

1 **Serialized On-grid Lift-In Sectioning for Tomography (SOLIST)**

2

3 **Authors:** Nguyen Ho Thuy Dung^{*1}, Gaia Perone^{*1}, Roberta Vazzana¹, Flaminia Kaluthantrige
4 Don¹, Malan Silva¹, Simona Sorrentino¹, Paolo Swuec¹, Frederic Leroux², Nereo Kalebic¹,
5 Francesca Coscia¹, and Philipp S. Erdmann^{#1}.

6

7 * Equal contribution

8 # Correspondence

9 ¹ Human Technopole, Milan, Italy

10 ² Leica Microsystems

11

12 **Abstract**

13

14 Cryo-focused ion beam milling has enabled groundbreaking structural discoveries in native cells.
15 Progress toward medically relevant applications, however, has been slow. We here present an
16 adaptation of the cryo-lift out procedure for Serialized On-grid Lift-In Sectioning for Tomography
17 (SOLIST), which increases throughput, reduces ice contamination, and enhances sample stability.
18 With these improvements, new specimens, ranging from high-pressure frozen reconstituted LLPS
19 droplets to human forebrain organoids, are accessible to cryo-electron tomography.

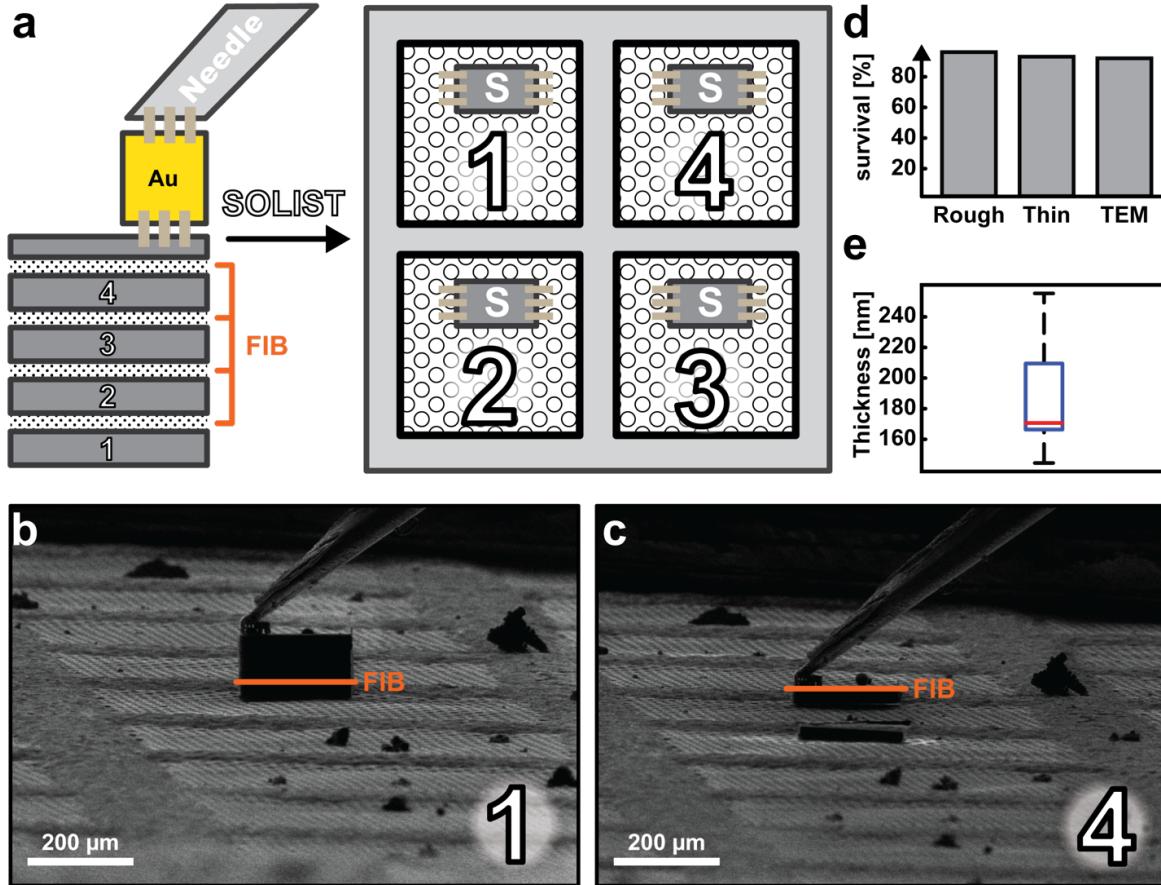
20

21 **Main Text**

22

23 Compared to mechanical sectioning, gallium- and plasma-based focused ion beam (FIB) milling
24 yield virtually artifact-free views of frozen-hydrated biological material. Lamellas, which contain
25 cellular components of interest, can routinely be produced from plunge-frozen specimens and are
26 thin enough for cryo-electron tomography (cryo-ET) and high-resolution subtomogram averaging
27 (STA). While there is some concern regarding sample damage by FIB milling^{1,2}, *in situ* STA can
28 reveal near atomic-level details of biological processes^{3,4}. To expand this concept of lamella
29 milling to larger samples than single cells, high-pressure freezing (HPF) is required for
30 vitrification⁵. HPF planchettes, however, are not compatible with standard on-grid milling
31 procedures.

32 Cryo lift-out (LO) addresses this need by micromanipulators that operate with sub-micrometer
33 precision to handle small portions of the high-pressure frozen material⁶. Adapted from the material
34 sciences, cryo-LO grants access to biological material which may be too large for conventional
35 lamella milling or the hybrid waffle method. Due to the more widespread availability and improved
36 hardware, development has gained significant momentum over the past years^{7,8}. However, several
37 aspects, including ease of operation, reproducibility, and sub-cellular precision targeting, still need
38 to be improved so cryo-LO can become a routine method in structural biology.

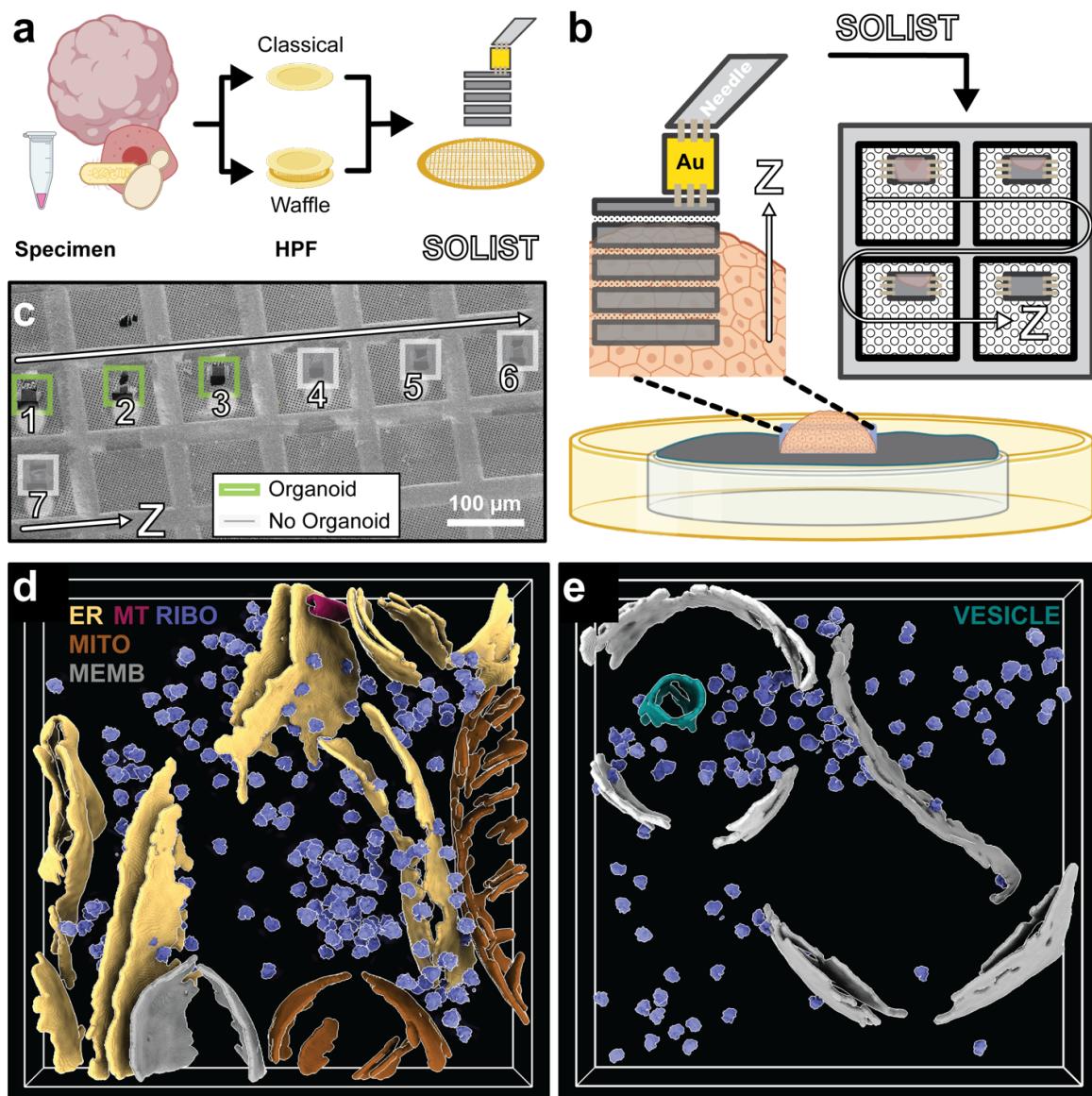

39 Current best practices of the needle-based lift-out use a sacrificial adaptor made from copper
40 (“adaptor chunk”) to attach the sample to the micromanipulator^{9–11}. Although this improves
41 success rates significantly, lift-in (LI), i.e., connecting the initial coarse lamella to the sample
42 holder, requires specialized pin grids (Supporting Fig. 1a-b). While they are frequently used at
43 room temperature, pin grids are problematic under cryo-conditions. First, lamellas are attached
44 only to one side and break easily (Supporting Fig. 1c). Second, due to the lack of support, the drift
45 of tomograms acquired far from the attachment site can be higher than those closer to the pin.
46 While frame motion correction can compensate for sample movement, increasing stability and
47 thereby minimizing drift already during data acquisition is preferable. To address this problem,
48 custom-made slot-in grids, which support lamellas on both sides, have been explored in the past^{7,12}.
49 However, their use is time-consuming and hard to realize with needle-based LO systems. Lastly,
50 ice crystals frequently contaminate pin grid-mounted lamellas, which may be due to their exposed
51 location and the higher electrostatic field strength on the pins (Supporting Fig. 1d). Based on these
52 observations, ideal LI grids should be readily available, compatible with different chunk
53 geometries and sizes, and guarantee sample integrity throughout the workflow.

54 For single particle analysis, grids made entirely from gold have proven helpful for high-resolution
55 datasets¹³. The combination of mechanical stability, the matched expansion coefficient of grid and
56 film, and electrical conductivity, which reduces beam-induced motion, make them ideal sample
57 supports. Many of the same qualities would be desirable for lift-in grids.

58 To explore if holey gold films can also support LO lamellas, we lifted in chunks of 25 μm x 10
59 μm x 3 μm and larger to all-gold grids under shallow angles and fixed the pieces on the film using
60 micro-sutures (Supporting Fig. 2a-e). After clearing small areas in front of the coarse lamellas to
61 prevent uncontrolled ripping of the gold film (Supporting Fig. 2b), we polished the leading edges
62 and coated them with the gas injection system (GIS) to reduce curtaining (Supporting Fig. 2c). In

63 the final step samples were milled analogously to cells on grids, yielding lamellas transparent to
64 transmission electron microscopy (TEM) (Supporting Fig. 2f-i), confirming that commercially
65 available gold grids are stable enough to support LI applications.

66 Since the rate-limiting step in cryo-LO is preparing the lift-out site, it is wasteful only to cut a
67 single lamella from the material. To overcome this limitation, we devised a method to enhance
68 throughput by dividing the initial sample chunk into sections of 2-4 μm each, which we placed on
69 individual grid squares (Fig. 1a). Each time, a cut of 1-2 μm was made to release the lamella from
70 the remaining lift-out material so that in total each section requires about 4-5 μm of the initial
71 chunk. Using this sequential LI, a 25 μm -tall piece is split into four to six individual lamellas (Fig.
72 1b-c, Supporting Video 1). This Serialized On-grid Lift-In Sectioning for Tomography (SOLIST)
73 significantly improves sample use, as several lamellas are obtained from the same cell, small
74 organism, organoid, or tissue biopsy. SOLIST effectively multiplies the number of LO lamellas
75 produced in each session (Supporting Table 1, Supporting Video 2). A similar concept that relies
76 on lifting in chunks on bare grids without film support was published in parallel to our procedure¹⁴.



77
78 **Figure 1. Serialized On-grid Lift-In Sectioning for Tomography (SOLIST).** a, Schematic representation
79 of the SOLIST procedure. b-c, FIB view images of individual SOLIST slices attached to the grid. d, Success
80 rates of SOLIST lamellas milling by step. e, Box plot of SOLIST lamella thickness. Mean \pm SD: 187 \pm 31
81 nm (n = ; whiskers indicate maximum and minimum values, the box top the 75th percentile and the bottom
82 the 25th percentile; red line indicates the median).

