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Abstract 
Frontal area MOs (secondary motor area) is a key brain structure in rodents for making decisions based on sensory 
evidence and on reward value. In behavioral tasks, its neurons can encode sensory stimuli, upcoming choices, 
expected rewards, ongoing actions, and recent outcomes. However, the information encoded, and the nature of the 
resulting code, may depend on the task being performed. We recorded MOs population activity using two-photon 
calcium imaging, in a task requiring mice to integrate sensory evidence with reward value. Mice turned a wheel to 
report the location of a visual stimulus following a delay period, to receive a reward whose size varied over trial 
blocks. MOs neurons encoded multiple task variables, but not all of those seen in other tasks. In the delay period, 
the MOs population strongly encoded the stimulus side but did not significantly encode the reward-size block. A 
correlation of MOs activity with upcoming choice could be explained by a common effect of stimulus on those two 
correlates. After the wheel turn and the feedback, the MOs population encoded choice side and choice outcome 
jointly and nonlinearly according to an exclusive-or (XOR) operation. This nonlinear operation would allow a 
downstream linear decoder to infer the correct choice side (i.e., the side that would have been rewarded) even on 
zero contrast trials, when there had been no visible stimulus. These results indicate that MOs neurons flexibly 
encode some but not all variables that determine behavior, depending on task. Moreover, they reveal that MOs 
activity can reflect a nonlinear combination of these behavioral variables, allowing simple linear inference of task 
events that would not have been directly observable.  

Introduction 
The secondary motor area (MOs) in mice is a key frontal 
cortical structure for making decisions based on 
sensory evidence and reward (Barthas and Kwan, 
2017). Inactivation of MOs affects performance in 
multiple tasks, involving multiple sensory modalities 
and behavioral outputs (Erlich et al., 2011, 2015; Sul et 
al., 2011; Guo et al., 2014; Hanks et al., 2015; Goard et 
al., 2016; Coen et al., 2021; Kondo and Matsuzaki, 2021; 
Zatka-Haas et al., 2021; Atilgan et al., 2022). Recordings 
in MOs have shown diverse correlates of task variables 
including sensory inputs, rewards, and choices. 
Choices can often be predicted from MOs activity 
earlier than from activity in other brain regions (Erlich 
et al., 2011; Sul et al., 2011; Murakami et al., 2014; Li et 
al., 2016; Siniscalchi et al., 2016, 2019; Bari et al., 2019; 
Jiang et al., 2019; Steinmetz et al., 2019; Kondo and 
Matsuzaki, 2021; Shin et al., 2021), suggesting that MOs 
plays a key role in decision-making in rodents.   

In certain tasks, MOs shows correlates of upcoming 
choice and expected reward before the relevant action 
is performed. For instance, in a maze-based two-arm 
bandit task (Sul et al., 2011), MOs can encode 
information on which choice will deliver a larger 
reward. Moreover, in tasks that require memorizing a 

sensory stimulus, MOs encodes choice during the delay 
period between stimulus and action (Erlich et al., 2011; 
Li et al., 2016).  

The fact that MOs exhibits correlates of these task 
features in specific tasks, however, does not necessarily 
imply its role is always to encode them. To understand 
the role a particular brain area performs it is necessary 
to understand how the information it encodes varies 
depending on the particular task being performed. 
Furthermore, when task variables correlate with each 
other, neural correlates of one variable can potentially 
be explained by common effects of another. For 
example, a neural correlate of the forthcoming choice 
during a delay period might reflect encoding of a 
planned action, but it might also reflect encoding of a 
sensory stimulus that is used to guide the choice. 

A related question is the way in which task variables 
are encoded in MOs population activity. Do different 
neurons encode different task variables, or can single 
neurons multiplex multiple variables to form a mixed 
representation—and if so, does this occur in a nonlinear 
manner (Rigotti et al., 2013; Bernardi et al., 2020)? This 
question of coding linearity is particularly important in 
tasks where the behavioral variables are themselves 
nonlinearly related, as it affects the conclusions that 
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researchers can draw from observing the encoding of a 
variable—and, indeed, the strategies that downstream 
structures might use to take advantage of MOs signals.  

Here we investigate neural activity in MOs in a decision 
task requiring mice to integrate sensory information 
with reward value. We find that MOs encodes different 
task variables than in other tasks, and encodes two of 
these variables in a nonlinear exclusive-or (XOR) 
fashion. In our task, mice made choices based on 
random visual stimuli, for rewards whose size varied in 
randomly shifting blocks (Lak et al., 2020).  Before 
responding, mice had to wait over a delay period 
(during which the stimulus remained visible) which 
was ended by an auditory “Go” cue. This delay enables 
separate testing for neural correlates of stimulus, 
choice, and reward, because these occur at different 
timepoints. Unlike a bandit task (Sul et al., 2011), in our 
task MOs did not significantly encode the reward block 
(i.e., information on which side will deliver a larger 
reward), and significantly encoded available reward 
size only after the choice was made. Also, unlike in 
memorization tasks  (Erlich et al., 2011; Li et al., 2016), 
an apparent encoding of upcoming choice during the 
delay period could be explained by a common effect of 
the sensory stimulus on choice and neural activity. 
After wheel turn and feedback onset, the MOs 
population encoded choice side and choice outcome 
jointly and nonlinearly according to an exclusive-or 

(XOR) operation. This nonlinear operation would allow 
a downstream linear decoder to infer the correct choice 
side (i.e., the side that would have been rewarded) even 
on zero contrast trials, when there had been no visible 
stimulus. These results indicate that MOs neurons 
flexibly encode some but not all variables that 
determine behavior, depending on task. Moreover, they 
reveal that MOs activity can reflect a nonlinear 
combination of these behavioral variables, allowing 
simple linear inference of task events that would not 
have been directly observable.     

