

1 Visualizing and identifying selfish bacteria: a hunting 2 guide

3

4 *G. Reintjes^{1,3##}, G. Giljan^{1#}, B. M. Fuchs¹, C. Arnosti² and R. Amann¹*

5

¹*Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany*

²*Department of Earth, Marine, and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA*

³*Microbial-Carbohydrate Interactions, Faculty of Biology /Chemistry, University of Bremen, Bremen, Germany*

6 [#]*shared first authorship*

Correspondence

**Greta Reintjes, University of Bremen, Bibliothekstraße 1, 28359, Bremen, Germany, mail: reintjes@uni-bremen.de, phone: +49 421 2028 9710*

Keywords

selfish uptake; carbon cycling; enzymatic hydrolysis; bacterial community function; flow sorting; polysaccharide degradation

Running title

Identifying selfish bacteria

7

8

9

10

11

12

13

14

15

16

Abstract

17 Polysaccharides are dominant components of plant biomass, whose degradation is typically
18 mediated by heterotrophic bacteria. These bacteria use extracellular enzymes to hydrolyze
19 polysaccharides to oligosaccharides that are then also available to other bacteria. Recently, a new
20 mechanism of polysaccharide processing – ‘selfish’ uptake – has been recognized, initially among
21 gut-derived bacteria. In ‘selfish’ uptake, polysaccharides are bound at the outer membrane, partially
22 hydrolyzed, and transported into the periplasmic space without loss of hydrolysis products, thus
23 limiting the availability of smaller sugars to the surrounding environment. Selfish uptake is
24 widespread in environments ranging from the ocean’s cool, oxygen-rich, organic carbon-poor waters
25 to the warm, carbon-rich, anoxic environment of the human gut. We provide a detailed guide of how
26 to hunt for selfish bacteria, including how to rapidly visualize selfish uptake in complex bacterial
27 communities, identify selfish organisms, and distinguish the activity of selfish organisms from other
28 members of the community.

Introduction

29 Polysaccharides constitute the largest pool of metabolically accessible organic carbon in the
30 biosphere¹. Their primary sources are phototrophic organisms of the terrestrial and marine
31 environment, which produce polysaccharides as structural complexes and as storage compounds²⁻⁴.
32 Polysaccharides account for about half of the living biomass of phytoplankton³ and terrestrial plants
33 and represent a major fraction of the immense reservoir of detrital organic matter in soils⁶,
34 sediments⁷ and seawater⁸. The cycling of polysaccharide-derived material thus is critical for
35 processes and issues ranging from the global flux of carbon to human⁹⁻¹¹ and animal^{12,13} nutrition.

36 Polysaccharide degradation, transformation, and remineralization is mainly performed by
37 bacteria, which are abundant in the environment¹⁴ and in the digestive tracts of animals¹⁵.
38 Degradation of polysaccharides is challenging for bacteria because polysaccharides are structurally
39 complex¹⁶, containing different monosaccharides connected by a wide range of glycosidic linkages
40^{16,5}. Since these monosaccharides can be linked together via any of five or six positions, the
41 structural complexity of polysaccharides far outpaces that of other biopolymers, such as proteins.
42 Thus, correspondingly complex enzymatic systems are required for polysaccharide degradation¹⁷.

43 Initial enzymatic hydrolysis of polysaccharides by bacteria occurs outside the cell due to the
44 large size of polysaccharides. This extracellular hydrolytic step produces lower molecular weight
45 products that can be released into the surrounding environment and may be available for uptake by
46 organisms that did not produce the extracellular enzymes (Fig. 1 A, C, E)¹⁸⁻²⁰. This potential loss of
47 hydrolysis products constitutes a complication for extracellular enzyme-producing bacteria, which
48 need to obtain sufficient hydrolysate as a return on their investment in hydrolytic enzymes.
49 Recently, however, a distinctly different mechanism of polysaccharide processing – ‘selfish’ uptake –
50 has been recognized (Fig. 1 A, B, D), initially in gut bacteria. ‘Selfish’ bacteria²¹ bind, partially
51 hydrolyze, and transport polysaccharides into the cell, releasing little to no low molecular weight
52 hydrolysis products to the surrounding environment, thereby ensuring a return on their enzymatic
53 investment.

54 The cost of enzyme production, and the complexity of enzymatic systems required to
55 deconstruct many polysaccharides, thus, may be balanced in different ways. Selfish uptake likely
56 requires high energetic investment to express many enzymes but is characterized by little loss of

57 hydrolysis products²¹. External hydrolysis potentially leads to the loss of low molecular weight
58 hydrolysis products to other organisms, but might be coordinated among bacteria (e.g., via quorum
59 sensing²²), such that enzyme production and hydrolysate uptake can be optimized within a
60 community. Initial assessments of the prevalence of selfish uptake and external hydrolysis in the
61 ocean suggest that strategies of substrate processing change with location, as well as with the
62 nature and abundance of substrates^{20, 23, 24}. In particular, selfish uptake may pay off, particularly in
63 cases where competition for a specific substrate is very high, as well as in cases where the
64 abundance of a complex substrate is low, such that a return on investment in complex enzymatic
65 systems needs to be guaranteed²⁵.

66 In sum, 'selfish uptake' is prevalent among organisms found in the anoxic, organic-carbon-
67 rich gut environment²⁶, and also in the oxygenated organic carbon-poor waters of the surface ocean
68²⁷. The recent discovery that selfish bacteria are also abundant throughout the oceanic water column
69 and take up substrates that are not hydrolyzed externally demonstrates that standard methods to
70 determine microbial activities may be overlooking important organisms²⁸. In short, given their
71 presence in these distinctly different environments, selfish bacteria are likely to be found in many
72 other natural environments, including sediments, soils, and digestive tracts of a wider range of
73 organisms. Therefore, detecting the presence and activities of selfish bacteria is central to our
74 efforts to understand carbon cycling, animal nutrition, and the microbial ecology of a wide range of
75 environments. Fortunately, detecting the presence of selfish bacteria and selfish activity
76 experimentally is a straightforward process.

77 Identifying the presence of selfish bacteria also opens the door to further focused
78 investigations, starting with the taxonomic identification of selfish bacteria and extending to flow
79 cytometric methods that enable the physical separation of these bacteria and further analysis of
80 their physiology, biochemistry, and activity. We present an example from the North Sea
81 demonstrating how hunting for selfish bacteria can yield further information about community
82 activities, identities, and carbon flow in a natural system. These data were initially presented in
83 Giljan *et al.*, (2022²⁹); here, we present in detail results that were not discussed at length in that
84 manuscript. We also discuss additional insights from human gut microorganisms¹³. The approach we
85 used could easily be applied to studies in fields ranging from animal nutrition to terrestrial and
86 aquatic investigations of the ecology of microbial communities and the pathways of carbon
87 degradation that they catalyze in natural environments. Overlooking selfish bacteria and their
88 activities in any environment means that we are overlooking important organisms, as well as
89 pathways of material flow and energy transfer. Here, we present in detail the methods required to
90 reveal their presence.