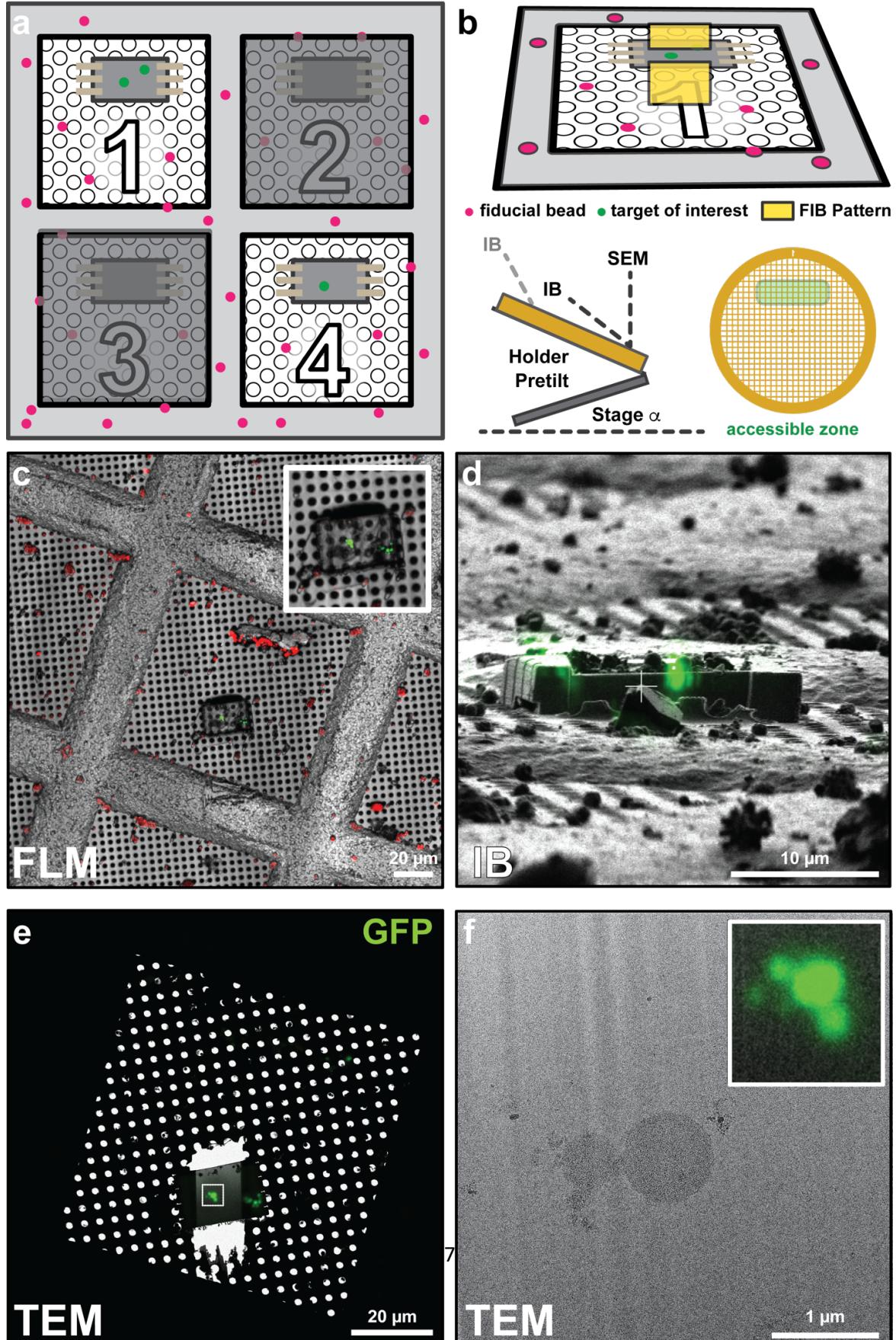
83
84 Lamellas prepared with SOLIST are highly stable during storage, transfer to the TEM, and can be
85 subjected to several loading/unloading cycles, for instance, for cryo-CLEM applications (Fig. 1d).
86 Their thickness is comparable to regular on-grid lamellas (Fig. 1e) and contamination with ice
87 crystals is considerably reduced compared to lift-out on pin grids (Supporting Fig. 2f-i).
88 To probe the generalizability of our method, we tested two representative yet vastly different
89 scenarios: 1) *in vitro* samples of reconstituted liquid-liquid phase separated (LLPS) chromatin
90 droplets and 2) forebrain organoids, which are particularly interesting as medically relevant model
91 systems to study various neurodevelopmental and neuropsychiatric diseases¹⁵⁻¹⁹.

92 In general, SOLIST can be applied to any sample amenable to HPF and does not distinguish
93 between planchettes and waffles for the LO chunk preparation (Fig. 2a, Supporting Fig. 3). While
94 a part of the lift-out material is required for attachment and support on the grid (~ 4-5 μ m on either
95 side), sufficiently large lamellas (15-25 μ m x 20 μ m) can regularly be produced. Furthermore,
96 since they are highly stable and their geometry is well-defined, it is straightforward to automate
97 parts or the entire milling process using available software packages^{20,21}.

98

99 **Figure 2. SOLIST enables investigations in complex samples, including developing forebrain**
100 **organoids. a**, Generalized workflow from sample to SOLIST. **b**, A chunk of HPF material is translated into

101 a series of LO slices on a gold grid. The lack of accuracy in z-targeting is compensated by the horizontal
102 series. **c**, Within the series of lamellas, organoid material is found in the deeper (i.e. earlier) layers. **d-e**,
103 Segmentations of representative brain organoid tomograms from adjacent SOLIST sections. ER:
104 endoplasmic reticulum; MITO: mitochondria; MEMB: membrane; MT: microtubule; RIBO: ribosome. (See
105 Supporting Video 3).


106

107 For high-content samples (e.g. cell suspensions), LO sites can be prepared without targeting.
108 However, an additional correlation step is required to identify the target region for organoids.
109 To this end, reflected light and fluorescence overviews are acquired directly on the high-pressure
110 frozen sample. With this information, areas of interest are localized in x and y, before LO sites are
111 prepared using the focused ion beam. As an alternative to site preparation by milling, planchettes
112 may be trimmed (planed) on a cryo-ultramicrotome to reduce the overall FIB time (Supporting
113 Fig. 4).

114 Using the sequential lift-out approach, deeply submerged biological structures can be excavated
115 from the planchette, compensating for the lack of targeting in z (Fig. 2b-c). In general, SOLIST
116 yields relatively large lamellas. Hence, high-throughput approaches for cryo-ET data acquisition
117 may be used to optimize microscope use^{22,23}. Tomograms of our lamellas produced high-resolution
118 snapshots of the interior of forebrain organoids and their molecular contents (Fig. 2d-e, Supporting
119 Videos 3-4), while previous work was limited to imaging only the periphery, thin enough for direct
120 investigation by transmission electron microscopy²⁴.

121 Considering the stability of coarse lamellas on gold grids, we reasoned that targeting in HPF
122 samples could further be refined by 3D correlation. SOLIST reduces several problems commonly
123 associated with correlative focused ion beam milling: 1) lift-in on clean grids reduces ice
124 contamination which can interfere with detecting fiducial beads; 2) the well-defined geometry of
125 the lamellas, and especially their initial thinning to 3-4 μm , reduces fluorescence imaging artifacts
126 that arise from the refractive index mismatch between the chunk and its surrounding; 3) since HPF
127 samples can be prepared with higher densities of target structures, the chance of finding the area
128 of interest in the final lamella is significantly increased.

129 Based on this idea, we devised a two-step procedure for 3D correlation on HPF samples containing
130 LLPS droplets. First, initial lamellas are prepared as described above and placed on gold grids
131 coated with fiducial beads for correlation (Fig. 3a).

133 **Figure 3. SOLIST allows 3D-correlative targeting in HPF samples.** **a**, Initial SOLIST lamellas are
134 screened for the target of interest (square 1 and 4). **b**, Concept of 3D correlation on a coarse lamella
135 showing fiducial beads and overlay with the fluorescence data rotated to match the view of the ion beam
136 (IB). Due to the shallow milling angle, only an array of 4x12 squares on the gold grid is accessible for lift-in
137 and correlation. **c**, Scanning electron microscope (SEM) view overlaid with FLM data (green: LLPS droplets,
138 red: fiducial beads) before milling. **d**, 3D CLEM on the coarse SOLIST chunk using the registration of the
139 fiducial beads to transform the FLM data. **e**, TEM overview overlaid with a fluorescence image. **f**, Zoomed-
140 in TEM view of the lamella in Fig. 3e (Insert: FLM data from Fig. 3e).

141 After transfer to the fluorescence microscope, widefield or confocal z-stacks are acquired
142 depending on the required targeting accuracy before loading the sample back on the FIB, where
143 3D correlative milling is performed analogously to cells on grids (Fig. 3b)^{25,26}. The defined
144 geometry of the coarse lamellas is particularly well suited for FIB automation after the lamella
145 positions have been transferred. This ensures the best performance of 3D-targeted milling, and that
146 the region of interest is contained in the final lamella (Fig. 3c-f).

147 In summary, SOLIST allows efficient preparation of several cryo-FIB lamellas from the
148 same high-pressure frozen sample and with fluorescence-guided targeting. This includes, for the
149 first time, detailed inner views of developing brain organoids. Our new approach improves
150 targetability, throughput and lamella stability compared to previous implementations. While
151 SOLIST is still not as efficient as traditional serial section approaches at room temperature, where
152 layers of 70-100 nm can be cut, it represents a significant improvement over previous cryo-LO
153 protocols. With critical bottlenecks of cryo-lift-out taken care of, we anticipate cryo-electron
154 tomography datasets soon being generated for many new sample types such tissues and patient
155 biopsies. Access to this high-resolution information will no doubt help advance our molecular
156 understanding of healthy and pathological molecular processes and be a first step towards a true
157 “biopsy at the nanoscale”.

158

159 **Acknowledgements**

160 We thank Alessandro Vannini, Gaia Pigino, and Ana Casañal for helpful insights and discussion;
161 Nikolai Klena, Helen Foster, and Sam Lacey for valuable comments; Daniel Panne and Ziad
162 Ibrahim for providing the *in vitro* chromatin samples and the Cryo-Electron Microscopy Facility
163 of Human Technopole for technical support and assistance. This work was supported by core
164 funding from the Human Technopole. The Coscia lab is supported by the European Research
165 Council (ERC-2021-STG Thyromol #101041298).

166

167 **Author contributions**

168 NHTD, GP: Conceptualization, Methodology, Validation, Investigation, Data Curation,
169 Resources, Writing - Review & Editing, Visualization; RV: Investigation, Resources, Writing -
170 Review & Editing, Visualization; FKD: Investigation, Resources; MS: Investigation, Resources;
171 SS: Investigation, Resources; PS: Investigation, Resources, Writing - Review & Editing; FL:
172 Investigation, Resources; NK: Resources, Supervision, Funding acquisition, Writing - Review &
173 Editing; FC: Resources, Supervision, Funding acquisition; PSE: Conceptualization, Methodology,
174 Software, Validation, Investigation, Data Curation, Resources, Writing - Original Draft, Writing -
175 Review & Editing, Visualization, Supervision, Funding acquisition

176

177 **Declaration of interests**

178 The authors declare no competing interests.

179

180 **Bibliography**

181

- 182 1. Lucas, B. A. & Grigorieff, N. Quantification of gallium cryo-FIB milling damage in
183 biological lamella. *bioRxiv* (2023).
- 184 2. Berger, C. *et al.* Cryo-electron tomography on focused ion beam lamellae transforms
185 structural cell biology. *Nat Methods* **20**, 499–511 (2023).
- 186 3. Wang, Z. *et al.* Structures from intact myofibrils reveal mechanism of thin filament
187 regulation through nebulin. *Science* (1979) **375**, (2022).
- 188 4. Wolff, G. *et al.* A molecular pore spans the double membrane of the coronavirus replication
189 organelle. *Science* (1979) **369**, 1395–1398 (2020).
- 190 5. Dahl, R. & Staehelin, L. A. Highpressure freezing for the preservation of biological
191 structure: Theory and practice. *J Electron Microsc Tech* **13**, 165–174 (1989).
- 192 6. Rubino, S. *et al.* A site-specific focused-ion-beam lift-out method for cryo Transmission
193 Electron Microscopy. *J Struct Biol* **180**, 572–576 (2012).
- 194 7. Schaffer, M. *et al.* A cryo-FIB lift-out technique enables molecular-resolution cryo-ET
195 within native *Caenorhabditis elegans* tissue. *Nat. Methods* **16**, 757–762 (2019).
- 196 8. Parmenter, C. D. J., Fay, M. W., Hartfield, C. & Eltaher, H. M. Making the practically
197 impossible ‘Merely difficult’-Cryogenic FIB lift-out for ‘Damage free’ soft matter imaging.
198 *Microsc Res Tech* **79**, 298–303 (2016).
- 199 9. Klumpe, S. *et al.* Recent Advances in Gas Injection System-Free Cryo-FIB Lift-Out
200 Transfer for Cryo-Electron Tomography of Multicellular Organisms and Tissues. *Micros
201 Today* **30**, 42–47 (2022).
- 202 10. Plitzko, J., Erdmann, P. & Klumpe, S. Deposition-free Cryo-FIB Lift-out Transfer for Cryo-
203 Electron Tomography Specimen Preparation. *Microscopy and Microanalysis* **27**, 3032–
204 3034 (2021).
- 205 11. Kuba, J. *et al.* Advanced cryo-tomography workflow developments – correlative
206 microscopy, milling automation and cryo-lift-out. *J Microsc* **281**, 112–124 (2021).
- 207 12. Fuest, M. *et al.* In situ Microfluidic Cryofixation for Cryo Focused Ion Beam Milling and
208 Cryo Electron Tomography. *Scientific Reports* **2019 9:1** **9**, 1–10 (2019).

209 13. Russo, C. J. & Passmore, L. A. Ultrastable gold substrates: Properties of a support for high-
210 resolution electron cryomicroscopy of biological specimens. *J Struct Biol* **193**, 33–44
211 (2016).

212 14. Schiøtz, O. H. *et al.* Serial Lift-Out – Sampling the Molecular Anatomy of Whole
213 Organisms. *bioRxiv* 2023.04.28.538734 (2023) doi:10.1101/2023.04.28.538734.

214 15. Ibrahim, Z. *et al.* Structural insights into p300 regulation and acetylation-dependent genome
215 organisation. *Nat Commun* **13**, 1–23 (2022).

216 16. Benito-Kwiecinski, S. & Lancaster, M. A. Brain Organoids: Human Neurodevelopment in
217 a Dish. *Cold Spring Harb Perspect Biol* **12**, 1–18 (2020).

218 17. Kaluthantrige Don, F. & Kalebic, N. Forebrain Organoids to Model the Cell Biology of
219 Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. *Front Cell Dev
220 Biol* **10**, (2022).

221 18. Kelley, K. W. & Paşa, S. P. Human brain organogenesis: Toward a cellular understanding
222 of development and disease. *Cell* **185**, 42–61 (2022).

223 19. Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges.
224 *Development* **146**, dev166074 (2019).

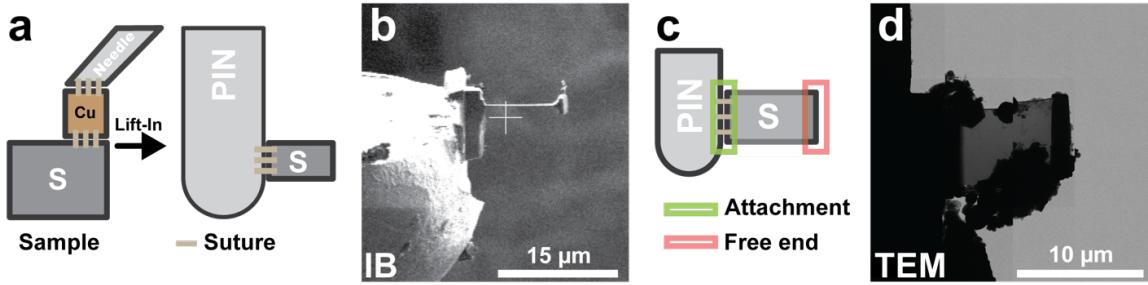
225 20. Tacke, S. *et al.* A streamlined workflow for automated cryo focused ion beam milling. *J
226 Struct Biol* **213**, 107743 (2021).

227 21. Klumpe, S. *et al.* A Modular Platform for Automated Cryo-FIB Workflows. *Elife* **10**,
228 (2021).

