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Abstract 

Microbiome science has greatly contributed to our understanding of microbial life and 1 

its essential roles for the environment and human health1–5. However, the nature of 2 

microbial interactions and how microbial communities respond to perturbations remains 3 

poorly understood, resulting in an often descriptive and correlation-based approach to 4 

microbiome research6–8. Achieving causal and predictive microbiome science would 5 

require direct functional measurements in complex communities to better understand the 6 

metabolic role of each member and its interactions with others. In this study we present 7 

a new approach that integrates transcription and translation measurements to predict 8 

competition and substrate preferences within microbial communities, consequently 9 

enabling the selective manipulation of the microbiome. By performing 10 

metatranscriptomic (metaRNA-Seq) and metatranslatomic (metaRibo-Seq) analysis in 11 

complex samples, we classified microbes into functional groups (i.e. guilds) and 12 

demonstrated that members of the same guild are competitors. Furthermore, we 13 

predicted preferred substrates based on importer proteins, which specifically benefited 14 

selected microbes in the community (i.e. their niche) and simultaneously impaired their 15 

competitors. We demonstrated the scalability of microbial guild and niche determination 16 

to natural samples and its ability to successfully manipulate microorganisms in complex 17 

microbiomes. Thus, the approach enhances the design of pre- and probiotic interventions 18 

to selectively alter members within microbial communities, advances our understanding 19 

of microbial interactions, and paves the way for establishing causality in microbiome 20 

science.   21 
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Main 22 

Microbiome science has contributed greatly to our understanding of microbial life and provided 23 

crucial insights on the pivotal roles and capabilities of microbial communities on our planet, 24 

from global elements cycling to human health9–11. However, we still lack a comprehensive 25 

understanding of how these communities are assembled, maintained, and function as a system6–26 

8. In particular, the underlying mechanism of microbe-microbe interactions and how microbial 27 

communities respond to perturbations remains poorly understood. Current strategies to unravel 28 

interactions in microbiomes often include multiple pairwise comparisons of isolates12–14 but 29 

these studies frequently do not account for higher-order interactions, crucial for understanding 30 

and potentially altering heterogeneous communities15. Consequently, microbiome science has 31 

been largely descriptive and correlation-based, instead of providing accurate predictions 32 

centered around mechanistic understanding and established causality6,7. In order to achieve 33 

predictive microbiome science we need to comprehensively elucidate the metabolic role of 34 

each microbe and its interactions with others. Such knowledge would lead to approaches that 35 

rationally change a microbe’s trajectory within a community, for example by selectively 36 

promoting or inhibiting its growth.  37 

Here, we present a new technology that integrates transcription and translation measurements 38 

to reveal how each microbe allocates its resources for optimal proteome efficiency. mRNA 39 

translation into protein is the most energy-demanding process in a cell16 and thus microbes 40 

closely regulate their resource allocation by prioritizing essential functions through differential 41 

translational efficiency (TE)17,18. We hypothesized that direct measurement of TE in a 42 

microbial community sample will shine light on the metabolic role of each member of that 43 

community and provide a detailed understanding of interactions with other members. We 44 

performed metatranscriptomic (metaRNA-Seq) and metatranslatomic (metaRibo-Seq) analysis 45 

to directly measure TE in vitro in a 16-member synthetic community (SynCom) compiled from 46 

rhizosphere isolates grown in complex medium19. This approach allowed us to perform a guild-47 

based microbiome classification, grouping microbes according to the metabolic pathways they 48 

prioritize, independently of their taxonomic relationship. We demonstrated that guilds 49 

predicted competition between members of the same guild with 100% sensitivity and 74% 50 

specificity (77% accuracy) in the SynCom. Furthermore, gene-level analysis of import proteins 51 

with high TE predicted each microbe’s substrate preferences, i.e. their niche in the community. 52 

Such Microbial Niche Determination (MiND) predicted which particular microorganisms 53 

would benefit from substrate supplementation with 57% sensitivity and 82% specificity (78% 54 
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accuracy) in the SynCom. As microbes adapt their translational regulation to community 55 

settings, those accurate predictions were not feasible using axenic culture approaches, such as 56 

phenotypic microarrays or growth curves. Measurements with limited functional resolution, 57 

such as metagenomics or metatranscriptomics alone, did not recapitulate findings obtained by 58 

MiND. Combining TE-based MiND and guild predictions allowed us to selectively manipulate 59 

the SynCom by increasing or decreasing the relative abundance of targeted members either by 60 

adding preferred substrates or by giving an advantage to their competitors. Importantly, the 61 

method is scalable to natural samples and can be performed in complex matrices or culture 62 

media. We applied MiND and guild classification to native soil and human gut microbiome 63 

samples and demonstrated its applicability to forecast changes and alter specific 64 

microorganisms in complex microbiomes with high accuracy.  65 

Guild-Based Microbiome Classification 66 

Bacteria use translational regulation to allocate finite resources and prioritize functions 67 

essential for their adaptation18,20–22. Ribosome profiling (Ribo-Seq), i.e. translatomics, allows 68 

the direct measurement of protein translation in vivo in real time17,23. We have shown 69 

previously that translational efficiency (TE), calculated by analyzing the number of ribosomes 70 

on a given transcript as the ratio between translated mRNA over total mRNA (Ribo-Seq/RNA-71 

Seq) can be used as a direct readout of functional prioritization in axenic bacterial cultures18.  72 

Here, we applied metagenomics, metatranscriptomics, and metatranslatomics24 to 73 

simultaneously measure TE of multiple organisms in a 16-member microbial community from 74 

rhizosphere isolates grown in complex media (see methods, Fig. 1a). These multi-omics data 75 

showed excellent reproducibility between biological replicates and highlighted substantial 76 

differences between metagenomic, -transcriptomic, and -translatomic data (Suppl. Fig. S1).  77 

We categorized the SynCom members into functional groups or guilds, based on the metabolic 78 

pathways they prioritized (i.e. TE profiles) (see methods, Fig. 1b,c). The 16-member SynCom 79 

was divided into 6 guilds, defined by specific metabolic functions (i.e. pathway prioritization) 80 

(Fig. 1b,c). For example, Lysobacter (guild 6) has a significantly higher TE for denitrification 81 

and dissimilatory nitrate reduction compared to other guilds, while Chitinophaga and 82 

