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In the absence of an endosomal RNase, RNase T2, microbiome RNAs circulating in the
vasculature activate TLR13 in hepatic macrophages to drive hepatoprotective
responses through expression of immunoregulatory and tissue-clearance molecules.
Consequently, mice lacking RNase T2 are resistant against acute liver injuries caused
by acetaminophen and LPS + D-galactosamine.
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Abstract

Hepatic macrophages maintain liver homeostasis, but little is known about the signals
that activate the hepatoprotective programs within macrophages. Here, we show that
toll-like receptor 13 (TLR13), a sensor of bacterial 23S ribosomal RNA (rRNA), senses
microbiome RNAs to drive tissue-protective responses in CD5L" hepatic macrophages.
Splenomegaly and hepatomegaly developed in the absence of the endosomal RNase,
RNaseT2, via TLR13-dependent macrophage proliferation. Furthermore, TLR13 in
hepatic Ly6C'° macrophages activated the transcription factors LXRa and MafB, leading
to expression of tissue-clearance molecules, such as CD5L, C1qgb, and Axl.
Consequently, Rnaset2~~ mice developed resistance to acute liver injury caused by
challenges with acetaminophen and lipopolysaccharide + D-galactosamine. TLR13
responses in Rnaset2”~ mice were impaired by antibiotics, suggesting that TLR13 were
activated by microbiome rRNAs, which was detected in the sera and hepatic
macrophages. Repeated administration of wild-type mice with the TLR13 ligand, rather
than other TLR ligands, selectively increased the number of Kupffer cells, which
expressed immunoregulatory and tissue-clearance genes as hepatic macrophages in
Rnaset2~~ mice did. Our results suggest that microbiome ssRNA serves as an
environmental cue for initiating tissue-protective TLR13 responses in hepatic
macrophages.

Keywords
RNase T2, lysosome, Kupffer cells, acute liver injury, acetaminophen

Introduction

The liver is exposed to blood from the gut, and intestinal bacteria occasionally enter the
portal system; hepatic macrophages then clear the bacteria to prevent their
dissemination . In addition to bacteria, drugs are also absorbed from the gut and
detoxified by hepatocytes. However, if drug metabolites accumulate owing to excessive
drug intake, hepatocytes die and release danger signals 2 3. Hepatic macrophages clear
the released danger signals to avoid inflammation 3. At least three macrophage subsets
protect the liver through clearance. Kupffer cells (KCs) are liver-resident macrophages
originating from the yolk sac and replicating in the liver 4; they reside in the sinusoidal
lumen and clear bacteria, aged neutrophils, and senescent platelets °. Bone marrow-
derived Ly6CM CX3CR1'° monocytes infiltrate the liver upon acetaminophen (APAP)
challenge and differentiate into Ly6C'® CX3CR1" macrophages, promoting clearance
and tissue repair 8. Peritoneal macrophages also invade the injured liver through the
mesothelium and differentiate into alternatively activated macrophages to promote the
clearance of dead cells .

RNAs serve as immune codes that inform immune cells about pathogen invasion and
tissue damage & °. Extracellular and cytoplasmic RNAs are transported to and degraded
in the endosomal compartment, where RNA-sensing toll-like receptors (TLRs), such as
TLR3, TLR7, TLRS8, and TLR13, reside ® %', TLR3 responds to double-stranded
RNAs (dsRNAs), whereas TLR13 senses single-stranded RNAs (ssRNAs) derived from
bacterial 23S ribosomal RNA (rRNA) 2 3. TLR7 and TLR8 sense RNA degradation
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products that are a combination of nucleosides and oligoribonucleotides (ORNs) 4. 15. 6.
7. Endosomal RNA degradation affects the response of RNA-sensing TLRs. The
endosomal RNase, RNase T2, degrades double-stranded RNA (dsRNA), thereby
negatively regulating TLR3 responses 8. In contrast, ssRNA degradation by RNase T2
generates ligands for mouse TLR7 and human TLR8 '8 1920 Splenomegaly,
hepatomegaly, and neuroinflammation develop in Rnaset2”~ mice 2'. Little is known,
however, about the role of RNA-sensing TLRs in the pathologies of Rnaset2”~ mice.

Here, we found that TLR13 drove splenomegaly and hepatomegaly in Rnaset2'-
mice. Splenic and hepatic monocytes/macrophages in Rnaset2”~ mice TLR13-
dependently proliferated and antibiotics inhibited the macrophages proliferation,
suggesting that TLR13 was activated by bacterial rRNAs. TLR13 in hepatic
macrophages activated tissue-protective responses instead of inflammatory responses
through activation of the transcription factors LXRa and MafB, which upregulated the
expression of tissue-clearance molecules, such as CD5L, Tgm2, C1gb, and Axl.
Consequently, the Rnaset2-- mice were found to be resistant to liver-damaging
challenges with APAP and lipopolysaccharide (LPS)+D-galactosamine (D-Gal). In wild-
type mice, the TLR13 ligand specifically increased the percentage of KCs, which, like
Rnaset2~~ hepatic macrophages, expressed tissue-clearance genes. These results
suggest that microbiota RNAs serve as an environmental cue for activating tissue-
protective TLR13 responses in hepatic macrophages.

Results
TLR13-dependent accumulation of monocyte/macrophage in Rnaset2”- mice

Mouse RNase T2 is encoded by two genes, Rnaset2a and Rnaset2b. To study the role
of RNase T2 in vivo, previously generated Rnaset2a~~ Rnaset2b~~ mice were used ',
this strain is here described as Rnaset2~~ or Rt27~ mice. The mice were born at
Mendelian ratios and grew normally. Consistent with a previous report 2!, splenomegaly
developed in Rnaset2- mice (Fig. 1A), and the proportions of Ly6C" and Ly6C'
macrophages and red pulp macrophages were increased in their spleens (Fig. 1, B—E).
Although the percentages of splenic T and B cells did not increase (Fig. S1A),
autoantibodies against RNA-associated antigens (such as Sm and SSA) but not against
dsDNA were produced in Rnaset2-- mice (Fig. S1B, S1C). The percentages of splenic
conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) were not altered (Fig.
S1D). In peripheral blood, the counts of both Ly6C" and Ly6C'® monocytes were
increased (Fig. S1E and S1F), whereas those of platelet decreased and macrocytic
anemia developed (Fig. 1F; Fig. S1G). Hepatomegaly also developed in Rnaset2'-
mice (Fig. 1G). CD11b expression was upregulated in Rnaset2”~ hepatic macrophages
(Fig. 1H), among which the percentages of Ly6C'° macrophages predominantly
increased (Fig. 11). In addition to the spleen and liver, F4/80* macrophages also
infiltrated the brain, lungs, and kidneys (Fig. 1J).