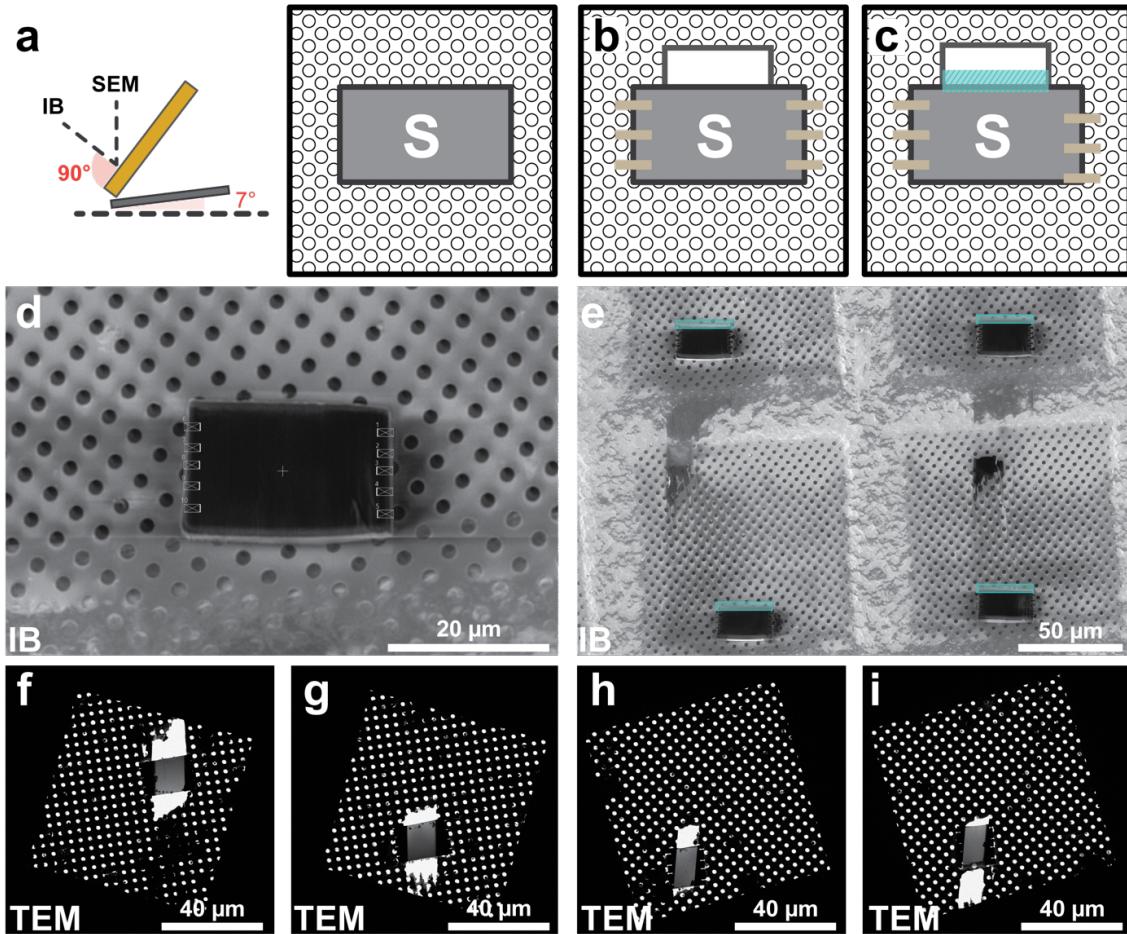
229 22. Eisenstein, F. *et al.* Parallel cryo electron tomography on in situ lamellae. *Nature Methods*
230 2022 20:1 **20**, 131–138 (2022).

231 23. Khavnekar, S. *et al.* Multishot tomography for high-resolution in situ subtomogram
232 averaging. *J Struct Biol* **215**, 107911 (2023).

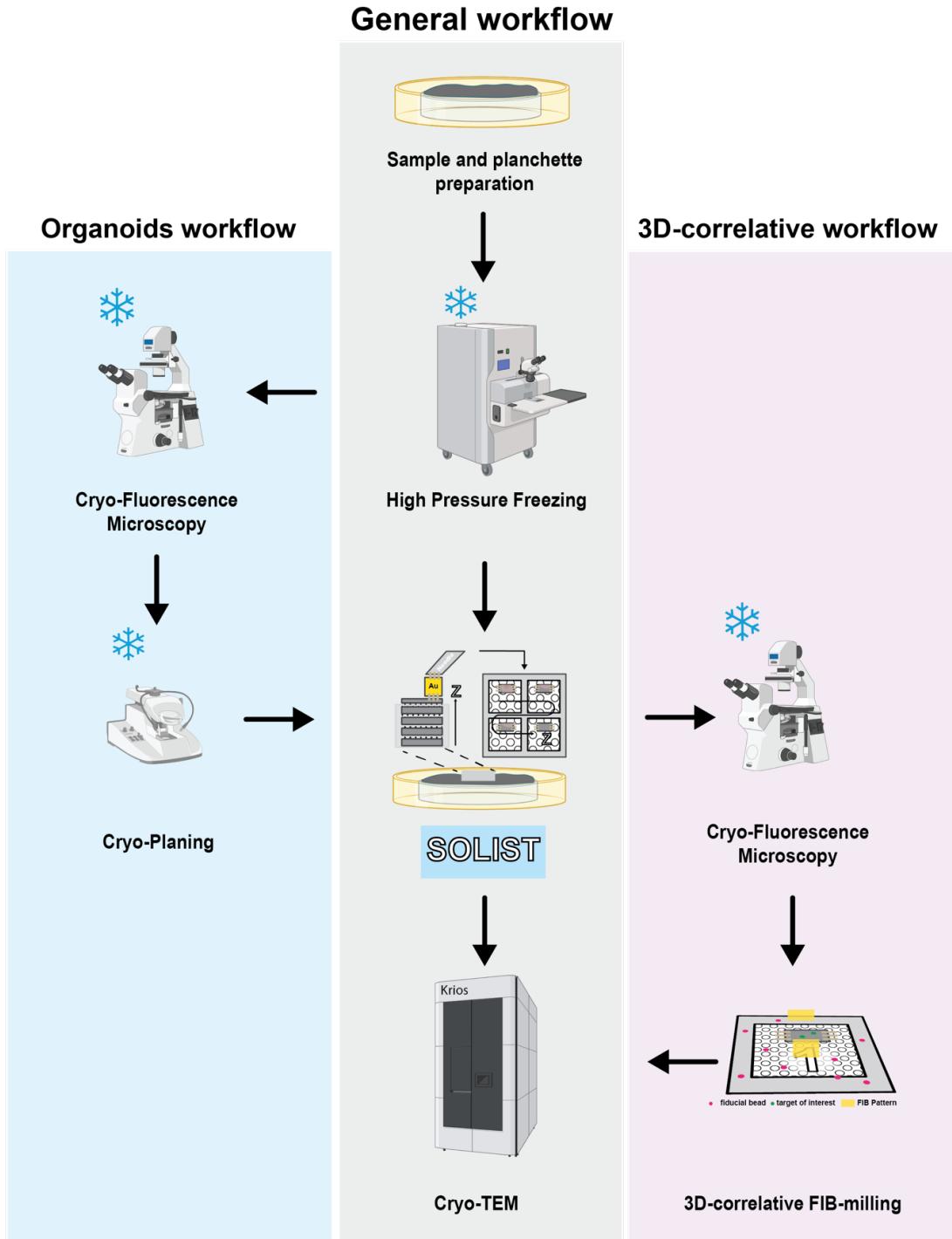
233 24. Hoffmann, P. C. *et al.* Electron cryo-tomography reveals the subcellular architecture of
234 growing axons in human brain organoids. *Elife* **10**, (2021).

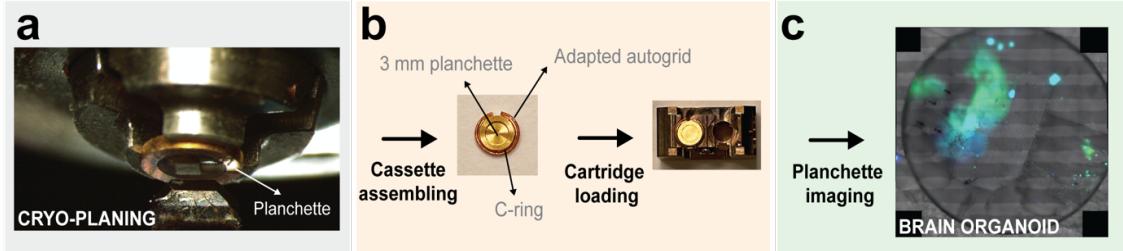

235 25. Bieber, A., Capitanio, C., Wilfling, F., Plitzko, J. & Erdmann, P. S. Sample preparation by
236 3D-correlative focused ion beam milling for high-resolution cryo-electron tomography.
237 *Journal of Visualized Experiments* (2021) doi:10.3791/62886.

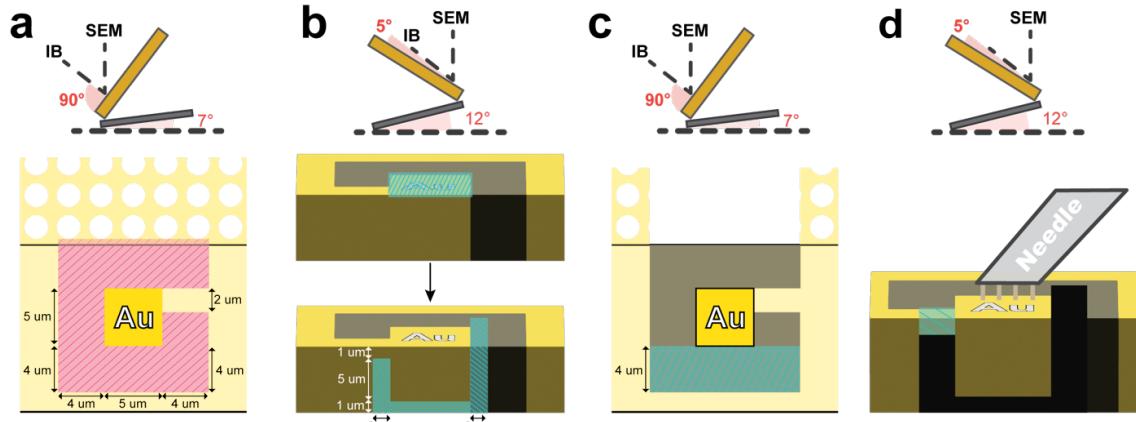
238 26. Arnold, J. *et al.* Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D
239 Correlative Microscopy. *Biophys J* **110**, 860–869 (2016).

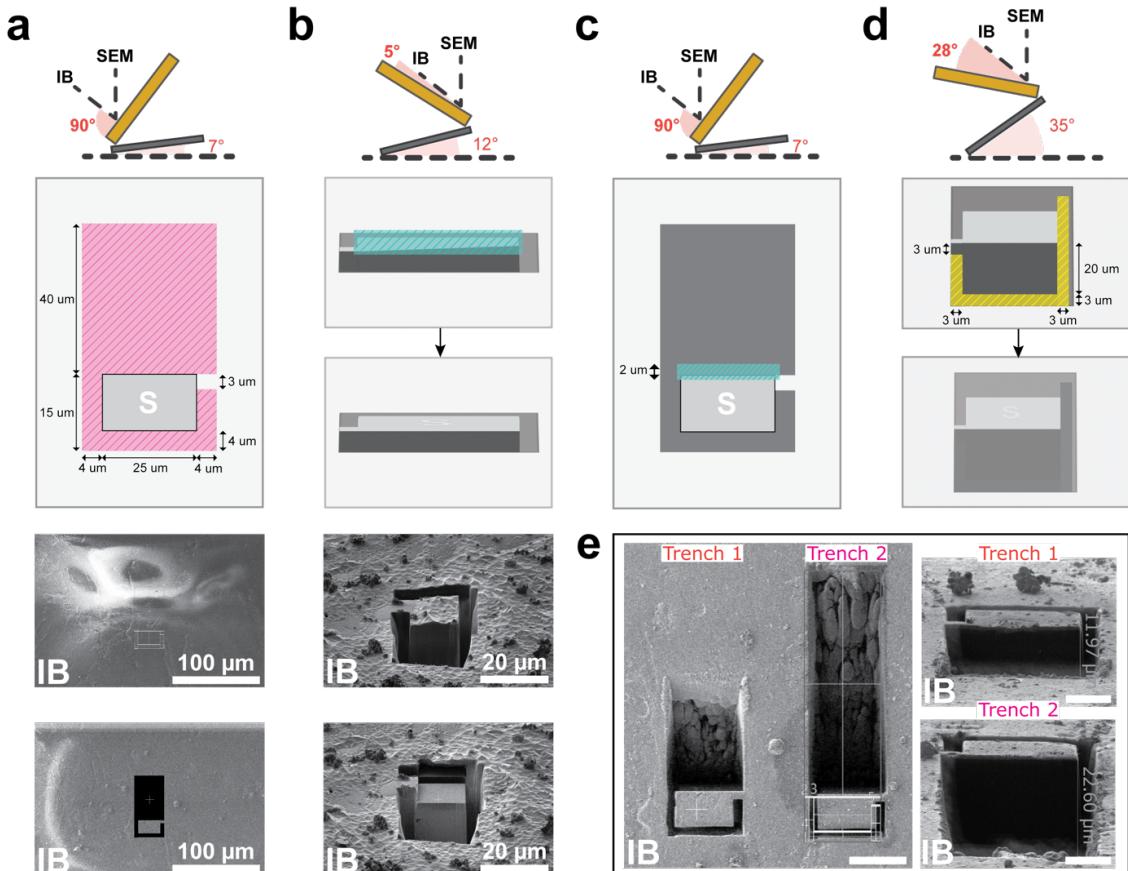

SUPPORTING MATERIAL

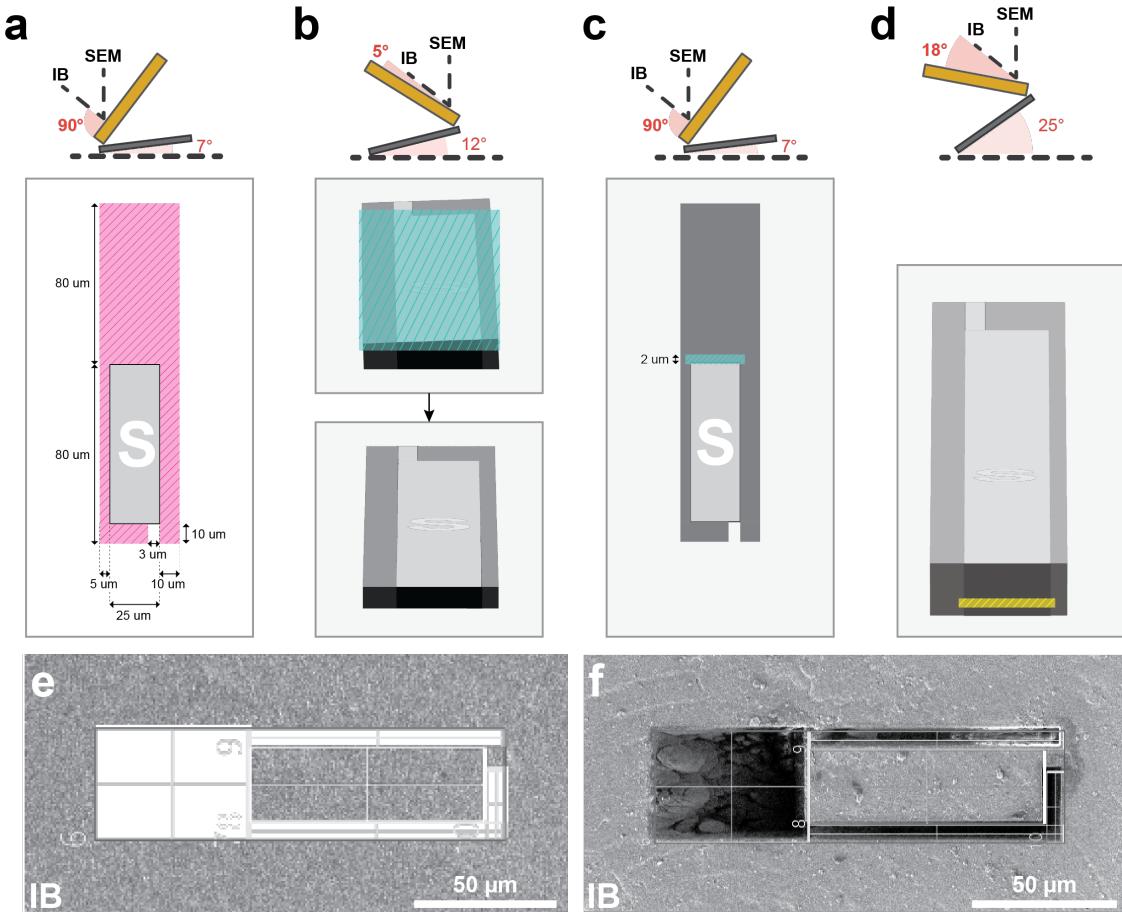
Supporting Table 1. Typical milling time for the SOLIST approach per step.