Mucilaginibacter (guild 3) comprise a high TE for assimilatory sulfate reduction, thiosulfate 83 

oxidation, and multiple antimicrobial resistance pathways (Suppl. Table S1, Suppl. Fig. S2).  84 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.11.540389doi: bioRxiv preprint 

https://paperpile.com/c/Qyl8zf/okBP+VofF+kBWj+2omP
https://paperpile.com/c/Qyl8zf/3ysT+lJvb
https://paperpile.com/c/Qyl8zf/okBP
https://paperpile.com/c/Qyl8zf/gx9W
https://doi.org/10.1101/2023.05.11.540389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Metabolic pathway prioritization differed between bacteria grown axenically or in the 85 

SynCom, highlighting the importance of performing functional analysis directly in community 86 

settings (Suppl. Fig. S3). The TE-based guilds were substantially different from phylogenetic 87 

clustering, indicating that functional categories often are independent of taxonomic relationship 88 

(Fig. 1d, Suppl. Fig. S4). Guilds were also dissimilar to cluster information obtained from 89 

genome content, metatranscriptomics, or metatranslatomics data alone (Suppl. Fig S4). 90 

Combined, this data hints at current limitations of 16S rRNA and genome-based approaches 91 

that infer function and activity from phylogeny or genome content alone. 92 

 93 

Fig. 1. Guild-based microbiome classification of a 16-member SynCom based on 94 

translational efficiency (TE). a) Conceptual overview of TE as a readout of functional 95 

prioritization for each microbe in a 16-member SynCom isolated from the switchgrass 96 

rhizosphere, where each member has a limited amount of resources (ribosomes) to allocate for 97 

protein translation. TE is computed as the metaRibo-Seq/metaRNA-Seq ratio, i.e. the ratio 98 

between translated mRNA and total mRNA detected at one given instant in the sample; b) PCA 99 

cluster plot and c) dendrogram of TE on 275 KEGG25 metabolic pathways (n=4 replicates) 100 

allowed classification of the 16 SynCom members into 6 different guilds, in which microbes 101 
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share similar metabolic pathway prioritizations, as detailed in Suppl. Table S1 and in Suppl. 102 

Fig. S2; d) phylogenetic tree based on 16S rRNA sequences shows substantial differences with 103 

the TE-based guild dendrogram c), indicating that guilds are not based solely on phylogeny. 104 

Note, two bacteria (Mycobacterium and Marmoricola) had low KEGG pathway coverage due 105 

to low abundance in the community (0.04 and 0.13 % of total reads, respectively), and thus are 106 

absent from b) and c). 107 

Guilds predict bacterial competition 108 

Ecological guilds are defined as functional categories molded by adaptation to the same class 109 

of resources but also by competition between its members26,27. To test if such within-guild 110 

competition applies to microbes, we experimentally removed individual members from the 111 

SynCom and evaluated the effect on relative abundance of the remaining 15 members (Fig. 112 

2e).  113 

Fig. 2b shows the relative abundance of each of the 16 SynCom members at the metagenomic, 114 

metatranscriptomic, and metatranslatomic level (Fig. 2a,b). We computed a guild-based 115 

competition score reflecting the guild clustering distance matrix, with the hypothesis that 116 

similar guilds would predict competitive interactions (see methods, Fig. 2c,d, Suppl. Fig S5). 117 

In 5/5 tested conditions, a single microbe dropout benefitted at least one of its closest 118 

competitors from the same guild whose relative abundance increased significantly (Fig. 2d,e). 119 

For example, when Mucilaginibacter was removed we observed that two of its closest 120 

neighbors in the guild clustering (Chitinophaga and Burkholderia) increased in abundance 121 

(Fig. 2e, bottom right). Similarly, removal of Burkholderia resulted in an increase of its close 122 

competitor Rhizobium (Fig. 2e, middle right). Comparable results were obtained for all single 123 

member dropout experiments, i.e. removal of Arthrobacter, Bradyrhizobium, Burkholderia, 124 

Lysobacter, and Mucilaginibacter (Fig. 2e). We also observed elevated metabolic activity 125 

based on metatranscriptomic and metatranslatomics levels for microbes that  increased in 126 

abundance (Supp Fig. S6). Overall, the guild-based competition scores allowed us to predict 127 

competitive interactions within the microbial community with excellent sensitivity (100%) and 128 

specificity (74%).  129 

To further validate the competitive interactions, we conducted an in-depth analysis on two of 130 

the strong competition pairs observed in the dropout experiments (i.e. Chitinophaga-131 

Mucilaginibacter and Burkholderia-Rhizobium, Fig. 2e, Suppl. Fig. S7 a,e). Complementary 132 

to the dropout experiments, we observed that adding more cells of each of these members to 133 

the SynCom (similar to a probiotic intervention) resulted in a very specific decrease in relative 134 

abundance of their main competitor (Suppl. Fig. S7 b,c,f,g). On the other hand, experimentally 135 
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removing both Chitinophaga and Mucilaginibacter or Burkholderia and Rhizobium had little 136 

to no effect on the abundance of microbes from the other guilds (Suppl. Fig. S7 d,h), suggesting 137 

that competition is restricted to each guild. We then performed spot-on-lawn assays28 to screen 138 

for antimicrobial compounds produced by these competition pairs. In line with guild-based 139 

predictions of competition, Chitinophaga specifically inhibited the growth of 140 

Mucilaginibacter, while it failed to inhibit growth of any other SynCom member (Suppl. Fig. 141 

S8). This hints at the production of narrow-spectrum antimicrobials by Chitinophaga 142 

specifically targeted against its guild competitor Mucilaginibacter. In contrast, Burkholderia 143 

and Rhizobium did not inhibit each other or any other member’s growth, suggesting that the 144 

mechanism of competition within this guild is likely not augmented by antimicrobials (Suppl. 145 

Fig. S9). Our data confirms that TE-based guilds accurately predict competitive interactions in 146 

a microbial community. Of note, clustering of guilds and prediction of competitions based on 147 

TE information (100% sensitivity and 74% specificity) outperformed analysis based on 148 

metatranscriptomic (37.5% sensitivity and 76% specificity, Suppl. Fig. S10) and was more 149 

sensitive than analysis based on metatranslatomic data (75% sensitivity and 81% specificity, 150 