Results 
Mouse choices are guided by stimuli and rewards 
We recorded neural populations from frontal area MOs 
in a two-alternative visual decision-making task with 
unequal rewards (Lak et al., 2020). Mice were head-
fixed and surrounded by 3 screens. On each trial, a 
grating stimulus of randomly varying contrast 
appeared randomly on the right or the left screen. Mice 
turned a steering wheel with their forepaws to report 
the stimulus location for a liquid reward (Burgess et al., 
2017) (Figure 1A). In our version of the task, mice had 
to keep the wheel still for a delay period of 0.8–1.0 s 
after stimulus onset (Figure 1B). Any wheel movement 
during this period extended the delay, and these trials 
were excluded from analysis. The end of the delay 

 

Figure 1. Mouse choices are guided by stimuli and rewards. (A) On each trial, head-fixed mice turn a wheel with their 
forepaws to move a visual stimulus to the center screen. The stimulus appears randomly on each trial on the left or right, at 
random contrast. (B) Single-trial timeline. (C) The available reward size depends on the stimulus in a manner that alternates 
over blocks, where correct left choices are rewarded more than right ones (left blocks, green matrix) or vice versa (right 
blocks, orange matrix). (D) Psychometric performance for left blocks (green) and right blocks (orange) for six mice over 80 
sessions (46,236 trials), plotted as the proportion of right choices for each contrast condition. Mice choose according to the 
stimulus location and contrast, but are also influenced by the block: they choose left more often in left blocks, and choose 
right more often in right blocks. Thin lines, mean performance for individual mice; bold lines and error bars, mean ± s.e. across 
mice. (E) The difference in performance between left and right blocks for the same mice and sessions shown in (D). Mice are 
more influenced by the block structure (larger right–left difference) on low-contrast trials than high-contrast trials. Thin lines, 
mean delta performance for individual mice; bold lines and error bars, mean ± s.e. across mice. 
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period was signaled by an auditory Go cue indicating 
that mice should turn the wheel to drive the stimulus 
into the center screen. Mice received a 10% sucrose 
water reward for correct responses, or an auditory 
white noise burst and time out on error trials. The 

reward differed between left and right choices, with one 
side receiving twice as much liquid (2.4 versus 1.2 µL). 
The high-reward side switched without warning and 
without cue in “reward blocks” of 125–225 trials (Figure 
1C). Regardless of block, the stimulus always had a 50% 

 
Figure 2. MOs activity correlates with multiple task features. (A) A 4mm round cranial window was implanted over MOs, and 
each imaging session targeted a ~840 x 840 um field-of-view (FOV) within this window (yellow squares). The stereotaxic locations 
of twelve unique FOVs from six mice are shown relative to +1 mm AP in the cranial window (example brain image for context). 
Image registration, cell detection and fluorescence deconvolution were done offline using Suite2P (Pachitariu et al., 2016). (B) 
Raster plot showing activity of 1,957 neurons from an example recording session over five trials of the task. Neurons were 
organized vertically using rasterMap (Stringer et al., 2019) to place correlated neurons together. Solid lines denote individual trial 
starts, and task events are labeled along with the corresponding segment of wheel movement velocity. (C) Raster showing 
stimulus-aligned mean activity of the same population, sorted vertically as in (B), averaged over all trials from the session. (D) 
Raster showing the stimulus-aligned average difference between contra and ipsi stimulus trials. (E–H) Same as in (D), for the 
stimulus-aligned average difference between contra and ipsi choice (E), correct and error outcome (F), contra and ipsi reward 
block (G), and high- and low-volume available reward trials (H). Horizontal lines mark 5 example neurons analyzed in Figure 3. 
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chance of appearing on either side, and a reward was 
only given for choosing the correct stimulus side (Lak 
et al., 2020).  

Mice mastered this task after several weeks of training 
(43 ± 7 days between initial water restriction and first 
imaging session, mean ± s.e., n = 6 mice), efficiently 
combining current sensory evidence with expected 
reward (Figure 1D). In this task, high-contrast stimuli 
are unambiguous and should always be chosen, 
because choosing the other side gives no reward. 
Conversely, on low-contrast trials, where the stimulus 
side is ambiguous, mice should favor the side assigned 
by the block, as this leads to higher expected reward 
(Whiteley and Sahani, 2008; Lak et al., 2020). Consistent 
with this prediction, psychometric curves show larger 
behavioral effects of the block side on low-contrast 
trials than high-contrast trials (Figure 1E). 

MOs activity correlates with multiple task features 
Neurons in frontal area MOs showed diverse and 
coordinated activity during task performance. We used 
multiplane two-photon calcium imaging in CaMK2a- 
tTA;tetO-GCaMP6s mice (n = 6) performing the task to 
record the activity (deconvolved fluorescence) of 
neurons in layer 2/3 of either the left or right 
hemisphere of MOs, across various fields of view (1.21 
± 0.08 mm anterior and 0.81 ± 0.02 mm lateral to bregma; 
mean ± s.e. n = 12) in a 4 mm cranial window centered 
at +1 mm anterior to bregma (Figure 2A).  To visualize 
population activity in an unsupervised manner, we 
used rasterMap (Stringer et al., 2019), which arranges 
neurons so that those with correlated activity are placed 
close together. Analysis of individual trials revealed 
populations of neurons active in response to task events 
(Figure 2B). Plotting the mean peristimulus time 
histogram (PSTH) of all neurons revealed a striking 
structure, with neurons diversely activated or 
suppressed at different moments within the trial (e.g., 
pre-trial period, delay period, or response/feedback 
period, Figure 2C).  

