

1 RESEARCH ARTICLE

57

2

58

3

59

4 Quantifying the relationship between cell proliferation and
5 morphology during development of the face

60

6

61

7

62

8

63

9

64

10

65

11

66

12

67

13

68

14

69

15

70

16

71

17

72

18

73

19

74

20

75

ABSTRACT

Morphogenesis requires highly coordinated, complex interactions between cellular processes: proliferation, migration, and apoptosis, along with physical tissue interactions. How these cellular and tissue dynamics drive morphogenesis remains elusive. Three dimensional (3D) microscopic imaging poses great promise, and generates elegant images. However, generating even moderate through-put quantified images is challenging for many reasons. As a result, the association between morphogenesis and cellular processes in 3D developing tissues has not been fully explored. To address this critical gap, we have developed an imaging and image analysis pipeline to enable 3D quantification of cellular dynamics along with 3D morphology for the same individual embryo. Specifically, we focus on how 3D distribution of proliferation relates to morphogenesis during mouse facial development. Our method involves imaging with light-sheet microscopy, automated segmentation of cells and tissues using machine learning-based tools, and quantification of external morphology via geometric morphometrics. Applying this framework, we show that changes in proliferation are tightly correlated to changes in morphology over the course of facial morphogenesis. These analyses illustrate the potential of this pipeline to investigate mechanistic relationships between cellular dynamics and morphogenesis during embryonic development.

¹Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States.

97

²Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

98

³Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.

99

⁴McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada.

100

⁵Loyola University Chicago, Chicago, IL, United States.

101

⁶Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.

102

⁷Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.

103

⁸Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, United States.

104

^{*}These authors contributed equally to this work.

105

Authors for correspondence: bhallgr@ucalgary.ca

106

Received 2023

111

113 **KEYWORDS:** Light-Sheet imaging, Image segmentation, Convolutional Neural Networks, Mouse embryo, Developmental biology,
114 Morphometrics

120 INTRODUCTION

121 Disentangling the mechanisms of morphogenesis that translate the behaviour of individual cells to an intricate three-dimensional (3D)
122 organismal form has been a major objective of embryology and developmental biology since the early 19th century. The cellular basis for
123 morphogenesis is complex, involving spatio-temporal variation in cell proliferation, apoptosis, adhesion, and polarity. Morphogenesis
124 also involves interactions between cells, the extracellular matrix, and mechanical forces that emanate from surrounding tissues and the
125 extra-embryonic environment (Boehm et al., 2010; Seilacher, 1991; Newman and Comper, 1990; Niessen et al., 2011; Davies, 2013).
126 Connecting these mechanisms to 3D change in organismal form requires quantification of cellular processes in whole embryonic struc-
127 tures over developmental time. While three dimensional morphology can be quantified from microCT and optical projection tomography
128 images (Parsons et al., 2008; Boughner et al., 2008; Xu et al., 2015; Martínez-Abadías et al., 2018), cellular dynamics are much less
129 accessible in three dimensions. This is because the vast majority of quantification of cellular dynamics is based on analysis of serial his-
130 tological sections, with localized sampling rather than whole embryonic structures (Ramaesh and Bard, 2003; Miklius and Hilgenfeldt,
131 2011; Russ and Dehoff, 2012). Serial histological sections are rife with artifacts ranging from distortions from fixation and sectioning
132 (Xiao et al., 2010) to plane of section artifacts that occur when complex 3D structures are reduced to two dimensions (Russ and Dehoff,
133 2012). Serial sectioning of whole embryonic structures is also labour- and time-intensive, which makes this method unsuitable for anal-
134 ysis of large samples. However, recent advances in 3D imaging of whole tissue samples, including entire embryos, as well the ability
135 to combine such images with multiple molecular markers is now creating the opportunity for true quantitative integration of cellular
136 dynamics and morphology. These imaging modalities also generate large and complex datasets that demand novel image processing and
137 analysis methods. In this study, we deploy a novel imaging and image analysis pipeline to examine cell proliferation in the developing
138 face, thereby advancing the capacity for quantitative integration of cellular dynamics and morphology.

139 The development of the vertebrate face involves directional outgrowth and fusion of distinct facial prominences that form different
140 facial regions. In mammals the upper jaw forms from divisions of the frontonasal prominence along the midline - the medial and lateral
141 nasal prominences - fusing together and with the maxillary prominence (Chai and Maxson Jr, 2006). The facial prominences must grow
142 in a coordinated manner that includes both outgrowth and alignment to allow for fusion (Chai and Maxson Jr, 2006; Green et al., 2015).
143 While the processes involved in outgrowth of structures such as limb buds have been fairly well characterized (Boehm et al., 2010), these
144 studies have been more difficult to perform in the face due to the complexity of signaling pathway interactions and morphology. Unlike
145 the limb, outgrowth of the facial prominences is orchestrated by multiple signaling centers, including around the frontonasal prominence
146 (WNT, FGFs), in the leading edge of the maxilla (FGFs, BMPs), and in the forebrain (SHH, BMPs) (Marchini et al., 2021). These signals
147 drive a combination of local cell proliferation, migration of neural crest cells, and additionally likely affect mechanical properties of the
148 tissue. The complex interplay of growth, cell migration, and signaling has made it difficult to tease apart the roles of individual factors.
149 While there is a general intuition that spatiotemporal regulation of cell proliferation within the facial prominences is important in face
150 formation, this regulation has not been shown quantitatively. Further, the role of proliferation in relation to other potential processes, such
151 as apoptosis, adhesion, polarity, or mechanical influences from the epithelium, needs to be understood in much finer detail to explain
152 facial development and account for congenital facial malformations, such as orofacial clefts.

153 Recent advances in tissue clearing methods coupled with light-sheet fluorescence microscopy (LSFM) allow visualization of indi-
154 vidual cells within whole embryos or anatomical structures (Weber et al., 2014; Yue et al., 2020; Udan et al., 2014; Elisa et al., 2018).
155 This visualization enables quantification of cellular level variation as well as the morphology of the developing tissues at the level of

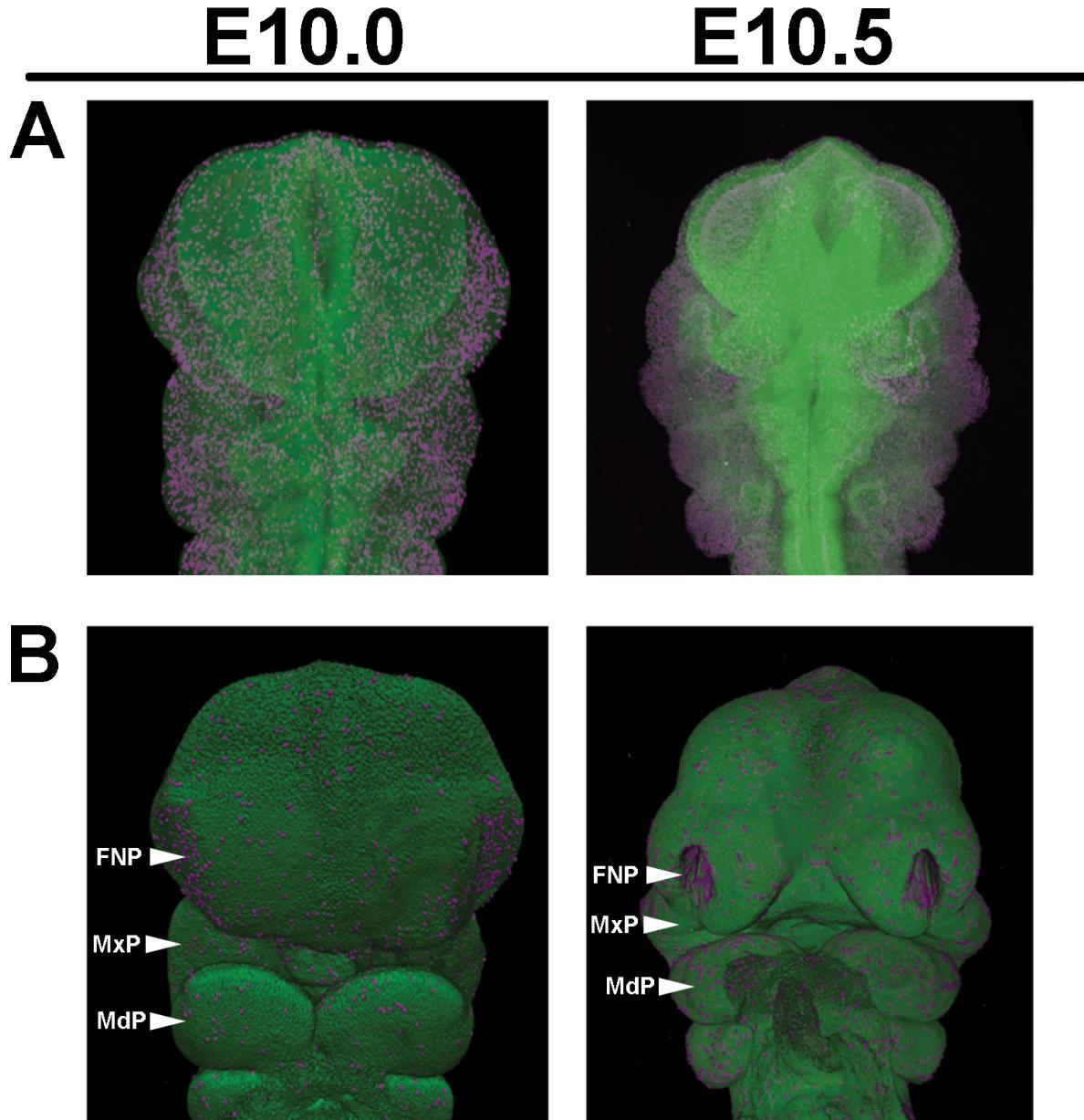
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225 individual embryos (McDole et al., 2018; Hobson et al., 2022). Accordingly, cellular dynamics such as proliferation, orientation, apoptosis, 281
226 cell size, and cell density can be related quantitatively to variation in morphology. Importantly, these analyses can be performed on 282
227 individuals, as opposed to group-wise, allowing for cellular-level investigations of the mechanisms underlying among-individual 283
228 variation in morphology. This individual-level investigation is critical for elucidating mechanisms for genetically complex 284
229 malformations or 285
230 those which have variable penetrance or expressivity (Hallgrímsson et al., 2019). However, even with light-sheet microscopy, this 286
231 task is challenging. In mice, for example, tissue density precludes single-cell visualization without clearing to allow light penetration 287
232 after 288
233 embryonic day (E) 8.5 (McDole et al., 2018). Quantifying variation among embryos requires some form of image registration 289
234 to identify 290
235 homology between corresponding anatomical locations. However, the large amount of shape changes characteristic of 291
236 morphogenesis 292
237 complicates the construction of atlas-based registration pipelines without copious quantities of data (Wong et al., 2015). LSFM 293
238 images 294
239 are prone to artifacts from optical aberrations or deviations in refractive index across a specimen. These issues present 295
240 challenges for 296
241 developing segmentation protocols, either human or computational, as a region of an image may be out of focus. Further, the 297
242 images files 298
243 are large, ranging from 300 MB to 1 TB, depending on embryo size and image resolution. Therefore, LSFM images require 299
244 extensive 300
245 computational resources for data management and analysis. Overcoming these obstacles has been challenging with available 301
246 tools and 302
247 conventional methods. 303
248
250 As such, previous work towards this goal has been hampered by both limitations in imaging technology as well as image 304
251 processing 305
252 and informatics. Optical projection tomography (OPT) has been used to create anatomical images and quantitative 306
253 analyses for gene 307
254 expression (Sharpe et al., 2002) as well as markers of cellular dynamics (Boehm et al., 2010). The limitation here is that, as the 308
255 anatomical 309
256 structures to be imaged get larger, the effective resolution of OPT imaging decreases, as this is ultimately dependent on the 310
257 geometry 311
258 and detection aperture (Wong et al., 2013; Liu et al., 2019). While early zebrafish embryos are sufficiently small to allow such 312
259 imaging (Lindsey and Kaslin, 2017), structures such as whole mouse embryo heads are too large to allow cellular level 313
260 imaging with currently 314
261 available OPT systems at the larger ages. Light-sheet microscopy overcomes this limitation of OPT using tiling and laser optics by 315
262 illuminating a thin sheet of the sample (Olarte et al., 2018). This method also reduces photodamage, which can occur in 316
263 confocal 317
264 fluorescence microscopy (Olarte et al., 2018). The image processing and imaging informatics gap is that all of these 318
265 methods generate 319
266 large and noisy volumetric image sets that require extensive post-processing and advanced registration methods. Our work 320
267 addresses this 321
268 gap using advanced image processing methods. 322
269
270 In a previous paper, we (Lo Vercio et al., 2022) demonstrated that Convolutional Neural Networks (CNNs), particularly U-net 323
271 architectures, can efficiently segment the mesenchyme (Mes) and neural ectoderm (NE) in nuclei-stained 2D LSFM images. This type 324
272 of 325
273 deep learning architecture has also been used for other aspects of light-sheet data processing (Yin et al., 2022; Hallou et al., 2021). 326
274 Furthermore, CNNs efficiently segmented cells labeled for a proliferation marker in LSFM images of E9.5-10.5 embryos. Here, we 327
275 leverage this advanced image processing approach to develop and apply a method to quantify the relationship between 328
276 cellular dynamics and 3D morphology in embryonic tissues based on light sheet microscopy. We first apply our previously 329
277 developed tools for segmenting 330
278 tissues and cells at the individual level (Lo Vercio et al., 2022). Next, a 3D image registration pipeline technique (Devine et al., 2020) 331
279 is 332
280 employed to create 3D atlases that separate neural and non-neural tissues and contain volumetric representations of cell 333
281 proliferation. We then apply the tools of geometric morphometrics to quantify spatiotemporal variation in cell proliferation along 334
282 with embryonic surface 335
283 morphology. Specifically, we seek to determine a) the relationship between proliferation and morphogenesis, and b) the 336
284 contribution of 336
285 anatomical variation in proliferation to among-individual variation in cranial morphology. Successful quantitative integration of 337
286 cellular 338
287 dynamics is critical for unravelling the mechanisms of morphogenesis, but also the mechanistic basis for among-individual 339
288 variation, including the etiology of structural birth defects. 340
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