Suppl. Fig. S10) alone.  151 

 152 
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 153 
 154 

Fig. 2. Guild-based microbiome classification predicts competition interactions in a 155 

microbial community. a-b) We performed multi-omic profiling of a 16-member soil SynCom; 156 

b) relative abundances of the 16 SynCom members at the metagenomic, metatranscriptomic 157 

and metatranslatomic levels (average of replicates shown in Suppl. Fig. S1 a), color key d) 158 

applies; c) metatranslatomic (metaRS) and metatranscriptomic (metaT) profiles were used to 159 

compute TE and to classify members into guilds as described in Fig. 1b,c; d) we computed a 160 

competition score to predict competitive interactions against each SynCom member based on 161 

the proximity of its guild with each other member’s (see methods). High competition scores 162 

(warm colors) indicate SynCom members (in columns) that are likely to compete with the 163 

targeted member (in row). Asterisks indicate competition against targeted members that have 164 

been tested experimentally as shown in e); e) five individual members were experimentally 165 

removed from the SynCom prior to incubation (asterisks), and relative abundances of all 166 

remaining members were compared to the non-modified SynCom. Graphics show linear 167 

regression and 99% confidence interval (CI, in gray) of square-transformed relative 168 

abundances (RPKM) in the SynCom (x-axis) vs. single dropout SynCom (y-axis). Organisms 169 

above the 99% CI (arrows) were considered significantly increased in response to the dropout, 170 

thus showing that they were competing with the removed member in the SynCom. In all the 171 

tested conditions, significantly increased members were accurately predicted to compete with 172 

the dropped out member (high competition scores against the targeted member in d, rowwise).  173 

 174 

 175 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.11.540389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Microbial Niche Determination (MiND) 176 

Next, we used TE information to identify substrate preferences, i.e. metabolites that would 177 

specifically promote growth of selected members of the SynCom, akin to a prebiotic. We 178 

hypothesized that high TE for genes coding for import proteins would indicate prioritized 179 

metabolism for the corresponding substrates, allowing for Microbial Niche Determination 180 

(MiND).  181 

A total of 88 genes coding for import proteins were detected in the SynCom at the metagenomic 182 

level, of which 40 genes (45%) were transcribed and translated (Suppl. Fig. S11). We 183 

performed MiND by calculating the TE for each of these 40 import protein genes in each 184 

SynCom member thus determining their substrate preference, i.e. their niche (Suppl. Fig. S12). 185 

Based on this analysis we selected metabolites to be tested as prebiotic interventions in the 186 

SynCom with the goal to selectively alter its composition (see methods). 187 

The ability to utilize substrates predicted by MiND was validated for each SynCom member 188 

through phenotypic microarrays (Suppl. Table S2, Suppl. Fig. S13) and growth assays (Suppl. 189 

Fig. S14). A total of 89% of substrates with high TE importers measured in the SynCom were 190 

confirmed as growth supporting in axenic culture. In contrast, the ability to utilize a substrate 191 

in isolation did not necessarily translate into a high priority for this substrate’s consumption in 192 

the SynCom. Only 39% of substrates metabolized in axenic condition translated into a high TE 193 

for this substrate’s import protein(s) in the SynCom (Suppl. Table S3). This highlights that 194 

bacteria possess the ability to utilize a range of substrates in axenic culture, but will only 195 

prioritize a fraction of those, i.e. their niche, when growing in a community.  196 
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MiND predicts effects of substrate addition 197 

We supplemented the complex culture medium (R2A) with metabolites identified by MiND to 198 

benefit microbes that prioritize the import of these substrates (i.e. primary targets). In addition, 199 

we hypothesized that metabolite-induced increased abundance of selected bacteria would result 200 

in a concomitant decrease of their nearest guild competitors (i.e. secondary targets). A total of 201 

11 compounds were tested in three different concentrations, including six sugars (fructose, 202 

galactose, maltose/maltodextrin, ribose, trehalose, xylose), two diamines (putrescine, 203 

spermidine), one amino acid (glutamate), one peptide (glutathione), and one inorganic 204 

compound (sulfate/thiosulfate) (Suppl. Fig. S15-S16).  205 

As predicted, primary targets were specifically increased in relative abundance upon addition 206 

of their preferred metabolite (Fig. 3, Suppl. Fig. S12, S15-S16). At the same time, when 207 

primary targets increased, secondary targets (competitors from the same guild) significantly 208 

decreased in abundance, with no or non-significant effects on non-competitors. For example, 209 

addition of ribose induced a predicted increase of the targets Paenibacillus and Burkholderia 210 

(primary targets), which exhibited the highest TE for ribose importers (RbsA, RbsB, RbsC) in 211 

the SynCom; concurrently, Burkholderia’s competitors Variovorax, Rhizobium, and 212 

Bradyrhizobium (secondary targets) decreased in abundance (Fig. 3d,e,h, Fig. 1b,c, Fig. 2d). 213 

Similarly, addition of glutathione increased the primary targets Burkholderia and 214 

Chitinophaga, both having a high TE for the glutathione import protein GsiA, while decreasing 215 

their competitors Mucilaginibacter and Bradyrhizobium (Fig. 3d,f,i, Fig. 1b,c, Fig. 2d). 216 

Addition of putrescine increased Paenibacillus and Rhodococcus, which both had a high TE 217 

for putrescine import proteins PuuP and PotA, while reducing the competitors Rhizobium, 218 

Bradyrhizobium, and Mucilaginibacter (Fig. 3d,g,j, Fig. 1b,c, Fig. 2d). Overall, MiND 219 

predicted the increase of primary target(s) for 9/11 tested substrates, with 57% sensitivity and 220 

82% specificity (78% accuracy) (Suppl. Table S3). In all of these 9 cases, the successful 221 

increase of the primary targets also resulted in a decrease of at least one of their competitors 222 

(secondary targets). The guild classification predicted such competition-based decrease of 223 

secondary targets with 93% sensitivity and 65% specificity (70% accuracy) (Suppl. Fig. S9) 224 

(Suppl. Table S3).  225 

Overall, combining MiND and guild classification accurately predicts substrate preferences 226 

and competition in a 16-member SynCom and can be employed to design and predict the 227 

outcome of targeted interventions in a microbial community (Suppl. Fig. S17).  228 
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 229 
 230 