As a first analysis of neural coding of task variables, we 
visualized the difference in mean response between 
trial types. This analysis revealed strong apparent 
correlates of population activity with stimulus side 
(contra vs. ipsi, Figure 2D), choice side (contra vs. ipsi, 
Figure 2E), and outcome type (correct vs. error, Figure 
2F). By contrast, there appeared to be weaker, if any, 
neural correlates of reward block (contra vs. ipsi, Figure 
2G) and available reward (high vs. low: the reward that 
would be given for a correct choice, depending on the 
combination of stimulus side and block but 
independent of the mouse’s actual choice, Figure 2H).  
However, because the task variables are themselves 

correlated, further analyses are required to isolate 
which cells’ activity relate to which task variables. 

MOs neurons encode stimuli, choices, and 
outcomes 
To isolate which task features were encoded by 
individual neurons, we first used a kernel-fitting 
approach (Park et al., 2014; Steinmetz et al., 2019) 
(Figure 3A). We fit the activity of each neuron as a sum 
of eleven kernel functions time-locked to task events. 
Five of these kernels captured variations in amplitude 
and timing of visual responses (one kernel for high- or 
low- contrast stimuli on each side and one for zero-
contrast trials), and were locked to stimulus onset (-0.5–
2s relative to stimulus onset). A “block” kernel and an 
“available reward” kernel captured possible differences 
between contra and ipsi blocks, and between trials of 
low vs. high available reward, at all moments within 
the trial (-0.5–2s relative to stimulus onset). Two 
additional kernels captured correlates of left and right 
movements (-0.5–1s relative to movement onset): an 
“action” kernel triggered by a movement in either 
direction, and a “choice” kernel capturing differences in 
activity between left and right movements (Steinmetz et 
al., 2019). Finally, two “outcome” kernels (-0.5–1s 
relative to feedback time) captured correlates of 
feedback delivery/reward consumption on correct and 
error trials. Comparing the model’s predictions with 
observed firing showed that these kernels were 
sufficient to capture the activity of MOs neurons 
(Figure 3A).  

To determine which task features were needed to 
predict the activity of which individual neurons, we 
used a nested fitting procedure (Figure 3B). This 
approach asks whether, for each cell and each feature, 
prediction of the cell’s activity using all feature kernels 
is more accurate than prediction using all but one 
feature kernel to be tested. We deemed that a feature 
was necessary to predict a cell’s activity if it increased 
explained variance by >1% on held-out data. For 
example, in the neurons labeled in Figure 2, the full 
kernel model successfully captured a range of different 
firing dynamics across neurons, and the nested fitting 
protocol successfully quantified the contributions of 
various task features to individual cells (Figure 3B). The 
fraction of cross-validated variance explained by the 
kernels was frequently small, even for neurons whose 
mean rates they accurately predicted (e.g., 2.2%, 17.5%, 
45.1%, 41.7%, and 28.7% for Cells 1–5,  Figure 3B), as 
expected from trial-to-trial variability due to factors 
such as the encoding of task-independent variables 
(Musall et al., 2019; Stringer et al., 2019).  

Accounting for the activity of MOs neurons typically 
required kernels for stimulus, choice, action, and 
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outcome, but rarely required kernels for available 
reward and reward block. The most commonly 
required kernels were those for outcome (24.2 ± 1.7% of 

neurons in a session, mean ± s.e., n = 36 sessions), 
followed by stimulus (7.5 ± 0.5%), choice (4.9 ± 0.6%), 
and action (3.3 ± 0.3%). Very few neurons required the 

 

Figure 3. MOs neurons encode stimuli, choices, and outcomes. (A) Activity on each trial is modeled as a sum of cell-
dependent kernels aligned to the relevant event onset time. Black trace: firing rate for an example cell averaged over trials. 
Colors: individual kernels averaged over trials. Gray: prediction from kernel sums. (B) Example nested fitting analysis for the five 
example neurons labeled in Figure 2. Firing rate was averaged across the trial types indicated (shaded regions, mean ± s.e. 
across trials): contralateral or ipsilateral stimuli (blue or red), contralateral or ipsilateral choices (purple or pink), correct or error 
outcomes (green or brown), contra or ipsi block (green or orange), and high or low available reward (magenta or green). Solid 
lines: cross-validated prediction using all kernels. Dashed lines: predictions refit from a model excluding the indicated kernel. 
Note for each of these neurons the good fit of the full model is lost when excluding one of the kernels (stimulus, choice and/or 
outcome), indicating that these neurons have specific stimulus-, choice-, and/or outcome-related activity that cannot be explained 
by the remaining kernels. (C) Percentage of cells (mean ± s.e.) across 36 sessions (n = 89,092) in which >1% of variance is 
explained by the given task event kernel, assessed through nested fitting analysis. Neurons with outcome kernels dominate the 
population, followed by stimulus, choice, and action. Very few available reward or block neurons were identified. (D) Neurons 
often encode more than one task feature, as shown by overlapping regions of the Venn diagram. A 4-way Venn diagram was 
used for simplicity due to the very small numbers of neurons encoding available reward or block. 
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kernels for available reward (0.16 ± 0.05%) or reward 
block (0.002 ± 0.002%) (Figure 3C). Neurons often 
encoded more than one task feature (Figure 3D), 
reflecting a mixed-selectivity code (Rigotti et al., 2013).  