RESULTS

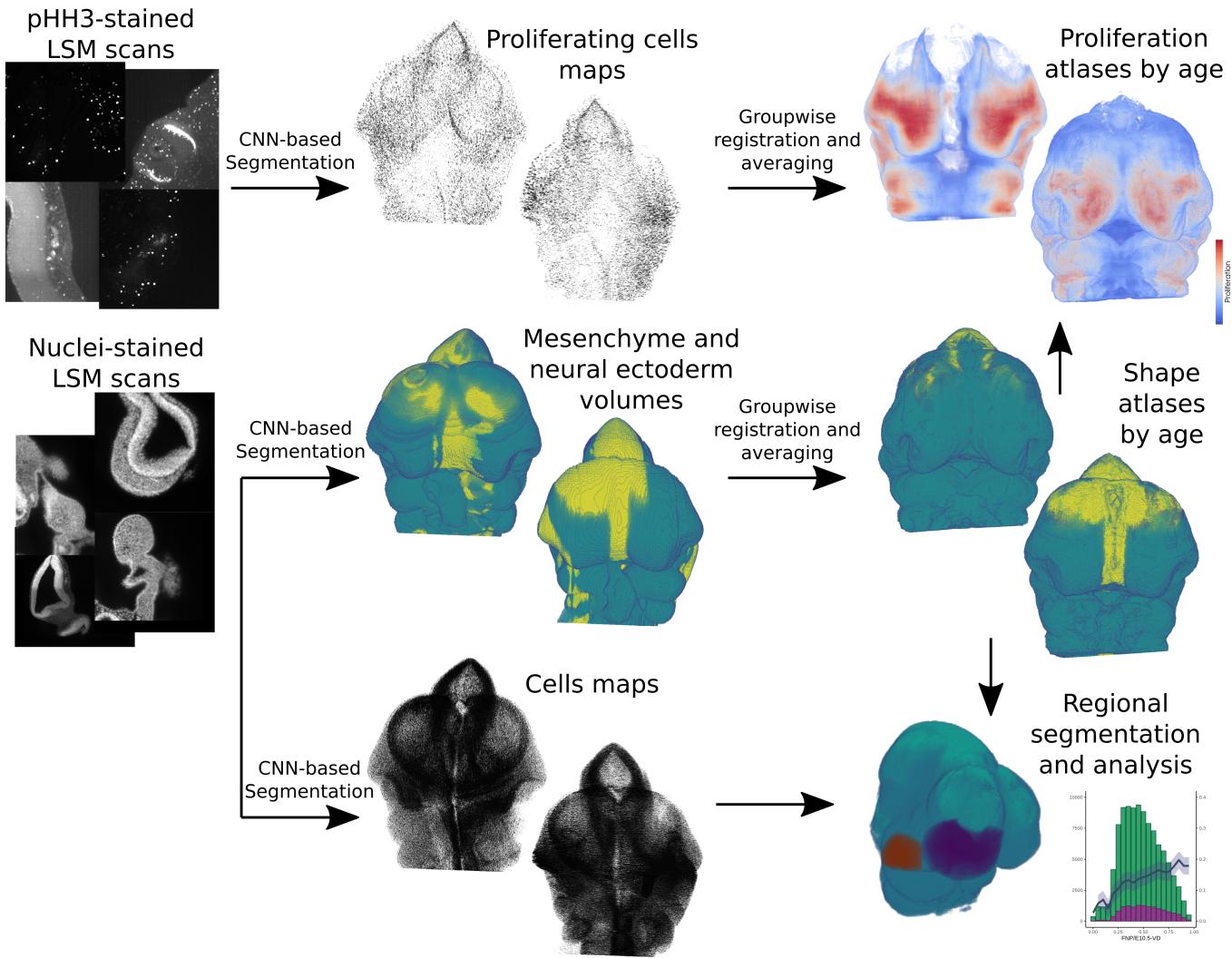
Light-sheet imaging and workflow to build atlases of shape, tissues and cellular dynamics from mouse embryos

LSFM imaging of mouse facial tissue can be used to generate both cellular level volumetric data and a quantifiable 3D exterior surface (Fig. 1). Building on previous work (Lo Vercio et al., 2022), we established an automatic workflow for segmenting, registering, and quantifying cellular dynamics from LSFM scans of mouse embryos (Fig. 2). Here, we scanned 20 wildtype C57BL/6J mouse embryos ranging in age from embryonic day (E) 10 to 11.5. This age range encompasses early facial morphogenesis and captures the cell dynamics involved in facial prominence outgrowth. The embryos were separated into half-day groups based on tail somite number, with five embryos per group. Half-day intervals were originally chosen to compose well-matched groups that can be used for atlas generation. We produced registered volumetric image sets from these scans and analyzed spatiotemporal patterning of proliferation in whole embryonic heads.


An LSFM instrument generates data as a stack of 2D slices. Each slice is generated as the laser sheet passes through the sample. The within-slice resolution is typically 6-8 times higher than the between-slice resolution. Here, our analysis focuses on using the stack data: the tissues, total cells, and proliferating cells are segmented in the 2D images, then the anisotropic z-stacks of segmented images are converted to isotropic volumes (Fig. 2, middle column). A groupwise registration strategy based on the tissue segmentation can be used to create atlases of shapes and cellular dynamics (Fig. 2, last column). This pipeline and accompanying documentation is available from <https://github.com/lucaslovercio/LSMprocessing>.

Shape, tissue, and proliferation atlases between E10.0 and E11.5

An atlas of neural and non-neural tissues was generated for each age group. Images of these atlases are shown in Fig. 3A top row. Our analysis focused on the non-neural tissues, primarily mesenchyme, as most of the key events happening during facial morphogenesis happen in mesenchymal tissues. As we ran into difficulties segmenting cells in the highly dense neural tissue, we did not pursue further analysis in this tissue. From here, mean proliferation was calculated for each group of specimens (Fig. 3A, bottom row). In general, we observed high levels of proliferation in the frontonasal, mandibular, and maxillary prominences - areas where shape change is happening at these points in development.


In order to better understand the change in morphology and proliferation over the age series, we used landmark-based geometric morphometrics. We used 37 landmarks that are focused on the front of the face to capture the morphological shifts in the facial prominences (Fig. 3C) (Percival et al., 2014). To understand how the overall morphology of the embryo changes with time, we used Principal Component Analysis (PCA) to identify the largest axes of variance in our dataset. (Fig. 3B). For the PCA of facial shape coordinates, PC1 explained most of the variance (61.6%) and PC2 only 6.5% of the overall variance. Shape changes on PC1 were directly correlated to somite count, strongly separating samples with 8 to 14 somites (left region of the morphospace along PC1, negative values) from samples with 15 to 20 somites (right region of the morphospace along PC1, positive values). Interestingly, although we attempted to group the embryos using tail somite number, they still cluster morphologically into two distinct groups, E10-E10.5 and E11-E11.5. This clustering effect seems to be strongly driven by changes in the nasal prominence region. We found similar patterns on the PCA of proliferation in the front of the face, in which PC1 explained 36.14% of the overall variance, while PC2 only explained an additional 7.44% (Fig. 3D). We also found a strong separation of the same two age groups we observed in the shape PCA: samples with 8-14 somites (younger embryos) and samples with 15-20 somites (older embryos).

This observation raised the question if proliferation was uniform across these regions. We hypothesised that differences in proliferation density across developing facial prominences precede morphological change. To test this hypothesis, we manually segmented the frontonasal and maxillary prominences at the earlier time points (E10-E10.5) and calculated rates of proliferation across each developmental axis: anterior to posterior, dorsal to ventral, and distal to proximal. These tissues are highly proliferative and commonly perturbed

Fig. 1. Maximum projection intensity images in which Nuclear Green has been used to stain nuclei; phospho-Histone H3 (pHH3) has been stained in magenta to mark cell proliferation. Embryos were harvested at E10-11 from C57Bl/6J mice following timed matings. Embryos were cleared and prepared following the CUBIC protocol, antibody stained, and mounted in 1.5% low-melt agarose. Images were captured on a Zeiss Lightsheet Z1 microscope and analyzed in Arivis. Embryo staging was established by counting tail somites. FNP = Frontonasal Prominence, MxP = Maxillary Prominence, MdP = Mandibular Prominence Representative images of $n > 20$ samples.

in development, making them important morphological targets (Elmsie and Reardon, 1998). We calculated the absolute and proportional volume of proliferating nuclei compared to total nuclei across each axis of a prominence, averaging across all specimens in each group (Fig. 4). We found that the proportion of proliferating cells remains stable across most biological axes in these prominences. Additionally, there were no significant differences in mean proliferative fraction within each prominence, suggesting that the rate of proliferation