Fig. 3. TE-based microbial niches and guilds accurately predict the effect of substrate 231 

addition in the SynCom in three steps. a-c) 1. MiND was performed by measuring TE for 232 

import proteins in a 16-member SynCom grown in complex medium and was employed to 233 

predict each microbe’s substrate preferences. a,b, and c show TE for ribose, glutathione, and 234 

putrescine import proteins, respectively. Organisms with high TE for a substrate’s import 235 

protein were predicted to increase in relative abundance upon addition of this substrate as a 236 

prebiotic to the culture medium (primary targets); d) 2. Guilds were used to predict competition 237 

in the SynCom as described in Fig. 2c,d. Competitors of the organisms that benefit from a 238 

prebiotic intervention were predicted to decrease in relative abundance (secondary targets); e-239 

j) 3. Predictions made in a-d) were experimentally validated by supplementing the SynCom 240 

culture medium with selected substrates; e-g) linear regression and 99% CI of metagenomic 241 

relative abundances (RPKM, log scaled) in 0.1x R2A control versus 0.1x R2A + ribose (e), 242 

glutathione (f) or putrescine (g). Microorganisms above or below the 99% CI are considered 243 

significantly increased or decreased upon metabolite addition (arrows). As predicted, 6/7 244 

organisms that increased in relative abundance had a high TE for the added substrate’s import 245 

protein(s), and 9/10 microbes that concomitantly decreased were competitors from a similar 246 

guild (see Fig. 2 for detailed competition scores). Note: we did not predict Brevibacillus 247 

decrease in f) and Chitinophaga increase in g); h-j) boxplots showing RPKM abundance of 248 

significantly increased primary targets with increasing concentration of ribose (h), glutathione 249 

(i), or putrescine (j). More examples are available in Suppl. Fig S12, S15 and S16. 250 

  251 
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MiND predicts intervention outcomes in soil 252 

After benchmarking MiND for the 16-member SynCom, we evaluated if principles derived 253 

from guild and niche elucidation could be extrapolated to the soil environment, harboring one 254 

of the most complex microbiomes. For this, soil samples from the switchgrass (Panicum 255 

virgatum) rhizosphere, similar to the site from which the SynCom strains were originally 256 

isolated19, were incubated in 30 different conditions: 0.1x R2A alone (soil control), with and 257 

without metabolite additions (i.e. prebiotic, 7 treatments tested), with and without individual 258 

SynCom member additions (i.e. probiotic, 8x105 CFU/mL, 7 treatments tested) or the entire 259 

16-member SynCom addition (i.e. probiotic consortium, 8x105 CFU/mL of each member), as 260 

well as 14 treatments of combined pre- and probiotic conditions (see methods, Fig. 4a, Suppl. 261 

Fig. S18). Our data showed high reproducibility between replicates (Suppl. Fig. S18). Multi-262 

omics data from soil + SynCom samples confirmed that guilds and niches were similar to those 263 

observed in the SynCom alone (Fig. 4b, Suppl. Figs. S19, S20, as compared to Fig. 1c, Suppl. 264 

Fig. S12), suggesting that guilds and niches are stable under the tested conditions and are 265 

independent of the size and diversity of the microbial community. 266 

We first sought to increase specific members (primary targets) of the SynCom present in soil 267 

and decrease their competitors (secondary targets), either through probiotic intervention (by 268 

adding either a single strain or the SynCom consortium), prebiotic intervention (supplementing 269 

the soil with primary target’s niche prebiotic, Suppl. Fig. S19), or combinations of both pre- 270 

and probiotic interventions. Our results confirmed that such MiND and guild predictions 271 

efficiently allowed us to design tailored pre- and probiotic interventions to induce targeted 272 

changes. For example, we selected to increase Burkholderia (primary target) accompanied by 273 

a decrease of its competitors Rhizobium, Variovorax, Mucilaginibacter, and Chitinophaga 274 

(secondary targets) (Suppl. Fig. S20). Our results demonstrated that combined pre- and 275 

probiotic treatments as well as prebiotic-only treatments significantly increased Burkholderia 276 

(up to 23-fold) and decreased its competitors (Fig. 4d,e, Suppl. Figs. S20, S22a-c, S23a-c, 277 

S24a-d, S25a-f), while probiotic-only treatment did not result in an increase of Burkholderia 278 

(Suppl. Fig. S21a). Similarly, we successfully increased Paenibacillus through prebiotics and 279 

combined pre- and probiotics treatments, but not by probiotic-only intervention (Fig. 4d, Suppl. 280 

Figs. S23e,f, S24b, S25b). Next, we targeted an increase of Chitinophaga and a decrease of its 281 

closest competitor Mucilaginibacter. Both probiotic (Chitinophaga) and combined pre- and 282 

probiotic (Chitinophaga + glutathione) treatments significantly increased Chitinophaga (fold-283 

change = 7 and 13, respectively), while significantly decreasing its main competitor 284 
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Mucilaginibacter (Fig. 4c, Suppl. Figs. S21c, S22d,e, S23d). A prebiotic-only treatment did 285 

not increase Chitinophaga in soil, probably because of Chitinophaga’s very low initial 286 

abundance (<50 CPM, Suppl. Fig. S24e,g). 287 

Overall, we successfully increased primary targets in 4/7 probiotic-only treatments (Suppl. Fig 288 

S21), 12/14 combined pre- and probiotic treatments (using either a single strain or the SynCom 289 

consortium, Suppl. Figs. S22-24), and 7/7 prebiotic-only treatments (Suppl. Fig. S25). In over 290 

95% (22/23) of cases in which a primary target increased, at least one of its competitors 291 

(secondary targets) decreased (Table 1, Suppl. Fig. S24). Of note, combined pre- and probiotic, 292 

or prebiotic-ony treatments often outperformed results from probiotic-alone treatments (Suppl. 293 

Fig. S23). 294 

Lastly, we explored if guild association can explain responses of non-SynCom microorganisms 295 

in soil to various pre- and probiotic interventions. We observed a strong increase in relative 296 

abundance of Clostridium accompanied by a decrease of Azospirillum upon addition of maltose 297 