MOs significantly encodes all task variables except 
reward block 
The kernel analysis estimates how many neurons 
encode specific task features but not how well the 
population encodes those features.  Furthermore, it 
does not provide a rigorous measure of statistical 
significance. Such a measure should take into account 
potentially spurious correlations arising from slow 
drifts in neural activity and unrelated slow drifts in 
behavioral timeseries (Harris, 2020a).  

We solved this problem by decoding task variables 
from neural activity and comparing decoder 
performance to surrogate data where there was no 
relationship between neural and task variables (Figure 
4). We trained L1 regularized logistic regression 
classifiers to predict binary task variables on each trial: 
stimulus side (contra vs. ipsi), choice side (contra vs. 
ipsi), outcome (correct vs. error), block (contra vs. ipsi) 
and available reward (high- vs. low-volume). The 
classifiers operated on population neural activity at a 
range of time points across the trial, aligned to cue onset 
(-0.5–3s). With this approach, we were able to 
determine when, over the course of a trial, a task feature 
could be decoded from the neural population. We 
quantified the performance of logistic decoders as the 
cross-validated log2 likelihood ratio of the “full” 
decoder to a “naïve” decoder without access to neural 
activity (which predicted the probability of each task 
feature simply by its frequency in the training set). This 
predictability measure provides an estimate of the 
mutual information between neural population activity 
and the task variable (Kjaer et al., 1994; Harris et al., 
2003). The predictor yielded positive predictability 
values for all variables following the Go cue, and for 
choice and stimulus side during the delay period 
(Figure 4A-E, black). To test whether these predictions 
were significantly larger than would be expected by 
chance, we compared predictions to surrogate data, 
using one of two methods according to whether the task 
variable being predicted was randomized. 

We first tested the neural decoding of randomized task 
variables, and found significant decoding of stimulus, 
and available reward but not of reward block. In our 
task, reward block, stimulus side, and available reward 
size are randomly generated independent of the 
subject’s choices. To test the significance of decoding 
these variables, we used a pseudosession test (Harris, 
2020a), which compares the decodability of the actual 
task variable series against a null ensemble obtained by 

repeatedly predicting the task variable series that 
would have occurred in “pseudosessions” generated 
using the same probability rules  (Figure 4B,C,E, gray). 
For block coding, the apparent predictability of the 
block side from neural activity was not significant: the 
measured neural activity could be used to predict 
randomly-generated pseudoblocks just as well that it 
could be used to predict the block sequence that the 
mouse experienced (Figure 4B, F). For both the real 
block sequence and the pseudoblock sequences, 
predictions were strongest from neural activity 
immediately after the Go cue, presumably because 
activity was highest at this time (Figure 2C). Even at this 
time, however, the real block sequence was no better 
predicted than the ensemble of pseudoblock sequences, 
indicating that neural activity was no more correlated 
with the block sequence than expected by chance. By 
contrast, prediction of the true stimulus side sequence 
far exceeded prediction of a pseudosession sequence 
(Figure 4E, G). Prediction of available reward size was 
weak but significant at times after the Go cue, when 
rewards were being consumed (Figure 4C). This coding 
of available reward size thus most likely reflects an 
effect of the physical volume of reward delivered, 
rather than a cognitive coding of expected reward, 
which would also occur during the delay period.   

We then considered task variables that depend on the 
animal’s behavior—choice and outcome—and found 
coding of choice starting in the delay period, and of 
outcome starting from the Go cue (which, due to the 
slow sampling of calcium imaging, cannot be 
distinguished from the movement and reward times). 
To test for significant decoding of these variables that 
are not randomized but depend on the animal’s choices, 
we used a linear shift method, which compares the 
predictability of the genuine variable to a null ensemble 
generated by shifting neural activity forward or 
backward between trials (Harris, 2020b). This test 
revealed strong coding of both outcome and choice 
following Go cue onset, with choice also more weakly 
coded during the delay period (Figure 4A, D).   

However, the apparent relationship between delay-
period neural activity and the upcoming choice could 
be explained by their common dependence on the 
visual stimulus. To test this, we considered two 
decoders: a ‘full’ decoder that predicted one task 
variable from the other plus neural activity (e.g., 
predicting choice from stimulus plus neural activity) 
and a ‘naïve’ decoder that predicted one task variable 
from the other (e.g., predicting choice from stimulus). 
We then computed the partial predictability of one task 
variable given the other by subtracting the log2 
likelihoods of the two predictions. This analysis 
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confirmed the predictability of stimulus and choice 
after the Go cue (Figure 4H,I), but found no significant 
encoding of choice in the earlier delay period (Figure 
4H).  This result suggests that during the delay period, 
the predictability of choice from MOs activity alone 
(Figure 4D) could be explained by the predictability of 
choice from stimulus. To further investigate this 
possibility, we restricted the previous analysis to trials 
of zero contrast, when there was no visible stimulus at 
all. In these trials, the “stimulus side” variable—which 
indicates which choice would be rewarded—is invisible 
to the mouse.  Confirming our previous results, we 
found that choice was significantly coded only after the 
Go cue, and not during the delay period (Figure 4J). As 
for the stimulus side, as expected, it was not encoded 
during the delay period (the stimulus was invisible in 
these trials), but intriguingly, it was encoded following 
the Go cue (Figure 4K). As we show next, this encoding 
could be explained by a nonlinear combination of 
choice and outcome signals.  