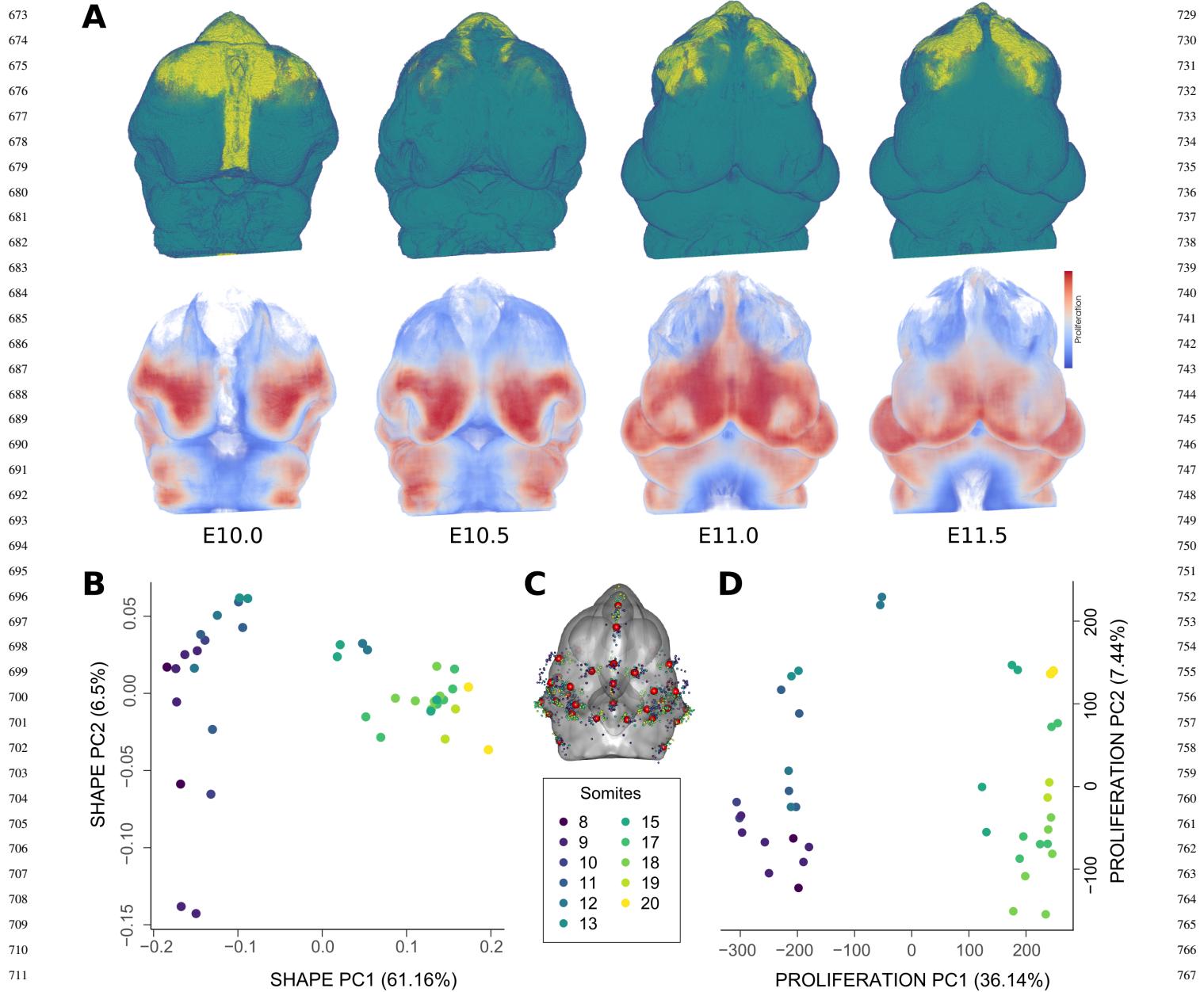
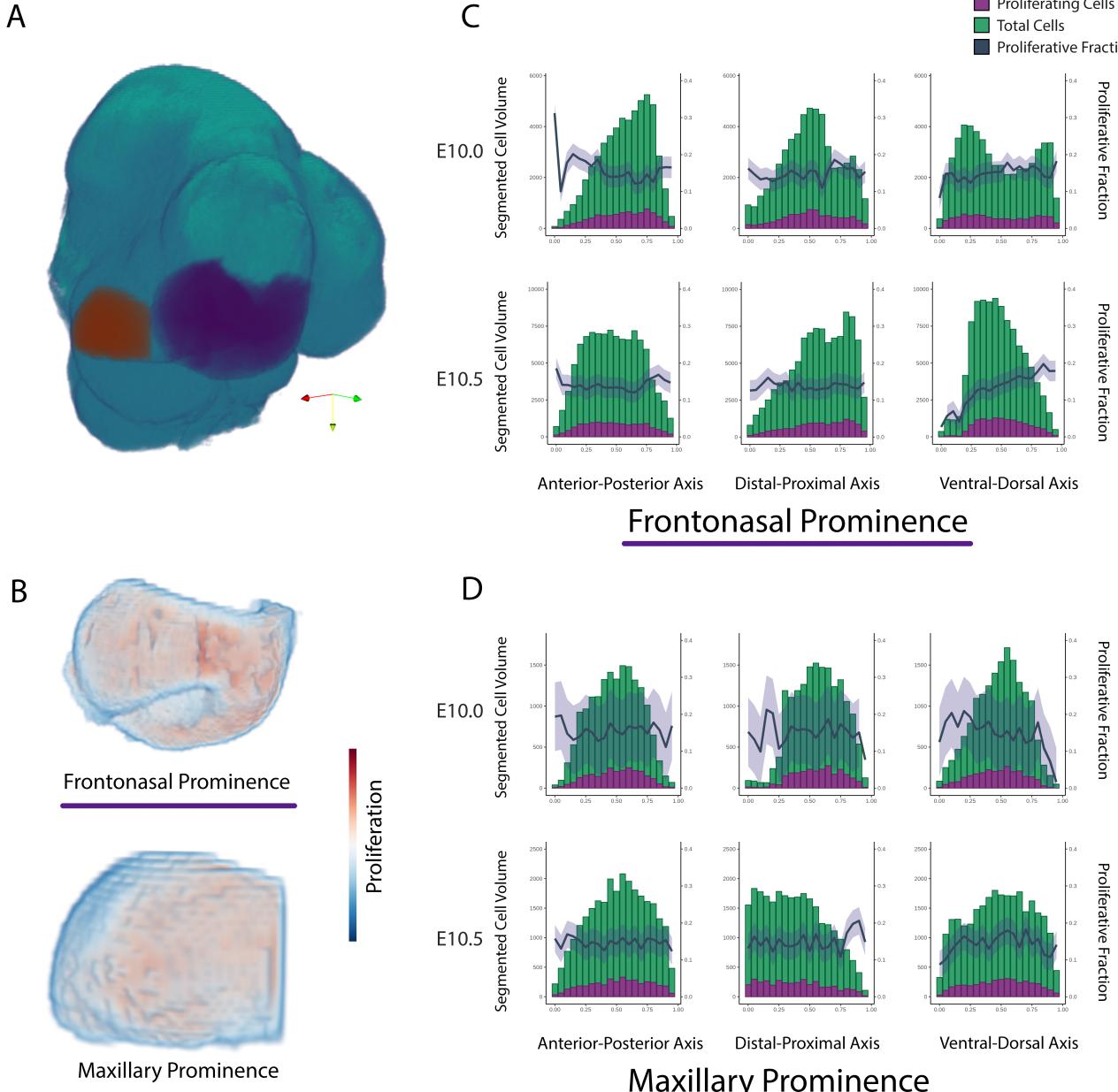


Fig. 2. Overview of the workflow for creating shape and proliferation atlases from LSFM scans. Twenty mouse embryos are stained for nuclei (Nuclear Green) and proliferating cells (pHH3). For each specimen, proliferating cell maps and tissues are automatically segmented using CNNs (mesenchyme in teal, neural ectoderm in yellow). For each age group (E10, E10.5, E11, and E11.5), the groupwise affine-registration is performed using the tissue segmentation volume. Then, the resulting transformation for each sample is applied to its proliferating cell map. The shape atlas per age is obtained by majority voting in each voxel. The proliferation atlases are produced by smoothing and normalizing each proliferating cell map, and then averaging the resulting heat maps of the age group.

remains similar in actively proliferating facial tissues. Tissue-specific means were similar, ranging between 14 and 18% of cells proliferating. We did observe a difference in the E10.5 frontonasal prominence along the dorsal-ventral axis, where cells proliferated more densely towards the dorsal side (interior) of the tissue ($p < 0.0001$). Notably, apparent patterns in proliferation may be related to the overall density of cells across tissues, which changed with time and prominence location. These apparent differences in cell densities could relate to morphological change over development and will need to be more carefully examined in future studies.

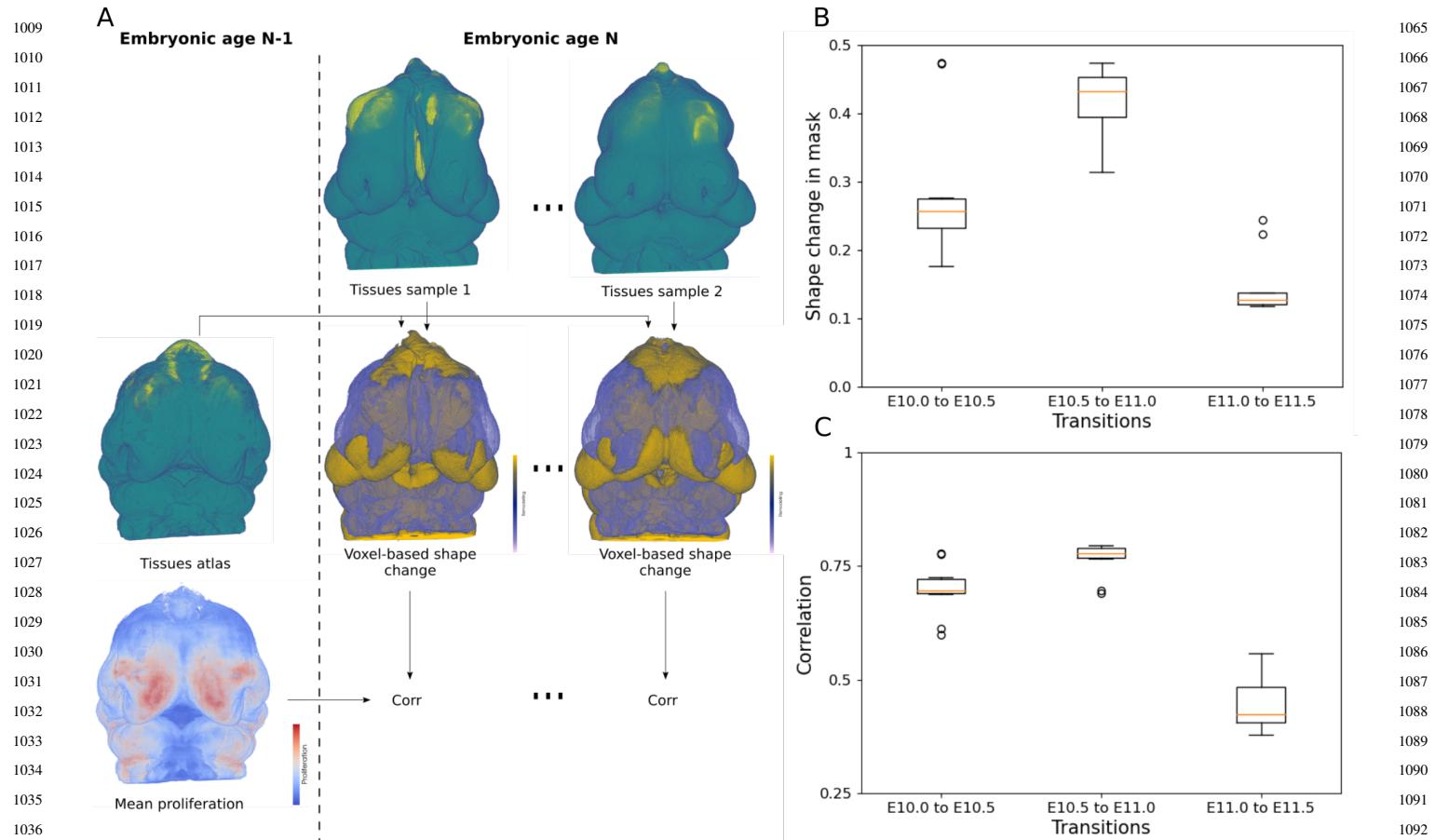

Correlation of morphology and proliferation

There are many long standing hypotheses predicting that proliferation is a strong driver of morphology during development (Francis-West et al., 1998; Marcucio et al., 2015). To test this hypothesis, it was important to first examine if proliferation and morphological change are correlated. We used voxel-based methods to identify between-group differences and to examine the correlations between

Fig. 3. (A) Tissue and proliferation atlases for C57BL/6J embryos between E10.0 and E11.5. The top row presents the tissue atlases for embryonic ages E10.0, E10.5, E11.0, and E11.5, showing mesenchyme in teal and neural ectoderm in yellow. Voxels are displayed slightly transparent for visualization purposes. The bottom row shows the proliferation map atlases for the same embryonic ages, only in the mesenchyme. (B,D) Principal Component Analysis (PCA) of Procrustes shape coordinates and facial proliferation, respectively, for the whole embryonic dataset. Specimens are coloured by tail somite count, as a proxy for age. Dataset comprises embryos from 8 to 20 somites. (C) Location of anatomical landmarks manually placed on the facial surfaces of embryonic samples in the atlas (average, in red). Dispersion of landmarks for each specimen is also shown and coloured by tail somite count.

shape (morphology) change and proliferation during the phases of rapid growth and morphological change of the mouse face. Using the atlases shown in Fig. 3, we registered each subsequent age together (eg. E10 to E10.5 and E10.5 to E11) to calculate the facial shape difference (Fig. 5A,B). We then computed a Pearson correlation between the shape difference and the proliferation in the previous age (Fig. 5C). Shape change was largest between the E10.0 and E11 timepoints. The overall correlation rate for the younger ages approached 0.75, implying a strong correlation between shape change and morphological change. By E11.0-E11.5 however, this has decreased to

Fig. 4. Segmented cell volume and proliferative fraction along each tissue axis at E10.0 and E10.5 in key tissues. (A) Segmentation of the maxillary prominence (purple) and frontonasal prominence (orange) on the average tissue atlas. (B) Proliferative heatmaps within segmented tissues in the same view as (A). (C,D) Cell volumes and proliferative cell volumes are compared along each axis and reveal largely homogeneous proliferation in these averaged volumes. The blue line represents the proliferative fraction, or the proportion of proliferating nuclei to total nuclei, and the ribbon represents the standard error between specimens.

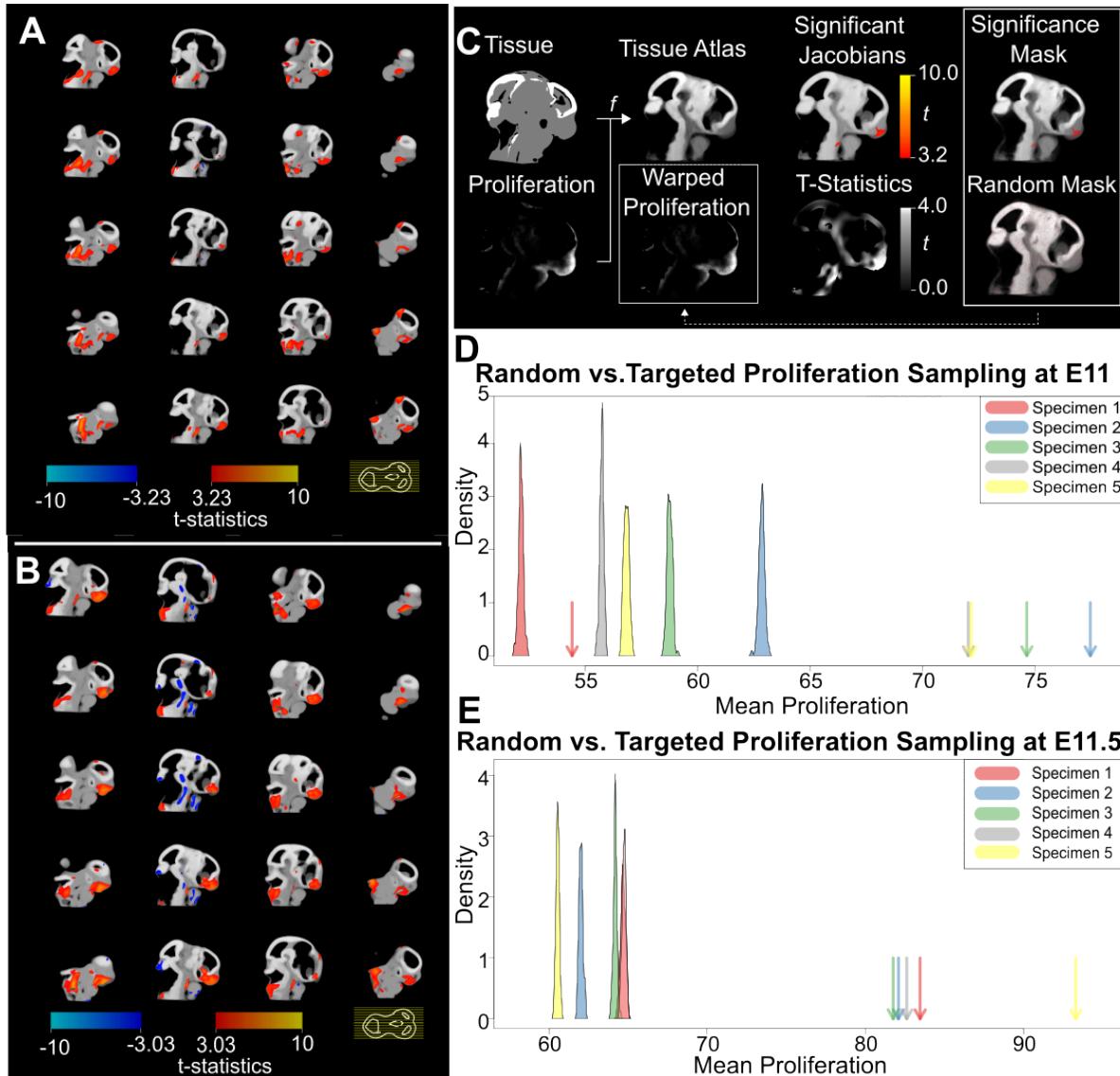

around 0.4. The decrease in the older age is likely due to a combination of decreased shape change between E11 and E11.5 and an overall decrease in proliferation.

