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Abstract 

Measuring chromatin accessibility is a powerful method to identify cell types and states. 
Performed at single-cell resolution, this assay has generated catalogs of genome-wide DNA 
regulatory sites, whole-organism cell atlases, and dynamic chromatin reorganization through 
development. However, the limited throughput of current single-cell approaches poses a 
challenge for implementing proper study designs, population-scale profiling, and/or very deep 
profiling of complex samples. To this end, we developed a 10X-compatible combinatorial indexing 
ATAC sequencing (“txci-ATAC-seq”), which is a combinatorial indexing framework that initially 
indexes (“pre-indexes”) chromatin within nuclei with barcoded transposases followed by 
encapsulation and further barcoding using a commercialized droplet-based microfluidics platform 
(10X Genomics). Leveraging this molecular hashing strategy, we demonstrate that txci-ATAC-
seq enables the indexing of up to 200,000 nuclei across multiple samples in a single emulsion 
reaction, representing a ~22-fold increase in throughput compared to the standard workflow at 
the same collision rate. To improve the efficiency of this new technique, we further developed a 
faster version of the protocol (“Fast-txci-ATAC-seq”) that separates sample pre-processing from 
library generation and has the potential to profile up to 96 samples simultaneously. We initially 
benchmarked our assay by generating chromatin accessibility profiles for 230,018 cells from five 
native tissues across three experiments, including human cortex (28,513 cells), mouse brain 
(48,997 cells), human lung (15,799 cells), mouse lung (73,280 cells), and mouse liver (63,429 
cells). We also applied our method to a club cell secretory protein knockout (CC16-/-) mouse model 
to examine the biological and technical limitations of the mouse line. By characterizing DNA 
regulatory landscapes in 76,498 wild-type and 77,638 CC16-/- murine lung nuclei, our 
investigations uncovered previously unappreciated residual genetic deviations from the reference 
strain that resulted from the method of gene targeting, which employed embryonic stem cells from 
the 129 strain. We found that these genetic remnants from the 129 strain led to profound cell-
type-specific changes in chromatin accessibility in regulatory elements near a host of genes. 
Collectively, we defined single-cell chromatin signatures in 384,154 nuclei from 13 primary 
samples across different species, organs, biological replicates, and genetic backgrounds, 
establishing txci-ATAC-seq as a robust, high-quality, and highly multiplexable single-cell assay 
for large-scale chromatin studies. 
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Background 

Chromatin accessibility measurement has become a widely used method to understand 
gene regulation and identify cell types and states. A common technique is the “assay for 
transposase-accessible chromatin using sequencing” (ATAC-seq) [1], in which a hyperactive 
mutant of the Tn5 transposase inserts sequencing adapters into sterically open (‘accessible’) 
regions of chromatin. After mapping the locations of these insertions, the resulting pile-up of 
genome-aligned reads identifies loci that are putatively active in gene regulation [1]. Performed 
at single-cell resolution (scATAC-seq), this assay has generated catalogs of genome-wide DNA 
regulatory sites, dynamic chromatin reorganization through development [2], and whole organism 
cell atlases [2,3]. 

Most modern single-cell methods generate data on hundreds to thousands of cells in 
parallel to enable proper characterization of heterogeneous or dynamic cellular systems. Two 
general strategies have been developed to generate data at this scale. First, cells can be isolated 
into individual reaction vessels - plate wells, microwells, or droplets. This has most commonly 
been implemented with microfluidics platforms, such as the commercialized products of 10X 
Genomics [4]. Second, iterative split-pool barcoding, as is seen in “single-cell combinatorial 
indexing” (sci) strategies, can index single cells while never isolating individual cells during the 
molecular reactions [5–7]. However, choosing one of these two approaches requires researchers 
to accept tradeoffs in terms of throughput and data quality. Microfluidic approaches generally 
have superior data quality, while combinatorial indexing benefits from flexibility, increased 
scalability, and cost efficiencies. 

One strategy to boost the scalability of microfluidic approaches has been to “pre-index” 
cells or nuclei before loading them on a microfluidic device. In this way, aliquots of cells/nuclei are 
provided with a specific cellular/nuclear barcode via one of a variety of strategies and then aliquots 
are pooled before loading on a microfluidic device. The pre-index can be used along with the 
droplet barcode to deconvolute individual cells at the data analysis stage. This allows multiple 
samples to be processed in parallel and can enable some “overloading” of the droplets. For 
example, a single nucleus barcoding approach (SnuBar) [8] was previously demonstrated to allow 
for pre-indexing of nuclei in a scATAC-seq approach. However, individual molecules are not 
labeled in this strategy and thus droplets with multiple nuclei could not be discriminated, 
somewhat limiting the overall throughput. In another approach, a chimeric single-cell method 
combining a droplet-microfluidic system with molecular-level pre-indexing (called “dsciATAC-seq”) 
was previously developed, which improved the throughput of the microfluidic platform without 
sacrificing the data quality [9]. In this case, because the pre-indexing occurs at the molecular level 
(rather than the nuclear level), droplets containing multiple nuclei can still be computationally 
deconvoluted. However, this large-scale, single-cell approach was not developed for the 10X 
platform, which is more widely used for single-cell data generation. Here we demonstrate a 
method that takes advantage of the benefits of both combinatorial indexing and microfluidic 
assays by combining 96-well plate-indexed tagmentation with 10X Gel Bead-In EMulsions (GEM) 
encapsulation to substantially improve the throughput of the 10X platform by overloading nuclei 
and enabling the multiplexing of up to 96 samples in a single reaction (Fig. 1a). We call this 
method 10X-compatible (or TenX-compatible) Combinatorial Indexing ATAC-seq (txci-ATAC-seq). 
We use this strategy to generate up to 200,000 cells in a single 10X reaction (~22-fold increase 
in cell throughput as compared to the standard 10X Chromium scATAC-seq at a constant collision 
rate) and apply it to study the heterogeneity of chromatin accessibility in five primary samples, 
including human and mouse brain, human and mouse lung, and mouse liver, demonstrating the 
robustness of this approach. The scalability and flexibility of txci-ATAC-seq make it suitable for 
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single-cell atlas efforts, population-scale studies, and experiments implementing replicates and 
proper study design. 

 

Results 

Coupling droplet-based microfluidics with indexed transposition enables the overloading 
of nuclei 
 

In order to implement a strategy analogous to dsciATAC-seq [9] on the 10X platform, we 
first conducted a pilot experiment, tagmenting nuclei using 96 barcoded Tn5 reactions (similar to 
our previous sci-ATAC-seq workflows [5]) followed by pooling all nuclei and processing samples 
through a largely unmodified standard 10X workflow (except that we overloaded the sample with 
75,000 nuclei in a lane instead of the recommended 15,300 maximum capacity). The single-cell 
resolution and the degree of barcode collisions (i.e. instances where one barcode represents the 
contents of two or more cells) were evaluated using a “barnyard” experiment in which we mixed 
human and mouse nuclei - using either cell lines (human GM12878 nuclei mixed with mouse 
CH12.LX nuclei) or tissues (human lung nuclei mixed with mouse lung nuclei). Two mixing 
strategies were designed on the same 96-well plate: the nuclei from the two species were either 
pooled during tagmentation (“true barnyard”, which was used to reflect the rate of detected 
collisions caused by both pre- and post-pooling events) or after the tagmentation reaction 
(“pseudo-barnyard”, which was used to reflect the rate of detected collisions caused by post-
pooling events only) (Fig. S1a). A mixed species experiment such as this (Fig. 1b) allows for an 
accurate estimation of collision rate since each index is expected to align uniquely to either the 
human or mouse reference genome. Indexes with cross-alignment indicate collisions and allow 
us to empirically scale cells loaded during droplet formation. The tagmentation reactions were 
performed with either a modified version of the “Omni” ATAC-seq protocol [10] or the 10X protocol 
(See Methods). After performing indexed tagmentation on a 96-well plate and pooling all nuclei, 
75,000 nuclei from the pool were loaded onto a single 10X lane. The sample and cell-specific 
information of the resulting libraries was deconvoluted using the combination of three barcodes 
introduced during the workflow: a PCR barcode (i7) used to distinguish different lanes of the 10X, 
a GEM barcode introduced in the droplet, and a Tn5 barcode introduced during tagmentation (Fig. 
1a). Unexpectedly, regardless of barnyard type (true vs pseudo), the initial experiment exhibited 
an extremely high collision rate (including estimated homotypic doublets [11]), i.e. 46.0% in a true-
barnyard experiment mixing two cell lines, 44.4% in a pseudo-barnyard of cell lines, and 40.1% 
in a true barnyard mixing lung tissues (Fig. S1b). We also tested a second tagmentation buffer 
(provided in the 10X kit), but obtained similar results (47.4% estimated collision rate with a true 
barnyard of cell lines). However, limiting our measurement to GEMs with a single-Tn5 barcode 
demonstrated a remarkably reduced collision rate across all tested samples and buffers (4.7%, 
3.3%, 4.4%, and 8.6% for the true barnyard of cell lines, pseudo-barnyard of cell lines, true 
barnyard with 10X buffer, and true barnyard with lung tissue, respectively). These results 
suggested that most multiplets were not arising from pre-pooling events, but instead were a 
consequence of cross-contamination due to Tn5 barcode swapping within droplets (Fig. S1c). 

 
We tested three different strategies to eliminate this apparent in-droplet barcode-swapping 

(Fig. S1d; see Methods for details): (1) adding a second round of tagmentation with an additional 
(unamplifiable) duplex DNA prior to pooling to exhaust excess Tn5 (“Decoy DNA”); (2) 
supplementing the GEM reaction with a blocking oligo containing a reverse complement 
sequence of the Tn5 adaptor and an inverted dideoxythymidine (“dT”) at the 3’ end to inhibit the 
use of free Tn5 adaptors as amplification primers (“Blocking oligo”); or (3) supplementing the GEM 
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reaction with another primer to enable exponential amplification instead of linear amplification in 
the droplet PCR (“SBS primer”) with the goal of outcompeting barcode-swapping. To facilitate 
better optimization of experiments in overloaded droplets without imposing a significant burden of 
sequencing for each condition tested, we also developed a method to sample a subset of droplets 
after in-droplet amplification. To do so, we took 10% of the volume of droplets immediately after 
amplification (but before breaking the droplets) and processed both the 10% sample and 90% in 
parallel (Fig. 1b). In this way, we could first sequence 10% of the loaded cells to evaluate data 
quality and subsequently sequence the remaining 90% if warranted. We then tested all three 
strategies head-to-head (Fig. S2a) and used a conservative cutoff of 1000 reads to identify cells 
for all conditions (Fig. 1c, Fig. S2b). While all three tested strategies mitigated some of the 
barcode swapping, we found that the SBS primer was most efficient - reducing the estimated 
collision rate of cell lines from 46.0% to 6.6% in the true barnyard and resulting in no collision 
cells observed in the pseudo-barnyard wells (Fig. 1d, Fig. S2c). Similar results were also seen in 
the lung barnyard (Fig. S2c), with a collision rate of 11.1% for the true barnyard and only a single 
collision observed in the pseudo-barnyard when spiking in the SBS primer (data not shown). We 
also used the fraction of reads mapping to the ENCODE-defined DNase I hypersensitive sites 
(FRiDHS) and the estimated library complexity (see Methods for calculations) to evaluate the 
performance across all three blocking conditions. Considering the data generated for cell lines, 
we found that the SBS primer provided the highest FRiDHS scores (a median of 61.5% for mouse 
cells and 60.3% for human cells, Fig. 1e and Fig. S2d) and a comparable complexity (a median 
of 25,504.1 for mouse and 27,298.6 for human, Fig. 1e) with Decoy DNA but a higher complexity 
than Blocking oligo (Fig. S2e). Coherent trends were also observed in the lung tissues (Fig. S2d,e). 
Interestingly, the SBS primer strategy also caused a shift in the fragment size distribution relative 
to the other conditions, indicating the exponential amplification of GEM reactions is biased toward 
small fragments given the same number of amplification cycles (Fig. S2f). A reduced number of 
cycles in droplet PCR, however, can partially recover the large fragment sizes (data not shown). 
Nonetheless, by optimizing this hybrid protocol of barcoded transposition followed by GEM 
amplification, we successfully developed a novel protocol that enables multiplexing of multiple 
samples and unbiased profiling of chromatin accessibility at extremely high throughput on the 10X 
Genomics platform. Having established a working protocol, we next sought to apply it to complex 
tissues to evaluate the assay’s performance. Below, we described the results from five primary 
samples. 
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Figure 1. txci-ATAC-seq generates high-quality single-cell ATAC libraries at high throughput. a) 
Schematic of molecular details of txci-ATAC-seq library generation. b) Experimental workflow for txci-
ATAC-seq barnyard library generation. After 96-plex tagmentation, nuclei are overloaded on a 10X 
Chromium microfluidics device. Following nucleus encapsulation in the formed droplets, 10% of the GEMs 
can be used for quality control and the remaining 90% for data analysis. c-e) txci-ATAC-seq QC metrics for 
human (GM12878) and mouse (CH12) cell lines supplemented with SBS primer during in-droplet PCR. c) 
“Knee” plot showing the unique reads (log10 scale) against the rank of each barcode (log10 scale) ordered 
from most unique reads (left) to least (right). The dashed line indicates the threshold (1000 reads) used to 
identify cell barcodes (orange points). d) Scatter plots showing the number of unique reads mapped to 
either the human or mouse genome for both true and pseudo-barnyard experiments. Values were log10-
transformed after adding a pseudo-count of 1 to all values. The percentage shown in the true barnyard 
panel (6.6%) represents the estimated collision rate. e) Scatter plots showing the FRiDHS against the 
estimated complexity for each cell barcode detected as either mouse (blue) or human (red) cell. The 
estimated complexity is shown on a log10 scale. 
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Profiling chromatin accessibility of human and mouse brain tissue 
 

To evaluate the performance of txci-ATAC-seq in complex tissues, we initially generated 
chromatin accessibility profiles for human cortex and mouse whole brain samples using a true-
barnyard scheme with two separate experiments to test nuclei inputs of 25,000 (~1.5X the 
maximum recommended input) and 75,000 (~4.5X the maximum recommended input) on the 
microfluidic device (see Methods). Libraries were sequenced to an average depth of 45,622 
unique reads per cell, with an estimated saturation rate of 60.3% unique reads (Fig. S3a). We 
observed an estimated collision rate of 0.6% and 1.3% in the 25,000 and 75,000 inputs, 
respectively (Fig. S3b), which resulted in a ~24-fold increase in the throughput of a standard 10X 
workflow at a comparable collision rate. A majority of droplet barcodes were assigned to a single 
10X nucleus barcode, with 78.94% and 60.38% of droplets containing a single nucleus for 25,000 
and 75,000 nuclei loadings, respectively (Fig. S3c). Overall, we captured 17,257 and 61,171 cells 
for the 25,000 and 75,000 nuclei loadings, respectively (Fig. S3d). To understand sample 
complexity, dimensionality reduction [12] and clustering [13] were performed on the human (Fig. 
2a) and mouse (Fig. 3a) cells separately. We also identified and removed cryptic doublets within 
species to filter out the barcode collisions passing our initial species alignment filter (Methods) 
[14]. We generated gene activity scores (akin to a surrogate for gene expression) using cis-co-
accessibility networks (CCANs) anchored on promoter regions [15]. A label-transfer algorithm 
then assigned cell types in comparison to published RNA datasets [16–18]. The high percentage 
of cells assigned to the same RNA-defined cell type per cluster supported the specificity of the 
label-transfer approach (Fig. S3e,f). We corroborated the assigned labels by examining the 
cluster-wise mean gene activity scores for canonical RNA markers of cell types (Fig. 2b and Fig. 
3b) [19,20]. We next sought to define marker transcription factors (TFs) per cluster de novo by 
implementing an average “area under the curve” (AUC) value [21] across both gene activity and 
motif accessibility [22] scores in the human cortex (Fig. 2c). This approach allows for either gene 
activity or motif accessibility to be informative. For example, we found that the two human 
inhibitory neuron clusters could be distinguished by gene activity of LIM Homeobox 6 (LHX6), 
while motif usage differences between them were not significant and the motif is most accessible 
in astrocytes. In this case, the lack of distinction in motif usage is likely driven by other TFs of the 
LIM family that share a very similar motif, such as LIM Homeobox 2 (LHX2). 
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Figure 2. Cell type identification and marker assessment in human cortex sample. a) UMAP 
projection of human cortex nuclei (n = 28,663). Nuclei are colored by their predicted cell type. b) Heatmap 
of z-scored average gene activity score per cluster for canonical markers from Brain Map datasets. Astro: 
astrocytes; Endo: endothelial cells; ExN: excitatory neurons; GABA: GABAergic; Glu: Glutamatergic; iN: 
inhibitory neurons; Micro: microglia; Micro.PVM: microglia and perivascular macrophages; NonN: Non-
neuronal; Oligo: oligodendrocytes; OPC: oligodendrocyte progenitor cells. c) De novo determination of TF 
marker genes through chromatin accessibility-derived gene activity (left) and TF motif usage (right). Z-
scored average gene activity score and TF motif usage per cluster are plotted for the top 10 markers 
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within each cluster. TF markers are ranked by AUC reported from one vs. rest Wilcoxon rank sum test. TF 
motifs are shown on the right as SeqLogos alongside heatmap rows. 