Results

A rapid workflow to detect active polysaccharide utilizers

91 Fluorescently labeled polysaccharide (FLAPS) incubation experiments are, at present, one of
92 few methods to provide insights into the mechanisms of polysaccharide processing – extracellular
93 hydrolysis and selfish uptake – with the possibility to link the function to the identity of specific
94 bacteria: to date, selfish uptake cannot be detected solely via 'omic analyses²⁶. Here, we present a
95 simple approach to detect bacteria – in pure cultures and complex environments – that are actively
96 taking up polysaccharides through a selfish mechanism (Fig. 2). In brief, the FLAPS of interest is

97 added to a liquid sample or culture medium, incubated, and subsamples are periodically collected
98 and filtered. Selfish substrate accumulation in the periplasm can be visualized with a standard
99 epifluorescence microscope after initial DNA staining (e.g., DAPI) through co-localization of the
100 FLAPS signal and the nucleic acid counter stain. FLAPS signals without a nucleic acid counterstain
101 should be excluded as background noise. This simple and straightforward approach allows
102 simultaneous quantification of total and selfish cells, and answers the first key question: are selfish
103 bacteria that use this specific polysaccharide active in my sample? This experimental setup also
104 permits further investigations: the same filter can be used to analyze bacterial community
105 composition by 16S rRNA amplicon sequencing (Supplementary Fig. S1D). Moreover, collecting the
106 filtrate allows measurement of extracellular hydrolysis rates, using gel permeation chromatography
107 and fluorescence detection (Fig. 1E, Supplementary Fig. S1A)³⁰.

108 A wide range of soluble and semi-soluble polysaccharides can be labeled to probe a range of
109 polysaccharide metabolisms (Supplementary Table S1, see Extended Methods for FLAPS production
110 procedure). FLAPS have been successfully used with diverse pure cultures from different phyla and
111 several environmental microbiomes, including marine (seawater and sediments^{23, 24, 27, 31}), limnic
112 (unpublished), gut (unpublished), and rumen (cattle and sheep^{13, 26, 32}) (Supplementary Table S1).

113 Measuring extracellular hydrolysis and selfish uptake of FLAPS – an environmental example

114 Using the procedures described above, we incubated an environmental sample - surface
115 seawater collected in September off Helgoland (North Sea) - with three FLAPS (laminarin, xylan, and
116 chondroitin sulfate) to determine the relative contributions of selfish bacteria and external
117 hydrolyzers to polysaccharide degradation. External hydrolysis of polysaccharides, which produces
118 low molecular weight hydrolysis products in the surrounding medium, was measured via gel
119 permeation chromatographic analysis of the filtrate collected at each time point. Hydrolysis rates
120 were calculated based on the shift in molecular weight classes as a polysaccharide is systematically
121 hydrolyzed to lower molecular weight hydrolysis products over time (Fig. 1E).

122 The incubations showed rapid selfish uptake of both laminarin and xylan: 16% and 6% of
123 cells were stained by these two FLAPS, respectively, already at the initial (t = 1 h) timepoint (Fig. 3 A).
124 Selfish uptake increased up to 72 h; a low number of chondroitin-stained cells were also detected.
125 All three polysaccharides were also externally hydrolyzed, with high hydrolysis rates of chondroitin
126 and xylan detected in the 48 and 72 h samples, respectively (Fig. 3B). Total cell counts increased
127 from 0.9×10^9 cells L⁻¹ to 1.5×10^9 cells L⁻¹ in all incubations (amended and unamended) within 24 h of
128 incubation, but then diverged, with cell counts in the chondroitin incubations increasing to ca 3×10^9
129 cells L⁻¹ at 72 h, a smaller increase in the xylan incubations, and a decrease in the laminarin and
130 unamended incubations (Fig. 3 C). Counting total and selfish cells thus clearly answers the first key
131 question: selfish bacteria were present and actively taking up all three FLAPS, but selfish uptake of
132 laminarin and xylan was greater than for chondroitin.

133 Sequencing to gain insight into complex communities

134 After discovering whether selfish bacteria are present in a complex community, further
135 questions may relate to bacterial identity: Which organisms are present in the initial sample? To
136 what extent does the community change with increasing incubation time? Are there any indications
137 of specific organisms responding to a FLAPS amendment? In these cases, amplicon sequencing of
138 16S rRNA genes (next-generation sequencing; NGS) can be the next step. In this case, unamended

139 treatment controls (incubations to which no FLAPS were added) should be sequenced for the same
140 time points as FLAPS-amended incubations to distinguish bottle effects from any substrate-
141 dependent community responses. The correlation of a substrate-dependent change in bacterial taxa
142 with a change in polysaccharide utilization can help identify potential taxa involved in the process²⁰.
143 Furthermore, selfish organisms can be phylogenetically stained and counted microscopically using
144 fluorescence *in situ* hybridization (FISH³³). Taxonomically specific FISH probes can be selected (or
145 designed) to confirm the absolute abundance of a bacterial group and create a direct, visual link to
146 selfish polysaccharide accumulation (Fig. 3 G).

147 The initial bacterial community in Helgoland waters in September was composed of *Gamma-*
148 *and Alphaproteobacteria*, *Bacteroidetes*, and *Actinobacteria* (Fig. 3 D). Over the course of
149 incubations, minor changes in abundance occurred within these groups. However, the bacteroidetal
150 *Flavicella* was an exception, showing a large increase - of 34% and 10% - at 72 h in the chondroitin
151 and control incubations, respectively, compared to the initial community.

Revealing links between function and taxonomy – FISH on FLAPS-stained cells

152 Combining FLAPS uptake with FISH links an organism directly with its substrate, yielding
153 information that is otherwise extremely difficult or impossible to obtain, particularly from
154 environmental samples. Different FISH methods targeting rRNA can be used to visualize bacterial
155 groups. Extensive testing (see Extended Methods) has demonstrated that modifying the protocol of
156 Manz et al. (1992)³³ using quadruple labeled oligonucleotide probes is most suitable for identifying
157 FLAPS-stained selfish bacteria. It is compatible with FLAPS incubation because the procedure is less
158 harsh when compared with other protocols (i.e., CARD-FISH see Extended Methods), has fewer
159 steps, and gives a detectable FISH signal even for small cells from environmental samples.

160 Since the Helgoland incubations showed high selfish uptake of laminarin and xylan, we
161 focused our FISH investigations on these samples, using probes targeting the abundant
162 *Bacteroidetes* (CF319a) and *Gammaproteobacteria* (GAM42a) as well as the minor phyla
163 *Verrucomicrobia* (EUB338-III) and *Planctomycetes* (PLA46), which have previously been found to be
164 capable of selfish uptake^{34, 27, 29}. Laminarin incubations were clearly dominated by selfish
165 *Bacteroidetes*, especially during the initial 24 h (Fig. 3 E), whereas in the xylan incubations, selfish
166 *Gammaproteobacteria* and also *Verrucomicrobia* increased in proportion especially by 72 h of
167 incubation (Fig. 3 F). We note, moreover, that the numbers of FISH- and FLAPS-positive cells are
168 likely underestimated because the FISH procedure can lead to a loss of substrate signal in cells
169 (Supplementary Fig. S2; see Extended Methods).

170
171 Super-resolution microscopy – visualization of individual selfish substrate accumulation
172 patterns

173 In addition to standard epifluorescence microscopy, high-resolution visualization of the
174 accumulated FLAPS within the cell can be carried out using super-resolution structured illumination
175 microscopy (SR-SIM) (Fig. 3G). Cells from the Helgoland FLA-laminarin incubation were identified as
176 members of the *Verrucomicrobia* by FISH (Fig. 3G) and showed two different versions of polar
177 substrate accumulation pattern with an enlarged periplasmic space, in contrast to elongated cells
178 identified as *Gammaproteobacteria* that stained more evenly among the periplasm (Fig. 3G). The use
179 of a membrane stain can show the co-localization of the polysaccharide-associated green
180 fluoresceinamine signal with the red membrane stain Nile Red in a fluorescent intensity line grating

181 ²⁷, further demonstrating polysaccharide uptake into the periplasmic space.