RNase T2 is localized to endosomes '8; therefore, its deficiency causes RNA
accumulation in the endosomal compartment 22 23, We hypothesized that monocytosis
is caused by the activation of RNA-sensing TLR in Rnaset2 - mice. Because Unc93b1
is required for all RNA-sensing TLRs 24, we first generated Rnaset2~- Unc93b1~~ mice
and found that they did not develop splenomegaly, thrombocytopenia, and
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hepatomegaly (Fig. 1A, 1F, and 1G). We then crossed Rnaset2-~ mice with TIr3"-, Tir7-
I=, or the newly established TIr13-- mice (Fig. S2). Similar to Rnaset2”- Unc93b1~/~
mice, splenomegaly, thrombocytopenia, and hepatomegaly were not observed in
Rnaset2~~ TIr13~~ mice (Fig. 1; Fig. S1). These results suggest that TLR13 activation
drove all the phenotypes in Rnaset2 - mice.

TLR13-dependent monocyte proliferation in Rnaset2-~ mice

Transcriptome analyses of macrophages from Rnaset2 -~ and wild-type mice were
performed. Compared to the genes expressed in CD11b* macrophages from wild-type
mice, 306 and 444 genes were upregulated and downregulated more than 1.5-fold,
respectively, in splenic Ly6C" monocytes from Rnaset2 - mice (Fig. S3A). Compared
to the genes in wild-type CD11b* macrophages, 537 and 217 genes were upregulated
and downregulated > 1.5-fold, respectively, in Ly6C'° macrophages from Rnaset2 /-
mice (Fig. S3B). Gene set enrichment analysis (GSEA) revealed that proliferation-
associated hallmarks, such as “E2F targets”, “G2M checkpoint”, “MYC targets V17,
“mitotic spindle”, and “mTORC1 signaling” were positively enriched in both Ly6C" and
Ly6C'° splenic monocytes (Fig. 2A and 2B), suggesting that these monocytes
proliferated in Rnaset2~~ mice. Consistent with this, the expression of the proliferation-
associated antigen Ki67 was upregulated in both Ly6C" and Ly6C'> macrophages from
Rnaset2~~ mice (Fig. 2C; Fig. S3C). Uptake of the thymidine analog 5-ethynyl-2'-
deoxyuridine (EdU) and DNA content revealed that the percentages of Ly6C" and
Ly6C'° macrophages in the S phase were increased in a TLR13-dependent manner in
Rnaset2~~ mice (Fig. 2D to 2G). We also performed transcriptome analyses and
proliferation assays of hepatic Ly6C" and Ly6C'> macrophages (Fig. S3D and S3E, Fig.
2H). Macrophages in the S phase accounted for approximately 0.5-1% of Ly6C" and
Ly6C'° hepatic macrophages in Rnaset2~~mice but less than 0.15% of CD11b" and
CD11b' hepatic macrophages in wild-type mice (Fid. 2H). These results demonstrate
that TLR13 drives macrophage proliferation in the spleen and liver of Rnaset2 - mice.

TLR13 responses are inhibited by antibiotics

We next focused on TLR13 ligands in Rnaset2~ mice. Although TLR13 was previously
found to respond to bacterial 23S rRNA 12, hepatomegaly and splenomegaly developed
in unperturbed Rnaset2~ mice, suggesting that TLR13 ligands originate from the
intestinal microbiota. To study the role of the intestinal microbiome in TLR13-dependent
macrophage accumulation, Rnaset2~'~ mice were treated with a cocktail of antibiotics,
namely metronidazole, neomycin, ampicillin, and vancomycin, for 3—6 wk of age.
Antibiotics ameliorated splenomegaly by downregulating the proliferation of Ly6C"
macrophages, but not of Ly6C'° macrophages (Fig. 2| and 2J). Hepatomegaly did not
develop (Fig. 2K), strongly suggesting that TLR13 in Rnaset2 "~ mice was activated by
microbiota 23S rRNA. From the database, the consensus sequence in 23S rRNA that
activates TLR13 was observed in bacteria, including Escherichia coli, Lactobacillus
helveticus/Lactococcus lactis, Anaerostipes caccae/Ruminococcus gauvreauii, and
Eubacterium fissicatena %°. PCR detected 23S rRNA sequences from all these bacteria
in fecal DNAs from wild-type and Rnaset2-~ mice (Fig. 2L), suggesting that all these
bacteria reside in the gut. Additionally, 23S rRNAs from E. coli and Lactobacillus
helveticus/Lactococcus lactis were detected in RNAs from serum and hepatic
macrophages from wild-type and Rnaset2 - mice. These results suggest that 23S
rRNAs from E. coli and Lactobacillus helveticus/Lactococcus lactis constitutively
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translocate into the circulation and act on hepatic macrophages in wild-type and
Rnaset2- mice.

TLR13 activates the LXRa—CDS5L axis in response to the microbiome

We further analyzed the gene expression profiles of splenic and hepatic Ly6C'
macrophages using the search engine “Enrichr” 26, The analyses based on the “All
RNA-seq and ChlP-seq sample and signature search 4 (ARCHS4)” database
suggested activation of transcription factors such as LXR and MafB in hepatic Ly6C'"
macrophages from Rnaset2 -~ mice (Fig. 3A). The upregulated genes in these
macrophages included LXRa target genes, such as LXRa itself, Cd5/, transglutaminase
2 (Tgm2)?" (Fig. 3B), and MafB target genes, such as C7gb and Ax/ (Fig. 3C) 272829, 30,
31, Fluorescence-activated single cell sorting (FACS) analyses showed that the protein
expression levels of LXRa, CD5L, and Axl in hepatic Ly6C'° macrophages from Rnaset2
~~ mice were increased in a TLR13-dependent manner (Fig. 3D). Although CD5L is a
secretory protein, we could detect CDSL protein within macrophages, using membrane-
permeabilized staining. CD5L protein levels in circulation and the liver increased in a
TLR13-dependent manner (Fig. 3E, 3F). Antibiotics significantly reduced the TLR13-
dependent increases of LXRa, CD5L, and Axl in Ly6C'° macrophages (Fig. 3G) and of
serum CD5L (Fig. 3H). CD5L protein expression in hepatic Ly6C'® macrophages was
downregulated by administration of the LXRa antagonist GSK2033 (Fig. 3l), suggesting
that CD5L expression in Rnaset2 - Ly6C'® hepatic macrophages depends on LXRa
activation. In the spleen, we detected considerably smaller increases in the mRNA and
protein expression of LXRa and CD5L in Rnaset2~~ Ly6C'° macrophages, but this was
not seen for Axl (Fig. S4A, S4B). These differences between the spleen and the liver
are consistent with the RNA-seq results that revealed that LXRa and MafB were more
strongly activated in hepatic macrophages than in splenic macrophages (Fig. 3A).
Together, these results suggest that TLR13 in hepatic Ly6C'® macrophages senses the
microbiome RNA to activate the transcription factors LXRa and MafB in Rnaset2 -
mice.