 
 
Since the mouse brain is a commonly profiled benchmark tissue of scATAC-seq methods, 

we compared our data to publicly available datasets for combinatorial indexing (snATAC-seq [23], 
sci-ATAC-seq [24], sci-MAP-seq [24], and s3-ATAC-seq [25]) and droplet-based (dscATAC-seq 
[9], 10X scATAC-seq v1 [26] and v2 [27]) chemistries. With all datasets merged we uncovered a 
unified peak set of 344,258 features of open chromatin in the mouse brain. txci-ATAC-seq 
performed comparably to the other technologies in terms of the fraction of reads in peaks (FRiP) 
(Fig. 3c) and transcription start site (TSS) enrichment at the level of individual cells (Fig. 3d), 
demonstrating the fourth-best FRiP (out of 8) and the fourth-best TSS enrichment. Notably, we 
observed that reducing the number of cycles used for in-GEM amplification (to 6 cycles) recovered 
the full spectrum of insert sizes in brain samples compared to the other techniques (Fig. S3g). 
We suspect that the different cycle numbers may explain the fragment size distribution previously 
observed with cell lines and lung samples as well (Fig. S2f). Estimating unique reads given a 
constant sequencing depth per cell (Fig. S3h), we noted that txci-ATAC-seq fell between the high-
content ATAC-seq preparations (such as 10X scATAC-seq v2 chemistry or s3-ATAC-seq) and 
combinatorial methods (like snATAC-seq and sci-ATAC-seq). Also, txci-ATAC-seq integrated 
readily with other technologies on the unified peak set, with the exception of a notable increase 
in granule cells (Fig. 3e), potentially reflecting a higher concentration of cerebellum tissue during 
initial brain dissociation. Overall, txci-ATAC-seq enabled detailed epigenomic characterization of 
cell types in brain tissues, including the de novo definition of marker TFs by leveraging a 
combination of gene activity and TF motif usage. In tissue-matched comparisons across 
technologies, we found that txci-ATAC-seq performed equivalently in quality control metrics of 
library complexity and ATAC signals. 
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Figure 3. Cell type identification and marker assessment in mouse whole brain sample. a) UMAP 
projection of mouse brain nuclei (n = 49,765). Nuclei are colored by their predicted cell type. b) Z-scored 
average gene activity score per cluster plotted as a heatmap. Clusters are arranged by hierarchical 
clustering. Marker sets are from Brain Map marker genes. c) Boxplots of FRiP per technology using a 
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unified peak set. Numbers over the boxplot reflect the fold-change of medians in comparison to txci-ATAC-
seq. d) Boxplots of transcription start site (TSS) enrichment across technologies. Numbers over the boxplot 
reflect the fold-change of medians in comparison to txci-ATAC-seq. e) Harmony integrated UMAP projection 
of technologies (n = 75,845). 

 
 
Profiling chromatin accessibility of liver and lung tissue 
 

To test the robustness of this strategy in different biological contexts, we multiplexed 
mouse liver and lung samples on a single 96-well plate with two replicates for each tissue (Fig. 
4a). The last two rows of the plate were set up as a true-barnyard design by mixing mouse nuclei 
with human lung nuclei to estimate the internal collision rate for each sample. Two loading inputs 
(100,000 and 200,000 nuclei per lane) were tested and sequenced separately. Using a 
conservative cutoff of 1,000 reads to define a bona fide cell barcode (Fig. S4a,b), we recovered 
67,251 (67.3%) and 104,987 (52.5%) nuclei from the 100,000 and 200,000 inputs, respectively 
(Fig. 4b). Since these libraries were sequenced to an average depth of 6,418.9 and 4,014.8 
unique reads per cell for the 100,000 and 200,000 input libraries respectively (21.4% and 14.7% 
saturated, Fig. S4c,d), the slightly lower recovery rate observed for the 200,000 nuclei input may 
be due to the lower per-cell sequencing depth resulting in some likely cells failing to pass the read 
depth threshold (Fig. S4b,d). Collision rate estimates showed that pushing the loading throughput 
from 100,000 to 200,000 nuclei only raised the average rate from 3.6% to 4.4% (Fig. 4c). Overall, 
these libraries increased the yield of usable nuclei by nearly 22-fold in comparison to the standard 
10X Chromium scATAC-seq at the same collision rate. While the collision rate appeared to be 
tissue-dependent within this experiment (with an average of 3.4% for liver and 4.6% for lung), the 
fold increase in the number of cells that could be processed at a 10X-equivalent collision rate 
aligned well with what we observed in brain tissues. In addition, we again compared a series of 
quality metrics between our txci-ATAC-seq data and previously obtained sci-ATAC-seq data on 
the same tissues [3] and demonstrated that the data generated with txci-ATAC-seq had a 
substantially higher quality than the original combinatorial indexing assay (Fig. 4d-f): the median 
FRiDHS increased from 25.5% to 56.5% for liver and from 22.8% to 53.0% for lung; the median 
TSS enrichment score increased from 2.5 to 4.5 for liver and from 3.2 to 5.1 for lung; the median 
complexity increased from 16,472.2 to 25,338.4 for lung while it decreased from 33,123.4 to 
21,362.2 for liver. After filtering out low-quality nuclei and putative doublets (see Methods), we 
generated chromatin accessibility profiles for 152,508 primary cells, including 73,280 mouse lung 
nuclei, 63,429 mouse liver nuclei, and 15,799 human lung nuclei (59,348 of the nuclei recovered 
from the 100,000 input library and 93,160 of the nuclei recovered from the 200,000 input library). 

 
To dissect the diverse chromatin landscapes present in these heterogeneous tissues, we 

performed an iterative peak calling and clustering method to parse out the distinct cell populations. 
In brief, we called peaks on aggregated reads for all cells, scored individual cells for insertion 
events in these reference peaks, and then carried out dimensionality reduction and cluster 
identification using Seurat [28]. A second round of peak calling was performed on cells from each 
cluster separately, and the peaks identified for all clusters were then merged and used as a 
reference set to perform dimensionality reduction again and re-cluster the cells. The associated 
cell type for each cluster was predicted by label transfer using previously published single-
cell/single-nucleus RNA-seq (scRNA-seq/snRNA-seq) and sci-ATAC-seq datasets from mouse 
lung tissue (Fig. S5; [3,29]), mouse liver tissue (Fig. S6; [3,30]) and human lung tissue (Fig. S7; 
[31–33]). The predicted labels were further manually curated according to the top gene activity 
scores (by summing the read counts in gene bodies and promoters [16]) measured in each cluster. 
As a result, we identified 24 clusters representing distinct cell types in mouse lung tissue (Fig. 4g) 
and 7 clusters in mouse liver tissue (Fig. 4h). Even relatively rare cell types such as goblet cells 
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(1335 cells,1.8% of total), pericytes (833 cells, 1.1% of total), and myofibroblasts (366 cells, 0.5% 
of total) in mouse lung tissue were identified, in contrast to the previous sci-ATAC-seq atlas. To 
evaluate the performance of txci-ATAC-seq in cell type prediction, we randomly subsampled 
(without replacement) our mouse lung data to have the same number of cells as that in sci-ATAC-
seq 1,000 times and ran cell type prediction using label transfer. As compared to the combinatorial 
indexing assay, txci-ATAC-seq exhibited improved prediction accuracy (Fig. S8). Further 
validating our approach in human lung tissue, we identified 9 distinct clusters (Fig. S9a) and found 
that the human lung nuclei exhibited consistent clustering (Fig. S9b) and data quality (Fig. S9c-
e), regardless of which mouse sample they were mixed with in the barnyard experiment. In 
addition, while we did observe some stratification of mouse hepatocytes according to the 
individual mouse replicate, no other cell type showed evidence of batch effects (Fig. S10). 

 

 

Figure 4. txci-ATAC-seq generates high-quality single-cell ATAC-seq data on multiple tissues in 
parallel at scale. a) Well assignment showing the multiplexing of primary samples. Rows 7 and 8 provide 
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an estimate of the empirical collision rate for each sample by mixing human lung nuclei with mouse nuclei 
isolated from each corresponding tissue. b) The number of nuclei (with a cutoff of 1000 reads) recovered 
at each loading input. The colors denote the samples multiplexed for each 10X reaction. c) The estimated 
collision rate of each mouse sample when loading either 100,000 or 200,000 nuclei. The filled circle and 
triangle indicate the mouse liver and lung tissues, respectively. The error bar shows the standard error and 
the black point represents the sample mean at each input. The same samples between the two loading 
inputs are connected by a gray dashed line. d-f) The comparison of quality metrics between sciATAC-seq 
and txci-ATAC-seq for each cell in mouse lung and liver tissue. The (d) FRiDHS, (e) TSS enrichment score, 
and (f) estimated complexity (on a log10 scale) indicate the performance of single-cell ATAC-seq methods. 
The numbers over the violin plots reflect the fold-change in median compared to txci-ATAC-seq. g) UMAP 
visualization of mouse lung nuclei (n = 73,280) integrating two replicates across two loading inputs. Nuclei 
are colored by their predicted cell type. h) UMAP visualization of mouse liver nuclei (n = 63,429) integrating 
two replicates across two loading inputs. Abbreviations: AM, alveolar macrophages; AT1, alveolar type 1 
epithelial cells; AT2, alveolar type 2 epithelial cells; avlEC, arterial/venous/lymphatic endothelial cells; B/T 
sub, B and T cell subpopulation; cEC, capillary endothelial cells; Col13+FB, collagen type XIII α 1 chain 
positive fibroblasts; Col14+FB, collagen type XIV α 1 chain positive fibroblasts; DC/IM/cMono, dendritic 
cells/interstitial macrophages/classical monocytes; EC, endothelial cells; EPC, epithelial progenitor cell; GB, 
germinal B cells; Hep, hepatocytes; HPC/Cho, hepatic progenitor cells/cholangiocytes; KC/Mono, Kupffer 
cells/monocytes; intFB, interstitial fibroblasts; lsEC, liver sinusoidal endothelial cells; Lym, lymphocytes; 
Mes, mesothelial cells; MyoFB, myofibroblasts; ncMono, nonclassical monocytes; Peri, pericytes; SMC, 
smooth muscle cells, vEC, venous endothelial cells. 

 
 
Development of Fast-txci-ATAC-seq to improve multiplexing capability 
 

While txci-ATAC-seq enables multiplexing of multiple samples, processing dozens or 
hundreds of samples in a single experiment is still laborious. To further increase the multiplexing 
capability of our method, we developed a “faster” protocol for txci-ATAC-seq (Fast-txci-ATAC-seq) 
by performing the transposition reaction directly on frozen nuclei, which enables freezing nuclei 
on a 96-well plate or in 8-tube strips sequentially over time and then performing barcoded 
transposition immediately upon thawing the nuclei. To evaluate the performance of the faster 
version of our protocol, we applied it to mouse lung nuclei that were isolated from either wild-type 
(WT) or club cell secretory protein deficient (CC16-/-) mice with three replicate lungs for each 
genotype. The standard txci-ATAC-seq was also performed on the same samples separately. 
CC16 is a secreted protein encoded by the Scgb1a1 gene that is produced predominantly by club 
cells, an epithelial cell type of the airways. This “pneumoprotein” plays an important role locally in 
protecting the lung against oxidant injury [34] and inflammatory diseases, such as asthma [35] 
and chronic obstructive pulmonary disease (COPD) [36]. It has also been linked with more 
systemic effects on human health as evidenced by its association with overall cancer risk [37]. 
After processing and pooling all samples for each protocol (Fig. S11a), we loaded 50,000 and 
100,000 nuclei on the 10X Genomics platform for Fast-txci-ATAC-seq and used 100,000 and 
200,000 nuclei as inputs for the standard assay. The removal of low-quality nuclei and predicted 
doublets resulted in similar recovery rates between the two protocols with 44.3% nuclei (10,937 
WT nuclei and 11,213 CC16-/- nuclei) at the 50,000 input and 43.6% nuclei (21,688 WT nuclei 
and 21,961 CC16-/- nuclei) at the 100,000 input for the faster protocol, compared to 50.0% nuclei 
(24,962 WT nuclei and 25,011 CC16-/- nuclei) at the 100,000 input and 52.1% nuclei (51,536 WT 
nuclei and 52,627 CC16-/- nuclei) at the 200,000 input for the standard txci-ATAC-seq (Fig. S11b). 
An examination of QC metrics demonstrated that both assays can provide high-quality single-cell 
data despite a slightly lower complexity observed in the faster version (Fig. S11c-e). Using the 
iterative clustering strategy and label transfer with a scRNA-seq reference, we identified 23 
distinct cell clusters in mouse lungs profiled by the standard txci-ATAC-seq (Fig. 5a) and then 
used them to further annotate the Fast-txci-ATAC-seq lungs. The joint embedding of both assays 
revealed that the faster protocol recapitulated the mouse lung heterogeneity in chromatin 
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accessibility characterized by the standard protocol (Fig. S11f) with minimal batch effects (Fig. 
S11g). 