182 In addition, visualizing selfish uptake can reveal cellular heterogeneity in substrate
183 processing (Fig. 4A). Bacterial cultures can exhibit homogenous or heterogenous staining patterns,
184 as shown by two strains of *Bacteroidetes thetaiotaomicron* incubated with FLA-yeast mannan (Fig.
185 4A). Identifying and monitoring cell heterogeneity is essential in applications where cells are used for
186 bioprocesses (e.g., production of fuels such as ethanol, butanol, fatty acid derivatives or natural
187 products), as it affects biosynthesis performance, specifically enzyme activity or expression level ³⁵.
188 Mechanisms underlying microbial cell-to-cell heterogeneity that are not based on genotype are not
189 well understood, but FLAPS incubation can visualize such heterogeneity.

190 Flow cytometry: tracking specific organisms

191 Especially for cases in which identification of specific cells is difficult, or – for pure cultures,
192 for example – when the relative change in FLAPS uptake needs to be measured over short
193 timescales, flow cytometry can be helpful. Bacteria that take up FLAPS can be flow cytometrically
194 identified based on their physical and fluorescence properties within minutes and sorted based on
195 the fluorescence signature of FLAPS accumulation (Fig. 4B, C). Flow cytometry can be used in
196 environmental samples to identify subpopulations of FLAPS-stained cells. Various controls are
197 required, including a blank control of the community with the nucleic acid counterstain for
198 background noise calibration (Supplementary Fig. S3A). Since flow cytometry of killed controls is
199 problematic (see Extended methods), a possibility for a negative control is the addition of FLAPS to a
200 fixed and thus inactivated sample to account for any unspecific binding of the substrate
201 (Supplementary Fig. S3C-I). For pure cultures, flow cytometry can be used to identify differences in
202 uptake efficiency between cultures by plotting fluorescence intensity over forward scatter (proxy for
203 cell size) or side scatter (proxy for cell granularity) (Fig. 4B) ²⁶. The pure culture without FLAPS, as
204 well as the medium without cells but with FLAPS, should be used to calibrate the background noise.

205 Fluorescence-activated cell sorting (FACS) of selfish populations can be used to assess the
206 taxonomic composition and functional potential of active selfish organisms in a complex community.
207 Here, selected bacterial populations are separated from the sample and enriched. Applying FISH on
208 sorted cells can quantify taxa in a sorted population and link taxonomy to uptake pattern ^{29,30}.
209 Moreover, cells stained at different intensities with the FLAPS could be used as a proxy to
210 differentiate between different populations within a sample. However, in environmental samples
211 quantification of unstained vs. stained cells would only be a rough estimate, as there are potentially
212 very pronounced differences in the staining pattern among different taxa at a given time (Fig. 3G).
213 Note in all of these cases that microscopic validation of selected populations after sorting is
214 necessary is advised. Additionally, a nucleic acid stain can be used as an independent parameter to
215 ensure that cells (and not background signals) are sorted.

216 **Conclusions**

217 To investigate the processing of polysaccharides by microorganisms and microbial
218 communities, phenotypic approaches which allow for *in situ* probing are essential ³⁶. Several major
219 points emerge from our investigations of polysaccharide processing: most importantly, by
220 overlooking selfish bacteria, a major substrate processing mechanism carried out by bacteria in a

wide range of environments is missed. We note that external hydrolysis of laminarin was minimal in our incubations, yet selfish uptake was rapid, even in the initial community collected from the ocean (Fig. 3A-C). However, low selfish uptake of chondroitin shows that external hydrolysis can also be important – and that the importance of the polysaccharide processing mechanism varies by substrate, since the same starting communities were present in each incubation. Moreover, the ability to carry out selfish uptake is phylogenetically widespread: in the laminarin and xylan incubations, substantial selfish uptake did not correlate with changes of specific taxa in the bulk community analysis. This observation – and the broad range of selfish cells, especially in the xylan incubation at 72 h - suggests widespread prevalence of the selfish mechanism among diverse bacteria. Although selfish *Bacteroidetes* and *Verrucomicrobia* constitute a major portion of the total in early xylan incubations, *Gammaproteobacteria* constitute a large fraction of selfish bacteria at 72 h.

We emphasize here that selfish bacteria transport large polysaccharide fragments into the periplasmic space; they do not simply bind them to the outer membrane. Super-resolution light microscopy has shown that FLAPS staining is confined to the periplasmic space, which can be well-defined by the simultaneous use of a membrane stain²⁷. Fluorescence line profiling and z-stack images localizing the 3 dimensions of the cell demonstrate that the polysaccharide is within the outer membrane, but outside the cell wall²⁷. In addition to visual evidence, physiochemical proof of polysaccharide uptake is provided by work with mutant strains lacking the outer membrane uptake system for polysaccharides (SusC/D) or the full PULs. Unlike their wild-type counterparts, these mutant strains were not stained with FLAPS^{13,26}. The mechanisms of selfish uptake of polysaccharides have been thoroughly studied among members of the *Bacteroidetes*, especially gut-associated strains. Studies have demonstrated that polysaccharides are bound at the outer membrane, partly hydrolyzed, and then transferred into the periplasmic space, where they are further hydrolyzed (Fig. 1 B)^{37-39,21}. Genes involved in selfish uptake by *Bacteroidetes* are typically possessed in PULs^{17,42}, including the SusC/D transport system. Observations that selfish uptake is also carried out by organisms lacking PULs (e.g., *Planctomycetes*) and organisms lacking SusD (*Gammaproteobacteria*) demonstrate, however, that the presence of a PULs or a SusC/D system is not a strict requirement for selfish uptake. Moreover, bacteria with PULs and SusC/D systems may carry out external hydrolysis in addition to selfish uptake^{38,39}. Examination of genomes without experimental incubations consequently is not sufficient to demonstrate selfish behavior. The specific means by which organisms lacking the SusC/D system carry out selfish uptake remain to be determined. In sum, broad use of a selfish strategy of substrate processing in the environment – partly by organisms whose specific mechanism of selfish uptake is not yet known – suggests that much is waiting to be revealed. The methods to do so are at hand.

Online methods

Sample collection and substrate incubation

Surface seawater was collected at the long-term ecological research station Helgoland Roads on the 17th and 19th September 2018. At both dates, FLAPS incubation experiments were conducted in sterile, acid-rinsed glass bottles in the dark at 18 °C (ambient water temperature). Incubations with FLA-laminarin, FLA-xylan, and FLA-chondroitin sulfate at a final concentration of 3.5 µM monomer equivalent were conducted in triplicates. Incubations without FLAPS addition and a single autoclaved

263 (killed) control per substrate were also included. After 0, 1, 6, 12, 24, 48 and 72h of incubation,
264 subsamples were taken for total cell counts, analysis of selfish uptake and external polysaccharide
265 hydrolysis, FISH analysis and fluorescence-activated cell sorting. Subsamples for bacterial community
266 analysis were taken at 0, 24, and 72 h. Quantitative data on phytoplankton community composition
267 (cell counts of centric and pennate diatoms, dinoflagellates, coccolithophores and flagellates), and
268 data on water temperature and salinity, nutrient availability (silicate, nitrate and phosphate), and
269 Chl *a* concentrations were collected on the same dates ²⁹.