897 Next, we sought to directly test the hypothesis that proliferation in regions of significant shape change was larger than what could
898 be expected by chance. This hypothesis is important because if proliferation is a driver of morphological change, it would be predicted
899 that regions of increased rates of shape change should also have increased rates of proliferation. In order to test this, we used additional
900 non-linear voxel-based morphometrics methods to identify regions of local tissue expansion or contraction (representing regional mor-
901 phological changes) between atlases generated from each age group (Fig. 6A). As expected based on the principal component plot, no
902 regions of expansion or contraction were identified as significant between E10 and E10.5 using these methods. We did not detect any
903 stage-related shape effects at E10, likely due to sample size. However, we observed that E11 and E11.5 contained 627,878 voxels (10.4%,
904 p < 0.05, t = 3.23) and 769,245 voxels (12.7%, p < 0.05, t = 3.08) with significant determinants, respectively. The Dice coefficient for
905 the resulting shape significance masks was 0.57, indicating substantial overlap (Fig. 6A). The largest and most consistent shape changes
906 can be traced to the frontonasal prominences, which undergo immense mediolateral expansion towards the midline during mid-gestation.
907 We then compared proliferation in the expanding regions to an equal number of randomly selected voxels (Fig. 6D,E). Interestingly, we
908 observed that the mean proliferation intensity within these shape significance masks fell outside the distribution of randomly sampled
909 intensities for every specimen. While the mean intensity of the randomly sampled proliferation masks at E11 was 57.26, the mean inten-
910 sity of the shape significance masks was 70.14. This represents a 22.5% increase in average proliferation at sites of major shape change
911 relative to random sites. Similarly, the mean intensity of the randomly sampled masks at E11.5 was 63.23, whereas the mean intensity
912 of the shape significance masks was 84.64. This delta reflects a 33.9% increase in average proliferation. This result shows that there is
913 more proliferation in regions undergoing expansion than could be expected by chance.
914

915 To determine whether spatial patterning of proliferation drives ontogenetic variation in morphology, we examined the relationship
916 the 3D volumetric patterning of proliferation and external morphology among individual embryos across the entire age range of the
917 sample. Our initial two block two-block partial least squares regression (PLS) for the entire sample showed a very strong relationship
918 between proliferation and morphology ($r = 0.97$, $z = 2.161$, $p = 0.001$). To determine whether variation in morphology among individuals
919 correlated with the patterning of proliferation, independent of this strong ontogenetic trajectory, we examined the correlation between the
920 residuals for proliferation and morphology on somite stage. This yielded a much weaker and statistically non-significant correlation ($r =$
921 0.607, $z = 1.507$, $p = 0.072$). However, this analysis is complicated by the clear and strong separation in the patterning of proliferation
922 between the younger and older portions of the ontogenetic range (see Fig. 3B,D). Most of the shape changes associated with proliferation
923 are driven by earlier stages (8-14) and the relationship between proliferation and morphology is different between these two time ranges.
924 Accordingly, we split the sample into the two groups apparent in the PCA plots for both shape and proliferation and then performed PLS
925 regressions within those groups. The resulting 2-block PLS analyses revealed strong relationships between the patterning of proliferation
926 and morphology within each age group (Fig. 7). The relationship was somewhat stronger in younger embryos (8-13 somites) ($r = 0.973$,
927 $z = 3.341$, $p = 0.001$; Fig. 7A). Within this sample, shape changes associated with proliferation were mostly localized to the medial nasal
928 region. In contrast, the PLS in the older embryo group (15-20 somites) showed a slightly weaker correlation between proliferation and
929 shape changes ($r = 0.91$, $z = 1.957$, $p = 0.024$; Fig. 7B). Here, shape changes associated with proliferation were mostly associated with
930 maxillary growth.
931

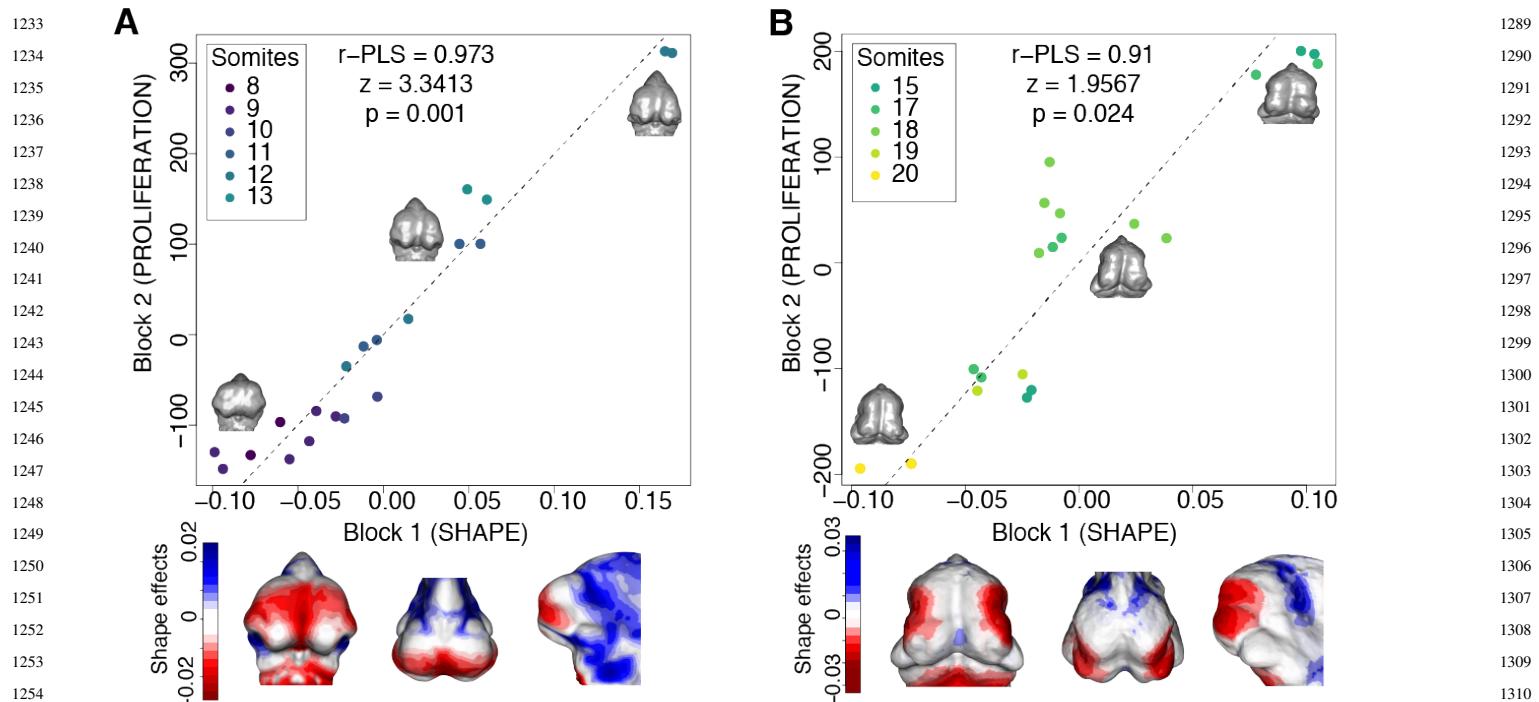
932 DISCUSSION

933 Light-sheet microscopy (LSFM) offers new opportunities to investigate cell biology within its 3D context, but these opportunities have
934 been difficult to realize due to challenges of quantifying the outcomes. Here, we present a method to overcome some of these challenges
935 and apply it to quantifying the relationship between proliferation and morphology during the events of primary facial morphogenesis in
936 mouse embryos. We place our results in the context of both understanding the role of proliferation in establishment of facial shape and
937 also of further developing tools to push the field forward.
938


Fig. 5. Voxel-based analysis of relation between proliferation and shape change in the face. (A) Workflow to relate the shape and proliferation atlases of the previous embryonic age N-1 to the shape of each of the samples belonging to the present embryonic age N. A differential volume (-1,0,+1) for each sample at age N is obtained by comparing to the mesenchyme of the age N-1 atlas (middle row). Then, each voxel of the differential volume at age N was associated with the corresponding voxel of the proliferation atlas of age N-1. Finally, Pearson's linear correlation coefficient is computed only in a mask corresponding to the mesenchyme of the face. (B) Box-plots showing the proportion of voxels in the fixed mask of the face that presents outward (+1) or inward (-1) remodeling between the consecutive ages studied in this work (E10.0-E11.5). (C) Box-plots presenting the absolute value of the correlation coefficient between the proliferation at age N-1 with the shape change from N-1 to N, in consecutive ages.

Structure of growth

Morphogenetic mechanisms drive not only the large changes in morphology over ontogeny but also the smaller differences in stage-specific morphology among individuals, including structural birth defects. To study the cellular basis for among-individual variation, it is necessary to quantify morphology and cellular dynamics simultaneously in individual embryos. This contrasts to the more common approach of obtaining cellular and phenotypic data in different batches of embryos from the same treatment group or genotype. Excellent methods currently exist for high-resolution quantification of morphology in embryos using computed microtomography (Wong et al., 2015; Hallgrímsson et al., 2015) or optical projection tomography (Sharpe, 2004; 2003). Existing methods also allow quantification of gene or protein expression along with morphology for the same embryo (Xu et al., 2015; Green et al., 2017; Marchini et al., 2021). Quantifying cellular dynamics within such a framework is non-trivial as this requires anatomical localization of cellular parameters and, preferably, accurate segmentation of individual cells in anatomical context.


Altering proliferation is one way, of many, to alter morphology during the development or to generate differences in morphology among individuals at a particular developmental stage (Green, 2022). As organisms grow, the number of cells increases. Deviations from

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

Fig. 6. Voxel-based morphometry for whole embryo heads. (A) Statistical parametric map showing sagittal slices of craniofacial regions which undergo significant shape change from E10.5 to E11. B. E11 to E11.5. The slice legend is displayed on the bottom right, with each yellow line corresponding to an individual slice in the volume. Hot colours (red-yellow scale) indicate voxel expansion, whereas cold colours (blue-teal scale) represent voxel shrinkage. (C-E) Localizing the relationship between cell proliferation and shape change in anatomical context. (C) Overview of the image analysis workflow. We non-linearly registered each tissue volume to a novel tissue atlas, and use the corresponding transformation to warp the proliferation volume into the atlas space. Next, we calculated the Jacobian determinants of the tissue registration field and visualized significant stage-related shape deviations (t values) with a parametric map. The red-yellow t value scale indicates levels of increasingly large shape change. Next, we exported a volume of t statistics to generate a shape significance mask (i.e., voxels with a t value above the significance threshold), as well as a set of randomly sampled masks (i.e., voxels with randomly sampled t values). The atlas masks are then overlaid (dotted line) onto each warped proliferation volume to relate proliferation to shape change in the anatomical context. (D-E) Density plots comparing the mean proliferation of $N=100$ randomly sampled masks (bell curves) against the mean proliferation of the significance mask (arrows) for each specimen. E11 and E11.5 are displayed separately.

spatially homogeneous proliferation such that some anatomical regions proliferate more rapidly than others, or areas where division tends to occur in a spatially directed manner due to patterning of cell polarity are, in theory, ways to generate shape change during morphogenesis. However, spatio-temporal patterning of cell proliferation is not the only potential cellular mechanism for generating morphological variation in growing embryonic tissues (Green, 2022). Planar cell polarity, for example, can produce morphogenetic

Fig. 7. Quantitative relationship between morphology and spatial patterning of proliferation (A) 2-Block Partial Least Squares (PLS) analysis of Procrustes shape coordinates and proliferation in younger embryos (8-13 somites). Morphs within the scatterplot were constructed from Procrustes coordinates for each specimen. Heatmaps below the scatterplot depict shape changes associated with proliferation, based on the minimum and maximum values along the first latent variable of block 1 in the PLS analysis (shape), which tends toward more medial nasal proliferation. (B) 2-block PLS analysis of Procrustes shape coordinates and proliferation in older embryos (15-20 somites). Morphs were constructed from Procrustes coordinates for each specimen, and heatmaps depict shape changes associated with changes in proliferation along the first axis (latent variable of shape block), which moves more toward the maxilla with increasing age.

changes via directional bias in proliferation (Gray et al., 2011). Boehm et al. (2010) showed using a combination of 3D quantification of proliferation and modeling that such directional cell behaviours are necessary to explain vertebrate limb morphogenesis, whereas our work showed that altering Fgf signalling created dysmorphologies that were associated with disrupted polarity of mesenchymal cells in the face (Li et al., 2013). Cell migration is also critical for morphogenesis and has been studied in many developmental contexts. In the neural crest, for example, multiple mechanisms involving secreted factors, extracellular matrix, and physical forces interact to produce dramatic changes in cell position and gross morphology (Bronner-Fraser, 1993; Shellard and Mayor, 2019). Even here, though, patterning of cell proliferation within migrating streams of neural crest cells plays a role (Kulesa et al., 2008). Finally, physical forces influence morphogenesis at multiple levels ranging from interaction with extracellular matrix (Daley and Yamada, 2013; Linde-Medina et al., 2016), among cells due to regulation of cell adhesion (Lecuit, 2005; LeGoff and Lecuit, 2016), and physical interactions between tissues such as the neural tube and facial prominences during morphogenesis (Marcucio et al., 2015; Parsons et al., 2011). These alternative and potentially interacting mechanisms for morphogenesis suggest the need for development of methods to objectively determine the relative contribution of spatiotemporal variation in cell proliferation to fully understand the cellular bases of morphogenesis.