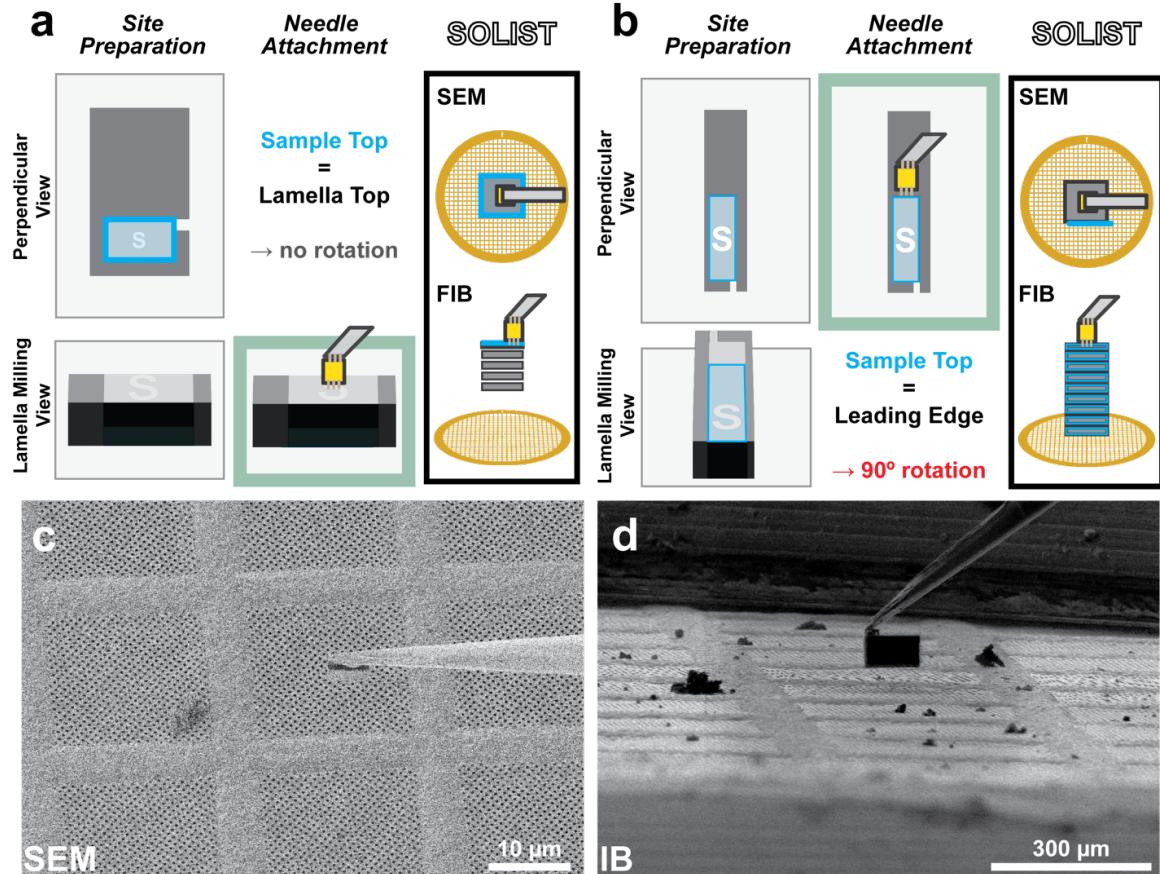

	<i>Step</i>	<i>Current</i>	<i>Timing</i>	
LO Type			<i>From milling direction</i>	<i>From perpendicular direction</i>
<i>Sample trench</i>	Site preparation	5 nA	4 min + 10 min cleaning	7 min + 10 min cleaning
	Surface cleaning	300 pA	5 min	10 min
	Leading edge polishing	300 pA	5 min	
	Undercut milling	500 pA	10 min	15 min
	Sample Detachment	300 pA	3 min	
			TOTAL / Site	
			37 min	50 min
<i>Sample section</i>	SOLIST Section Attachment	1 nA	3 min / Section	
	Attaching from top	30 pA	1 min / Section	
	Leading edge polishing	300 pA	2 min / Section	
	Surface cleaning	300 pA	5 min / Section	
			TOTAL / Section	
			11 min	


Supporting Figure 1. Traditional lift-in procedure on pin grids. **a**, Schematic of the conventional lift-in procedure. **b**, FIB view of a single LO lamella attached to a pin grid. **c**, Conventional sample attachment results in lamellas supported only on one side. **d**, Example of ice crystals-contaminated lamella on a pin grid (TEM montage).


Supporting Figure 2. Lift-in on gold grids using SOLIST procedure. **a**, With the coarse sections attached on the EM grid, the stage is rotated to the perpendicular position (stage tilt = 7°, stage rotation = 0°). **b**, From this position, parts of the gold film are removed to prevent ripping and micro-stitches are milled with cleaning cross-section patterns at 30 pA. The milling direction is towards the center of the section, and z dimension is set to 0.5 μ m. **c**, The leading edge is cleaned with a cleaning cross-section at 300 pA. **d**, FIB image of a coarse SOLIST section with the patterns used for attachment. **e**, A set of SOLIST sections after attachment. Light-blue rectangles indicate the leading edges. **f-i**, TEM montages of electron-transparent lamellas show low ice contamination.


Supporting Figure 3. SOLIST for *in situ* cryo-ET of HPF-frozen samples. General workflow for the SOLIST procedure. For organoid samples, imaging and buffer removal by cryo-planing can be performed before SOLIST to expose the organoid to the surface. For the 3D-correlative workflow, target positions in coarse sections are identified by fluorescence microscopy before fine milling.


Supporting Figure 4. Detailed steps for the organoid workflow. **a**, Cryo-planing of HPF planchettes is performed to expose the organoid. **b**, A customized adaptor, composed of a cut autogrid and a C-ring, is used to load the planchette in the cryo-fluorescence microscope cartridge. **c**, Representative overview of a HPF planchette containing brain organoids. Fluorescent channels overlayed with reflected light (Green: GFP; Blue: Hoechst).


Supporting Figure 5. Gold adaptor chunk preparation. **a**, Site preparation from the perpendicular position. **b**, Surface cleaning and undercut milling from the milling position at 12° stage tilt. **c**, Redeposition cleaning from the perpendicular position. **d**, Needle attachment from the milling position at 12° stage tilt.

Supporting Figure 6. Sample site preparation for LO from the milling direction. **a**, Sample trench preparation from the perpendicular position. At the bottom, FIB images of the frozen sample with the patterns used to prepare the chunk site from the perpendicular position before and after milling. **b**, Surface cleaning for needle attachment from the milling position at 12° stage tilt. At the bottom, FIB images of the frozen sample before and after milling. **c**, Leading edge polishing from the perpendicular position. **d**, Undercut and sides cleaning from the milling position at 35° stage tilt. **e**, The amount of material cleaned in the front of the LO site defines the dimension of the sample chunk accessible for LO. The undercut angle is linked to the length of the cleaning trench. Scale bars represent 25 μm (left panel) and 10 μm (right).

Supporting Figure 7. Sample site preparation for LO from the perpendicular direction. **a**, Sample trench preparation from the perpendicular position. **b**, Surface cleaning for needle attachment from the milling position at 12° stage tilt. **c**, Front edge polishing from the perpendicular position. **d**, Undercut milling from the milling position at 25° stage tilt. **e,f**, FIB image of the frozen sample with the patterns used to prepare the chunk site from perpendicular position before (**e**) and after milling (**f**). Note. For illustration, images **e** and **f** are rotated 90° clockwise from the FIB view.

Supporting Figure 8. SOLIST lift-out procedure. **a**, For LO from the milling direction, the sample orientation remains unchanged, i.e., the chunk top (light blue) corresponds to the lamella top. To this end, the needle is inserted with the stage in milling position at 12° stage tilt and attached to the top of the sample chunk. **b**, For the LO procedure from the perpendicular direction, the sample is effectively re-oriented by 90°. Hence, the chunk top surface (light blue) becomes the lamella leading edge. Here, the needle is inserted with the stage close to the perpendicular LO position at 18° stage tilt and attached to the front edge. **c,d** SEM (**c**) and FIB (**d**) images of the Tungsten needle with the sample chunk attached to the gold adaptor and inserted over the Li grid.

1 **Online Methods**

2

3 **SAMPLE PREPARATION**

4

5 **Organoids.** Forebrain organoids were generated from H9 embryonic stem cells (ESCs) as
6 previously described¹. Embryoid bodies (EBs) were generated from ESCs colonies incubated in
7 neural induction medium consisting of 2 µM Dorsomorphine (Stem cell technologies) and 2 µM
8 A83-01 (Stem cell technologies). From day 7 to day 14, EBs were embedded in Matrigel (Corning)
9 and patterned towards a forebrain fate in a medium consisting of DMEM:F12 (Gibco), 1X N2
10 Supplement (Life Technologies), 1X Penicillin/Streptomycin (Euroclone), 1X Non-essential
11 Amino Acids (Gibco), 1X GlutaMax (Gibco), 1 µM CHIR99021 (Tocris), and 1 µM SB-43154
12 (Stem cell technologies). On day 14, embedded organoids were mechanically removed from
13 Matrigel and incubated in differentiation medium composed of DMEM:F12, 1X N2 and B27
14 Supplements (Life Technologies), 1X Penicillin/Streptomycin, 1X 2-Mercaptoethanol (Gibco),
15 1X Non-essential Amino Acids, 2.5 µg/ml Human Insulin (Sigma-Aldrich) until day 35. From day
16 35 to day 70, the differentiation medium was supplemented with 1% Matrigel. From day 70
17 onwards, organoids were incubated in maturation medium composed of Neurobasal medium (Life
18 Technologies), 1X B27 Supplement, 1X Penicillin/Streptomycin, 1X 2-Mercaptoethanol,
19 0.2 mM Ascorbic Acid (Sigma-Aldrich), 20 ng/ml BDNF (Peprotech), 20 ng/ml GDNF
20 (Peprotech), and 1 µM Dibutyryl-cAMP (Stem cell technologies). Brain organoids were extracted
21 from Matrigel as described by Qian X. *et al* (2020)¹. They were then embedded in low-melting-
22 point agarose (Invitrogen) and sectioned to 75 µm thick slices using a VT 1200S vibratome (Leica
23 Microsystems).

24

25 ***In vitro* chromatin sample.** Condensation of chromatin droplets was performed *in vitro* as
26 described previously². In short, reconstituted chromatin was mixed with eGFP-labelled BRD4
27 containing only two bromodomains (BD1-BD2) in a phase separation buffer (25 mM Tris, pH 7.5,
28 150 mM KOAc, 1 mM Mg(OAc)₂, 5% glycerol, 5 mM DTT, 0.1 mM EDTA, 0.1 mg/mL BSA).
29 Just before freezing, 10% Ficoll 400 (Sigma-Aldrich) was added to the solution as cryo-protectant.
30 To confirm droplet formation, the sample was observed on a Zeiss LSM980 confocal microscope
31 with a 63x oil objective and using an excitation wavelength of 488 nm.

32

33 HIGH-PRESSURE FREEZING

34

35 **Planchette preparation.** Before use, the planchettes were cleaned by sonication for 5 min, 30s
36 on, 30s off, 40% Amplitude on a Branson SFX 550 (Thermo Fisher Scientific). Type B lids were
37 polished with 1 μ m lapping paper (Leica Microsystems) and then coated with 3 μ l 0.1% soy
38 lecithin (Sigma-Aldrich) in chloroform (Thermo Scientific).

39

40 **Organoids.** Just before freezing, slices were stained with Hoechst dye (Invitrogen) to later localize
41 the cells embedded in the HPF buffer. They were then loaded in 100 μ m-depth type A wells and
42 frozen on a Leica EM ICE with 20% dextran (Sigma-Aldrich) and 5% sucrose (Sigma-Aldrich)
43 supplied in the freezing medium.

44

45 ***In vitro* droplets.** The assembled condensation reaction with Ficoll 400 was frozen on a Leica EM
46 ICE in 3 mm type A and B HPF planchettes (Leica Microsystems) by applying \sim 0.8 μ L of the
47 solution to the 100 μ m well of the type A before freezing.

48

49 PLANCHETTE PLANING (OPTIONAL)

50 Copper HPF planchettes were cryo-planed using Leica EM UC7 ultramicrotome (Leica
51 Microsystems) operated at -160°C. Approximately 30 μ m of frozen buffer was removed. Rough
52 trimming was performed with a TRIM45 diamond blade to remove the copper of the planchette
53 (feed of 200 nm, speed of 60 mm/s). The obtained blockface was further trimmed with a separate
54 TRIM45 blade for fine trimming with a feed of 50 nm and a speed of 30 mm/s.

55

56 PLANCHETTE FLUORESCENCE MICROSCOPE PRE-SCREENING (OPTIONAL).

57 HPF planchettes were imaged at the cryo-fluorescence light microscope Thunder (Leica
58 Microsystems) with a 50x / 0.9 NA objective and equipped with a cryo-stage. A customized
59 adaptor was used to fit the HPF planchette into the Thunder loading cartridge. Planchettes
60 overviews in reflected light, green (GFP) and blue (Hoechst) channels were acquired to define
61 regions enriched with target structures.

