

1 **Crosstalk between the glucocorticoid and mineralocorticoid receptor boosts
2 glucocorticoid-induced killing of multiple myeloma cells**

3
4 Dorien Clarisse¹⁻³, Stefan Prekovic⁴, Philip Vlummens⁵, Eleni Staessens¹⁻³, Karlien Van
5 Wesemael^{1,5}, Jonathan Thommis^{1,2}, Daria Fijalkowska¹, Guillaume Acke⁶, Wilbert Zwart⁷, Ilse
6 M. Beck^{8,\$}, Fritz Offner^{3,5,\$} and Karolien De Bosscher^{1-3,*}

7
8 ¹ VIB Center for Medical Biotechnology, Ghent, Belgium

9 ² Department of Biomolecular Medicine, Ghent University, Ghent, Belgium

10 ³ Cancer Research Institute Ghent (CRIG), Ghent, Belgium

11 ⁴ Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The
12 Netherlands

13 ⁵ Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent,
14 Belgium

15 ⁶ Department of Chemistry, Ghent University, Ghent, Belgium

16 ⁷ Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute,
17 Amsterdam, The Netherlands

18 ⁸ Department of Health Sciences, Odisee University of Applied Sciences, Ghent, Belgium

19 ^{\$} These authors contributed equally to this work

20
21 *Correspondence: Karolien De Bosscher, Technologiepark-Zwijnaarde 75, 9052 Ghent,
22 Belgium, e-mail: karolien.debosscher@vib-ugent.be, phone number: +3292249866

23
24 **Abstract**

25 The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation
26 with glucocorticoids effectively triggers myeloma cell death. However, as high-dose
27 glucocorticoids are also associated with deleterious side effects, novel approaches are
28 urgently needed to improve GR action in myeloma. Here we reveal a functional crosstalk
29 between GR and the mineralocorticoid receptor (MR) that culminates in improved myeloma
30 cell killing. We show that the GR agonist Dexamethasone (Dex) downregulates MR levels in
31 a GR-dependent way in myeloma cells. Co-treatment of Dex with the MR antagonist
32 Spironolactone (Spi) enhances Dex-induced cell killing in primary, newly diagnosed GC-
33 sensitive myeloma cells. In a relapsed GC-resistant setting, Spi alone induces distinct
34 myeloma cell killing. On a mechanistic level, we find that a GR-MR crosstalk likely arises from
35 an endogenous interaction between GR and MR in myeloma cells. Quantitative dimerization
36 assays show that Spi reduces Dex-induced GR-MR heterodimerization and completely
37 abolishes Dex-induced MR-MR homodimerization, while leaving GR-GR homodimerization
38 intact. Unbiased transcriptomics analyses reveal that c-myc and many of its target genes are
39 downregulated most by combined Dex-Spi treatment. Proteomics analyses further identify that
40 several metabolic hallmarks are modulated most by this combination treatment. Finally, we
41 identified a subset of Dex-Spi downregulated genes and proteins that may predict prognosis
42 in the CoMMpass myeloma patient cohort. Our study demonstrates that GR-MR crosstalk is
43 therapeutically relevant in myeloma as it provides novel strategies for glucocorticoid-based
44 dose-reduction.

45

46

47

48

49 **Introduction**

50 More than 10% of all patients with hematological malignancies are diagnosed with multiple
51 myeloma, which is a plasma cell cancer that is localized in the bone marrow^{1,2}. Despite
52 significant advances in myeloma treatment, synthetic glucocorticoids (GCs) such as
53 Dexamethasone (Dex) remain an important pillar of the myeloma treatment protocol because
54 of their strong anti-myeloma activities, justifying their continued use in all treatment stages^{1,3}.
55 However, long-term use of high-dose GCs is hampered by the emergence of GC resistance
56 and side effects including osteoporosis, hyperglycemia, muscle wasting and severe mood
57 swings, which negatively impact patient quality-of-life and treatment adherence⁴.

58 Both the therapeutic and unwanted effects of GCs are exerted through ligand-
59 mediated activation of the glucocorticoid receptor (GR); a transcription factor belonging to the
60 superfamily of ligand-activated nuclear receptors⁵. Once GCs bind to GR, the receptor
61 undergoes a conformational change that results in a rearrangement of the Hsp90-FKBP51-
62 containing multi-protein complex that aids in nuclear translocation of GR^{6,7}. In the nucleus,
63 ligand-activated GR can promote gene activation, which can be accomplished by GR
64 homodimers binding to glucocorticoid response elements (GREs) of target gene promoters or
65 enhancers^{8,9}. In contrast, GR monomers can trigger gene repression by interfering with gene
66 expression programs of other DNA-bound transcription factors such as NF-κB and AP-1 via,
67 for instance, a tethering mechanism¹⁰. However, the dominant interaction mode between GR
68 oligomers and other transcription factors on DNA remains a topic of debate¹¹⁻¹⁵.

69 The intricate interplay of GR oligomers with other nuclear receptor oligomers, also
70 called nuclear receptor crosstalk, results in a unique gene expression profile that allows for a
71 strengthening or weakening of each receptor's activity¹⁶. This crosstalk was already
72 established for GR and estrogen receptor α (ER α) in breast cancer and for GR and androgen
73 receptor (AR) in prostate cancer¹⁷. We serendipitously found that besides GR, the structure-
74 wise closely related mineralocorticoid receptor (MR) was differentially expressed between
75 myeloma cell lines. The impact of a possible interplay between GR and MR on GC therapy
76 responsiveness has however not been considered in myeloma.

77 MR responds to two physiological ligands, aldosterone and cortisol, in a cell-type
78 dependent manner and is ubiquitously expressed^{18,19}. This receptor regulates the electrolyte
79 balance and water homeostasis in epithelial cells, while in non-epithelial cells inappropriate
80 MR activation triggers pro-inflammatory and profibrotic effects²⁰. MR-mediated effects are
81 counteracted by MR antagonists, such as Spironolactone (Spi), which are used in the clinic
82 for their cardiovascular and renal protective functions and to lower blood pressure^{21,22}.
83 Crosstalk mechanisms between GR and MR were shown in several tissues^{16,23,24} and result
84 in the formation of GR-MR heterodimers or even higher order oligomers, thereby modulating
85 the transcriptional activity of each receptor²³⁻²⁷. Several studies support that MR inhibits GR-
86 mediated gene transcription following GR-MR heterodimerization²⁸⁻³⁰. However, a study in
87 neuroblastoma cells shows that GC-induced transcription was enhanced by a tethering of MR
88 to DNA-bound GR²³. How the GC response in myeloma may be influenced by the interplay
89 between GR and MR is still elusive.

90 In this study, we present a novel crosstalk mechanism between GR and MR in multiple
91 myeloma cells that may offer a unique therapy-supportive angle for myeloma treatment. We
92 show that GCs downregulate MR levels in a GR-dependent fashion and that inhibiting MR
93 with Spi culminates in an enhanced Dex-induced myeloma cell killing. We further elaborate
94 on this GR-MR crosstalk by showing that Spi reduces Dex-induced GR-MR heterodimerization
95 and completely abolishes Dex-induced MR-MR homodimerization. Finally, we reveal the

96 transcriptomic and proteomic signatures of the Dex-Spi combination treatment that underpin
97 the enhanced myeloma cell killing effects and identify a subset of Dex-Spi-regulated targets
98 that predict survival in the CoMMpass patient cohort.

99

100 **Results**

101 **Dex downregulates MR levels in a GR-dependent way.**

102 We first examined whether GCs regulate MR mRNA and protein levels (Fig.1A,B) in five
103 myeloma cell lines (MM1.S, OPM-2, L-363, U-266 and MM1.R)^{31,32} with different sensitivities
104 to Dex-mediated myeloma cell killing (Fig.1C). A 6h Dex treatment downregulated *NR3C2*
105 (MR) transcripts in cells showing the highest GC-inducible MM cell killing (MM1.S, OPM-2 and
106 L-363), while in cells with virtually no GC-mediated MM cell killing (U-266 and MM1.R), *NR3C2*
107 mRNA levels remained unchanged (Fig.1A). MR protein levels were also downregulated in
108 GC-sensitive MM1.S and OPM-2 cells following 24h Dex treatment and only slightly in GC-
109 resistant GR-negative MM1.R cells (Fig.1B). Despite that *NR3C2* mRNA is present in all
110 myeloma cell lines (Fig.1A), MR protein levels were hardly detectable in both U-266 and L-363
111 cells (Fig.1B).

112 Dex decreased *NR3C1* (GR) mRNA levels only in L-363 cells and thus not in the GC-
113 inducible MM1.S and OPM-2 cells (Supplementary Fig.S1; MM1.R is *NR3C1*-negative). GR
114 protein, however, consistently underwent homologous downregulation following 24h Dex
115 treatment (also known as negative feedback of GR) in all GR-containing MM cells (Fig.1B),
116 which agrees with several reports³³⁻³⁶. Next to both receptors, we examined the Dex response
117 of shared target genes. *TSC22D3* (GILZ)³⁷ and *FKBP5*³¹ mRNA levels were upregulated by
118 Dex in all MM cells except MM1.R cells, while *SGK1*⁴¹ mRNA levels are decreased by Dex in
119 MM1.S, L-363 and U-266 cells (Supplementary Fig.S1).

120 The dynamic behavior of this Dex-induced MR downregulation was illustrated by
121 showing that from 3h onwards, Dex significantly decreased *NR3C2* mRNA levels in MM1.S
122 and OPM-2 cells; a fast regulation that was largely recapitulated at the protein level (Fig.1D-
123 E). In contrast to *NR3C1* mRNA levels, Dex gradually declined GR protein levels over time
124 (Fig.1D-E), as shown before³⁶.