 
Cell-type-specific regulation of chromatin accessibility in CC16-/- mouse lungs 
 

We next used the cells profiled by the standard assay to explore meaningful differences 
in chromatin accessibility between WT and CC16-/- mice. We were initially interested to identify 
differences of biological import, including 1) chromatin accessibility of the Scgb1a1 locus being 
restricted to club and goblet cells (Fig. S12a), 2) significantly differentially accessible peaks across 
a variety of cell types (Fig. 5b; Table S1) - many of which were only identifiable at such high 
throughput (Fig. S12b,c) - 3) some evidence for potential autoregulation of CC16 (Fig. 5c and Fig. 
S12d), and 4) differential peaks enriched for TF motifs (Fig. S13a,b; Table S2) and molecular 
pathways (Fig. S13c; Table S3). However, we also noted an unexpected number of differential 
peaks in two genomic loci on chromosomes 8 and 19 (Fig. 5d and Fig. S13d). While the Scgb1a1 
gene is located on chromosome 19 (mm10 chr19:9,083,636-9,087,958), this chromosome-
specific enrichment of differential peaks was unexpected. To better understand the concentration 
of signal in these two loci, we carried out variant calling on the ATAC-seq data and identified 
5,909 single nucleotide variants (SNVs) differing from the reference genome in WT samples and 
50,054 SNVs in CC16-/- samples (Fig. S13e). The vast majority of SNVs in the CC16-/- samples 
were located in two hotspots (Fig. 5e) on chromosome 8 (n = 37,822; 75.6%) and chromosome 
19 (n = 5,610; 11.2%), essentially perfectly matching the locations where the differential peaks 
were identified. To trace the origin of the CC16-/- SNVs, we further mapped the hotspot SNVs to 
the single nucleotide polymorphism (SNP) profiles that were previously defined in 36 different 
mouse strains relative to the C57BL/6J mouse reference genome [38]. Almost all of our identified 
SNVs matched to the SNPs identified in the three 129 strain references (Fig. 5f) on chromosome 
8 (an average of 96.3% of SNVs matched the SNPs defined in each of the 129 strains) and 
chromosome 19 (an average of 96.6% SNVs matched the SNPs defined in each of the 129 
strains). Given that the CC16-/- mice were generated using 129-derived embryonic stem (ES) cells, 
we conclude that the hotspot SNVs are remnants of the 129 genome, a common problem with 
knockout models [39]. Notably, we found ~90% of SNVs residing in intronic and intergenic regions 
for both WT and CC16-/- samples (Fig. S13f), suggesting ATAC-seq may have been a particularly 
powerful choice of assay for capturing such genetic variation and thus may serve as a cost-
effective alternative to whole genome sequencing in genotyping knockout models. 

 
Although the SNV-driven phenotype confounded the analysis of Scgb1a1 effects, it 

provided an opportunity to explore the extent and mechanism by which genetic variants can 
modulate chromatin accessibility, even in a cell-type-specific manner. To this end, we took all the 
peaks that were differentially accessible in the hotspot regions (413 peaks) and looked for TF 
motifs that were gained or lost due to SNVs. The functional motifs were defined as those whose 
chromatin accessibility exhibited a significant positive or negative correlation with the gain or loss 
of the motif in the knockout mice relative to the WT mice. We identified 42 functional motifs and 
found that gaining the motifs for the transcriptional activators, e.g. certain members of the nuclear 
factor I (NFI) family and the ETS-domain family, tended to increase chromatin accessibility (Fig. 
5g and Fig. S14a). On the other hand, gaining a repressor motif, such as motifs for the Snail and 
Scratch families, was likely to reduce chromatin accessibility (Fig. 5g and Fig. S14b). Finally, we 
investigated whether there were cell-type-specific enrichments for specific functional motifs being 
gained or lost (Fig. 5h). We observed that gains and losses of NFI TFs, including NFIB, 
NFIC::TLX1, and NFIX (var.2), were highly enriched in both Col13+ and Col14+ fibroblasts and 
similarly, gains and losses of the ARID3A motif, which is required for B cell lineage development 
[40], was highly enriched in differential peaks in B cells. In sum, functional motifs being gained or 
lost were able to account for a substantial number of differentially accessible peaks observed in 
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the SNV hotspot regions in different cell types - ranging from 35.7% of differentially accessible 
peaks from the regions for B cells to 75% of differentially accessible peaks from the regions for 
goblet cells (Fig. 5h). 

 

 

Figure 5. Chromatin accessibility dynamics induced by CC16 deficiency and genetic variants. a) 
UMAP visualization of WT and CC16-/- mouse lung nuclei (n = 154,136) across two loading inputs by 
integrating 6 animals with 3 replicates from each group. Nuclei are colored by their predicted cell type. The 
abbreviation of cell labels was described in Fig. 4 except for aEC (arterial endothelial cells), Endo-like 
(endothelial-like cells), and Epi-like (epithelial-like cells). b) The number of differential peaks identified 
between CC16-/- and WT samples for each cell type. The blue bars indicate the peaks less accessible in 
the knockout samples and the red bars represent the more accessible peaks. c) Aggregated chromatin 
accessibility surrounding the Scgb1a1 (CC16 gene) locus in club and goblet cells per sample. The 
aggregated accessibility signal for each sample was normalized by the scaling factor that was computed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.11.540245doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540245
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

as the number of cells in the sample multiplied by the mean sequencing depth for the cells in that sample. 
The WT tracks are labeled in blue and the knockout ones are in red. The genomic regions for the 
significantly less accessible peaks identified in CC16-/- samples per cell type are highlighted by green shade 
(5 peaks in club cells and 2 peaks in goblet cells). The associated adjusted p-value is shown above the 
tracks at their corresponding peak region. Adjusted p-values less than 0.0001 are given four asterisks. The 
peak annotation for the promoter region of Scgb1a1 is colored red. d) Chromosomal distribution of the 
midpoint of differential peaks identified on chromosomes 8 and 19 with the genomic location and density 
estimate plotted on the x- and y-axis, respectively. e) Chromosomal distribution of SNVs identified on 
chromosomes 8 and 19 for both WT (blue) and CC16-/- (red) samples. The regions between the dashed 
lines indicate the SNV hotspots where the knockout samples exhibited a substantially higher number of 
SNVs than WT samples. The y-axis shows the Phred-scaled quality score generated by BCFtools. f) 
Heatmap showing the Jaccard similarity between the hotspot SNVs identified in CC16-/- lungs and the SNPs 
derived from 36 different strains on chromosome 8 (lower triangle) and 19 (upper triangle). g) “Functional” 
motifs for which gains or losses of the motif instances are associated with significant changes in chromatin 
accessibility. The motifs associated with increased chromatin accessibility (“opening”) are shown in red and 
those associated with decreased chromatin accessibility (“closing”) are colored in green. The y-axis 
represents the Student’s t-test statistic value. Two motif families (one for transcriptional activators and one 
for transcriptional repressors) are highlighted on the x-axis. h) Cell-type-specific enrichment for the motifs 
that explain chromatin accessibility changes in SNV hotspots. The bar plot next to the enrichment heatmap 
shows the total number of differential peaks located in the SNV hotspots for each cell type, which is stratified 
by the peaks that can be explained by the SNV-driven difference in motif presence (red) and unexplained 
peaks (blue). The values next to the bars denote the percentage of peaks explained. Only the cell types 
with more than 10 differential peaks identified in the SNV hotspots are shown. 

 
 
Discussion 

Limited throughput, prohibitive cost, and variance between batches have put some 
limitations on the implementation of single-cell techniques, which nonetheless are proving 
invaluable resources for studying health and disease. To reduce those limitations, we paired 
combinatorial indexing with a droplet-based microfluidic system to substantially increase the 
scalability of the commercial single-cell device by loading up to 200,000 nuclei in a single emulsion 
reaction. In addition, a “faster” version protocol was developed, which greatly expedited sample 
processing and improved the multiplexing capability. The scalability and flexibility allow txci-
ATAC-seq to establish unbiased regulatory definitions across various disease, genetic, and/or 
environmental states. Other strategies do exist for multiplexing samples on microfluidic single-cell 
platforms, such as membrane barcoding-based approaches that tag cellular or nuclear membrane 
components [41–43] and genetic deconvolution of samples [44]. However, those methods index 
at the cellular/nuclear level and so the scalability is restricted by the maximum number of singlets 
that can be generated because multiplets cannot be deconvoluted. Conversely, the molecular 
indexing strategy used in our design along with that previously implemented on a different 
commercial instrument (dsciATAC-seq) [9] and on RNA profiling (scifi-RNA-seq) [45] allows for 
multiplets to be deconvoluted, resulting in the ability to load substantially more nuclei per lane and 
therefore provide larger-scale sample multiplexing and increased cost savings. Because a range 
of nuclei inputs was tested in this study, we also computed the number of droplets containing a 
single Tn5 barcode to estimate the number of singlets recovered at each input. We found that the 
number of singlets peaked around the 100,000 nuclei input level with an average of 26,402 single-
nucleus droplets generated (Fig. S15). This represents the maximum empirical yield for single-
cell multiplexing techniques based on cellular indexing, such as “cell hashing” [41,42], MULTI-seq 
[43], and SnuBar [8]. In contrast, our molecular indexing approach yielded 17,257 deconvoluted 
nuclei at the 25,000 input, 34,568 deconvoluted nuclei at the 50,000 input, 61,171 deconvoluted 
nuclei at the 75,000 input, an average of 68,216 deconvoluted nuclei at the 100,000 input and an 
average of 128,334 deconvoluted nuclei at the 200,000 input. Given our results and the reported 
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metrics for scifi-RNA-seq [45], we are confident that an even higher throughput is achievable with 
txci-ATAC-seq (even more so if one were to leverage 384 barcoded transposition reactions). 
Furthermore, the recently reported multi-omic approach, ISSAAC-seq [46], could also potentially 
benefit from this framework, by integrating the same tagmentation strategy applied here with an 
initial step of in situ reverse transcription, to generate a novel high throughput, cost-efficient multi-
omics assay. We also note that the design of txci-ATAC-seq is directly applicable to other existing 
single-cell methods employing a combinatorial indexing framework, such as sci-MET [47], 
CRISPR-sciATAC [48], and sci-CAR [49]. 
 

The improved study design and statistical rigor made possible by more cost-effective 
inclusion of replicates and larger sample sizes with techniques such as txci-ATAC-seq will be 
essential for realizing the full potential of single-cell approaches. In addition, the scalability of 
scATAC-seq techniques also plays an important role in identification of peaks for rare cell 
populations. In the absence of a comprehensive catalog of regulatory elements, peak calling is 
an essential step to define features in both bulk and single-cell ATAC-seq data analysis. The 
power to call peaks, however, heavily depends on the number of reads used [50]. For single-cell 
data, that means profiling the accessible regions from a rare cell population is not only limited by 
the sequencing depth per cell but also by the number of cells captured from that population. 
Therefore, an ultra-high throughput scATAC-seq method, like txci-ATAC-seq, will enable finer 
definitions of peaks and should better characterize particularly dynamic or heterogeneous 
systems. 
 

The CC16-/- mice characterized here have been used by several groups to investigate the 
role of CC16 in COPD and infectious diseases [36,51,52]. We found that the remnant 129 genetic 
material elicited profound changes in chromatin accessibility (in a cell-type-specific manner in 
many instances), requiring caution when evaluating the existing congenic knockout models. In 
addition, we identified 42 different motifs gained or lost in at least one differentially accessible 
peak from the 129 strain regions, which were capable of explaining the observed accessibility 
changes for 37.5% of those peaks. The remainders may have been caused by more subtle 
changes in motif affinity, trans effects, or may not have been tested in our analysis (as we required 
both gained and lost events for a given motif to be considered). 

 
There are several caveats worth keeping in mind when interpreting our results. First, to 

marry microfluidics and combinatorial indexing on the 10X system, we converted the in-droplet 
linear amplification into an exponential amplification. This could result in major differences in 
amplification behavior. However, we have not systematically tested the optimal number of cycles 
in this regime. In addition, our analysis approach is based on the assumption that each droplet 
contains at most one barcode bead. It is worth noting, however, that “barcode multiplets” (i.e. the 
droplets containing multiple beads or the beads containing multiple oligonucleotide barcodes) 
have been observed in 10X Chromium scATAC data [53]. The resulting artifact “cells” may 
confound the interpretation of txci-ATAC-seq, and so implementation of methods to detect and 
remove the effects of “barcode multiplets” may be warranted. 
 
Conclusions 

Taken together, txci-ATAC-seq provides unprecedented opportunities to generate 
unbiased single-cell atlases of chromatin accessibility for large cohorts with various genetic 
backgrounds or case-control studies, thus establishing reliable references of single-cell chromatin 
landscapes in a variety of experimental settings. We hope that this method will encourage more 
widespread adoption of scATAC-seq, a powerful technique for understanding organismal 
development and disease processes.  
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Methods 
Cell lines 
The GM12878 (Coriell Cell Repository) and CH12.LX (kind gift from the Sherman Weissman lab) 
cells were cultured at 37 °C with 5% CO2 in RPMI 1640 medium (GIBCO, cat. no. 11875-093) 
containing 15% FBS (GIBCO, cat. no. 10437-028), 100 U/ml Penicillin Streptomycin (GIBCO, cat. 
no. 15140-122). Cells were counted and split into either 300,000 (GM12878) or 100,000 
(CH12.LX) cells/ml three times a week. 
 
Human and mouse brain tissue samples 
Human cortex samples from the middle frontal gyrus were sourced from the Oregon Brain Bank 
from a 50-year-old female of normal health status. Samples were collected by an OHSU 
neuropathologist, placed into a labeled cassette, and cryopreserved in an airtight container in a -
80 °C freezer. The duration of time between the time of death and brain biopsy sample freezing, 
or post-mortem interim (PMI), was <24 hours.  
 
Mouse brain tissue was collected as discarded tissue from mice used for unrelated studies 
approved by the OHSU IACUC. Whole mouse brains were dissected from sacrificed C57BL/6J 
mice and flash-frozen in an isopentane-LN2 double-bath and stored at -80 °C. 
 
Mouse lung and liver tissue samples 
All animal activity was approved by the University of Arizona IACUC. Mice were euthanized via 
exsanguination followed by cervical dislocation to ensure death. For the samples used to evaluate 
the performance of txci-ATAC-seq in Fig. 4, whole mouse lungs and liver were dissected from 2 
male C57BL/6J mice that were 24 weeks old.  
 
For the samples used to study the CC16-mediated chromatin dynamics in Fig. 5, age-matched 
(~8 weeks) WT and CC16-/- male mice on a C57BL/6J background (as described in [54,55]) were 
used to dissect whole lungs. Three replicates from each genotype were profiled. All six animals 
were born and raised in the same room and were tested to be specific-pathogen free according 
to standard protocols using sentinel mice from the same room. 
 
The dissected samples were flash-frozen in liquid nitrogen and then transferred to -80 °C for long-
term storage. 
 
Human lung tissue samples 
Lung pieces were obtained from two deceased male donors (a 36-year-old American Indian and 
a 62-year-old Hispanic Latino) as soon as possible after the time of death through the Arizona 
Donor Network. All human lung samples were quickly frozen in the -80 °C freezer and stored 
there prior to nuclear extraction. 
 