The TLR13-LXRa-CD5L axis in hepatic macrophages is tissue-protective

The genes whose expression was upregulated in hepatic macrophages from Rnaset2~-
mice encode immunoregulatory and tissue-clearance molecules. For example, CD5L
promotes the clearance of bacteria and damage-associated molecules released during
tissue injury 32. Other molecules whose expression increased, such as Tgm2, C1qb,
and Axl, are known to contribute to cell corpse clearance 2° 30- 33, Furthermore, the
MRNA expression of genes encoding the anti-inflammatory cytokine IL-10 and the
antioxidative enzyme heme oxidase (HO-1) was upregulated in hepatic and splenic
Ly6C'° macrophages from Rnaset2 -~ mice (Fig. S4C) 343536, Serum IL-10 levels
increased in a TLR13-dependent manner (Fig. S4D). In contrast, the mRNA expression
of genes encoding proinflammatory cytokines, such as TNFaq, IL-6, interferon (IFN){1,
and IL1a, were not upregulated in the spleen and liver (Fig. S4E). Exceptionally, the
expression of pro-IL-1f in splenic and hepatic macrophages and IL1a in hepatic
macrophages was upregulated in macrophages from Rnaset2~~ mice. These results
suggest that tissue-clearance and anti-inflammatory programs, but not inflammatory
responses, are constitutively activated in Rnaset2~~ mice.
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We hypothesized that Rnaset2~~ mice are resistant to acute liver injuries because
molecules whose expression is upregulated, such as IL-10, HO-1, LXRa, and Axl, have
protective roles against APAP-induced liver injury 3 37-38, Rnaset2- mice were
intraperitoneally administered APAP at 750 mg/kg, and ~70% of wild-type mice did not
survive the challenge (Fig. 4A). However, all Rnaset2”~ mice survived the APAP
challenge, but Rnaset2~- Tir13-- mice were as sensitive to the APAP challenge as the
wild-type mice (Fig. 4A and 4 B). Serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels were not elevated in Rnaset2”~ mice (Fig. 4C, 4D),
which indicated that hepatocytes escaped APAP-induced death. FACS analyses
demonstrated that neutrophils failed to infiltrate the liver in Rnaset2”~ mice (Fig. 4E)
because production of the neutrophil-attracting chemokine CXCL2 was impaired in the
liver (Fig. 4F) 3°. Furthermore, upon APAP challenge, serum IL-6 was not detected in
Rnaset2- mice (Fig. 4G).

To examine the role of macrophages in drug resistance, tissue macrophages were
depleted with clodronate (Fig. S4F), which made Rnaset2”~ mice susceptible to the
APAP challenge (Fig. 4H). Antibiotics, which downregulated the expression of LXRa,
CD5L, and Axl in Ly6C' hepatic macrophages (Fig. 3G), also made Rnaset2”~ mice
sensitive to the APAP challenge, as revealed by the increased levels of serum AST and
ALT (Fig. 4l). These results suggest that the liver was made resistant to the APAP
challenge by the hepatic macrophages in Rnaset2”~ mice.

We next studied the responses to another acute liver injury by administering LPS and
D-Gal, which cause TNF-a-dependent hepatocyte apoptosis 4% 41. All wild-type mice
died within 20 h, whereas >80% of Rnaset2”~ mice survived the LPS/D-Gal challenge
(Fig. 4J). TNF-a production upon LPS stimulation was not impaired in Rnaset2”~ mice
(Fig. 4K), but macrophage depletion by clodronate made Rnaset2~~ mice susceptible to
the LPS/D-Gal challenge (Fig. 4L). These results suggest that TLR13 activation in
hepatic macrophages promotes resistance against acute liver injuries.

TLR13 ligand increases the percentage of KCs in wild-type mice

Splenic and hepatic Ly6C'° macrophages weakly expressed CD5L, whereas peripheral
blood Ly6C'° monocytes and hepatic F4/80* CD11b'° macrophages strongly expressed
CD5L (Fig. 5A). The subpopulation of hepatic F4/80* CD11b'° macrophages showed
stronger CD5L expression and their percentages were increased by the administration
of the TLR13 ligand (Fig. 5A), but this was not observed in TIr13- mice (Fig. 5B),
suggesting that this subpopulation of hepatic macrophages responded to the TLR13
ligand.

We compared the TLR13 ligand with other TLR ligands by administering them into
wild-type mice. The TLR13 ligand significantly increased the percentages of CD5L"
F4/80* CD11b' macrophages and weakly increased the percentages of Ly6C' hepatic
macrophages. None of the other TLR ligands increased the percentage of CD5L"
F4/80* CD11b' macrophages to the same extent as the TLR13 ligand (Fig. 5C; Fig.
S5A), but each TLR ligand increased the percentages of other monocyte/macrophage
subsets in the liver and blood. For example, LPS strongly increased the percentages of
Ly6CM macrophages and neutrophils in both the liver and blood; TLR2 ligands
increased the percentages of hepatic Ly6C'° macrophages and blood Ly6C'
monocytes; TLR3 ligand increased the percentages of CD5L'° F4/80* CD11b'°
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macrophages, hepatic and blood neutrophils, and blood Ly6C" monocytes; TLR7 ligand
only increased the percentage of blood Ly6C'° monocytes; and TLR9 ligand increased
the percentages of CD5L'"° F4/80* CD11b'° macrophages and blood monocytes. These
differences in the effects of TLR ligands could not be explained by TLR expression (Fig.
S5B); for example, TLR13 mRNA was more highly expressed in hepatic macrophages
than in CD5L" F4/80* CD11b'° macrophages from wild-type mice (Fig. 5D), but the
TLR13 ligand more strongly upregulated the percentages of the latter (Fig. 5A). These
results suggest that TLR13 responses vary among macrophage subsets.