MOs encodes exclusive-or (XOR) of choices and 
outcomes 
At zero contrast, when the stimulus is invisible, it is 
possible to infer the stimulus-side variable from the 
animal’s choice and the trial outcome via an exclusive-
or (XOR) operation: a rewarded left choice or 
unrewarded right choice implies the stimulus side was 
on the left, while a rewarded right choice or 
unrewarded left choice implies right. It is well known 
that XOR operations cannot be performed by linear 
readout (Minsky and Papert, 1969), yet we found it 
possible to linearly predict stimulus side from MOs 
activity even on trials of zero contrast (Figure 4K). This 
therefore supports the idea that the MOs population 
encodes a nonlinear interaction between the choice and 
outcome variables. Examining neural activity rasters of 
the four possible choice-outcome combinations 
revealed example MOs neurons that appeared to 
encode choice-outcome interactions on zero-contrast 
trials (Figure 5A–D). To confirm this statistically, we 
deployed a two-way ANOVA test that included a main 

 

Figure 4. MOs significantly encodes all task variables except reward block. (A–E) Predictability of task variables from neural 
activity at various timepoints in the trial. Shown are predictability of outcome (A), reward block (B), available reward (C), choice 
(D) and stimulus side (E).  Black data points, mean ± s.e. of predictability for actual neural and task data (n = 36 sessions); gray 
filled region, 2.5th–97.5th percentile of null distribution generated by predicting “pseudosessions” where data were randomly 
regenerated (B,C,E) or linearly shifted in time (A,D). Asterisks denote timepoints when the actual task variable is predicted 
significantly better than the null ensemble. Vertical dashed lines denote earliest possible stimulus onset time (-1 s) and the time 
of Go cue (0 s). (F) Top: true block sequence (black line) and its prediction from neural activity (blue curve), for each trial of an 
example session. Bottom: randomly regenerated pseudoblock sequence (gray line) and its prediction from neural activity (blue 
curve). (G) Same as (F) but for stimulus sequence in the same session. Only the first 100 trials are plotted. (H) Predictability of 
choice side from neural activity, taking into account the common effect of stimulus side, plotted as in (A-E). (I) Predictability of 
stimulus side from activity, taking into account the common effect of choice side. (J–K) The same decoder as in (H–I), but this 
time trained on non-zero contrast trials and validated on held-out zero-contrast trials. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.11.539851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.539851
http://creativecommons.org/licenses/by/4.0/


8 
 

effect term for choice and outcome independently, plus 
an interaction term. Of the entire population of 89,092 
neurons, 8,919 cells had a significant main effect of 
outcome, 8,105 had a significant main effect of choice, 
and 4,912 significantly coded an interaction of choice × 
outcome (p < 0.05, F-test; Figure 5E). To visualize the 
geometry of coding for the choice, outcome, and their 
interaction (XOR), we trained logistic decoders to 
predict these three variables on each trial, training each 
on all non-zero-contrast trials and validating on held-
out zero-contrast trials. When labeled by trial type, the 
points formed distinct corners of a 3-dimensional 
tetrahedron (Figure 5F), unlike the planar geometry 

that would reflect a linear code (Bernardi et al., 2020). 
All three decoders performed well above chance, as 
assessed against pseudo-decoders that were trained to 
predict trial identities using trial-shifted neural data 
(Figure 5G). 

Discussion 
We found that in a visual decision-making task where 
reward sizes varied in blocks, the MOs population 
encoded sensory stimulus, available reward size, choice 
direction, and trial outcome (correct vs. error), 
However, the encoding of upcoming choice direction in 
the delay period between stimulus presentation and the 

 

Figure 5. MOs encodes exclusive-or (XOR) of choices and outcomes. (A–D) Peri-event time histograms and rasters of 
activity time-aligned to feedback onset, shown for four example neurons, split by the four possible conditions on zero-contrast 
trials: rewarded contra choices, unrewarded contra choices, rewarded ipsi choices, unrewarded ipsi choices. Neurons do not 
linearly code choice and outcome, as indicated by different responses to each condition. (E) Two-way ANOVA for all neurons (n 
= 89,092) reveals cells with significant main effects for choice and outcome, but also neurons with a significant interaction effect, 
which can be used to solve the XOR function. The inferred stimulus location (i.e., the side to which a choice would have been 
rewarded) is given by the XOR of choice and outcome, even on zero-contrast trials. (F) Decoding of outcome, choice, and 
inferred stimulus location with one point for each zero-contrast trial (x, y, and z axes, respectively) for an example session. If 
XOR decoding were not present, the tetrahedron would be two-dimensional. (G) Decoder accuracy for XOR (top), choice 
(middle), and outcome (bottom) across all sessions. Gray vertical bars denote the mean ± s.e. across mice for the accuracy of 
pseudo models trained on a series of trial-shifted data (shifts = -20 to +20 trials); the colored cross is the mean ± s.e. across 
mice for the accuracy of the true model trained on non-shifted data (shift = 0). 
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Go cue could be explained by encoding of the stimulus 
side. Encoding of available reward size was weakly 
present during the feedback period when rewards were 
consumed. Encoding of the reward block side was not 
statistically significant.  

