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Abstract

Measuring chromatin accessibility is a powerful method to identify cell types and states.
Performed at single-cell resolution, this assay has generated catalogs of genome-wide DNA
regulatory sites, whole-organism cell atlases, and dynamic chromatin reorganization through
development. However, the limited throughput of current single-cell approaches poses a
challenge for implementing proper study designs, population-scale profiling, and/or very deep
profiling of complex samples. To this end, we developed a 10X-compatible combinatorial indexing
ATAC sequencing (“txci-ATAC-seq”), which is a combinatorial indexing framework that initially
indexes (“pre-indexes”) chromatin within nuclei with barcoded transposases followed by
encapsulation and further barcoding using a commercialized droplet-based microfluidics platform
(10X Genomics). Leveraging this molecular hashing strategy, we demonstrate that txci-ATAC-
seq enables the indexing of up to 200,000 nuclei across multiple samples in a single emulsion
reaction, representing a ~22-fold increase in throughput compared to the standard workflow at
the same collision rate. To improve the efficiency of this new technique, we further developed a
faster version of the protocol (“Fast-txci-ATAC-seq”) that separates sample pre-processing from
library generation and has the potential to profile up to 96 samples simultaneously. We initially
benchmarked our assay by generating chromatin accessibility profiles for 230,018 cells from five
native tissues across three experiments, including human cortex (28,513 cells), mouse brain
(48,997 cells), human lung (15,799 cells), mouse lung (73,280 cells), and mouse liver (63,429
cells). We also applied our method to a club cell secretory protein knockout (CC16™) mouse model
to examine the biological and technical limitations of the mouse line. By characterizing DNA
regulatory landscapes in 76,498 wild-type and 77,638 CC16” murine lung nuclei, our
investigations uncovered previously unappreciated residual genetic deviations from the reference
strain that resulted from the method of gene targeting, which employed embryonic stem cells from
the 129 strain. We found that these genetic remnants from the 129 strain led to profound cell-
type-specific changes in chromatin accessibility in regulatory elements near a host of genes.
Collectively, we defined single-cell chromatin signatures in 384,154 nuclei from 13 primary
samples across different species, organs, biological replicates, and genetic backgrounds,
establishing txci-ATAC-seq as a robust, high-quality, and highly multiplexable single-cell assay
for large-scale chromatin studies.
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Background

Chromatin accessibility measurement has become a widely used method to understand
gene regulation and identify cell types and states. A common technique is the “assay for
transposase-accessible chromatin using sequencing” (ATAC-seq) [1], in which a hyperactive
mutant of the Tn5 transposase inserts sequencing adapters into sterically open (‘accessible’)
regions of chromatin. After mapping the locations of these insertions, the resulting pile-up of
genome-aligned reads identifies loci that are putatively active in gene regulation [1]. Performed
at single-cell resolution (scATAC-seq), this assay has generated catalogs of genome-wide DNA
regulatory sites, dynamic chromatin reorganization through development [2], and whole organism
cell atlases [2,3].

Most modern single-cell methods generate data on hundreds to thousands of cells in
parallel to enable proper characterization of heterogeneous or dynamic cellular systems. Two
general strategies have been developed to generate data at this scale. First, cells can be isolated
into individual reaction vessels - plate wells, microwells, or droplets. This has most commonly
been implemented with microfluidics platforms, such as the commercialized products of 10X
Genomics [4]. Second, iterative split-pool barcoding, as is seen in “single-cell combinatorial
indexing” (sci) strategies, can index single cells while never isolating individual cells during the
molecular reactions [5—7]. However, choosing one of these two approaches requires researchers
to accept tradeoffs in terms of throughput and data quality. Microfluidic approaches generally
have superior data quality, while combinatorial indexing benefits from flexibility, increased
scalability, and cost efficiencies.

One strategy to boost the scalability of microfluidic approaches has been to “pre-index”
cells or nuclei before loading them on a microfluidic device. In this way, aliquots of cells/nuclei are
provided with a specific cellular/nuclear barcode via one of a variety of strategies and then aliquots
are pooled before loading on a microfluidic device. The pre-index can be used along with the
droplet barcode to deconvolute individual cells at the data analysis stage. This allows multiple
samples to be processed in parallel and can enable some “overloading” of the droplets. For
example, a single nucleus barcoding approach (SnuBar) [8] was previously demonstrated to allow
for pre-indexing of nuclei in a scATAC-seq approach. However, individual molecules are not
labeled in this strategy and thus droplets with multiple nuclei could not be discriminated,
somewhat limiting the overall throughput. In another approach, a chimeric single-cell method
combining a droplet-microfluidic system with molecular-level pre-indexing (called “dsciATAC-seq”)
was previously developed, which improved the throughput of the microfluidic platform without
sacrificing the data quality [9]. In this case, because the pre-indexing occurs at the molecular level
(rather than the nuclear level), droplets containing multiple nuclei can still be computationally
deconvoluted. However, this large-scale, single-cell approach was not developed for the 10X
platform, which is more widely used for single-cell data generation. Here we demonstrate a
method that takes advantage of the benefits of both combinatorial indexing and microfluidic
assays by combining 96-well plate-indexed tagmentation with 10X Gel Bead-In EMulsions (GEM)
encapsulation to substantially improve the throughput of the 10X platform by overloading nuclei
and enabling the multiplexing of up to 96 samples in a single reaction (Fig. 1a). We call this
method 10X-compatible (or TenX-compatible) Combinatorial Indexing ATAC-seq (txci-ATAC-seq).
We use this strategy to generate up to 200,000 cells in a single 10X reaction (~22-fold increase
in cell throughput as compared to the standard 10X Chromium scATAC-seq at a constant collision
rate) and apply it to study the heterogeneity of chromatin accessibility in five primary samples,
including human and mouse brain, human and mouse lung, and mouse liver, demonstrating the
robustness of this approach. The scalability and flexibility of txci-ATAC-seq make it suitable for
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single-cell atlas efforts, population-scale studies, and experiments implementing replicates and
proper study design.

Results

Coupling droplet-based microfluidics with indexed transposition enables the overloading
of nuclei

In order to implement a strategy analogous to dsciATAC-seq [9] on the 10X platform, we
first conducted a pilot experiment, tagmenting nuclei using 96 barcoded Tn5 reactions (similar to
our previous sci-ATAC-seq workflows [5]) followed by pooling all nuclei and processing samples
through a largely unmodified standard 10X workflow (except that we overloaded the sample with
75,000 nuclei in a lane instead of the recommended 15,300 maximum capacity). The single-cell
resolution and the degree of barcode collisions (i.e. instances where one barcode represents the
contents of two or more cells) were evaluated using a “barnyard” experiment in which we mixed
human and mouse nuclei - using either cell lines (human GM12878 nuclei mixed with mouse
CH12.LX nuclei) or tissues (human lung nuclei mixed with mouse lung nuclei). Two mixing
strategies were designed on the same 96-well plate: the nuclei from the two species were either
pooled during tagmentation (“true barnyard”, which was used to reflect the rate of detected
collisions caused by both pre- and post-pooling events) or after the tagmentation reaction
(“pseudo-barnyard”, which was used to reflect the rate of detected collisions caused by post-
pooling events only) (Fig. S1a). A mixed species experiment such as this (Fig. 1b) allows for an
accurate estimation of collision rate since each index is expected to align uniquely to either the
human or mouse reference genome. Indexes with cross-alignment indicate collisions and allow
us to empirically scale cells loaded during droplet formation. The tagmentation reactions were
performed with either a modified version of the “Omni” ATAC-seq protocol [10] or the 10X protocol
(See Methods). After performing indexed tagmentation on a 96-well plate and pooling all nuclei,
75,000 nuclei from the pool were loaded onto a single 10X lane. The sample and cell-specific
information of the resulting libraries was deconvoluted using the combination of three barcodes
introduced during the workflow: a PCR barcode (i7) used to distinguish different lanes of the 10X,
a GEM barcode introduced in the droplet, and a Tn5 barcode introduced during tagmentation (Fig.
1a). Unexpectedly, regardless of barnyard type (true vs pseudo), the initial experiment exhibited
an extremely high collision rate (including estimated homotypic doublets [11]), i.e. 46.0% in a true-
barnyard experiment mixing two cell lines, 44.4% in a pseudo-barnyard of cell lines, and 40.1%
in a true barnyard mixing lung tissues (Fig. S1b). We also tested a second tagmentation buffer
(provided in the 10X kit), but obtained similar results (47.4% estimated collision rate with a true
barnyard of cell lines). However, limiting our measurement to GEMs with a single-Tn5 barcode
demonstrated a remarkably reduced collision rate across all tested samples and buffers (4.7%,
3.3%, 4.4%, and 8.6% for the true barnyard of cell lines, pseudo-barnyard of cell lines, true
barnyard with 10X buffer, and true barnyard with lung tissue, respectively). These results
suggested that most multiplets were not arising from pre-pooling events, but instead were a
consequence of cross-contamination due to Tn5 barcode swapping within droplets (Fig. S1c).

We tested three different strategies to eliminate this apparent in-droplet barcode-swapping
(Fig. S1d; see Methods for details): (1) adding a second round of tagmentation with an additional
(unamplifiable) duplex DNA prior to pooling to exhaust excess Tn5 (“Decoy DNA”); (2)
supplementing the GEM reaction with a blocking oligo containing a reverse complement
sequence of the Tn5 adaptor and an inverted dideoxythymidine (“dT”) at the 3’ end to inhibit the
use of free Tn5 adaptors as amplification primers (“Blocking oligo”); or (3) supplementing the GEM
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reaction with another primer to enable exponential amplification instead of linear amplification in
the droplet PCR (“SBS primer”) with the goal of outcompeting barcode-swapping. To facilitate
better optimization of experiments in overloaded droplets without imposing a significant burden of
sequencing for each condition tested, we also developed a method to sample a subset of droplets
after in-droplet amplification. To do so, we took 10% of the volume of droplets immediately after
amplification (but before breaking the droplets) and processed both the 10% sample and 90% in
parallel (Fig. 1b). In this way, we could first sequence 10% of the loaded cells to evaluate data
quality and subsequently sequence the remaining 90% if warranted. We then tested all three
strategies head-to-head (Fig. S2a) and used a conservative cutoff of 1000 reads to identify cells
for all conditions (Fig. 1c, Fig. S2b). While all three tested strategies mitigated some of the
barcode swapping, we found that the SBS primer was most efficient - reducing the estimated
collision rate of cell lines from 46.0% to 6.6% in the true barnyard and resulting in no collision
cells observed in the pseudo-barnyard wells (Fig. 1d, Fig. S2c). Similar results were also seen in
the lung barnyard (Fig. S2c), with a collision rate of 11.1% for the true barnyard and only a single
collision observed in the pseudo-barnyard when spiking in the SBS primer (data not shown). We
also used the fraction of reads mapping to the ENCODE-defined DNase | hypersensitive sites
(FRIDHS) and the estimated library complexity (see Methods for calculations) to evaluate the
performance across all three blocking conditions. Considering the data generated for cell lines,
we found that the SBS primer provided the highest FRIiDHS scores (a median of 61.5% for mouse
cells and 60.3% for human cells, Fig. 1e and Fig. S2d) and a comparable complexity (a median
of 25,504.1 for mouse and 27,298.6 for human, Fig. 1e) with Decoy DNA but a higher complexity
than Blocking oligo (Fig. S2e). Coherent trends were also observed in the lung tissues (Fig. S2d,e).
Interestingly, the SBS primer strategy also caused a shift in the fragment size distribution relative
to the other conditions, indicating the exponential amplification of GEM reactions is biased toward
small fragments given the same number of amplification cycles (Fig. S2f). A reduced number of
cycles in droplet PCR, however, can partially recover the large fragment sizes (data not shown).
Nonetheless, by optimizing this hybrid protocol of barcoded transposition followed by GEM
amplification, we successfully developed a novel protocol that enables multiplexing of multiple
samples and unbiased profiling of chromatin accessibility at extremely high throughput on the 10X
Genomics platform. Having established a working protocol, we next sought to apply it to complex
tissues to evaluate the assay’s performance. Below, we described the results from five primary
samples.
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Figure 1. txci-ATAC-seq generates high-quality single-cell ATAC libraries at high throughput. a)
Schematic of molecular details of txci-ATAC-seq library generation. b) Experimental workflow for txci-
ATAC-seq barnyard library generation. After 96-plex tagmentation, nuclei are overloaded on a 10X
Chromium microfluidics device. Following nucleus encapsulation in the formed droplets, 10% of the GEMs
can be used for quality control and the remaining 90% for data analysis. c-e) txci-ATAC-seq QC metrics for
human (GM12878) and mouse (CH12) cell lines supplemented with SBS primer during in-droplet PCR. c)
“Knee” plot showing the unique reads (log1o scale) against the rank of each barcode (log1o scale) ordered
from most unique reads (left) to least (right). The dashed line indicates the threshold (1000 reads) used to
identify cell barcodes (orange points). d) Scatter plots showing the number of unique reads mapped to
either the human or mouse genome for both true and pseudo-barnyard experiments. Values were log1o-
transformed after adding a pseudo-count of 1 to all values. The percentage shown in the true barnyard
panel (6.6%) represents the estimated collision rate. e) Scatter plots showing the FRIDHS against the
estimated complexity for each cell barcode detected as either mouse (blue) or human (red) cell. The
estimated complexity is shown on a log1o scale.
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Profiling chromatin accessibility of human and mouse brain tissue

To evaluate the performance of txci-ATAC-seq in complex tissues, we initially generated
chromatin accessibility profiles for human cortex and mouse whole brain samples using a true-
barnyard scheme with two separate experiments to test nuclei inputs of 25,000 (~1.5X the
maximum recommended input) and 75,000 (~4.5X the maximum recommended input) on the
microfluidic device (see Methods). Libraries were sequenced to an average depth of 45,622
unique reads per cell, with an estimated saturation rate of 60.3% unique reads (Fig. S3a). We
observed an estimated collision rate of 0.6% and 1.3% in the 25,000 and 75,000 inputs,
respectively (Fig. S3b), which resulted in a ~24-fold increase in the throughput of a standard 10X
workflow at a comparable collision rate. A majority of droplet barcodes were assigned to a single
10X nucleus barcode, with 78.94% and 60.38% of droplets containing a single nucleus for 25,000
and 75,000 nuclei loadings, respectively (Fig. S3c). Overall, we captured 17,257 and 61,171 cells
for the 25,000 and 75,000 nuclei loadings, respectively (Fig. S3d). To understand sample
complexity, dimensionality reduction [12] and clustering [13] were performed on the human (Fig.
2a) and mouse (Fig. 3a) cells separately. We also identified and removed cryptic doublets within
species to filter out the barcode collisions passing our initial species alignment filter (Methods)
[14]. We generated gene activity scores (akin to a surrogate for gene expression) using cis-co-
accessibility networks (CCANs) anchored on promoter regions [15]. A label-transfer algorithm
then assigned cell types in comparison to published RNA datasets [16—18]. The high percentage
of cells assigned to the same RNA-defined cell type per cluster supported the specificity of the
label-transfer approach (Fig. S3e,f). We corroborated the assigned labels by examining the
cluster-wise mean gene activity scores for canonical RNA markers of cell types (Fig. 2b and Fig.
3b) [19,20]. We next sought to define marker transcription factors (TFs) per cluster de novo by
implementing an average “area under the curve” (AUC) value [21] across both gene activity and
motif accessibility [22] scores in the human cortex (Fig. 2c). This approach allows for either gene
activity or motif accessibility to be informative. For example, we found that the two human
inhibitory neuron clusters could be distinguished by gene activity of LIM Homeobox 6 (LHX6),
while motif usage differences between them were not significant and the motif is most accessible
in astrocytes. In this case, the lack of distinction in motif usage is likely driven by other TFs of the
LIM family that share a very similar motif, such as LIM Homeobox 2 (LHX2).