270 FLAPS production

271 FLAPS were produced according to Arnosti 2003³⁰. Briefly, hydroxyl groups of a soluble
272 polysaccharide are activated using cyanogen bromide. The activated polysaccharide is labeled by
273 incubating with fluoresceinamine ((Fluoresceinamine, Isomer II, Sigma-Aldrich). Subsequently, the
274 labeled polysaccharide is separated from unreacted fluoresceinamine and purified using size
275 exclusion chromatography. See Extended Methods for a detailed description of FLAPS production
276 and troubleshooting guide, as well as tips on labeling “problem” polysaccharides.

277 Extracellular hydrolysis

278 External hydrolysis of FLAPS was measured by analyzing filtrate from the samples collected for
279 bacterial community analysis (described below). These samples, collected after 0, 24, 48, and 72 h of
280 incubation, were analyzed as described in detail in Arnosti (2003)³⁰. The earlier timepoints (6 and 12
281 h) were not measured because, in our experience, environmental samples from the water column
282 do not show sufficient activity for hydrolysis to be detected at these early timepoints. Sediment
283 incubations, and incubations with pure cultures of bacteria, in contrast, typically show much higher
284 hydrolysis rates, and hydrolysis can be measured on timescales of hours ^{26, 30}.

285 Selfish uptake measurements

286 For all microscopic analysis, samples were fixed with formaldehyde at a final concentration of 1%,
287 filtered onto a 0.2 μ m pore size polycarbonate filter, counterstained with 4',6-diamidino-2-
288 phenylindole (DAPI), and mounted in a Citifluor/VectaShield (4:1) solution.

289 Total DAPI counts and selfish polysaccharide uptake were analyzed using a fully automated
290 epifluorescence microscope (Zeiss AxioImager.Z2, Carl Zeiss), equipped with a Colibri LED light
291 source (Carl Zeiss), a cooled charged-coupled-device (CCD) camera (AxioCam MRm, Carl Zeiss), and a
292 HE-62 multifilter module (Carl Zeiss). A minimum of 45 fields of views were acquired, microscopic
293 images exported into the modified image analysis software ACMEtool (M. Zeder, Technology GmbH,
294 <http://www.technobiology.ch> and Max Planck Institute for Marine Microbiology, Bremen), and
295 signals evaluated (Supplementary Table S2) according to Bennke *et al.* (2016)⁴⁰. Images from the
296 substrate channel were acquired at three exposure times (10 ms, 35 ms, and 140 ms) to cover the
297 diversity of signal intensities and patterns of FLAPS accumulation. Automated counts were
298 confirmed by manual microscopy; careful, manual curation of the processed images is a
299 requirement. See Extended Methods for tips on dealing with background signals during microscopy.

300 For single-cell detection of substrate uptake patterns, cell membranes stained with Nile Red
301 and FLA-substrate labeled cells were subsequently visualized using SR-SIM. Individual cells were
302 analyzed with a Zeiss ELYRA PS.1 (Carl Zeiss) microscope equipped with 561, 488, and 405 nm lasers
303 and BP 573-613, BP 502-538, and BP 420-480+LP 750 optical filters. A Plan-Apochromat 63x/1.4 Oil

304 objective was used to take z-stack SR-SIM images with a CCD camera. Data processing and image
305 analysis were done using the ZEN software package (Carl Zeiss).

306 **Flow cytometry**

307 Single-cell fluorescence quantification was determined using an Accuri C6 flow cytometer (BD Accuri
308 Cytometers, USA). The 8- and 6-peak validation beads (Spherotech, USA) were used for reference.
309 All culture samples were measured under 488nm laser excitation, and the fluorescence was
310 collected in the FL1 channel (530 ± 30 nm). The medium with and without fluorescent substrate and
311 an electric threshold of 17,000 FSC-H were used to set the background noise. All bacterial samples,
312 with and without FLAPS, were measured using a slow flow rate with a total of 10,000 events per
313 sample in triplicate. Bacteria are detected from the signature plot of SSC-H vs. green fluorescence
314 (FL1-H). The flow cytometric output was analyzed using the FlowJo v10-4-2 software (Tree Star,
315 USA). See Extended Methods for details on flow cytometric and fluorescent-activated cell sorting
316 parameters and troubleshooting guide.

317 **Bacterial community analysis and community statistics**

318 In seawater incubation experiments, the initial bacterial community and changes in community
319 composition and abundance were determined by 16S rRNA amplicon sequencing. At each time
320 point, a subsample of 10 ml from each incubation bottle was filtered through a 0.2 μ m pore size
321 polycarbonate filter; the filtrate was used to analyze extracellular hydrolysis rates, as described
322 above. Total DNA was extracted from the filter with the DNeasy Power Water Kit (Qiagen) and the
323 hypervariable V3-V4 region (490 bp) of the 16S rRNA was amplified from the DNA using the S-D-
324 Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21⁴¹ primer pair with an Ion Torrent sequencing adapter
325 and an Ion Xpress Barcode Adapter (Thermo-Fischer Scientific) attached to the forward primer. The
326 PCR product was purified and remaining free primer were removed using the AMPure XP PCR
327 Cleanup system (Beckman Coulter). A pool of barcoded PCR products in equimolar concentration
328 was further amplified in an emulsion PCR with the Ion Torrent One-Touch System (Thermo Fischer
329 Scientific). Sequencing was done on an IonTorrent PGM™ sequencer (Thermo Fischer Scientific) in
330 combination with the High-Q™ View chemistry (Thermo Fischer Scientific). Quality trimmed (> 300
331 bp sequence length, < 2% homopolymers, < 2% ambiguities) reads were demultiplexed and used as
332 input for the SILVAngs pipeline⁴² for taxonomic assignment of the reads based on sequence
333 comparison to the SSU rRNA SILVA database 312.

334 **Fluorescence *in situ* hybridization for taxonomic identification**

335 Combining FISH with FLAPS incubations allows the correlation of taxonomy and function, as defined
336 by the capability of bacteria for selfish polysaccharide uptake.

337 We tested the effect of two FISH procedures on FLAPS signals. For this, we took two
338 seawater samples from the sampling station Kabeltonne off the island of Helgoland and incubated
339 them for 48 h with a) FLA-laminarin and b) FLA-xylan. Subsequently, we fixed the samples with
340 formaldehyde at a final concentration of 1% for 1 h. We applied a tetra-labeled FISH³³ and the CARD-
341 FISH⁴³ protocol to the incubations to test if FISH influences the microscopic evaluation of FLAPS-
342 stained cells (see Extended Methods for details). For both procedures, we used probes for the
343 taxonomic identification of most Bacteria, *Planctomycetes*, and *Verrucomicrobia* (EUB388-I, PLA46,
344 and EUB388-III, respectively, Supplementary Table S3). Formamide concentrations in the

345 hybridization buffer were probe-specific (Supplementary Table S3). The number of FLAPS-stained
346 cells after FISH treatment, the co-localization of the FLAPS and FISH signal, and the taxonomic
347 correlation of FLAPS-labeled cells were evaluated using epifluorescence microscopy combined with
348 automated image analysis.

349 Both FISH procedures cause wash-out of FLAPS signal from the cells, which was dependent
350 on the harshness and number of steps in the procedure (Supplementary Fig. S2 & S4). For more
351 details, see the extended methods section, where we give a detailed description of the comparison
352 and also included a guide of how to handle FLAPS signal background. We recommend the use of the
353 tetra-labeled FISH procedure to minimize signal loss.