125 To confirm our observations across GCs with different potencies, we compared,
126 ranked from high to low potency, the following ligands: Dex, fluocinolone acetonide (FA),
127 prednisolone (Pred) and hydrocortisone (HCort). All GCs consistently downregulated MR
128 protein levels in MM1.S cells (Supplementary Fig.S2A). We observed a double MR band (with
129 Dex, FA) and even multiple MR bands (with Pred, HCort) in MM1.S, while in MM1.R only Pred
130 and HCort induced a clear double MR band, suggestive of post-translational modification of
131 MR³⁸.

132 Several lines of evidence support that the Dex-induced MR protein downregulation is
133 largely GR-dependent. First, we used the GR antagonist RU486. A Dex/RU486 combination
134 left MR protein levels intact compared to Dex alone in MM1.S and OPM-2 cells (Fig.1F). In
135 addition, an siRNA-based GR knockdown in MM1.S cells showed that MR levels are at least
136 partially protected from Dex-induced downregulation in siGR compared to siCtrl conditions
137 (Fig.1G), overall supporting a GR-dependent mechanism. Noteworthy, knockdown of GR was
138 already sufficient to increase the basal MR protein levels in MM1.S cells. Thirdly, in GR-
139 negative MM1.R cells, Dex may bind MR instead, although this was clearly not sufficient to
140 trigger the pronounced MR downregulation that was observed in GR-positive MM1.S cells.

141 To investigate whether Dex lowered *NR3C2* levels post-transcriptionally, we used
142 actinomycin D (ActD) to block de novo transcription in MM1.S cells. ActD by itself reduced
143 *NR3C2* levels three-fold compared to solvent condition, indicating that MR mRNA is unstable

144 (Fig.1I). Addition of Dex on top of ActD could not further reduce the residual *NR3C2* mRNA
145 levels, suggesting that novel gene transcription is needed. Next, we evaluated whether
146 mechanisms centered at the protein level were contributing to Dex-induced MR
147 downregulation. The protein translation inhibitor cycloheximide (CHX), of which the activity
148 was confirmed via β -catenin downregulation (positive control), combined with Dex did not
149 further reduce the MR protein levels at 6h treatment compared to Dex alone. This indicates
150 that Dex requires novel protein synthesis to decrease MR protein levels (Fig.1J). In addition,
151 Dex did not decline MR protein levels via lysosomal degradation, as assessed with
152 chloroquine (positive control: LC-3) or via proteasomal degradation, as evaluated with the
153 proteasome inhibitor MG132 (positive control: Hsp70) (Supplementary Fig.S2B-E).

154 Taken together, GCs decrease both MR mRNA and protein levels in MM cell lines with
155 different degrees of GC-mediated MM cell killing in a GR-dependent manner, corroborating
156 the existence of GR-MR crosstalk in these cells (Fig.1H). Our findings also demonstrate that
157 MR mRNA is unstable and that Dex requires de novo transcription and translation to decrease
158 MR levels in MM cells.

159
160 **MR antagonism enhances GC responsiveness of MM1.S cells.** Because Dex can
161 decrease MR mRNA and protein levels in MM cells, we examined whether a targeting of MR
162 could affect the anti-MM activity of GCs. Hereto, we used three different strategies. First, we
163 used MR knockdown using siRNA's (siMR, Fig.2A-B) and found that the MM1.S cell viability
164 was markedly reduced even in absence of Dex (Fig. 2A). Although the effect size by which
165 Dex reduces the MM1.S cell viability was comparable in siCtrl and siMR conditions, the cell
166 viability was significantly lower (~55%) in the siMR Dex compared to the siCtrl Dex condition
167 (~80%, Fig.2A). Altogether, this suggests that MR presence may protect against myeloma cell
168 death.

169 Second, to evaluate how MR levels evolve upon prolonged GC treatment, we
170 developed a cell model that mimics the gradual build-up of GC resistance. Here, MM1.S cells
171 were treated for four weeks with a low dose of Dex (10^{-8} M) followed by a high dose of Dex
172 (10^{-6} M) for 24h to assess the residual GC responsiveness of the MM cells to cell killing
173 (Fig.2C). When MM cells were treated for four weeks with solvent, the additional 24h high-
174 dose Dex resulted in a marked decrease in MR protein levels (Fig.2C, lane 1 vs 2), in line with
175 Fig.1B. In contrast, after four weeks low-dose Dex, MR levels no longer declined following a
176 24h high-dose Dex (Fig.2C, lane 3 vs 4). Apoptotic marker analyses confirmed that the four
177 weeks low-dose Dex, indeed rendered MM1.S cells refractory to the 24h high-dose Dex boost
178 (Fig.2C, lane 2 vs 4). We found decreased cleavage of pro-apoptotic PARP and caspase 3,
179 reduced levels of pro-apoptotic Bim and increased levels of anti-apoptotic Bcl-XL (Fig.2C, lane
180 2 vs 4).

181 Third, because MR knockdown promoted MM1.S cell killing (Fig.2A), we sought to
182 complement these findings by using the MR antagonist Spironolactone (Spi). A concentration-
183 response experiment showed that 10^{-5} M Spi (24h) supported a mild cell killing in MM1.S cells
184 (Fig.2D), but not in endothelial EA.hy926 cells (72h, toxicity control, Supplementary Fig.S3A).
185 Next, we treated MM1.S cells for 24h with a combination of Dex (10^{-6} M) and Spi (10^{-5} M) and
186 showed increased cleavage of pro-apoptotic PARP and caspase 3, and a decrease in anti-
187 apoptotic Bcl-xL (Fig.2E). Confirmatory Annexin V/PI flow cytometric analyses showed that
188 Dex-Spi combination decreased the percentage of viable MM1.S cells and increased the
189 percentage of early-and late-apoptotic cells compared to each treatment alone (Fig.2F-G,
190 Supplementary Fig.S3B). Spi enhanced Dex-induced MM1.S cell killing already at 24h

191 (Fig.2H) and at 72h to an even higher extent (Fig.2I). Finally, also Pred- and Hcort-mediated
192 MM1.S cell killing was boosted by Spi (Fig.2J-K).

193 Summarized, our results suggest that MR is a pro-survival factor in myeloma and that
194 its pharmacological inhibition enhances GC-induced MM1.S cell killing.
195

196 **The ability of Spi to promote Dex-induced cell killing correlates with the Dex**
197 **responsiveness of MM cell lines.** To determine whether a Dex-Spi combination is effective
198 across MM cell line models, we screened four other MM cell lines in which GCs induce MM
199 cell killing to varying extents (Fig.1C). Whereas the MR antagonist Spi did not readily promote
200 GC-mediated OPM-2 killing at 24h of treatment, this was observed after 72h of treatment
201 (Fig.3A) as strongly as observed for MM1.S cells (Fig.2I). Hence, the threshold to obtain an
202 efficient Dex-Spi-induced killing could have a time-dependent component when comparing
203 OPM-2 to MM1.S.

204 Next, we tested MM cells that are less (or un)responsive to Dex in terms of cell killing
205 to evaluate whether Dex-Spi still offers therapeutic benefit. Although L-363 cells respond
206 slightly to Dex treatment, Spi did not significantly impact Dex-mediated cell killing of these
207 cells after 72h (Fig.3B), which may be due to the very low amounts of MR that these cells
208 contain (only detectable at mRNA level, Fig.1A-B). The same reasoning applies to the
209 Dex-unresponsive U-266 cells, where Spi alone caused only a mild drop in cell viability (~10%,
210 Fig.3C). Interestingly, in MM1.R cells, which are GR-negative yet strongly MR-positive
211 (Fig.1B), Spi alone triggered a marked decrease in cell viability at 72h of treatment (drop of
212 ~30%, Fig.3D), for which GR presence is clearly not required.

213 In summary, in myeloma cells that contain detectable protein levels of both GR and
214 MR, Spi enhances Dex-induced myeloma cell killing (Fig.3E).
215

216 **Combining lower doses of GC with MR antagonist enhances cell death of primary MM** 217 **cells.**

218 To validate the potential of a Dex-Spi combination treatment in a preclinical context, we
219 isolated primary MM cells from bone marrow aspirates of 10 MM patients at different disease
220 stages (Table 1). In line with our observations in MM1.S and OPM-2 cells, newly diagnosed
221 MM1 (Fig.4A) and MM2 (Fig.4B) patient cells as well as the premalignant smoldering MM9
222 patient cells (Fig.4K) displayed higher cell killing when combining Dex and Spi versus Dex
223 alone. Importantly, 10^{-7} M Dex combined with 10^{-5} M Spi was at least equally efficacious as 10^{-6} M Dex (~40mg comparator dose in patients) alone (full arrow). As could be expected from a
224 heterogeneous disease as myeloma, not all patient samples responded alike. Newly
225 diagnosed MM3 patient cells (Fig.4C) strongly responded to Dex but had no additional benefit
226 from Spi treatment. Furthermore, MM10 cells of a premalignant MGUS patient (Fig.4L) hardly
227 responded to Dex treatment, while Spi alone reduced the cell viability with about 20% (dashed
228 arrow). Notable, in all relapsed patient cells (MM4, MM5, MM6, MM7 and MM8, Fig.4D-H),
229 Spi alone triggered a pronounced cell killing (Fig.4D-H), with a reduced cell viability of max.
230 up to 60% (Fig.4H). All relapsed patient cells were found to be resistant to Dex-induced cell
231 killing, except MM4, which may explain why a Dex-Spi combination did not further improve on
232 cell killing as compared to Spi alone.
233

234 Only for MM1, MM2, MM3, MM4 and MM5 patients the primary cell yield was
235 sufficiently high to allow for an analysis of GR and MR target gene expression following Dex
236 treatment. We selected *TSC22D3* and *SGK1* because 1) of their opposing Dex response in
237 our MM cell lines (Supplementary Fig.S1), 2) studies indicate anti-proliferative actions
238 (*TSC22D3*)³⁷ or pro-survival effects (*SGK1*)³⁹, and 3) the receptors themselves were below

239 the detection limit as assessed by RT-qPCR. Dex treatment upregulated TSC22D3 mRNA
240 levels in 2 out of 3 newly diagnosed patient cells (MM1 and MM3) and in both relapsed patient
241 cells (MM4 and MM5) (Fig.4I), while SGK1 mRNA levels were downregulated in 1 out of 3
242 newly diagnosed patient cells (MM3) and in both relapsed patient cells (MM4 and MM5)
243 (Fig.4J); hereby recapitulating the varying degree in Dex-responsiveness that was also
244 retrieved in the MM cell lines (Supplementary Fig.S1).