62

63 **LIFT-OUT AND SOLIST PROCEDURE**

64 Lift-out was performed at the identified areas on an Aquilos 2 cryo dual-beam FIB/SEM
65 microscope equipped with the EasyLift lift-out system (Thermo Fisher Scientific)³.
66 In general, milling position refers to the shuttle orientation for regular on-grid FIB milling and is
67 defined as relative rotation 0°. The perpendicular position refers to a 180° relative rotation from
68 the milling position.

69

70 **Adaptor chunk preparation.** An adaptor gold chunk of ca. 5-10 µm x 5 µm x 6 µm was prepared
71 from a gold EM grid (UltrAuFoil, Quantifoil) following the procedure described previously and
72 attached to the Tungsten needle of the EasyLift system³. Gold was chosen over copper for three
73 reasons: 1) the chunk could directly be prepared from the loaded all gold support grid; 2) the
74 milling of gold is easier and faster than copper; 3) sputter rates are higher for gold, and it is
75 therefore easier to micro-weld the biological material to the LO needle. With the stage in the
76 perpendicular position (stage tilt = 7°, relative stage rotation = 180°), 4 µm of material was
77 removed from each side with regular cross-section patterns used at 5 nA and maintaining a 2 µm
78 piece on the right side as attachment (Supporting Fig. 5a). The surface of the chunk was briefly
79 cleaned from the milling position at an angle of 12° stage tilt using 300 pA with a cleaning cross-
80 section pattern. An undercut was milled 5 µm below the surface with a regular cross-section pattern
81 of 1 µm in y using 300 - 500 pA. The same current was used to clean 2 µm of material on the sides
82 of the chunk, leaving the top 1 µm of the right side to connect the piece to the bulk (Supporting
83 Fig. 5b). The stage was rotated back to the perpendicular position and a regular cross section
84 pattern was used at 300 pA to clean material redeposition in the back (Supporting Fig. 5c). The
85 needle was inserted above the EM grid with the stage in milling position at an angle of 12° stage
86 tilt and lowered to enter in contact with the surface of the chunk. The needle was attached by
87 milling micro-stitches on the gold and the remaining material on the left was milled with a regular
88 cross-section pattern at 500 pA (Supporting Fig. 5d).

89

90 **Sample site preparation**

91

92 **1) For LO from the milling direction.** The Aquilos 2 stage was rotated so that the gallium ion
93 beam was perpendicular to the surface of the sample (perpendicular position: stage tilt = 7°, stage

94 rotation = 180°). A 40 μm -long area was cleaned in the front of the sample site and 5 μm -wide
95 trenches were milled on the remaining sides of the chunk with 3 nA to 5 nA currents and regular
96 cross-section patterns. A 3 μm piece was preserved on the left side to guarantee the attachment to
97 the bulk (Supporting Fig. 6a).

98 The surface of the sample chunk could be cleaned from the milling position at an angle of 12° and
99 with 300 pA using a cleaning cross-section pattern (Supporting Fig. 6b). The same current was
100 used to clean the leading edge from the perpendicular position (Supporting Fig. 6c).

101 An undercut was milled 20-25 μm below the chunk surface from the milling direction at a high
102 angle (~ 35°) with 500 pA with regular cross-section pattern. At the same time, the sides of the
103 sample chunk were cleaned, preserving 3 μm of sample on the top of the left side for connection
104 (Supporting Fig. 6d).

105

106 **2) For LO from the perpendicular direction.** The sample site was prepared from the
107 perpendicular position defining a sample trench of 25 μm in x and 80 μm in y . As for the LO from
108 milling direction, the sides of the trench were cleaned with currents of 3 nA to 5 nA using regular
109 cross-section patterns. Ca. 80 μm of material was cleaned in the front of the trench and 5 μm to 10
110 μm were removed from the other sides. A 3 μm piece was preserved on the rear side as attachment
111 (Supporting Fig. 7a).

112 In case the surface was not homogeneously flat, the sample chunk was cleaned from the milling
113 position at stage tilt of 12° and with 500 pA – 1 nA using a cleaning cross-section pattern
114 (Supporting Fig. 7b). The same current was used to clean the front edge from the perpendicular
115 position to improve the attachment of the needle (Supporting Fig. 7c).

116 An undercut was milled ~10 μm below the chunk surface from the milling direction at 18-25° with
117 a regular cross-section pattern at 1 nA. (Supporting Fig. 7d).

118

119 **Lift Out**

120

121 **1) LO from the milling direction.** The needle with the adaptor chunk was inserted with the stage
122 in milling position at 12° stage tilt and lowered until it touched the sample surface without exerting
123 significant force. Four micro-stitches of 0.8 μm x 1 μm were cut on the gold chunk with cleaning
124 cross sections, milling direction towards the top, z dimension equal to 0.5 μm and currents set to

125 300 pA. The patterns were cut twice or three times, monitoring the gold redeposition between the
126 sample and the adaptor chunk. When material started to redeposit, the patterns were backed up
127 slightly from the sample and milled again.

128 To release the connection to the bulk sample, the remaining bridge was milled with a regular cross-
129 section patterns at 500 pA. As soon as the sample chunk was free from the bulk, it was lifted out,
130 rising the needle ~50 μ m above the planchette surface, before retracting the needle.

131 For a detailed illustration see Supporting Fig. 8a.

132

133 **2) LO from the perpendicular direction.** The needle with the adaptor chunk was inserted with
134 the stage in perpendicular lifting-out position (stage tilt = 15°, relative stage rotation = 180°),
135 lowered until it touched the sample front edge and attached to the trench as described above. The
136 rear bridge connecting the sample to the bulk was milled with 500 pA using a regular cross section
137 pattern, and the trench lifted out. For a detailed illustration see Supporting Fig. 8b.

138

139 **SOLIST procedure**

140 With the stage in the milling position, the needle with the sample chunk was inserted above a gold
141 EM grid (UltrAuFoil, R2/2, 200 mesh, Quantifoil) used as support to receive individual lift-out
142 sections and loaded in position 2 of the Aquilos2 shuttle. The needle was lowered until the sample
143 chunk reached the grid foil and slightly backed up again to avoid stress on the gold film (as
144 apparent from bending of the film).

145 For the correlative workflow, sections of 3-4 μ m were cut but minimal sections of ca. 2 μ m can
146 be safely attached to the grids. A regular cross section pattern at 300-500 pA of at least 1 μ m in y
147 direction was placed on the sample chunk to release the section. This procedure was repeated until
148 the LO chunk was exhausted.

149 With all the sample sections attached, the stage was rotated to the perpendicular position and
150 several micro-stitches of 1.0 μ m x 0.5 μ m x 0.25 μ m were placed on the left and right side of the
151 sample and milled with cleaning cross-sections at 30 pA. The milling direction was set towards
152 the center of the lamella.

153 The leading edge of each coarse lamella was cleaned from the same stage position with a cleaning
154 cross-section pattern and z depth set to 1 μ m at 300 pA.

155 The stage was rotate to the lamella milling position and the surface of each section could be cleaned
156 from 12-15° using a cleaning cross-section pattern at 300 pA.

157 The grid was GIS-coated for 20 s from the lamella milling direction and 20 s from the
158 perpendicular position before unloading (for storage or correlative workflow) or fine milling.

159

160 **Fine milling.** Lamellas were symmetrically thinned down to 800 nm with regular cross-section
161 patterns at 300 pA and to 300 nm at 100 pA. Afterwards, rectangular patterns were used at 30 –
162 50 pA to reach 200 nm final pattern offset. To ensure homogeneous thickness along the lamella,
163 the stage was tilted 1° up with respect to the used milling direction and a rectangular pattern at 30
164 - 50 pA was used to progressively mill from the rear towards the front of the lamella (overtilt
165 milling).

166

167 **Support grid preparation for the correlative workflow.** The support grid (UltrAuFoil, R2/2,
168 200 mesh, Quantifoil) was plasma-cleaned at 30 mA for 30 s (GloQube Plus Glow discharge
169 system, Quorum Technologies). Autofluorescent beads (Dynabeads MyOne, Life Technologies-
170 Thermo Fischer Scientific) were washed following manufacturer instructions and diluted in
171 deionized water to obtain a proper distribution on the grid. From this suspension, 3 µL of beads
172 were applied to the grids, and after buffer evaporation the grid was clipped in a FIB-type autogrid
173 and loaded into the microscope shuttle (Position 2).

174

175 **Cryo-fluorescence light microscopy.** Fluorescent image stacks of the coarse lamellas were
176 acquired on a cryo-confocal microscope (Stellaris 5, Leica Microsystems) equipped with 50x / 09
177 N.A. objective and a cryo-stage. The pixel size was 216 nm (x,y) and the z-step was 330 nm.
178 Images were acquired using an excitation wavelength of 630 nm and 489 nm for reflected light
179 and eGFP-labelled protein, respectively. The bead signal was acquired separately in the same
180 channel of eGFP using a higher intensity level.

181

182 **Correlative fine milling.** Support grids were transferred to the Aquilos 2. A FIB image of the
183 sample section was acquired at 12° stage tilt and in the milling position and was registered to the
184 fluorescence data with the 3D Correlative Toolbox (3DCT) software as described previously^{4,5}. In
185 brief, “gaussian fit” was used to identify the x, y, and z position of five to ten beads in the eGFP

186 channel acquired at high intensity. The same beads were identified in the FIB view to calculate a
187 transformation matrix. Then, the target structures were identified in the eGFP channel which had
188 been recorded at lower intensity. Their z position was fit by the software (“Gaussian Fit z”) and
189 predicted on the FIB view. Lamellas of ca. 200 nm (final pattern distance) were cut at the predicted
190 sites. Regular cross-sections were used at 300 pA to reach a thickness of 800 nm and then at 100 pA
191 until 300 nm. Rectangular patterns at 50 pA or 30 pA were used to reach the final thickness of
192 ~ 180-200 nm (final pattern offset).

193 **CRYO-ELECTRON TOMOGRAPHY**

194

195 **Data acquisition.** The SOLIST grids with the sample sections were loaded on a Titan Krios G4i
196 operated at 300 kV equipped with Falcon4i direct electron detector and SelectrisX energy filter
197 (ThermoFisher Scientific). For the correlative workflow, 3DCT was used to register fluorescence
198 data to SEM view of the final lamella or to TEM montage to guide correlative TEM acquisition^{4,5}.
199 Cryo-tomograms were recorded at 1.5 Å/pix (81k x magnification) for the *in vitro* LLPS droplets
200 and at 1.962 Å/pix (64k x magnification) for the brain organoids. The defocus range was set
201 to -1 μm to -3 μm. A dose-symmetric tilting scheme with an angle increment of 3° was used from
202 -60° to +60° with respect to the lamella pre-tilt. Tilt series were acquired using the SerialEM tilt
203 series controller or PACETomo and 3 e/Å²/tilt (total dose for 41 images: 123 e/Å²)^{6,7}.

204

205 **Data processing.** Tilt series were processed in TOMOgram MANager (TOMOMAN)
206 [<https://github.com/williamnwan/TOMOMAN.git>]. Frame alignment of the EER data was
207 performed in Relion4 with EER groups adjusted to 0.5 e/Å²⁸. The final tomograms were denoised
208 using cryoCARE and deconvolution-filtered to enhance the signal of biological-relevant
209 structures⁹.

210 Automated membrane segmentations were performed with tomosegmenTV¹⁰. For animations,
211 these segmentations were manually adjusted in AMIRA (Thermo Fisher Scientific) and animated
212 in ChimeraX¹¹.

213

214 **Figure Composition.** Figures were created in Adobe Illustrator and in Figure 2 and Supporting
215 Figure 3 assets of biorender.com were used.

216

217 **Bibliography**

218 1. Qian, X. *et al.* Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer
219 Formation. *Cell Stem Cell* **26**, 766-781.e9 (2020).

220 2. Ibrahim, Z. *et al.* Structural insights into p300 regulation and acetylation-dependent
221 genome organisation. *Nat Commun* **13**, (2022).

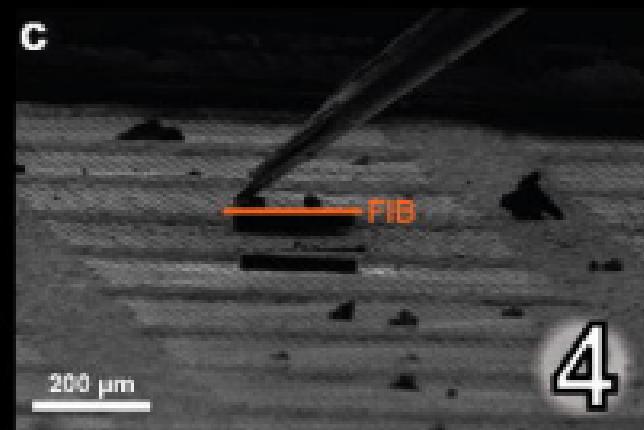
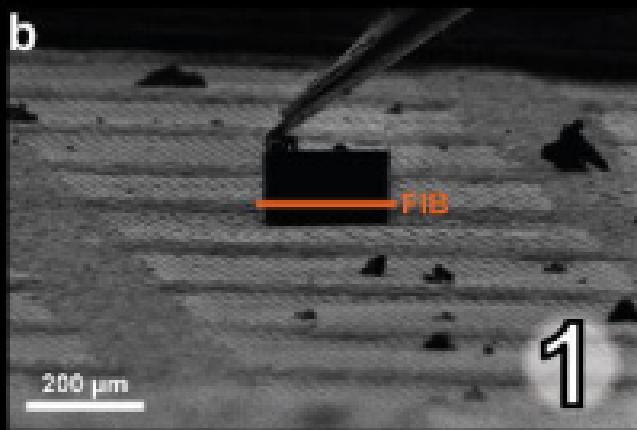
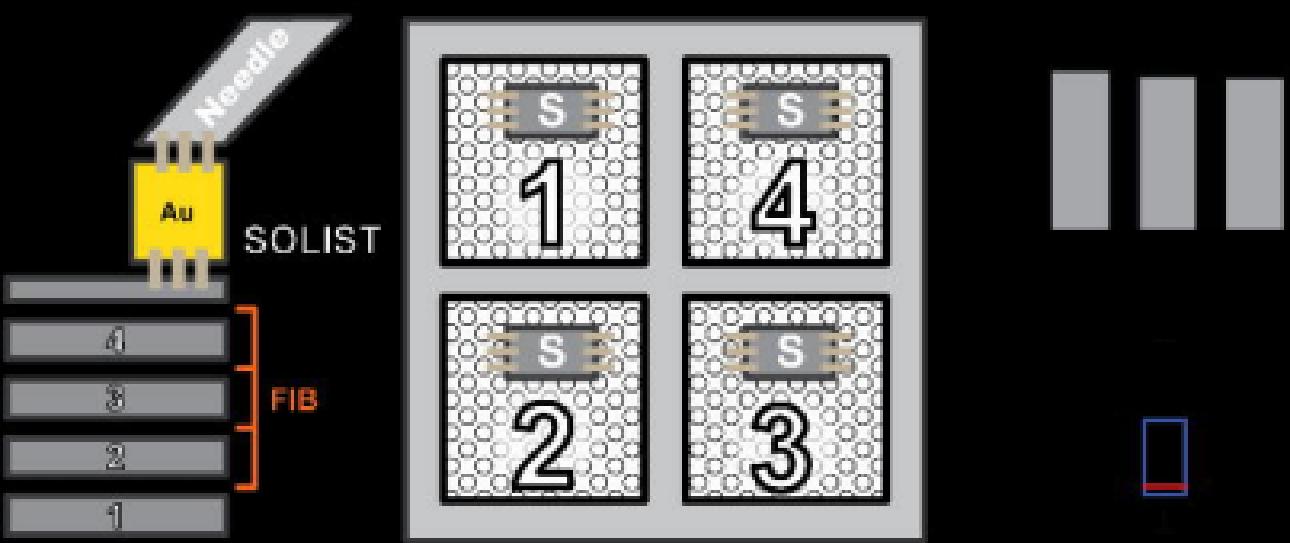
222 3. Kuba, J. *et al.* Advanced cryo-tomography workflow developments – correlative
223 microscopy, milling automation and cryo-lift-out. *J Microsc* **281**, 112–124 (2021).