https://doi.org/10.1101/2023.05.11.540245
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.11.540245; this version posted May 14, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a C Gene Activity AUC Marker Score
TF Motif AUC Marker Score
£, 0 ExN AUC Marker Gene Activity Motif Accessibility
Pt ; Score = . - | . I Cell Type
¥ y i . —RUNX2 (00,
£y i o a —FLM Ac(‘;{ﬁ\%“,
: 1 Normalized —ree ol
@ o CE) Gene Activity T —
& [ . —IRF5 T
. ] 1o = N
4iN h o TTC;:AL‘
P e (&} 4;«;-‘&1»
G5 7":\' Normalized S
Motif Score %00 Aéﬁf
3iN m—=" T
1 il
il
' 3iN I
N 7 NonN 4iN C&AET%}
o .
< 5 Micro.PVM o
) 7 NonN Y(\AﬁA
UMAP 1 5 Micro.PVM ATl
TATCeatdT
Wliaths
CATTA
b LaceTt,
soATTA
[ T 1 1T ——= | CMéTTTA
o AT 1L1 aln
GF) Al
- MF —Emx2  pflik
SLC —POU4F1 1 lurh
|| FLT1 —LBX2 ATTA
o Endol I ™ IHNNENES v
(0] GAD —TBR1 ATl
< LHX —NEUROD2_ (414"
o CAURS “weont Ll
s GABA P —TEADA Il
—MEIS3 |, 1(ACA
2 O i
> —PKNOX2 (kT TCh
- || EIIE% —SOX15 \iﬂj
= - —POU4F3
®  Glu Bap: —powr2 I,
O | 88% —NKX6-3 _olTTh.
— —NRL . 100k
8 - RASG —os A
= —DLX6 <sAITA
[ . FYB
—VAX1 xalTua
s veo NN
(1] PAL. —POU4F2  Tgulia
@) (F')RO —eex2 Ik
OLIG1 —SOX2 AT
MI\?PBE 4 —soxt2 il
DLRAP1 —NFIB i

QU
2
(k]
0

>

—SO0X13

Figure 2. Cell type identification and marker assessment in human cortex sample. a) UMAP
projection of human cortex nuclei (n = 28,663). Nuclei are colored by their predicted cell type. b) Heatmap
of z-scored average gene activity score per cluster for canonical markers from Brain Map datasets. Astro:
astrocytes; Endo: endothelial cells; ExN: excitatory neurons; GABA: GABAergic; Glu: Glutamatergic; iN:
inhibitory neurons; Micro: microglia; Micro.PVM: microglia and perivascular macrophages; NonN: Non-
neuronal; Oligo: oligodendrocytes; OPC: oligodendrocyte progenitor cells. ¢) De novo determination of TF
marker genes through chromatin accessibility-derived gene activity (left) and TF motif usage (right). Z-
scored average gene activity score and TF motif usage per cluster are plotted for the top 10 markers
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within each cluster. TF markers are ranked by AUC reported from one vs. rest Wilcoxon rank sum test. TF
motifs are shown on the right as SeqLogos alongside heatmap rows.

Since the mouse brain is a commonly profiled benchmark tissue of scATAC-seq methods,
we compared our data to publicly available datasets for combinatorial indexing (snATAC-seq [23],
sCi-ATAC-seq [24], sci-MAP-seq [24], and s3-ATAC-seq [25]) and droplet-based (dscATAC-seq
[9], 10X scATAC-seq v1 [26] and v2 [27]) chemistries. With all datasets merged we uncovered a
unified peak set of 344,258 features of open chromatin in the mouse brain. txci-ATAC-seq
performed comparably to the other technologies in terms of the fraction of reads in peaks (FRIP)
(Fig. 3c) and transcription start site (TSS) enrichment at the level of individual cells (Fig. 3d),
demonstrating the fourth-best FRiP (out of 8) and the fourth-best TSS enrichment. Notably, we
observed that reducing the number of cycles used for in-GEM ampilification (to 6 cycles) recovered
the full spectrum of insert sizes in brain samples compared to the other techniques (Fig. S3g).
We suspect that the different cycle numbers may explain the fragment size distribution previously
observed with cell lines and lung samples as well (Fig. S2f). Estimating unique reads given a
constant sequencing depth per cell (Fig. S3h), we noted that txci-ATAC-seq fell between the high-
content ATAC-seq preparations (such as 10X scATAC-seq v2 chemistry or s3-ATAC-seq) and
combinatorial methods (like snATAC-seq and sci-ATAC-seq). Also, txci-ATAC-seq integrated
readily with other technologies on the unified peak set, with the exception of a notable increase
in granule cells (Fig. 3e), potentially reflecting a higher concentration of cerebellum tissue during
initial brain dissociation. Overall, txci-ATAC-seq enabled detailed epigenomic characterization of
cell types in brain tissues, including the de novo definition of marker TFs by leveraging a
combination of gene activity and TF motif usage. In tissue-matched comparisons across
technologies, we found that txci-ATAC-seq performed equivalently in quality control metrics of
library complexity and ATAC signals.
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Figure 3. Cell type identification and marker assessment in mouse whole brain sample. a) UMAP
projection of mouse brain nuclei (n = 49,765). Nuclei are colored by their predicted cell type. b) Z-scored
average gene activity score per cluster plotted as a heatmap. Clusters are arranged by hierarchical
clustering. Marker sets are from Brain Map marker genes. c) Boxplots of FRIP per technology using a
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unified peak set. Numbers over the boxplot reflect the fold-change of medians in comparison to txci-ATAC-
seq. d) Boxplots of transcription start site (TSS) enrichment across technologies. Numbers over the boxplot
reflect the fold-change of medians in comparison to txci-ATAC-seq. e) Harmony integrated UMAP projection
of technologies (n = 75,845).

Profiling chromatin accessibility of liver and lung tissue

To test the robustness of this strategy in different biological contexts, we multiplexed
mouse liver and lung samples on a single 96-well plate with two replicates for each tissue (Fig.
4a). The last two rows of the plate were set up as a true-barnyard design by mixing mouse nuclei
with human lung nuclei to estimate the internal collision rate for each sample. Two loading inputs
(100,000 and 200,000 nuclei per lane) were tested and sequenced separately. Using a
conservative cutoff of 1,000 reads to define a bona fide cell barcode (Fig. S4a,b), we recovered
67,251 (67.3%) and 104,987 (52.5%) nuclei from the 100,000 and 200,000 inputs, respectively
(Fig. 4b). Since these libraries were sequenced to an average depth of 6,418.9 and 4,014.8
unique reads per cell for the 100,000 and 200,000 input libraries respectively (21.4% and 14.7%
saturated, Fig. S4c,d), the slightly lower recovery rate observed for the 200,000 nuclei input may
be due to the lower per-cell sequencing depth resulting in some likely cells failing to pass the read
depth threshold (Fig. S4b,d). Collision rate estimates showed that pushing the loading throughput
from 100,000 to 200,000 nuclei only raised the average rate from 3.6% to 4.4% (Fig. 4c). Overall,
these libraries increased the yield of usable nuclei by nearly 22-fold in comparison to the standard
10X Chromium scATAC-seq at the same collision rate. While the collision rate appeared to be
tissue-dependent within this experiment (with an average of 3.4% for liver and 4.6% for lung), the
fold increase in the number of cells that could be processed at a 10X-equivalent collision rate
aligned well with what we observed in brain tissues. In addition, we again compared a series of
quality metrics between our txci-ATAC-seq data and previously obtained sci-ATAC-seq data on
the same tissues [3] and demonstrated that the data generated with txci-ATAC-seq had a
substantially higher quality than the original combinatorial indexing assay (Fig. 4d-f): the median
FRIDHS increased from 25.5% to 56.5% for liver and from 22.8% to 53.0% for lung; the median
TSS enrichment score increased from 2.5 to 4.5 for liver and from 3.2 to 5.1 for lung; the median
complexity increased from 16,472.2 to 25,338.4 for lung while it decreased from 33,123.4 to
21,362.2 for liver. After filtering out low-quality nuclei and putative doublets (see Methods), we
generated chromatin accessibility profiles for 152,508 primary cells, including 73,280 mouse lung
nuclei, 63,429 mouse liver nuclei, and 15,799 human lung nuclei (59,348 of the nuclei recovered
from the 100,000 input library and 93,160 of the nuclei recovered from the 200,000 input library).

To dissect the diverse chromatin landscapes present in these heterogeneous tissues, we
performed an iterative peak calling and clustering method to parse out the distinct cell populations.
In brief, we called peaks on aggregated reads for all cells, scored individual cells for insertion
events in these reference peaks, and then carried out dimensionality reduction and cluster
identification using Seurat [28]. A second round of peak calling was performed on cells from each
cluster separately, and the peaks identified for all clusters were then merged and used as a
reference set to perform dimensionality reduction again and re-cluster the cells. The associated
cell type for each cluster was predicted by label transfer using previously published single-
cell/single-nucleus RNA-seq (scRNA-seq/snRNA-seq) and sci-ATAC-seq datasets from mouse
lung tissue (Fig. S5; [3,29]), mouse liver tissue (Fig. S6; [3,30]) and human lung tissue (Fig. S7;
[31-33]). The predicted labels were further manually curated according to the top gene activity
scores (by summing the read counts in gene bodies and promoters [16]) measured in each cluster.
As a result, we identified 24 clusters representing distinct cell types in mouse lung tissue (Fig. 49)
and 7 clusters in mouse liver tissue (Fig. 4h). Even relatively rare cell types such as goblet cells
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(1335 cells,1.8% of total), pericytes (833 cells, 1.1% of total), and myofibroblasts (366 cells, 0.5%
of total) in mouse lung tissue were identified, in contrast to the previous sci-ATAC-seq atlas. To
evaluate the performance of txci-ATAC-seq in cell type prediction, we randomly subsampled
(without replacement) our mouse lung data to have the same number of cells as that in sci-ATAC-
seq 1,000 times and ran cell type prediction using label transfer. As compared to the combinatorial
indexing assay, txci-ATAC-seq exhibited improved prediction accuracy (Fig. S8). Further
validating our approach in human lung tissue, we identified 9 distinct clusters (Fig. S9a) and found
that the human lung nuclei exhibited consistent clustering (Fig. S9b) and data quality (Fig. S9c-
e), regardless of which mouse sample they were mixed with in the barnyard experiment. In
addition, while we did observe some stratification of mouse hepatocytes according to the
individual mouse replicate, no other cell type showed evidence of batch effects (Fig. S10).
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Figure 4. txci-ATAC-seq generates high-quality single-cell ATAC-seq data on multiple tissues in
parallel at scale. a) Well assignment showing the multiplexing of primary samples. Rows 7 and 8 provide
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an estimate of the empirical collision rate for each sample by mixing human lung nuclei with mouse nuclei
isolated from each corresponding tissue. b) The number of nuclei (with a cutoff of 1000 reads) recovered
at each loading input. The colors denote the samples multiplexed for each 10X reaction. c) The estimated
collision rate of each mouse sample when loading either 100,000 or 200,000 nuclei. The filled circle and
triangle indicate the mouse liver and lung tissues, respectively. The error bar shows the standard error and
the black point represents the sample mean at each input. The same samples between the two loading
inputs are connected by a gray dashed line. d-f) The comparison of quality metrics between sciATAC-seq
and txci-ATAC-seq for each cell in mouse lung and liver tissue. The (d) FRIDHS, (e) TSS enrichment score,
and (f) estimated complexity (on a log1o scale) indicate the performance of single-cell ATAC-seq methods.
The numbers over the violin plots reflect the fold-change in median compared to txci-ATAC-seq. g) UMAP
visualization of mouse lung nuclei (n = 73,280) integrating two replicates across two loading inputs. Nuclei
are colored by their predicted cell type. h) UMAP visualization of mouse liver nuclei (n = 63,429) integrating
two replicates across two loading inputs. Abbreviations: AM, alveolar macrophages; AT1, alveolar type 1
epithelial cells; AT2, alveolar type 2 epithelial cells; avlEC, arterial/venous/lymphatic endothelial cells; B/T
sub, B and T cell subpopulation; cEC, capillary endothelial cells; Col13+FB, collagen type XlIl a 1 chain
positive fibroblasts; Col14+FB, collagen type XIV a 1 chain positive fibroblasts; DC/IM/cMono, dendritic
cells/interstitial macrophages/classical monocytes; EC, endothelial cells; EPC, epithelial progenitor cell; GB,
germinal B cells; Hep, hepatocytes; HPC/Cho, hepatic progenitor cells/cholangiocytes; KC/Mono, Kupffer
cells/monocytes; intFB, interstitial fibroblasts; ISEC, liver sinusoidal endothelial cells; Lym, lymphocytes;
Mes, mesothelial cells; MyoFB, myofibroblasts; ncMono, nonclassical monocytes; Peri, pericytes; SMC,
smooth muscle cells, VEC, venous endothelial cells.

Development of Fast-txci-ATAC-seq to improve multiplexing capability

While txci-ATAC-seq enables multiplexing of multiple samples, processing dozens or
hundreds of samples in a single experiment is still laborious. To further increase the multiplexing
capability of our method, we developed a “faster” protocol for txci-ATAC-seq (Fast-txci-ATAC-seq)
by performing the transposition reaction directly on frozen nuclei, which enables freezing nuclei
on a 96-well plate or in 8-tube strips sequentially over time and then performing barcoded
transposition immediately upon thawing the nuclei. To evaluate the performance of the faster
version of our protocol, we applied it to mouse lung nuclei that were isolated from either wild-type
(WT) or club cell secretory protein deficient (CC16™) mice with three replicate lungs for each
genotype. The standard txci-ATAC-seq was also performed on the same samples separately.
CC16 is a secreted protein encoded by the Scgb7a1 gene that is produced predominantly by club
cells, an epithelial cell type of the airways. This “pneumoprotein” plays an important role locally in
protecting the lung against oxidant injury [34] and inflammatory diseases, such as asthma [35]
and chronic obstructive pulmonary disease (COPD) [36]. It has also been linked with more
systemic effects on human health as evidenced by its association with overall cancer risk [37].
After processing and pooling all samples for each protocol (Fig. S11a), we loaded 50,000 and
100,000 nuclei on the 10X Genomics platform for Fast-txci-ATAC-seq and used 100,000 and
200,000 nuclei as inputs for the standard assay. The removal of low-quality nuclei and predicted
doublets resulted in similar recovery rates between the two protocols with 44.3% nuclei (10,937
WT nuclei and 11,213 CC16™ nuclei) at the 50,000 input and 43.6% nuclei (21,688 WT nuclei
and 21,961 CC16™ nuclei) at the 100,000 input for the faster protocol, compared to 50.0% nuclei
(24,962 WT nuclei and 25,011 CC16™ nuclei) at the 100,000 input and 52.1% nuclei (51,536 WT
nuclei and 52,627 CC16™ nuclei) at the 200,000 input for the standard txci-ATAC-seq (Fig. S11b).
An examination of QC metrics demonstrated that both assays can provide high-quality single-cell
data despite a slightly lower complexity observed in the faster version (Fig. S11c-e). Using the
iterative clustering strategy and label transfer with a scRNA-seq reference, we identified 23
distinct cell clusters in mouse lungs profiled by the standard txci-ATAC-seq (Fig. 5a) and then
used them to further annotate the Fast-txci-ATAC-seq lungs. The joint embedding of both assays
revealed that the faster protocol recapitulated the mouse lung heterogeneity in chromatin
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accessibility characterized by the standard protocol (Fig. S11f) with minimal batch effects (Fig.
S119).