245 To examine whether *NR3C2* and/or *NR3C1* expression levels could predict survival,
246 we took advantage of publicly available RNA-sequencing data generated in the framework of
247 the CoMMpass study of the MM research foundation (MMRF). We found that *NR3C2* levels
248 were much lower than those of *NR3C1* at diagnosis (Fig.4N). Nonetheless, *NR3C2* levels
249 were predictive for overall survival (OS) when patients were divided in 3 groups based on
250 high, medium, and low expression of *NR3C2* (Fig.4O). This was not the case when
251 progression free survival (PFS) was assessed (Supplementary Fig.S3A). *NR3C1* expression
252 levels were not predictive of either PFS or OS (Fig.4P, Supplementary Fig.4B).

253 Taken together, in newly diagnosed and premalignant myeloma patients, a 10-fold
254 lower Dex dose in combination with Spi could be advantageous, although the extent of the
255 therapeutic benefit will differ among patients (Fig.4M, top panel). In the relapsed setting, Dex
256 is barely functional, but Spi alone does induce distinct MM cell killing (Fig.4M, bottom panel).
257 Finally, NR3C2, but not NR3C1 expression levels are associated with OS in patients.
258

259 **GR and MR interact at the endogenous level in MM cells.**

260 Because crosstalk mechanisms between nuclear receptors can arise from a direct
261 interaction¹⁶, we examined to which extent and in which direction Dex-Spi steers GR-MR
262 heterodimerization compared to Dex, via two complementary methods. First, we developed a
263 NanoBiT-based quantitative GR-MR heterodimerization assay in HEK293T cells that relies on
264 overexpressed tagged receptors and *in cellulo* reconstitution of a functional NanoLuc
265 luciferase (Fig.5A). In this assay, a signal for GR-MR heterodimerization is only measured
266 when GR coupled to SmBiT and LgBiT coupled to MR interact (Fig.5A). We found that Dex
267 triggered an ~8-fold induction of GR-MR heterodimerization, which was reduced when
268 combined with Spi to ~6-fold (Fig.5B-C). In contrast, Spi alone failed to induce GR-MR
269 heterodimerization.

270 We compared the NanoBiT assay results with endogenous GR-MR co-immunoprecipitation
271 (co-IP) analyses in MM1.S and OPM-2 cells. Already in basal conditions, GR and MR
272 interacted in the IP fraction (lane 2, Fig. 5D,F). In line with the NanoBiT results, Dex treatment
273 consistently increased this interaction in MM1.S and OPM-2 cells. Similarly, Dex-Spi
274 combination again reduced this GR-MR interaction compared to Dex treatment. In contrast to
275 NanoBiT, Spi alone did support a marked GR-MR interaction in an endogenous context,
276 although to a lower extent than Dex alone.

277 To examine whether the Dex-Spi combination could also impact receptor homodimer
278 formation, we extended our NanoBiT assay portfolio towards GR-GR and MR-MR
279 homodimerization. We found that Dex triggered a ~3.5-fold induction in GR-GR homodimer
280 formation, which was unaffected by the addition of Spi (Fig.5F-G). In contrast, Spi completely
281 abolished the Dex-induced MR-MR homodimer formation (Fig.5J-K).

282 Summarized, GR and MR engage in an endogenous interaction in MM cells.
283 Quantitative assays indicate that Spi blunts Dex-induced GR-MR and MR-MR dimerization.
284

285 **Dex-Spi combination strongly inhibits several major players in myeloma cell survival.**
286 To determine whether GR-MR crosstalk leads to differential transcriptomic signatures, we

287 followed an RNA-sequencing approach. Principal component analysis showed that the
288 biological repeats are well clustered per condition (EtOH, Dex, Spi, Dex-Spi) (Supplementary
289 Fig.S6A). Differential gene expression analysis of pairwise comparisons revealed that the
290 highest number of unique genes were regulated by Dex-Spi (596) (Supplementary Fig.6B).
291 Volcano plots further highlight significant genes with the largest log2 fold changes (log2FC;
292 red and blue) for different pairwise comparisons, including 'Dex-Spi vs EtOH' (Fig.6A), 'Dex
293 vs EtOH' and 'Spi vs EtOH' (Supplementary Fig.S6C-D). Several top genes that were shared
294 between pairwise comparisons and that are typical target genes for GR and MR, i.e.
295 *TSC22D3*, *FKBP5* and *SGK1*, were analyzed by RT-qPCR to validate the RNA-sequencing
296 results (Supplementary Fig.S6B). In MM1.S, OPM-2 and L-363 cells, *TSC22D3*
297 (anti-proliferative action)³⁷ and *FKBP5* (GR co-chaperone)⁴⁰ mRNA levels were upregulated
298 to a lesser extent by 6h Dex-Spi treatment than by Dex alone, in line with their corresponding
299 count plots (Supplementary Fig.S6D-H). In addition, *SGK1* (stimulates myeloma cell
300 survival)³⁹ mRNA levels were downregulated to a similar extent by Dex-Spi and Dex in MM1.S
301 and L-363 cells, again in line with the RNA-sequencing results. In search of significantly
302 regulated side-effect markers, the bone homeostasis marker *TMEM119*^{41,42} was selected
303 given that this gene may act as a molecular proxy for GC-related bone disease. Dex-Spi
304 combination showed a mild, yet consistent upregulation of *TMEM119* in MM1.S, OPM-2 and
305 L-363 cells (Supplementary Fig.S6D-H).

306 To prioritize candidate genes for validation at the protein level, we identified the
307 molecular and cellular functions attributable to the 'Dex-Spi vs EtOH' comparison by
308 performing an Ingenuity Pathway Analysis (IPA). We found groups of genes that were
309 significantly involved in gene transcription (terms: gene expression and RNA post-
310 transcriptional modification), cell death and survival and cell cycle (Supplementary Fig.S7A).
311 Based on the top regulated genes from each comparison in these IPA terms (Fig.6A,
312 Supplementary Fig.S6C-D, S7A), we selected genes that were involved in transcriptional
313 regulation (*POLR2A*, *HEXIM1*), cell growth, proliferation and/or survival (*MYC*, *CCND1*,
314 *CCL3*) and validated these at the protein level in MM1.S, OPM-2, L-363 and MM1.R cells
315 (Fig.6B, Supplementary Fig.S7B-C). Interestingly, c-myc (oncogene)⁴³ protein levels were
316 significantly decreased by Dex-Spi as compared to Dex alone in both MM1.S and OPM-2 cells
317 (Fig.6B), again in line with our RNA-sequencing results, and also by Spi alone in MM1.R cells
318 (Supplementary Fig.S7C). Whereas RNA polymerase II (Pol II) levels were largely unchanged
319 comparing Dex-Spi versus Dex alone, activated Pol II protein levels, hallmark by Ser2
320 phosphorylation⁴⁴, decreased markedly upon Dex-Spi, yet only in MM1.S cells (Fig. 6B);
321 indicating a halt in the transcription elongation process. In OPM-2 cells, a brake on
322 transcription induced by Dex-Spi may rather originate from a mild upregulation (vs Dex) of the
323 transcriptional repressor *HEXIM1*⁴⁵. Cyclin D1, a protein downregulated by GCs to induce cell
324 cycle arrest⁴⁶, was downregulated to the same extent by Dex-Spi as by Dex alone in MM1.S
325 cells, while in OPM-2 cells, Dex-Spi triggered the largest decrease in cyclin D1 protein levels.
326 In addition, in MM1.S cells, the protein levels of *CCL3*, a contributor to myeloma cell migration
327 and an aggravator of bone disease⁴⁷, were decreased similarly in all conditions versus solvent
328 (Fig.7B). In OPM-2 and L-363 cells, *CCL3* was largely undetectable.
329 We also examined the Dex:Spi interaction term (Fig.6C), which contained 37 significantly
330 regulated genes (Supplementary Fig.S1) and of which the response following Dex-Spi
331 treatment is hypothesized to be significantly different from combining the responses of
332 separate Dex and Spi treatments. Three genes were selected for validation at the protein level
333 based on their high normalized counts, previously described function in myeloma, and
334 accompanying primary antibody performance (in WB): 1) *DDIT4* (also known as REDD-1),

335 promotes myeloma cell growth and survival⁴⁸ and is described as a GC-inducible muscle
336 atrophy marker⁴⁹; 2) *ERN1* (also known as *IRE1α*), a sensor of unfolded proteins and critical
337 for MM tumor growth⁵⁰; 3) *POU2AF1* (also known as *BOB-1*), a regulator of oncogenic
338 networks in myeloma⁵¹. Interestingly, *REDD1* protein levels were decreased by Dex-Spi
339 combination versus Dex in MM1.S cells and, to a similar extent, by Spi and Dex-Spi in OPM-
340 2 cells (Fig.6D). In L-363 cells, *REDD1* levels were equally increased by Dex and Dex-Spi
341 (Supplementary Fig.S7D). Both *BOB-1* and *IRE1α* were most strongly decreased by Dex-Spi
342 combination in MM1.S cells and comparably decreased by Dex and Dex-Spi treatment in
343 OPM-2 cells (Fig.6D). In L-363 and MM1.R cells, *IRE1α* levels were not clearly regulated by
344 any treatment (Supplementary Fig.S7D).