354 Based on the results of the methodological comparison, the abundance of FLAPS-stained
355 *Gammaproteobacteria*, *Bacteroidetes*, *Verrucomicrobia*, and *Planctomycetes* was analyzed on
356 samples from Helgoland FLA-laminarin and FLA-xylan incubations using 4 x Atto594 labeled probes
357 (GAM42a, CF319a, EUB388-III + competitor EUB338-II, and PLA46, respectively, Supplementary Table
358 S3).

359 **Acknowledgements**

360 We thank our colleagues from Biologische Anstalt Helgoland, especially Antje Wichels, Eva-Maria
361 Brodte, and Uwe Nettelmann, for enabling the sampling campaign on Helgoland and facilitating
362 substrate incubations and sample preparation. In addition, we thank the crew of the *Aade* for
363 sample collection, Maria Belen Gonzalez Pino for help with incubation experiments, sample
364 preparation, and microscopic analysis, and Sherif Ghobrial (UNC) for help with the work on the
365 fluorescently labeled polysaccharides. GR has received funding from the European Union's Horizon
366 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No.
367 840804 and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project
368 number 496343779. This study was supported and funded by the Max Planck Society and the U.S.
369 National Science Foundation (OCE-1736772 and -2022952 to CA).

370 **Author contributions**

371 All authors conceived different aspects of the experimental study; GG performed sample collection,
372 GG conducted FLAPS incubations; GG and GR performed FISH, flow cytometry, and microscopy
373 analyses; CA synthesized FLAPS and analyzed samples for external hydrolysis; GG, CA, and GR
374 analyzed the data; RA, CA, GR secured funding; GG, GR and CA produced the figures and tables; all
375 authors contributed to writing the manuscript.

376 **Competing interests**

377 The authors declare no competing interests.

References

1. Field, C.B., Behrenfeld, M.J., & Randerson, J.T. Primary production of the biosphere: Integrating terrestrial and oceanic components. *Science* **281**, 237–241 (1998).
2. Mabeau, S. & Kloareg, B. Isolation and analysis of the cell wall of brown algae: *Fucus spiralis*, *F. ceranoides*, *F. vesiculosus*, *F. serratus*, *Bifurcaria bifurcate* and *Laminaria digitata*. *J. Exp. Bot.* **38**, 1573–1580 (1987).
3. Biersmith, A. & Benner, R. Carbohydrates in phytoplankton and freshly produced dissolved organic matter. *Mar. Chem.* **63**, 131–144 (1998).
4. Caffall, K. & Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. *Carb. Res.* **344**, 1879–1900 (2009).
5. Synytsya, A., Copikova, J., Kim, W.J., & Park, Y.I. Cell wall polysaccharides of marine algae, p 545–590. In Kim S.-K. (ed), Springer handbook of marine biotechnology. Springer-Verlag, Berlin, Germany (2015).
6. Acton, C.J., Paul, E.A., & Rennie, D.A. Measurements of the polysaccharide content of soils. *Canad. J. Soil Sci.* **43**, 141–150 (1963).
7. Panagiotopoulos, C. & Sempéré, R. Analytical methods for the determination of sugars in marine samples: A historical perspective and future directions. *Limnol. Oceanogr. Meth.* **3**, 419–454 (2005).
8. Aluwihare, L.I., Repeta, D.J., & Chen, R.F. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight. *Deep-Sea Reas. Part II* **49**, 4421–4437 (2002).
9. Topping, D.L. & Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. *Phys. Rew.* **81**, 1031–1064 (2001).
10. Lattimer, J.M. & Haub, M.D. Effects of dietary fiber and its components on metabolic health. *Nutrients* **2**, 1266–1289 (2010).
11. El Kaoutari, A., Armougom, F., Gordon, J.I., Raoult, D., & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. *Nat. Rev. Microbiol.* **11**, 497–504 (2013).
12. Tian, G., Wu, X., Chen, D., Yu, B., & He, J. Adaptation of gut microbiome to different dietary nonstarch polysaccharide fractions in a porcine model. *Mol. Nutr. Food Res.* **61**, 1–12 (2017).
13. Hehemann, J.-H. *et al.* Single cell fluorescence imaging of glycan uptake by intestinal bacteria. *ISME J.* **13**, 1883–1889 (2019).
14. Fierer, N., Bradford, M.A., & Jackson, R.B. Towards an ecological classification of soil bacteria. *Ecology* **88**, 1354–1364 (2007).
15. Hill, M.J. Bacterial fermentation of complex carbohydrates in the human colon. *Eur. J. Cancer Prevent.* **4**, 353–358 (1995).
16. Laine, R.A. Invited commentary: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05×10^{12} structures for a reducing hexasaccharide: The *Isomer Barrier* to development of single-method saccharide sequencing or synthesis systems. *Glycobiology* **4**, 759–767 (1994).
17. Martens, E.C. *et al.* Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. *PLoS Biol.* **9**, 1–16 (2011).
18. Allison, S.D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. *Ecol. Lett.* **8**, 626–635 (2005).
19. Arnosti, C., Reintjes, G., & Amann, R. A mechanistic microbial underpinning for the size-reactivity continuum of dissolved organic carbon degradation. *Mar. Chem.* **206**, 93–99 (2018).
20. Reintjes, G., Arnosti, C., Fuchs, B.M., & Amann, R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: A biogeographical study of bacterial substrate utilization. *ISME J.* **13**, 1119–1132 (2019).
21. Cuskin, F. *et al.* Human gut *Bacteroidetes* can utilize yeast mannan through a selfish mechanism. *Nature* **517**, 165–169 (2015).

427 22. Jatt, A.N., Tang, K., Liu, J., Zhang, Z., & Zhang, X. Quorum sensing in marine snow and its possible
428 influence on production of extracellular hydrolytic enzymes in marine snow bacterium *Pantoea*
429 *ananatis* B9. *FEMS Microb. Ecol.* **91**, 1-13 (2015).

430 23. Reintjes, G., Fuchs, B.M., Scharfe, M., Wiltshire, K.H., Amann, R., & Arnosti, C. Short-term
431 changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring
432 phytoplankton bloom. *Environ. Microbiol.* **22**, 1884-1900 (2020a).

433 24. Reintjes, G., Fuchs, B.M., Amann, R., & Arnosti, C. Extensive microbial processing of
434 polysaccharides in the South Pacific Gyre via selfish uptake and extracellular hydrolysis. *Front.*
435 *Microbiol.* **11**, e583158 (2020b).

436 25. Arnosti, C., Wietz, M., Brinkhoff, T., Probandt, D., Zeugner, L., & Amann, R. The biogeochemistry
437 of marine polysaccharides: Sources, inventories, and bacterial drivers of the carbohydrate cycle.
438 *Ann. Rev. Mar. Sci.* **13**, (2021).

439 26. Klassen, L. *et al.* Quantifying fluorescent glycan uptake to elucidate strain-level variability in
440 foraging behavior of rumen bacteria. *Microbiome* **9**, 1-18 (2021)

441 27. Reintjes, G., Arnosti, C., Fuchs, B.M., & Amann, R. An alternative polysaccharide uptake
442 mechanism of marine bacteria. *ISME J.* **11**, 1640–1650 (2017).