Cell-type-specific regulation of chromatin accessibility in CC16” mouse lungs

We next used the cells profiled by the standard assay to explore meaningful differences
in chromatin accessibility between WT and CC16” mice. We were initially interested to identify
differences of biological import, including 1) chromatin accessibility of the Scgb7a? locus being
restricted to club and goblet cells (Fig. S12a), 2) significantly differentially accessible peaks across
a variety of cell types (Fig. 5b; Table S1) - many of which were only identifiable at such high
throughput (Fig. S12b,c) - 3) some evidence for potential autoregulation of CC16 (Fig. 5¢ and Fig.
S12d), and 4) differential peaks enriched for TF motifs (Fig. S13a,b; Table S2) and molecular
pathways (Fig. S13c; Table S3). However, we also noted an unexpected number of differential
peaks in two genomic loci on chromosomes 8 and 19 (Fig. 5d and Fig. S13d). While the Scgb1a1
gene is located on chromosome 19 (mm10 chr19:9,083,636-9,087,958), this chromosome-
specific enrichment of differential peaks was unexpected. To better understand the concentration
of signal in these two loci, we carried out variant calling on the ATAC-seq data and identified
5,909 single nucleotide variants (SNVs) differing from the reference genome in WT samples and
50,054 SNVs in CC16™ samples (Fig. S13e). The vast majority of SNVs in the CC16™ samples
were located in two hotspots (Fig. 5e) on chromosome 8 (n = 37,822; 75.6%) and chromosome
19 (n = 5,610; 11.2%), essentially perfectly matching the locations where the differential peaks
were identified. To trace the origin of the CC16™ SNVs, we further mapped the hotspot SNVs to
the single nucleotide polymorphism (SNP) profiles that were previously defined in 36 different
mouse strains relative to the C57BL/6J mouse reference genome [38]. Almost all of our identified
SNVs matched to the SNPs identified in the three 129 strain references (Fig. 5f) on chromosome
8 (an average of 96.3% of SNVs matched the SNPs defined in each of the 129 strains) and
chromosome 19 (an average of 96.6% SNVs matched the SNPs defined in each of the 129
strains). Given that the CC16™ mice were generated using 129-derived embryonic stem (ES) cells,
we conclude that the hotspot SNVs are remnants of the 129 genome, a common problem with
knockout models [39]. Notably, we found ~90% of SNVs residing in intronic and intergenic regions
for both WT and CC16™ samples (Fig. S13f), suggesting ATAC-seq may have been a particularly
powerful choice of assay for capturing such genetic variation and thus may serve as a cost-
effective alternative to whole genome sequencing in genotyping knockout models.

Although the SNV-driven phenotype confounded the analysis of Scgb7a1 effects, it
provided an opportunity to explore the extent and mechanism by which genetic variants can
modulate chromatin accessibility, even in a cell-type-specific manner. To this end, we took all the
peaks that were differentially accessible in the hotspot regions (413 peaks) and looked for TF
motifs that were gained or lost due to SNVs. The functional motifs were defined as those whose
chromatin accessibility exhibited a significant positive or negative correlation with the gain or loss
of the motif in the knockout mice relative to the WT mice. We identified 42 functional motifs and
found that gaining the motifs for the transcriptional activators, e.g. certain members of the nuclear
factor | (NFI) family and the ETS-domain family, tended to increase chromatin accessibility (Fig.
5g and Fig. S14a). On the other hand, gaining a repressor motif, such as motifs for the Snail and
Scratch families, was likely to reduce chromatin accessibility (Fig. 5g and Fig. S14b). Finally, we
investigated whether there were cell-type-specific enrichments for specific functional motifs being
gained or lost (Fig. 5h). We observed that gains and losses of NFI TFs, including NFIB,
NFIC::TLX1, and NFIX (var.2), were highly enriched in both Col13" and Col14" fibroblasts and
similarly, gains and losses of the ARID3A motif, which is required for B cell lineage development
[40], was highly enriched in differential peaks in B cells. In sum, functional motifs being gained or
lost were able to account for a substantial number of differentially accessible peaks observed in
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the SNV hotspot regions in different cell types - ranging from 35.7% of differentially accessible
peaks from the regions for B cells to 75% of differentially accessible peaks from the regions for
goblet cells (Fig. 5h).
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Figure 5. Chromatin accessibility dynamics induced by CC16 deficiency and genetic variants. a)
UMAP visualization of WT and CC167 mouse lung nuclei (n = 154,136) across two loading inputs by
integrating 6 animals with 3 replicates from each group. Nuclei are colored by their predicted cell type. The
abbreviation of cell labels was described in Fig. 4 except for aEC (arterial endothelial cells), Endo-like
(endothelial-like cells), and Epi-like (epithelial-like cells). b) The number of differential peaks identified
between CC167- and WT samples for each cell type. The blue bars indicate the peaks less accessible in
the knockout samples and the red bars represent the more accessible peaks. c) Aggregated chromatin
accessibility surrounding the Scgb7a1 (CC16 gene) locus in club and goblet cells per sample. The
aggregated accessibility signal for each sample was normalized by the scaling factor that was computed
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as the number of cells in the sample multiplied by the mean sequencing depth for the cells in that sample.
The WT tracks are labeled in blue and the knockout ones are in red. The genomic regions for the
significantly less accessible peaks identified in CC167 samples per cell type are highlighted by green shade
(5 peaks in club cells and 2 peaks in goblet cells). The associated adjusted p-value is shown above the
tracks at their corresponding peak region. Adjusted p-values less than 0.0001 are given four asterisks. The
peak annotation for the promoter region of Scgb7a1 is colored red. d) Chromosomal distribution of the
midpoint of differential peaks identified on chromosomes 8 and 19 with the genomic location and density
estimate plotted on the x- and y-axis, respectively. €) Chromosomal distribution of SNVs identified on
chromosomes 8 and 19 for both WT (blue) and CC16™ (red) samples. The regions between the dashed
lines indicate the SNV hotspots where the knockout samples exhibited a substantially higher number of
SNVs than WT samples. The y-axis shows the Phred-scaled quality score generated by BCFtools. f)
Heatmap showing the Jaccard similarity between the hotspot SNVs identified in CC167 lungs and the SNPs
derived from 36 different strains on chromosome 8 (lower triangle) and 19 (upper triangle). g) “Functional”
motifs for which gains or losses of the motif instances are associated with significant changes in chromatin
accessibility. The motifs associated with increased chromatin accessibility (“opening”) are shown in red and
those associated with decreased chromatin accessibility (“closing”) are colored in green. The y-axis
represents the Student’s t-test statistic value. Two motif families (one for transcriptional activators and one
for transcriptional repressors) are highlighted on the x-axis. h) Cell-type-specific enrichment for the motifs
that explain chromatin accessibility changes in SNV hotspots. The bar plot next to the enrichment heatmap
shows the total number of differential peaks located in the SNV hotspots for each cell type, which is stratified
by the peaks that can be explained by the SNV-driven difference in motif presence (red) and unexplained
peaks (blue). The values next to the bars denote the percentage of peaks explained. Only the cell types
with more than 10 differential peaks identified in the SNV hotspots are shown.

Discussion

Limited throughput, prohibitive cost, and variance between batches have put some
limitations on the implementation of single-cell techniques, which nonetheless are proving
invaluable resources for studying health and disease. To reduce those limitations, we paired
combinatorial indexing with a droplet-based microfluidic system to substantially increase the
scalability of the commercial single-cell device by loading up to 200,000 nuclei in a single emulsion
reaction. In addition, a “faster” version protocol was developed, which greatly expedited sample
processing and improved the multiplexing capability. The scalability and flexibility allow txci-
ATAC-seq to establish unbiased regulatory definitions across various disease, genetic, and/or
environmental states. Other strategies do exist for multiplexing samples on microfluidic single-cell
platforms, such as membrane barcoding-based approaches that tag cellular or nuclear membrane
components [41-43] and genetic deconvolution of samples [44]. However, those methods index
at the cellular/nuclear level and so the scalability is restricted by the maximum number of singlets
that can be generated because multiplets cannot be deconvoluted. Conversely, the molecular
indexing strategy used in our design along with that previously implemented on a different
commercial instrument (dsciATAC-seq) [9] and on RNA profiling (scifi-RNA-seq) [45] allows for
multiplets to be deconvoluted, resulting in the ability to load substantially more nuclei per lane and
therefore provide larger-scale sample multiplexing and increased cost savings. Because a range
of nuclei inputs was tested in this study, we also computed the number of droplets containing a
single Tn5 barcode to estimate the number of singlets recovered at each input. We found that the
number of singlets peaked around the 100,000 nuclei input level with an average of 26,402 single-
nucleus droplets generated (Fig. S15). This represents the maximum empirical yield for single-
cell multiplexing techniques based on cellular indexing, such as “cell hashing” [41,42], MULTI-seq
[43], and SnuBar [8]. In contrast, our molecular indexing approach yielded 17,257 deconvoluted
nuclei at the 25,000 input, 34,568 deconvoluted nuclei at the 50,000 input, 61,171 deconvoluted
nuclei at the 75,000 input, an average of 68,216 deconvoluted nuclei at the 100,000 input and an
average of 128,334 deconvoluted nuclei at the 200,000 input. Given our results and the reported
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metrics for scifi-RNA-seq [45], we are confident that an even higher throughput is achievable with
txci-ATAC-seq (even more so if one were to leverage 384 barcoded transposition reactions).
Furthermore, the recently reported multi-omic approach, ISSAAC-seq [46], could also potentially
benefit from this framework, by integrating the same tagmentation strategy applied here with an
initial step of in situ reverse transcription, to generate a novel high throughput, cost-efficient multi-
omics assay. We also note that the design of txci-ATAC-seq is directly applicable to other existing
single-cell methods employing a combinatorial indexing framework, such as sci-MET [47],
CRISPR-sciATAC [48], and sci-CAR [49].

The improved study design and statistical rigor made possible by more cost-effective
inclusion of replicates and larger sample sizes with techniques such as txci-ATAC-seq will be
essential for realizing the full potential of single-cell approaches. In addition, the scalability of
sCATAC-seq techniques also plays an important role in identification of peaks for rare cell
populations. In the absence of a comprehensive catalog of regulatory elements, peak calling is
an essential step to define features in both bulk and single-cell ATAC-seq data analysis. The
power to call peaks, however, heavily depends on the number of reads used [50]. For single-cell
data, that means profiling the accessible regions from a rare cell population is not only limited by
the sequencing depth per cell but also by the number of cells captured from that population.
Therefore, an ultra-high throughput scATAC-seq method, like txci-ATAC-seq, will enable finer
definitions of peaks and should better characterize particularly dynamic or heterogeneous
systems.

The CC16™ mice characterized here have been used by several groups to investigate the
role of CC16 in COPD and infectious diseases [36,51,52]. We found that the remnant 129 genetic
material elicited profound changes in chromatin accessibility (in a cell-type-specific manner in
many instances), requiring caution when evaluating the existing congenic knockout models. In
addition, we identified 42 different motifs gained or lost in at least one differentially accessible
peak from the 129 strain regions, which were capable of explaining the observed accessibility
changes for 37.5% of those peaks. The remainders may have been caused by more subtle
changes in motif affinity, trans effects, or may not have been tested in our analysis (as we required
both gained and lost events for a given motif to be considered).

There are several caveats worth keeping in mind when interpreting our results. First, to
marry microfluidics and combinatorial indexing on the 10X system, we converted the in-droplet
linear amplification into an exponential amplification. This could result in major differences in
amplification behavior. However, we have not systematically tested the optimal number of cycles
in this regime. In addition, our analysis approach is based on the assumption that each droplet
contains at most one barcode bead. It is worth noting, however, that “barcode multiplets” (i.e. the
droplets containing multiple beads or the beads containing multiple oligonucleotide barcodes)
have been observed in 10X Chromium scATAC data [53]. The resulting artifact “cells” may
confound the interpretation of txci-ATAC-seq, and so implementation of methods to detect and
remove the effects of “barcode multiplets” may be warranted.

Conclusions

Taken together, txci-ATAC-seq provides unprecedented opportunities to generate
unbiased single-cell atlases of chromatin accessibility for large cohorts with various genetic
backgrounds or case-control studies, thus establishing reliable references of single-cell chromatin
landscapes in a variety of experimental settings. We hope that this method will encourage more
widespread adoption of scATAC-seq, a powerful technique for understanding organismal
development and disease processes.
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Methods

Cell lines

The GM12878 (Coriell Cell Repository) and CH12.LX (kind gift from the Sherman Weissman lab)
cells were cultured at 37 °C with 5% CO2 in RPMI 1640 medium (GIBCO, cat. no. 11875-093)
containing 15% FBS (GIBCO, cat. no. 10437-028), 100 U/ml Penicillin Streptomycin (GIBCO, cat.
no. 15140-122). Cells were counted and split into either 300,000 (GM12878) or 100,000
(CH12.LX) cells/ml three times a week.

Human and mouse brain tissue samples

Human cortex samples from the middle frontal gyrus were sourced from the Oregon Brain Bank
from a 50-year-old female of normal health status. Samples were collected by an OHSU
neuropathologist, placed into a labeled cassette, and cryopreserved in an airtight container in a -
80 °C freezer. The duration of time between the time of death and brain biopsy sample freezing,
or post-mortem interim (PMI), was <24 hours.

Mouse brain tissue was collected as discarded tissue from mice used for unrelated studies
approved by the OHSU IACUC. Whole mouse brains were dissected from sacrificed C57BL/6J
mice and flash-frozen in an isopentane-LN2 double-bath and stored at -80 °C.

Mouse lung and liver tissue samples

All animal activity was approved by the University of Arizona IACUC. Mice were euthanized via
exsanguination followed by cervical dislocation to ensure death. For the samples used to evaluate
the performance of txci-ATAC-seq in Fig. 4, whole mouse lungs and liver were dissected from 2
male C57BL/6J mice that were 24 weeks old.

For the samples used to study the CC16-mediated chromatin dynamics in Fig. 5, age-matched
(~8 weeks) WT and CC16™ male mice on a C57BL/6J background (as described in [54,55]) were
used to dissect whole lungs. Three replicates from each genotype were profiled. All six animals
were born and raised in the same room and were tested to be specific-pathogen free according
to standard protocols using sentinel mice from the same room.

The dissected samples were flash-frozen in liquid nitrogen and then transferred to -80 °C for long-
term storage.

Human lung tissue samples

Lung pieces were obtained from two deceased male donors (a 36-year-old American Indian and
a 62-year-old Hispanic Latino) as soon as possible after the time of death through the Arizona
Donor Network. All human lung samples were quickly frozen in the -80 °C freezer and stored
there prior to nuclear extraction.