345 Taken together, our transcriptome analysis and subsequent validation at the protein
346 level reveals that gene transcription is halted more strongly by Dex-Spi than by Dex alone in
347 MM cells, with *c-myc*, *cyclinD1*, *REDD1* and *BOB-1* being strongly Dex-Spi-downregulated
348 targets.

349

350 ***c-myc* target genes are mostly downregulated by Dex-Spi.**

351 We expanded our RNA-seq analysis by zooming in on genes that were uniquely up-or
352 downregulated by the Dex-Spi combination. We found 311 genes to be uniquely upregulated
353 by Dex-Spi, as shown by their normalized gene expression profile (Fig.6E). GSEA shows that
354 genes upregulated by Dex-Spi (green curve) or Dex (red curve) treatment were enriched for
355 a previously established GR activity score⁵² (Fig.6F).

356 We then focused on the 264 genes that are uniquely downregulated by Dex-Spi
357 treatment and for which their normalized gene expression is depicted in Fig.6G. GSEA-based
358 overrepresentation analysis (Supplementary Fig.S7E) identified that two hallmarks containing
359 different sets of myc target genes were significantly enriched in the set of genes that are
360 uniquely downregulated by Dex-Spi. Zooming in on these 'myc hallmarks' (Fig.6H-I) confirmed
361 that the most negative normalized enrichment scores (NES) was indeed obtained for Dex-Spi.
362 In addition, we examined whether the expression levels of the uniquely Dex-Spi
363 downregulated genes could predict survival, for which we again relied on the CoMMpass
364 cohort data. Strikingly, we found that patients showing low expression of the Dex-Spi
365 downregulated genes had better PFS and OS compared to patients showing high expression
366 of these genes (Fig.6J, Supplementary Fig.S7F). Prognostic factor analysis highlighted that
367 this prediction is better than when random gene signatures were used (Fig.6K, full red line).

368 Overall, the inhibition of *c-myc* target genes likely underpins the enhanced myeloma
369 cell killing observed with Dex-Spi.

370

371 **Shotgun proteomics analyses unveils a contribution of metabolic pathway deregulation 372 upon Dex-Spi treatment.**

373 To gain additional mechanistic insights into the Dex-Spi combination treatment at 24h
374 treatment, we performed mass spectrometry-based shotgun proteomics on MM1.S cells.
375 Differential expression analysis showed that the highest number of hits (i.e. proteins) was
376 again identified for the Dex-Spi combination treatment (Fig.7A); in line with RNA-sequencing
377 results (Supplementary Fig.S6B). Volcano plots further highlighted significant proteins with the
378 largest log(LFQ) difference (red and blue) for different pairwise comparisons, including 'Dex-
379 Spi vs EtOH' (Fig.7B), 'Dex vs EtOH' and 'Spi vs EtOH' (Supplementary Fig.S8A,C).
380 Overrepresentation analyses of the Dex-Spi regulated proteins identified that several
381 hallmarks of metabolism, including oxidative phosphorylation and fatty acid metabolism were

382 significantly upregulated, while the hallmarks for cholesterol homeostasis, G2M checkpoint
383 and E2F targets were significantly downregulated (Fig.7C). Zooming on the individual
384 hallmarks (Fig.7D-G, Supplementary Fig.S8E-H) learned that only proteins regulated by Dex-
385 Spi, and not by Dex or Spi, were significantly enriched for oxidative phosphorylation and fatty
386 acid oxidation (Fig.7D-E). Cholesterol homeostasis was rather inhibited by the Dex-Spi
387 regulated proteins (Fig.7F). In contrast, all treatments (Dex-Spi, Dex and Spi) gave rise to a
388 significant enrichment of the G2M checkpoint and E2F targets, but it was rather Dex alone
389 that inhibited these hallmarks the most (Fig.7G, Supplementary Fig.7E). In addition, the Myc
390 V2 hallmark was only significantly enriched upon Spi treatment in the proteomics analyses
391 (Fig.S8G-H), while this enrichment was significant for all treatments in the RNA-sequencing
392 analysis (Fig.6H-I), which may be due to a difference in treatment time in both setups (6h vs
393 24h). Nonetheless, the master regulator c-myc was differentially regulated at the protein level
394 (Fig.6B).

395 Finally, we examined whether the expression levels of Dex-Spi regulated proteins could
396 predict survival in the CoMMpass cohort. The genes corresponding to the proteins that were
397 uniquely up- or downregulated by Dex-Spi (upset plots, Supplementary Fig.8E-F) were used
398 as input as only transcriptomics data are available for the CoMMpass cohort. We found that
399 patients having a low expression of the proteins uniquely downregulated by Dex-Spi had a
400 better PFS and OS than patients having a high expression of these targets (Fig.7H,
401 Supplementary Fig.S9A). In contrast, high expression levels of proteins that were uniquely
402 upregulated by Dex-Spi identified patients with worse PFS and OS (Fig.7I, Supplementary
403 Fig.S9B).

404 Summarized, on a mechanistic level, we additionally resolved that the Dex-Spi
405 combination treatment deregulates several metabolic pathways.

406

407 Discussion

408 In this study, we have identified a novel, functionally relevant nuclear receptor crosstalk
409 mechanism between GR and MR in myeloma cells (summarized in Fig.7J). We have shown
410 that although MR levels were decreased upon Dex treatment over time in a GR-dependent
411 manner (A; Fig.7J), endogenous GR strongly interacts with MR in a Dex-inducible manner at
412 early stages (B; Fig.7J). We further found that Spi clearly diminished Dex-induced GR-MR
413 heterodimerization and completely abolished Dex-induced MR-MR homodimerization (B,
414 Fig.7J). Dex-Spi combination treatment also gave rise to a differential transcriptomic and
415 proteomic signature (C; Fig.7J) that can help explain the enhanced Dex-induced myeloma cell
416 killing in combination with Spi (D; Fig.7J). These four main findings will be discussed in further
417 detail below.

418 We found that Dex downregulates MR levels likely by a superposition of different
419 mechanisms. In earlier work, GCs were reported to reduce the stability of pro-inflammatory
420 mediators, such as TNF α , by upregulating mediators of mRNA decay⁵³. A similar mechanism
421 decreased the NR3C2 mRNA stability in renal epithelial cells subjected to hypertonic
422 conditions⁵⁴, and recently several NR3C2-targeting miRNA's were identified in this context⁵⁵.
423 In myeloma cells, Dex did not further reduce the MR mRNA stability following ActD treatment
424 (Fig.1I). Pharmacological inhibition of transcription and translation rather supported that the
425 Dex-induced decline of MR mRNA and protein depended, at least partially, on both
426 mechanisms. Noteworthy, Dex treatment also induced a second MR band, approximately
427 10kDa upwards, hinting at various post-translational modifications. Although an Aldosterone-
428 induced upward shift of MR of even 30kDa was reported before, this was linked to increased
429 phosphorylation on several serine residues with subsequent MR polyubiquitination and

430 proteasomal degradation⁵⁶. In the MM cell context however, Dex did not decrease MR protein
431 levels via proteasomal or lysosomal degradation (Supplementary Fig.S2B-E). Although GR
432 was clearly required for the Dex-induced MR downregulation (Fig.1B,F,G), an additional
433 regulatory mechanism whereby GCs may directly bind to and affect MR, as in MM1.R cells
434 that lack GR (Supplementary Fig.S2A), cannot be excluded.

435 We are to the best of our knowledge the first to report that endogenous GR and MR
436 may form heterodimers or are at least part of the same protein complex in myeloma cells.
437 Compared to typical nuclear receptor heterodimers (e.g. RXR and PPAR), atypical
438 heterodimers such as GR-MR could be less prominent and transient, but that does not exclude
439 a potentially strong functional effect¹⁶. Although GR and MR connect already in basal
440 conditions, their interaction was further supported by Dex via two orthogonal assay systems
441 (Fig.5B-G). Spi, however, consistently reduced Dex-induced GR-MR heterodimerization
442 (Fig.5B-G) and completely abolished MR-MR dimerization (Fig.5J-K). Together, these results
443 support a hypothesis that altered receptor dimerization equilibria may mechanistically
444 contribute to an altered transcriptome and proteome profile and ultimately to the enhanced
445 cell killing induced by the Dex-Spi combination. Besides direct, also indirect crosstalk
446 mechanisms can affect the therapy response, as shown for GR and AR in prostate cancer,
447 where even diminished responsiveness to enzalutamide (anti-androgen) was observed^{17,57}.
448 Although the GR-MR crosstalk in MM1.S and OPM-2 cells may entail a direct physical
449 interaction (Fig.5B-E,5H-I), further studies are necessary to discriminate between tethering-
450 based interactions or cooperative DNA binding modes^{23,27} in the context of myeloma.