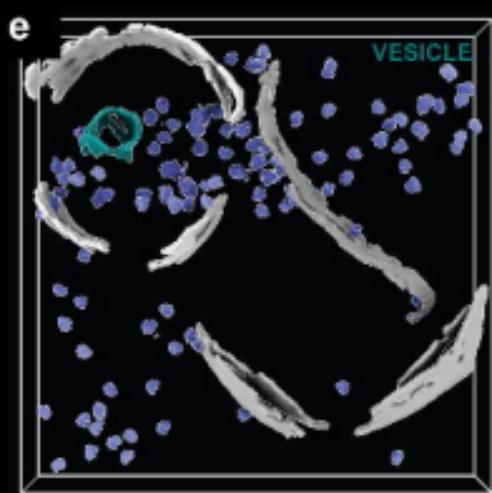
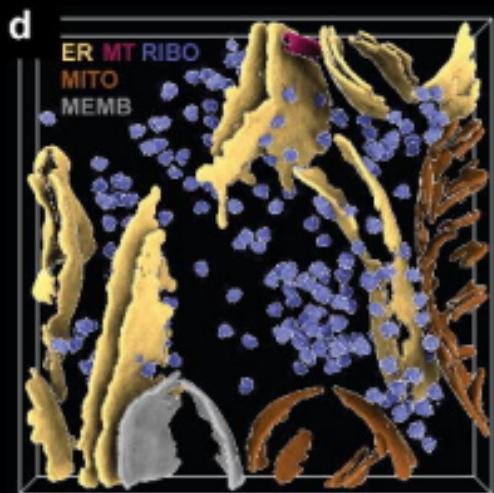
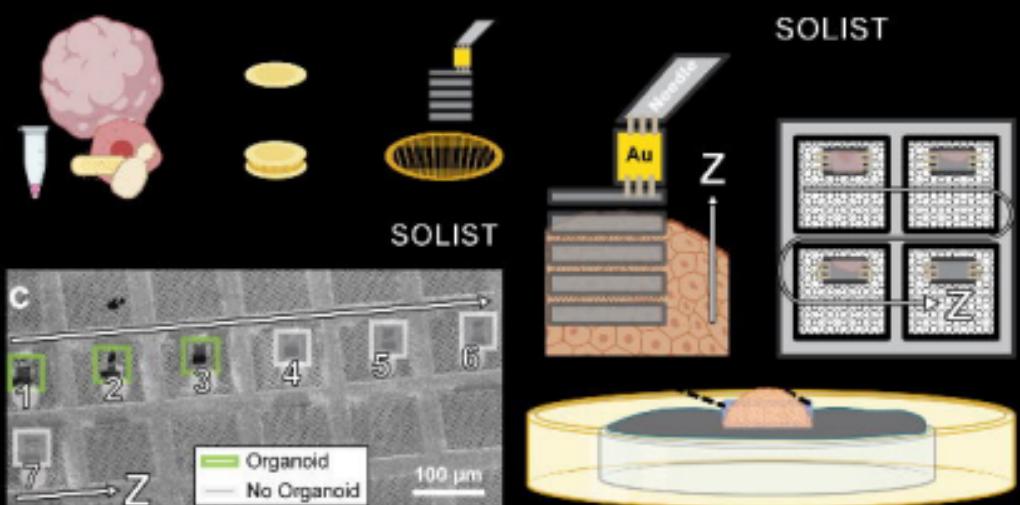
224 4. Arnold, J. *et al.* Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D
225 Correlative Microscopy. *Biophys J* **110**, 860 (2016).

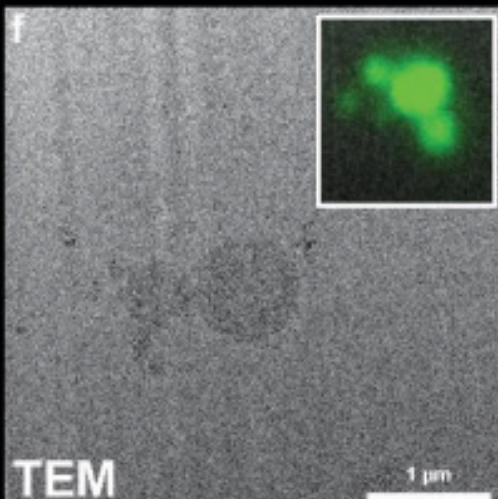
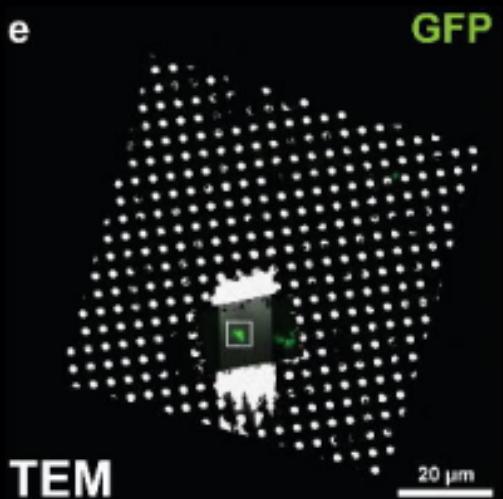
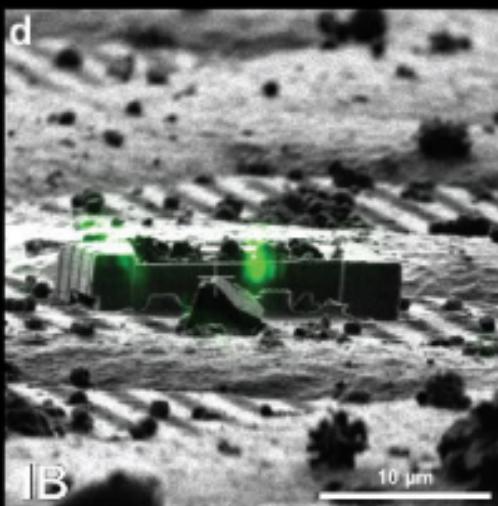
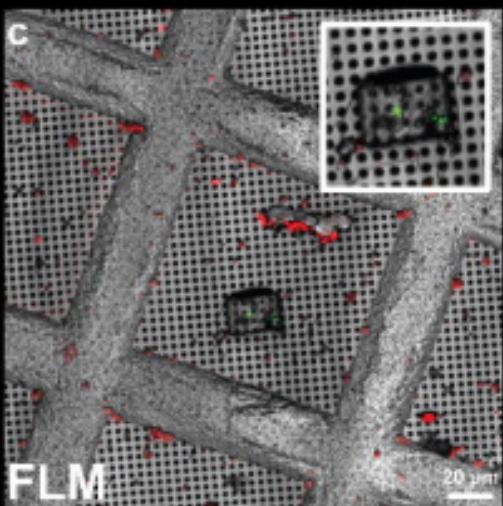
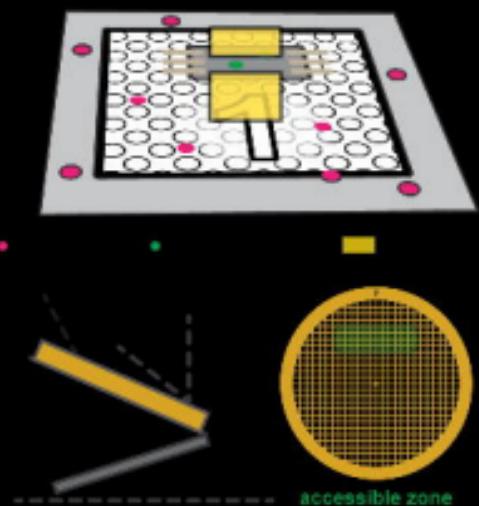
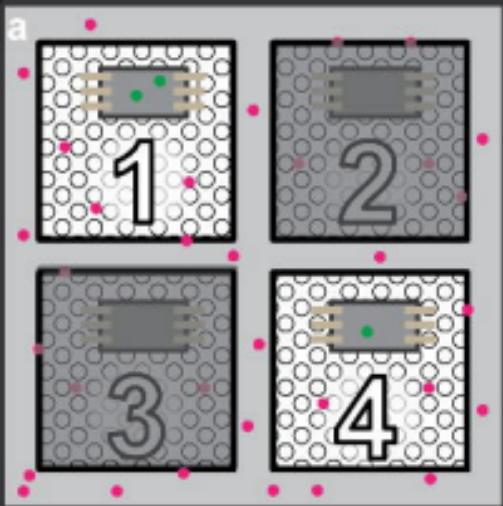
226 5. Bieber, A., Capitanio, C., Wilfling, F., Plitzko, J. & Erdmann, P. S. Sample preparation by
227 3D-correlative focused ion beam milling for high-resolution cryo-electron tomography. *JoVE*
228 **176**, 1–22 (2021) doi:10.3791/62886.

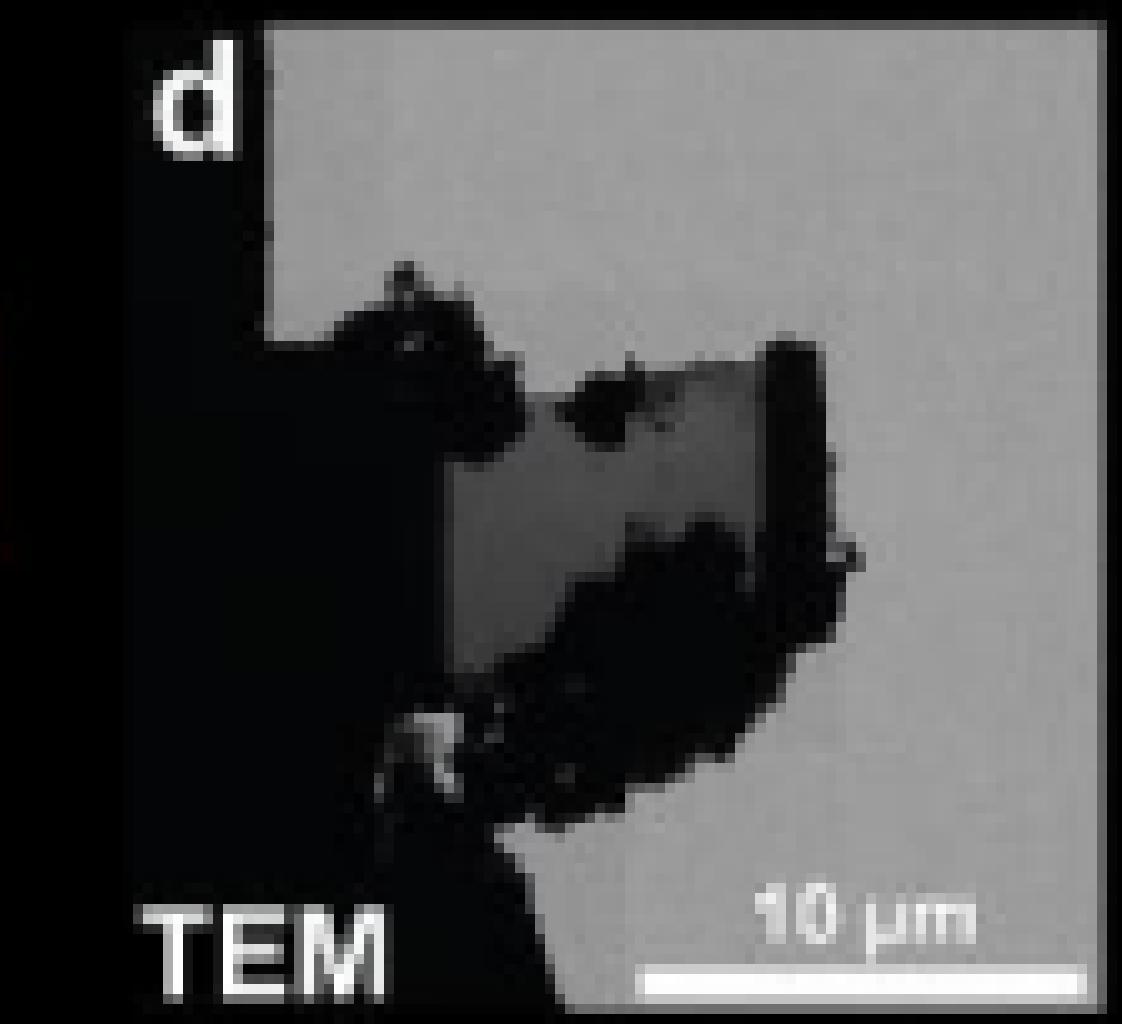
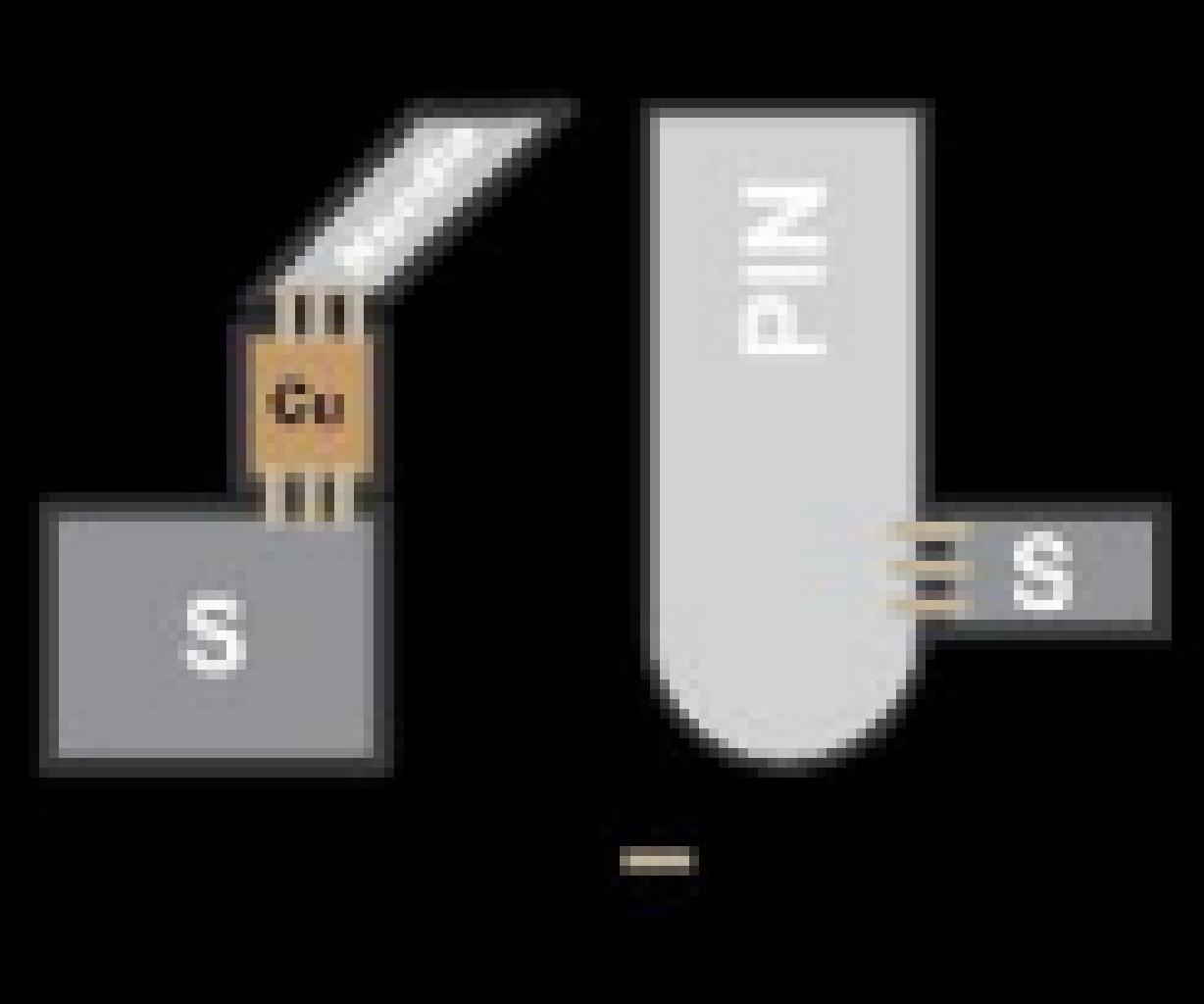
229 6. Eisenstein, F. *et al.* Parallel cryo electron tomography on in situ lamellae. *Nat Methods*
230 2022 **20**:1–20, 131–138 (2022).