Nuclei isolation 
Nuclei isolation of cell lines 
The nuclei isolation followed the procedures described in [10]. The cells were collected and 
washed with 1x PBS (pH 7.4, Gibco, cat. no. 10-010-023) supplemented with 0.1% BSA (New 
England Biolabs, cat. no. B9000S), and then resuspended in 200 μl of ATAC-seq lysis buffer, 
which was made by supplementing ATAC resuspension buffer (RSB) with detergents (see below). 
RSB buffer is 10 mM Tris-HCl (pH 7.5, Invitrogen, cat. no. 15567027), 10 mM NaCl (Invitrogen, 
cat. no. AM9759), and 3 mM MgCl2 (Invitrogen, cat. no. AM9530G) in nuclease-free water. RSB 
was made in bulk and stored at 4 °C long-term. On the day of the experiment, the ATAC lysis 
buffer was made by adding 0.1% IGEPAL (Sigma, cat. no. I3021), 0.01% digitonin (Invitrogen, 
cat. no. BN2006), and 0.1% Tween-20 (Bio-Rad, cat. no. 1610781) to RSB. The detergent 
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percentages reported are final concentrations. After resuspending cell pellets in the lysis buffer, 
they were incubated on ice for 3 min, and then the lysis was stopped by adding 1 ml RSB 
containing 0.1% Tween-20. The nuclei were counted with a hemocytometer by diluting 10 μl nuclei 
in 40 μl of 2x Omni TD Buffer (20 mM Tris HCl pH 7.5, 10 mM MgCl2, and 20% Dimethyl 
Formamide) followed by adding 50 μl Trypan blue solution. In our previous report [50], we found 
that adding nuclei straight to Trypan blue solution will cause inflation of nuclei, and diluting nuclei 
in TD buffer before exposure to Trypan blue improves the nuclei integrity. Following counting, we 
centrifuged nuclei at 500 r.c.f for 10 min at 4 °C and removed the supernatant. Then, the nuclei 
were either used to perform downstream experiments directly or resuspended in a nuclei-freezing 
buffer (NFB) containing 50 mM Tris-HCI (pH 8.0, Invitrogen, cat. no. 15568025), 5 mM 
Magnesium Acetate (Sigma, cat. no. 63052), 25% glycerol (VWR, cat. no. RC3290-32), 0.1 mM 
EDTA (Fisher, cat .no. AM9260G), 5 mM DTT (Fisher, cat. no. P2325), and 2% (v/v) protease 
inhibitor (Sigma, cat. no. P8340) for storage. The NFB was adopted from [56] and we previously 
used this buffer for preservation of nuclei for sci-ATAC-seq [2,3,57]. After diluting in NFB, 1 ml 
aliquots of the nuclei were flash-frozen in liquid nitrogen and then transferred to a liquid nitrogen 
dewar for long-term storage. 
 
Nuclei isolation from brain tissue 
At the time of nuclei dissociation, 50 ml of nuclei isolation buffer (NIB-HEPES) was freshly 
prepared with final concentrations of 10 mM HEPES-KOH (Fisher Scientific, BP310-500 and 
Sigma Aldrich 1050121000, respectively), pH 7.2, 10 mM NaCl (Fisher Scientific S271-3), 3mM 
MgCl2 (Fisher Scientific AC223210010), 0.1 % (v/v) IGEPAL CA-630 (Sigma Aldrich I3021), 0.1 % 
(v/v) Tween-20 (Sigma-Aldrich P-7949) and diluted in PCR-grade Ultrapure distilled water 
(Thermo Fisher Scientific 10977015). After dilution, two tablets of Pierce™ Protease Inhibitor Mini 
Tablets, EDTA-free (Thermo Fisher A32955) were dissolved and suspended to prevent protease 
degradation during nuclei isolation. 
 
An at-bench dissection stage was set up prior to nuclei extraction. A petri dish was placed over 
dry ice, with fresh sterile razors pre-chilled by dry-ice embedding. 7 ml capacity Dounce 
homogenizers were filled with 2 ml of NIB-HEPES buffer and held on wet ice. Dounce 
homogenizer pestles were held in ice-cold 70% (v/v) ethanol (Decon Laboratories Inc 2701) in 15 
ml tubes on ice to chill. Immediately prior to use, pestles were rinsed with chilled distilled water. 
For tissue dissociation, mouse and human brain samples were treated similarly. The still-frozen 
block of tissue was placed on the clean pre-chilled petri dish and roughly minced with the razors. 
Razors were then used to transport roughly 1 mg of the minced tissue into the chilled NIB-HEPES 
buffer within a Dounce homogenizer. Suspended samples were given 5 minutes to equilibrate to 
the change in salt concentration prior to douncing. Tissues were then homogenized with 5 strokes 
of a loose (A) pestle, another 5-minute incubation, and 5-10 strokes of a tight (B) pestle. Nuclei 
were transferred to a 15 ml conical tube and pelleted with a 400 r.c.f centrifugation at 4 °C in a 
centrifuge for 10 minutes. The supernatant was removed and pellets were resuspended in 5 ml 
of ATAC-PBS buffer (APB) consisting of 1X PBS (Thermo Fisher 10010) and 0.04mg/ml (f.c.) of 
bovine serum albumin (BSA, Sigma Aldric A2058). Samples were then filtered through a 35 µm 
cell strainer (Corning 352235). A 10 μl aliquot of suspended nuclei was diluted in 90 μl APB (1:10 
dilution) and manually counted on a hemocytometer with Trypan Blue staining (Thermo Scientific 
T8154). The stock nuclei suspension was then diluted to a concentration of 2,857 nuclei/μl in APB. 
Dependent on experimental schema, pools of tagmented nuclei were combined to allow for the 
assessment of pure samples and to test index collision rates. 

 
Nuclei isolation of human lung, mouse lung, and mouse liver tissue 
The human and mouse samples were dissected and stored at -80 °C. The nuclei isolation 
procedure of lung and liver tissues was performed following the single-nucleus isolation protocol 
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described in [58]. To do so, we cut a ~0.1-0.2 g piece from either human or mouse samples 
removed from -80 °C and kept it on dry ice until use. The tissue block was thawed almost 
completely on ice for 1 min and then injected with 1 ml of cell lysis buffer, which was made of 1x 
cOmplete protease inhibitor cocktail (1 tablet per 10 ml solution, Sigma-Aldrich, Cat. 
11836153001) in Nuclei EZ prep buffer (Sigma-Aldrich, Cat. NUC101), into the center of the tissue 
with a 30G needle and syringe. Following lysis buffer injection, the tissue was chopped into small 
pieces with scissors and then transferred along with the lysing buffer into a gentleMACS C tube 
(Miltenyi Biotec, Cat. 130-096-334). An additional 1 ml of lysing buffer was added into the C tube 
to make a final volume of 2 ml. The minced tissue was then homogenized using a gentleMACS 
tissue dissociator by running the ‘m_lung_01’ program followed by the first 20 sec of the 
‘m_lung_02’ program. After homogenization, tissue lysate was briefly centrifuged to reduce foam 
and then passed through a 40 μm cell strainer in a 50ml tube. After passing the sample through, 
the strainer was rinsed with 4 ml of washing buffer (PBS with 1% BSA). The nuclei were counted 
with a hemocytometer (see “nuclei isolation of cell lines” for details), and centrifuged at 500 r.c.f 
for 5 min at 4 °C. Then, we removed the supernatant and resuspended the nuclei in the NFB to 
make a concentration of 4-5 million nuclei/ml. 1 ml aliquots of the nuclei were flash-frozen in liquid 
nitrogen and then transferred to a liquid nitrogen dewar for long-term storage. 
 
Sample multiplexing 
A 96-well plate pre-loaded with 5 μl of 500 nM pre-indexed Tn5 transposase per well (iTSM plate, 
kind gift of Illumina Inc.) was used to multiplex samples and perform barcoded transposition. 
Before using, the iTSM plate was thawed on ice and briefly mixed at 1400 rpm for 30 seconds on 
a pre-chilled thermomixer, and then quickly spun to collect the enzyme at the bottom of the wells. 
To avoid sequencing with a custom recipe, the Tn5 enzyme was loaded with a common Tn5ME-
A and a custom Tn5ME-B containing a partial sequence of i7 TruSeq primer (see Table S4 for 
oligo sequence) and an 8 bp unique barcode (Table S5). Both Tn5ME-A and Tn5ME-B were 
annealed to the Tn5MErev (Table S4) before loading to Tn5. 
 
Barnyard experiments 
Two different barnyard settings were designed to estimate the total collisions arising from pre- 
and/or post-pooling events. To test the total collision rate, the human and mouse cells were mixed 
in the same well at a 1:1 ratio to perform barcoded transposition (“true barnyard”). The collision 
rate driven by events downstream of pooling was evaluated by performing barcoded transposition 
on wells containing pure species (“pseudo-barnyard”) and pooling the human and mouse nuclei 
afterward. Detailed information about the cell sources used in each barnyard assay and each 
figure is shown in Table S6. 
 
Optimization of txci-ATAC-seq protocol 
Coupling barcoded transposition with standard 10X protocol 
The nuclei isolated from human and mouse lungs were removed from the liquid nitrogen dewar 
(See “Nuclei isolation of primary samples” for details) and then thawed in the water bath at 37 °C 
for 1 to 2 min until a tiny ice crystal remained. After thawing, the nuclei stored in 1 ml freezing 
buffer were diluted with 3 ml RSB supplemented with 0.1% Tween-20 and 0.1% BSA (RSB 
washing buffer) and then centrifuged at 500 r.c.f for 10 mins in a pre-chilled (4 °C) swinging-
bucket centrifuge. The nuclei pellet was resuspended with another 1 ml of RSB washing buffer 
and then transferred to a 1.5 ml LoBind tube through a 40 μm Flowmi Cell strainer (Bel-Art SP 
Scienceware, Cat. 14-100-150). The filtered nuclei were pelleted at 500 r.c.f for 5 min in a pre-
chilled fixed-angle centrifuge and then resuspended in 25 μl of 1.25x Tagment DNA Buffer 
(Nextera XT Kit, Illumina Inc. FC-131-1024). For cell cultures, the human and mouse nuclei were 
freshly isolated as described in “Nuclei isolation of cell lines” and resuspended in 50 μl of 1x Nuclei 
Buffer (10X Genomics, PN-2000207). Then, we counted nuclei for each sample and added 5000 
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nuclei diluted in 20 μl of 1.25x Tagment DNA buffer to each well of the iTSM plate (see “Sample 
multiplexing” for details), except for the wells used to test the 10X reagents in which 5000 nuclei 
diluted in 5 μl of 1x Nuclei Buffer were added to a mixture of 7 μl of ATAC Buffer B (10X Genomics, 
PN-2000193) and 3 μl of barcoded Tn5. The plate layout and well IDs for each barnyard condition 
was shown in Fig. S1 and Table S6. The tagmentation was performed at 55 °C for 30 min on a 
thermocycler with a heated lid. To quench the Tn5 activity, we added a 2x Tagmentation Stop 
Buffer containing 40 mM EDTA (Invitrogen™, Cat. AM9260G) and 1mM Spermidine (Sigma-
Aldrich, Cat. S0266-1G) to the transposition reactions at a 1:1 ratio and incubated the plate on 
ice for 15 min. We found that stopping the transposition reaction was unnecessary and thereby 
removed this step from our final txci-ATAC-seq protocol. All nuclei were pooled and centrifuged 
at 500 r.c.f for 10 min. After aspirating the supernatant, nuclei were resuspended in 400 μl 1x 
Nuclei Buffer and pelleted again. Then, we carefully removed the supernatant and resuspended 
nuclei in 30 μl 1x Nuclei Buffer. After quantification of nuclei with a hemocytometer, 75,000 nuclei 
were taken and diluted in 1x Nuclei Buffer to make a total volume of 15 μl, which underwent the 
standard 10X Chromium Next GEM protocol (v1.1, Document No. CG000209 Rev D from Steps 
2 to 4) except following steps. For Sample Index PCR (step 4.1), we substituted the Single Index 
N Set A with a 25 μM i7 TruSeq primer and added 2.5 μl of customized i7 primer (Table S7) to 
each 10X library followed by performing 8 cycles of PCR amplification. The resulting library was 
sequenced on a NextSeq 550 Platform (Illumina Inc.) using a Mid Output Kit with the following 
cycles: Read 1, 50 cycles; i7 index, 8 cycles; i5 index, 16 cycles; Read 2, 77 cycles.  
 
Blocking barcode-swapping 
Flash-frozen (human and mouse lung samples and human cell line, see “Nuclei isolation” for 
details) and fresh nuclei (mouse cell line, see “Nuclei isolation” for details) were used to test the 
efficiency of strategies to block barcode-swapping. The flash-frozen nuclei were thawed, washed, 
and filtered following the procedures described in the “Coupling barcoded transposition with 
standard 10X protocol” section. Both flash-frozen and freshly isolated nuclei were resuspended 
in 100 μl of PBS containing 0.04% BSA (PBSB) and quantified using a hemocytometer (See 
“Nuclei isolation of cell lines” for details). After counting, the nuclei were diluted in PBSB to a 
concentration of 2,857 per μl (20,000 nuclei per well in 7 μl) and then mixed with a Tagmentation 
buffer solution (TBS, which was modified from the Omni protocol [10]) followed by transferring to 
the iTSM plate (see “Sample multiplexing” for details). Each 13 μl of TBS contains 12.5 μl of 
Illumina Tagment DNA Buffer, 0.25 μl of 1% Digitonin in DMSO (Promega (2%), Cat. PRG9441), 
and 0.25 μl of 10% Tween-20 (Bio-Rad, Cat. 1610781) in nuclease-free water. The barcoded 
transposition reaction was performed at 37 °C for 30 min on a thermocycler with a heated lid at 
47 °C. Each blocking condition was assigned to 8 columns leading to a total of two 96-well plates 
for all three conditions. The plate layout and well IDs for each barnyard design in each blocking 
condition were shown in Fig. S2a and Table S6. After tagmentation, the nuclei used to test the 
Decoy DNA were transferred to a new 96-well plate with a multi-channel pipette, and 2.5 μl of 50 
μM duplex DNA (see Table S8 for the oligo sequence) was added to each well followed by 
incubating at 55 °C for 10 min. Then, we added the 2x Tagmentation Stop Buffer (see “Coupling 
barcoded transposition with standard 10X protocol” for details) to the transposition reactions at a 
1:1 ratio for all three blocking conditions and incubated the plates on ice for 15 min. Subsequently, 
the nuclei from the same blocking condition were pooled together and pelleted at 500 r.c.f for 10 
min at 4 °C. After removal of supernatant from each tube, the nuclei were washed with 500 μl of 
1x Nuclei Buffer (10X Genomics, PN-2000207) with centrifugation of 500 r.c.f for 5 min at 4 °C 
and resuspended in 25 μl of 1x Nuclei Buffer. Then, we counted nuclei with Trypan blue on a 
hemocytometer and diluted 100,000 nuclei in 1x Nuclei Buffer to make a total of 15 μl for each 
blocking condition. The resulting 3 aliquots of nuclei were run on separate lanes of the 10X as per 
the manufacturer’s instructions (10X Chromium Next GEM Single Cell ATAC protocol v1.1, 
Document No. CG000209 Rev D) with the following modifications. During GEM Generation and 
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Barcoding (Step 2.1a), the nuclei dedicated to evaluating the Blocking oligo were mixed with the 
Master Mix supplemented with 2.5 μl of 100 μM DNA oligo incorporating an inverted dT at the 3’-
end (see Table S8 for the oligo sequence); and the nuclei dedicated to testing the SBS primer 
were mixed with the Master Mix supplemented with 2.5 μl of 25 μM full SBS primer (Table S8) for 
in-droplet exponential amplification. After GEM PCR (Step 2.5a), a 10 μl PCR product (10% GEM) 
was slowly aspirated and transferred to a new PCR tube and subjected to Post GEM Incubation 
Cleanup in parallel with the 90% sample. Following cleanup, we performed the Sample Index 
PCR on the 10% sample (step 4.1) by supplementing the PCR mixes of SBS primer, Decoy DNA, 
and Blocking oligo with 2.5 μl of 25 μM barcoded i7 TruSeq primer (Table S7), which was used 
to replace the Single Index N Set A. The PCR mixes were amplified and monitored on a Bio-Rad 
CFX Connect Real-time cycler. The amplification was stopped when it appeared to be leveling off 
(i.e., the SBS primer was stopped at 4 cycles; the Decoy DNA and Blocking oligo were stopped 
at 15 cycles). To monitor the relative efficiencies of amplification in our initial test, we ended up 
introducing 2 different barcoded SBS primers in the SBS condition: one barcode was used for in-
droplet amplification and another barcode was used for final library sample indexing. Both 
barcodes were assigned to thousands of reads per cell, indicating that both reactions were 
working. However, the theoretical expectation for the ratio between the two barcodes was 1/16 
(because the second primer was used for 4 cycles of PCR). When we examined the ratio in our 
actual data, it was consistently ~⅓, indicating that the sample index amplification is not perfectly 
efficient (Fig. S16). Therefore, in subsequent experiments using lung and liver tissues, we 
reduced the in-droplet PCR to 8 cycles and added an additional cycle of PCR for sample indexing. 
The resulting libraries with 10% GEM were pooled together with a library from an unrelated 
experiment to balance nucleotide diversity through the fixed sequence at the Tn5MErev region in 
Read 2, and then sequenced on a NextSeq 550 Platform (Illumina Inc.) using a Mid Output Kit 
with the following cycles: Read 1, 50 cycles; i7 index, 10 cycles; i5 index, 16 cycles; Read 2, 92 
cycles. While 8 cycles in i7 index and 77 cycles in Read 2 were sufficient for the libraries 
generated in this study, we ran 10 and 92 cycles for those two steps, respectively, to 
accommodate the other library. 
 