Nuclei isolation

Nuclei isolation of cell lines

The nuclei isolation followed the procedures described in [10]. The cells were collected and
washed with 1x PBS (pH 7.4, Gibco, cat. no. 10-010-023) supplemented with 0.1% BSA (New
England Biolabs, cat. no. B9000S), and then resuspended in 200 ul of ATAC-seq lysis buffer,
which was made by supplementing ATAC resuspension buffer (RSB) with detergents (see below).
RSB buffer is 10 mM Tris-HCI (pH 7.5, Invitrogen, cat. no. 15567027), 10 mM NaCl (Invitrogen,
cat. no. AM9759), and 3 mM MgCI2 (Invitrogen, cat. no. AM9530G) in nuclease-free water. RSB
was made in bulk and stored at 4 °C long-term. On the day of the experiment, the ATAC lysis
buffer was made by adding 0.1% IGEPAL (Sigma, cat. no. 13021), 0.01% digitonin (Invitrogen,
cat. no. BN2006), and 0.1% Tween-20 (Bio-Rad, cat. no. 1610781) to RSB. The detergent
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percentages reported are final concentrations. After resuspending cell pellets in the lysis buffer,
they were incubated on ice for 3 min, and then the lysis was stopped by adding 1 ml RSB
containing 0.1% Tween-20. The nuclei were counted with a hemocytometer by diluting 10 pl nuclei
in 40 pl of 2x Omni TD Buffer (20 mM Tris HCI pH 7.5, 10 mM MgCI2, and 20% Dimethyl
Formamide) followed by adding 50 pl Trypan blue solution. In our previous report [50], we found
that adding nuclei straight to Trypan blue solution will cause inflation of nuclei, and diluting nuclei
in TD buffer before exposure to Trypan blue improves the nuclei integrity. Following counting, we
centrifuged nuclei at 500 r.c.f for 10 min at 4 °C and removed the supernatant. Then, the nuclei
were either used to perform downstream experiments directly or resuspended in a nuclei-freezing
buffer (NFB) containing 50 mM Tris-HCI (pH 8.0, Invitrogen, cat. no. 15568025), 5 mM
Magnesium Acetate (Sigma, cat. no. 63052), 25% glycerol (VWR, cat. no. RC3290-32), 0.1 mM
EDTA (Fisher, cat .no. AM9260G), 5 mM DTT (Fisher, cat. no. P2325), and 2% (v/v) protease
inhibitor (Sigma, cat. no. P8340) for storage. The NFB was adopted from [56] and we previously
used this buffer for preservation of nuclei for sci-ATAC-seq [2,3,57]. After diluting in NFB, 1 ml
aliquots of the nuclei were flash-frozen in liquid nitrogen and then transferred to a liquid nitrogen
dewar for long-term storage.

Nuclei isolation from brain tissue

At the time of nuclei dissociation, 50 ml of nuclei isolation buffer (NIB-HEPES) was freshly
prepared with final concentrations of 10 mM HEPES-KOH (Fisher Scientific, BP310-500 and
Sigma Aldrich 1050121000, respectively), pH 7.2, 10 mM NaCl (Fisher Scientific S271-3), 3mM
MgCI2 (Fisher Scientific AC223210010), 0.1 % (v/v) IGEPAL CA-630 (Sigma Aldrich 13021), 0.1 %
(v/v) Tween-20 (Sigma-Aldrich P-7949) and diluted in PCR-grade Ultrapure distilled water
(Thermo Fisher Scientific 10977015). After dilution, two tablets of Pierce™ Protease Inhibitor Mini
Tablets, EDTA-free (Thermo Fisher A32955) were dissolved and suspended to prevent protease
degradation during nuclei isolation.

An at-bench dissection stage was set up prior to nuclei extraction. A petri dish was placed over
dry ice, with fresh sterile razors pre-chilled by dry-ice embedding. 7 ml capacity Dounce
homogenizers were filled with 2 ml of NIB-HEPES buffer and held on wet ice. Dounce
homogenizer pestles were held in ice-cold 70% (v/v) ethanol (Decon Laboratories Inc 2701) in 15
ml tubes on ice to chill. Immediately prior to use, pestles were rinsed with chilled distilled water.
For tissue dissociation, mouse and human brain samples were treated similarly. The still-frozen
block of tissue was placed on the clean pre-chilled petri dish and roughly minced with the razors.
Razors were then used to transport roughly 1 mg of the minced tissue into the chilled NIB-HEPES
buffer within a Dounce homogenizer. Suspended samples were given 5 minutes to equilibrate to
the change in salt concentration prior to douncing. Tissues were then homogenized with 5 strokes
of a loose (A) pestle, another 5-minute incubation, and 5-10 strokes of a tight (B) pestle. Nuclei
were transferred to a 15 ml conical tube and pelleted with a 400 r.c.f centrifugation at 4 °C in a
centrifuge for 10 minutes. The supernatant was removed and pellets were resuspended in 5 ml
of ATAC-PBS buffer (APB) consisting of 1X PBS (Thermo Fisher 10010) and 0.04mg/ml (f.c.) of
bovine serum albumin (BSA, Sigma Aldric A2058). Samples were then filtered through a 35 pm
cell strainer (Corning 352235). A 10 pl aliquot of suspended nuclei was diluted in 90 pl APB (1:10
dilution) and manually counted on a hemocytometer with Trypan Blue staining (Thermo Scientific
T8154). The stock nuclei suspension was then diluted to a concentration of 2,857 nuclei/ul in APB.
Dependent on experimental schema, pools of tagmented nuclei were combined to allow for the
assessment of pure samples and to test index collision rates.

Nuclei isolation of human lung, mouse lung, and mouse liver tissue
The human and mouse samples were dissected and stored at -80 °C. The nuclei isolation
procedure of lung and liver tissues was performed following the single-nucleus isolation protocol

19


https://doi.org/10.1101/2023.05.11.540245
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.11.540245; this version posted May 14, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

described in [58]. To do so, we cut a ~0.1-0.2 g piece from either human or mouse samples
removed from -80 °C and kept it on dry ice until use. The tissue block was thawed almost
completely on ice for 1 min and then injected with 1 ml of cell lysis buffer, which was made of 1x
cOmplete protease inhibitor cocktail (1 tablet per 10 ml solution, Sigma-Aldrich, Cat.
11836153001) in Nuclei EZ prep buffer (Sigma-Aldrich, Cat. NUC101), into the center of the tissue
with a 30G needle and syringe. Following lysis buffer injection, the tissue was chopped into small
pieces with scissors and then transferred along with the lysing buffer into a gentleMACS C tube
(Miltenyi Biotec, Cat. 130-096-334). An additional 1 ml of lysing buffer was added into the C tube
to make a final volume of 2 ml. The minced tissue was then homogenized using a gentleMACS
tissue dissociator by running the ‘m_lung_01" program followed by the first 20 sec of the
‘m_lung_02’ program. After homogenization, tissue lysate was briefly centrifuged to reduce foam
and then passed through a 40 pym cell strainer in a 50ml tube. After passing the sample through,
the strainer was rinsed with 4 ml of washing buffer (PBS with 1% BSA). The nuclei were counted
with a hemocytometer (see “nuclei isolation of cell lines” for details), and centrifuged at 500 r.c.f
for 5 min at 4 °C. Then, we removed the supernatant and resuspended the nuclei in the NFB to
make a concentration of 4-5 million nuclei/ml. 1 ml aliquots of the nuclei were flash-frozen in liquid
nitrogen and then transferred to a liquid nitrogen dewar for long-term storage.

Sample multiplexing

A 96-well plate pre-loaded with 5 ul of 500 nM pre-indexed Tn5 transposase per well (iTSM plate,
kind gift of lllumina Inc.) was used to multiplex samples and perform barcoded transposition.
Before using, the iTSM plate was thawed on ice and briefly mixed at 1400 rpm for 30 seconds on
a pre-chilled thermomixer, and then quickly spun to collect the enzyme at the bottom of the wells.
To avoid sequencing with a custom recipe, the Tn5 enzyme was loaded with a common Th5ME-
A and a custom Tn5ME-B containing a partial sequence of i7 TruSeq primer (see Table S4 for
oligo sequence) and an 8 bp unique barcode (Table S5). Both Tn6ME-A and Tn5ME-B were
annealed to the Tn5MErev (Table S4) before loading to Tn5.

Barnyard experiments

Two different barnyard settings were designed to estimate the total collisions arising from pre-
and/or post-pooling events. To test the total collision rate, the human and mouse cells were mixed
in the same well at a 1:1 ratio to perform barcoded transposition (“true barnyard”). The collision
rate driven by events downstream of pooling was evaluated by performing barcoded transposition
on wells containing pure species (“pseudo-barnyard”) and pooling the human and mouse nuclei
afterward. Detailed information about the cell sources used in each barnyard assay and each
figure is shown in Table S6.

Optimization of txci-ATAC-seq protocol

Coupling barcoded transposition with standard 10X protocol

The nuclei isolated from human and mouse lungs were removed from the liquid nitrogen dewar
(See “Nuclei isolation of primary samples” for details) and then thawed in the water bath at 37 °C
for 1 to 2 min until a tiny ice crystal remained. After thawing, the nuclei stored in 1 ml freezing
buffer were diluted with 3 ml RSB supplemented with 0.1% Tween-20 and 0.1% BSA (RSB
washing buffer) and then centrifuged at 500 r.c.f for 10 mins in a pre-chilled (4 °C) swinging-
bucket centrifuge. The nuclei pellet was resuspended with another 1 ml of RSB washing buffer
and then transferred to a 1.5 ml LoBind tube through a 40 yum Flowmi Cell strainer (Bel-Art SP
Scienceware, Cat. 14-100-150). The filtered nuclei were pelleted at 500 r.c.f for 5 min in a pre-
chilled fixed-angle centrifuge and then resuspended in 25 pl of 1.25x Tagment DNA Buffer
(Nextera XT Kit, lllumina Inc. FC-131-1024). For cell cultures, the human and mouse nuclei were
freshly isolated as described in “Nuclei isolation of cell lines” and resuspended in 50 pl of 1x Nuclei
Buffer (10X Genomics, PN-2000207). Then, we counted nuclei for each sample and added 5000
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nuclei diluted in 20 pl of 1.25x Tagment DNA buffer to each well of the iTSM plate (see “Sample
multiplexing” for details), except for the wells used to test the 10X reagents in which 5000 nuclei
diluted in 5 pl of 1x Nuclei Buffer were added to a mixture of 7 ul of ATAC Buffer B (10X Genomics,
PN-2000193) and 3 pl of barcoded Tn5. The plate layout and well IDs for each barnyard condition
was shown in Fig. S1 and Table S6. The tagmentation was performed at 55 °C for 30 min on a
thermocycler with a heated lid. To quench the Tn5 activity, we added a 2x Tagmentation Stop
Buffer containing 40 mM EDTA (Invitrogen™, Cat. AM9260G) and 1mM Spermidine (Sigma-
Aldrich, Cat. S0266-1G) to the transposition reactions at a 1:1 ratio and incubated the plate on
ice for 15 min. We found that stopping the transposition reaction was unnecessary and thereby
removed this step from our final txci-ATAC-seq protocol. All nuclei were pooled and centrifuged
at 500 r.c.f for 10 min. After aspirating the supernatant, nuclei were resuspended in 400 ul 1x
Nuclei Buffer and pelleted again. Then, we carefully removed the supernatant and resuspended
nuclei in 30 pl 1x Nuclei Buffer. After quantification of nuclei with a hemocytometer, 75,000 nuclei
were taken and diluted in 1x Nuclei Buffer to make a total volume of 15 pul, which underwent the
standard 10X Chromium Next GEM protocol (v1.1, Document No. CG000209 Rev D from Steps
2 to 4) except following steps. For Sample Index PCR (step 4.1), we substituted the Single Index
N Set A with a 25 uM i7 TruSeq primer and added 2.5 pl of customized i7 primer (Table S7) to
each 10X library followed by performing 8 cycles of PCR amplification. The resulting library was
sequenced on a NextSeq 550 Platform (lllumina Inc.) using a Mid Output Kit with the following
cycles: Read 1, 50 cycles; i7 index, 8 cycles; i5 index, 16 cycles; Read 2, 77 cycles.

Blocking barcode-swapping

Flash-frozen (human and mouse lung samples and human cell line, see “Nuclei isolation” for
details) and fresh nuclei (mouse cell line, see “Nuclei isolation” for details) were used to test the
efficiency of strategies to block barcode-swapping. The flash-frozen nuclei were thawed, washed,
and filtered following the procedures described in the “Coupling barcoded transposition with
standard 10X protocol” section. Both flash-frozen and freshly isolated nuclei were resuspended
in 100 ul of PBS containing 0.04% BSA (PBSB) and quantified using a hemocytometer (See
“Nuclei isolation of cell lines” for details). After counting, the nuclei were diluted in PBSB to a
concentration of 2,857 per ul (20,000 nuclei per well in 7 ul) and then mixed with a Tagmentation
buffer solution (TBS, which was modified from the Omni protocol [10]) followed by transferring to
the iTSM plate (see “Sample multiplexing” for details). Each 13 pl of TBS contains 12.5 pl of
[llumina Tagment DNA Buffer, 0.25 pl of 1% Digitonin in DMSO (Promega (2%), Cat. PRG9441),
and 0.25 ul of 10% Tween-20 (Bio-Rad, Cat. 1610781) in nuclease-free water. The barcoded
transposition reaction was performed at 37 °C for 30 min on a thermocycler with a heated lid at
47 °C. Each blocking condition was assigned to 8 columns leading to a total of two 96-well plates
for all three conditions. The plate layout and well IDs for each barnyard design in each blocking
condition were shown in Fig. S2a and Table S6. After tagmentation, the nuclei used to test the
Decoy DNA were transferred to a new 96-well plate with a multi-channel pipette, and 2.5 pl of 50
MM duplex DNA (see Table S8 for the oligo sequence) was added to each well followed by
incubating at 55 °C for 10 min. Then, we added the 2x Tagmentation Stop Buffer (see “Coupling
barcoded transposition with standard 10X protocol” for details) to the transposition reactions at a
1:1 ratio for all three blocking conditions and incubated the plates on ice for 15 min. Subsequently,
the nuclei from the same blocking condition were pooled together and pelleted at 500 r.c.f for 10
min at 4 °C. After removal of supernatant from each tube, the nuclei were washed with 500 pl of
1x Nuclei Buffer (10X Genomics, PN-2000207) with centrifugation of 500 r.c.f for 5 min at 4 °C
and resuspended in 25 pl of 1x Nuclei Buffer. Then, we counted nuclei with Trypan blue on a
hemocytometer and diluted 100,000 nuclei in 1x Nuclei Buffer to make a total of 15 pl for each
blocking condition. The resulting 3 aliquots of nuclei were run on separate lanes of the 10X as per
the manufacturer’s instructions (10X Chromium Next GEM Single Cell ATAC protocol v1.1,
Document No. CG000209 Rev D) with the following modifications. During GEM Generation and
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Barcoding (Step 2.1a), the nuclei dedicated to evaluating the Blocking oligo were mixed with the
Master Mix supplemented with 2.5 pl of 100 uM DNA oligo incorporating an inverted dT at the 3’-
end (see Table S8 for the oligo sequence); and the nuclei dedicated to testing the SBS primer
were mixed with the Master Mix supplemented with 2.5 pl of 25 uM full SBS primer (Table S8) for
in-droplet exponential amplification. After GEM PCR (Step 2.5a), a 10 ul PCR product (10% GEM)
was slowly aspirated and transferred to a new PCR tube and subjected to Post GEM Incubation
Cleanup in parallel with the 90% sample. Following cleanup, we performed the Sample Index
PCR on the 10% sample (step 4.1) by supplementing the PCR mixes of SBS primer, Decoy DNA,
and Blocking oligo with 2.5 ul of 25 uM barcoded i7 TruSeq primer (Table S7), which was used
to replace the Single Index N Set A. The PCR mixes were amplified and monitored on a Bio-Rad
CFX Connect Real-time cycler. The amplification was stopped when it appeared to be leveling off
(i.e., the SBS primer was stopped at 4 cycles; the Decoy DNA and Blocking oligo were stopped
at 15 cycles). To monitor the relative efficiencies of amplification in our initial test, we ended up
introducing 2 different barcoded SBS primers in the SBS condition: one barcode was used for in-
droplet amplification and another barcode was used for final library sample indexing. Both
barcodes were assigned to thousands of reads per cell, indicating that both reactions were
working. However, the theoretical expectation for the ratio between the two barcodes was 1/16
(because the second primer was used for 4 cycles of PCR). When we examined the ratio in our
actual data, it was consistently ~V3, indicating that the sample index amplification is not perfectly
efficient (Fig. S16). Therefore, in subsequent experiments using lung and liver tissues, we
reduced the in-droplet PCR to 8 cycles and added an additional cycle of PCR for sample indexing.
The resulting libraries with 10% GEM were pooled together with a library from an unrelated
experiment to balance nucleotide diversity through the fixed sequence at the Tn5MErev region in
Read 2, and then sequenced on a NextSeq 550 Platform (lllumina Inc.) using a Mid Output Kit
with the following cycles: Read 1, 50 cycles; i7 index, 10 cycles; i5 index, 16 cycles; Read 2, 92
cycles. While 8 cycles in i7 index and 77 cycles in Read 2 were sufficient for the libraries
generated in this study, we ran 10 and 92 cycles for those two steps, respectively, to
accommodate the other library.