We focused on the CD5L" population in F4/80* CD11b'° macrophages. KCs and
hepatic macrophages originate from embryos and the bone marrow, respectively *.
Bone marrow chimeric mice were used to examine the origin of the CD5L" subset of
F4/80* CD11b' macrophages. Donor-derived cells replaced more than 90% of the
hepatic Ly6C" and Ly6C'° macrophages and the CD5L' subset of F4/80* CD11b'°
macrophages (Fig. 5E). In contrast, only ~30% of the CD5L" subset of F4/80* CD11b'°
macrophages was of donor origin (Fig. 5E), and Sa19 administration did not increase
the percentage of donor-derived cells among CD5L" F4/80* CD11b'° macrophages,
suggesting that Sa19 did not act on bone marrow-derived hepatic macrophages. CD5L"
F4/80* CD11b' macrophages were not of BM origin, and highly expressed KC markers,
namely F4/80 and Tim4 (Fig. 5F). We hereafter refer to this subset as KCs. The subset
of KCs, KC2, characteristically expresses endothelial cell antigens such as ESAM,
CD105, and CD146%2. Antibody analyses showed that CD5L'° F4/80* CD11b'"°
macrophages expressed these endothelial cell markers as well as KC markers (Fig. 5F
and Fig. S6). This bone marrow-derived subset is hereafter referred to as “KC2-like
macrophages.”

To further study KCs, KC2-like macrophages, CD11b* macrophages, and Rnaset2 -
Ly6C'> hepatic macrophages, we conducted a transcriptome analysis. Cluster analyses
showed that Rnaset2 - Ly6C'® hepatic macrophages were closer to KCs than to KC2-
like or CD11b* hepatic macrophages (Fig. 6A). Consistent with this, tissue-clearance
and immunoregulatory genes were more highly expressed in KCs than in KC2-like and
CD11b™ hepatic macrophages (Fig. 6B). These results suggest that TLR13 drives
reparative responses in wild-type KCs.

Discussion

The TLR family responds to pathogen components to drive defense responses through
the production of proinflammatory cytokines and type | interferons '": 43, In contrast to
these well-studied roles, little is known about the role of TLRs in noninflammatory
responses, such as proliferation and tissue clearance. In this study, impairing RNA
degradation in the endosomal compartment due to RNase T2 deficiency caused
lysosomal RNA stress in macrophages, the accumulation of RNAs in
endosomes/lysosomes. Lysosomal RNA stress activated TLR13 to drive macrophage
proliferation and induce the expression of immunoregulatory and tissue-clearance
molecules such as IL-10, HO-1, CD5L, C1qgb, and Axl. Consequently, TLR13 responses
in macrophages protected Rnaset2”~ mice against acute liver injuries. These results
suggest that lysosomal RNA stress is a cue to initiate noninflammatory tissue-protective
TLR13 responses in macrophages.
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Similar TLR13 responses were observed in wild-type mice, where the number of KCs
stably expressing tissue-clearance genes, such as Cdb/, C1qgb, and Axl, increased after
repeated administration of the TLR13 ligand. KCs expressed other TLRs, such as
TLR1, TLR2, TLR3, TLR4/MD-2, TLR5, TLR6, TLR7, and TLR9, but the efficacy of their
ligands to increase the number of KCs in vivo was much weaker than that of the TLR13
ligand. Such unique noninflammatory TLR13 responses are in part mediated by the
transcription factors LXRa and MafB, which induced the transcription of tissue-
clearance genes while inhibiting inflammatory responses 44 45,

Hepatic macrophages from Rnaset2”~mice protected hepatocytes from acute liver
injury through multiple mechanisms, because many molecules whose expression was
upregulated in Rnaset2~~ hepatic macrophages, namely IL-10, HO-1, LXRa, and Axl,
are reported to protect against the APAP-induced liver injury 2 3728, Mechanistically, IL-
10 and LXRa directly inhibit immune responses 3* 44, whereas CD5L, Tgm2, C1qgb, and
Axl ameliorate tissue damage by promoting the clearance of damaged cells—the source
of danger signals. For example, CD5L plays a protective role against ischemic stroke by
promoting the clearance of proinflammatory molecules released from damaged cells,
such as peroxiredoxin 1 and HMGB146,

Bacterial 23S rRNAs were found to circulate in the vasculature of unperturbed wild-
type mice, but RNA-mediated tissue protection was counterbalanced by endosomal
RNA degradation. Rnaset2~~ mice revealed that microbiome RNAs positively and
negatively regulate TLR responses. In addition to tissue-protective responses and
proliferation in macrophages, microbiome RNAs also drove autoantibody production in a
TLR13-dependent manner. As B and T cells do not express TLR13, lysosomal RNA
stress in DCs is likely to drive autoantibody production against RNA-associated
antigens. Despite autoantibody production, glomerulonephritis did not develop in
Rnaset2~~ mice, which might be explained by impaired TLR7 responses in pDCs and
macrophages from Rnaset2~~ mice 8. Another RNA-sensing TLR, TLR3, is silenced by
RNase T2-dependent dsRNA degradation '® and is expected to be hyper-responsive in
Rnaset2- mice. Although TLR3 interacts with dsRNAs from lactic acid bacteria*’, TLR3
deficiency did not alter monocytosis in Rnaset2”~ mice. As the TLR3 ligand poly(I:C)
increased the number of blood Ly6C" monocytes, their increases in Rnaset2”~ mice
may have been redundantly driven by TLR3.

TLR13 ligation by RNase T2 deficiency activated the transcription factors LXRa and
MafB in ly6C'® hepatic macrophages, whereas TLR13 ligation in BM-derived
macrophages induces production of proinflammatory cytokines'?, suggesting that
tissue-protective TLR13 responses are restricted to specific macrophage subsets. In
wild-type mice, KCs highly expressed CD5L and increased in number upon stimulation
with the TLR13 ligand. TLR13 ligation in KCs is likely to activate noninflammatory
tissue-protective responses through the LXRa—CDSL axis. KCs increased in number
only after the second administration of the TLR13 ligand. Considering that repeated
TLR responses induce tolerance in inflammatory responses*®, repeated TLR13 ligation
may influence the downstream signaling pathways to activate LXRa and MafB.
Microbiome ssRNAs, which were steadily detected in the vasculature and hepatic
macrophages, are likely to continuously act on TLR13 in KCs to activate
hepatoprotective programs. High CD5L expression was also seen in peripheral blood
Ly6C' patrolling monocytes, which circulate to clear damaged endothelial cells “°.
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Because the TLR13 ligand failed to increase patrolling monocytes in the vasculature,
another environmental cue and another TLR might control clearance programs in this
macrophage subset. Mouse KCs are divided into two subsets: KC1 and KC2 %°, where
the latter’s percentage increases under a high-fat diet and promote diet-induced obesity
%0, Lipids from the gut might be another environmental cue sensed by specific
macrophage subsets in the liver and spleen.