The morphogenesis of the face is complex, likely more so than the limb, because the prominences must grow in different directions and at rates that allow for them to meet and fuse. When this fails to occur, the result is an orofacial cleft and variable disruption of subsequent facial development (Diewert and Wang, 1992). For these reasons, it seems likely that the cellular processes that underlie this growth must be spatiotemporally regulated within the facial prominences. If this applies to cell proliferation, then it holds that

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

1345 proliferation should not be homogeneously distributed throughout the volume of growing tissue but rather concentrated in those areas
1346 that are most rapidly growing. If this is the case, then at each stage of embryonic development as well as across stages, there should be
1347 a correlation between the 3D spatial pattern of cell proliferation and morphology. This is the hypothesis that we set out to test with the
1348 novel methods presented here.

1349
1350 Our results show clearly that across developmental time (E10 to E11.5) during facial morphogenesis, there is a strong correlation
1351 between the spatial pattern of proliferation and morphology. This pattern is not linear across this range, with distinct patterns of shape
1352 change and similarly distinct spatial patterns of cell proliferation in the earlier compared to the later part of this range (Fig. 7). When the
1353 relationship between shape and the spatial patterning of proliferation is analyzed separately within each of these two time periods, strong
1354 relationships emerge.

1355
1356 Given the finding that spatial variation in proliferation correlates with shape across developmental time, it is surprising that we found
1357 that proliferation within the growing prominences during the earlier part of this period was not strongly spatially patterned. We had
1358 expected, for example, to find elevated proliferation in regions adjacent to known sources of proliferative signals secreted in regions of
1359 ectoderm, such as Fgf8 (Crossley and Martin, 1995; Marcucio et al., 2005) and Shh (Hu and Marcucio, 2009). Instead, we observed a
1360 fairly homogeneous distribution of proliferation throughout the volume of the facial prominences that one would expect would result in
1361 a pattern of isometric increase in volume rather than change in shape over time. There are two potential explanations for this finding.
1362 The first is that within a rapidly growing volume, only very small differences in relative rate or proliferation are necessary to produce
1363 change in shape. The fact that we observed a correlation between the pattern of proliferation and shape is consistent with this explanation.
1364 Alternatively, there may be factors other than proliferation that are influencing facial morphogenesis at this stage such as those discussed
1365 above. These explanations are not exclusive and further work that integrates modelling as well as investigation of molecular markers for
1366 other aspects of cellular dynamics of growth are necessary to disentangle them.

1367
1368 A role for factors other than proliferation is suggested by our finding that we do not see a statistically significant relationship between
1369 spatial patterning of proliferation and facial shape when developmental stage (somite stage) is regressed out. While larger samples
1370 might reveal a stronger relationship, our findings do not support the view that spatial patterning of proliferation accounts for differences
1371 in morphology among individuals at a given stage. To some degree, this may be an issue of power. If only small deviations from
1372 homogeneously distributed proliferation results in morphogenesis, then the differences that account for variation in morphogenesis
1373 among individuals would be even smaller. Again, the integration of simulation with these experimental findings is crucial to investigate
1374 this possibility.

1375
1376 Another approach would be to perform the analyses shown here on mouse mutants where we suspect that spatial patterning of
1377 proliferation is disrupted. Our finding that proliferation is surprisingly homogeneously distributed is relevant here as this means that
1378 loss of proliferation from localized regions may still affect morphological development. Studies to probe this hypothesis are ongoing.
1379 However, as the relative changes in proliferation are generally small, a relatively larger number of specimens is likely needed to test
1380 this hypothesis. The ability to test these hypotheses is to an extent still limited by technology. Imaging at 25x and preferably higher
1381 is required to quantitatively evaluate planar cell polarity Alladin et al. (2020); Revenu et al. (2014). While this is technically possible,
1382 the resulting images would exceed 1TB per embryo and the registration and processing of those images for whole faces is currently
1383 prohibitively resource intensive.

1384 **LSFM as a tool**

1385
1386 While LSFM imaging is becoming more prevalent as a tool for developmental biology, there are many challenges that users of this
1387 technique must overcome to apply this method more generally. One issue is that beyond a certain size and tissue density, such as mouse
1388 embryos older than E8.5, live light-sheet fluorescent microscopy (LSFM) imaging is not feasible as the tissue must be cleared McDole
1389 et al. (2018). Clearing and sample preparation presents significant challenges, although there is an increasing diversity of clearing

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

1457 techniques available. LSFM imaging has even been used to image full juvenile mice after clearing Tian et al. (2021). Data processing
1458 is also a significant challenge as computational time increases exponentially with resolution or object size at the same resolution. One
1459 crucial processing step is the accurate identification of individual cells within an image in order to quantify a cellular marker in relation
1460 to the total number of cells. Our team has had recent success retraining a convolutional neural network (CNN, U-net) to process embryo
1461 LSFM images Lo Vercio et al. (2022). We developed a method that efficiently segments tissues, nuclei, and proliferating cells in lightsheet
1462 images of whole embryonic heads from E9.5-E10.5 mouse embryos while also dealing with minor LSFM artifacts, such as blurriness or
1463 tissue depth variation. Nucleus-level analysis becomes more challenging as the size of the tissue sample or embryo imaged increases as
1464 image artifacts become more pronounced and complex with increasing size.
1465

1466 In this work, the large size of the whole E10-E11.5 embryo head required performing the detailed analysis of proliferation rates
1467 within the facial prominences and the whole head (Fig. 4). These regions have low probability of segmentation errors and the manual
1468 or semi-automatic isolation of these exterior structures can be readily assessed and corrected by a human observer. Segmentation errors
1469 happen for two main reasons. The first is that staining and clearing tends to work better close to the exterior of the sample, which
1470 results in depth of tissue-related artifacts. Similarly, whole-mount immunohistochemistry is affected by tissue depth due to variation
1471 in antibody penetration Yokomizo et al. (2012) and this is apparent as loss of signal in interior structures. For this reason, total nuclei
1472 counts are included only in the analysis of the facial prominences for the earlier part of the studied age range (E10-E10.5), while total
1473 proliferation data was used more extensively in this work. Further, as we approach the resolution limits of individual nucleus detection,
1474 apparent merging of nuclei will bias the segmentation process. For this reason, we used a voxel-based approach rather than a single-cell
1475 approach for the quantification of the proliferative fraction (Fig. 4). Also, each proliferation map was normalized before computing the
1476 proliferation atlases (Fig. 3A) and performing individual-level analyses (Fig. 3D and Fig. 7). This was to reduce potential effects of inter-
1477 sample variability of the proliferation marker. Further work in improving staining, clearing, and nuclei and proliferation segmentation is
1478 needed to increase the detail and accuracy of the 3D models constructed within the proposed framework.
1479

1480 To quantify cellular dynamics in the morphological context, it is necessary to register each volumetric image to a common atlas in order
1481 to place both morphology and the spatial distribution of cells into a common shape space. Atlas generation for early mouse development
1482 is a computational challenge due to the high amount of shape variation among embryos Wong et al. (2015); Devine et al. (2020; 2022).
1483 Improvements to atlas generation will require larger sample sizes as well as tighter control of developmental time by increasing the
1484 representation per somite stage or by more refined methods of staging. In this work, the more pronounced image artifacts (blurriness,
1485 signal loss) in the older embryos (E10.0-E11.5) resulted in poorer performance for the U-nets for tissue segmentation compared to E9.5-
1486 E10.5 embryos. This occurred even when U-nets were re-trained with images from our data. As a result, user intervention was required
1487 to correct 3D tissue models in cases where tissues were misclassified. Current work is focused on solving or mitigating these issues
1488 so that we can apply non-linear registration methods that have less tendency to introduce noise during registration to the atlas Devine
1489 et al. (2020). This will lead to more accurate atlases, better quantification of proliferation maps, and improved ability to handle large and
1490 shape-diverse samples of embryos.
1491

1503 Conclusion and Future Directions

1504 This work represents a substantive step in the direction of building the toolkit necessary for quantitative integration of analyses across
1505 multiple levels of genotype-phenotype maps. While there are existing methods to quantify gene-expression, cellular dynamics, histology,
1506 and external morphology in isolation, there are relatively few methods that enable the simultaneous quantification of more than one of
1507 these levels in individual embryos. Such efforts are critical in order to create a mechanistic understanding of the generation of phenotypic
1508 variation by developmental processes. While many challenges remain, the method presented here can support the systematic analysis
1509 of cell proliferation and morphology in complex morphogenetic contexts such as the development of the vertebrate face. Future efforts
1510