+ maltodextrin, trehalose, fructose, or ribose (Suppl. Fig. S25, Fig. 4d,e, Suppl. Figs. S22a-298 

c,f,g, S23a-d, S24a-d). We calculated the TE for all microbes to predict competitive interactions 299 

in native soil and identified Azospirillum, Bosea, and Streptomyces as Clostridium’s main 300 

competitors (Fig. 4f). We observed a strong negative correlation between Clostridium and its 301 

main competitors across all 30 experiments, confirming that competition scores computed from 302 

guild associations explain responses of non-SynCom microbes to interventions in the 303 

community (Fig. 4g, Suppl. Fig. S26). Overall, TE-based guild classification and MiND can 304 

effectively predict competitive interactions of microorganisms in complex environments and 305 

can aid in the rapid design of interventions that selectively manipulate the microbiome. 306 
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 307 

Fig. 4. Guilds and MiND accurately predict pre- and probiotic treatment outcomes in soil. 308 

a) Probiotic and/or prebiotic interventions were carried out by adding a single probiotic, 309 

probiotic consortium (i.e. SynCom), and/or prebiotic to the soil prior to growth at 30 °C for 7 310 

days (see methods). Interventions were designed to increase primary targets based on their 311 

niche (Suppl. Figs. S12, S19), and decrease secondary targets based on guild competition (see 312 

b); b) TE-based guild clustering to predict competition between SynCom members grown in 313 

soil (competition scores are displayed in Suppl. Fig. S20); c-e) linear regression and 95% CI 314 

of metagenomic relative abundances (CPM, log scaled) in control (x-axis) versus tested pre- 315 

and/or probiotic conditions (y-axis); c) successful increase of primary target Chitinophaga and 316 

decrease of secondary target Mucilaginibacter (arrows) obtained through combined pre- and 317 

probiotic treatment with both Chitinophaga and its niche prebiotic glutathione (Suppl. Figs. 318 

S12, S19); d) successful increase of primary targets Burkholderia and Paenibacillus and 319 

decrease of secondary targets Rhizobium, Variovorax, and Bosea (arrows) obtained through 320 
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combined pre- and probiotic treatment with SynCom + ribose; e) successful increase of primary 321 

target Burkholderia and decrease of secondary targets Rhizobium, Variovorax, 322 

Mucilaginibacter, and Chitinophaga (arrows) obtained through prebiotic treatment (fructose); 323 

d-e) we also observed abundance changes of native soil members, in particular an increase of 324 

Clostridium (black triangle) when supplementing soil with sugars (see Suppl. Figs. S22-25); f) 325 

TE-based guild clustering measured in soil identifies Streptomyces, Azospirillum, and Bosea 326 

as Clostridium’s main competitors; g-i) fold-change of relative abundance (CPM) of 327 

Clostridium in soil against its main competitors Azospirillum (a), Bosea (b), and Streptomyces 328 

(c) across 30 pre- and/or probiotic conditions. Increasing Clostridium’s relative abundance in 329 

soil consistently decreased its main competitors (lower right quadrants) (see Suppl. Fig. S26). 330 

Table 1. Summary of targeted interventions carried out in soil.  331 

Intervention 
in soil 

Total number of 
tested conditions 

Number of 
conditions in which 
primary targets are 

increased 

Number of 
conditions in which 
secondary targets 

are decreased 

Probiotic  
(Single strain) 

7 4/7 (57%) 4/4 (100%) 

Prebiotic 7 6/7 (86%) 6/6 (100%) 

Prebiotic + Probiotic  
(Single strain) 

10 8/10 (80%) 6/8 (75%) 

Prebiotic + Probiotic  
(Consortium) 

7 7/7 (100 %) 7/7 (100%) 

 332 

Broad applicability of TE-based guild classification 333 

To demonstrate the broad applicability of this approach beyond the rhizosphere and soil, we 334 

measured TE and performed bacterial guild classification in fecal samples of healthy humans 335 

(n = 7, Suppl. Fig. S28). Our data revealed for example that Faecalibacterium prausnitzii and 336 

Bifidobacterium longum share the same guild and are competitors (positive competition scores) 337 

in all samples B. longum was detected (5/7). Although not significant, likely due to the small 338 

sample size, we observed that F. prausnitzii and B. longum’s relative abundance is negatively 339 

correlated (Spearman’s correlation coefficient r = -0.34). This corroborates results obtained by 340 

a study of 344 children and their response to a microbiota-directed complementary food 341 

intervention in which F. prausnitzii increased, while B. longum decreased29,30.  342 
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Discussion 343 

Here, we present a novel approach that integrates in vivo measurements of transcription and 344 

translation to determine TE as a direct readout for each microbe’s prioritization for resource 345 

allocation18. The results are accurate predictions of competitive interactions and determination 346 

of substrate preferences, thus enabling effective intervention designs to selectively change 347 

complex microbiomes. While culture-independent approaches for microbiome studies often 348 

require hundreds to thousands of measurements to define correlation-based outcomes, our 349 

method generates a comprehensive understanding of microbial interactions and causality-based 350 

intervention strategies with just a single or a few experiments. Furthermore, our method 351 

provides an advantage over culture-dependent approaches that require isolates and are often 352 

limited by the number of combinations (e.g. pairwise) to be tested in diverse communities12. It 353 

is noteworthy that measurements taken in community settings, such as substrate utilization and 354 

TE, differed substantially from axenic measurements. For example, bacteria have the ability to 355 

utilize a number of substrates in axenic cultures but only prioritize a fraction of those when 356 

growing in a community. This suggests that determination of resource allocation based on 357 

axenic, culture-dependent experiments cannot always predict and explain the organism's 358 

functionality when present in complex communities. 359 

Our guild and niche determination predicted changes of the community to perturbation with 360 

high accuracy. The majority of those changes (81%) were attributed to substrate preferences 361 

(i.e. niche) or competition (i.e. guild) between community members (Suppl. Fig. S15). 362 

However, positive interactions between members of different guilds currently not accounted 363 

for by this approach might help to explain part of the remaining 19% of interactions31. 364 

We revealed that guild associations are overall comparable between the SynCom and the 365 

SynCom in soil, explaining the high success rate of interventions in soil (Table 1). To address 366 

if these associations are also stable over time, we evaluated guilds in the SynCom after 4 and 367 