In conclusion, we here show that TLR13 in hepatic macrophages senses microbiome
ssRNA to activate hepatoprotective responses and that RNase T2 negatively regulates
the tissue-protective TLR responses through RNA degradation. Microbiome ssRNA
serves as an environmental cue to initiate hepato-protective programs. These results
help us understand mechanisms by which homeostasis is dynamically maintained by
macrophage responses to environmental cues.

Methods
Mice

C57BL/6 mice (sex; male and female, weight; 14-20g) were purchased from Japan
SLC, Inc. (Shizuoka, Japan). Rnaset2a™~ Rnaset2b™- and Unc93b1~~ mice were
previously described '8 %1, In this manuscript, we refer to Rnaset2a~~ Rnaset2b~mice
as Rnaset2~~ mice for simplicity. C57BL/6 TIr3”-and TIr7-~mice were kindly provided
by Professor Shizuo Akira (Osaka University, Japan) and have been previously
described %2 53, All the animals were housed in SPF facilities at the Institute of Medical
Science, University of Tokyo (IMSUT). All animal experiments were approved by the
Institutional Animal Care and Use Committee of the IMSUT (#PA17-84, #PA22-43).

Generation of TIr13~ mice

CMTI-2 (Bruce4) Embryonic Stem (ES) cells were transfected with the vectors targeting
the TIr13 locus (Fig. S2A), and clones resistant to G418 and ganciclovir were screened
for homologous recombination using PCR and confirmed using Southern blot analysis.
Targeted ES clones were injected into BALB/c-derived blastocysts to generate chimeric
mice, which were mated to obtain TIr13~ mice. TIr13”~ mice were typed by PCR using
primers (Primer#1: 5-TCGGAAACCTACCCAAGTTAGAGACAC-3’, Primer#2: 5'-
TAACTCCTGCAAACTACCCAATCCTTG-3, Primer#3: 5'-
ATCGCCTTCTATCGCCTTCTTGACGAG-3)

Reagents

The LXR agonist T0901317 and LXR antagonist GSK2033 were purchased from
Selleck Chemicals (Houston, TX, USA), clodronate from Funakoshi (Tokyo, Japan), and
acetaminophen (APAP) from TCI Chemicals (Tokyo, Japan). The EdU used in the in
vitro proliferation assay was purchased from Tokyo Chemical Industry Co. (Tokyo,
Japan). Lipid A purified from Salmonella minnesota (Re-595) and lipopolysaccharide
(LPS) from Escherichia coli (055:B5) were purchased from Sigma-Aldrich (Merck,
Darmstadt, Germany). Pam3CSK4, poly(l:C), and R848 were purchased from
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InvivoGen (Hong Kong, China). Sa19 (19mer,
GsGsAsCsGsGsAsAsAsGsAsCsCsCsCsGsUsGsG) and CpGB ODN1668
(dTsdCsdCsdAsdTsdGsdAsdCsdGsdTsdTsdCsdCsTdsdGsdAsdTsdGsdCsdT), in
which ‘s’ depicts a phosphorothioate linkage, were synthesized by FASMAC
(Kanagawa, Japan). Recombinant CD5L preparation has been described previously 5.
Lipofectamine 2000 was purchased from Invitrogen (Thermo Fisher Scientific, Waltham,
MA, USA), and DOTAP from Sigma-Aldrich.

Antibodies

Rat anti-mouse TLR1 monoclonal antibody (mAb) (TR23), rat anti-mouse TLR2 mAb
(CB225), mouse anti-mouse TLR5 mAb (ACT5), mouse anti-mouse TLR6 mAb (C1N2),
mouse anti-mouse TLR3 mAb (PaT3), mouse anti-mouse TLR7 mAb (A94B10), and
mouse anti-mouse TLR9 mAb (J15A7) were established in our laboratory.
Phycoerythrin (PE)-conjugated mouse anti-TLR3 mAb (PaT3), PE-conjugated mouse
anti-TLR7 mAb (A94B10), and PE-conjugated mouse anti-TLR9 mAb (J15A7) were
purchased from BD Biosciences (Franklin Lakes, NJ, USA). Biotinylated mAbs were
prepared using Biotin-XX (Thermo Fisher Scientific). Biotinylated mouse anti-mouse
TLR4 mAb (UT49) was provided by Dr. Hiroki Tsukamoto (Fukuoka, Japan). PE rat
lgG2a-isotype control antibody and PE mouse 1gG2b-d k isotype control antibody were
purchased from BioLegend (Sandiego, CA, USA) and PE mouse IgG1-k Isotype control
antibody from BD Biosciences. Monoclonal anti-mouse CD11b (clone M1/70), CX3CR1
(clone SA011F11), F4/80 (clone BM8), NK1.1 (clone PK136), CD16.2 (clone 9E9),
CD3e (clone 145-2c11), CD19 (clone 6D5), CD11c (clone N418), CD317 (clone 927),
CDA45.2 (clone 104), CDS8 (clone 53-6.7), Ki67 (clone 16A8), Tim4 (clone F31-5G3),
ESAM (clone 1G8/ESAM), CD105 (clone MJ7/18), CD59a (clone mCD59.3), CD31
(clone 390), CD146 (clone ME-9F1), CD48 (clone HM48-1), CD11a (clone M17/4),
CD24 (clone M1/69), and CD64 (clone X54-5/7.1) antibodies were purchased from
BioLegend.

Monoclonal anti-mouse CD49b (clone Hma?2), IA/IE (clone M5/114.15.2), Ly6C (clone
HK1.4), and Ly6G (clone 1A8) antibodies were purchased from BD biosciences.
Monoclonal anti-mouse CD4 (clone RM4-5) antibody was purchased from Invitrogen
and monoclonal anti-mouse Axl antibody (clone 175128) from R&D Systems
(Minneapolis, MN, USA). Polyclonal anti-mouse LXRa antibody (#ab3585) was
purchased from Abcam (Cambridge, UK). The rabbit anti-mouse CD5L antibody (clone
rab1) was provided by Dr. Miyazaki (Tokyo, Japan). The LEGENDScreen Mouse PE Kit
was purchased from BioLegend.

Cell preparation

Blood cells were obtained from mice, using a microtube with EDTA (Erma Inc., Tokyo,
Japan). Livers were minced and processed using a gentle MACS Octo Dissociator with
Heaters (Miltenyi Biotec, Bergisch Gladbach, Germany). Supernatants were filtered
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using MACS SmartStrainer (pore size: 100 uM; Miltenyi Biotec) and centrifuged at 300
xg for 10 min. The pellet was resuspended in Debris Removal Solution (Miltenyi Biotec)
and centrifuged at 3000 xg for 10 min. The cell pellet was resuspended in RBC lysis
buffer (BioLegend).