1511 1513
1512 1514
1513 1515
1514 1516
1515 1517
1516 1518
1517 1519
1518 1520
1519 1521
1520 1522
1521 1523
1522 1524
1523 1525
1524 1526
1525 1527
1526 1528
1527 1529
1528 1530
1529 1531
1530 1532
1531 1533
1532 1534
1533 1535
1534 1536
1535 1537
1536 1538
1537 1539
1538 1540
1539 1541
1540 1542
1541 1543
1542 1544
1543 1545
1544 1546
1545 1547
1546 1548
1547 1549
1548 1550
1549 1551
1550 1552
1551 1553
1552 1554
1553 1555
1554 1556
1555 1557
1556 1558
1557 1559
1558 1560
1559 1561
1560 1562
1561 1563
1562 1564
1563 1565
1564 1566
1565 1567
1566 1568
1567 1569
1568 1570
1569 1571
1570 1572
1571 1573
1572 1574
1573 1575
1574 1576
1575 1577
1576 1578
1577 1579
1578 1580
1579 1581
1580 1582
1581 1583
1582 1584
1583 1585
1584 1586
1585 1587
1586 1588
1587 1589
1588 1590
1589 1591
1590 1592
1591 1593
1592 1594
1593 1595
1594 1596
1595 1597
1596 1598
1597 1599
1598 1600
1599 1601
1600 1602
1601 1603
1602 1604
1603 1605
1604 1606
1605 1607
1606 1608
1607 1609
1608 1610
1609 1611
1610 1612
1611 1613
1612 1614
1613 1615
1614 1616
1615 1617
1616 1618
1617 1619
1618 1620
1619 1621
1620 1622
1621 1623
1622 1624
1623 1625
1624 1626
1625 1627
1626 1628
1627 1629
1628 1630
1629 1631
1630 1632
1631 1633
1632 1634
1633 1635
1634 1636
1635 1637
1636 1638
1637 1639
1638 1640
1639 1641
1640 1642
1641 1643
1642 1644
1643 1645
1644 1646
1645 1647
1646 1648
1647 1649
1648 1650
1649 1651
1650 1652
1651 1653
1652 1654
1653 1655
1654 1656
1655 1657
1656 1658
1657 1659
1658 1660
1659 1661
1660 1662
1661 1663
1662 1664
1663 1665
1664 1666
1665 1667
1666 1668
1667 1669
1668 1670
1669 1671
1670 1672
1671 1673
1672 1674
1673 1675
1674 1676
1675 1677
1676 1678
1677 1679
1678 1680
1679 1681
1680 1682
1681 1683
1682 1684
1683 1685
1684 1686
1685 1687
1686 1688
1687 1689
1688 1690
1689 1691
1690 1692
1691 1693
1692 1694
1693 1695
1694 1696
1695 1697
1696 1698
1697 1699
1698 1700
1699 1701
1700 1702
1701 1703
1702 1704
1703 1705
1704 1706
1705 1707
1706 1708
1707 1709
1708 1710
1709 1711
1710 1712
1711 1713
1712 1714
1713 1715
1714 1716
1715 1717
1716 1718
1717 1719
1718 1720
1719 1721
1720 1722
1721 1723
1722 1724
1723 1725
1724 1726
1725 1727
1726 1728
1727 1729
1728 1730
1729 1731
1730 1732
1731 1733
1732 1734
1733 1735
1734 1736
1735 1737
1736 1738
1737 1739
1738 1740
1739 1741
1740 1742
1741 1743
1742 1744
1743 1745
1744 1746
1745 1747
1746 1748
1747 1749
1748 1750
1749 1751
1750 1752
1751 1753
1752 1754
1753 1755
1754 1756
1755 1757
1756 1758
1757 1759
1758 1760
1759 1761
1760 1762
1761 1763
1762 1764
1763 1765
1764 1766
1765 1767
1766 1768
1767 1769
1768 1770
1769 1771
1770 1772
1771 1773
1772 1774
1773 1775
1774 1776
1775 1777
1776 1778
1777 1779
1778 1780
1779 1781
1780 1782
1781 1783
1782 1784
1783 1785
1784 1786
1785 1787
1786 1788
1787 1789
1788 1790
1789 1791
1790 1792
1791 1793
1792 1794
1793 1795
1794 1796
1795 1797
1796 1798
1797 1799
1798 1800
1799 1801
1800 1802
1801 1803
1802 1804
1803 1805
1804 1806
1805 1807
1806 1808
1807 1809
1808 1810
1809 1811
1810 1812
1811 1813
1812 1814
1813 1815
1814 1816
1815 1817
1816 1818
1817 1819
1818 1820
1819 1821
1820 1822
1821 1823
1822 1824
1823 1825
1824 1826
1825 1827
1826 1828
1827 1829
1828 1830
1829 1831
1830 1832
1831 1833
1832 1834
1833 1835
1834 1836
1835 1837
1836 1838
1837 1839
1838 1840
1839 1841
1840 1842
1841 1843
1842 1844
1843 1845
1844 1846
1845 1847
1846 1848
1847 1849
1848 1850
1849 1851
1850 1852
1851 1853
1852 1854
1853 1855
1854 1856
1855 1857
1856 1858
1857 1859
1858 1860
1859 1861
1860 1862
1861 1863
1862 1864
1863 1865
1864 1866
1865 1867
1866 1868
1867 1869
1868 1870
1869 1871
1870 1872
1871 1873
1872 1874
1873 1875
1874 1876
1875 1877
1876 1878
1877 1879
1878 1880
1879 1881
1880 1882
1881 1883
1882 1884
1883 1885
1884 1886
1885 1887
1886 1888
1887 1889
1888 1890
1889 1891
1890 1892
1891 1893
1892 1894
1893 1895
1894 1896
1895 1897
1896 1898
1897 1899
1898 1900
1899 1901
1900 1902
1901 1903
1902 1904
1903 1905
1904 1906
1905 1907
1906 1908
1907 1909
1908 1910
1909 1911
1910 1912
1911 1913
1912 1914
1913 1915
1914 1916
1915 1917
1916 1918
1917 1919
1918 1920
1919 1921
1920 1922
1921 1923
1922 1924
1923 1925
1924 1926
1925 1927
1926 1928
1927 1929
1928 1930
1929 1931
1930 1932
1931 1933
1932 1934
1933 1935
1934 1936
1935 1937
1936 1938
1937 1939
1938 1940
1939 1941
1940 1942
1941 1943
1942 1944
1943 1945
1944 1946
1945 1947
1946 1948
1947 1949
1948 1950
1949 1951
1950 1952
1951 1953
1952 1954
1953 1955
1954 1956
1955 1957
1956 1958
1957 1959
1958 1960
1959 1961
1960 1962
1961 1963
1962 1964
1963 1965
1964 1966
1965 1968
1966 1969
1967 1970
1968 1971
1969 1972
1970 1973
1971 1974
1972 1975
1973 1976
1974 1977
1975 1978
1976 1979
1977 1980
1978 1981
1979 1982
1980 1983
1981 1984
1982 1985
1983 1986
1984 1987
1985 1988
1986 1989
1987 1990
1988 1991
1989 1992
1990 1993
1991 1994
1992 1995
1993 1996
1994 1997
1995 1998
1996 1999
1997 2000
1998 2001
1999 2002
2000 2003
2001 2004
2002 2005
2003 2006
2004 2007
2005 2008
2006 2009
2007 2010
2008 2011
2009 2012
2010 2013
2011 2014
2012 2015
2013 2016
2014 2017
2015 2018
2016 2019
2017 2020
2018 2021
2019 2022
2020 2023
2021 2024
2022 2025
2023 2026
2024 2027
2025 2028
2026 2029
2027 2030
2028 2031
2029 2032
2030 2033
2031 2034
2032 2035
2033 2036
2034 2037
2035 2038
2036 2039
2037 2040
2038 2041
2039 2042
2040 2043
2041 2044
2042 2045
2043 2046
2044 2047
2045 2048
2046 2049
2047 2050
2048 2051
2049 2052
2050 2053
2051 2054
2052 2055
2053 2056
2054 2057
2055 2058
2056 2059
2057 2060
2058 2061
2059 2062
2060 2063
2061 2064
2062 2065
2063 2066
2064 2067
2065 2068
2066 2069
2067 2070
2068 2071
2069 2072
2070 2073
2071 2074
2072 2075
2073 2076
2074 2077
2075 2078
2076 2079
2077 2080
2078 2081
2079 2082
2080 2083
2081 2084
2082 2085
2083 2086
2084 2087
2085 2088
2086 2089
2087 2090
2088 2091
2089 2092
2090 2093
2091 2094
2092 2095
2093 2096
2094 2097
2095 2098
2096 2099
2097 2100
2098 2101
2099 2102
2100 2103
2101 2104
2102 2105
2103 2106
2104 2107
2105 2108
2106 2109
2107 2110
2108 2111
2109 2112
2110 2113
2111 2114
2112 2115
2113 2116
2114 2117
2115 2118
2116 2119
2117 2120
2118 2121
2119 2122
2120 2123
2121 2124
2122 2125
2123 2126
2124 2127
2125 2128
2126 2129
2127 2130
2128 2131
2129 2132
2130 2133
2131 2134
2132 2135
2133 2136
2134 2137
2135 2138
2136 2139
2137 2140
2138 2141
2139 2142
2140 2143
2141 2144
2142 2145
2143 2146
2144 2147
2145 2148
2146 2149
2147 2150
2148 2151
2149 2152
2150 2153
2151 2154
2152 2155
2153 2156
2154 2157
2155 2158
2156 2159
2157 2160
2158 2161
2159 2162
2160 2163
2161 2164
2162 2165
2163 2166
2164 2167
2165 2168
2166 2169
2167 2170
2168 2171
2169 2172
2170 2173
2171 2174
2172 2175
2173 2176
2174 2177
2175 2178
2176 2179
2177 2180
2178 2181
2179 2182
2180 2183
2181 2184
2182 2185
2183 2186
2184 2187
2185 2188
2186 2189
2187 2190
2188 2191
2189 2192
2190 2193
2191 2194
2192 2195
2193 2196
2194 2197
2195 2198
2196 2199
2197 2200
2198 2201
2199 2202
2200 2203
2201 2204
2202 2205
2203 2206
2204 2207
2205 2208
2206 2209
2207 2210
2208 2211
2209 2212
2210 2213
2211 2214
2212 2215
2213 2216
2214 2217
2215 2218
2216 2219
2217 2220
2218 2221
2219 2222
2220 2223
2221 2224
2222 2225
2223 2226
2224 2227
2225 2228
2226 2229
2227 2230
2228 2231
2229 2232
2230 2233
2231 2234
2232 2235
2233 2236
2234 2237
2235 2238
2236 2239
2237 2240
2238 2241
2239 2242
2240 2243
2241 2244
2242 2245
2243 2246
2244 2247
2245 2248
2246 2249
2247 2250
2248 2251
2249 2252
2250 2253
2251 2254
2252 2255
2253 2256
2254 2257
2255 2258
2256 2259
2257 2260
2258 2261
2259 2262
2260 2263
2261 2264
2262 2265
2263 2266
2264 2267
2265 2268
2266 2269
2267 2270
2268 2271
2269 2272
2270 2273
2271 2274
2272 2275
2273 2276
2274 2277
2275 2278
2276 2279
2277 2280
2278 2281
2279 2282
2280 2283
2281 2284
2282 2285
2283 2286
2284 2287
2285 2288
2286 2289
2287 2290
2288 2291
2289 2292
2290 2293
2291 2294
2292 2295
2293 2296
2294 2297
2295 2298
2296 2299
2297 2300
2298 2301
2299 2302
2300 2303
2301 2304
2302 2305
2303 2306
2304 2307
2305 2308
2306 2309
2307 2310
2308 2311
2309 2312
2310 2313
2311 2314
2312 2315
2313 2316
2314 2317
2315 2318
2316 2319
2317 2320
2318 2321
2319 2322
2320 2323
2321 2324
2322 2325
2323 2326
2324 2327
2325 2328
2326 2329
2327 2330
2328 2331
2329 2332
2330 2333
2331 2334
2332 2335
2333 2336
2334 2337
2335 2338
2336 2339
2337 2340
2338 2341
2339 2342
2340 2343
2341 2344
2342 2345
2343 2346
2344 2347
2345 2348
2346 2349
2347 2350
2348 2351
2349 2352
2350 2353
2351 2354
2352 2355
2353 2356
2354 2357
2355 2358
2356 2359
2357 2360
2358 2361
2359 2362
2360 2363
2361 2364
2362 2365
2363 2366
2364 2367
2365 2368
2366 2369
2367 2370
2368 2371
2369 2372
2370 2373
2371 2374
2372 2375
2373 2376
2374 2377
2375 2378
2376 2379
2377 2380
2378 2381
2379 2382
2380 2383
2381 2384
2382 2385
2383 2386
2384 2387
2385 2388
2386 2389
2387 2390
2388 2391
2389 2392
2390 2393
2391 2394
2392 2395

1569 will refine this method but also find ways to incorporate additional levels such as gene expression, spatial transcriptomics, and other
1570 multiple-molecular marker methods within similar anatomical registration-based frameworks.
1571

1625
1626
1627
1628
1629
1630
1631
1632

1574 MATERIALS AND METHODS

1575 Clearing and staining

1577 Dams were sacrificed by isoflurane overdose, and embryos were harvested between E9.5 and E11.5. Following harvest, embryos were
1578 washed in PBS for 30 minutes and fixed overnight in 4% paraformaldehyde (PFA) at 4°C. Embryos were cleared with a modified CUBIC
1579 protocol to remove lipids and heme while preserving morphology, based on Susaki et al. (2015). Only typically developing embryos were
1580 used for further examination.
1581

1582 Following overnight fixation, samples were washed for 24 hours. in PBS to remove blood. Samples were serially dehydrated in
1583 increasing concentrations of methanol in PBS (25%, 50%, 75%, 100%) for 30 minutes each. Samples can be stored long-term at this
1584 point in 100% methanol at -20°C. Samples were permeabilized in 5% H₂O₂/ methanol overnight at 4°C. Samples were rehydrated in
1585 decreasing concentrations of methanol in PBS (100%, 75%, 50%, 25%) for 30 minutes each, followed by a 2 hour wash in PBS. Samples
1586 were incubated overnight in 1:1 PBS:CUBIC-1 (25% urea, 25% Quadrol, 15% Triton X-100), then in 100% CUBIC-1 until transparent
1587 (approx. 3-5 days), shaking at 60 rpm at 37°C. Once transparent, samples were rinsed twice in PBS for 2 hours, then once more overnight
1588 to stop clearing. Samples were then blocked for 36 hours in 5% Goat Serum, 5%DMSO in 0.1% Sodium Azide/PBS at 37°C to prevent
1589 nonspecific binding.
1590

1591 For immunostaining, samples were incubated in 1:200 conjugated antibody (Anti-Histone H3 (phospho 10) antibody (Alexa Fluor
1592 647)) for proliferation staining, 1:4000 Nuclear Green for nuclear staining, and 5% DMSO in 0.1% Sodium Azide/PBS for 5 days at
1593 37°C. Following staining, samples were washed several times in PBS-Tween 0.5% to remove excess antibody. Samples were beheaded,
1594 and heads were embedded in 1.5% low melting point agarose and incubated in CUBIC-2 (25% urea, 50% sucrose, 10% triethanolamine)
1595 for 24 hr. Tails were also embedded to stage embryos after imaging.
1596

1601 Imaging

1602 Light-sheet images of agarose-embedded samples were obtained with a Zeiss Lightsheet Z.1 microscope. Heads were imaged at 5 μm
1603 intervals with 0.9 μm resolution with a 5X objective in CUBIC-2. Tails were separately imaged at 7 μm intervals with 2.5 μm resolution
1604 for manual counting of tail somites as a measure of embryonic age (Chan et al., 2004). Image stacks were taken with a 10% overlap and
1605 stitched together in ZEN Blue (Zeiss).
1606

1611 Automatic analysis workflow

1612 Segmentation

1613 The U-net for tissue segmentation was trained using Nuclear Green images (1024 × 1024 downsized to 256 × 256), 21 images from
1614 E11.0 embryos and 10 images from E11.5 embryos. For a test set of 8 images from a E11.0 embryo and 10 from a E11.5 embryo, the
1615 U-net reached an accuracy of 0.806 and a Dice score of 0.727. The mesenchyme and neural ectoderm of the 20 E10.0-E11.5 embryos
1616 analyzed in this work were segmented using this U-net, while the nuclei and proliferating cell segmentation was done using the U-nets
1617 and ImageJ-Fiji plug-in described in Lo Vercio et al. (2022). The segmentation volumes were transformed to isotropic dimensions via
1618 shrinking of the XY dimension, and corrections for the segmentation volumes of tissues (mesenchyme and neural) were performed in
1619 3D Slicer (Kikinis et al., 2014) by a human observer, particularly removing deposits outside the sample not segmented as background,
1620 and correcting voxels misclassified as neural ectoderm to the mesenchyme class.
1621

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680

1681 Registration for atlases

1682 To build general shape and proliferation maps at each developmental age (E10.0, E10.5, E11.0 and E11.5), one sample per age was
1683 selected as reference. Then, it was manually oriented, and anything below the mandible was deleted from the volume. The five samples
1684 of each stage were mirrored to double the amount of data. Then, a landmark-based rigid registration was performed between each of the
1685 remaining samples in the age group and their reference sample, using five landmarks placed in the head by an expert observer (Devine
1686 et al., 2022) via SimpleITK in Python (Lowekamp et al., 2013)). Then, the resulting transformation was applied to the correspondent
1687 tissue segmentation. A groupwise-affine registration was performed among the ten registered tissue segmentations using SimpleElastix
1688 in Python (multiresolution registration with 5 number of resolutions, 30000 maximum iterations, linear interpolator, nearest neighbor
1689 interpolator for resampling) (Marstal et al., 2016; Devine et al., 2020). Finally, the voxels of the shape atlas were labelled as background,
1690 mesenchyme, or neural ectoderm using majority voting, implemented in MATLAB (Fig. 3A).