txci-ATAC-seq using brain tissue samples

Tagmentation plates were prepared by the combination of 1430 ul of TBS with 770 pl nuclei
solution. The TBS recipe was described in “Blocking barcode-swapping”, but a different version
of Digitonin (Bivision 2082-1) was used here. This solution was mixed briefly on ice. 20 pl of the
mixture was placed into the 96-well iTSM plate (see “Sample multiplexing” for details).
Tagmentation was performed at 37 °C for 60 minutes on a 300 r.c.f Eppendorf ThermoMixer with
a lid heated to 65 °C. Following this incubation, plate temperature was brought down with a 5-
minute incubation on ice to stop the reaction. Tagmented nuclei were then pooled into a single 15
ml conical tube. 5 ml of tagmentation wash buffer (TMG) was prepared consisting of a final
concentration of 10 mM Tris Acetate pH 7.5 (Sigma 93352 and Sigma A6283, respectively), 5
mM MgAcetate (Sigma M5661), and 10% (v/v) glycerol (Sigma G5516), diluted in PCR grade
water. 1 ml of TMG was added on top of the chilled tagmented nuclei. Nuclei were pelleted at 500
r.c.f for 10 minutes at 4 °C. Most of the supernatant was removed with care not to disturb the
pellet. Then 500 pl of TMG was added to the pellet and the tube was once again spun at 500 r.c.f.
for 5 minutes at 4 °C. 490 pl was removed leading to a low volume of concentrated nuclei. Loading
buffer was prepared consisting of 10% (v/v) glycerol, 20 mM NaCl, 10 mM Tris-Cl pH 7.5 (Life
technologies AM9855), 0.02 mM EDTA (Fisher Scientific AM9260G), 0.2 mM DTT (VWR 97061-
340), and 0.2x (v/v) TB1 (lllumina Inc.). The nuclear pellet was resuspended with an additional 30
ul of loading buffer. An aliquot of 2 pl of sample was diluted 20-50X and quantified with Trypan
Blue on a hemocytometer. Depending on the experiment, a 14 ul nuclei solution containing the
desired amount of nuclei in the loading buffer was then combined with 1 pl of 75 yM short SBS
oligo (Table S8).
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The 10X Chromium was then run with the custom nuclei solution as per the manufacturer's
instructions (10x Document CG000209 Rev D) with the following adaptations. In step 2.4e during
GEM aspiration and transfer, 100 yl GEM volume was split into two tubes, with one receiving 10
bl and the other 90 ul (henceforth referred to as 10% and 90% samples). In step 2.5.a, GEM
incubation cycles were limited to 6. For Pre-PCR wash elution (Step 3.2.j) the 10% sample was
eluted in 8.5 ul whereas the 90% sample was eluted in 32.5 yl. For step 3.2.n, the 10% sample
had 8 ul transferred to a new strip, while the 90% sample had 32 ul transferred to a new strip. At
step 4.1.b, the sample Index PCR mix was split with 11.5 pl and 46 pl being combined with the
10% and 90% samples, respectively. For step 4.1.c, 1 pl and 2 yl of a 10 uM i7 TruSeq primer
was used, respectively. For step 4.1.d, 8 and 7 PCR cycles were used, respectively. Libraries
were then checked for quality and quantified by Qubit DNA HS assay (Agilent Q32851) and
Tapestation D5000 (Agilent 5067-5589) following the manufacturer’s instructions. Libraries were
then diluted and sequenced on a NextSeq 500 Mid flow cell or a NovaSeq 6000 S4 flow cell
(Numina Inc.).

txci-ATAC-seq using human lung, mouse lung, and mouse liver tissue samples
Flash-frozen nuclei isolated from human lung, mouse lung, and mouse liver tissues were thawed,
washed, and filtered following the procedures described in “Coupling barcoded transposition with
standard 10X protocol”, and then resuspended in 150 yl PBSB (PBS containing 0.04% BSA). To
count nuclei, we added 1.5 ul of 300 uM DAPI to 150 ul of PBSB containing nuclei for a final
concentration of 3 uM DAPI, and incubated the nuclei on ice for 5 min. Then, we mixed nuclei
with 2x Omni TD buffer in a 1:1 ratio and loaded 10 pl on a Countess Cell Counting Chamber
Slide to count the nuclei with Countess Il Automated Cell Counter.

After counting nuclei, we diluted the samples with PBSB to a concentration of 2,857 per ul and
mixed 7 pl of nuclei solution (20,000 nuclei) with 13 pl of TBS (see “Blocking barcode-swapping”
for details) for each well. This 20 pl nuclei/transposition mixture was then added to each well of
the iTSM plate pre-loaded with 5 pl of barcoded Tn5 per well (see “Sample multiplexing” for details)
to make a total volume of 25 pl reaction per well. As shown in Fig. 4a, 20,000 mouse nuclei were
added to each well from rows A to F. But for rows G and H, 10,000 mouse nuclei were mixed with
10,000 human nuclei and then transferred to each well to estimate the empirical collision rate for
each sample. The well IDs for different tissue mixtures were specified in Table S6. After loading
nuclei, the iTSM plate was sealed and briefly shaken at 1000 rpm for 1 min on a pre-chilled
thermomixer. The barcoded transposition was performed at 37 °C for 1 hour on a thermocycler
with a heated lid at 47 °C. At the end of incubation, the plate was briefly centrifuged at 500 r.c.f
for 10 seconds and then chilled on ice for 5 min to stop the transposition reaction. After quenching
enzyme activity, the nuclei were pooled into a 12-tube strip and then transferred to a 15 ml conical
tube preloaded with 400 pl tagmentation washing buffer (TMG, which contains 10mM Tris Acetate
pH 7.8 (Boston BioProducts, Cat. BB-2412), 5mM Magnesium acetate (Sigma, Cat. 63052-100ML)
and 10% (v/v) glycerol (VWR, Cat. RC3290-32) diluted in nuclease-free water). Subsequently, we
added 50 pl/well of TMG to the first row of the plate and pipetted them throughout the whole plate
to wash out the residual nuclei remaining in the plate. After washing the last row of the plate, the
TMG was transferred to the same conical tube that was used to collect the barcoded nuclei. The
pooled nuclei were then centrifuged at 500 r.c.f for 10 min in a pre-chilled swinging-bucket
centrifuge at 4 °C. After aspirating the supernatant, the nuclei were resuspended in 500 pl TMG
and then transferred to a 1.5 ml LoBind tube through a 40 ym Flowmi Cell strainer. The nuclei
suspension was then centrifuged at 500 r.c.f for 5 min in a pre-chilled fixed-angle centrifuge at
4 °C. After centrifugation, 400 pl of supernatant was removed. The 100 ul of supernatant left from
the first aspiration was then carefully removed by pipetting with a P200 pipette tip to avoid
disturbing the nuclei pellet. The nuclei were resuspended with 30 ul of loading buffer containing
1x TB1 (lllumina Inc.), 1x standard storage buffer (lllumina Inc.), and 5 uM short SBS oligo (a final
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concentration of 1 yM SBS after resuspending nuclei in 10X Master Mix; see Table S8 for the
oligo sequence), and then counted with a hemocytometer (see “nuclei isolation of cell lines” for
details). After counting, the volume of solution containing the appropriate number of nuclei was
taken and diluted with the loading buffer to make a total volume of 15 pl, which was used as an
input into the 10x Chromium Controller. The GEM generation, Barcoding, and Post GEM
Incubation Cleanup were performed following Steps 2 and 3 described in the 10X Chromium Next
GEM Single Cell ATAC protocol (v1.1, Document No. CG000209 Rev D) except for Step 2.5, in
which 8 cycles were used for GEM incubation. For Sample Index PCR (step 4.1), we substituted
the Single Index N Set A (10X Genomics) with 25 uM i7 TruSeq primer containing an 8 bp custom
barcode (Table S7) and added 2.5 pl of customized i7 primer to each 10X library. The PCR was
performed following the 10X protocol shown in Step 4.1 but with 5 total cycles. The Double Sided
Size Selection was then conducted as described in Step 4.2 shown in the 10X protocol. Following
the size selection, the txci-ATAC-seq libraries were quantified by Qubit 1X dsDNA HS Assay Kit
(Invitrogen, Cat. Q33231) and run on a 6% PAGE gel to check the library quality. To balance
nucleotide diversity of the fixed sequence at the Tn5MErev region in Read 2, we pooled these
libraries with 5% of bulk ATAC libraries (from an unrelated experiment) and sequenced them on
a NextSeq 550 Sequencer (lllumina Inc.) using a High Output Kit with following cycles: Read 1,
51 cycles; i7 index, 10 cycles; i5 index, 16 cycles; Read 2, 78 cycles. The txci-ATAC-seq library
only has 8 bp of i7 barcode, but we ran 10 cycles in i7 index to accommodate the barcode length
of the bulk ATAC libraries. In cases where txci-ATAC-seq libraries are sequenced alone, we
recommend either spiking in an appropriate amount of PhiX as per the manufacturer's instruction
or performing dark cycles for the cycles from 9 to 27 in Read 2.

Fast-txci-ATAC-seq

To perform txci-ATAC-seq directly on frozen nuclei, the nuclei isolated from WT and CC16™
mouse lungs (see “Nuclei isolation of human lung, mouse lung, and mouse liver tissue” for details)
were diluted in NFB (see Nuclei isolation of cell lines) at 3,175 nuclei/ul. For each sample, 6.3 yl
of diluted nuclei (20,000 nuclei) were added to each well of an 8-tube strip for a total of 8 wells.
Then, the nuclei were flash-frozen in liquid nitrogen and transferred to -80 °C for storage. The
paired WT and CC16” samples were processed together but each pair was processed on a
separate day. When performing Fast-txci-ATAC-seq, the nuclei flash-frozen in the tube strips
were thawed on ice and 13.7 pl of transposition buffer (which contains 12.5 pl of 2X lllumina
Tagment DNA Buffer, 0.7 uyl of 10X PBS, 0.25 pl of 1% Digitonin, 0.25 ul of 10% Tween-20) was
added to each well containing nuclei followed by adding 5 pl of 500 nM pre-indexed Tn5
transposase per well. Then, the barcoded transposition reaction was performed on all 6 samples
simultaneously by incubating at 37 °C for 60 min. Since each sample was distributed into 8 wells,
a total of 48 Tn5 barcodes were used. As described above in the txci-ATAC-seq protocol, the
barcoded nuclei were then cooled down on ice, pooled, washed, and loaded on the 10x Chromium
Controller with either 50,000 or 100,000 nuclei in a lane.

Data processing and analysis

Raw code for the brain analysis is available at https://mulqueenr.github.io/scidrop/. Raw code for
the cell line and lung/liver datasets is available at https://github.com/cusanovichlab/scidropatac.
The specific programs (and their version) used in data analyses were as follows: bcl2fastq
(v2.19.0 for brain analysis and v2.20.0.422 for the other samples, Illlumina Inc.), Trimmomatic
(v0.36) [59], SAMtools and tabix (v1.7 for brain analysis and v1.10 for the other samples) [60,61],
BWA-MEM (v0.7.15-r1140) [62], Bowtie2 (v2.4.1) [63], Perl (v5.16.3) [64], MACS2 (v.2.2.7.1 for
brain analysis and v2.1.2 for the other samples) [65], bedtools (v2.28.0) [66], Python (2.7.13 [67]
and 3.6.7 [68]), PyPy (5.10.0), pybedtools (0.7.10) [69], R (v4.1.1) [70], cisTopic (v0.3.0) [12],
Cicero (v1.3.4.10) [15], Signac (v1.0.0 for brain analysis and v1.5.0 for the other samples) [16],
Presto (v1.0.0) [21], chromVAR (v1.16.0) [22], Seurat (v4.1.0) [28], uwot (v0.1.8) [71], Harmony
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(v1.0) [72], irlba (v2.3.5) [73], mclust (v5.4.9) [74], edgeR (v3.40.0) [75], rGREAT (v2.0.2) [76],
KEGGREST (v1.38.0) [77], BCFtools (v1.15.1) [78], GATK (4.3.0.0) [79], MOODS (1.9.4) [80],
ggplot2 (v3.3.5) [81], and ComplexHeatmap (v2.5.5) [82].

Computational analysis of brain samples
There were some deviations in the analysis of the brain samples, which are detailed below.

Preprocessing for brain tissues

After sequencing, data was converted from bcl format to FastQ format using bcl2fastq with the
following options “--with-failed-reads”, “--no-lane-splitting”, “--fastq-compression-level=9", “-
create-fastq-for-index-reads”. Data were then demultiplexed, aligned, and de-duplicated using the
in-house scitools pipeline [83]. Briefly, FastQ reads were assigned to their expected primer index
sequence allowing for sequencing error (Hamming distance <2) and indexes were concatenated
to form a “celllD”. Reads that could be assigned unambiguously to a celllD were then aligned to
reference genomes. Paired reads were first aligned to a concatenated hybrid genome of hg38
and GRCm38 (“mm10”, Genome Reference Consortium Mouse Build 38 (GCA_000001635.2))
with BWA-MEM. Reads were then de-duplicated to remove PCR and optical duplicates by a Perl
script aware of celllD, chromosome number, read start coordinate, read end coordinate, and
strand. From there, the putative single-cells were distinguished from debris and error-generated
celllDs by both unique reads and percentage of unique reads.

Barnyard analysis for brain tissues

With single-cell libraries distinguished, we next quantified contamination between nuclei during
library generation. We calculated the read count of unique reads per celllD aligning to either
human reference or mouse reference chromosomes (Fig. S3b). CelllDs with 290% of reads
aligning to a single reference genome were considered bona fide single cells. Those not passing
this filter were considered collisions. The collision rate was estimated using the equation in [11]
to account for cryptic collisions (two cells from the same species). Bona fide single-cell cell IDs
were then split from the original FastQ files to be aligned to the proper hg38 or mm10 genomes
with BWA-MEM as described above. Human and mouse assigned celllDs were then processed
in parallel for the rest of the analysis. After alignment, reads were again de-duplicated to obtain
proper estimates of library complexity.