txci-ATAC-seq using brain tissue samples 
Tagmentation plates were prepared by the combination of 1430 μl of TBS with 770 μl nuclei 
solution. The TBS recipe was described in “Blocking barcode-swapping”, but a different version 
of Digitonin (Bivision 2082-1) was used here. This solution was mixed briefly on ice. 20 μl of the 
mixture was placed into the 96-well iTSM plate (see “Sample multiplexing” for details). 
Tagmentation was performed at 37 °C for 60 minutes on a 300 r.c.f Eppendorf ThermoMixer with 
a lid heated to 65 °C. Following this incubation, plate temperature was brought down with a 5-
minute incubation on ice to stop the reaction. Tagmented nuclei were then pooled into a single 15 
ml conical tube. 5 ml of tagmentation wash buffer (TMG) was prepared consisting of a final 
concentration of 10 mM Tris Acetate pH 7.5 (Sigma 93352 and Sigma A6283, respectively), 5 
mM MgAcetate (Sigma M5661), and 10% (v/v) glycerol (Sigma G5516), diluted in PCR grade 
water. 1 ml of TMG was added on top of the chilled tagmented nuclei. Nuclei were pelleted at 500 
r.c.f for 10 minutes at 4 °C. Most of the supernatant was removed with care not to disturb the 
pellet. Then 500 μl of TMG was added to the pellet and the tube was once again spun at 500 r.c.f. 
for 5 minutes at 4 °C. 490 μl was removed leading to a low volume of concentrated nuclei. Loading 
buffer was prepared consisting of 10% (v/v) glycerol, 20 mM NaCl, 10 mM Tris-Cl pH 7.5 (Life 
technologies AM9855), 0.02 mM EDTA (Fisher Scientific AM9260G), 0.2 mM DTT (VWR 97061-
340), and 0.2x (v/v) TB1 (Illumina Inc.). The nuclear pellet was resuspended with an additional 30 
μl of loading buffer. An aliquot of 2 μl of sample was diluted 20-50X and quantified with Trypan 
Blue on a hemocytometer. Depending on the experiment, a 14 μl nuclei solution containing the 
desired amount of nuclei in the loading buffer was then combined with 1 μl of 75 μM short SBS 
oligo (Table S8). 
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The 10X Chromium was then run with the custom nuclei solution as per the manufacturer’s 
instructions (10x Document CG000209 Rev D) with the following adaptations. In step 2.4e during 
GEM aspiration and transfer, 100 μl GEM volume was split into two tubes, with one receiving 10 
μl and the other 90 μl (henceforth referred to as 10% and 90% samples). In step 2.5.a, GEM 
incubation cycles were limited to 6. For Pre-PCR wash elution (Step 3.2.j) the 10% sample was 
eluted in 8.5 μl whereas the 90% sample was eluted in 32.5 μl. For step 3.2.n, the 10% sample 
had 8 μl transferred to a new strip, while the 90% sample had 32 μl transferred to a new strip. At 
step 4.1.b, the sample Index PCR mix was split with 11.5 μl and 46 μl being combined with the 
10% and 90% samples, respectively. For step 4.1.c, 1 μl and 2 μl of a 10 μM i7 TruSeq primer 
was used, respectively. For step 4.1.d, 8 and 7 PCR cycles were used, respectively. Libraries 
were then checked for quality and quantified by Qubit DNA HS assay (Agilent Q32851) and 
Tapestation D5000 (Agilent 5067-5589) following the manufacturer’s instructions. Libraries were 
then diluted and sequenced on a NextSeq 500 Mid flow cell or a NovaSeq 6000 S4 flow cell 
(Illumina Inc.). 
 
txci-ATAC-seq using human lung, mouse lung, and mouse liver tissue samples 
Flash-frozen nuclei isolated from human lung, mouse lung, and mouse liver tissues were thawed, 
washed, and filtered following the procedures described in “Coupling barcoded transposition with 
standard 10X protocol”, and then resuspended in 150 μl PBSB (PBS containing 0.04% BSA). To 
count nuclei, we added 1.5 μl of 300 μM DAPI to 150 μl of PBSB containing nuclei for a final 
concentration of 3 μM DAPI, and incubated the nuclei on ice for 5 min. Then, we mixed nuclei 
with 2x Omni TD buffer in a 1:1 ratio and loaded 10 μl on a Countess Cell Counting Chamber 
Slide to count the nuclei with Countess II Automated Cell Counter. 
 
After counting nuclei, we diluted the samples with PBSB to a concentration of 2,857 per μl and 
mixed 7 μl of nuclei solution (20,000 nuclei) with 13 μl of TBS (see “Blocking barcode-swapping” 
for details) for each well. This 20 μl nuclei/transposition mixture was then added to each well of 
the iTSM plate pre-loaded with 5 μl of barcoded Tn5 per well (see “Sample multiplexing” for details) 
to make a total volume of 25 μl reaction per well. As shown in Fig. 4a, 20,000 mouse nuclei were 
added to each well from rows A to F. But for rows G and H, 10,000 mouse nuclei were mixed with 
10,000 human nuclei and then transferred to each well to estimate the empirical collision rate for 
each sample. The well IDs for different tissue mixtures were specified in Table S6. After loading 
nuclei, the iTSM plate was sealed and briefly shaken at 1000 rpm for 1 min on a pre-chilled 
thermomixer. The barcoded transposition was performed at 37 °C for 1 hour on a thermocycler 
with a heated lid at 47 °C. At the end of incubation, the plate was briefly centrifuged at 500 r.c.f 
for 10 seconds and then chilled on ice for 5 min to stop the transposition reaction. After quenching 
enzyme activity, the nuclei were pooled into a 12-tube strip and then transferred to a 15 ml conical 
tube preloaded with 400 μl tagmentation washing buffer (TMG, which contains 10mM Tris Acetate 
pH 7.8 (Boston BioProducts, Cat. BB-2412), 5mM Magnesium acetate (Sigma, Cat. 63052-100ML) 
and 10% (v/v) glycerol (VWR, Cat. RC3290-32) diluted in nuclease-free water). Subsequently, we 
added 50 μl/well of TMG to the first row of the plate and pipetted them throughout the whole plate 
to wash out the residual nuclei remaining in the plate. After washing the last row of the plate, the 
TMG was transferred to the same conical tube that was used to collect the barcoded nuclei. The 
pooled nuclei were then centrifuged at 500 r.c.f for 10 min in a pre-chilled swinging-bucket 
centrifuge at 4 °C. After aspirating the supernatant, the nuclei were resuspended in 500 μl TMG 
and then transferred to a 1.5 ml LoBind tube through a 40 μm Flowmi Cell strainer. The nuclei 
suspension was then centrifuged at 500 r.c.f for 5 min in a pre-chilled fixed-angle centrifuge at 
4 °C. After centrifugation, 400 μl of supernatant was removed. The 100 μl of supernatant left from 
the first aspiration was then carefully removed by pipetting with a P200 pipette tip to avoid 
disturbing the nuclei pellet. The nuclei were resuspended with 30 μl of loading buffer containing 
1x TB1 (Illumina Inc.), 1x standard storage buffer (Illumina Inc.), and 5 μM short SBS oligo (a final 
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concentration of 1 μM SBS after resuspending nuclei in 10X Master Mix; see Table S8 for the 
oligo sequence), and then counted with a hemocytometer (see “nuclei isolation of cell lines” for 
details). After counting, the volume of solution containing the appropriate number of nuclei was 
taken and diluted with the loading buffer to make a total volume of 15 μl, which was used as an 
input into the 10x Chromium Controller. The GEM generation, Barcoding, and Post GEM 
Incubation Cleanup were performed following Steps 2 and 3 described in the 10X Chromium Next 
GEM Single Cell ATAC protocol (v1.1, Document No. CG000209 Rev D) except for Step 2.5, in 
which 8 cycles were used for GEM incubation. For Sample Index PCR (step 4.1), we substituted 
the Single Index N Set A (10X Genomics) with 25 μM i7 TruSeq primer containing an 8 bp custom 
barcode (Table S7) and added 2.5 μl of customized i7 primer to each 10X library. The PCR was 
performed following the 10X protocol shown in Step 4.1 but with 5 total cycles. The Double Sided 
Size Selection was then conducted as described in Step 4.2 shown in the 10X protocol. Following 
the size selection, the txci-ATAC-seq libraries were quantified by Qubit 1X dsDNA HS Assay Kit 
(Invitrogen, Cat. Q33231) and run on a 6% PAGE gel to check the library quality. To balance 
nucleotide diversity of the fixed sequence at the Tn5MErev region in Read 2, we pooled these 
libraries with 5% of bulk ATAC libraries (from an unrelated experiment) and sequenced them on 
a NextSeq 550 Sequencer (Illumina Inc.) using a High Output Kit with following cycles: Read 1, 
51 cycles; i7 index, 10 cycles; i5 index, 16 cycles; Read 2, 78 cycles. The txci-ATAC-seq library 
only has 8 bp of i7 barcode, but we ran 10 cycles in i7 index to accommodate the barcode length 
of the bulk ATAC libraries. In cases where txci-ATAC-seq libraries are sequenced alone, we 
recommend either spiking in an appropriate amount of PhiX as per the manufacturer's instruction 
or performing dark cycles for the cycles from 9 to 27 in Read 2. 
 
Fast-txci-ATAC-seq 
To perform txci-ATAC-seq directly on frozen nuclei, the nuclei isolated from WT and CC16-/- 
mouse lungs (see “Nuclei isolation of human lung, mouse lung, and mouse liver tissue” for details) 
were diluted in NFB (see Nuclei isolation of cell lines) at 3,175 nuclei/μl. For each sample, 6.3 μl 
of diluted nuclei (20,000 nuclei) were added to each well of an 8-tube strip for a total of 8 wells. 
Then, the nuclei were flash-frozen in liquid nitrogen and transferred to -80 °C for storage. The 
paired WT and CC16-/- samples were processed together but each pair was processed on a 
separate day. When performing Fast-txci-ATAC-seq, the nuclei flash-frozen in the tube strips 
were thawed on ice and 13.7 μl of transposition buffer (which contains 12.5 μl of 2X Illumina 
Tagment DNA Buffer, 0.7 μl of 10X PBS, 0.25 μl of 1% Digitonin, 0.25 μl of 10% Tween-20) was 
added to each well containing nuclei followed by adding 5 μl of 500 nM pre-indexed Tn5 
transposase per well. Then, the barcoded transposition reaction was performed on all 6 samples 
simultaneously by incubating at 37 °C for 60 min. Since each sample was distributed into 8 wells, 
a total of 48 Tn5 barcodes were used. As described above in the txci-ATAC-seq protocol, the 
barcoded nuclei were then cooled down on ice, pooled, washed, and loaded on the 10x Chromium 
Controller with either 50,000 or 100,000 nuclei in a lane. 
 
Data processing and analysis 
Raw code for the brain analysis is available at https://mulqueenr.github.io/scidrop/. Raw code for 
the cell line and lung/liver datasets is available at https://github.com/cusanovichlab/scidropatac. 
The specific programs (and their version) used in data analyses were as follows: bcl2fastq 
(v2.19.0 for brain analysis and v2.20.0.422 for the other samples, Illumina Inc.), Trimmomatic 
(v0.36) [59], SAMtools and tabix (v1.7 for brain analysis and v1.10 for the other samples) [60,61], 
BWA-MEM (v0.7.15-r1140) [62], Bowtie2 (v2.4.1) [63], Perl (v5.16.3) [64], MACS2 (v.2.2.7.1 for 
brain analysis and v2.1.2 for the other samples) [65], bedtools (v2.28.0) [66], Python (2.7.13 [67] 
and 3.6.7 [68]), PyPy (5.10.0), pybedtools (0.7.10) [69], R (v4.1.1) [70], cisTopic (v0.3.0) [12], 
Cicero (v1.3.4.10) [15], Signac (v1.0.0 for brain analysis and v1.5.0 for the other samples) [16], 
Presto (v1.0.0) [21], chromVAR (v1.16.0) [22], Seurat (v4.1.0) [28], uwot (v0.1.8) [71], Harmony 
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(v1.0) [72], irlba (v2.3.5) [73], mclust (v5.4.9) [74], edgeR (v3.40.0) [75], rGREAT (v2.0.2) [76], 
KEGGREST (v1.38.0) [77], BCFtools (v1.15.1) [78], GATK (4.3.0.0) [79], MOODS (1.9.4) [80], 
ggplot2 (v3.3.5) [81], and ComplexHeatmap (v2.5.5) [82]. 
 
Computational analysis of brain samples 
There were some deviations in the analysis of the brain samples, which are detailed below. 
 
Preprocessing for brain tissues 
After sequencing, data was converted from bcl format to FastQ format using bcl2fastq with the 
following options “--with-failed-reads”, “--no-lane-splitting”, “--fastq-compression-level=9”, “--
create-fastq-for-index-reads”. Data were then demultiplexed, aligned, and de-duplicated using the 
in-house scitools pipeline [83]. Briefly, FastQ reads were assigned to their expected primer index 
sequence allowing for sequencing error (Hamming distance ≤2) and indexes were concatenated 
to form a “cellID”. Reads that could be assigned unambiguously to a cellID were then aligned to 
reference genomes. Paired reads were first aligned to a concatenated hybrid genome of hg38 
and GRCm38 (“mm10”, Genome Reference Consortium Mouse Build 38 (GCA_000001635.2)) 
with BWA-MEM. Reads were then de-duplicated to remove PCR and optical duplicates by a Perl 
script aware of cellID, chromosome number, read start coordinate, read end coordinate, and 
strand. From there, the putative single-cells were distinguished from debris and error-generated 
cellIDs by both unique reads and percentage of unique reads. 
 
Barnyard analysis for brain tissues 
With single-cell libraries distinguished, we next quantified contamination between nuclei during 
library generation. We calculated the read count of unique reads per cellID aligning to either 
human reference or mouse reference chromosomes (Fig. S3b). CellIDs with ≥90% of reads 
aligning to a single reference genome were considered bona fide single cells. Those not passing 
this filter were considered collisions. The collision rate was estimated using the equation in [11] 
to account for cryptic collisions (two cells from the same species). Bona fide single-cell cell IDs 
were then split from the original FastQ files to be aligned to the proper hg38 or mm10 genomes 
with BWA-MEM as described above. Human and mouse assigned cellIDs were then processed 
in parallel for the rest of the analysis. After alignment, reads were again de-duplicated to obtain 
proper estimates of library complexity.  
 