1691 The chain of rigid and affine registrations of each sample was latter applied to the corresponding volumes of nuclei and proliferating
1692 cells. The mean proliferation per voxel was computed using a $0.15\text{mm} \times 0.15\text{mm} \times 0.15\text{mm}$ window. This proliferation map of the sample
1693 is normalized using percentile-based equalization Weigert et al. (2018). The mean proliferation map for each age was obtained by
1694 averaging the proliferation maps of the five embryos and their mirrored maps (Fig. 3A).

1700 Registration for bulk analysis

1701 To analyze the shape and proliferation variation among all the samples used in this work, 37 landmarks were placed in the face of the
1702 20 samples and their mirrored volumes by an expert observer (Percival et al., 2014). Then, a landmark-based similarity registration
1703 (translation, rotation, and scaling) was performed using VTK in Python (Schroeder et al., 2006) between each sample and one E10.5
1704 sample used as the reference (transformed as in the previous section). These transformations were latter applied to the corresponding
1705 proliferation maps.

1706 Voxel-based study

1707 Using the tissue and proliferation maps produced by the latter described registration process, we proceeded to extract the shape and
1708 proliferation in the face of the registered embryos. To build this mask, the forty mesenchyme segmentations were extracted and voxels
1709 labelled as mesenchyme more than 30% of the time were assigned to a primary mask. Then, voxels further away than 0.39 mm from the
1710 surface of this mask were excluded. Finally, an expert observer manually refined the mask using 3D Slicer leaving only voxels belonging
1711 to the face. With this mask, the proliferation map values were extracted for the forty samples.

1712 Landmark-based study

1713 We analyzed and visualized facial shape using geometric morphometrics methods (GMM). We performed a Generalized Procrustes
1714 Superimposition Analysis (GPA; Gower (1975)) to extract the aligned Procrustes shape coordinates from the manual landmark dataset
1715 (to focus on shape differences only on the face and not the whole head; Fig. 3C), using the package *geomorph* (Adams et al., 2022) in
1716 R (R Core Team, 2020). The Procrustes shape coordinates represent each specimen's shape, and we ordinated these with a Principal
1717 Components Analysis (PCA), to visualize the axes of maximum shape variation and its association throughout ontogeny (using tail
1718 somite number as a proxy for age), with the R package *geomorph* (Fig. 3B). We also performed a PCA on the flattened matrix from the
1719 proliferation array, to be able to visualize differences in proliferation associated with age (Fig. 3D).

1720 To assess the degree of association between face shape and proliferation patterns, we performed a two-block Partial Least Squares
1721 (PLS; Rohlf and Corti (2000)) analysis using the R packages *Morpho* (Schlager, 2017)) and *geomorph* (Adams et al., 2022). PLS latent
1722 variables were calculated as the linear combinations of the Procrustes shape coordinates (Block 1) and the flattened proliferation matrix
1723 (Block 2), which maximized the covariance between the two blocks. We plotted an ordination PLS scatterplot, coloured by the number
1724 of tail somites (indicating age), displaying the first latent variable for both the shape dataset (Block 1) and the proliferation dataset (Block
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

1793 2), using *geomorph* (Fig. 7). We split the embryonic dataset into two age-relevant groups, based on their distinct grouping in both the
1794 facial shape morphospace (Fig. 3C) and proliferation patterns (Fig. 3D). Meshes to produce morphs were obtained from smoothed atlases
1795 using morphological closing. Finally, we generated morphs using the shape changes associated with proliferation changes, using the R
1796 package *Morpho* (Fig. 7).
1797

1799 Single tissue analysis

1800 Based on our whole-head proliferation atlas, the frontonasal and maxillary prominences were identified as the most actively proliferating
1801 mesenchymal tissues in the face between E10.0 and E11.0, and because of that were selected for tissue-specific analysis. Tissues were
1802 segmented on the atlas in 3D Slicer and back-propagated to each sample in the group. Total and proliferating nucleus volumes were
1803 calculated by segmenting cells as described above using a connected components method. Nuclear volumes were used instead of counts
1804 to reduce segmentation errors in dense tissues, especially in the Nuclear Green stain. Neighbouring cells in dense stains tend to be under-
1805 segmented; by summing total volumes of segmented nuclear voxels, there is no need to identify which cell they belong to, removing a
1806 potential source of error. Cells below the 1st and above the 99th percentile in volume were considered segmentation artifacts and excluded
1807 from analysis. Cells were binned by relative position along each tissue axis, and proliferative fraction was calculated as the proportion of
1808 cell voxels that also contained a proliferation voxel in each bin. To identify nonuniform trends in proliferation, a Kolmogorov-Smirnov
1809 test of uniformity was conducted on each axis.
1810

1814 Acknowledgements

1815 The authors would like to thank Nicholas Hanne and Nathan Young (UCSF), James Cheverud and Fernando Andrade Oliveira (Loyola University Chicago).
1816

1818 Competing interests

1819 The authors declare no competing or financial interests.
1820

1821 Contribution

1822 Conceptualization: R.M.G., L.D.L., J.C.B., W.D., B.H., R.S.M.; Methodology: R.M.G., L.D.L., B.H., R.S.M., N.D.F., J.C.B.; Analysis: L.D.L., A.D., J.D., S.R., M.V-G., R.M.G.;
1823 Sample preparation: R.M.G., E.B., M.M., M.V-G., A.D., S.G., X.Z., M.B.S.; Software: L.D.L., S.R., A.M., M.V-G.; Writing and Revision: R.M.G., L.D.L., B.H., A.D., M.V-G.;
1824 J.D., J.C.B., W.D., A.L.; Visualization: L.D.L., A.D., J.D., M.V-G.; Supervision: B.H., R.S.M., N.D.F.; Funding acquisition: B.H., R.S.M., A.L., N.D.F.
1825

1827 Funding

1828 The work was supported by NIH NIDCR R01-DE019638 to R. M. and B. H., NSERC Discovery Grant ##238992 to B. H., a CIHR Foundation grant to B. H. and
1829 R. M. a CFI grant #36262 to BH as well as the Alberta Childrens Hospital Foundation. L.L. was supported by an Eyes High postdoctoral fellowship (University of
1830 Calgary), R.G. by a CIHR fellowship, M.V-G by an Alberta Children's Hospital Research Institute Postdoctoral Fellowship and Alberta Innovates Postdoctoral Fellowship
1831 in Health Innovation, M.M. by a Cumming School of Medicine and McCaig Institute postdoctoral fellowship, E.B. by a Cumming School of Medicine and McCaig Institute
1832 postdoctoral fellowship, A.D. by a CIHR CGS-M studentship, A.M by an NSERC USRA, M.S. by an NSERC USRA, and N.F. by the Canada Research Chairs Program.
1833 This research was enabled in part by support provided by WestGrid and Compute Canada (www.computecanada.ca).
1834

1838 Data availability

1839 Insert the Data availability text here.
1840

1841 Supplementary

1842 Insert the supplementary text text here.
1843

1845 REFERENCES

1846 Adams, D., Collyer, M., Kaliontzopoulou, A. and Baken, E. (2022), 'Geomorph: Software for geometric morphometric analyses. r package version 4.0.4'.
1847

1848 **URL:** <https://cran.r-project.org/package=geomorph>
1849

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904

1905 Alladin, A., Chaible, L., Garcia del Valle, L., Sabine, R., Loeschinger, M., Wachsmuth, M., Hériché, J.-K., Tischer, C. and Jechlinger, M. (2020), 'Tracking cells
1906 in epithelial acini by light sheet microscopy reveals proximity effects in breast cancer initiation', *Elife* **9**, e54066. 1961

1907 Boehm, B., Westerberg, H., Lesnicar-Pucko, G., Raja, S., Rautschka, M., Cotterell, J., Swoger, J. and Sharpe, J. (2010), 'The role of spatially controlled cell 1962
1908 proliferation in limb bud morphogenesis', *PLOS Biology* **8**(7), 1–21. 1963

1909 Boughner, J. C., Wat, S., Diewert, V. M., Young, N. M., Browder, L. W. and Hallgrímsson, B. (2008), 'Short-faced mice and developmental interactions between 1964
1910 the brain and the face', *Journal of Anatomy* **213**(6), 646–662. 1965

1911 Bronner-Fraser, M. (1993), 'Mechanisms of neural crest cell migration', *Bioessays* **15**(4), 221–230. 1966

1912 Chai, Y. and Maxson Jr, R. E. (2006), 'Recent advances in craniofacial morphogenesis', *Developmental dynamics: an official publication of the American 1967
1913 Association of Anatomists* **235**(9), 2353–2375. 1968

1914 Chan, A. O. K., Dong, M., Wang, L. and Chan, W. Y. (2004), 'Somite as a morphological reference for staging and axial levels of developing structures in mouse 1969
1915 embryos', *Neuroembryology and Aging* **3**(2), 102–110. 1970

1916 Crossley, P. H. and Martin, G. R. (1995), 'The mouse fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning 1971
1917 in the developing embryo', *Development* **121**(2), 439–451. 1972

1918 Daley, W. P. and Yamada, K. M. (2013), 'Ecm-modulated cellular dynamics as a driving force for tissue morphogenesis', *Current opinion in genetics & 1973
1919 development* **23**(4), 408–414. 1974

1920 Davies, J. (2013), *Mechanisms of morphogenesis*, Academic Press. 1975

1921 Devine, J., Aponte, J. D., Katz, D. C., Liu, W., Lo Vercio, L. D., Forkert, N. D., Marcucio, R., Percival, C. J. and Hallgrímsson, B. (2020), 'A registration and deep 1976
1922 learning approach to automated landmark detection for geometric morphometrics', *Evolutionary biology* **47**(3), 246–259. 1977

1923 Devine, J., Vidal-García, M., Liu, W., Neves, A., Lo Vercio, L. D., Green, R. M., Richbourg, H. A., Marchini, M., Unger, C. M., Nickle, A. C. et al. (2022), 1978
1924 'Musmorph, a database of standardized mouse morphology data for morphometric meta-analyses', *Scientific Data* **9**(1), 1–18. 1979

1925 Diewert, V. M. and Wang, K.-Y. (1992), 'Recent advances in primary palate and midface morphogenesis research', *Critical Reviews in Oral Biology & Medicine* 1980
1926 **4**(1), 111–130. 1981

1927 Elisa, Z., Toon, B., De Smedt, S. C., Katrien, R., Kristiaan, N. and Kevin, B. (2018), 'Technical implementations of light sheet microscopy', **81**(9), 941–958. 1982

1928 Elmsie, F. V. and Reardon, W. (1998), 'Craniofacial developmental abnormalities', **11**(2), 103. 1983

1929 Francis-West, P., Ladher, R., Barlow, A. and Graveson, A. (1998), 'Signalling interactions during facial development.', *Mechanisms of development* **75**(1-2), 3–28. 1984

1930 Gower, J. C. (1975), 'Generalized procrustes analysis', *Psychometrika* **40**, 33–51. 1985

1931 Gray, R. S., Roszko, I. and Solnica-Krezel, L. (2011), 'Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity', *Developmental 1986
1932 cell* **21**(1), 120–133. 1987

1933 Green, J. B. A. (2022), 'Resolving morphogenesis into quantifiable cell behaviours', **149**(21), dev199794. 1988

1934 Green, R. M., Feng, W., Phang, T., Fish, J. L., Li, H., Spritz, R. A., Marcucio, R. S., Hooper, J., Jamniczky, H., Hallgrímsson, B. et al. (2015), 'Tfap2a-dependent 1989
1935 changes in mouse facial morphology result in clefting that can be ameliorated by a reduction in fgf8 gene dosage', *Disease models & mechanisms* **8**(1), 31–43. 1990