443 28. Giljan, G., Brown, S., Lloyd, C. C., Ghobrial, S., Amann, R., & Arnosti, C. Selfish bacteria are active
444 throughout the water column of the ocean. *ISME Comm.* **3**, 11 (203).

445 29. Giljan, G., Arnosti, G., Amann, R., & Fuchs, B.M. Seasonal changes in polysaccharide utilization
446 off Helgoland. *Environ. Microbiol.* **24**, 2333-2347 (2022).

447 30. Arnosti, C. Fluorescent derivatization of polysaccharides and carbohydrate-containing
448 biopolymers for measurement of enzyme activities in complex media. *J. Chrom. B* **793**, 181–191
449 (2003).

450 31. Arnosti, C. & Jørgensen, B.B. Organic carbon degradation in Arctic marine sediments, Svalbard: A
451 comparison of initial and terminal steps. *Geomicrobiol. J.* **23**, 551-563 (2006).

452 32. Klassen, L. *et al.* Fluorescence activated cell sorting and fermentation analysis to study rumen
453 microbiome responses to administered live microbials and yeast cell wall derived prebiotics.
454 *Frontiers in Microbiology*. **13**, (2023)

455 33. Manz, W., Amann, R., Ludwig, W., Wagner, M., & Schleifer, K.-H. Phylogenetic
456 oligodeoxynucleotide probes for the major subclasses of proteobacteria: Problems and
457 solutions. *Syst. Appl. Microbiol.* **15**, 593-600 (1992).

458 34. Boedeker, C. *et al.* Determining the bacterial cell biology of *Planctomycetes*. *Nat. Comm.* **8**, 1-14
459 (2017).

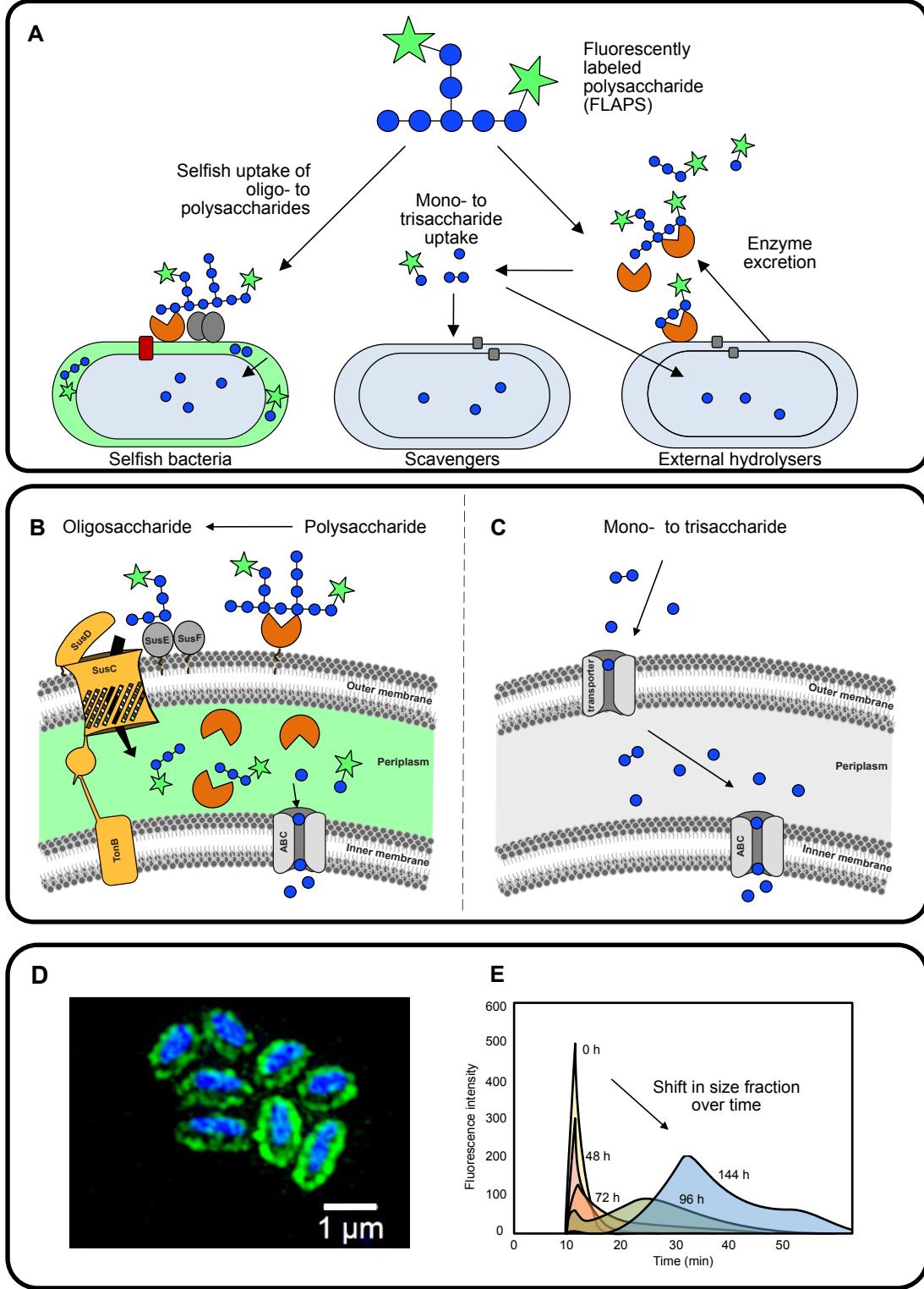
460 35. Xiao, Y., *et al.*, *Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis*. *Nature*
461 *Chemical Biology*, 2016. **12**(5): p. 339-344.

462 36. Hatzenpichler, R., *et al.*, *Next-generation physiology approaches to study microbiome function at*
463 *single cell level*. *Nature Reviews Microbiology*, 2020. **18**(4): p. 241-256.

464 37. Koropatkin, N.M., Cameron, E.A., & Martens, E.C. How glycan metabolism shapes the human gut
465 microbiota. *Nat. Rev. Microbiol.* **10**, 323–335 (2012).