Dimensionality reduction for brain tissues 
Pseudo-bulked data (agnostic of cellID) was then used to call read pile-ups or “peaks” via MACS2 
with the option “--keep-dup all”. Narrowpeak bed files were then merged by overlap and extended 
to a minimum of 500 bp for a total of 350,261 peaks for human and 292,304 peaks for mouse. A 
scitools Perl script was then used to generate a sparse matrix of peaks × cellID to count the 
occurrence of reads within peak regions per cell. FRiP was calculated as the number of unique, 
usable reads per cell that are present within the peaks out of the total number of unique, usable 
reads for that cell for each peak bed file. Tabix-formatted files were generated using samtools 
and tabix. The count matrix and tabix files were then input into a SeuratObject for Signac 
processing. We performed LDA-based dimensionality reduction via cisTopic with 28 and 30 topics 
for human and mouse cells, respectively. The number of topics was selected after generating 25 
separate models per species with topic counts of 5,10,20-30,40,50,55,60-70 and selecting the 
topic count using selectModel based on the second derivative of model perplexity. Cell clustering 
was performed with Signac “FindNeighbors” and “FindClusters” functions on the topic weight × 
cellID data frame. For the “FindClusters” function call, resolution was set to 0.01 and 0.02 for 
human and mouse samples, respectively. The respective topic weight × cellID was then projected 
into two-dimensional space via UMAP by the function “umap” in the uwot package. To check for 
putative doublets within species, we then ran scrublet analysis and removed the scrublet-
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identified doubles from further analysis [14]. A second iteration of sub-clustering was performed 
on each cluster to better ascertain cell type diversity. This was done as described above with the 
data subset to just the cells within the respective cluster for both cisTopic model building and 
UMAP projection. Resolution per subcluster was set post hoc based on cell separation in UMAP 
projection. CCANs and the resulting gene activities were generated through the Signac wrapper 
of Cicero. Genome-wide accessibility of known TF motifs was calculated per cell using the 
JASPAR database (release 8) [84] via chromVAR. 
 
Cell Type Identification for brain tissues 
For cell type identification, we used previously existing single-cell RNA datasets of the human M1 
cortex [85], and mouse whole cortex and hippocampus [86,87]. We applied the Signac label 
transfer strategy between the annotated single-cell RNA with our gene activity scores at the level 
of our sub-clustered cell groups. For cell type refinement, we plotted the average gene activity 
score per subcluster for a set of RNA-defined marker genes, as well as markers defined within 
our datasets on the gene activity scores using the Signac “FindMarkers” function as described 
above. Subcluster dendrograms were generated by using base R functions dist and hclust 
through running Z-scored average gene activity on internally-defined markers and based on 
“ward.D2” clustering of Euclidean distance. The resultant dendrogram was used for both pre-
defined and internally defined marker sets. Results were plotted via ComplexHeatmap.  
 
TF marker ranking 
TFs were ranked for specificity across sub-clusters, based on combined motif accessibility 
(generated through chromVAR) and gene activity (generated through cicero). AUC values were 
determined per cluster via the Wilcoxon test as reported by the “wilcoxauc” function in Presto. An 
average AUC of motif accessibility and gene activity was used for ranking TFs. A set of top 5 
markers per sub-cluster was filtered for duplicates and then plotted via ComplexHeatmap. 
 
Comparison across scATAC-seq mouse brain datasets 
FastQ files for sciATAC-seq, sciMAP, snATAC-seq, dscATAC-seq, and s3-ATAC-seq were 
downloaded via the SRA toolkit. 10X scATAC-seq v1 and v2 chemistries FastQ files were 
obtained through the 10X Genomics website. Files were then demultiplexed following the original 
author’s instructions to generate a scitools analogous cellID and were processed through the 
scitools pipeline as described above. Briefly, after alignment to a consistent mouse reference 
genome (GRCm38), files were treated to de-duplication in parallel before merging. For each 
dataset, cellIDs were filtered to those with at least 1,000 unique reads, and then merged into a 
single bam file. Peaks were called as previously described, resulting in 344,258 regions of 
accessibility. Per cell FRiP was calculated using this peak set. TSS enrichment values were 
calculated for all cells using the method established by the ENCODE project 
(https://www.encodeproject.org/data-standards/terms/enrichment), whereby the aggregate 
distribution of reads ±1,000 bp centered on the set of TSSs generates 100 bp windows at the 
flanks of the distribution as the background and then the maximum window centered on the TSS 
is used to calculate the fold-enrichment over the outer flanking windows. Signac was then used 
to generate a SeuratObject as described above, and data underwent dimensionality reduction 
after integration using Harmony, with argument “nclust=14”. A UMAP was plotted as described 
above with cellIDs colored in relation to the technology used, and the original author-assigned 
cell type.  
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Computational analysis of human lung, mouse lung, and mouse liver tissue samples 
 
Preprocessing 
Fastq files were generated using bcl2fastq with the following options: “--ignore-missing-bcls”, “--
no-lane-splitting”, and “--create-fastq-for-index-reads”. Then, we modified the fastq files by 
attaching the first 8 bp (Tn5 barcodes) of Read 2 to the header and removing the first 27 bp (8 bp 
of Tn5 barcodes + 19 bp of Tn5 mosaic end) from Read 2 with a custom python script. Barcodes 
that did not perfectly match any of the expected barcodes were converted to the closest matching 
barcode if the edit distance was no greater than 2. Barcodes matching more than 1 expected 
barcode after correction were removed. After barcode correction, we demultiplexed samples 
based on a combination of Tn5 barcodes and i7 sample indices and generated a combined 
barcode for each read by concatenating the i7 sample index, 10X bead barcode, and Tn5 barcode. 
Next, we removed the sequence adaptors and low-quality reads using trimmomatic with following 
parameters: “LEADING:3; TRAILING:3; SLIDINGWINDOW:4:10; MINLEN:20” and then mapped 
the trimmed reads to a hybrid hg38/mm10 reference genome using Bowtie2 with a maximum 
fragment length of 2000 pb (-X 2000) and 1 base trimmed from the 3’ end of each read (-3 1). 
Following mapping, only the reads confidently (MAPQ ≥ 10) aligned to the assembled nuclear 
chromosomes and in proper pairs (determined by “-f3” and “-F12” options in SAMtools) were 
preserved for downstream analysis. To eliminate PCR duplicates, we removed all fragments that 
possessed the same combined barcode and identical start and end coordinates, keeping a 
random representative read for each end of the molecule using a custom script. 
 
Peak calling 
The deduplicated bed files were used to call peaks with MACS2, considering a 200 bp window 
centered on the read start using the parameters ‘--nomodel --keep-dup all --extsize 200 --shift -
100’. Because each peak may have multiple summits and will therefore be listed multiple times in 
the resulting peak bed file, the peaks output from MACS2 were then merged into a single peak 
set for each sample using bedtools “merge”. The consolidated peaks were then intersected with 
the ENCODE blacklist (mm10 [88] or hg38 ENCFF356LFX) to remove signal-artifact regions 
using bedtools “intersect” with “-v” option.  
 
Calculation of ATAC-seq QC metrics 
FRiDHS. The FRiDHS score was determined using orthogonal peak references identified in 
DNase-seq data. The GM12878 DHS peaks combined the 2 replicates of narrowPeak-formatted 
files obtained from the ENCODE consortium (ENCSR000EMT). The CH12.LX DHS peaks 
combined the 2 replicates of narrowPeak-formatted files obtained from the ENCODE consortium 
(ENCSR000CMQ). The mouse lung DHS peaks combined the 3 replicates of narrowPeak-
formatted files obtained from the ENCODE consortium (ENCSR000CNM). The mouse liver DHS 
peaks combined the 14 replicates of narrowPeak-formatted files obtained from the ENCODE 
consortium (ENCSR000CNI). The human lung DHS peaks combined the narrowPeak-formatted 
files obtained from 2 separate DNase-seq data but from the same individual (ENCODE Donor 
Accession: ENCDO845WKR; ENCODE Experiment Accession: ENCSR164WOF and 
ENCSR058VBM). The overlapping peaks between replicate bed files were consolidated using 
bedtools “merge”, and the peaks overlapped with ENCODE blacklist (mm10 [88] or hg38 
ENCFF356LFX) were removed using bedtools “intersect” with “-v” option. We removed the reads 
mapping to the non-nuclear genome and performed deduplication before calculating FRiDHS. 
The reads overlapping the DHS peak reference were counted using the “BedTool.intersect” 
function from pybedtools with “u=True”.  
 
TSS enrichment. The human and mouse TSS coordinates were obtained from the Gencode 
human reference v39 [89] and Gencode mouse reference vM23 [90], respectively. To build TSS 
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references, we first collected the most upstream base (accounting for strand) of each transcript 
using a custom R script, and then only the TSSs of gene types and transcript types listing the 
following terms were included: “protein_coding”, “lncRNA”, “IG_C_gene”, “IG_D_gene”, 
“IG_J_gene”, “IG_LV_gene”, “IG_V_gene”, “IG_V_pseudogene”, “IG_J_pseudogene”, 
“IG_C_pseudogene”, “TR_C_gene”, “TR_D_gene”, “TR_J_gene”, “TR_V_gene”, 
“TR_V_pseudogene”, “TR_J_pseudogene”. We also excluded transcripts with a tag of 
“readthrough_transcript” or “PAR”. These filters were similar to the filtering strategy used by the 
10X single-cell ATAC-seq pipeline [91]. The TSS enrichment score for each cell was calculated 
using the TSSEnrichment function in the Signac package. 
 
Estimated complexity. The nuclear genome mapped reads and deduplicated reads were used to 
estimate the complexity for each cell using the same calculation as Picard [92] implemented in R. 
 
Collision rate estimation 
For each combined barcode, we quantified the number of deduplicated reads mapping to the 
human and mouse genome and filtered out the combined barcodes with fewer than 1,000 total 
reads. The collision barcodes were determined as the cell barcodes that had more than 10% of 
reads aligned to the minor genome. Since the cell doublets can be generated by either two cells 
from the same species or cells from distinct species, the observed collisions only reflect 
approximately half of the collision events that in fact occur in the experiment. To this end, we 
estimated the actual collision rate using the equation in [11]. 
  
Dimensionality reduction and clustering 
An iterative peak-calling strategy was used to perform dimensionality reduction and cluster cells. 
The first round of clustering was performed with a pseudo-bulk peak reference, which was 
identified by calling peaks on deduplicate reads from identified cells (≥ 1,000 reads). Then, a 
binarized peak (column) by cell (row) matrix was generated by scoring the peaks defined in the 
previous step for overlap with reads from each cell. The low complexity cells and features were 
removed using Signac “CreateChromatinAssay” function by setting “min.cells = 50 and 
min.features = 200” for mouse samples and setting “min.cells = 15 and min.features = 200” for 
human samples followed by filtering out the cells considered as outliers for QC metrics (DHS 
region reads > 20,000, FRiDHS < 0.2 and TSS enrichment score < 2). Potential cell doublets were 
identified by performing a modified version of the Scrublet workflow [14] on each txci-ATAC-seq 
library separately. In brief, we transformed the filtered cell/peak matrix with the term-frequency 
inverse-document-frequency (TF-IDF) algorithm by computing log(TF×IDF) as described in [93] 
and then calculated the first 30 components for PCA using the irlba R package. Simulated cell 
doublets were created by randomly sampling 50% of observed cells from the original matrix and 
summing them with another 50% of randomly sampled cells. The matrix of simulated doublets 
was then binarized and transformed with the same TF-IDF implementation. Subsequently, we 
projected the transformed doublets into the PCA space generated by the observed data and 
performed L2-normalization on the resulting matrix including both observed and simulated cells 
with Seurat “L2Dim” function. The L2-normalized reduction was then used to compute the fraction 
of simulated doublet neighbors for each cell using Seurat “FindNeighbors” function with 
dimensions 2 to 30 and setting “k.param” as 129 (mouse lung nuclei from the 100,000 lane), 166 
(mouse lung nuclei from the 200,000 lane), 120 (mouse liver nuclei from the 100,000 lane), 147 
(mouse liver nuclei from the 200,000 lane), 62 (human lung nuclei from the 100,000 lane), and 74 
(human lung nuclei from the 200,000 lane). We derived the “k.param” values using the kadj 
equation in Scrublet. Finally, a doublet score was calculated for each cell using the appropriate 
equations described in Scrublet. 
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Assuming a bimodal distribution, a threshold for doublet scores was calculated with the simulated 
cells by identifying the boundary between the doublets incorporating highly similar cells 
(“embedded”) and the doublets of dissimilar cells (“neotypic”) using the mclust R package [74] 
with less than 5% uncertainty that the doublets were classified into the “neotypic” category. After 
removing the doublets detected, we computed the latent semantic indexing (LSI) matrix by 
running singular value decomposition (SVD) on the TF-IDF normalized matrix using Signac and 
then clustered cells using Seurat “FindNeighbors” function with the dimensions of reduction from 
2 to 30 followed by Seurat “FindClusters” implementing the SLM algorithm with default resolution. 
For tissues with replicates, the LSI matrix was integrated by individual with Harmony [72] prior to 
cell clustering.  
 
Each cell cluster from this first round of clustering was then used to identify peaks independently, 
and all cluster peaks were merged into a single reference set. Subsequently, a second round of 
clustering was performed using this updated peak set. With the same workflow, we used in the 
first round of clustering, a binarized count matrix generated with cluster-identified peaks was 
created and used to perform normalization, dimension reduction, integration (for tissues with 
replicates), and clustering, except that the resolution parameter used to determine the community 
size was set differently for each tissue (i.e., 0.8, 0.2 and 0.3 were used for mouse lung tissue, 
mouse liver tissue, and human lung tissue, respectively). Regarding liver samples, we decided to 
consolidate clusters 0, 7, 8, and 9 because of no visible separation between them in 2D UMAP 
space. For visualization purposes, the data was projected into a two-dimensional space via Seurat 
“RunUMAP” function with 30 dimensions (excluding the first component, which represented the 
sequencing depth). 
 
Cell type annotation 
The cell types associated with each cluster were predicted by label transfer using publicly 
available sc/snRNA-seq and sci-ATAC-seq data. Only the cell types including at least 50 cells in 
the reference dataset were used to infer the cell types in the query dataset. To annotate cell types 
with transcriptome data, we used previously published data from steady state mouse liver, mouse 
lung, and healthy human lung samples to construct an “integrated” reference for each tissue in 
each species using the Seurat scRNA-seq integration pipeline. In all cases, the 5000 most 
variable genes across reference samples were selected to find integration “anchors”. The mouse 
lung reference was built by integrating three samples (a scRNA-seq sample and two replicate 
samples of snRNA-seq) from a single study [29]. The mouse liver reference was created by 
integrating samples generated with three different protocols (snRNA-seq and scRNA-seq using 
cells isolated via either ex vivo or in vivo enzymatic digestion method) from a single study as well 
(https://www.livercellatlas.org/download.php; [30]). The human lung reference was established by 
integrating two scRNA-seq datasets obtained from two independent studies [31,32]. After creating 
RNA-seq references, we estimated transcriptional activity across the genes selected for 
integration by quantifying the txci-ATAC-seq counts in both the 2 kb region upstream and the 
gene body of each gene using the Signac “GeneActivity” function. The prediction of cell type was 
then achieved by performing canonical correlation analysis on the gene activity scores calculated 
from ATAC-seq data along with the integrated scRNA-seq reference using Seurat 
“FindTransferAnchors” function followed by transferring annotations from reference to query cells 
using “TransferData” function in which the 2nd to 30th components of the LSI matrix calculated 
on ATAC-seq data was used to compute the weights of the local neighborhood of anchors.  
 