1936 Green, R. M., Leach, C. L., Hoehn, N., Marcucio, R. S. and Hallgrímsson, B. (2017), 'Quantifying three-dimensional morphology and rna from individual 1991
1937 embryos', *Developmental Dynamics* **246**(5), 431–436. 1992

1938 Hallgrímsson, B., Green, R. M., Katz, D. C., Fish, J. L., Bernier, F. P., Roseman, C. C., Young, N. M., Cheverud, J. M. and Marcucio, R. S. (2019), The 1993
1939 developmental-genetics of canalization, in 'Seminars in cell & developmental biology', Vol. 88, Elsevier, pp. 67–79. 1994

1940 Hallgrímsson, B., Percival, C. J., Green, R., Young, N. M., Mio, W. and Marcucio, R. (2015), 'Morphometrics, 3d imaging, and craniofacial development', *Current 1995
1941 topics in developmental biology* **115**, 561–597. 1996

1942 Hallou, A., Yevick, H. G., Dumitrescu, B. and Uhlmann, V. (2021), 'Deep learning for bioimage analysis in developmental biology', *Development* **148**(18). 1997

1943 Hobson, C. M., Guo, M., Vishwasrao, H. D., Wu, Y., Shroff, H. and Chew, T.-L. (2022), 'Practical considerations for quantitative light sheet fluorescence 1998
1944 microscopy', **19**(12), 1538–1549. 1999

1945 Hu, D. and Marcucio, R. S. (2009), 'Unique organization of the frontonasal ectodermal zone in birds and mammals', *Developmental Biology* **325**(1), 200–210. 2000

1946 Kikinis, R., Pieper, S. D. and Vosburgh, K. G. (2014), *3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support*, Springer 2001

1947 New York, New York, NY, pp. 277–289. 2002

1948 Kulesa, P. M., Teddy, J. M., Stark, D. A., Smith, S. E. and McLennan, R. (2008), 'Neural crest invasion is a spatially-ordered progression into the head with higher 2003
1949 cell proliferation at the migratory front as revealed by the photoactivatable protein, kikgr', *Developmental biology* **316**(2), 275–287. 2004

1950 2005

1951 2006

1952 2007

1953 2008

1954 2009

1955 2010

1956 2011

1957 2012

1958 2013

1959 2014

1960 2015

1961 2016

2017 Lecuit, T. (2005), 'Adhesion remodeling underlying tissue morphogenesis', *Trends in cell biology* **15**(1), 34–42. 2073

2018 LeGoff, L. and Lecuit, T. (2016), 'Mechanical forces and growth in animal tissues', *Cold Spring Harbor perspectives in biology* **8**(3), a019232. 2074

2019 Li, X., Young, N. M., Tropp, S., Hu, D., Xu, Y., Hallgrímsson, B. and Marcucio, R. S. (2013), 'Quantification of shape and cell polarity reveals a novel mechanism 2075 underlying malformations resulting from related fgf mutations during facial morphogenesis', *Human molecular genetics* **22**(25), 5160–5172. 2076

2020 Linde-Medina, M., Hallgrímsson, B. and Marcucio, R. (2016), 'Beyond cell proliferation in avian facial morphogenesis', *Developmental Dynamics* **245**(3), 190– 2077 196. 2078

2021 Lindsey, B. W. and Kaslin, J. (2017), 'Optical projection tomography as a novel method to visualize and quantitate whole-brain patterns of cell proliferation in the 2079 adult zebrafish brain', *Zebrafish* **14**(6), 574–577. 2080

2022 Liu, A., Xiao, W., Li, R., Liu, L. and CHEN, L. (2019), 'Comparison of optical projection tomography and light-sheet fluorescence microscopy', *Journal of 2081 Microscopy* **275**(1), 3–10. 2082

2023 Lo Vercio, L. D., Green, R. M., Robertson, S., Guo, S., Dauter, A., Marchini, M., Vidal-García, M., Zhao, X., Mahika, A., Marcucio, R. S., Hallgrímsson, B. 2083 and Forkert, N. D. (2022), 'Segmentation of tissues and proliferating cells in light-sheet microscopy images of mouse embryos using convolutional neural 2084 networks', *IEEE Access* **10**, 105084–105100. 2085

2024 Lowekamp, B., Chen, D., Ibanez, L. and Blezek, D. (2013), 'The design of simpleitk', *Frontiers in Neuroinformatics* **7**. 2086

2025 Marchini, M., Hu, D., Lo Vercio, L., Young, N. M., Forkert, N. D., Hallgrímsson, B. and Marcucio, R. (2021), 'Wnt signaling drives correlated changes in facial 2087 morphology and brain shape', *Frontiers in Cell and Developmental Biology* **9**. 2088

2026 Marcucio, R., Hallgrímsson, B. and Young, N. M. (2015), 'Facial morphogenesis: physical and molecular interactions between the brain and the face', *Current 2089 topics in developmental biology* **115**, 299–320. 2090

2027 Marcucio, R. S., Cordero, D. R., Hu, D. and Helms, J. A. (2005), 'Molecular interactions coordinating the development of the forebrain and face', *Developmental 2091 biology* **284**(1), 48–61. 2092

2028 Marstal, K., Berendsen, F., Staring, M. and Klein, S. (2016), Simpleelastix: A user-friendly, multi-lingual library for medical image registration, in 'Proceedings 2093 of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops'. 2094

2029 Martínez-Abadías, N., Mateu Estivill, R., Sastre Tomas, J., Motch Perrine, S., Yoon, M., Robert-Moreno, A., Swoger, J., Russo, L., Kawasaki, K., Richtsmeier, J. 2095 et al. (2018), 'Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis', *Elife* **7**, e36405. 2096

2030 McDole, K., Guignard, L., Amat, F., Berger, A., Malandain, G., Royer, L. A., Turaga, S. C., Branson, K. and Keller, P. J. (2018), 'In toto imaging and reconstruction 2097 of post-implantation mouse development at the single-cell level', *Cell* **175**(3), 859–876.e33. 2098

2031 Miklius, M. P. and Hilgenfeldt, S. (2011), 'Epithelial tissue statistics: Eliminating bias reveals morphological and morphogenetic features', *The European Physical 2099 Journal E* **34**, 1–13. 2100

2032 Newman, S. A. and Comper, W. D. (1990), "generic" physical mechanisms of morphogenesis and pattern formation', *Development* **110**(1), 1–18. 2101

2033 Niessen, C. M., Leckband, D. and Yap, A. S. (2011), 'Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of 2102 morphogenetic regulation', *Physiological reviews* **91**(2), 691–731. 2103

2034 Olarte, O. E., Andilla, J., Gualda, E. J. and Loza-Alvarez, P. (2018), 'Light-sheet microscopy: a tutorial', *Advances in Optics and Photonics* **10**(1), 111–179. 2104

2035 Parsons, T. E., Kristensen, E., Hornung, L., Diewert, V. M., Boyd, S. K., German, R. Z. and Hallgrímsson, B. (2008), 'Phenotypic variability and craniofacial 2105 dysmorphology: increased shape variance in a mouse model for cleft lip', *Journal of Anatomy* **212**(2), 135–143. 2106

2036 Parsons, T. E., Schmidt, E. J., Boughner, J. C., Jamniczky, H. A., Marcucio, R. S. and Hallgrímsson, B. (2011), 'Epigenetic integration of the developing brain 2107 and face', *Developmental Dynamics* **240**(10), 2233–2244. 2108

2037 Percival, C. J., Green, R., Marcucio, R. and Hallgrímsson, B. (2014), 'Surface landmark quantification of embryonic mouse craniofacial morphogenesis', *14*(1), 31. 2109

2038 Ramaesh, T. and Bard, J. B. (2003), 'The growth and morphogenesis of the early mouse mandible: a quantitative analysis', *Journal of anatomy* **203**(2), 213–222. 2110

2039 Revenu, C., Streichan, S., Donà, E., Lecaudey, V., Hufnagel, L. and Gilmour, D. (2014), 'Quantitative cell polarity imaging defines leader-to-follower transitions 2111 during collective migration and the key role of microtubule-dependent adherens junction formation', *Development* **141**(6), 1282–1291. 2112

2040 Rohlf, F. J. and Corti, M. (2000), 'Use of Two-Block Partial Least-Squares to Study Covariation in Shape', *Systematic Biology* **49**(4), 740–753. 2113

2041 Russ, J. C. and Dehoff, R. T. (2012), *Practical stereology*, Springer Science & Business Media. 2114

2042 Schläger, S. (2017), Chapter 9 - morpho and rvcg – shape analysis in r: R-packages for geometric morphometrics, shape analysis and surface manipulations, in 2115 G. Zheng, S. Li and G. Székely, eds, 'Statistical Shape and Deformation Analysis', Academic Press, pp. 217–256. 2116

2043 Schröder, W., Martin, K. and Lorensen, B. (2006), *The Visualization Toolkit*, 4th edn, Kitware. 2117

2129 Seilacher, A. (1991), Self-organizing mechanisms in morphogenesis and evolution, in 'Constructional morphology and evolution', Springer, pp. 251–271. 2185
2130 Sharpe, J. (2003), 'Optical projection tomography as a new tool for studying embryo anatomy', *Journal of anatomy* **202**(2), 175–181. 2186
2131 Sharpe, J. (2004), 'Optical projection tomography', *Annu. Rev. Biomed. Eng.* **6**, 209–228. 2187
2132 Sharpe, J., Ahlgren, U., Perry, P., Hill, B., Ross, A., Hecksher-Sørensen, J., Baldock, R. and Davidson, D. (2002), 'Optical projection tomography as a tool for 3d 2188
2133 microscopy and gene expression studies', *Science* **296**(5567), 541–545. 2189
2134 Shellard, A. and Mayor, R. (2019), 'Integrating chemical and mechanical signals in neural crest cell migration', *Current opinion in genetics & development* 2190
2135 **57**, 16–24. 2191
2136 Susaki, E. A., Tainaka, K., Perrin, D., Yukinaga, H., Kuno, A. and Ueda, H. R. (2015), 'Advanced CUBIC protocols for whole-brain and whole-body clearing and 2192
2137 imaging', *Nature Protocols* **10**(11), 1709–1727. 2193
2138 Tian, T., Yang, Z. and Li, X. (2021), 'Tissue clearing technique: Recent progress and biomedical applications', **238**(2), 489–507. 2194
2139 Udan, R. S., Piazza, V. G., Hsu, C.-w., Hadjantonakis, A.-K. and Dickinson, M. E. (2014), 'Quantitative imaging of cell dynamics in mouse embryos using 2195
2140 light-sheet microscopy', *Development* **141**(22), 4406–4414. 2196
2141 Weber, M., Mickoleit, M. and Huisken, J. (2014), Light sheet microscopy, in 'Methods in cell biology', Vol. 123, Elsevier, pp. 193–215. 2197
2142 Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., Wilhelm, B., Schmidt, D., Broaddus, C., Culley, S. et al. (2018), 'Content-aware image 2198
2143 restoration: pushing the limits of fluorescence microscopy', *Nature methods* **15**(12), 1090–1097. 2199
2144 Wong, M. D., Dazai, J., Walls, J. R., Gale, N. W. and Henkelman, R. M. (2013), 'Design and implementation of a custom built optical projection tomography 2200
2145 system', *PLoS one* **8**(9), e73491. 2201
2146 Wong, M. D., van Eede, M. C., Spring, S., Jevtic, S., Boughner, J. C., Lerch, J. P. and Henkelman, R. M. (2015), '4D atlas of the mouse embryo for precise 2202
2147 morphological staging', *Development* **142**(20), 3583–3591. 2203
2148 Xiao, M., Soh, J., Meruvia-Pastor, O., Schmidt, E., Hallgrímsson, B. and Sensen, C. W. (2010), 'Building generic anatomical models using virtual model cutting 2204
2149 and iterative registration', *BMC Medical Imaging* **10**(1), 1–15. 2205
2150 Xu, Q., Jamniczky, H., Hu, D., Green, R. M., Marcucio, R. S., Hallgrímsson, B. and Mio, W. (2015), 'Correlations between the morphology of sonic hedgehog 2206
2151 expression domains and embryonic craniofacial shape', *Evolutionary biology* **42**, 379–386. 2207
2152 Yin, J., Yang, G., Qin, X., Li, H. and Wang, L. (2022), 'Optimized u-net model for 3d light-sheet image segmentation of zebrafish trunk vessels', **13**(5), 2896–2908. 2208
2153 Yokomizo, T., Yamada-Inagawa, T., Yzaguirre, A. D., Chen, M. J., Speck, N. A. and Dzierzak, E. (2012), 'Whole-mount three-dimensional imaging of internally 2209
2154 localized immunostained cells within mouse embryos', *Nature protocols* **7**(3), 421–431. 2210
2155 Yue, Y., Zong, W., Li, X., Li, J., Zhang, Y., Wu, R., Liu, Y., Cui, J., Wang, Q., Bian, Y. et al. (2020), 'Long-term, *in toto* live imaging of cardiomyocyte behaviour 2211
2156 during mouse ventricle chamber formation at single-cell resolution', *Nature cell biology* **22**(3), 332–340. 2212
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184