7 days of incubation. We found that organisms are associated with similar guilds over time and 368 

that guild-based competition scores after 4 and 7 days were highly correlated (Pearson’s 369 

correlation coefficient r = 0.77, p-value < 2.2x10-16) (Suppl. Fig. S29). 370 

MiND and guild analyses predict which SynCom members are likely to increase in relative 371 

abundance upon substrate addition and how competition influences the outcome of 372 

interventions. However, if two competitors in the same guild both prioritize the import of a 373 

specific substrate, e.g. Burkholderia and Rhizobium both prioritize ribose import (Fig. 3a), 374 
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MiND could not predict the winner of this competition. To further assess competition outcome 375 

on a given substrate, we deployed genome-scale metabolic models (GEMs) of the 16 SynCom 376 

members to simulate growth with and without addition of selected substrates (see methods, 377 

Suppl. Table S4). GEMs predicted that both Burkholderia and Rhizobium would have a higher 378 

growth rate upon addition of ribose, which was confirmed by Biolog phenotypic microarray 379 

and growth curves in axenic cultures (Suppl. Table S3, S4, Suppl. Figs. S13, S14). However, 380 

GEMs also predicted that Burkholderia would outcompete Rhizobium because of 381 

Burkholderia’s higher growth rate upon ribose addition (Supp. Table S4). Furthermore, the 382 

models accurately simulated the effect of ribose addition on the other primary targets (high TE 383 

for ribose import proteins) Paenibacillus (increased), Arthobacter and Brevibacillus (no 384 

change) (Fig. 3e, Suppl. Table S4). While growth rate measurements can help to predict the 385 

winner in a competition of isolates, GEMs could assist to increase specificity and accuracy of 386 

MiND predictions for uncultivated microorganisms. 387 

However, it is important to note that both GEMs as well as MiND-based design of prebiotic 388 

interventions rely on information about importer proteins. Availability of high quality 389 

annotations of transporters and their specificity, especially for environmental bacteria, is 390 

currently sparse32,33. Therefore, well-curated genome annotations, as available for human gut 391 

microorganisms34,35, will benefit the targeted design of prebiotic interventions. 392 

Overall, guild elucidation and MiND explain a large percentage of community interactions and 393 

thus provide new insights into the functioning of biological systems. This understanding will 394 

be crucial for our ability to control and design microbiomes. Our approach will also help to 395 

identify targets for microbiome engineering, e.g. by CRISPR-Cas36, and will ultimately open 396 

the door to selectively alter microbial communities in a variety of environments, from aquatic 397 

and terrestrial to host-associated, and for a range of different applications, including 398 

environmental and human health related37,38. 399 

  400 
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METHODS 401 

Isolates  402 

We established a 16-member microbial SynCom from the rhizosphere of switchgrass (Panicum 403 

virgatum) from agricultural crops, consisting of one strain each of Arthrobacter, Bosea, 404 

Bradyrhizobium, Brevibacillus, Burkholderia, Chitinophaga, Lysobacter, Marmoricola, 405 

Methylobacterium, Mucilaginibacter, Mycobacterium, Niastella, Paenibacillus, Rhizobium, 406 

Rhodococcus and Variovorax19. These isolates were obtained from the rhizosphere and soil 407 

surrounding a single switchgrass plant grown in marginal soils described elsewhere39,40. 408 

Isolates and details on their isolation are available from the Leibniz Institute German Collection 409 

of Microorganisms and Cell Cultures GmbH (DSMZ) under accession numbers DSM 113524 410 

(Arthrobacter OAP107), DSM 113628 (Bosea OAE506), DSM 113701 (Bradyrhizobium 411 

OAE829), DSM 113525 (Brevibacillus OAP136), DSM 113627 (Burkholderia OAS925), 412 

DSM 113563 (Chitinophaga OAE865), DSM 113522 (Lysobacter OAE881), DSM 114042 413 

(Marmoricola OAE513),  DSM 113562 (Mucilaginibacter OAE612), DSM 113602 414 

(Methylobacterium OAE515), DSM 113539 (Mycobacterium OAE908), DSM 113593 415 

(Niastella OAS944), DSM 113526 (Paenibacillus OAE614), DSM 113517 (Rhizobium 416 

OAE497), DSM 113518 (Rhodococcus OAS809), DSM 113622 (Variovorax OAS795). 417 

Isolates growth conditions 418 

Precultures of individual isolates were generated in 5 mL of liquid 1x R2A medium (Teknova, 419 

cat # R0005) under oxic conditions and grown at 30 °C for 7 days without shaking. One isolate 420 

(Bradyrhizobium OAE829) was grown in 0.1x R2A due to poor growth in 1x R2A, as 421 

previously described19.  422 

SynCom assembly and growth conditions 423 

Optical density readings at 600 nm (OD600), from pre-cultures were taken by a Molecular 424 

Devices SpectraMax M3 Multi-Mode Microplate Reader (VWR, cat # 89429-536). Pre-425 

cultures were diluted to a starting OD600 of 0.02 in 5 mL 0.1x R2A. The SynCom was assembled 426 

in large volumes to minimize pipetting error and maximize reproducibility19. Briefly, 1 mL of 427 

each normalized culture (OD600 = 0.02) was diluted in a final volume of 250 mL 0.1x R2A and 428 

spread into 20 mL aliquots in Falcon tubes. Falcon tubes containing the SynCom inoculum 429 

were then incubated at 30 °C for 7 days aerobically in four biological replicates. After 7 days 430 

of growth the SynCom samples were harvested by centrifugation and pellets were immediately 431 

treated for multi-omics analysis as detailed below (DNA-, RNA- and metaRibo-Seq). 432 
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Targeted interventions in the SynCom 433 

For targeted modification experiments in the SynCom, the SynCom was assembled and grown 434 

as described above. Specific isolates were omitted from the SynCom assembly for the dropout 435 

experiments, as described in Fig. 2e. Alternatively, concentrated stocks of either Burkholderia, 436 

Chitinophaga, Mucilaginibacter, or Rhizobium were added as probiotics to the SynCom, as 437 

described in Suppl. Fig. S7.  438 

Metabolites from concentrated, filter-sterilized stocks of compounds were added to the medium 439 

for the prebiotics experiments, as described in Fig. 3e-j, Suppl. Figs. S15 and S16. Initially, a 440 

total of 14 compounds were tested in three different concentrations, including six sugars 441 