451 Transcriptome analysis has shown that Dex-Spi halted markers of transcription
452 elongation. We found decreased Pol II Ser2 phosphorylation in MM1.S cells (Fig.6B), which
453 agrees with earlier work resolving tethering-based GR repression mechanisms in an
454 inflammatory setting. There, Dex-activated GR hampered Pol II Ser2 phosphorylation at
455 several NF-κB-regulated promoters⁴⁴. In OPM-2 cells, increased expression of the
456 transcriptional repressor HEXIM1 appeared more decisive for a Dex-Spi-induced block in
457 transcription elongation (Fig.6B). The latter findings agree with a study where HEXIM1
458 sequestered positive transcription elongation factor b (P-TEFb) to inhibit transcription
459 elongation of tumorigenic genes⁴⁵. In line, Rogatsky and colleagues demonstrated that GR
460 can even inhibit recruitment of the P-TEFb complex that is normally responsible for Pol II Ser2
461 phosphorylation⁵⁸. Altogether, Dex-Spi consistently triggers several (consecutive) steps to
462 inhibit transcription in GC-sensitive MM cells, regardless of cell-line specific regulations of the
463 underlying markers.

464 Furthermore, our results strongly suggest that c-myc and many of its target genes
465 (Fig.6B, 5H-I) may be responsible for the enhanced myeloma cell killing induced by Dex-Spi.
466 The fact that GCs decrease c-myc levels is well documented in literature^{46,59}, and results in
467 cell cycle arrest at the G1 phase in leukemia cells⁵⁹; even Spi alone was linked to decreased
468 c-myc activity before⁶⁰. In myeloma, reports show that c-myc protein was overexpressed in
469 40% of patients at diagnosis, which correlated with shorter OS⁴³. Moreover, in 2022, the team
470 of Rosen showed that inhibiting SUMOylation in myeloma cells resulted in decreased c-myc
471 protein stability, which in turn decreased the levels of several miRNAs involved in either GR
472 downregulation or GC resistance⁶¹. Using survival analyses on the CoMMpass patient cohort
473 (Fig.6J-K), we further found that patients have a lower risk of progression when displaying low
474 levels of the unique Dex-Spi-downregulated genes, which may altogether be predictive of the
475 clinical relevance of a combination treatment. In addition, patients having high MR expression
476 levels at diagnosis showed superior OS, while GR expression levels were not predictive for
477 survival (Fig.4O-P). For GR, this contrasts a previous study, where high expression levels at

478 diagnosis were found predictive for OS⁶². One reason for this difference may be that Rosen
479 and colleagues stratified patients in two subgroups, based on whether they underwent stem
480 cell transplantation or not, and another reason may be that at that time only version IA13 of
481 the database was available (with 650 patients vs. IA14 with 750 patients).

482 Our study of the proteome additionally revealed that metabolic hallmarks such as
483 oxidative phosphorylation and fatty acid metabolism were upregulated, while the hallmark
484 cholesterol homeostasis was downregulated most by the Dex-Spi combination treatment (Fig.
485 7D-E). Reports in several lymphoid malignant cell types have associated enhanced
486 metabolism, i.e. increased glycolysis, oxidative phosphorylation, cholesterol biosynthesis and
487 fatty acid oxidation, with decreased GC responsiveness or even GC resistance⁶³⁻⁶⁵. GCs
488 inhibit glycolysis in ALL cells, which is not sufficient to trigger cell death but does induce a
489 metabolic shift to mitochondrial oxidative phosphorylation to obtain survival energy⁶⁶. In line
490 with this, combining GCs with the oxidative phosphorylation inhibitor oligomycin sensitized
491 GC-resistant ALL cells to cell killing⁶⁴. This team also found synergistic cell killing in GC
492 resistant ALL cell lines when GCs were combined with an inhibitor of cholesterol metabolism
493 (simvastatin)⁶⁴. In CLL cells, GCs reduce metabolic activity among others by downregulating
494 pyruvate kinase M2 and decreasing levels of pyruvate. Concomitantly however, this elevated
495 the dependency of the CLL cells on fatty acid oxidation because GCs also upregulated PPAR α
496 and PDK4 expression⁶⁵. Based on these studies, increased oxidative phosphorylation and
497 fatty acid metabolism may be rather an unwanted feature of the Dex-Spi combination
498 treatment in a context of prolonged treatment, although this requires further investigation.
499 Within this context, our survival analysis (Fig.7I) supports that high expression of proteins that
500 were uniquely upregulated by Dex-Spi was indeed associated with worse PFS. In contrast,
501 the marked inhibition of cholesterol homeostasis observed solely with Dex-Spi treatment may
502 rather be a contributing mechanism that can drive and explain the enhanced myeloma cell
503 killing. Nonetheless, the connection between GCs and potential shifts in metabolism in
504 myeloma cells, especially in the context of prolonged treatment, is rather understudied, which
505 opens opportunities for follow-up research.

506 Concerning markers mimicking GC-related side effects, we have found that Dex-Spi
507 increases *TMEM119* mRNA levels in all myeloma cell lines, except in MM1.R (Supplementary
508 Fig.S6D-H). Because this gene supports osteoblast differentiation and bone formation^{67,68}, this
509 suggests that Dex-Spi may improve GC-induced osteoporosis. We have also shown that
510 *REDD1* (*DDIT4*), an instigator of myeloma cell growth and survival⁴⁸, is decreased by Dex-Spi
511 combination compared to Dex in MM1.S and OPM-2 (Fig.6D). Because GC-mediated
512 increases in *REDD1* levels were also shown to contribute to muscle atrophy⁶⁹, this suggests
513 that Dex-Spi may perhaps improve GC-induced muscle atrophy. Whether those and other
514 metabolic side effects could also be improved at the organism level remains to be investigated
515 in follow-up studies.

516 We discovered that Spi enhances Dex-induced cell killing of myeloma cells, i.e. in
517 GC-sensitive MM1.S and OPM-2 cells as well as in patient cells of several newly diagnosed
518 patients and a smoldering MM patient (Fig.2, Fig.3A, Fig.4A,B,K). Our findings agree with a
519 study in which a GC-treated pre-B lymphoma cell line stably overexpressing the N-terminal
520 domain (NTD) of MR resulted in blocked apoptosis⁷⁰. In our case, Spi addition partially
521 suppressed Dex-induced GR-MR heterodimer formation and abolished Dex-induced MR-MR
522 homodimerization, which may form a molecular basis to support differential gene and protein
523 expression profiles with enhanced anti-myeloma outcomes compared to Dex. Noteworthy, Spi
524 is a potent FDA-approved MR antagonist, however, less selective because it causes anti-
525 androgenic (via AR) and progestogenic (via progesterone receptor, PR) side effects as well

526 as hyperkalemia²⁰. A limitation of our study is that we did not include a more selective MR
527 antagonist, such as Eplerenone, mainly because this compound has a 40-fold lower affinity
528 for MR than Spi²⁰. Nonetheless, Spi did not require GR for its action, because GR-negative
529 MM1.R cells underwent ~30% cell killing upon Spi treatment (Fig.3D). Data show that Spi by
530 itself can suppress pro-inflammatory cytokines and induce apoptosis in blood mononuclear
531 cells by reducing NF- κ B and c-myc activities⁶⁰. Spi was also found to inhibit nucleotide
532 excision repair which resulted in increased sensitivity of (primary) myeloma cells to alkylating
533 agents such as melphalan⁷¹. Our study further supports a marked reduction in cell viability
534 observed upon 10⁻⁵M Spi monotherapy across all (patient-derived) MM cells (Fig.2-4).

535 In conclusion, our results support the high potential of MR as an additional therapeutic
536 target in myeloma, of which antagonists may be repurposed for myeloma treatment in
537 combination with GCs as add-on to the myeloma standard of care treatment. We showed that
538 a functional crosstalk between GR and MR exists in myeloma and that a targeting hereof with
539 ligands warrants further investigation of its potential therapeutic benefit in terms of efficacy,
540 safety and the possibility to reduce the GC-dose.

541

542 Materials and Methods

543

544 Cell lines and reagents.

545 MM1.S, OPM-2, L-363, U-266 and MM1.R cells were cultured in RPMI1640 GlutaMAX and
546 HEK293T and EA.hy926 cells in DMEM, both supplemented with 10% fetal bovine serum
547 (FBS), 100U/mL penicillin and 0.1mg/mL streptomycin and grown at 5% CO₂ and 37°C.
548 MM1.S, MM1.R and EA.hy926 were purchased from ATCC. OPM-2 were kindly provided by
549 Prof. B. Thompson (University of Texas Medical Branch) and L-363 and U-266 cells by Prof.
550 M. Engelhardt (Uniklinik Freiburg, Germany). HEK293T were obtained from the cytokine
551 receptor lab (Ghent University). All cell lines were mycoplasma negative (MycoAlert kit,
552 Lonza). Experiments were performed using charcoal-stripped serum (CTS), unless otherwise
553 specified.

