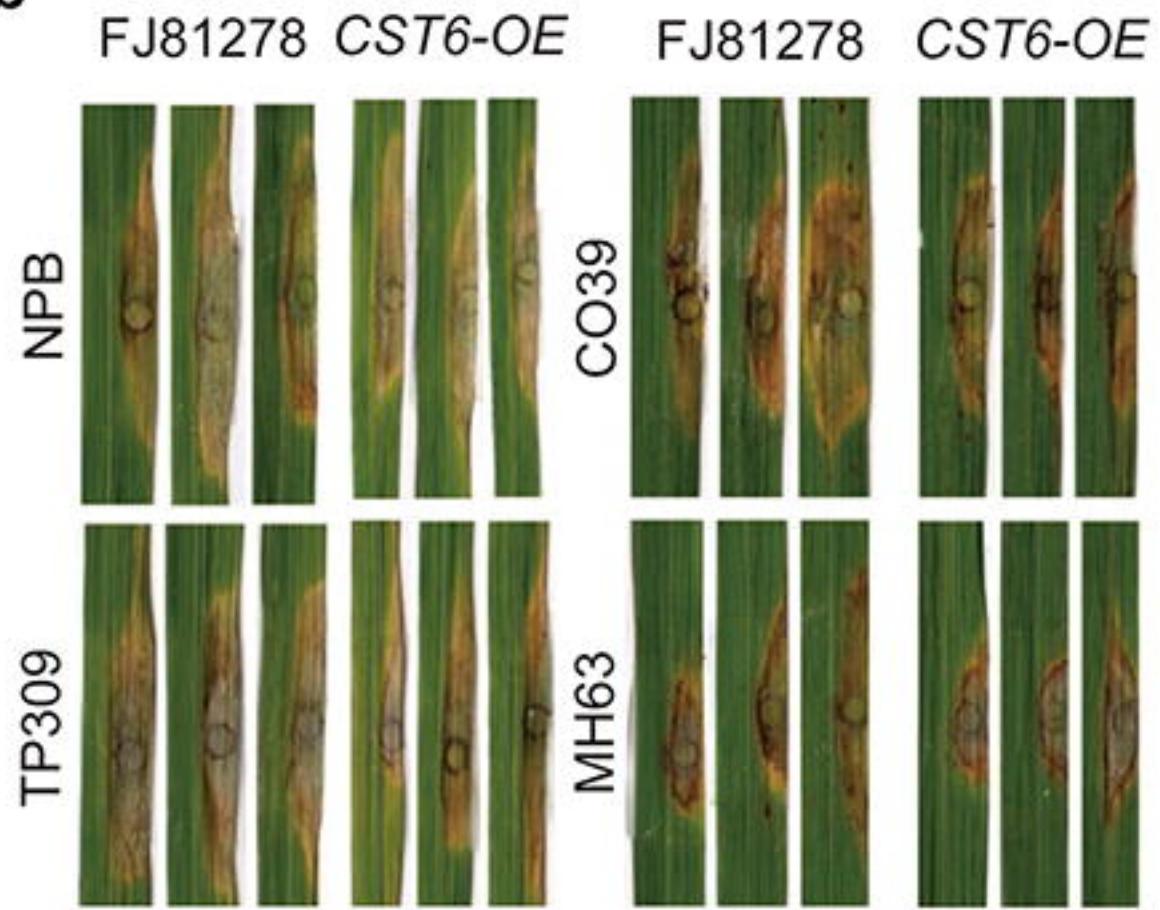
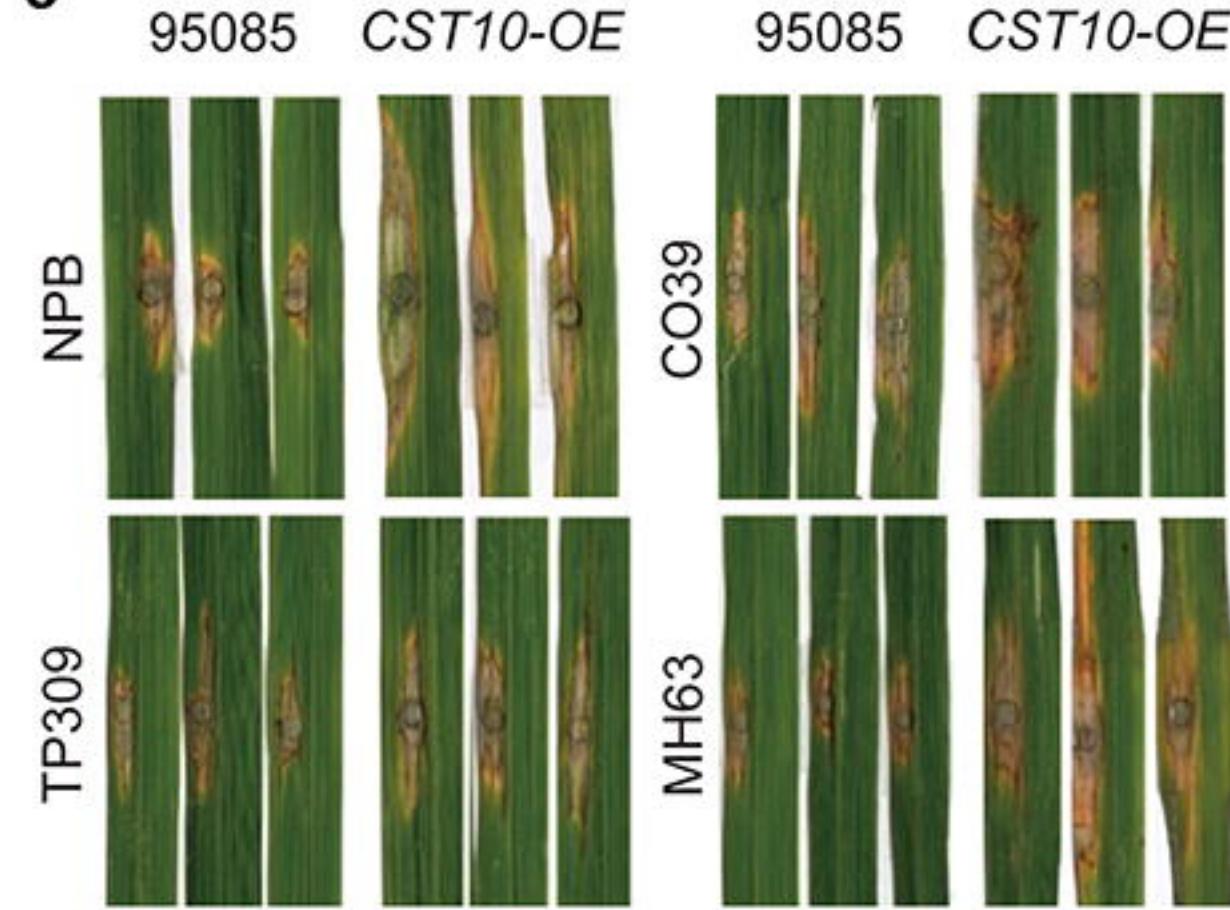
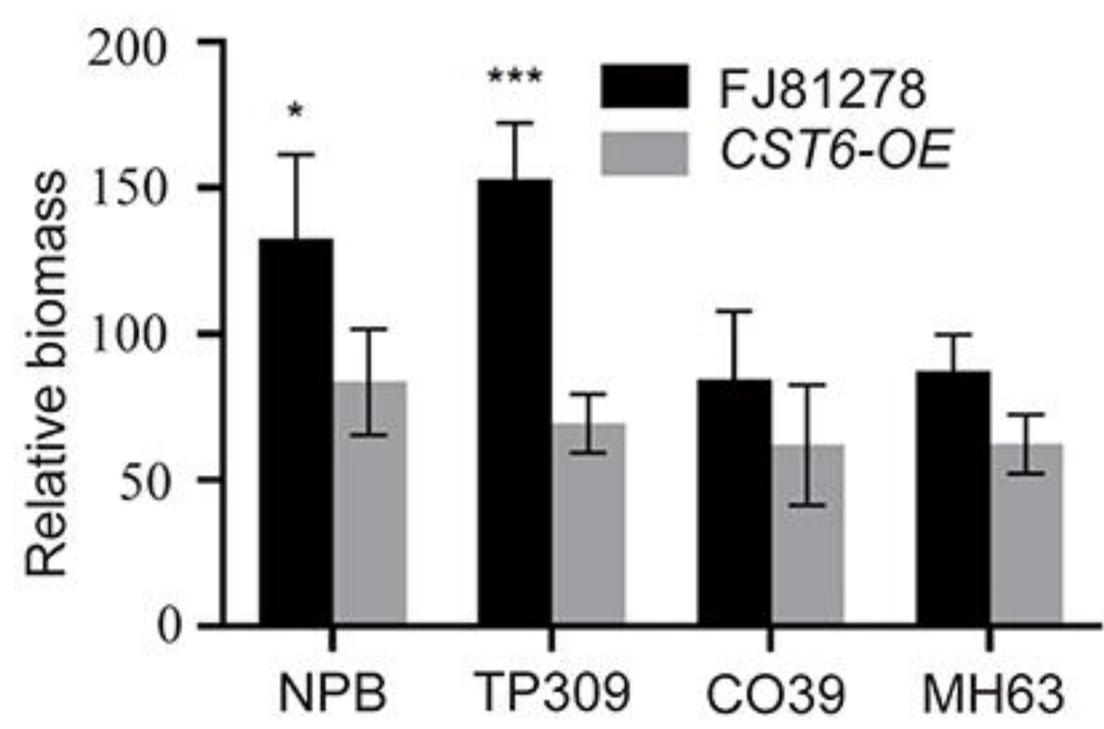
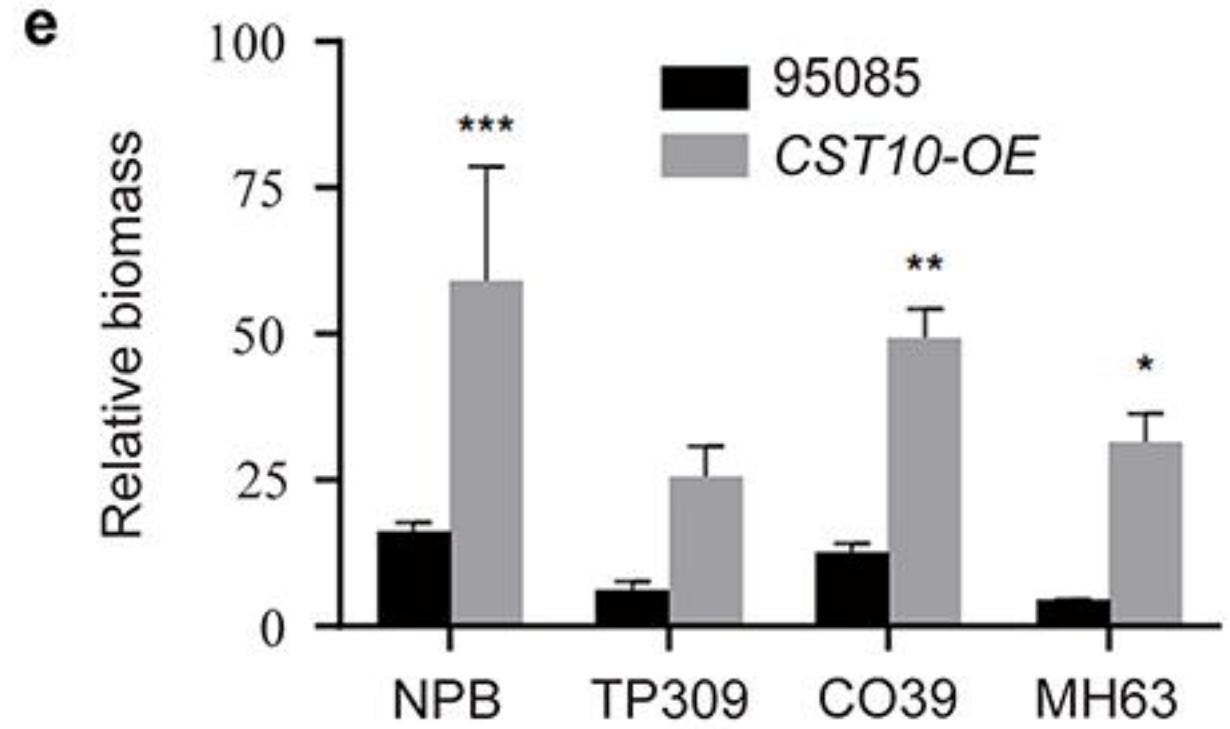


778 **TABLE S10** Basic information about 15 clade-specific TE-associated genes (CSTs).




779


780 **TABLE S11** Primers used in this study.






a**b****c**

a**b**

bioRxiv preprint doi: <https://doi.org/10.1101/2023.05.12.540556>; this version posted March 7, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

c**d**

a**b****c****d****e**