Data from experiments such as this one require careful 
statistical analysis to avoid detecting “nonsense 
correlations” that can occur with methods assuming 
statistical independence between trials (Yule, 1926; 
Elber-Dorozko and Loewenstein, 2018; Harris, 2020a). 
For example, predicting the block variable from 
population activity following the Go cue on each trial 
yielded an apparent correlation, even using cross-
validation to assess fit quality. However, this apparent 
prediction was not genuine. Cross-validation is not 
sufficient to eliminate predictions between timeseries 
that show independent slow changes (Harris, 2020a); 
indeed, it was possible to predict a fake sequence of 
block variables, drawn randomly using the same 
probability rules as the original blocks (a 
“pseudosession”) just as accurately as the block 
sequence the mouse experienced. This shows that the 
apparent predictability of the block variable is no more 
than what would be expected due to random 
coincidence between slowly drifting neural activity and 
temporally extended block variables. 

During the delay period between visual stimulus and 
motor response, neural activity in MOs correlated with 
both the stimulus side and the mouse’s upcoming 
choices, but this could be explained by encoding of only 
the visual stimulus. Stimulus and choice are themselves 
correlated, so delay period coding could in principle 
reflect neural correlates of the visual stimulus (which 
remains on the screen), the mouse’s choice, or 
preparatory activity for a movement to be released 
when the Go cue sounds. Our data suggest that a neural 
correlate of the visual stimulus is sufficient to explain 
activity in the delay period: if delay-period activity 
encoded the upcoming choice then activity should 
predict upcoming choice even on zero-contrast trials, 
but this was not the case. This finding differs from 
previous findings in memory tasks, in which delay-
period activity correlates better with upcoming 
movement than sensory stimuli (Erlich et al., 2011; Li et 
al., 2016).  

We hypothesize this difference from previous results 
arises from differences in task design. Our task is not a 
memory task: the stimulus remains on the screen 
throughout the delay period, so the mouse does not 
need to commit to a choice until the Go cue sounds. In 
memory tasks, where the stimulus is not physically 
present during the delay period, the subject must either 
memorize the stimulus location or commit to an action 

during the delay period. Studies of memory tasks have 
distinguished these two possibilities by examining 
error trials, or by using tasks in which auxiliary stimuli 
direct the subject to respond differently to the same cue, 
with mixed results. For example, in a task in where the 
shape of the fixation spot indicated whether monkeys 
should saccade toward or away from a visual cue 
(Funahashi et al., 1993), most frontal neurons encoded 
the cue location with a minority encoding the upcoming 
movement direction. In a memory-guided orienting 
task for rats, analysis of error trials suggested that most 
neurons in frontal orienting fields predicted upcoming 
motion (Erlich et al., 2011), and a similar result was 
found in a left/right licking task in head-fixed mice (Li 
et al., 2016). In contrast, in a task requiring monkeys to 
compare an initial sensory stimulus to a second 
stimulus following a delay, frontal cortical activity 
during the delay period correlated with the initial 
stimulus (Romo et al., 1999).  

The lack of significant coding of reward block side may 
also be specific to this task. In our task, block side 
controls the amount of reward given for a correct 
choice, but does not affect the probability of a stimulus 
appearing on either side: the mouse is always rewarded 
for choosing the side with the visual stimulus, and 
never for the side without it. Psychometric performance 
shows that stimulus strongly influences animal choices 
and block only weakly, so one possibility is that the 
encoding of reward block is smaller than we could 
detect in our analyses. Another possibility is that 
because the stimulus remains onscreen throughout the 
trial, the animal’s strategy is different and does not 
require MOs to encode this variable at all.  

Indeed, in contrast to our results, a maze-based two-
armed bandit task showed MOs correlates of choice 
(and thus likely of reward block) prior to the choice 
itself (Sul et al., 2011). Furthermore, data from our lab 
using a head-fixed two-armed bandit task—with the 
same wheel behavior as the present task but no visual 
stimuli—does show significant coding of block side 
during the intertrial interval (Lebedeva et al., 2022). We 
suggest that in two-armed bandit tasks such as these, 
committing to a particular choice in advance of choice 
execution is an optimal strategy; therefore delay-period 
MOs activity will correlate with choice and block in 
bandit tasks, but not in the current task. This supports 
the hypothesis that the role of frontal cortex in different 
tasks is flexible and can differ depending on the 
behavioral strategy used for each task (Duncan, 2001).  

In summary, we observed diverse neural correlates in 
MOs, including trial outcome, action, choice, visual 
stimulus, and even a nonlinearly coded inference of 
stimulus side from outcome and choice on trials with 
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no visual stimulus. The correlates of MOs activity we 
found in this task differ from correlates observed in 
other choice tasks, suggesting that frontal cortex can be 
rewired in a manner appropriate to the behavioral 
demands of each task. Understanding the precise 
neural correlates found in different tasks will be 
essential towards deciphering the learning rule that 
frontal cortex uses to form these representations. 
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Data and code availability 
Data and code are available at 
https://figshare.com/projects/Mouse_frontal_cortex_nonlinearly_encodes_sensory_choice_and_outcome_signals/1666
22.  

Methods 
Experimental procedures 
All experiments were conducted according to the UK Animals Scientific Procedures Act (1986) under appropriate 
project and personal licenses. 