554 Total solvent concentrations were equal in all conditions. Dex, Hydrocortisone (Hcort),
555 Prednisolone (Pred), fluocinolone acetonide (FA), Aldosterone (Ald), RU486 and
556 cycloheximide (CHX) were purchased from Sigma Aldrich and dissolved in ethanol (EtOH),
557 unless otherwise specified. Spi and Chloroquine (CQ) were obtained from Santa Cruz
558 Biotechnology and dissolved in respectively EtOH and water, unless otherwise specified.
559 MG132 was purchased from Selleck Chemicals and dissolved in DMSO. Flag-GR has been
560 described before⁷² and the GFP-MR construct was a kind gift from Dr. H. Tanaka (University
561 of Tokyo, Japan).

562

563 siRNA nucleofection

564 MM1.S cells were transfected with siCtrl, siGR or siMR (see Supplementary Table S2) in
565 24-well plates by nucleofection using cell line nucleofector kit V and the nucleofector device
566 at program X01. 48h post-nucleofection, cells were reseeded to 96-well plates and treated for
567 another 24h with compounds (details in Fig. legends).

568

569 NanoBiT-based homo-and heterodimerization assays

570 HEK293T cells were seeded in 96-well plates in 10%FBS DMEM and transfected 24h later
571 with 2.5ng pLgBiT-MR and 2.5ng pGR-SmBiT (GR-MR heterodimerization assay) or 1.5ng
572 pLgBiT-GR and 1.5ng pGR-SmBiT (GR-GR homodimerization assay) or 1ng pLgBiT-MR and
573 1ng pMR-SmBiT (MR-MR homodimerization assay) using calcium phosphate precipitation.

574 24h later, the Nano-Glo® Live Cell reagent was reconstituted (Promega) and 25 μ L was added
575 to the transfected cells, after which the baseline luminescence was measured for 15min
576 (continuous mode, 1min intervals) using an Envision (Perkin Elmer) spectrophotometer.
577 Subsequently, ligands were added (see Fig. legends) and the luminescence was measured
578 in a time window of 60min (continuous mode, 1min intervals). Luminescence counts were
579 normalized to baseline and set as a fold-difference versus the solvent condition (here: DMSO).
580 The area under the curve method was used to statistically compare Dex and Dex-Spi
581 conditions.

582

583 **RT-qPCR**

584 Total RNA was isolated using the RNeasy mini kit (Qiagen). Reverse transcription (RT) was
585 performed using the iScript cDNA synthesis kit (Bio-Rad). The resulting cDNA served as
586 template for the quantitative PCR (qPCR) reaction, for which Lightcycler 480 SYBR Green I
587 Master mix (Roche diagnostics) was used. Primer sequences are available in Supplementary
588 Table S3. Cq values were analyzed using qBasePlus (Biogazelle) and normalized to the
589 reference genes SDHA, RPL13A and YWHAZ.

590

591 **RNA-sequencing**

592 Total RNA was isolated using the RNeasy mini kit (Qiagen). The RNA-seq library was
593 prepared using the Illumina TruSeq stranded mRNA library kit, followed by single-end 100 bp
594 sequencing on a Illumina NOVASeq 600 instrument (VIB Nucleomics core), yielding 19-27
595 million reads per sample. Briefly, sequencing reads were quality controlled with FastQC
596 (version 0.11.9) and trimmed using Trim-Galore (version 0.6.6-0) to remove low-quality ends
597 (phred score <30) as well as adapters, followed by another quality control of the trimmed data.
598 Thereafter, reads were pre-mapped to PhiX genome using STAR (version 2.7.6a) and the
599 resulting PhiX-unmapped reads were aligned to the human genome GRCh38. The position-
600 sorted output BAM files were converted to count data using HTSeq (version 0.12.4) in the
601 'union' mode. Differential gene expression analysis was performing using DESeq2 R package
602 (version 1.34.0), using an interaction model (design formula: $c_0x_0 + c_1x_1 + c_2x_2 + c_3x_1x_2$). As
603 input for the analysis, only genes with counts > 1 were withheld. Normalized counts were
604 either plotted per gene or were compared for all genes, clustered, and presented as heatmaps
605 (pheatmap package, version 1.0.12). Pairwise comparisons between differentially treated
606 samples (e.g. Dex-Spi vs EtOH) as well as the interaction term were retrieved at a significance
607 level of $\alpha = 0.05$, corresponding to Wald-test adjusted p-value (FDR) cutoff (p_{adj}). Volcano plots
608 were made depicting the p_{adj} (log10 scale) in function of the log2FC for all genes with
609 baseMean ≥ 50 in the interaction term and each pairwise comparison of interest. Functional
610 annotations of differentially expressed genes were performed using Ingenuity Pathway
611 Analysis (IPA) or gene-set enrichment analysis (GSEA, using standard parameters)⁷³.

612

613 **Protein lysates and Western blotting (WB)**

614 Protein lysates were prepared using Totex lysis buffer, as described before³⁶, loaded on an
615 SDS-PAGE gel, and blotted onto nitrocellulose membranes (Bio-Rad). The list of primary
616 antibodies can be found in Supplementary Table S4. Note that the primary MR antibody is of
617 a non-commercial source and hence different batches were used throughout the course of
618 this research (clone 6G1, kind gift Dr. Gomez-Sanchez). As secondary antibodies, we used
619 species-specific HRP-conjugated antibodies (cat nr: NA931, NA934, GE-Healthcare). To
620 visualize results, Pierce ECL (Plus) (Thermo Fisher Scientific), Westernbright Quantum or

621 Sirus (Isogen), or ECL Prime (GE Healthcare) served as chemiluminescent substrates and
622 signals were developed using X-Ray films or imaged on a ProXima 2850 (Isogen) or
623 Amersham 680 (GE healthcare) imaging system. Band densitometric analyses were
624 performed using ImageJ.

625

626 **Shotgun proteomics**

627 MM1.S were treated for 24h with compounds (see Fig. legends), after which the cells were
628 collected by washing with ice-cold PBS and storing the cell pellets at -80°C. Four biological
629 replicates were performed. The mass spectrometry sample preparation and computational
630 analysis were performed as previously described⁵².

631

632 **Co-immunoprecipitation**

633 Post-treatment, MM1.S or OPM-2 cells were lysed in NP-40 lysis buffer (50mM Tris-HCl pH
634 8.0, 150mM NaCl, 1% NP-40) and subjected to immunoprecipitation using anti-GR G5
635 antibody, as described before⁷⁴. Briefly, cell lysates were precleared with immobilized protein
636 A dynabeads (50µL bead slurry, with f.c. 2mg/mL BSA) by 1h rotation at 4°C. Ensuing, 100-
637 150µg total protein was combined with anti-GR G5 antibody (sc-393232) and rotated for 1h at
638 4°C, after which immobilized dynabeads (50µL bead slurry, with f.c. 2mg/mL BSA) were added
639 followed by another 2h rotation at 4°C. Following washing steps, the bead-mixtures were
640 denatured for 5min at 95°C using 4xLaemli buffer supplemented with DTT (f.c. 200mM).
641 Samples were subjected to WB analyses and anti-MR 6G1 antibody (kind gift Dr. Gomez-
642 Sanchez) was used to assay the interaction between immunoprecipitated GR and MR.

643

644 **Flow cytometry**

645 MM1.S cells were resuspended in Annexin-binding buffer and between 10⁵ and 5x10⁵ cells
646 were stained with Alexa Fluor 488 Annexin V and propidium iodide (Molecular Probes by
647 Invitrogen). Unstained and single stained cells served as controls. Samples were measured
648 on an Attune Nxt flow cytometer (Thermo Fisher Scientific). Data analysis was performed
649 using FlowJo; the gating strategy is depicted in Supplementary Fig.S3b.

650

651 **Cell viability assays**

652 MM cells were seeded and treated immediately with compounds for 24h or 72h (see Fig.
653 legends). Thereafter, cells were subjected to a CellTiterGlo cell viability assay (Promega), as
654 described before³⁶. Briefly, the reconstituted CellTiterGlo reagent (Promega) was added in a
655 1:1 ratio to the cells, and contents were mixed for 2min on an orbital shaker. Following signal
656 stabilization (10min), luminescence was recorded using a Spectramax Paradigm (Beckman
657 Coulter), Envision or Ensite (Perkin Elmer) spectrophotometer.

658

659 **Patient-derived MM cells**

660 Sample acquisition was approved by the ethical commission of the Ghent University Hospital
661 (EC UZG 2018/0906) and informed consent was obtained from all patients. Bone marrow
662 aspirates were filtered through a cell strainer and mixed with a RosetteSep human MM cell
663 enrichment cocktail (negative selection, STEMCELL Technologies). Afterwards, bone marrow
664 aspirates were diluted 1:1 with PBS (+ 2% FBS) and layered on a Lymphoprep gradient using
665 SepMate tubes (STEMCELL Technologies). After centrifugation, the cells were washed twice
666 with PBS (+ 2%FBS) and with a red blood cell lysis buffer (0.8% NH₄Cl, 0.1mM EDTA,

667 STEMCELL technologies). Thereafter, the enriched MM cells were resuspended in RPMI1640
668 GlutaMAX (+10%CTS) and subjected to a cell viability assay and/or RNA isolation.

669

670 **Survival analysis**

671 A publicly available dataset was used to evaluate the prognostic significance of set of
672 genes/proteins identified via RNA-sequencing or shotgun proteomics. Specifically, the
673 Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass)
674 trial release IA14 was used, launched by the MM research foundation (MMRF). Normalized
675 TPM gene expression values, generated using RNA-sequencing, were downloaded alongside
676 clinical data through the MMRF research portal (<https://research.themmr.org>). Overall
677 survival (OS) was defined as the time from diagnosis until death from any cause or until the
678 time point the patient was last known to be alive. In the latter case patients were censored.
679 Progression free survival (PFS) delineates the time from treatment initiation until relapse or
680 death from any cause. Patients were divided in 2 or 3 groups based on the average of their
681 z-score normalized expression data, ranked from low to high (2 groups) or from low to medium
682 to high (3 groups). Survival analysis of the CoMMpass cohort was performed using R
683 (package survival, V3.5-3); statistical significance was calculated using the log-rank test.
684 Prognostic factor analysis was done using SigCheck package (V2.28.0), running with standard
685 parameters.