Flow cytometry

Cell surface staining for flow cytometric analysis was performed using fluorescence-
activated cell sorting (FACS) staining buffer (1 x phosphate-buffered saline [PBS] with
2.5% fetal bovine serum and 0.1% NaNz3). The prepared cell samples were incubated
for 10 min with an unconjugated anti-mouse CD16/32 blocking mAb (clone 95) to
prevent nonspecific staining in the staining buffer. The cell samples were then stained
with fluorescein-conjugated monoclonal antibodies for 20 min on ice. Stained cells were
fixed with BD Cytofix Fixation Buffer (BD Biosciences) for 20 min at 4°C and washed
with the staining buffer. For intracellular staining of TLR3, 7, and 9, fixed cells were
permeabilized using BD Perm/Wash buffer (BD Biosciences) and incubated with anti-
TLR antibody or isotype control IgG1 for 30 min at 4°C. For intracellular staining of
CD5L, cell-surface stained cells were fixed and permeabilized using True-Nuclear
Transcription Factor Buffer Set (BioLegend), incubated with anti-CD5L antibody for 30
min at 4°C, and washed with True-Nuclear Perm Buffer. The stained cells were
incubated with PE-conjugated anti-rabbit 1gG for 30 min at 4°C and washed with True-
Nuclear Perm Buffer. The stained cells were analyzed using an ID7000 spectral cell
analyzer (Sony Biotechnology, San Jose, CA, USA). All data were analyzed using
FlowdJo software (BD Biosciences).

Cell sorting

Cell sorting was conducted using the FACS ARIA 1l Cell Sorter (BD Biosciences). To
purify Ly6C'° and Ly6CM9" splenic monocytes, splenocytes from wild-type and Rnaset2-
'~ mice were incubated with biotinylated anti-mouse CD3 (clone 145-2C11)/CD19 (clone
6D5)/NK1.1 (clone PK136)/Ly6G (clone aA8)/TER-119/erythroid cells (clone Ter-119),
followed by incubation with Streptavidin MicroBeads (Miltenyi Biotec). The magnetically
labeled cells were removed using autoMACS (Miltenyi Biotec), and the enriched cells
were stained with anti-mouse CD45.2, F4/80, CD11b, Ly6C, CD16.2, NK1.1, and Ly6G
mAbs. Ly6C'° CD16.2Md9" and Ly6C"9" CD16.2'° CD11b*NK1.1-Ly6G™ cell populations
were sorted. For sorting of KCs and hepatic macrophages from wild-type mice and
Ly6C'> and Ly6CM9" hepatic macrophages from Rnaset2™'~ mice, liver cells were stained
with antibodies against CD45.2, F4/80, CD317, CD11b, Ly6C, and CD16.2. F4/80*
CD11b'°, F4/80* CD11b", F4/80* CD11b'® CD317" CD16.2'°, and F4/80* CD11b'"
CD317'" CD16.2" cells were sorted as KCs, hepatic macrophages, CD5L'° KCS, and
CD5LMd" KCs, respectively. F4/80* CD11bM Ly6C'* CD16.2" and F4/80* CD11b" Ly6C'°
CD16.2" cells in Rnaset2™'~ mice were sorted as Ly6C'° hepatic macrophages and
Ly6Chigh hepatic macrophages.
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RNAseq analysis

Total RNA was extracted from sorted cells using RNeasy Mini Kits (Qiagen, Hilden,
Germany), and the quality of the RNA was evaluated using an Agilent Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). Samples with an RNA integrity number
value > 7.0 were subjected to library preparation. RNA-seq libraries were prepared with
1 ng of total RNA using the lon AmpliSeq Transcriptome Mouse Gene Expression kit
(Thermo Fisher Scientific) according to the manufacturer's instructions. The libraries
were sequenced with 100-bp single-end reads to a depth of at least 10 million reads per
sample on the lon Proton platform, using an lon Pl Hi-Q Sequencing 200 kit and lon PI
Chip v3 (Thermo Fisher Scientific). The FASTQ files were generated using
AmpliSegRNA plug-in v5.2.0.3 in the Torrent Suite software (v5.2.2; Thermo Fisher
Scientific) and analyzed using the TCC-GUI software. Individual sample reads were
normalized to relative log expression using the DESeq2 R library. DESeq2 was used to
determine the fold changes and p-values. Genes showing > 1.5-fold change in
expression (adjust p < 0.05) were considered significantly altered. To interpret the gene
expression profiles, gene set enrichment analysis (GSEA) was performed using GSEA
4.1.0, with the MSigDB hallmark gene sets. Enriched pathways were determined by
FDR-adjusted p-values < 0.1 To identify the activation transcription factors, over
representation analysis was conducted using Enrich R
(https://maayanlab.cloud/Enrichr/) with ARCHS4 TFs Coexp.

Proliferation assay with EdU labelling

In vitro proliferation assays were conducted using the Click-iT Plus EAU Alexa Fluor 488
Flow Cytometry Assay Kit (Invitrogen), according to the manufacturer’s instructions.
Spleen, liver, and blood samples were collected from the mice. Erythrocytes were then
completely lysed using BD Pharm Lyse lysing buffer (BD Biosciences) to collect
splenocytes and peripheral blood mononuclear cells (PBMCs). Collected cells were
incubated with 1 ug/ml EdU for 1 h. After blocking splenocytes and PBMCs with an anti-
CD16/32 (clone 95) mAb, the samples were stained with fluorescent dye-conjugated
mADbs. The stained samples were subsequently fixed with BD Cytofix (BD Biosciences)
and permeabilized using 1x Click-iT saponin-based permeabilization and washing
reagents. Finally, EAU incorporated into the genomic DNA was stained using the Click-
iT EdU reaction cocktail. EdU-positive cells were detected using the abovementioned
spectral flow cytometer ID7000 (Sony Biotechnology).

Histological analysis

Mouse tissues were fixed in 20% formalin neutral buffer solution. Fixed kidneys were
embedded in paraffin wax for sectioning. Sections were subjected to hematoxylin and
eosin (HE) staining or immunohistochemistry for F4/80 and CD5L and visualized using
an EVOS microscope (Thermo Fisher Scientific).