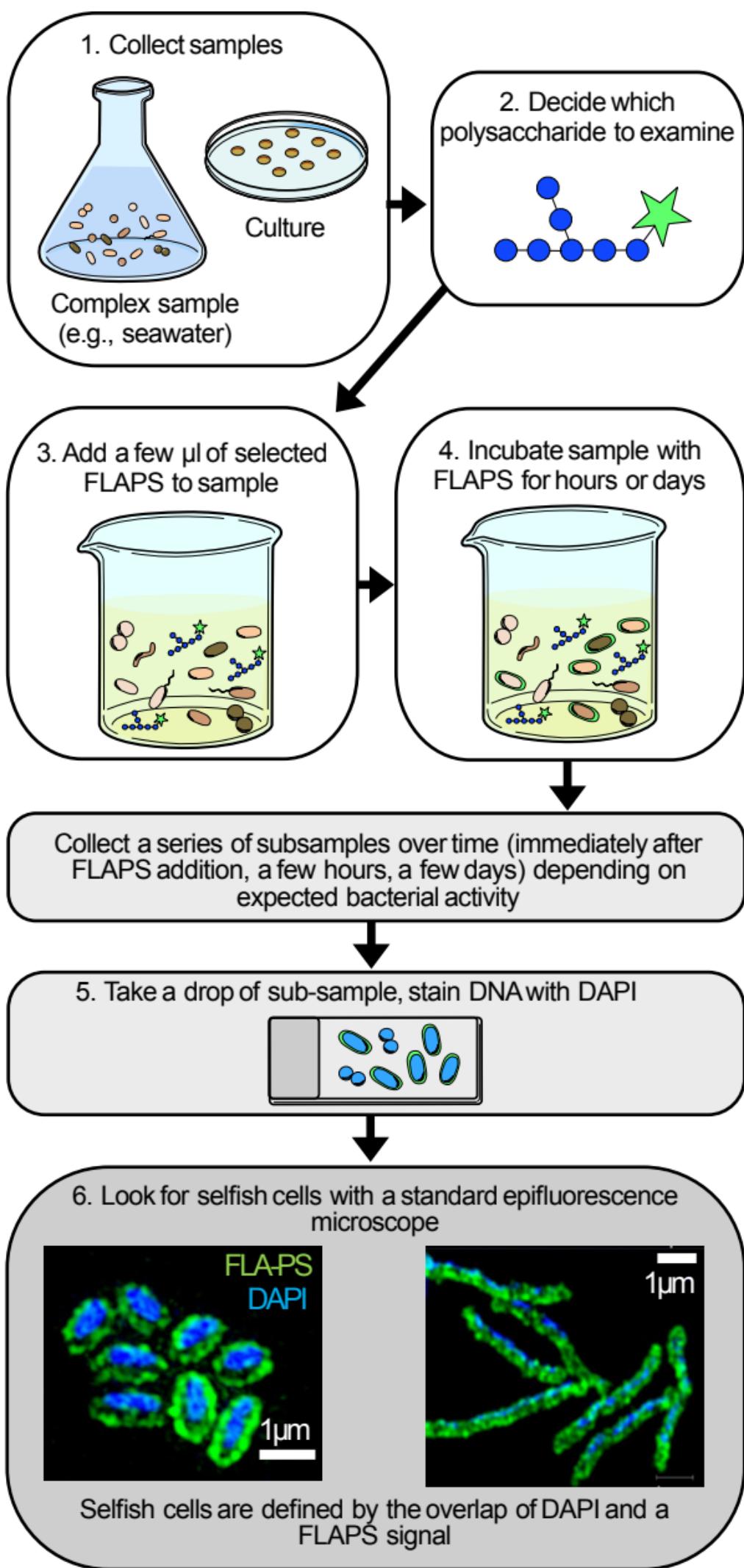
466 38. Rakoff-Nahoum, S., Coyne, M.J., & Comstock, L.E. An ecological network of polysaccharide
467 utilization among human intestinal symbionts. *Curr. Biol.* **24**, 40–49 (2014).

468 39. Rakoff-Nahoum, S., Foster, K.R., & Comstock, L.E. The evolution of cooperation within the gut
469 microbiota. *Nature* **533**, 255–259 (2016).


470 40. Bennke, C.M. *et al.* Modification of a high-throughput automatic microbial cell enumeration
471 system for shipboard analyses. *Appl. Environ. Microbiol.* **82**, 3289–3296 (2016).

472 41. Klindworth, A. *et al.* Evaluation of general 16S ribosomal RNA gene PCR primers for classical and
473 next-generation sequencing-based diversity studies. *Nuc. Acids Res.* **41**, 1–11 (2013).

474 42. Quast, C. *et al.* The SILVA ribosomal RNA gene database project: Improved data processing and
475 web-based tools. *Nuc. Acids Res.* **41**, 590–596 (2013).


476 43. Pernthaler, A., Pernthaler, J., & Amann, R. Fluorescence *in situ* hybridization and catalyzed
477 reporter deposition for the identification of marine bacteria. *Appl. Environ. Microbiol.* **68**, 3094–
478 3101 (2002).

479

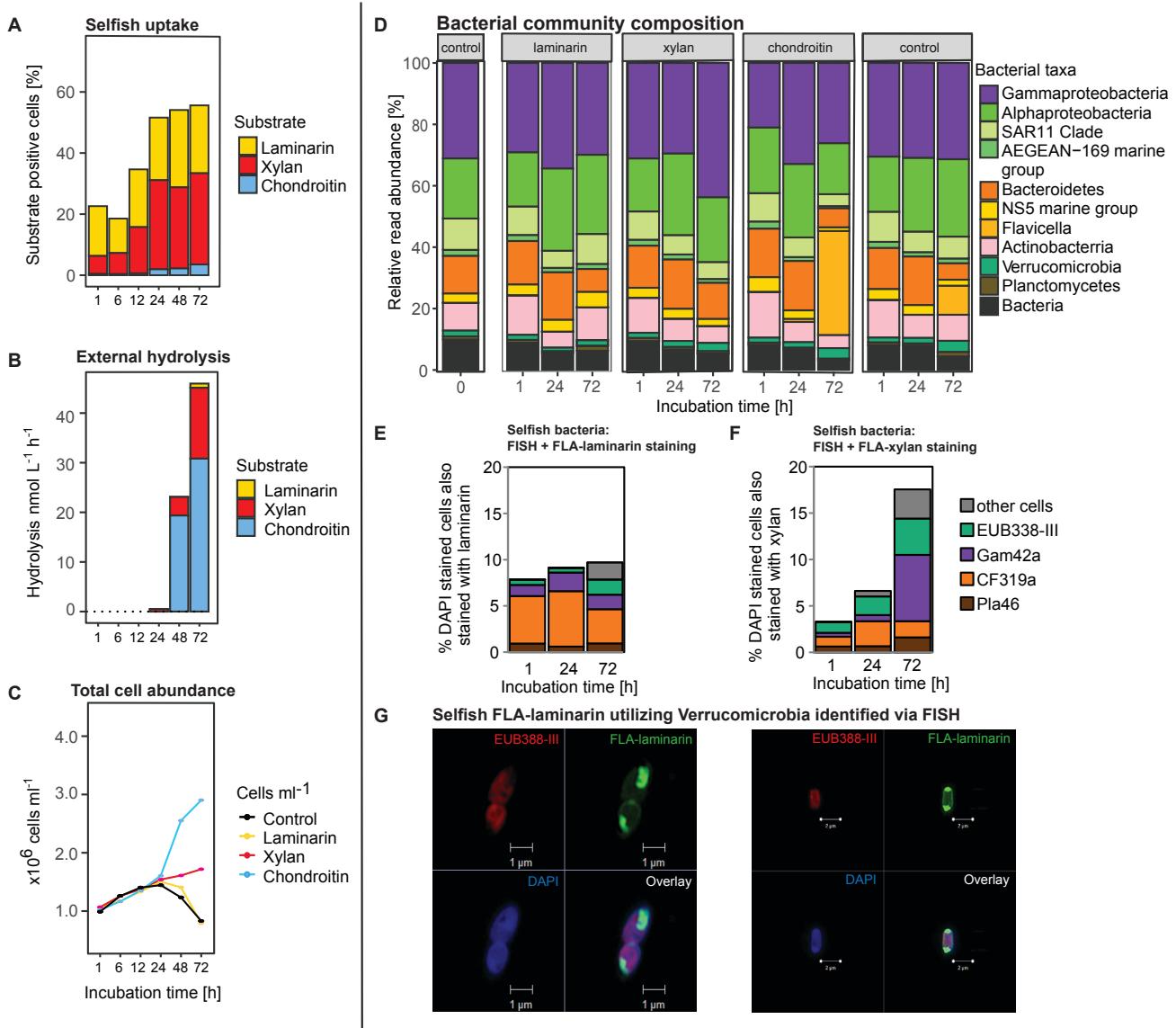


Fig. 1 Heterotrophic utilization of polysaccharides as shown with a fluorescently labeled polysaccharide (FLAPS). **(A)** Schematic overview of the two known polysaccharide utilization mechanisms – selfish uptake and extracellular hydrolysis with subsequent uptake of monosaccharides and small oligosaccharides. **(B)** Conceptual schematic of selfish FLAPS uptake into the periplasm of a cell where it is further hydrolyzed to monosaccharides that are transported through the inner membrane into the cell. (Adapted from Hehemann et al., 2019¹³) **(C)** Conceptual schematic of enzymatic extracellular FLAPS hydrolysis into monosaccharides that are transported into the cell. (Adapted from Arnosti et al., 2018¹⁹) **(D)** Microscopic visualization of selfish FLAPS uptake and accumulation in the cells. **(E)** Gel permeation chromatogram showing systematic changes in molecular weight of FLAPS with incubation time (0 – 144 h) (Adapted from Arnosti, 2003³⁰).