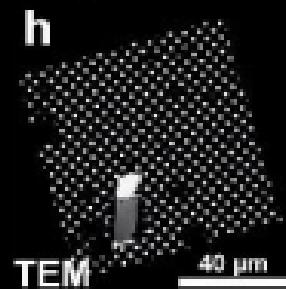
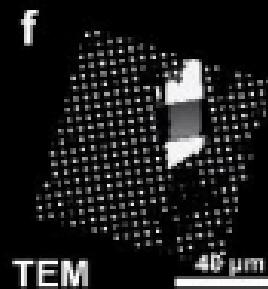
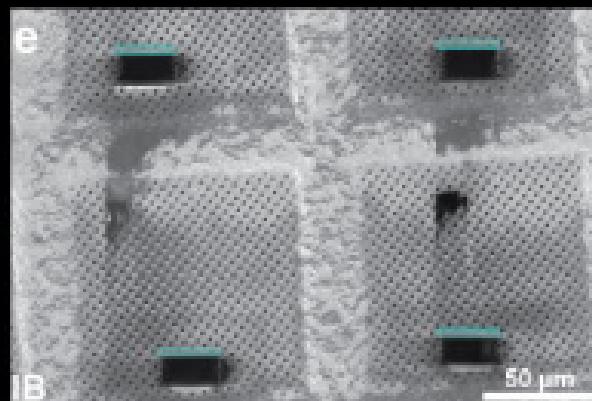
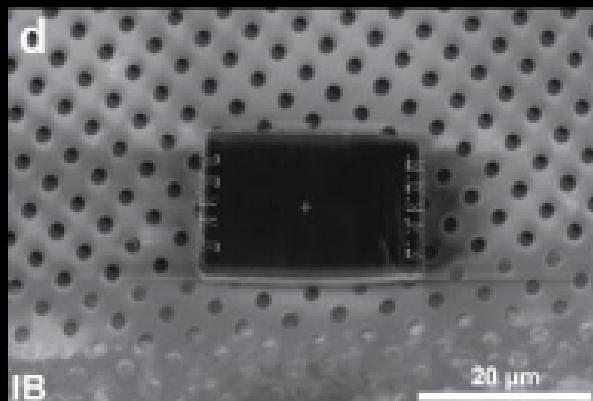
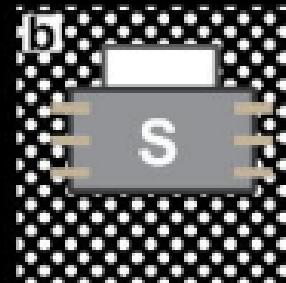
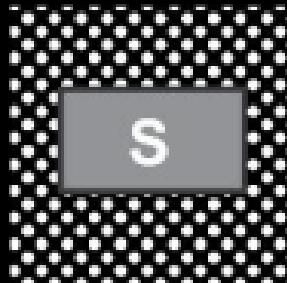
231 7. Mastronarde, D. N. Automated electron microscope tomography using robust prediction
232 of specimen movements. *J Struct Biol* **152**(1), 36–51 (2005) doi:10.1016/j.jsb.2005.07.007.

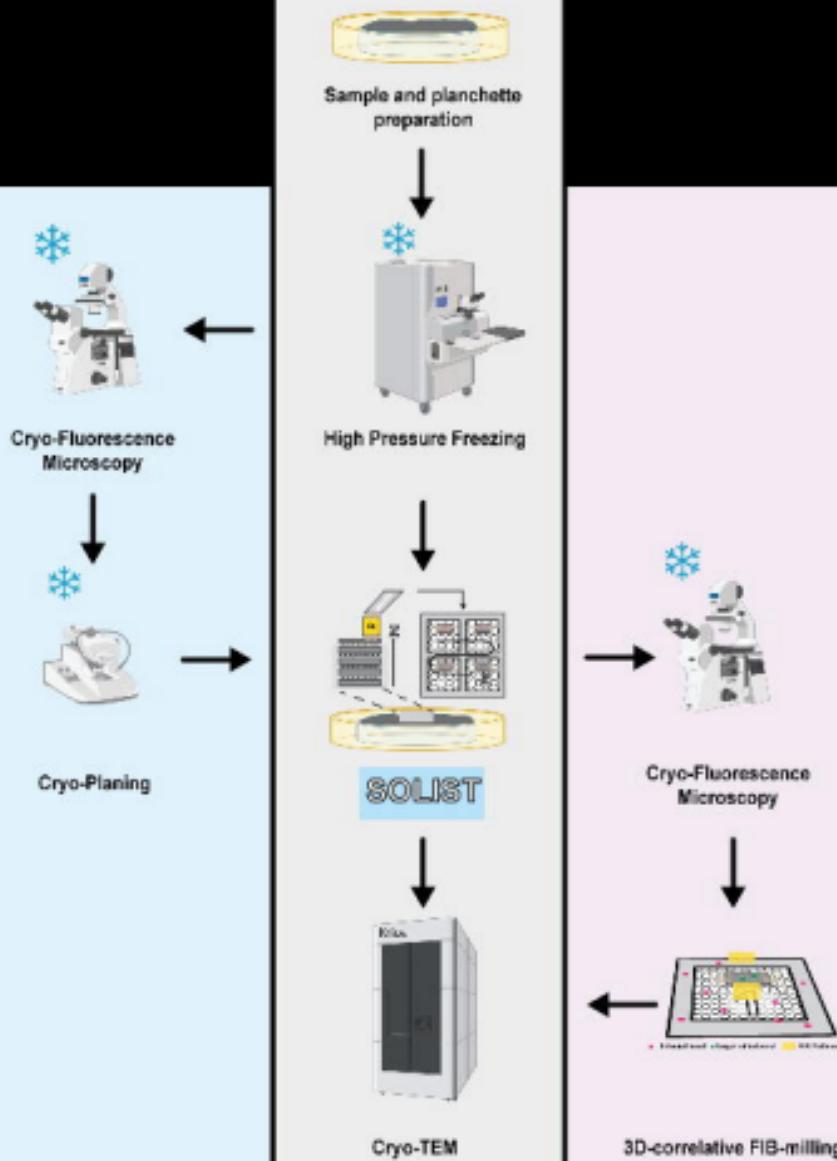



233 8. Zivanov, J. *et al.* A Bayesian approach to single-particle electron cryo-tomography in
234 RELION-4.0. (2022) doi:10.1101/2022.02.28.482229.

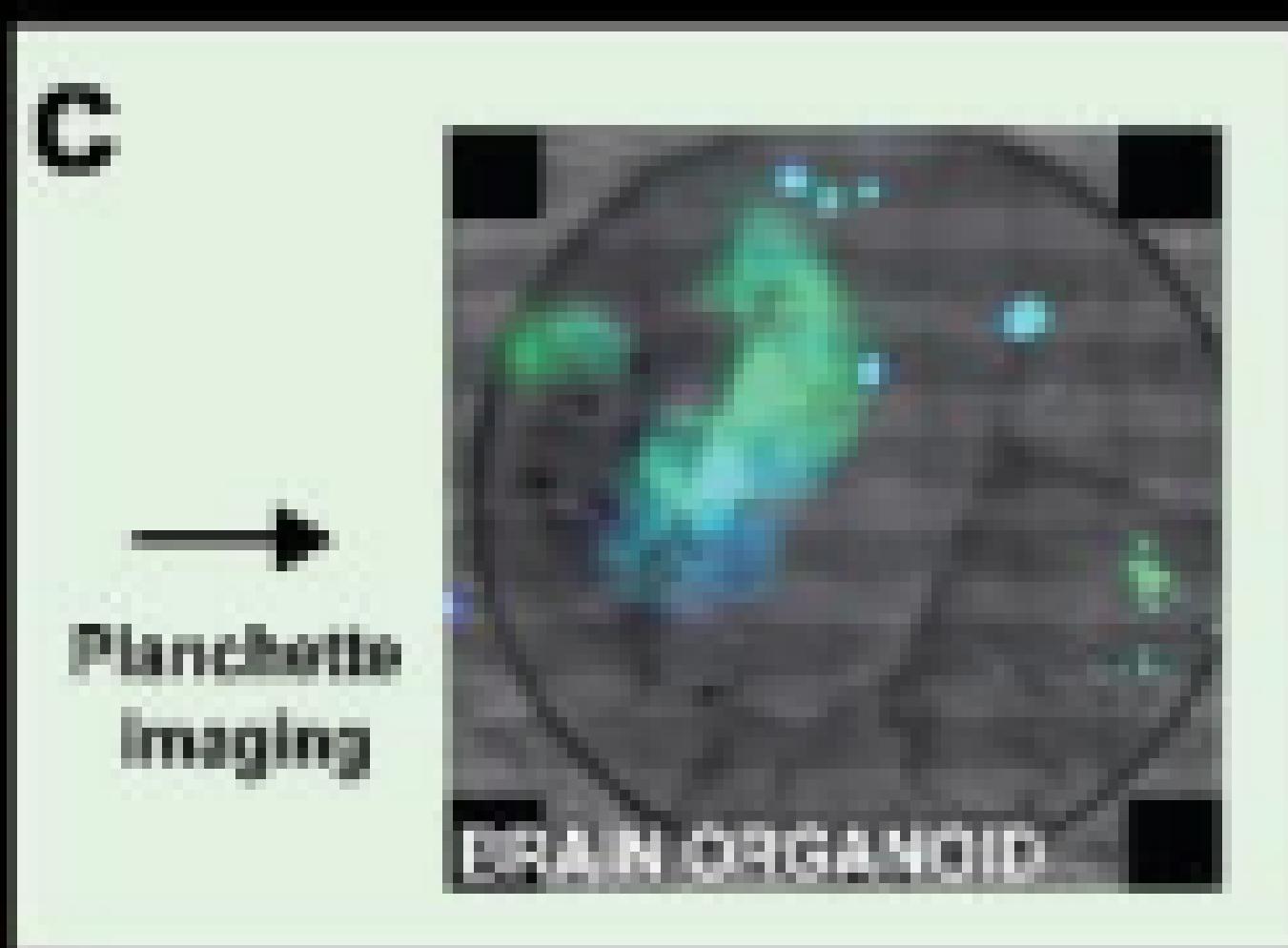
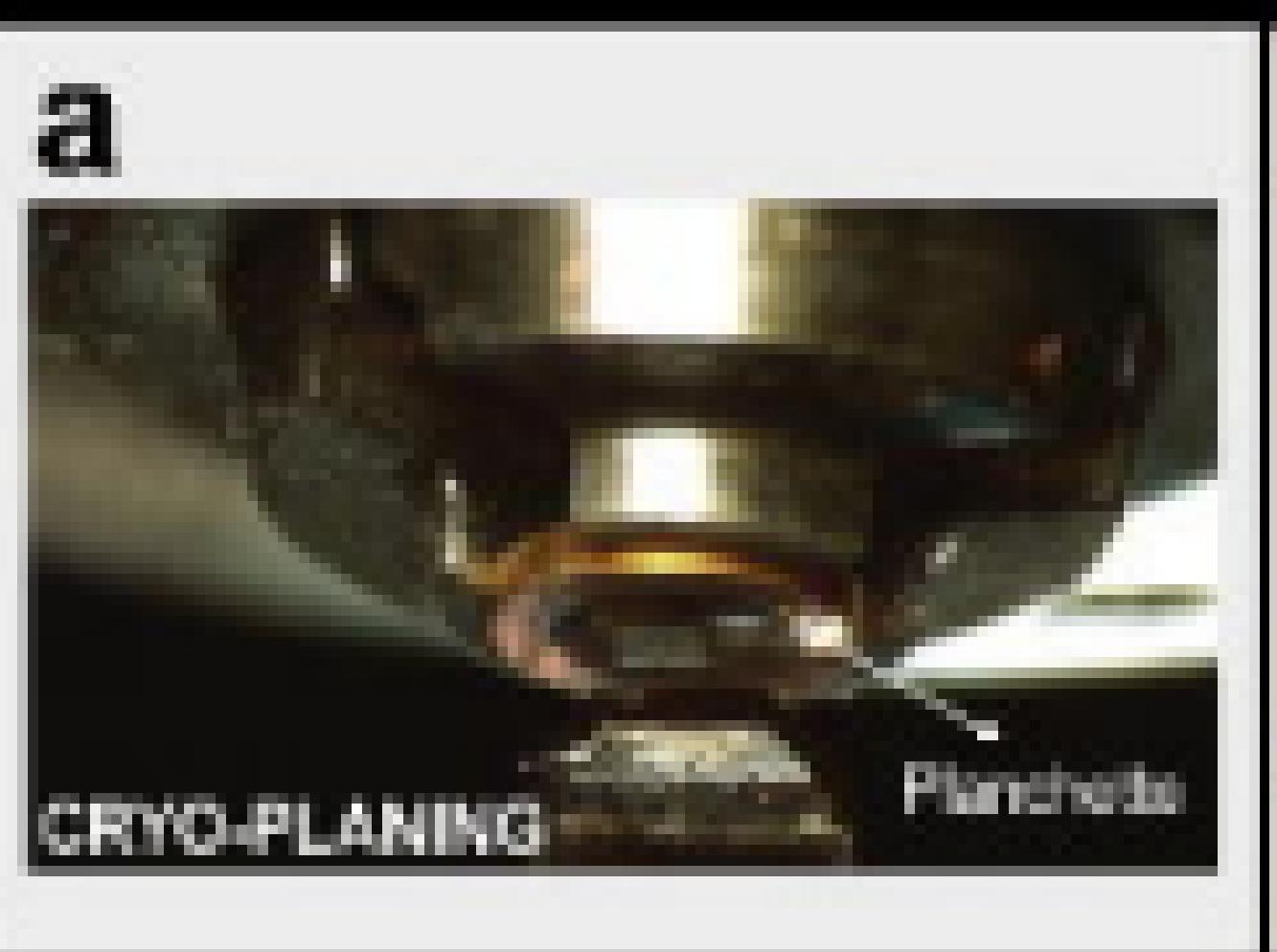



235 9. Buchholz, T.-O., Jordan, M., Pigino, G. & Jug, F. Cryo-CARE: Content-aware image
236 restoration for cryo-transmission electron microscopy data. *IEE*, doi:10.6019/EMPIAR-10110.