(fructose, galactose, maltose/maltodextrin, ribose, trehalose, xylose), three amino acids 442 

(cystine, glutamate, methionine), two diamines (putrescine, spermidine), one vitamin 443 

(cobalamin), one peptide (glutathione), and one inorganic compound (sulfate/thiosulfate) 444 

(Suppl. Fig. S15-S16). Addition of cobalamin, cystine, or methionine did not induce significant 445 

change in relative abundance in the community, likely because these substrates were already 446 

present in excess in the non-modified culture medium; we thus discarded these three 447 

compounds from subsequent analysis. Experiments were carried out in duplicates and pellets 448 

were stored at -80 °C prior to metagenomic analysis.  449 

Natural soil incubation and growth conditions 450 

Root associated soil was collected from the Oklahoma State University research farm near 451 

Perkins, OK, USA (35.991148, -97.046489, elevation 280 m). The soil surface was cleaned of 452 

all organic debris. Soil and roots from Panicum virgatum (i.e. switchgrass) were obtained by 453 

shovel to a depth of 20 cm immediately adjacent to the crown margin of the target switchgrass 454 

plant. Samples were quickly frozen after sampling and stored at -20 °C prior to use.  455 

Fifty gram (50 g) of frozen soil was added to 250 mL of 0.1x R2A culture medium or 0.1x R2A 456 

+ SynCom inoculum prepared as described above, and this volume was distributed (5 mL each) 457 

into 14 mL culture tubes. We then added 50-500 µL of concentrated, filter-sterilized stocks of 458 

compounds (similar to a prebiotic treatment) and/or 20 µL of the SynCom isolates diluted at 459 

an OD600 of 0.02 (i.e. approximately 8x105 CFU/mL) (similar to a probiotic treatment) as 460 

described in Fig. 4a. Soil samples were grown at 30 °C for 7 days aerobically in duplicates 461 

(three replicates were used for the soil reference sample), harvested by centrifugation and 462 

pellets were stored at -80 °C prior to metagenomic analysis.  463 

  464 
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Human fecal sample collection and processing 465 

Volunteers were recruited in accordance with the institutional review board (IRB) number 466 

150275. Inclusion criteria were: no known medical condition or treatment during the past three 467 

months, and no antibiotic treatment over the past six months. Fecal samples from seven self-468 

described healthy individuals were collected and immediately frozen at -80 °C (<2 min after 469 

collection).  470 

Metagenomic (DNA-Seq) and metatranscriptomic (RNA-Seq) sample preparation 471 

DNA and RNA from SynCom samples were extracted from leftover lysates from metaRibo-472 

Seq sample preparation (see below) and stored in Trizol at -80 °C. DNA from soil samples was 473 

extracted using the ZymoBIOMICS DNA miniprep kit (Zymo). RNA was extracted using a 474 

RNeasy mini kit (Qiagen) and rRNA was removed using QIAseq FastSelect-5S/16S/23S kit 475 

(Qiagen). DNA and RNA from fecal samples were extracted using the ZymoBIOMICS 476 

DNA/RNA miniprep kit (Zymo). DNA-Seq libraries were prepared using Nextera XT library 477 

preparation kit with 700 pg DNA input per sample and 6:30 min tagmentation at 55 °C and 478 

barcoded using Nextera XT indexes (Illumina). RNA-Seq libraries were prepared using KAPA 479 

RNA HyperPrep kit (Roche) and barcoded using TruSeq indexes (Illumina). Amplification was 480 

followed in real time using SYBR-Green and stopped when reaching a plateau. 481 

Metatranslatomic (metaRibo-Seq) sample preparation 482 

Metatranslatomic (metaRibo-Seq) sample preparations were performed according to the 483 

protocol provided in Suppl. Material 1. This protocol is based on a previously published Ribo-484 

Seq protocol for axenic bacterial cultures23 and shares similarities with a recently published 485 

MetaRibo-Seq protocol from Fremin et al41. Briefly, mechanical bacterial lysis was performed 486 

in a solution containing chloramphenicol and Guanosine-5'-[(β,γ)-imido]triphosphate 487 

(GMPPNP) to stop protein elongation. Resulting lysates were treated with MNase and DNase 488 

to degrade nucleic acids that were not protected by ribosomes. Monosome recovery was 489 

performed using RNeasy Mini spin size-exclusion columns (Qiagen) and RNA Clean & 490 

Concentrator-5 kit (Zymo). rRNA removal was performed using the QIAseq FastSelect-491 

5S/16S/23S kit (Qiagen). MetaRibo-Seq libraries were prepared using the NEBNext Small 492 

RNA Library Prep set for Illumina, with modifications (see details in Suppl. Material 1). 493 

Amplification was followed in real time using SYBR-Green and stopped when reaching a 494 

plateau. PCR products were purified using Select-a-size DNA Clear & Concentrator kit 495 

(Zymo). Leftover lysate prior to MNase treatment was saved and stored at -80 °C for 496 

metagenomic and metatranscriptomic analysis.  497 
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Sequencing 498 

The quality and average size of the libraries was controlled using a 4200 TapeStation System 499 

(Agilent). Library concentrations were quantified using Qubit dsDNA HS Assay kit and QuBit 500 

2.0 Fluorometer (Invitrogen). Libraries were sequenced on an Illumina NovaSeq, PE100 501 

platform. Minimum sequencing depth was 10 million reads for metagenomic samples, 50 502 

million reads for metatranscriptomic samples, and 100 million reads for metatranslatomic 503 

samples. 504 

Reference genomes for SynCom members 505 

Genomic data from individual cultures of the 16 SynCom members was used to assemble 506 

genomes using SPAdes version /3.13.042 and quality controlled using CheckM version 507 

v1.0.1343. 16S rRNA phylogenetic tree analysis was performed using Clustal Omega44. 508 

Genomes were annotated at the gene level using PROKKA version 1.14.545 and KEGG 509 

pathway annotation was performed using BlastKOALA version 2.246. A custom SynCom 510 

metagenome database was built from the genomes of the 16 isolates using bowtie2 version 511 

2.3.247. 512 

Databases 513 

Data from soil microbiome samples were aligned to a modified Web of Life (WoL) database35. 514 