For annotating cells with a chromatin reference, we downloaded the fastq files of mouse sci-
ATAC-seq data from [3] (GEO accession number: Lung RepA, GSM3034631; Lung Rep B, 
GSM3034632; Liver, GSM3034630) and mapped them to the mm10 reference genome using 
Bowtie2. In terms of the human reference, the cell by bin (5kb) matrices were downloaded from 
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4 lung samples [33] (GEO accession number: GSE165659) and binarized prior to cell type 
prediction. To ensure that the same features were measured in the reference and query datasets, 
we summarized the reads from txci-ATAC-seq to either the peaks identified from the pseudo-bulk 
sci-ATAC-seq data (Mouse) or 5 kb genomic windows (human) for each query cell and only 
retained the features that were detected in at least 50 (mouse) or 15 (human) cells in both 
datasets. The label transfer was performed using Seurat “FindTransferAnchors” function with 
reference.reduction = "lsi" and reduction = "lsiproject" followed by “MapQuery” function with 
reference.reduction = “lsi”. 
 
The final cell types were determined by applying a majority vote strategy to each cluster. For 
undetermined clusters or clusters with inconsistent labels between the RNA-seq and ATAC-seq 
reference-based predictions, the cell types were determined by screening the high activity genes 
for each cluster (identified using the Seurat “FindMarkers” function) for activity patterns consistent 
with gene expression either characterized in the scRNA-seq reference or (for mouse) collected in 
UCSC Tabula Muris [94,95]. The color palette used for cell types in the UMAPs was selected from 
colors available in the ArchR package [96]. 
 
Identification of differential peaks 
An edgeR-based pseudo-bulk method was used to identify differential peaks between WT and 
CC16-/- mouse lungs for each cell type. To do so, we aggregated the reads for all cells from the 
same replicate in a cluster-wise manner, which resulted in 3 biological replicates for each 
genotype per cell type. The lowly accessible peaks in each differential test were filtered out using 
the “filterByExpr” function with default parameters followed by calculating normalization factors 
with “calcNormFactors()”. Then, we estimated dispersions using “estimateDisp()” with a design 
matrix and “robust = TRUE” and performed hypothesis testing using the quasi-likelihood F-test. 
The Benjamini and Hochberg (BH) method [97] was used to control the false discovery rate (FDR). 
 
Variant calling and filtering 
The variant calling was performed jointly across all replicates from the same genotype using 
BCFtools with “bcftools mpileup” followed by “bcftools call” command. Only the SNVs that met the 
following criteria were used for downstream analyses: a Phred-scaled quality score (QUAL) of at 
least 20, a sum of read depth (DP) across all three replicates of at least 10, and the same 
genotype in at least two of three replicates. 
 
Motif analysis 
The motif position frequency matrices obtained from the JASPAR database (version 2020) [98] 
were used for all motif analyses. For motif enrichment analysis, we applied the Signac “FindMotifs” 
function to all differentially accessible peaks per cell type to identify the enriched motifs using a 
GC-content-matched set of peaks created from the accessible peaks as a background. The 
multiple testing correction was performed with the BH procedure [97].  
 
To identify the SNV-driven gains and losses in motif matching, we first generated alternative DNA 
sequences over the differentially accessible peaks from SNV hotspots (mm10 chr8:68,000,000-
93,000,000 and mm10 chr19:16,500,000-26,500,000) for WT and CC16-/- samples by replacing 
the reference bases at the variation sites with the hotspot SNVs identified in each genotype using 
GATK “FastaAlternateReferenceMaker” tool. Then, we matched the motifs against the alternative 
DNA sequences using the MOODS package with a p-value cutoff of 0.0001. To identify functional 
motifs capable of accounting for the chromatin accessibility changes, we tested for associations 
between the log2(fold-change) of differentially accessible peaks and the gain or loss of motifs in 
CC16-/- background using the student's t-test and controlling for multiple testing with the BH 
method [97]. When counting differences in accessibility that might be explained by specific motif-
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disrupting SNVs, we only considered the instances that exhibit a coherent change in chromatin 
accessibility with the overall motif effect to be explanatory (i.e., depending on whether gained/lost 
motifs are positively or negatively associated with peak accessibility, each of the potential 
explanatory instances for that motif also needs to display concordant increases or decreases in 
accessibility to be counted as explanatory). 
 
Functional analysis 
The KEGG pathways enrichment analysis was performed by applying rGREAT on all differential 
peaks identified for each cell type using both binomial and hypergeometric tests. To control both 
tests, we used a previously implemented two-threshold approach [99] to define the significant 
pathways by requiring a stringent 10% FDR threshold for at least one test, but allowing for a more 
relaxed threshold (unadjusted p-value of 0.05) for the other test. The gene sets of KEGG 
pathways were retrieved using the KEGGREST package. 
 
Abbreviations: 
APB: ATAC-PBS Buffer 
ATAC-seq: Assay for Transposase Accessible Chromatin using Sequencing 
AUC: Area Under Curve 
BH: Benjamini and Hochberg 
BSA: Bovine Serum Albumin 
CC16: Club Cell Secretory protein 
CCANs: Cis-Coaccessibility Networks 
COPD: Chronic Obstructive Pulmonary Disease 
ES: Embryonic Stem 
ETS-domain: E26 Transformation Specific-domain 
FDR: False Discovery Rate 
FRiDHS: Fraction of Reads in DNase I Hypersensitive Sites 
FRiP: Fraction of Reads in Peaks 
GEM: Gel Bead-In EMulsions 
iTSM: pre-indexed Tn5 transposase per well 
LHX2: LIM Homeobox 2 
LHX6: LIM Homeobox 6 
LSI: latent Semantic Indexing 
NFB: Nuclei-Freezing Buffer 
NFI: nuclear factor I 
PBSB: PBS containing 0.04% BSA 
PMI: Post-Mortem Interim 
RSB: ATAC Resuspension Buffer 
scATAC-seq: single-cell ATAC-seq 
sci: single-cell combinatorial indexing 
scRNA-seq: single-cell RNA-seq 
SNP: Single Nucleotide Polymorphism 
snRNA-seq: single-nucleus RNA-seq 
SNV: Single Nucleotide Variants 
SVD: Singular Value Decomposition 
TF: Transcription Factors 
TF-IDF: Term-Frequency Inverse-Document-Frequency 
TMG: Tagmentation Wash Buffer 
TSS: Transcription Start Site 
txci-ATAC-seq: TenX(10X)-Compatible Combinatorial Indexing ATAC-seq 
UMAP: Uniform Manifold Approximation and Projection 
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WT: Wild Type 
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Supplementary Figures 

 

Supplementary Figure 1. Collision rates of standard 10X protocol coupled with combinatorial 
indexing. a) Well assignment for each cell source and barnyard design. The wells with a mixture of species 
are shown as half-circles of two different colors corresponding to each species. The wells where 
tagmentation was done with the 10X ATAC buffer are highlighted by orange outer circles. b) The scatter 
plots showing the number of reads mapped to either the human or mouse genome for each barnyard design. 
The plots on the left-hand side include all cell barcodes, and the plots on the right-hand side only visualize 
the 10X bead barcodes associated with a single Tn5 barcode. The percentage represents the estimated 
collision rate for each plot. The x- and y-axes are capped at 3x104 reads, and the cells with more than 3x104 

reads are denoted by triangles. c) the theoretical model of the process of Tn5 barcode swapping. d), the 
proposed strategies to block barcode swapping. 
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Supplementary Figure 2. Exponential amplification during GEM PCR enables deconvolution of cells 
in the same droplet. a) Well assignments for the experiment testing the performance of each blocking 
strategy. Each blocking condition was allocated to ⅔ of the plate and a total of two 96-well plates were used 
to test all three conditions. The column ID assigned to each blocking condition is shown under the 96-well 
plate. b) “Knee” plots showing the separation between cell barcodes (orange line) and background 
barcodes (blue line) in either cell lines or lung tissues using different blocking methods. The dashed line 
indicates the threshold (1000 reads) used to identify cell barcodes. c) Comparison of estimated collision 
rate using different blocking strategies for each barnyard condition. The collision rate is not calculated for 
the pseudo-barnyard supplemented with SBS primer (positions labeled with NA) due to either no collision 
cells (cell line) or no human cells (pure mouse wells) observed, although one cell technically met the 
collision threshold (<90% of reads mapping to the major species) in the pure mouse wells (pseudo-
barnyard). d-e) QC metrics of each blocking approach across different cell sources. The (d) FRiDHS and 
(e) estimated complexity (on a log10 scale) in each cell barcode are plotted for each strategy. The color 
legend is consistent with panel (c). f) The fragment size distribution of each blocking condition. 
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Supplementary Figure 3. Evaluating the performance of txci-ATAC-seq on brain samples. a) Two-
dimensional density map of cells passing initial read filters for percent unique reads (library saturation) and 
unique read counts. b) Mixed-species tagmentation wells were subject to alignment in both human and 
mouse reference genomes. c) Number of cells per droplet quantified on a histogram, showing a majority of 
droplets still contain only a single cell. d) Quantification of cells in 25,000 and 75,000 library pools. 
Conditions include doublets uncovered either through cross-species alignment (“mixed doublet”) or through 
a reduced dimension detection strategy (see Methods). Other cells passing these filters are colored by 
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identified species and tagmentation conditions. e,f) Hierarchically clustered heatmap of cell identification in 
the human cortex (e) and mouse whole brain (f) samples using gene activity scores for label transfer. The 
Brain Map M1 Cortex RNA dataset was used to annotate human cells and the Brain Map mouse cortex and 
hippocampus RNA dataset and mouse cerebellum (GSE165371) were used to annotate mouse cells. 
Values reflect the percentage of cells per cluster with each label as its maximum predicted value. g) Density 
plots of fragment length for fragments ranging from 1-1000 bp per technology. h) Grouped boxplots of 
projected unique read count per sequencing effort for each cell by technology. 

 

 

Supplementary Figure 4. The sequencing depth of txci-ATAC-seq libraries loading 100,000 or 
200,000 nuclei. a,b) Histograms showing the distribution of unique read counts (on a log10 scale) assigned 
to each possible barcode combination at the 100,000 (a) and 200,000 (b) nuclei loading inputs. The gray 
dashed line indicates the threshold (1000 reads) to identify a barcode as a cell. Barcode combinations with 
fewer than 100 total reads are not plotted. c,d) Contour plots showing the number of deduplicated reads 
against the estimated percent unique reads observed for each barcode combination at the 100,000 (c) and 
200,000 (d) nuclei inputs. The estimated percent of unique reads observed was calculated by dividing the 
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number of observed unique reads by the estimated complexity for each barcode combination. The color 
legend shows the normalized barcode density (as calculated in ggplot2) scaled from high (yellow) to low 
(blue). The gray dashed line indicates the threshold to call a cell barcode. The barcode combinations with 
fewer than 100 total reads are not shown on the plot. 

 

a 

Supplementary Figure 5. Cell type annotation of mouse lung samples with label transfer. a) UMAP 
of sc/snRNA-seq reference in which one scRNA-seq sample was integrated with two replicate samples of 
snRNA-seq, all from the same study. b) UMAP of txci-ATAC-seq data annotated with the labels predicted 
by the integrated scRNA-seq reference. c) UMAP of the sci-ATAC-seq reference. d) UMAP of txci-ATAC-
seq data annotated with the labels predicted by the sci-ATAC-seq reference. The color legend for all panels 
is shown on the right. The legend labels with the assay enclosed in parentheses (and connected to a color 
with a line) denote that these cell-type labels are only observed in one reference (“RNA” for the data shown 
in (a), and “ATAC” for the data shown in (b)) and share a color with a cell type that is only observed in the 
other reference. Abbreviations: aBC, activated B cells; aEC, arterial endothelial cells; AM, alveolar 
macrophages; AT1, alveolar type 1 epithelial cells; AT2, alveolar type 2 epithelial cells; BC, B cells; cEC, 
capillary endothelial cells; Cil, ciliated cells; cMono, classical monocytes; Col13+FB, collagen type XIII α 1 
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chain positive fibroblasts; Col14+FB, collagen type XIV α 1 chain positive fibroblasts; DC, dendritic cells; 
Div, dividing cells; EC, endothelial cells; GB, germinal B cells; Gob, goblet cells; HSPC, Hematopoietic 
progenitors; IM, interstitial macrophages; LEC, lymphatic endothelial cells; Mes, mesothelial cells; MyoFB, 
myofibroblasts; ncMono, nonclassical monocytes; NK, natural killer cells; pDC, plasmacytoid dendritic cells; 
Peri, pericytes; PMN, neutrophils; SMC, smooth muscle cells; TC, T cells; Treg, regulatory T cells; vEC, 
venous endothelial cells.  

 

 

Supplementary Figure 6. Cell type annotation of mouse liver samples with label transfer. a) UMAP 
of sc/snRNA-seq reference integrating the snRNA-seq with scRNA-seq using different digestion protocols. 
b) UMAP of txci-ATAC-seq data annotated with the labels predicted by scRNA-seq reference. c) UMAP of 
sci-ATAC-seq reference. d) UMAP of txci-ATAC-seq data annotated with the labels predicted by sci-ATAC-
seq reference. The color legend for all panels is shown on the right. The legend labels with the assay 
enclosed in parentheses (and connected to a color with a line) denote that these cell-type labels are only 
observed in one reference (“RNA” for the data shown in (a), and “ATAC” for the data shown in (b)) and 
share a color with a cell type that is only observed in the other reference. Abbreviations: Baso, basophils; 
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BC, B cells; Cho, cholangiocytes; DC, conventional dendritic cells; EC, endothelial cells; Hep, hepatocytes; 
HPC, hepatic progenitor cells; ILC1, type 1 innate lymphoid cells; KC, Kupffer cells; migDC, migratory DCs; 
Mono, monocytes and monocyte-derived cells; Neu, neutrophils; NK, NK cells; pDC, plasmacytoid dendritic 
cells; TC, T cells. 

 

 

Supplementary Figure 7. Cell type annotation of human lung sample with label transfer. a) UMAP of 
scRNA-seq reference integrating the two scRNA-seq datasets. b) UMAP of txci-ATAC-seq data annotated 
with the labels predicted by scRNA-seq reference. c) UMAP of sci-ATAC-seq reference. d) UMAP of txci-
ATAC-seq data annotated with the labels predicted by sci-ATAC-seq reference. The color legend for all 
panels is shown on the right. The legend labels with the assay enclosed in parentheses (and connected to 
a color with a line) denote that these cell-type labels share a color with a cell type that is observed in the 
alternative reference (“RNA” for the data shown in (a), and “ATAC” for the data shown in (b)). Note: the 
fibroblasts (FB) in ATAC reference share the color with alveolar fibroblasts (AlvFB) rather than FB in RNA 
reference; The macrophages (MP) in RNA reference share the color with general/alveolar macrophages 
(MP/AM) rather than MP in ATAC reference. Abbreviations: AdvFB, adventitial fibroblasts; aEC, arterial 
endothelial cells; AirSMC, airway smooth muscle cells; AlvFB, alveolar fibroblasts; AT1, alveolar type 1 
epithelial cells; AT2, alveolar type 2 epithelial cells; Baso/Mast1, basophil/mast cell 1 cells; Baso/Mast2, 
basophil/mast cell 2 cells; BC, B cells; Bro1, bronchial vessel 1 cells; Bro2, bronchial vessel 2 cells; CapA, 
capillary aerocytes; CapI1, capillary intermediate 1 cells; CapI2, capillary intermediate 2 cells; CD4+M/E, 
CD4+ memory/effector T cells; CD4+Na, CD4+ naive T cells; CD4+TC, CD4+ T cells; CD8+M/E, CD8+ 
memory/effector T cells; CD8+Na, CD8+ naive T cells; CD8+TC, CD8+ T cells; cEC, capillary endothelial 
cells; Cil, ciliated cells; cMono, classical monocytes; dBasal, differentiating basal cells; DC, conventional 
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dendritic cells; dCil, differentiating ciliated cells; EC, endothelial cells; FB, fibroblasts; FibM, fibromyocytes; 
Gob, goblet cells; iAT2, alveolar type 2/immune; iMono, intermediate monocytes; LEC, lymphatic 
endothelial cells; mDC1, myeloid dendritic type 1 cells; mDC2, myeloid dendritic type 2 cells; memBC, 
memory B cells; Mes, mesothelial cells; Mono, monocytes; MP, macrophages; MP/AM, macrophages 
(general/alveolar); Muc, mucous cells; MUC5B, MUC5B+ secretory cells; MyoFB, myofibroblasts; ncMono, 
nonclassical monocytes; NK, natural killer cells; NKT, natural killer T cells; PC, plasma cells; pDC, 
plasmacytoid dendritic cells; pEC, proliferating epithelial cells; Peri, pericytes; pMP, proliferating 
macrophages; pNK/TC, proliferating NK/T cells; pTC, proliferating T cells; pxBasal, proximal basal cells; 
pxCil, proximal ciliated cells; sAT2, signaling AT2 cells; SCGB3A2, SCGB3A2+ secretory cells; 
SCGB(3A2+1A1), SCGB3A2+ and SCGB1A1+ secretory cells; SMC, smooth muscle cells; tAT2, 
transitional AT2 cells; TC, T cells; TC+Na, naive T cells; VasSMC, vascular smooth muscle cells; vEC, 
venous endothelial cells. 