Dimensionality reduction for brain tissues

Pseudo-bulked data (agnostic of celllD) was then used to call read pile-ups or “peaks” via MACS2
with the option “--keep-dup all’. Narrowpeak bed files were then merged by overlap and extended
to a minimum of 500 bp for a total of 350,261 peaks for human and 292,304 peaks for mouse. A
scitools Perl script was then used to generate a sparse matrix of peaks x celllD to count the
occurrence of reads within peak regions per cell. FRiP was calculated as the number of unique,
usable reads per cell that are present within the peaks out of the total number of unique, usable
reads for that cell for each peak bed file. Tabix-formatted files were generated using samtools
and tabix. The count matrix and tabix files were then input into a SeuratObject for Signac
processing. We performed LDA-based dimensionality reduction via cisTopic with 28 and 30 topics
for human and mouse cells, respectively. The number of topics was selected after generating 25
separate models per species with topic counts of 5,10,20-30,40,50,55,60-70 and selecting the
topic count using selectModel based on the second derivative of model perplexity. Cell clustering
was performed with Signac “FindNeighbors” and “FindClusters” functions on the topic weight x
celllD data frame. For the “FindClusters” function call, resolution was set to 0.01 and 0.02 for
human and mouse samples, respectively. The respective topic weight x celllD was then projected
into two-dimensional space via UMAP by the function “umap” in the uwot package. To check for
putative doublets within species, we then ran scrublet analysis and removed the scrublet-
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identified doubles from further analysis [14]. A second iteration of sub-clustering was performed
on each cluster to better ascertain cell type diversity. This was done as described above with the
data subset to just the cells within the respective cluster for both cisTopic model building and
UMAP projection. Resolution per subcluster was set post hoc based on cell separation in UMAP
projection. CCANs and the resulting gene activities were generated through the Signac wrapper
of Cicero. Genome-wide accessibility of known TF motifs was calculated per cell using the
JASPAR database (release 8) [84] via chromVAR.

Cell Type Identification for brain tissues

For cell type identification, we used previously existing single-cell RNA datasets of the human M1
cortex [85], and mouse whole cortex and hippocampus [86,87]. We applied the Signac label
transfer strategy between the annotated single-cell RNA with our gene activity scores at the level
of our sub-clustered cell groups. For cell type refinement, we plotted the average gene activity
score per subcluster for a set of RNA-defined marker genes, as well as markers defined within
our datasets on the gene activity scores using the Signac “FindMarkers” function as described
above. Subcluster dendrograms were generated by using base R functions dist and hclust
through running Z-scored average gene activity on internally-defined markers and based on
“‘ward.D2” clustering of Euclidean distance. The resultant dendrogram was used for both pre-
defined and internally defined marker sets. Results were plotted via ComplexHeatmap.

TF marker ranking

TFs were ranked for specificity across sub-clusters, based on combined motif accessibility
(generated through chromVAR) and gene activity (generated through cicero). AUC values were
determined per cluster via the Wilcoxon test as reported by the “wilcoxauc” function in Presto. An
average AUC of motif accessibility and gene activity was used for ranking TFs. A set of top 5
markers per sub-cluster was filtered for duplicates and then plotted via ComplexHeatmap.

Comparison across scATAC-seq mouse brain datasets

FastQ files for sciATAC-seq, sciMAP, snATAC-seq, dscATAC-seq, and s3-ATAC-seq were
downloaded via the SRA toolkit. 10X scATAC-seq v1 and v2 chemistries FastQ files were
obtained through the 10X Genomics website. Files were then demultiplexed following the original
author’s instructions to generate a scitools analogous celllD and were processed through the
scitools pipeline as described above. Briefly, after alignment to a consistent mouse reference
genome (GRCm38), files were treated to de-duplication in parallel before merging. For each
dataset, celllDs were filtered to those with at least 1,000 unique reads, and then merged into a
single bam file. Peaks were called as previously described, resulting in 344,258 regions of
accessibility. Per cell FRIiP was calculated using this peak set. TSS enrichment values were
calculated for all cells using the method established by the ENCODE project
(https://www.encodeproject.org/data-standards/terms/enrichment), whereby the aggregate
distribution of reads £1,000 bp centered on the set of TSSs generates 100 bp windows at the
flanks of the distribution as the background and then the maximum window centered on the TSS
is used to calculate the fold-enrichment over the outer flanking windows. Signac was then used
to generate a SeuratObject as described above, and data underwent dimensionality reduction
after integration using Harmony, with argument “nclust=14". A UMAP was plotted as described
above with celllDs colored in relation to the technology used, and the original author-assigned
cell type.
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Computational analysis of human lung, mouse lung, and mouse liver tissue samples

Preprocessing

Fastq files were generated using bcl2fastq with the following options: “--ignore-missing-bcls”, “--
no-lane-splitting”, and “--create-fastg-for-index-reads”. Then, we modified the fastq files by
attaching the first 8 bp (Tn5 barcodes) of Read 2 to the header and removing the first 27 bp (8 bp
of Tn5 barcodes + 19 bp of Tn5 mosaic end) from Read 2 with a custom python script. Barcodes
that did not perfectly match any of the expected barcodes were converted to the closest matching
barcode if the edit distance was no greater than 2. Barcodes matching more than 1 expected
barcode after correction were removed. After barcode correction, we demultiplexed samples
based on a combination of Tn5 barcodes and i7 sample indices and generated a combined
barcode for each read by concatenating the i7 sample index, 10X bead barcode, and Tn5 barcode.
Next, we removed the sequence adaptors and low-quality reads using trimmomatic with following
parameters: “LEADING:3; TRAILING:3; SLIDINGWINDOW:4:10; MINLEN:20” and then mapped
the trimmed reads to a hybrid hg38/mm10 reference genome using Bowtie2 with a maximum
fragment length of 2000 pb (-X 2000) and 1 base trimmed from the 3’ end of each read (-3 1).
Following mapping, only the reads confidently (MAPQ = 10) aligned to the assembled nuclear
chromosomes and in proper pairs (determined by “-f3” and “-F12” options in SAMtools) were
preserved for downstream analysis. To eliminate PCR duplicates, we removed all fragments that
possessed the same combined barcode and identical start and end coordinates, keeping a
random representative read for each end of the molecule using a custom script.

Peak calling

The deduplicated bed files were used to call peaks with MACS2, considering a 200 bp window
centered on the read start using the parameters ‘--nomodel --keep-dup all --extsize 200 --shift -
100’. Because each peak may have multiple summits and will therefore be listed multiple times in
the resulting peak bed file, the peaks output from MACS2 were then merged into a single peak
set for each sample using bedtools “merge”. The consolidated peaks were then intersected with
the ENCODE blacklist (mm10 [88] or hg38 ENCFF356LFX) to remove signal-artifact regions
using bedtools “intersect” with “-v” option.

Calculation of ATAC-seq QC metrics

FRIDHS. The FRIDHS score was determined using orthogonal peak references identified in
DNase-seq data. The GM12878 DHS peaks combined the 2 replicates of narrowPeak-formatted
files obtained from the ENCODE consortium (ENCSROOOEMT). The CH12.LX DHS peaks
combined the 2 replicates of narrowPeak-formatted files obtained from the ENCODE consortium
(ENCSR0O00CMQ). The mouse lung DHS peaks combined the 3 replicates of narrowPeak-
formatted files obtained from the ENCODE consortium (ENCSRO0O0CNM). The mouse liver DHS
peaks combined the 14 replicates of narrowPeak-formatted files obtained from the ENCODE
consortium (ENCSROOOCNI). The human lung DHS peaks combined the narrowPeak-formatted
files obtained from 2 separate DNase-seq data but from the same individual (ENCODE Donor
Accession: ENCDO845WKR; ENCODE Experiment Accession: ENCSR164WOF and
ENCSRO058VBM). The overlapping peaks between replicate bed files were consolidated using
bedtools “merge”, and the peaks overlapped with ENCODE blacklist (mm10 [88] or hg38
ENCFF356LFX) were removed using bedtools “intersect” with “-v” option. We removed the reads
mapping to the non-nuclear genome and performed deduplication before calculating FRiDHS.
The reads overlapping the DHS peak reference were counted using the “BedTool.intersect”
function from pybedtools with “u=True”.

TSS enrichment. The human and mouse TSS coordinates were obtained from the Gencode
human reference v39 [89] and Gencode mouse reference vM23 [90], respectively. To build TSS
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references, we first collected the most upstream base (accounting for strand) of each transcript
using a custom R script, and then only the TSSs of gene types and transcript types listing the
following terms were included: “protein_coding”, “IncRNA”, “IG_C_gene”, “IG_D_gene”,
‘“IG_J_gene”’, “IG_LV_gene”, “IG_V_gene”, “IG_V_pseudogene”, “IG_J_ pseudogene”,
“IG_C_pseudogene”, “TR_C_gene”, “TR_D_gene”, “TR_J_gene”, “TR_V_gene”,
“TR_V_pseudogene”, “TR_J pseudogene”. We also excluded transcripts with a tag of
“readthrough_transcript” or “PAR”. These filters were similar to the filtering strategy used by the
10X single-cell ATAC-seq pipeline [91]. The TSS enrichment score for each cell was calculated
using the TSSEnrichment function in the Signac package.

Estimated complexity. The nuclear genome mapped reads and deduplicated reads were used to
estimate the complexity for each cell using the same calculation as Picard [92] implemented in R.

Collision rate estimation

For each combined barcode, we quantified the number of deduplicated reads mapping to the
human and mouse genome and filtered out the combined barcodes with fewer than 1,000 total
reads. The collision barcodes were determined as the cell barcodes that had more than 10% of
reads aligned to the minor genome. Since the cell doublets can be generated by either two cells
from the same species or cells from distinct species, the observed collisions only reflect
approximately half of the collision events that in fact occur in the experiment. To this end, we
estimated the actual collision rate using the equation in [11].

Dimensionality reduction and clustering

An iterative peak-calling strategy was used to perform dimensionality reduction and cluster cells.
The first round of clustering was performed with a pseudo-bulk peak reference, which was
identified by calling peaks on deduplicate reads from identified cells (= 1,000 reads). Then, a
binarized peak (column) by cell (row) matrix was generated by scoring the peaks defined in the
previous step for overlap with reads from each cell. The low complexity cells and features were
removed using Signac “CreateChromatinAssay” function by setting “min.cells = 50 and
min.features = 200” for mouse samples and setting “min.cells = 15 and min.features = 200” for
human samples followed by filtering out the cells considered as outliers for QC metrics (DHS
region reads > 20,000, FRiDHS < 0.2 and TSS enrichment score < 2). Potential cell doublets were
identified by performing a modified version of the Scrublet workflow [14] on each txci-ATAC-seq
library separately. In brief, we transformed the filtered cell/peak matrix with the term-frequency
inverse-document-frequency (TF-IDF) algorithm by computing log(TFxIDF) as described in [93]
and then calculated the first 30 components for PCA using the irlba R package. Simulated cell
doublets were created by randomly sampling 50% of observed cells from the original matrix and
summing them with another 50% of randomly sampled cells. The matrix of simulated doublets
was then binarized and transformed with the same TF-IDF implementation. Subsequently, we
projected the transformed doublets into the PCA space generated by the observed data and
performed L2-normalization on the resulting matrix including both observed and simulated cells
with Seurat “L2Dim” function. The L2-normalized reduction was then used to compute the fraction
of simulated doublet neighbors for each cell using Seurat “FindNeighbors” function with
dimensions 2 to 30 and setting “k.param” as 129 (mouse lung nuclei from the 100,000 lane), 166
(mouse lung nuclei from the 200,000 lane), 120 (mouse liver nuclei from the 100,000 lane), 147
(mouse liver nuclei from the 200,000 lane), 62 (human lung nuclei from the 100,000 lane), and 74
(human lung nuclei from the 200,000 lane). We derived the “k.param” values using the Kag;
equation in Scrublet. Finally, a doublet score was calculated for each cell using the appropriate
equations described in Scrublet.
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Assuming a bimodal distribution, a threshold for doublet scores was calculated with the simulated
cells by identifying the boundary between the doublets incorporating highly similar cells
(“embedded”) and the doublets of dissimilar cells (“neotypic”) using the mclust R package [74]
with less than 5% uncertainty that the doublets were classified into the “neotypic” category. After
removing the doublets detected, we computed the latent semantic indexing (LSI) matrix by
running singular value decomposition (SVD) on the TF-IDF normalized matrix using Signac and
then clustered cells using Seurat “FindNeighbors” function with the dimensions of reduction from
2 to 30 followed by Seurat “FindClusters” implementing the SLM algorithm with default resolution.
For tissues with replicates, the LS| matrix was integrated by individual with Harmony [72] prior to
cell clustering.

Each cell cluster from this first round of clustering was then used to identify peaks independently,
and all cluster peaks were merged into a single reference set. Subsequently, a second round of
clustering was performed using this updated peak set. With the same workflow, we used in the
first round of clustering, a binarized count matrix generated with cluster-identified peaks was
created and used to perform normalization, dimension reduction, integration (for tissues with
replicates), and clustering, except that the resolution parameter used to determine the community
size was set differently for each tissue (i.e., 0.8, 0.2 and 0.3 were used for mouse lung tissue,
mouse liver tissue, and human lung tissue, respectively). Regarding liver samples, we decided to
consolidate clusters 0, 7, 8, and 9 because of no visible separation between them in 2D UMAP
space. For visualization purposes, the data was projected into a two-dimensional space via Seurat
“‘RunUMAP” function with 30 dimensions (excluding the first component, which represented the
sequencing depth).

Cell type annotation

The cell types associated with each cluster were predicted by label transfer using publicly
available sc/snRNA-seq and sci-ATAC-seq data. Only the cell types including at least 50 cells in
the reference dataset were used to infer the cell types in the query dataset. To annotate cell types
with transcriptome data, we used previously published data from steady state mouse liver, mouse
lung, and healthy human lung samples to construct an “integrated” reference for each tissue in
each species using the Seurat scRNA-seq integration pipeline. In all cases, the 5000 most
variable genes across reference samples were selected to find integration “anchors”. The mouse
lung reference was built by integrating three samples (a scRNA-seq sample and two replicate
samples of snRNA-seq) from a single study [29]. The mouse liver reference was created by
integrating samples generated with three different protocols (snRNA-seq and scRNA-seq using
cells isolated via either ex vivo or in vivo enzymatic digestion method) from a single study as well
(https://www.livercellatlas.org/download.php; [30]). The human lung reference was established by
integrating two scRNA-seq datasets obtained from two independent studies [31,32]. After creating
RNA-seq references, we estimated transcriptional activity across the genes selected for
integration by quantifying the txci-ATAC-seq counts in both the 2 kb region upstream and the
gene body of each gene using the Signac “GeneActivity” function. The prediction of cell type was
then achieved by performing canonical correlation analysis on the gene activity scores calculated
from ATAC-seq data along with the integrated scRNA-seq reference using Seurat
“FindTransferAnchors” function followed by transferring annotations from reference to query cells
using “TransferData” function in which the 2nd to 30th components of the LSI matrix calculated
on ATAC-seq data was used to compute the weights of the local neighborhood of anchors.