Biochemical test
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Sera were collected from mice aged 30—45 weeks. Aspartate amino transferase (AST)
and alanine aminotransferase (ALT) levels were measured using the Biochemical
automatic analyzer JCA-BM6050 (JEOL Ltd., Tokyo, Japan) in ORIENTAL YEAST Co.,
Ltd. (Tokyo, Japan)

Platelet and cell counts

Platelet numbers in PBMCs were analyzed using an automatic hematology analyzer
Celltac a (Nihon Kohden, Tokyo, Japan), and cells were counted using an automated
cell counter CellDrop BF (DeNovix, Wilmington, DE, USA).

TLR ligand injection

Each ligand was diluted in PBS. Mice were intravenously administered with lipid A (10
pg/mice), Pam3csk (10 pg/mice), R848 (10 pug/mice), poly(l:C) (100 pg/mice), CpG-B
(10 pg/mice with DOTAP), and Sa19 (2 pg/mice with Lipofectoamine) for two
consecutive days.

Establishment of APAP-induced mouse liver injury

Mice were allowed free access to water but not food for 16 h before the APAP
challenge. APAP was dissolved in PBS containing 10% DMSO. In preliminary
experiments, mice were intraperitoneally administered with an APAP solution at a dose
of 250-750 mg/kg. To determine the survival rate, a dose of 750 mg/kg was
administered. To evaluate liver injury based on serum AST and ALT levels and
neutrophil infiltration into the liver, we selected 500 mg/kg as the APAP dose. For
experimental intervention, mice were intravenously administered with rCD5L (400
pug/mice) at the same time as the APAP challenge; clodronate (25 mg/mice) at 16 h
before the APAP challenge; or Ly6C'® hepatic macrophages from Rnaset2™~ mice
(1x108 cells/mice) 16 h before the APAP challenge.

ELISA

Anti-Sm and anti-SSA/Ro60 antibodies were quantified using an ELISA kit (Alpha
Diagnostic International Inc.). Serum levels of anti-double-stranded DNA antibodies
were measured using a commercial ELISA kit (FUJIFILM Wako Pure Chemical
Corporation, Osaka, Japan), serum IL-10 and CXCL2 levels were measured using a
DuoSet ELISA kit (R&D Systems), and serum IL-6 and TNF-a levels were measured
using a commercial ELISA kit (Thermo Fisher). Serum CD5L levels were measured
using ELISA, as described previously 3.

Data and materials availability

All data, code, and materials used in the analysis must be available in some form to any
researcher for purposes of reproducing or extending the analysis. Include a note
explaining any restrictions on materials, such as materials transfer agreements (MTAS).
Note accession numbers to any data relating to the paper and deposited in a public
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database; include a brief description of the data set or model with the number. If all data
are in the paper and supplementary materials, include the sentence “All data are
available in the main text or the supplementary materials.”
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Fig. 1. TLR13-dependent macrophage accumulation in Rnaset2”- mice

(A) Spleen photograph and splenic weights of WT (wild-type), Rt2-~, Rt2”~ Unc93b1~'-,
Rt27- TIr3"-, Rt2”~ Tir7-"-, and Rt2-"- TIr13~~ mice (n > 8). (B) Percentages of splenic
CD11b* macrophages in WT, Rt27-, and Rt2~~ TIr13”~ mice (n > 5). (C) Dot plots show
the percentages of Ly6C" CD16.2"° classical monocytes and Ly6C'°® CD16.2"
nonclassical monocytes in the spleen of WT and Rt2~~ mice. (D) Percentages of splenic
Ly6CM and Ly6C'° monocytes in indicated mice (n > 8). (E) Percentages of F4/80*
CD11b' red pulp macrophages in the spleen of indicated mice (n > 5). (F) Platelet
counts of indicated mice (n > 8). (G) Liver photograph and liver weights of indicated
mice (n > 10). (H, 1) Dot plots show the percentages of Ly6C" CD16.2'°and Ly6C"
CD16.2" macrophages in indicated mice (n > 8). (J) Immunohistochemistry showing
F4/80 expression in the brain, lung, liver, and kidney of indicated mice. Scale bar, 200
um.
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Fig. 2. TLR13 drives antibiotic-sensitive monocyte proliferation

(A, B) Transcriptome analyses of splenic Ly6Chi (A) and Ly6Clo (B) macrophages.
Gene set enrichment analysis of > 1.5-fold changes in gene expression in Ly6Chi (A)
and Ly6Clo (B) splenic macrophages from Rnaset2—/— mice, compared to that in their
wild-type counterpart macrophages. The bars indicate normalized enrichment scores
(NESs) of hallmarks with FDR < 0.05. (C) Dots show the percentages of Ki67+ cells in
Ly6Chi and Ly6Clo splenic macrophages from indicated mice. The results were
obtained using FACS (n = 7). (D) Dot plots show EdU uptake and the DNA content
(FxCycle violet) in splenic macrophages from indicated mice. The percentages of the S
phase are also shown. (E-G) Percentages of cells at S phase in CD11b+ (E), Ly6Chi
(F), and Ly6Clo (G) splenic macrophages from indicated mice (n = 5). (H) Percentage of
cells at S phase in F4/80+ CD11blo and F4/80+ CD11bhi macrophages from WT mice,
and CD11bhi Ly6Chi and CD11bhi Ly6Clo macrophages from Rnaset2—/— mice (n =
10). (1) Dot plots show spleen weights of WT and Rnaset2—/— mice with or without
antibiotic treatment from 3 to 6 wk of age. (n > 4). (J) Dot plots show the percentages of
S phase in Ly6Chi and Ly6Clo splenic monocytes from indicated mice (n > 4). (K) Dot
plots show the liver weights of indicated mice (n > 4). (L) PCR amplification of bacterial
23S rRNA from indicated bacteria. PCR templates were fecal DNA, serum RNAs, and
macrophage RNAs. Each panel shows the signal from each mouse.
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Fig. 3. TLR13 activates LXRa and Mafb in Rnaset2”- hepatic macrophages

(A) Enrichr analyses to compare Rnaset2”~ with WT Ly6C'° macrophages from the
spleen, and Rnaset2”~ Ly6C'° macrophages with WT CD11b* macrophages from the
liver. (B, C) Bars show reads per million (RPM) of indicated genes in CD11b"
macrophage (Mph) from WT mice, and Ly6C" and Ly6C'° macrophages from Rnaset2-
mice. (D) Mean fluorescence intensity of indicated proteins in Ly6C" and Ly6C"
macrophages from indicated mice. (E) Serum levels of CD5L in indicated mice (n = 4).
(F) Immunohistochemistry of CD5L expression in the liver of indicated mice. Scale bar,
200 um. (G) Dot plots show the mean fluorescence intensity of indicated proteins in
Ly6C'> hepatic macrophages from indicated mice. (H) Serum levels of CD5L in indicated
mice (n = 12). (I) Mean fluorescence intensity of CD5L in Rnaset2~ mice untreated or
treated every other day with vehicle or four times with the LXRa antagonist GSK2033.
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Fig. 4. Resistance of Rnaset2~~ mice to acute liver injury