686

687 **Statistical analyses**

688 Statistical analyses were performed using GraphPad Prism 9 or R, as specified in the figure
689 legends. Sample size calculations were not performed upfront. Experiments were performed
690 in at least three independent repetitions, as detailed in the figure legends, except for
691 experiments involving patient material, which could only be performed once because of the
692 limited culturing time and yield of the isolated primary cells. Error bars represent the standard
693 error of the mean (SEM), except for experiments involving primary patient material, where the
694 error bars represent the standard deviation (SD). When the means of 2 groups were compared
695 a two-tailed independent Student's t-test was used, when the means of more than 2 groups
696 were compared a one-way or two-way ANOVA with (Tukey's or Sidak's) multiple comparisons
697 post-test was used, as detailed in the figure legends. Normal distribution and equality of
698 variances were assumed. Statistical significance in survival curve estimates were calculated
699 using the log-rank test. When $P < 0.05$, results were designated significant: * = $P < 0.05$, ** =
700 $P < 0.01$, *** = $P < 0.001$, **** = $P < 0.0001$, ns = non-significant.

701

702 **Data availability**

703 The datasets used in this study are available in the following databases: RNA-seq data in the
704 Gene Expression Omnibus (GEO) database with accession number GSE200313; shotgun
705 proteomics data are scheduled for deposit to the Proteomics Identification (PRIDE) database.

706

707 **Acknowledgements**

708 DC was funded by a predoctoral fellowship from Flanders Innovation and Entrepreneurship
709 (VLAIO), grant number 131374 (www.vlaio.be) until December 2017. Research project funded
710 by Kom op tegen Kanker (Stand up to Cancer), the Flemish cancer society (grant numbers
711 KDB 2012-VLK-GC-MM and STI.VLK.2018.0019.01). This work was further supported
712 through VIB and Ghent University institutional funding to KDB.

713

714

715 **Author contributions**

716 **Dorien Clarisse**: Conceptualization; investigation; data curation; formal analysis; validation;
717 visualization; methodology; writing - original draft; writing - review and editing. **Stefan**
718 **Prekovic**: investigation; data curation; formal analysis; visualization; writing - review and
719 editing. **Philip Vlummens**: Data curation; writing - review and editing. **Eleni Staessens**:
720 Investigation; writing - review and editing. **Karlien Van Wesemael**: Investigation. **Jonathan**
721 **Thommis**: Investigation; formal analysis. **Daria Fijalkowska**: data curation; formal analysis;
722 writing - review and editing. **Guillaume Acke**: data curation; formal analysis; visualization;
723 writing - review and editing. **Wilbert Zwart**: writing - review and editing. **Ilse M Beck**:
724 Conceptualization; writing - review and editing; supervision. **Fritz Offner**: writing - review and
725 editing; supervision. **Karolien De Bosscher**: Conceptualization; writing - review and editing;
726 supervision.

727

728 **Disclosure and competing interest statement**

729 The authors have no disclosure or competing financial interests.

730

731 **References**

- 732 1. Rajkumar, S. V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and
733 management. *American Journal of Hematology* **95**, 548–567 (2020).
- 734 2. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. *CA: A Cancer*
735 *Journal for Clinicians* **72**, 7–33 (2022).
- 736 3. Burwick, N. & Sharma, S. Glucocorticoids in multiple myeloma: past, present, and future.
737 *Annals of Hematology* **98**, 19–28 (2019).
- 738 4. Clarisse, D., Offner, F. & De Bosscher, K. Latest perspectives on glucocorticoid-induced
739 apoptosis and resistance in lymphoid malignancies. *Biochimica et Biophysica Acta (BBA) -*
740 *Reviews on Cancer* **1874**, 188430 (2020).
- 741 5. Weikum, E. R., Liu, X. & Ortlund, E. A. The nuclear receptor superfamily: A structural
742 perspective. *Protein Science* **27**, 1876–1892 (2018).
- 743 6. Vandevyver, S., Dejager, L. & Libert, C. On the trail of the glucocorticoid receptor: into the
744 nucleus and back. *Traffic* **13**, 364–374 (2012).
- 745 7. Kirschke, E., Roe-Zurz, Z., Noddings, C. & Agard, D. The interplay between Bag-1, Hsp70,
746 and Hsp90 reveals that inhibiting Hsp70 rebinding is essential for Glucocorticoid Receptor activity.
747 (2020) doi:10.1101/2020.05.03.075523.
- 748 8. Vandewalle, J., Luypaert, A., De Bosscher, K. & Libert, C. Therapeutic Mechanisms of
749 Glucocorticoids. *Trends in Endocrinology and Metabolism* **29**, 42–54 (2018).
- 750 9. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding
751 patterns. *Nature Genetics* **43**, 264–268 (2011).
- 752 10. Timmermans, S., Souffriau, J. & Libert, C. A General Introduction to Glucocorticoid Biology.
753 *Frontiers in Immunology* **10**, 1545 (2019).
- 754 11. Love, M. I. et al. Role of the chromatin landscape and sequence in determining cell type-
755 specific genomic glucocorticoid receptor binding and gene regulation. *Nucleic Acids Research* **45**,
756 1805–1819 (2017).
- 757 12. Weikum, E. R. et al. Tethering not required: the glucocorticoid receptor binds directly to
758 activator protein-1 recognition motifs to repress inflammatory genes. *Nucleic acids research* **45**,
759 8596–8608 (2017).
- 760 13. Sacta, M. A. et al. Gene-specific mechanisms direct glucocorticoid-receptor-driven
761 repression of inflammatory response genes in macrophages. *eLife* **7**, 1–25 (2018).

762 14. Paakinaho, V., Johnson, T. A., Presman, D. M. & Hager, G. L. Glucocorticoid receptor
763 quaternary structure drives chromatin occupancy and transcriptional outcome. *Genome Res* **29**,
764 1223–1234 (2019).

765 15. Johnson, T. A., Paakinaho, V., Kim, S., Hager, G. L. & Presman, D. M. Genome-wide
766 binding potential and regulatory activity of the glucocorticoid receptor's monomeric and dimeric
767 forms. *Nat Commun* **12**, 1987 (2021).

768 16. De Bosscher, K., Desmet, S. J., Clarisse, D., Estébanez-Perpiña, E. & Brunsfeld, L.
769 Nuclear receptor crosstalk — defining the mechanisms for therapeutic innovation. *Nat Rev
770 Endocrinol* **16**, 363–377 (2020).

771 17. Paakinaho, V. & Palvimo, J. J. Genome-wide crosstalk between steroid receptors in breast
772 and prostate cancers. *Endocrine-Related Cancer* **28**, R231–R250 (2021).

773 18. Hawkins, U. A., Gomez-Sanchez, E. P., Gomez-Sanchez, C. M. & Gomez-Sanchez, C. E.
774 The ubiquitous mineralocorticoid receptor: clinical implications. *Curr Hypertens Rep* **14**, 573–580
775 (2012).

776 19. Gomez-Sanchez, E. & Gomez-Sanchez, C. E. The multifaceted mineralocorticoid receptor.
777 *Comprehensive Physiology* **4**, 965–994 (2014).

778 20. Clarisse, D., Deng, L., Bosscher, K. & Loher, A. Approaches towards tissue-selective
779 pharmacology of the mineralocorticoid receptor. *British J Pharmacology* bph.15719 (2021)
780 doi:10.1111/bph.15719.

781 21. Agarwal, R. *et al.* Steroidal and non-steroidal mineralocorticoid receptor antagonists in
782 cardiorenal medicine. *Eur Heart J* **42**, 152–161 (2021).

783 22. Kolkhof, P. & Bärfacker, L. Mineralocorticoid receptor antagonists: 60 years of research
784 and development. *Journal of Endocrinology* **234**, T125–T140 (2017).

785 23. Rivers, C. A. *et al.* Glucocorticoid receptor tethered mineralocorticoid receptors increase
786 glucocorticoid-induced transcriptional responses. *Endocrinology* **160**, 1044–1056 (2019).

787 24. Mifsud, K. R. & Reul, J. M. H. M. Acute stress enhances heterodimerization and binding of
788 corticosteroid receptors at glucocorticoid target genes in the hippocampus. *Proceedings of the
789 National Academy of Sciences* **113**, 11336–11341 (2016).

790 25. Pearce, D. & Yamamoto, K. R. Mineralocorticoid and Glucocorticoid Receptor Activities
791 Distinguished by Nonreceptor Factors at a Composite Response Element. *Science* **259**, 1161–
792 1165 (1993).

793 26. Le Billan, F. *et al.* Corticosteroid receptors adopt distinct cyclical transcriptional signatures.
794 *FASEB J* **32**, 5626–5639 (2018).

795 27. Pooley, J. R. *et al.* Beyond the heterodimer model for mineralocorticoid and glucocorticoid
796 receptor interactions in nuclei and at DNA. *PLoS ONE* **15**, e0227520 (2020).