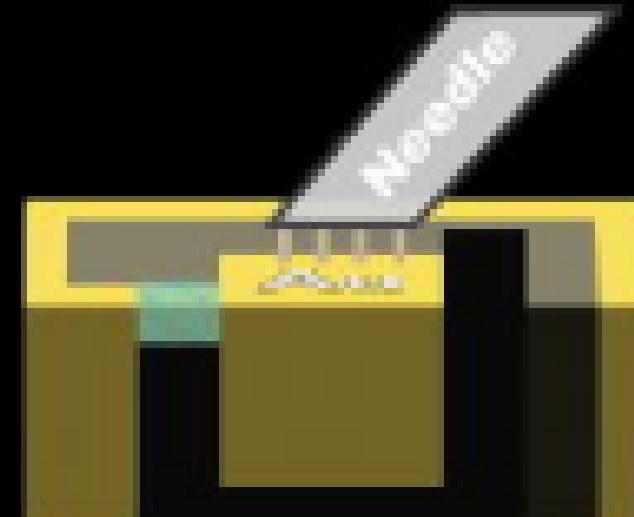
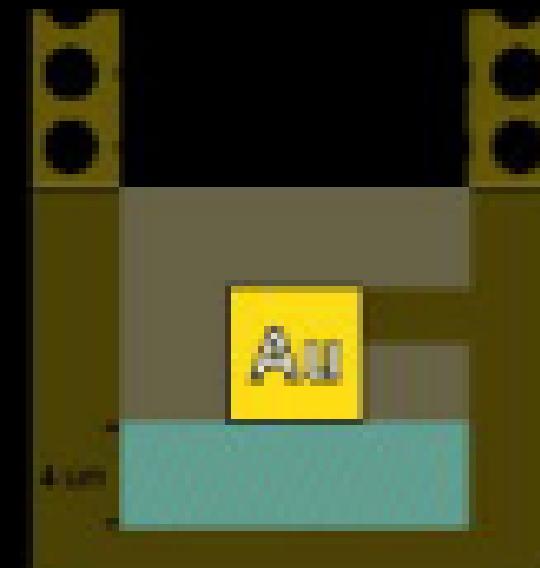
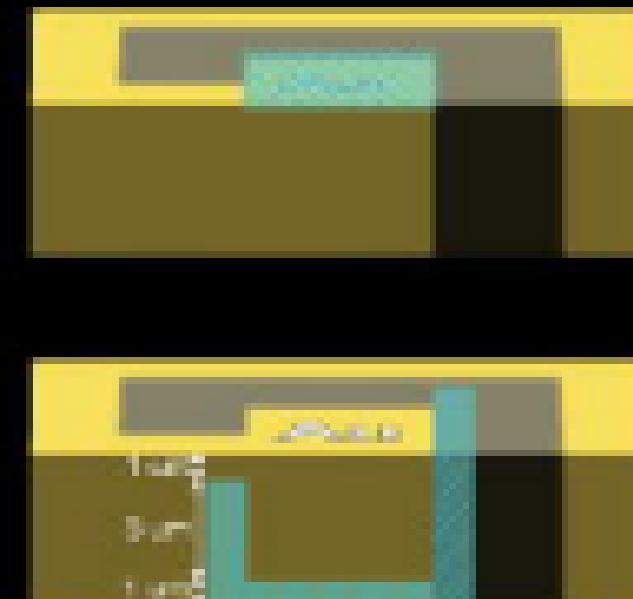
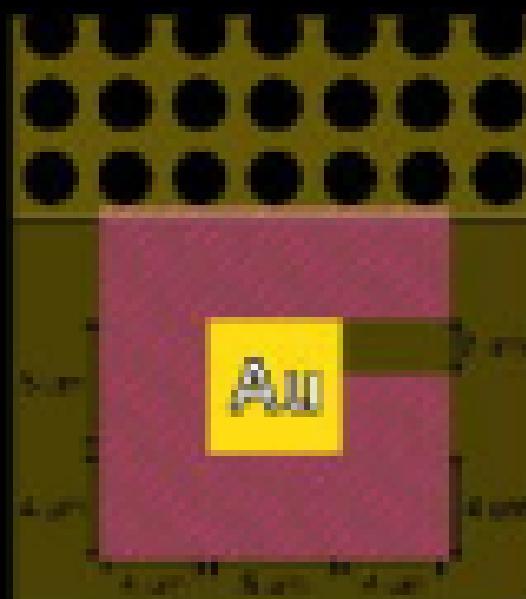






237 10. Martinez-Sanchez, A., Garcia, I., Asano, S., Lucic, V. & Fernandez, J. J. Robust membrane
238 detection based on tensor voting for electron tomography. *J Struct Biol* **186**, 49–61 (2014).

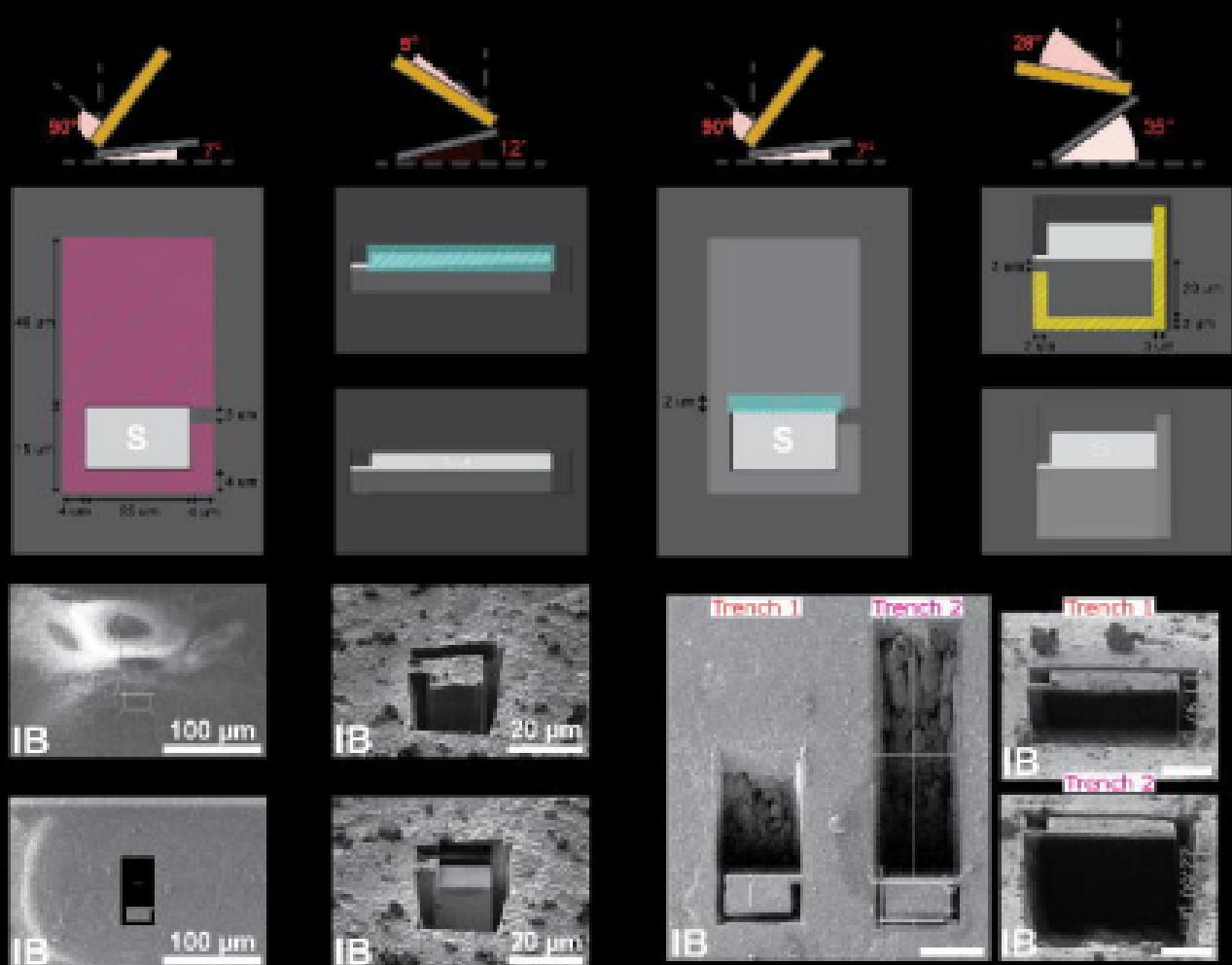


239 11. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators,
240 and developers. *Protein Sci* **30**, 70–82 (2021).

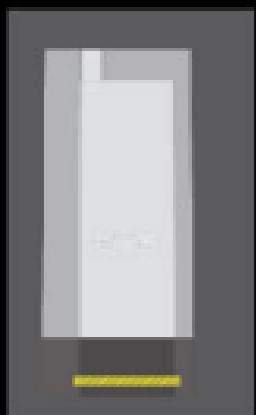
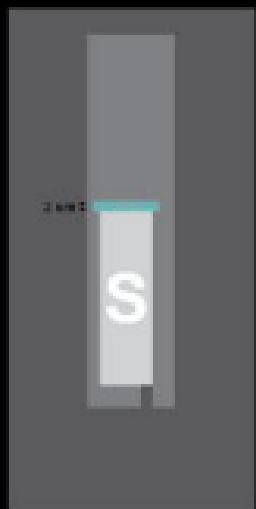
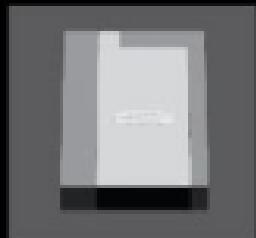
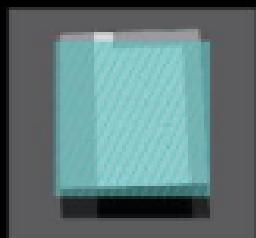






241

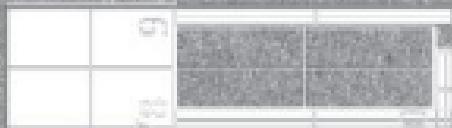


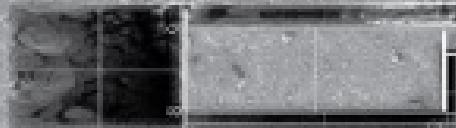





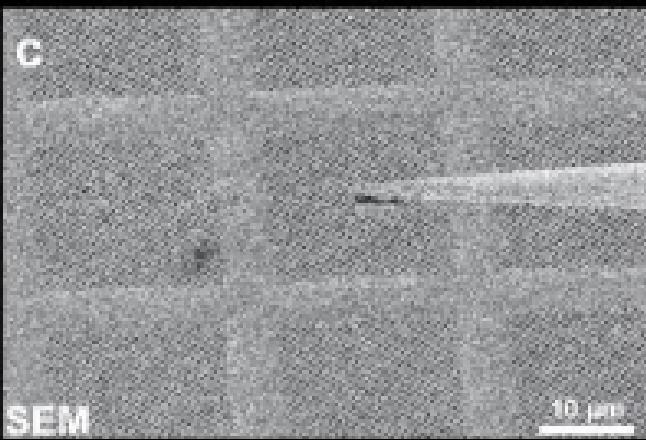
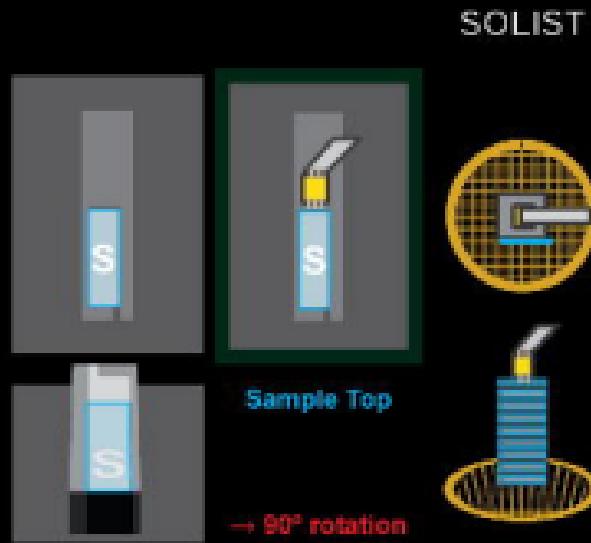
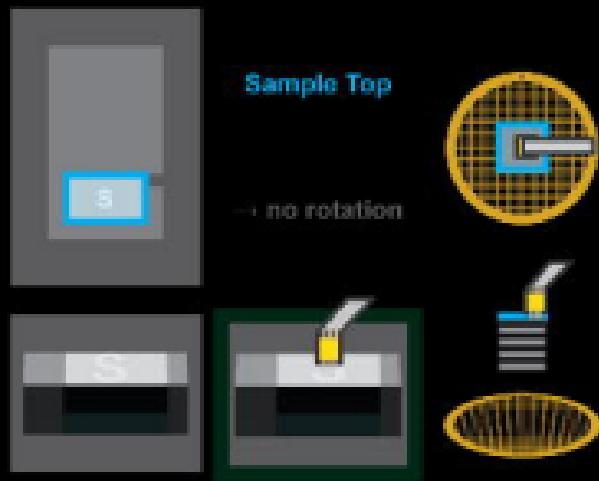








e

IB

50 μ m





f

IB

50 μ m

SOLIST