For annotating cells with a chromatin reference, we downloaded the fastq files of mouse sci-
ATAC-seq data from [3] (GEO accession number: Lung RepA, GSM3034631; Lung Rep B,
GSM3034632; Liver, GSM3034630) and mapped them to the mm10 reference genome using
Bowtie2. In terms of the human reference, the cell by bin (5kb) matrices were downloaded from
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4 lung samples [33] (GEO accession number: GSE165659) and binarized prior to cell type
prediction. To ensure that the same features were measured in the reference and query datasets,
we summarized the reads from txci-ATAC-seq to either the peaks identified from the pseudo-bulk
sci-ATAC-seq data (Mouse) or 5 kb genomic windows (human) for each query cell and only
retained the features that were detected in at least 50 (mouse) or 15 (human) cells in both
datasets. The label transfer was performed using Seurat “FindTransferAnchors” function with
reference.reduction = "Isi" and reduction = "Isiproject" followed by “MapQuery” function with
reference.reduction = “Isi”.

The final cell types were determined by applying a majority vote strategy to each cluster. For
undetermined clusters or clusters with inconsistent labels between the RNA-seq and ATAC-seq
reference-based predictions, the cell types were determined by screening the high activity genes
for each cluster (identified using the Seurat “FindMarkers” function) for activity patterns consistent
with gene expression either characterized in the scRNA-seq reference or (for mouse) collected in
UCSC Tabula Muris [94,95]. The color palette used for cell types in the UMAPs was selected from
colors available in the ArchR package [96].

Identification of differential peaks

An edgeR-based pseudo-bulk method was used to identify differential peaks between WT and
CC16™ mouse lungs for each cell type. To do so, we aggregated the reads for all cells from the
same replicate in a cluster-wise manner, which resulted in 3 biological replicates for each
genotype per cell type. The lowly accessible peaks in each differential test were filtered out using
the “filterByExpr” function with default parameters followed by calculating normalization factors
with “calcNormFactors()”. Then, we estimated dispersions using “estimateDisp()” with a design
matrix and “robust = TRUE” and performed hypothesis testing using the quasi-likelihood F-test.
The Benjamini and Hochberg (BH) method [97] was used to control the false discovery rate (FDR).

Variant calling and filtering

The variant calling was performed jointly across all replicates from the same genotype using
BCFtools with “bcftools mpileup” followed by “bcftools call” command. Only the SNVs that met the
following criteria were used for downstream analyses: a Phred-scaled quality score (QUAL) of at
least 20, a sum of read depth (DP) across all three replicates of at least 10, and the same
genotype in at least two of three replicates.

Motif analysis

The motif position frequency matrices obtained from the JASPAR database (version 2020) [98]
were used for all motif analyses. For motif enrichment analysis, we applied the Signac “FindMotifs”
function to all differentially accessible peaks per cell type to identify the enriched motifs using a
GC-content-matched set of peaks created from the accessible peaks as a background. The
multiple testing correction was performed with the BH procedure [97].

To identify the SNV-driven gains and losses in motif matching, we first generated alternative DNA
sequences over the differentially accessible peaks from SNV hotspots (mm10 chr8:68,000,000-
93,000,000 and mm10 chr19:16,500,000-26,500,000) for WT and CC16™ samples by replacing
the reference bases at the variation sites with the hotspot SNVs identified in each genotype using
GATK “FastaAlternateReferenceMaker” tool. Then, we matched the motifs against the alternative
DNA sequences using the MOODS package with a p-value cutoff of 0.0001. To identify functional
motifs capable of accounting for the chromatin accessibility changes, we tested for associations
between the logz(fold-change) of differentially accessible peaks and the gain or loss of motifs in
CC16™ background using the student's t-test and controlling for multiple testing with the BH
method [97]. When counting differences in accessibility that might be explained by specific motif-
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disrupting SNVs, we only considered the instances that exhibit a coherent change in chromatin
accessibility with the overall motif effect to be explanatory (i.e., depending on whether gained/lost
motifs are positively or negatively associated with peak accessibility, each of the potential
explanatory instances for that motif also needs to display concordant increases or decreases in
accessibility to be counted as explanatory).

Functional analysis

The KEGG pathways enrichment analysis was performed by applying rGREAT on all differential
peaks identified for each cell type using both binomial and hypergeometric tests. To control both
tests, we used a previously implemented two-threshold approach [99] to define the significant
pathways by requiring a stringent 10% FDR threshold for at least one test, but allowing for a more
relaxed threshold (unadjusted p-value of 0.05) for the other test. The gene sets of KEGG
pathways were retrieved using the KEGGREST package.

Abbreviations:

APB: ATAC-PBS Buffer

ATAC-seq: Assay for Transposase Accessible Chromatin using Sequencing
AUC: Area Under Curve

BH: Benjamini and Hochberg

BSA: Bovine Serum Albumin

CC16: Club Cell Secretory protein

CCANSs: Cis-Coaccessibility Networks

COPD: Chronic Obstructive Pulmonary Disease

ES: Embryonic Stem

ETS-domain: E26 Transformation Specific-domain
FDR: False Discovery Rate

FRIDHS: Fraction of Reads in DNase | Hypersensitive Sites
FRIP: Fraction of Reads in Peaks

GEM: Gel Bead-In EMulsions

iTSM: pre-indexed Tn5 transposase per well

LHX2: LIM Homeobox 2

LHX®6: LIM Homeobox 6

LSI: latent Semantic Indexing

NFB: Nuclei-Freezing Buffer

NFI: nuclear factor |

PBSB: PBS containing 0.04% BSA

PMI: Post-Mortem Interim

RSB: ATAC Resuspension Buffer

SCATAC-seq: single-cell ATAC-seq

sci: single-cell combinatorial indexing

ScRNA-seq: single-cell RNA-seq

SNP: Single Nucleotide Polymorphism

snRNA-seq: single-nucleus RNA-seq

SNV: Single Nucleotide Variants

SVD: Singular Value Decomposition

TF: Transcription Factors

TF-IDF: Term-Frequency Inverse-Document-Frequency
TMG: Tagmentation Wash Buffer

TSS: Transcription Start Site

txci-ATAC-seq: TenX(10X)-Compatible Combinatorial Indexing ATAC-seq
UMAP: Uniform Manifold Approximation and Projection
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WT: Wild Type
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Supplementary Figure 1. Collision rates of standard 10X protocol coupled with combinatorial
indexing. a) Well assignment for each cell source and barnyard design. The wells with a mixture of species
are shown as half-circles of two different colors corresponding to each species. The wells where
tagmentation was done with the 10X ATAC buffer are highlighted by orange outer circles. b) The scatter
plots showing the number of reads mapped to either the human or mouse genome for each barnyard design.
The plots on the left-hand side include all cell barcodes, and the plots on the right-hand side only visualize
the 10X bead barcodes associated with a single Tn5 barcode. The percentage represents the estimated
collision rate for each plot. The x- and y-axes are capped at 3x10* reads, and the cells with more than 3x10*
reads are denoted by triangles. c) the theoretical model of the process of Tn5 barcode swapping. d), the
proposed strategies to block barcode swapping.
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Supplementary Figure 2. Exponential amplification during GEM PCR enables deconvolution of cells
in the same droplet. a) Well assignments for the experiment testing the performance of each blocking
strategy. Each blocking condition was allocated to % of the plate and a total of two 96-well plates were used
to test all three conditions. The column ID assigned to each blocking condition is shown under the 96-well
plate. b) “Knee” plots showing the separation between cell barcodes (orange line) and background
barcodes (blue line) in either cell lines or lung tissues using different blocking methods. The dashed line
indicates the threshold (1000 reads) used to identify cell barcodes. ¢) Comparison of estimated collision
rate using different blocking strategies for each barnyard condition. The collision rate is not calculated for
the pseudo-barnyard supplemented with SBS primer (positions labeled with NA) due to either no collision
cells (cell line) or no human cells (pure mouse wells) observed, although one cell technically met the
collision threshold (<90% of reads mapping to the major species) in the pure mouse wells (pseudo-
barnyard). d-e) QC metrics of each blocking approach across different cell sources. The (d) FRiDHS and
(e) estimated complexity (on a logo scale) in each cell barcode are plotted for each strategy. The color
legend is consistent with panel (c). f) The fragment size distribution of each blocking condition.
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Supplementary Figure 3. Evaluating the performance of txci-ATAC-seq on brain samples. a) Two-
dimensional density map of cells passing initial read filters for percent unique reads (library saturation) and
unique read counts. b) Mixed-species tagmentation wells were subject to alignment in both human and
mouse reference genomes. c) Number of cells per droplet quantified on a histogram, showing a majority of
droplets still contain only a single cell. d) Quantification of cells in 25,000 and 75,000 library pools.
Conditions include doublets uncovered either through cross-species alignment (“mixed doublet”) or through
a reduced dimension detection strategy (see Methods). Other cells passing these filters are colored by
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identified species and tagmentation conditions. e,f) Hierarchically clustered heatmap of cell identification in
the human cortex (e) and mouse whole brain (f) samples using gene activity scores for label transfer. The
Brain Map M1 Cortex RNA dataset was used to annotate human cells and the Brain Map mouse cortex and
hippocampus RNA dataset and mouse cerebellum (GSE165371) were used to annotate mouse cells.
Values reflect the percentage of cells per cluster with each label as its maximum predicted value. g) Density
plots of fragment length for fragments ranging from 1-1000 bp per technology. h) Grouped boxplots of
projected unique read count per sequencing effort for each cell by technology.
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Supplementary Figure 4. The sequencing depth of txci-ATAC-seq libraries loading 100,000 or
200,000 nuclei. a,b) Histograms showing the distribution of unique read counts (on a log1o scale) assigned
to each possible barcode combination at the 100,000 (a) and 200,000 (b) nuclei loading inputs. The gray
dashed line indicates the threshold (1000 reads) to identify a barcode as a cell. Barcode combinations with
fewer than 100 total reads are not plotted. c,d) Contour plots showing the number of deduplicated reads
against the estimated percent unique reads observed for each barcode combination at the 100,000 (c) and
200,000 (d) nuclei inputs. The estimated percent of unique reads observed was calculated by dividing the
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number of observed unique reads by the estimated complexity for each barcode combination. The color
legend shows the normalized barcode density (as calculated in ggplot2) scaled from high (yellow) to low
(blue). The gray dashed line indicates the threshold to call a cell barcode. The barcode combinations with

fewer than 100 total reads are not shown on the plot.
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Supplementary Figure 5. Cell type annotation of mouse lung samples with label transfer. a) UMAP
of sc/snRNA-seq reference in which one scRNA-seq sample was integrated with two replicate samples of
snRNA-seq, all from the same study. b) UMAP of txci-ATAC-seq data annotated with the labels predicted
by the integrated scRNA-seq reference. c) UMAP of the sci-ATAC-seq reference. d) UMAP of txci-ATAC-
seq data annotated with the labels predicted by the sci-ATAC-seq reference. The color legend for all panels
is shown on the right. The legend labels with the assay enclosed in parentheses (and connected to a color
with a line) denote that these cell-type labels are only observed in one reference (“RNA” for the data shown
in (a), and “ATAC” for the data shown in (b)) and share a color with a cell type that is only observed in the
other reference. Abbreviations: aBC, activated B cells; aEC, arterial endothelial cells; AM, alveolar
macrophages; AT1, alveolar type 1 epithelial cells; AT2, alveolar type 2 epithelial cells; BC, B cells; cEC,
capillary endothelial cells; Cil, ciliated cells; cMono, classical monocytes; Col13+FB, collagen type Xl a 1
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chain positive fibroblasts; Col14+FB, collagen type XIV a 1 chain positive fibroblasts; DC, dendritic cells;
Div, dividing cells; EC, endothelial cells; GB, germinal B cells; Gob, goblet cells; HSPC, Hematopoietic
progenitors; IM, interstitial macrophages; LEC, lymphatic endothelial cells; Mes, mesothelial cells; MyoFB,
myofibroblasts; ncMono, nonclassical monocytes; NK, natural killer cells; pDC, plasmacytoid dendritic cells;
Peri, pericytes; PMN, neutrophils; SMC, smooth muscle cells; TC, T cells; Treg, regulatory T cells; VEC,
venous endothelial cells.
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Supplementary Figure 6. Cell type annotation of mouse liver samples with label transfer. a) UMAP
of sc/snRNA-seq reference integrating the snRNA-seq with scRNA-seq using different digestion protocols.
b) UMAP of txci-ATAC-seq data annotated with the labels predicted by scRNA-seq reference. c) UMAP of
sci-ATAC-seq reference. d) UMAP of txci-ATAC-seq data annotated with the labels predicted by sci-ATAC-
seq reference. The color legend for all panels is shown on the right. The legend labels with the assay
enclosed in parentheses (and connected to a color with a line) denote that these cell-type labels are only
observed in one reference (“RNA” for the data shown in (a), and “ATAC” for the data shown in (b)) and
share a color with a cell type that is only observed in the other reference. Abbreviations: Baso, basophils;
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BC, B cells; Cho, cholangiocytes; DC, conventional dendritic cells; EC, endothelial cells; Hep, hepatocytes;
HPC, hepatic progenitor cells; ILC1, type 1 innate lymphoid cells; KC, Kupffer cells; migDC, migratory DCs;
Mono, monocytes and monocyte-derived cells; Neu, neutrophils; NK, NK cells; pDC, plasmacytoid dendritic
cells; TC, T cells.
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Supplementary Figure 7. Cell type annotation of human lung sample with label transfer. a) UMAP of
scRNA-seq reference integrating the two scRNA-seq datasets. b) UMAP of txci-ATAC-seq data annotated
with the labels predicted by scRNA-seq reference. c) UMAP of sci-ATAC-seq reference. d) UMAP of txci-
ATAC-seq data annotated with the labels predicted by sci-ATAC-seq reference. The color legend for all
panels is shown on the right. The legend labels with the assay enclosed in parentheses (and connected to
a color with a line) denote that these cell-type labels share a color with a cell type that is observed in the
alternative reference (“RNA” for the data shown in (a), and “ATAC” for the data shown in (b)). Note: the
fibroblasts (FB) in ATAC reference share the color with alveolar fibroblasts (AlvFB) rather than FB in RNA
reference; The macrophages (MP) in RNA reference share the color with general/alveolar macrophages
(MP/AM) rather than MP in ATAC reference. Abbreviations: AdvFB, adventitial fibroblasts; aEC, arterial
endothelial cells; AirSMC, airway smooth muscle cells; AlvFB, alveolar fibroblasts; AT1, alveolar type 1
epithelial cells; AT2, alveolar type 2 epithelial cells; Baso/Mast1, basophil/mast cell 1 cells; Baso/Mast2,
basophil/mast cell 2 cells; BC, B cells; Bro1, bronchial vessel 1 cells; Bro2, bronchial vessel 2 cells; CapA,
capillary aerocytes; Capl1, capillary intermediate 1 cells; Capl2, capillary intermediate 2 cells; CD4+M/E,
CD4+ memory/effector T cells; CD4+Na, CD4+ naive T cells; CD4+TC, CD4+ T cells; CD8+M/E, CD8+
memory/effector T cells; CD8+Na, CD8+ naive T cells; CD8+TC, CD8+ T cells; cEC, capillary endothelial
cells; Cil, ciliated cells; cMono, classical monocytes; dBasal, differentiating basal cells; DC, conventional
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dendritic cells; dCil, differentiating ciliated cells; EC, endothelial cells; FB, fibroblasts; FibM, fibromyocytes;
Gob, goblet cells; iAT2, alveolar type 2/immune; iMono, intermediate monocytes; LEC, lymphatic
endothelial cells; mDC1, myeloid dendritic type 1 cells; mDC2, myeloid dendritic type 2 cells; memBC,
memory B cells; Mes, mesothelial cells; Mono, monocytes; MP, macrophages; MP/AM, macrophages
(general/alveolar); Muc, mucous cells; MUC5B, MUC5B+ secretory cells; MyoFB, myofibroblasts; ncMono,
nonclassical monocytes; NK, natural killer cells; NKT, natural killer T cells; PC, plasma cells; pDC,
plasmacytoid dendritic cells; pEC, proliferating epithelial cells; Peri, pericytes; pMP, proliferating
macrophages; pNK/TC, proliferating NK/T cells; pTC, proliferating T cells; pxBasal, proximal basal cells;
pxCil, proximal ciliated cells; sAT2, signaling AT2 cells; SCGB3A2, SCGB3A2+ secretory cells;
SCGB(3A2+1A1), SCGB3A2+ and SCGB1A1+ secretory cells; SMC, smooth muscle cells; tAT2,
transitional AT2 cells; TC, T cells; TC+Na, naive T cells; VasSMC, vascular smooth muscle cells; VEC,
venous endothelial cells.
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Supplementary Figure 8. Comparison of prediction accuracy between txci-ATAC-seq and sci-ATAC-
seq in mouse lung cells. The txci-ATAC-seq dataset was subsampled to have the same number of cells
as that in sci-ATAC-seq data 1000 times. The prediction score (y-axis) calculated by Seurat label transfer
using an RNA-seq reference was plotted against the cell ranks (x-axis) based on the prediction score. The
red line shows the mean score of 1000 simulations in txci-ATAC-seq. The shaded band is the pointwise
95% confidence interval based on subsampling (from the 2.5% to 97.5% quantile). The black line shows
the prediction score in sci-ATAC-seq data.