Modification of the WoL database was performed to reduce false alignment hits. Briefly, we 515 

calculated genome coverages in the metagenomic samples using Zebra48. We then created a 516 

reduced version of the WoL database including only genomes with at least 50% aggregated 517 

coverage across all soil experiments. Multi-omic data (i.e. metagenomic, metatranscriptomic, 518 

metaRibo-Seq) from the soil experiments were aligned to the modified WoL database. Human-519 

associated microbial genomes are generally better referenced in public databases, thus data 520 

from human gut microbiome samples were aligned to WoL directly. 521 

Data processing 522 

Adapter sequences were removed from multi-omics sequencing data using TrimGalore 523 

(Cutadapt) version 1.1849 and quality controlled using FastQC version 0.11.950. Trimmed reads 524 

were aligned to the appropriate database using bowtie2 version 2.3.247. Gene and KEGG 525 

pathway count tables stratified by genus were obtained using Woltka version 0.1.135. Multi-526 

omics gene counts were normalized to reads per kilobase per million (RPKM) for the SynCom 527 

experiments, or counts per million (CPM) for soil and gut microbiome samples.  528 

  529 
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Statistics 530 

Feature count tables were imported and analyzed using R version 3.6.351. Hierarchical 531 

clustering on the principal components (HCPC) analysis was performed using the FactomineR 532 

package52.  533 

TE calculation 534 

We calculated TE as the ratio between Ribo-Seq and RNA-Seq signal as follows: 535 

𝑇𝐸𝑖,𝑗 =  
𝑅𝑖𝑏𝑜𝑆𝑒𝑞𝑖,𝑗

𝑅𝑁𝐴𝑆𝑒𝑞𝑖,𝑗
 ; 536 

Where 𝑅𝑖𝑏𝑜𝑆𝑒𝑞𝑖,𝑗 and 𝑅𝑁𝐴𝑆𝑒𝑞𝑖,𝑗  are Ribo-Seq and RNA-Seq normalized read counts for each 537 

feature i in each bacteria j.  538 

Metabolic guild clustering 539 

Microbial community members were classified into functional guilds based on TE measured 540 

on KEGG-annotated metabolic pathways by performing a hierarchical clustering on the 541 

principal components (HCPC) analysis. Briefly, the HCPC algorithm comprises 3 steps: i) 542 

principal component analysis (PCA), ii) hierarchical clustering on the principal components, 543 

and iii) k-mers partitioning to stabilize initial classification52. 544 

Competition scoring 545 

For each pair of bacteriai,j in a microbial community we defined a Competition scorei,j, 546 

referring to the likeliness of a competition interaction between bacteria i and j, as a function of 547 

the distance between i and j in the TE-based guild clustering as follows: 548 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝑖,𝑗 =  
(𝑑𝑖𝑠𝑡𝑖,𝑗 − µ 𝑖) 

𝜎𝑖
; 549 

Where disti,j is the euclidean distance between bacteria i and j in the guild clustering, μi and σi 550 

are the average and the standard deviation of the population distances to bacteria i. Note: for 551 

predictions made in the SynCom, Scorei,j was adjusted to zero for bacteria having a relative 552 

abundance <0.5% after 7 days of growth.  553 

Sensitivity and specificity of the prediction of community outcomes upon modifications of the 554 

community composition were calculated by considering a Scorei,j > 0 as “likely” and Scorei,j ≤ 555 

0 as “unlikely” for bacteria j to increase/decrease upon removal/increase of bacteria i relative 556 

abundance in the community.  557 
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Microbial Niche Determination (MiND) 558 

Microbial niches were identified as metabolites for which a translational activity (positive TE) 559 

was measured in one or more microbial community members on import protein(s) for a given 560 

substrate.  561 

Definition of primary and secondary targets 562 

Primary targets were defined as microbes which we sought to enrich in the community, either 563 

by probiotic or prebiotic addition with substrates identified as preferential to the microbe by 564 

MiND. Secondary targets were defined as microbes we sought to decrease in the community 565 

by promoting one or more of their competitors as defined based on guild clustering (their 566 

competitor(s) would then be considered as primary target).  567 

Phenotypic microarray assays for axenic cultures 568 

Isolates for all 16 SynCom members were grown axenically on 285 different substrates using 569 

Biolog Phenotypic Microarray (PM) plates (PM 1, 2A, 3B) following the company’s 570 

instructions (Biolog). Briefly, isolates were streaked on 1x R2A agar plates (1.5% w/v) 571 

(Bradyrhizobium was streaked on 0.1x R2A plates), colonies were picked and resuspended in 572 

inoculation fluid IF-0a GN/GP (cat no. 72268) up to an OD600 of 0.07 and inoculated into the 573 

PM plates in triplicate. Plates were incubated at 30 °C without shaking with lids coated with 574 

an aqueous solution of 20% ethanol and 0.01% Triton X-100 (Sigma) to prevent 575 

condensation19. Growth in PM plates was indicated by color change from clear to purple of 576 

Biolog Redox Dye Mixes (Dye Mix G and H, cat nos. 74227, 74228). Additionally, we defined 577 

substrate utilization as OD600 increase >0.02 over a 7 day incubation period. 578 

Genome-scale metabolic models simulations 579 

Genome-scale metabolic models (GEMs) of the 16 SynCom members were reconstructed. 580 

Models were simulated using Flux Balance Analysis (FBA)53. The predicted growth rates of 581 

SynCom members were recorded for comparison purposes. To predict the effect of media 582 

supplementation with different substrates, we incorporated the uptake flux of each substrate at 583 

a time and simulated the model for each condition (i.e. change in media composition). A list of 584 

the substrates provided in Suppl. Table S4 that contains the predicted growth rates tested in 585 

this analysis. All GEMs were analyzed using COBRApy software package version 0.17.154 586 

with IBM CPLEX solver version 22.1.0 (IBM) in Python (version 3.7.11).  587 
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Figures 588 

Fig. 1a and 4a were created using BioRender.com. Other graphical representations were 589 

produced using R version 3.6.351 and associated packages ggplot2, gplots version 3.0.1.1, 590 

cowplot version 1.1.1 and factoextra version 1.0.7 packages55–58. 591 

Data availability 592 

Multi-omics sequencing data generated through this study are available on the NCBI Sequence 593 

Read Archive (submission SUB12797845, BioProject PRJNA942264).  594 
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R code used to perform statistical analysis presented in this manuscript is available at 596 
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