(A) Survival curve of indicated mice after APAP challenge at 750 mg/kg (n > 11). (B) HE
staining of the liver of indicated mice 24 h after APAP challenge at 500 mg/Kg. Scale
bar, 400 um. (C-G) Dot plots show serum levels of AST (C), ALT (D), CXCL2 (F), and
IL-6 (G) and the percentages of neutrophils (E) that infiltrated the liver in indicated mice
24 h after APAP challenge at 500 mg/kg (n = 4). (H) Survival curve of Rnaset2~~ mice
challenged with APAP at 750 mg/kg. Indicated mice had been intravenously
administered with clodronate at 25 mg/kg 24 h before APAP challenge (n > 4) (I). Serum
levels of AST and ALT in Rnaset2”~ mice with or without antibiotic treatment (n = 5). (J,
L) Survival curve of mice after intraperitoneal administration of LPS and D-Gal at 100
ng/mouse and 12.5 mg/mouse, respectively. Indicated mice intravenously received
clodronate at 25 mg/kg 24 h before administration of LPS and D-Gal (L) (n > 5). (K)
Serum levels of TNF-a in mice who received intraperitoneal LPS injection at 10
pug/mouse 3 h before blood collection (n = 3).
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Fig. 5. TLR13 ligand increases the percentage of KCs in wild-type mice

(A) Histograms show membrane-permeabilized staining of indicated macrophages with
anti-CD5L (red) or isotype-matched (black) antibodies. (B) Dot plots show the
percentages of CD5L" F4/80* CD11b'"° hepatic macrophages in WT mice and TIr13~~
left untreated or treated everyday with the TLR13 ligand Sa19 for 1-4 days (n > 3). (C)
WT mice received one of indicated TLR ligands twice. The percentages of indicated
macrophages and neutrophils in the liver and blood are shown (n > 3). (D) Dots show
reads per million of TLR713 mRNA in indicated macrophage subsets from indicated
mice. (E) Percentages of CD45.1" donor-derived cells in indicated macrophage subsets
in bone marrow chimeric wild-type mice that had been irradiated and administered with
CD45.1" bone marrow cells. Macrophages were untreated (N) or administered twice
with the TLR13 ligand Sa19 (S) (n = 3). (F) Histograms show staining of indicated mice
with antibodies against indicated markers (red) or isotype-matched antibody (black).
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Fig. 6. KCs are similar to hepatoprotective Rnaset2- Ly6C'° macrophages

(A) Cluster analyses of differentially expressed genes between WT CD11b*
macrophages and Rnaset2”~ Ly6C'° macrophages to compare these macrophage
subsets with WT CD5L" and CD5L' KCs (n > 3). (B) Bars show reads per million (RPM)
of indicated genes in indicated macrophages (n > 3).
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Fig. S1 Phenotypes of Rnaset2”~ mice

(A) Percentages of splenic T cells and B cells in indicated mice (n = 8). (B, C) Serum
titres of autoantibodies to SSA, Sm, and dsDNAs in indicated mice (n > 8). (D)
Percentages of CD11c* I-A* cDCs and CD11c* PDCA-1* pDCs in the spleen of
indicated mice (n > 4). (E, F) Percentages of whole blood cells (E) and Ly6C" and
Ly6C'° monocytes (F) in the blood of indicated mice (n > 5). (G) Hb concentration,
hematocrit, and mean corpuscular volume of indicated mice (n > 8).
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Fig. S2 Generation of TIr13-- mice

(A) Schematic representation of gene targeting. The filled and open boxes represent
coding and 3'-untranslated regions of the TIr13 gene, respectively. Neo indicates the
neomycin resistance gene: B, BamH |; and E, EcoR I. (B) PCR analyses with primers
indicated in (A) to determine genotypes of indicated mice. (C) Production of IL-6 and
CCL5 by bone marrow-derived macrophages unstimulated or stimulated with indicated
TLR ligands. Results represent mean values with SD from triplicates.
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Fig. S3 RNA-seq analyses of Rnaset2”~ mice

(A, B, D, and E) Volcano plots displaying log2 fold change of expression (X-axes) and
log10 normalized expression (Y-axes) for the comparisons of splenic Rnaset2~ Ly6C"
macrophages vs. WT Ly6C" macrophages (n = 3) (A); splenic Rnaset2”~ Ly6C"
macrophages vs. WT Ly6C'° macrophages (n > 3) (B); hepatic Rnaset2-~ Ly6CM
macrophages vs. WT CD11b* macrophages (n = 3) (D); and hepatic Rnaset2~~ Ly6C'°
macrophages vs. WT CD11b* macrophages (n = 3) (E). Genes with > 1.5-fold
upregulated and downregulated expression are shown in red and blue, respectively. (C)
Dot plots show the expression of Ki67 and CD16.2 in splenic macrophages from WT
and Rnaset2”~ mice.
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Fig. S4. Gene expression in Rnaset2”~ mice

(A, C, and E) Bars show reads per million (RPM) of indicated genes in indicated
macrophage subsets in the spleen and liver. Mph indicates CD11b* macrophages (n >
3). (B) Mean fluorescence intensity of indicated proteins in splenic Ly6C" and Ly6CM
macrophages from indicated mice. (D) Serum levels of IL-10 in WT, Rnaset2™-, and
Rnaset2™- Tir13”~mice. (n = 12). (F) Dot plots show the percentage of splenic and
hepatic Ly6C'> macrophages in WT mice treated with clodronate (25 mg/mice) at 16 h
prior to analysis.
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Fig. S5. Effect of TLR ligands on hepatic macrophages

(A) Wild-type mice were administered TLR ligands, such as LPS (TLR4/MD-2),
Pam3CSK4 (TLR1/TLR2), poly(l:C) (TLR3), R848 (TLR7), and CpG-B (TLR9), on days
1 and 2. Dot plots show hepatic macrophages in wild-type mice on day 3. (B)

Histograms show staining of TLRs with antibodies against each TLR (red) and isotype-
matched antibody (black).
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Fig. S6. Cell surface marker expression in hepatic macrophage subsets

(A) Mean fluorescence intensity of indicated markers in KCs (blue) and KC2-like
macrophages (red) from WT mice. (B) Red histograms show staining of indicated cell
surface markers; black histograms show staining with isotype-matched antibody.
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