47


https://doi.org/10.1101/2023.05.11.540245
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.11.540245; this version posted May 14, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Peri/FB
47 ] MP 4 Mouse sample
#SMC ® AT mixed with
® AT2_1 N ® Lung A
N
o i CcEC : ':IIE—?:J . ® Lung B
= 0+ S 0 )
= Cil/Club ® Lym 5 ® LiverA
Peri/FB ® LiverB
2 Cil/Club
AT1 e SMC
-4 MP -4
T T T T T T T T T T
-10 -5 0 5 10 -10 -5 0 5 10
UMAP 1 UMAP 1
| d . e
FRIDHS TSS Enrichment Est. Complexity (log,,)
1.001 12 6
0.751 94
e 5
= 0.504 6
>
0.254 34 4
0.00 -

Supplementary Figure 9. Characterization of cellular heterogeneity in human lung tissue. a) UMAP
visualization of human lung nuclei (n = 15,799) identifying 9 distinct cell types. b) UMAP of human lung
nuclei visualized by the mouse samples with which they were mixed. c-d) QC metrics of human lung nuclei
mixed with different mouse samples. The color legend is consistent with panel (b). The (c) FRIDHS, (d)
TSS enrichment score, and (e) estimated complexity (on a log1o scale) are plotted for each human lung
nuclei sample profiled across different barnyard settings.
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Supplementary Figure 10. txci-ATAC-seq are robust to batch effects. a,b) UMAP visualization of
mouse lung samples showing the batch variance introduced either by (a) mouse replicate or (b) nuclei input
on the 10X. c,d) UMAP visualization of mouse liver samples showing the batch variance introduced either
by (c) mouse replicate or (d) nuclei input. Colors for replicates and inputs are consistent in both (a,c) and
(b,d). Hepatocytes are indicated by “Hep” in (c).
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Supplementary Figure 11. Fast-txci-ATAC-seq improves multiplexing capability without sacrificing
data quality. a) Well assignment for the faster and standard versions of txci-ATAC-seq multiplexing WT
and CC16 knockout lungs with (3 replicate mice for each genotype). b) The number of nuclei passing quality
filters for each protocol at different nuclei loading inputs. c-e) The comparison of quality metrics per cell
between the two protocols across 6 mouse lung samples. The Fast-txci-ATAC-seq provided a comparable
FRIDHS (c) and TSS enrichment score (d) but slightly lower estimated complexity (e) than the standard
protocol. f, g) UMAP visualization of nuclei by co-embedding the standard (n=154,103) and faster (n=65,799)
assays. The nuclei are colored either by predicted cell type (f) or ATAC-seq protocol (g).
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Supplementary Figure 12. Chromatin accessibility changes induced by CC16” deficiency in mouse
lung. a) Aggregated chromatin accessibility at the Scgb7a? promoter region across cell types. The
aggregated accessibility signal for each cluster was normalized by a scaling factor computed as the number
of cells in the cluster multiplied by the mean sequencing depth for the cells in that cluster. b) Differentially
accessible peaks between CC167 and WT samples across club, AT1, and AT2 cells generated by
combining the 100,000 and 200,000 nuclei loading inputs. The -logo-transformed adjusted p-value for each
peak was plotted against the logz(fold-change). The color labels the peaks that are less accessible (blue),
more accessible (red), and unchanged (gray) in knockout samples. The number of differentially accessible
peaks identified in each cell type is displayed within the plot. ¢) The number of differentially accessible
peaks per cell type calculated using the 100,000 input alone. With 100,000 nuclei as input, many fewer
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peaks were identified as differentially accessible. d) UMAP visualization of nuclei showing the gene activity
score of Scgb7a? in WT (left) and CC16™ (right) lungs.
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Supplementary Figure 13. Functional analysis and regulatory variant identification in CC16 deficient
mouse. a,b) Top 10 motifs significantly enriched in less accessible peaks identified in CC16™ club cells (a)
and more accessible peaks identified in CC167 AT1 cells (b). The dot color encodes the -log1o-transformed
adjusted p-value, while the size of the dot encodes the percentage of observed peaks enriched in each
motif. The x-axis displays the fold enrichment on a logz scale. c) KEGG pathways of interest enriched in
each cell type. The colors show the -log1e-transformed adjusted p-value derived from the binomial (blue to
green) and hypergeometric (black to red) tests. The dot size denotes the number of observed regions
(binomial) or genes (hypergeometric) in each test. The significant pathways passing the two-threshold cutoff
are highlighted by gray boxes. d) Enrichment of differential peaks in each chromosome across cell types.
The enrichment was calculated by dividing the fraction of differential peaks in each chromosome by the
fraction of total peaks identified in each chromosome. e) SNVs identified in WT and knockout samples
across chromosomes meeting the quality criteria. The y-axis represents the phred-scaled quality score. f)
Proportions of SNPs mapped to each functional genomic category (exon, intron, overlapping regions
between exon and intron, and intergenic regions) in WT and knockout samples.
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Supplementary Figure 14. SNP-driven differences in motif usage alter chromatin accessibility. a,b)
TFs that are associated with increased (a) or decreased (b) chromatin accessibility when the peaks gain
the TF motifs. The y-axis shows the logz(fold-change) in chromatin accessibility for the differential peaks
identified in the SNV hotspots between CC167- and WT samples. A positive logz(fold-change) means the
peaks are more accessible in the knockout samples. The x-axis indicates the motif hits that are gained or
lost in the peaks carrying the CC167- SNVs. The instances (red) that exhibit a coherent change in chromatin
accessibility with the overall motif effect were considered to explain the observed differences in chromatin
accessibility between two genotypes (i.e., for opening TF motifs shown in panel a, the gained instances
with a positive logz(fold-change) and the lost instances with a negative logz(fold-change) were considered
explanatory; For closing TF motifs shown in panel b, the gained instances with a negative logz(fold-change)
and the lost instances with a positive logz(fold-change) were considered explanatory).
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Supplementary Figure 15. Singlet yields at different numbers of input nuclei. Plot showing the number
of nuclei recovered (y-axis) in each experiment stratified by the intended number of input nuclei (x-axis).
The color denotes the datasets used to compute the singlets at each nuclei loading input. The maximum
yield was obtained with 100,000 nuclei as input.
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Supplementary Figure 16. Examination of efficiency for in-droplet and sample index PCR. The total
unique reads on a log1o scale were plotted against the proportion of in-droplet reads for each barcode. The
barcodes with both in-droplet and sample indexes were colored in red. The green and blue dots indicate
the barcodes only getting the in-droplet index and the barcodes only getting the sample index, respectively.
The gray dashed line indicates the threshold to call a cell barcode.
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Supplementary Tables

Supplementary Table 1. Differentially accessible peaks identified between CC16”7- and WT samples for
each cell type. This table is provided as a separate file.

Column 1: Cell type in which the test was performed.

Column 2: Peak region.

Columns 3-5: Logz(fold-change), raw p-value, and FDR-adjusted p-value, respectively.

Columns 6-11: Logz-transformed counts per million (CPM) for each sample, computed using the normalized
library sizes. The CPM values for WT samples are shown in columns 6-8, and the CPM values for CC167
samples are shown in columns 9-11.

Supplementary Table 2. Enriched motifs in more accessible and less accessible peaks in response to
CC16 deficiency for each cell type. This table is provided as a separate file.

Column 1: Cell type in which the test was performed.

Column 2: Changing direction of differentially accessible peaks that were used to perform the test.
Column 3: Motif ID.

Column 4: Motif name.

Column 5: The number of differential peaks that contain the motif identified.

Column 6: The number of background peaks that contain the motif identified.

Column 7: The percentage of differential peaks that contain the motif identified.

Column 8: The percentage of background peaks that contain the motif identified.

Column 9: The ratio of the observed frequency of the motif in differential peaks to the expected frequency
calculated by the background peaks.

Column 10: Raw p-value.

Column 11: FDR-adjusted p-value.

Supplementary Table 3. KEGG pathways enriched in differential peaks between CC167- and WT samples
for each cell type. This table is provided as a separate file.

Column 1: Cell type in which the test was performed.

Column 2: KEGG pathway ID.

Column 3: Description of KEGG pathway.

Column 4: Fraction of non-gap base pairs in the genome that lie in the regulatory domain of a gene with
the annotation.

Column 5: Actual number of differential peaks with the annotation.

Column 6: Fold enrichment of number of differential peaks with the annotation.

Column 7: Uncorrected p-value from the binomial test over genomic regions.

Column 8: FDR-adjusted p-value for the binomial test.

Column 9: Mean absolute distance of input regions to TSS of genes in a gene set.

Column 10: Actual number of genes linking to a differential peak with the annotation.

Column 11: Number of genes in the genome with the annotation.

Column 12: Fold enrichment of number of genes linking to a differential peak with the annotation.

Column 13: Uncorrected p-value from the hypergeometric test over genes.

Column 14: FDR-adjusted p-value for the hypergeometric test.

Linker oligo Sequence 5’ -> 3’

Tn5ME-A TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

Tn5ME-B CGTGTGCTCTTCCGATCTNNNNNNNNAGATGTGTATAAGA
GACAG

Tn5MErev [phos]CTGTCTCTTATACACATCT

Supplementary Table 4. Sequences of Tn5 linker oligos. The ‘N’ bases shown in the Tn5ME-B sequence
represent the Tn5 barcodes.
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Supplementary Table 5. Tn5 barcode sequences. Column 1 shows the well ID for each well on the iTSM
plate. Column 2 shows the sequences of Tn5 barcodes assigned to each well. Column 3 is the 12 numerical
labels for the plate columns. Column 4 is the 8 alphabetical labels for the plate rows. This table is provided
as a separate file.

Supplementary Table 6. Barnyard experiment design. Column 1 shows the figure number for each
barnyard experiment. Column 2 indicates the barnyard type (True vs. Pseudo). Column 3 shows the cell
source of human samples. Column 4 shows the number of human nuclei loaded to each well. Column 5
shows the cell source of mouse samples. Column 6 shows the number of mouse nuclei loaded to each well.
Column 7 indicates the nuclei preparation method (Fresh vs Frozen). Column 8 is the well ID on the iTSM
plate (see Table S4) assigned to each barnyard experiment. This table is provided as a separate file.

i7 Index ID | Oligo Sequence 5’ -> 3’ Barcode Library
P7.S701 CAAGCAGAAGACGGCA | TAAGGCGA | WT and CC16 knockout mouse lungs at the
TACGAGATTCGCCTTAG 100,000 nuclei input using the standard txci-
TGACTGGAGTTCAGACG ATAC-seq protocol
TGTGCTCTTCCGATCT
P7.S702 CAAGCAGAAGACGGCA | CGTACTAG | 1) Barnyard experiment with standard 10X
TACGAGATCTAGTACGG protocol;
TGACTGGAGTTCAGACG 2) WT and CC16 knockout mouse lungs at the
TGTGCTCTTCCGATCT 200,000 nuclei input using the standard txci-
ATAC-seq protocol
P7.S703 CAAGCAGAAGACGGCA | AGGCAGAA | 100,000 nuclei multiplexing mouse liver,
TACGAGATTTCTGCCTG mouse lung, and human lung samples
TGACTGGAGTTCAGACG
TGTGCTCTTCCGATCT
P7.S704 CAAGCAGAAGACGGCA | TCCTGAGC | 1) Blocking barcode-swapping with SBS
TACGAGATGCTCAGGAG primer;
TGACTGGAGTTCAGACG 2) 200,000 nuclei multiplexing mouse liver,
TGTGCTCTTCCGATCT mouse lung, and human lung samples
P7.S705 CAAGCAGAAGACGGCA | GGACTCCT | 1) Blocking barcode-swapping with Decoy
TACGAGATAGGAGTCCG DNA;
TGACTGGAGTTCAGACG 2) WT and CC16 knockout mouse lungs at the
TGTGCTCTTCCGATCT 50,000 nuclei input using the Fast-txci-ATAC-
seq protocol
P7.S706 CAAGCAGAAGACGGCA | TAGGCATG | 1) Blocking barcode-swapping with Blocking
TACGAGATCATGCCTAG oligo;
TGACTGGAGTTCAGACG 2) WT and CC16 knockout mouse lungs at the
TGTGCTCTTCCGATCT 100,000 nuclei input using the Fast-txci-
ATAC-seq protocol

Supplementary Table 7. TruSeq i7 index sequences used for each library in Sample Index PCR. Column
1 shows the index ID. Column 2 shows the oligo sequence. Column 3 indicates the barcode sequence
assigned to each library shown in Column 4.
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Type Oligo Sequence 5’ -> 3’

Short SBS CGTGTGCTCTTCCGATCT

Full SBS CAAGCAGAAGACGGCATACGAGATtcgecttaGTGACTGGAGTTCAGACGTGT
GCTCTTCCGATCT

Decoy DNA strand A | GGTAGAAG/ideoxyU//ideoxyU/AGTAGAATGAAG/ideoxyU//ideoxyU/AGAAGA/
deoxyU//ideoxyU/GTAA/3InvdT/

Decoy DNA strand B | TTACAATC/ideoxyU//ideoxyU/CTAACTTCA/ideoxyU//ideoxyU/CTACTAAC/ide
oxyU//ideoxyU/CTACC/3InvdT/

Blocking oligo CTGTCTCTTATACACATCTCATCATAGAGATCGGAAGAGCACACG/3InvdT/

Supplementary Table 8. DNA oligonucleotides used to block barcode swapping. Each row provides the
sequence of an oligo used in the barcode swapping blocking tests. The lowercase letters shown in the full
SBS primer represent the barcode sequence. For Decoy DNA, the strands A and B were annealed to form
a duplex DNA.
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