Surgeries 
Six transgenic adult mice (60 days or older; 4 male) expressing GCaMP6s in excitatory neurons (CaMK2a- tTA;tetO-
GCaMP6s) were implanted with a custom metal head plate with 7mm circular well, inset with a 4mm glass cranial 
window set over secondary motor area (MOs). Animals were first anesthetized with isoflurane and an ophthalmic 
ointment was applied to the eyes, and injections of carprofen and dexamethasone were administered. The hair on the 
head at the planned incision site was shaved away, and the mouse was transferred to a stereotaxic apparatus where its 
skull was secured with ear bars, and body kept on a feedback-controlled heating pad (ATC2000, World Precision 
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Instruments, Inc.). The scalp was cleaned with 70% ethanol to remove loose hairs and other detritus, after which a 
lidocaine ointment was applied. Following a final application of iodine and ethanol, the scalp was excised, and the 
edges of the incision were sealed to the skull with a cyanoacrylate adhesive. The head plate was attached medially to 
the skull at +1 mm bregma using dental acrylic resin. A craniotomy was made using a 4mm biopsy punch (Integra, 
Miltex) and angled probe (10032-13, Fine Science Tools) to remove the medial bone flap, taking care not to disturb the 
central blood vessel or the surrounding dura. A double coverslip (4mm inner, 5mm outer) was placed into the 
craniotomy, held in place with a toothpick and bonded to the skull with cyanoacrylate adhesive. Finally, all exposed 
skull was covered with additional dental cement to seal the cranial window and secure the head plate. Post-operative 
pain prevention was maintained with carprofen in drinking water on the three following days. 

Behavioral task 
Behavioral training started at least 7 days after the head plate implantation surgery. Animals were handled and 
acclimatized to head fixation for 3 days, then began water restriction and training in a 2-alternative forced choice visual 
detection task (Burgess et al., 2017), after which they were introduced to unequal water rewards for left or right choices 
(Lak et al., 2020). Three computer screens surrounded the mouse, spanning -135 to +135 v° along the azimuth axis and 
-35 to +35 v° along the elevation axis. After a pre-trial period of 0.5–1 s where the mouse must keep the wheel still, a 
vertical grating stimulus (square wave with Gaussian window) of varying contrast (100, 50, 12, 5, 0%) appeared on 
either the left or right monitor with 50% probability (0% contrast trials were also assigned to the left or right screen with 
the same probability). After a delay period of 0.8–1.0 s, in which the mouse must continue to keep the wheel still, a brief 
Go cue played (0.1 s, 8 kHz) after which the mouse could report its decision by turning the wheel located underneath 
its forepaws. Impulsive movements, in which the wheel was moved before the Go cue, caused the delay period to reset 
until quiescence was achieved. Wheel movements after the Go cue drove the stimulus across the monitor(s). A reward 
was delivered if the stimulus reached the center of the middle monitor (a correct trial) followed by a 1 s post-feedback 
period during which the stimulus remained onscreen for 0.5 s. By contrast, a 0.5 s white noise was played if the stimulus 
was moved offscreen in the opposite direction (an error trial), followed by a 2 s post-feedback period. All trials had a 
further 1 s inter-trial interval after the feedback period. Unequal rewards, in which either left or right correct choices 
elicited larger rewards (2.4 µL versus 1.2 µL of water), occurred in blocks of 125–225 trials (drawn from a uniform 
distribution). Only those trials without impulsive movements were included in subsequent analyses. 

The behavioral experiments were controlled by custom-made software written in MATLAB (Mathworks) which is freely 
available (Bhagat et al., 2020). Instructions for hardware assembly are also freely available 
(https://www.ucl.ac.uk/cortexlab/tools/wheel). 

Two-photon imaging 
Calcium imaging was performed in trained animals while they were head-fixed and performed the behavioral task. 
Layer 2/3 in MOs was imaged using a commercial two-photon microscope (Bergamo II, Thorlabs Inc) controlled by 
ScanImage. A Ti:sapphire laser (Chameleon Vision, Coherent) was set to a 920 nm wavelength, and the beam was 
focused with a 16x water-immersion objective (0.8 NA, Nikon). Images were acquired at a frequency of 30 Hz across six 
planes (5 Hz per plane), a resolution of 512 x 512 pixels, with a frame width of 840 µm. The fly-back plane was excluded 
from further analysis. 

Cell detection 
Registration, cell detection, neuropil correction, and deconvolution of the two-photon imaging data were carried out 
using Suite2P (Pachitariu et al., 2016). Imaged planes were aligned with non-rigid registration (four blocks, 128 x 128), 
and spiking activity was deconvolved from calcium fluorescence using a kernel with a timescale of 2 s. Deconvolved 
spike traces were used for all subsequent analyses. 

Kernel regression analysis 
To identify which task features were encoded by which neurons, we began by fitting a kernel-regression model. In this 
analysis, the firing rate of each neuron is modeled as a linear sum of kernels aligned to task events. For the current 
study, we used kernels for reward block, available reward, stimulus onset, choice, action onset, and outcome.  

For each kernel to be fit on a task event, d, we constructed a Toeplitz predictor matrix Pd of size T × Ld, in which T is the 
total number of time points in the training set, and Ld is the number of lags required for the event kernel. This matrix 
contains diagonal stripes where Pd(t,i) = 1 if t – i ∈ d and 0 otherwise. Predictor matrices were defined similarly for all 
other kernels, then all predictors were horizontally concatenated to yield a global prediction matrix P of size T × 235.  
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To regularize the kernel fit, we first applied reduced-rank regression (Steinmetz et al., 2019), to factorize the kernel 
matrix K into the product of a 235 × R matrix B and a R × N matrix W, minimizing the total error: E = ‖F – PBW‖2. The 
T × R matrix PB may be considered as a set of temporal basis functions, which can be linearly combined to estimate each 
neuron’s firing rate. Reduced-rank regression ensures that these basis functions are ordered, so that predicting 
population activity from only the first r columns will result in the best possible prediction from any rank r matrix. 