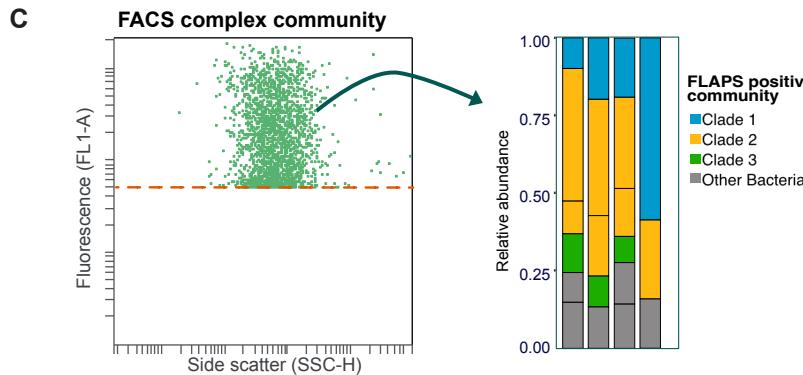
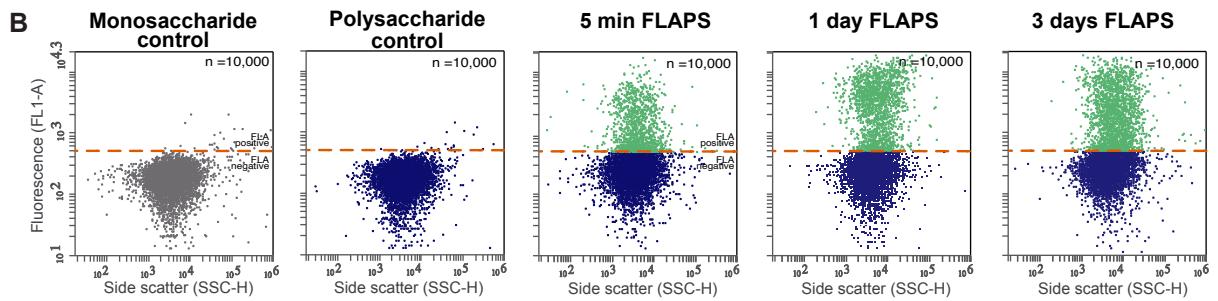
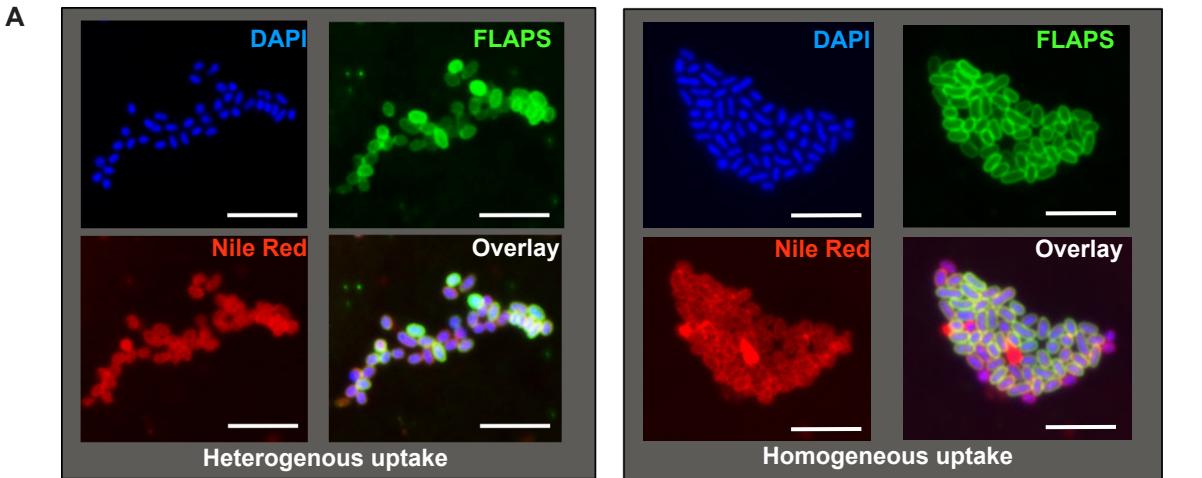



Are selfish bacteria active in my sample?

Fig. 2 Simple workflow for the identification of selfish bacteria in pure cultures or complex samples through a fluorescently labeled polysaccharide (FLAPS) incubation experiment.

Fig. 3 Polysaccharide utilization pattern in surface water from Helgoland in September over the course of a 72 h incubation. **(A)** Laminarin and xylan uptake stained a high proportion of cells already from the beginning of the incubation while **(B)** extracellular hydrolysis was comparatively rapid for xylan and chondroitin sulfate. **(C)** Microbial cell counts developed differently by substrate after the initial 24 h incubation. The **(D)** incubation-dependent changes of the initial community composition over 72 h show a FLA-chondroitin-dependent increase in *Flavicella* reads, but otherwise the community composition remained unchanged. Taxonomic identification with FISH showed **(E)** a large contribution of *Bacteroidetes* (CF319a) to selfish laminarin uptake while **(F)** a more diverse array of organisms including *Gammaproteobacteria* (Gam42a) and *Verrucomicrobia* (EUB338-III) took up xylan. **(G)** Super-resolution structured illumination images showing different polysaccharide accumulation pattern in FLA-laminarin stained cells (green), counterstained with DAPI (blue) and taxonomic correlation with FISH probes (red).

Fig. 4 Metabolic phenotyping and flow cytometry of cultures and complex communities. **(A)** Visualization of cell-to-cell heterogeneity in strains of *Bacteroidetes thetaiotaomicron* incubated with fluorescently labeled yeast mannan. The cell DNA is shown by DAPI staining in blue, the FLAPS is shown in green and cell membranes are shown by Nile red staining in red. Scale bar = 5 μm. **(B)** Quantification of FLAPS uptake into *Bacteroidetes thetaiotaomicron* by flow cytometry. Shown in the first two panels are negative controls: *Bacteroidetes thetaiotaomicron* grown on unlabeled monosaccharide and unlabeled polysaccharide. The subsequent three panels show the change in fluorescence of the cells with incubation in FLAPS for 5 min, 1 day and 3 days. Data revisualized from Klassen et al., 2021. **(C)** Schematic representation fluorescence-activated cell sorting of FLAPS positive cells in combination with sequencing.