 

 

Supplementary Figure 8. Comparison of prediction accuracy between txci-ATAC-seq and sci-ATAC-
seq in mouse lung cells. The txci-ATAC-seq dataset was subsampled to have the same number of cells 
as that in sci-ATAC-seq data 1000 times. The prediction score (y-axis) calculated by Seurat label transfer 
using an RNA-seq reference was plotted against the cell ranks (x-axis) based on the prediction score. The 
red line shows the mean score of 1000 simulations in txci-ATAC-seq. The shaded band is the pointwise 
95% confidence interval based on subsampling (from the 2.5% to 97.5% quantile). The black line shows 
the prediction score in sci-ATAC-seq data. 
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Supplementary Figure 9. Characterization of cellular heterogeneity in human lung tissue. a) UMAP 
visualization of human lung nuclei (n = 15,799) identifying 9 distinct cell types. b) UMAP of human lung 
nuclei visualized by the mouse samples with which they were mixed. c-d) QC metrics of human lung nuclei 
mixed with different mouse samples. The color legend is consistent with panel (b). The (c) FRiDHS, (d) 
TSS enrichment score, and (e) estimated complexity (on a log10 scale) are plotted for each human lung 
nuclei sample profiled across different barnyard settings. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.11.540245doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540245
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 
 

 

Supplementary Figure 10. txci-ATAC-seq are robust to batch effects. a,b) UMAP visualization of 
mouse lung samples showing the batch variance introduced either by (a) mouse replicate or (b) nuclei input 
on the 10X. c,d) UMAP visualization of mouse liver samples showing the batch variance introduced either 
by (c) mouse replicate or (d) nuclei input. Colors for replicates and inputs are consistent in both (a,c) and 
(b,d). Hepatocytes are indicated by “Hep” in (c). 
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Supplementary Figure 11. Fast-txci-ATAC-seq improves multiplexing capability without sacrificing 
data quality. a) Well assignment for the faster and standard versions of txci-ATAC-seq multiplexing WT 
and CC16 knockout lungs with (3 replicate mice for each genotype). b) The number of nuclei passing quality 
filters for each protocol at different nuclei loading inputs. c-e) The comparison of quality metrics per cell 
between the two protocols across 6 mouse lung samples. The Fast-txci-ATAC-seq provided a comparable 
FRiDHS (c) and TSS enrichment score (d) but slightly lower estimated complexity (e) than the standard 
protocol. f, g) UMAP visualization of nuclei by co-embedding the standard (n=154,103) and faster (n=65,799) 
assays. The nuclei are colored either by predicted cell type (f) or ATAC-seq protocol (g). 
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Supplementary Figure 12. Chromatin accessibility changes induced by CC16-/- deficiency in mouse 
lung. a) Aggregated chromatin accessibility at the Scgb1a1 promoter region across cell types. The 
aggregated accessibility signal for each cluster was normalized by a scaling factor computed as the number 
of cells in the cluster multiplied by the mean sequencing depth for the cells in that cluster. b) Differentially 
accessible peaks between CC16-/- and WT samples across club, AT1, and AT2 cells generated by 
combining the 100,000 and 200,000 nuclei loading inputs. The -log10-transformed adjusted p-value for each 
peak was plotted against the log2(fold-change). The color labels the peaks that are less accessible (blue), 
more accessible (red), and unchanged (gray) in knockout samples. The number of differentially accessible 
peaks identified in each cell type is displayed within the plot. c) The number of differentially accessible 
peaks per cell type calculated using the 100,000 input alone. With 100,000 nuclei as input, many fewer 
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peaks were identified as differentially accessible. d) UMAP visualization of nuclei showing the gene activity 
score of Scgb1a1 in WT (left) and CC16-/- (right) lungs. 

 

 

Supplementary Figure 13. Functional analysis and regulatory variant identification in CC16 deficient 
mouse. a,b) Top 10 motifs significantly enriched in less accessible peaks identified in CC16-/- club cells (a) 
and more accessible peaks identified in CC16-/- AT1 cells (b). The dot color encodes the -log10-transformed 
adjusted p-value, while the size of the dot encodes the percentage of observed peaks enriched in each 
motif. The x-axis displays the fold enrichment on a log2 scale. c) KEGG pathways of interest enriched in 
each cell type. The colors show the -log10-transformed adjusted p-value derived from the binomial (blue to 
green) and hypergeometric (black to red) tests. The dot size denotes the number of observed regions 
(binomial) or genes (hypergeometric) in each test. The significant pathways passing the two-threshold cutoff 
are highlighted by gray boxes. d) Enrichment of differential peaks in each chromosome across cell types. 
The enrichment was calculated by dividing the fraction of differential peaks in each chromosome by the 
fraction of total peaks identified in each chromosome. e) SNVs identified in WT and knockout samples 
across chromosomes meeting the quality criteria. The y-axis represents the phred-scaled quality score. f) 
Proportions of SNPs mapped to each functional genomic category (exon, intron, overlapping regions 
between exon and intron, and intergenic regions) in WT and knockout samples. 
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Supplementary Figure 14. SNP-driven differences in motif usage alter chromatin accessibility. a,b) 
TFs that are associated with increased (a) or decreased (b) chromatin accessibility when the peaks gain 
the TF motifs. The y-axis shows the log2(fold-change) in chromatin accessibility for the differential peaks 
identified in the SNV hotspots between CC16-/- and WT samples. A positive log2(fold-change) means the 
peaks are more accessible in the knockout samples. The x-axis indicates the motif hits that are gained or 
lost in the peaks carrying the CC16-/- SNVs. The instances (red) that exhibit a coherent change in chromatin 
accessibility with the overall motif effect were considered to explain the observed differences in chromatin 
accessibility between two genotypes (i.e., for opening TF motifs shown in panel a, the gained instances 
with a positive log2(fold-change) and the lost instances with a negative log2(fold-change) were considered 
explanatory; For closing TF motifs shown in panel b, the gained instances with a negative log2(fold-change) 
and the lost instances with a positive log2(fold-change) were considered explanatory). 
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Supplementary Figure 15. Singlet yields at different numbers of input nuclei. Plot showing the number 
of nuclei recovered (y-axis) in each experiment stratified by the intended number of input nuclei (x-axis). 
The color denotes the datasets used to compute the singlets at each nuclei loading input. The maximum 
yield was obtained with 100,000 nuclei as input. 

 

 

Supplementary Figure 16. Examination of efficiency for in-droplet and sample index PCR. The total 
unique reads on a log10 scale were plotted against the proportion of in-droplet reads for each barcode. The 
barcodes with both in-droplet and sample indexes were colored in red. The green and blue dots indicate 
the barcodes only getting the in-droplet index and the barcodes only getting the sample index, respectively. 
The gray dashed line indicates the threshold to call a cell barcode. 
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Supplementary Tables 
 
Supplementary Table 1. Differentially accessible peaks identified between CC16-/- and WT samples for 
each cell type. This table is provided as a separate file. 
Column 1: Cell type in which the test was performed. 
Column 2: Peak region. 
Columns 3-5: Log2(fold-change), raw p-value, and FDR-adjusted p-value, respectively. 
Columns 6-11: Log2-transformed counts per million (CPM) for each sample, computed using the normalized 
library sizes. The CPM values for WT samples are shown in columns 6-8, and the CPM values for CC16-/- 
samples are shown in columns 9-11. 
 
Supplementary Table 2. Enriched motifs in more accessible and less accessible peaks in response to 
CC16 deficiency for each cell type. This table is provided as a separate file. 
Column 1: Cell type in which the test was performed. 
Column 2: Changing direction of differentially accessible peaks that were used to perform the test. 
Column 3: Motif ID. 
Column 4: Motif name. 
Column 5: The number of differential peaks that contain the motif identified. 
Column 6: The number of background peaks that contain the motif identified. 
Column 7: The percentage of differential peaks that contain the motif identified. 
Column 8: The percentage of background peaks that contain the motif identified. 
Column 9: The ratio of the observed frequency of the motif in differential peaks to the expected frequency 
calculated by the background peaks. 
Column 10: Raw p-value. 
Column 11: FDR-adjusted p-value. 
 
Supplementary Table 3. KEGG pathways enriched in differential peaks between CC16-/- and WT samples 
for each cell type. This table is provided as a separate file. 
Column 1: Cell type in which the test was performed. 
Column 2: KEGG pathway ID. 
Column 3: Description of KEGG pathway. 
Column 4: Fraction of non-gap base pairs in the genome that lie in the regulatory domain of a gene with 
the annotation. 
Column 5: Actual number of differential peaks with the annotation. 
Column 6: Fold enrichment of number of differential peaks with the annotation. 
Column 7: Uncorrected p-value from the binomial test over genomic regions. 
Column 8: FDR-adjusted p-value for the binomial test. 
Column 9: Mean absolute distance of input regions to TSS of genes in a gene set. 
Column 10: Actual number of genes linking to a differential peak with the annotation. 
Column 11: Number of genes in the genome with the annotation. 
Column 12: Fold enrichment of number of genes linking to a differential peak with the annotation. 
Column 13: Uncorrected p-value from the hypergeometric test over genes. 
Column 14: FDR-adjusted p-value for the hypergeometric test. 
 

Linker oligo Sequence 5’ -> 3’ 

Tn5ME-A TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 

Tn5ME-B CGTGTGCTCTTCCGATCTNNNNNNNNAGATGTGTATAAGA
GACAG 

Tn5MErev [phos]CTGTCTCTTATACACATCT 

Supplementary Table 4. Sequences of Tn5 linker oligos. The ‘N’ bases shown in the Tn5ME-B sequence 
represent the Tn5 barcodes. 
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Supplementary Table 5. Tn5 barcode sequences. Column 1 shows the well ID for each well on the iTSM 
plate. Column 2 shows the sequences of Tn5 barcodes assigned to each well. Column 3 is the 12 numerical 
labels for the plate columns. Column 4 is the 8 alphabetical labels for the plate rows. This table is provided 
as a separate file. 
 
Supplementary Table 6. Barnyard experiment design. Column 1 shows the figure number for each 
barnyard experiment. Column 2 indicates the barnyard type (True vs. Pseudo). Column 3 shows the cell 
source of human samples. Column 4 shows the number of human nuclei loaded to each well. Column 5 
shows the cell source of mouse samples. Column 6 shows the number of mouse nuclei loaded to each well. 
Column 7 indicates the nuclei preparation method (Fresh vs Frozen). Column 8 is the well ID on the iTSM 
plate (see Table S4) assigned to each barnyard experiment. This table is provided as a separate file. 
 
i7 Index ID Oligo Sequence 5’ -> 3’ Barcode Library 

P7.S701 CAAGCAGAAGACGGCA
TACGAGATTCGCCTTAG
TGACTGGAGTTCAGACG
TGTGCTCTTCCGATCT 

TAAGGCGA WT and CC16 knockout mouse lungs at the 
100,000 nuclei input using the standard txci-
ATAC-seq protocol 

P7.S702 CAAGCAGAAGACGGCA
TACGAGATCTAGTACGG
TGACTGGAGTTCAGACG
TGTGCTCTTCCGATCT 

CGTACTAG 1) Barnyard experiment with standard 10X 
protocol; 
2) WT and CC16 knockout mouse lungs at the 
200,000 nuclei input using the standard txci-
ATAC-seq protocol 

P7.S703 CAAGCAGAAGACGGCA
TACGAGATTTCTGCCTG
TGACTGGAGTTCAGACG
TGTGCTCTTCCGATCT 

AGGCAGAA 100,000 nuclei multiplexing mouse liver, 
mouse lung, and human lung samples 

P7.S704 CAAGCAGAAGACGGCA
TACGAGATGCTCAGGAG
TGACTGGAGTTCAGACG
TGTGCTCTTCCGATCT 

TCCTGAGC 1) Blocking barcode-swapping with SBS 
primer; 
2) 200,000 nuclei multiplexing mouse liver, 
mouse lung, and human lung samples 

P7.S705 CAAGCAGAAGACGGCA
TACGAGATAGGAGTCCG
TGACTGGAGTTCAGACG
TGTGCTCTTCCGATCT 

GGACTCCT 1) Blocking barcode-swapping with Decoy 
DNA; 
2) WT and CC16 knockout mouse lungs at the 
50,000 nuclei input using the Fast-txci-ATAC-
seq protocol 

P7.S706 CAAGCAGAAGACGGCA
TACGAGATCATGCCTAG
TGACTGGAGTTCAGACG
TGTGCTCTTCCGATCT 

TAGGCATG 1) Blocking barcode-swapping with Blocking 
oligo; 
2) WT and CC16 knockout mouse lungs at the 
100,000 nuclei input using the Fast-txci-
ATAC-seq protocol 

Supplementary Table 7. TruSeq i7 index sequences used for each library in Sample Index PCR. Column 
1 shows the index ID. Column 2 shows the oligo sequence. Column 3 indicates the barcode sequence 
assigned to each library shown in Column 4. 
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Type Oligo Sequence 5’ -> 3’ 

Short SBS CGTGTGCTCTTCCGATCT 

Full SBS CAAGCAGAAGACGGCATACGAGATtcgccttaGTGACTGGAGTTCAGACGTGT
GCTCTTCCGATCT 

Decoy DNA strand A GGTAGAAG/ideoxyU//ideoxyU/AGTAGAATGAAG/ideoxyU//ideoxyU/AGAAGA/i
deoxyU//ideoxyU/GTAA/3InvdT/ 

Decoy DNA strand B TTACAATC/ideoxyU//ideoxyU/CTAACTTCA/ideoxyU//ideoxyU/CTACTAAC/ide
oxyU//ideoxyU/CTACC/3InvdT/ 

Blocking oligo CTGTCTCTTATACACATCTCATCATAGAGATCGGAAGAGCACACG/3InvdT/ 

Supplementary Table 8. DNA oligonucleotides used to block barcode swapping. Each row provides the 
sequence of an oligo used in the barcode swapping blocking tests. The lowercase letters shown in the full 
SBS primer represent the barcode sequence. For Decoy DNA, the strands A and B were annealed to form 
a duplex DNA. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.11.540245doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540245
http://creativecommons.org/licenses/by-nc-nd/4.0/