To derive neuron n’s kernel functions, we estimated a weight vector wn to minimize En = |fn – PBwn|2, where fn is neuron 
n’s firing rate, PB is the set of basis functions, and En is the error for neuron n. We used elastic-net regularization using 
the package glmnet (Friedman et al., 2010) (compiled for MATLAB 2020b; https://github.com/lachioma/glmnet_matlab) 
with parameter α = 0.5, determining the optimal number of columns rn of PB to keep when predicting neuron n as the 
one giving optimal performance on five-fold cross validation. The kernel functions for neuron n were then unpacked 
from the 235-dimensional vector obtained by multiplying the first rn columns of B by wn. Neurons with total cross-
validated variance explained of <1% were not considered responsive.  

To assess the selectivity of individual neurons for each kernel, we used a nested approach as in (Steinmetz et al., 2019). 
We first fit the activity of each neuron, excluding the kernel to be tested, using the reduced-rank regression procedure 
above (including deriving a new basis set). We subtracted this prediction from the raw firing rate to obtain the residuals, 
representing aspects of the neuron’s activity not explainable by the other kernels. We then repeated the reduced-rank 
regression procedure but this time using the residual firing rates as the independent variable, and using only the test 
kernel. The cross-validated quality of this fit determined the variance explainable only by the test kernel. If this variance 
explained was >1%, the neuron was deemed selective for that kernel. 

Decoding task variables from the neural population 
We trained L1 (lasso) regularized logistic regression models to predict trial-by-trial task features (stimulus on the 
contralateral or ipsilateral screen, contra or ipsi choice by the mouse, correct or error outcome, contra or ipsi block, or 
high- or low-volume reward) from population neural activity.  

To predict a binomial task feature (represented as 1 or 0) at time t, we trained a logistic regression model that included 
as predictors a matrix of neural activity at time t (nTrials x nNeurons). We used MATLAB cvglmnet (three-fold cross-
validation), using the lambda giving optimal cross-validated performance. We compared this full model to a naïve 
model whose trial-by-trial prediction included no neural data and predicted the probability of each task feature simply 
by its frequency in the training set. The cross-validated log2 likelihood ratio of these models measures the predictability 
of the task feature from neural activity, and provides a lower-bound estimate of the mutual information between them 
(Harris et al., 2003; Itskov et al., 2007).  

To separate the neural correlates of stimulus location and choice, which are correlated in the task, we additionally 
utilized a more rigorous naïve model for predicting stimulus side or choice direction that accounts for this correlation. 
For these models, we trained a full model that included as predictors a matrix of neural activity at time t (nTrials x 
nNeurons) and a behavioral matrix (for stimulus side, this was a nTrials x 1 vector of the animal’s choices; for choice 
direction, this was a nTrials x 8 “one-hot encoding” design matrix of stimulus values). We used MATLAB cvglmnet to 
automate lambda selection for regularization of predictors in the neural matrix, but excluded regularization of the 
behavioral predictor(s) (“options.exclude” and “options.penalty_factor”). We compared this full model to a naïve, 
unregularized model using the behavioral predictor(s) only, reporting the difference to quantify how much neural 
activity improved predictions.  

To examine predictions of stimulus side and choice on zero-contrast trials, we designed neural and behavioral 
predictor(s) as above, but split data into custom training and validation sets, where the validation set contained all zero-
contrast trials(~20%), and the training set was all other trials (~80%).  

Predictions of choice, and outcome using neural data were tested for significance using a linear-shift method, which 
misaligns neural data from trial data in a series of increasing backward or forward trial shifts (Harris, 2020b). Predictions 
were considered significant if the predictability using trial-aligned neural data was larger than the predictability 
computed for all shifts of up to 20 trials in either direction, which provides a conservative test at p < 0.05 significance. 
Predictions of stimulus, block and available reward size were tested for significance by regenerating 100 pseudoseries 
of task events using the same statistics deployed during the task; significance was achieved if the predictability between 
full and naïve models using true task event series was >95% the predictability values computed from the 100 
pseudoseries, which provides a conservative test at  p < 0.05 significance. 
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Decoding XOR (putative stimulus) from the neural population 
To determine how well the neural population could determine the inferred stimulus side on zero-contrast trials, we 
trained three decoders to predict animal choice, trial outcome, and inferred stimulus location, which is an XOR 
operation based on the combination of choice and outcome. To predict choice direction (represented as +1 or -1), we 
trained a logistic regression model that included as predictors a matrix of mean neural activity in the 0-1 s period after 
feedback (nTrials x nNeurons). We used MATLAB cvglmnet to automate lambda selection for regularization. We split 
data into training and validation sets, where the validation set contained all trials of zero contrast (~20% of trials), and 
the training set was all other trials (~80% of trials). We used the three weighted sums of neural activity on each trial, 
prior to logistic transformation, to assign each trial to a point in 3-dimensional space (Figure 5F). The accuracy of each 
classifier was computed by comparing the sign of the true values of the task variable to the sign of the predictor. To test 
whether the prediction was statistically significant we used a linear-shift method (Harris, 2020b). Predictions were 
considered significant if the accuracy of the model trained on trial-aligned neural data was greater than the accuracy 
computed for all 40 models trained on trial-shifted neural data (shifts up to 20 in both directions), which provides a 
conservative test at p < 0.05 significance. This same process was repeated to predict trial outcome and inferred stimulus 
location. 
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