797 28. Derfoul, A., Robertson, N. M., Hall, D. J. & Litwack, G. The N-terminal domain of the
798 mineralocorticoid receptor modulates both mineralocorticoid receptor- and glucocorticoid receptor-
799 mediated transactivation from Na/K ATPase beta1 target gene promoter. *Endocrine* **13**, 287–95
800 (2000).

801 29. Planey, S. L., Derfoul, A., Steplewski, A., Robertson, N. M. & Litwack, G. Inhibition of
802 glucocorticoid-induced apoptosis in 697 pre-B lymphocytes by the mineralocorticoid receptor N-
803 terminal domain. *The Journal of biological chemistry* **277**, 42188–96 (2002).

804 30. Kiilerich, P. *et al.* Interaction between the trout mineralocorticoid and glucocorticoid
805 receptors in vitro. *Journal of Molecular Endocrinology* **55**, 55–68 (2015).

806 31. Greenstein, S. *et al.* Characterization of the MM.1 human multiple myeloma (MM) cell lines:
807 a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -
808 resistant MM cells. *Experimental Hematology* **31**, 271–282 (2003).

809 32. Kervoëlen, C. *et al.* Dexamethasone-induced cell death is restricted to specific molecular
810 subgroups of multiple myeloma. *Oncotarget* **6**, 26922–26934 (2015).

811 33. Bachmann, P. S. *et al.* Divergent mechanisms of glucocorticoid resistance in experimental
812 models of pediatric acute lymphoblastic leukemia. *Cancer Research* **67**, 4482–4490 (2007).

813 34. Sanchez-Vega, B. & Gandhi, V. Glucocorticoid resistance in a multiple myeloma cell line
814 is regulated by a transcription elongation block in the glucocorticoid receptor gene (NR3C1). *Br J
815 Haematol* **144**, 856–864 (2009).

816 35. Ramamoorthy, S. & Cidlowski, J. A. Ligand-induced repression of the glucocorticoid
817 receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin
818 interactions with intragenic glucocorticoid response elements. *Mol Cell Biol* **33**, 1711–1722 (2013).

819 36. Clarisse, D. *et al.* Effect of combining glucocorticoids with compound a on glucocorticoid
820 receptor responsiveness in lymphoid malignancies. *PLoS ONE* **13**, 1–17 (2018).

821 37. Airoldi, E. & Riccardi, C. Glucocorticoid-induced leucine zipper (GILZ): a new important
822 mediator of glucocorticoid action. *The FASEB Journal* **23**, 3649–3658 (2009).

823 38. Gadasheva, Y., Nolze, A. & Grossmann, C. Posttranslational Modifications of the
824 Mineralocorticoid Receptor and Cardiovascular Aging. *Frontiers in Molecular Biosciences* **8**,
825 (2021).

826 39. Fagerli, U.-M. *et al.* Serum/glucocorticoid-regulated kinase 1 (SGK1) is a prominent target
827 gene of the transcriptional response to cytokines in multiple myeloma and supports the growth of
828 myeloma cells. *Oncogene* **30**, 3198–3206 (2011).

829 40. Fries, G. R., Gassen, N. C. & Rein, T. The FKBP51 glucocorticoid receptor co-chaperone:
830 Regulation, function, and implications in health and disease. *International Journal of Molecular
831 Sciences* **18**, 1–31 (2017).

832 41. Mizuhashi, K. *et al.* OBIF, an osteoblast induction factor, plays an essential role in bone
833 formation in association with osteoblastogenesis. *Development, Growth & Differentiation* **54**, 474–
834 480 (2012).

835 42. Huntley, R., Jensen, E., Gopalakrishnan, R. & Mansky, K. C. Bone morphogenetic
836 proteins: Their role in regulating osteoclast differentiation. *Bone Reports* **10**, 100207 (2019).

837 43. Szabo, A. G. *et al.* Overexpression of c-myc is associated with adverse clinical features
838 and worse overall survival in multiple myeloma. *Leukemia & Lymphoma* **57**, 2526–2534 (2016).

839 44. Nissen, R. M. & Yamamoto, K. R. The glucocorticoid receptor inhibits NF κ B by interfering
840 with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. *Genes Dev* **14**,
841 2314–2329 (2000).

842 45. Tan, J. L. *et al.* Stress from Nucleotide Depletion Activates the Transcriptional Regulator
843 HEXIM1 to Suppress Melanoma. *Molecular Cell* **62**, 34–46 (2016).

844 46. Rogatsky, I., Trowbridge, J. M. & Garabedian, M. J. Glucocorticoid receptor-mediated cell
845 cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms.
846 *Molecular and cellular biology* **17**, 3181–93 (1997).

847 47. Vallet, S. *et al.* A Novel Role for CCL3 (MIP-1 α) in Myeloma-induced Bone Disease via
848 Osteocalcin Downregulation and Inhibition of Osteoblast Function. *Leukemia* **25**, 1174–1181
849 (2011).

850 48. Decaux, O. *et al.* Inhibition of mTORC1 activity by REDD1 induction in myeloma cells
851 resistant to bortezomib cytotoxicity. *Cancer Science* **101**, 889–897 (2010).

852 49. Britto, F. A. *et al.* REDD1 deletion prevents dexamethasone-induced skeletal muscle
853 atrophy. *American Journal of Physiology-Endocrinology and Metabolism* **307**, E983–E993 (2014).

854 50. Harnoss, J. M. *et al.* Disruption of IRE1 α through its kinase domain attenuates multiple
855 myeloma. *PNAS* **116**, 16420–16429 (2019).

856 51. De Matos Simoes, R. *et al.* POU2AF1 As a Master Regulator of Oncogenic Transcription
857 Factor Networks in Myeloma. *Blood* **136**, 18–19 (2020).

858 52. Prekovic, S. *et al.* Glucocorticoid receptor triggers a reversible drug-tolerant dormancy
859 state with acquired therapeutic vulnerabilities in lung cancer. *Nat Commun* **12**, 4360 (2021).

860 53. Smoak, K. & Cidlowski, J. A. Glucocorticoids regulate tristetraprolin synthesis and
861 posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. *Molecular and*
862 *cellular biology* **26**, 9126–35 (2006).

863 54. Viengchareun, S. *et al.* Hypertonicity Compromises Renal Mineralocorticoid Receptor
864 Signaling through Tis11b-Mediated Post-Transcriptional Control. *Journal of the American Society*
865 *of Nephrology* **25**, 2213–2221 (2014).

866 55. Vu, T. A. *et al.* miR-324-5p and miR-30c-2-3p Alter Renal Mineralocorticoid Receptor
867 Signaling under Hypertonicity. *Cells* **11**, 1377 (2022).

868 56. Faresse, N., Vitagliano, J.-J. & Staub, O. Differential ubiquitylation of the mineralocorticoid
869 receptor is regulated by phosphorylation. *FASEB journal : official publication of the Federation of*
870 *American Societies for Experimental Biology* **26**, 4373–82 (2012).

871 57. Isikbay, M. *et al.* Glucocorticoid Receptor Activity Contributes to Resistance to Androgen-
872 Targeted Therapy in Prostate Cancer. *Hormones and Cancer* **5**, 72–89 (2014).

873 58. Gupte, R., Muse, G. W., Chinenov, Y., Adelman, K. & Rogatsky, I. Glucocorticoid receptor
874 represses proinflammatory genes at distinct steps of the transcription cycle. *PNAS* **110**, 14616–
875 14621 (2013).

876 59. Ausserlechner, M., Obexer, P., Böck, G., Geley, S. & Kofler, R. Cyclin D3 and c-MYC
877 control glucocorticoid-induced cell cycle arrest but not apoptosis in lymphoblastic leukemia cells.
878 *Cell Death Differ* **11**, 165–174 (2004).

879 60. Sønder, S., Mikkelsen, M., Rieneck, K., Hedegaard, C. J. & Bendtzen, K. Effects of
880 spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects
881 on gene expression and late apoptosis induction. *British Journal of Pharmacology* **148**, 46–53
882 (2006).

883 61. Du, L. *et al.* SUMOylation inhibition enhances dexamethasone sensitivity in multiple
884 myeloma. *Journal of Experimental & Clinical Cancer Research* **41**, 8 (2022).

885 62. Pozhitkov, A. *et al.* Glucocorticoid receptor expression in multiple myeloma patients is a
886 predictor of survival. *Leukemia & Lymphoma* 1–5 (2020) doi:10.1080/10428194.2020.1811860.

887 63. Beesley, A. *et al.* Glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia is
888 associated with a proliferative metabolism. *British Journal of Cancer* **100**, 1926–1936 (2009).

889 64. Samuels, A. L., Heng, J. Y., Beesley, A. H. & Kees, U. R. Bioenergetic modulation
890 overcomes glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia. *British Journal*
891 *of Haematology* **165**, 57–66 (2014).

892 65. Tung, S. *et al.* PPARalpha and fatty acid oxidation mediate glucocorticoid resistance in
893 chronic lymphocytic leukemia. *Blood* **122**, 969–980 (2013).

894 66. Aoki, S., Morita, M., Hirao, T. & Yamaguchi, M. Shift in energy metabolism caused by
895 glucocorticoids enhances the effect of cytotoxic anti-cancer drugs against acute lymphoblastic
896 leukemia cells. *Oncotarget* **8**, 94271–94285 (2017).

897 67. Hisa, I. *et al.* Parathyroid Hormone-responsive Smad3-related Factor, Tmem119,
898 Promotes Osteoblast Differentiation and Interacts with the Bone Morphogenetic Protein-Runx2
899 Pathway*. *Journal of Biological Chemistry* **286**, 9787–9796 (2011).

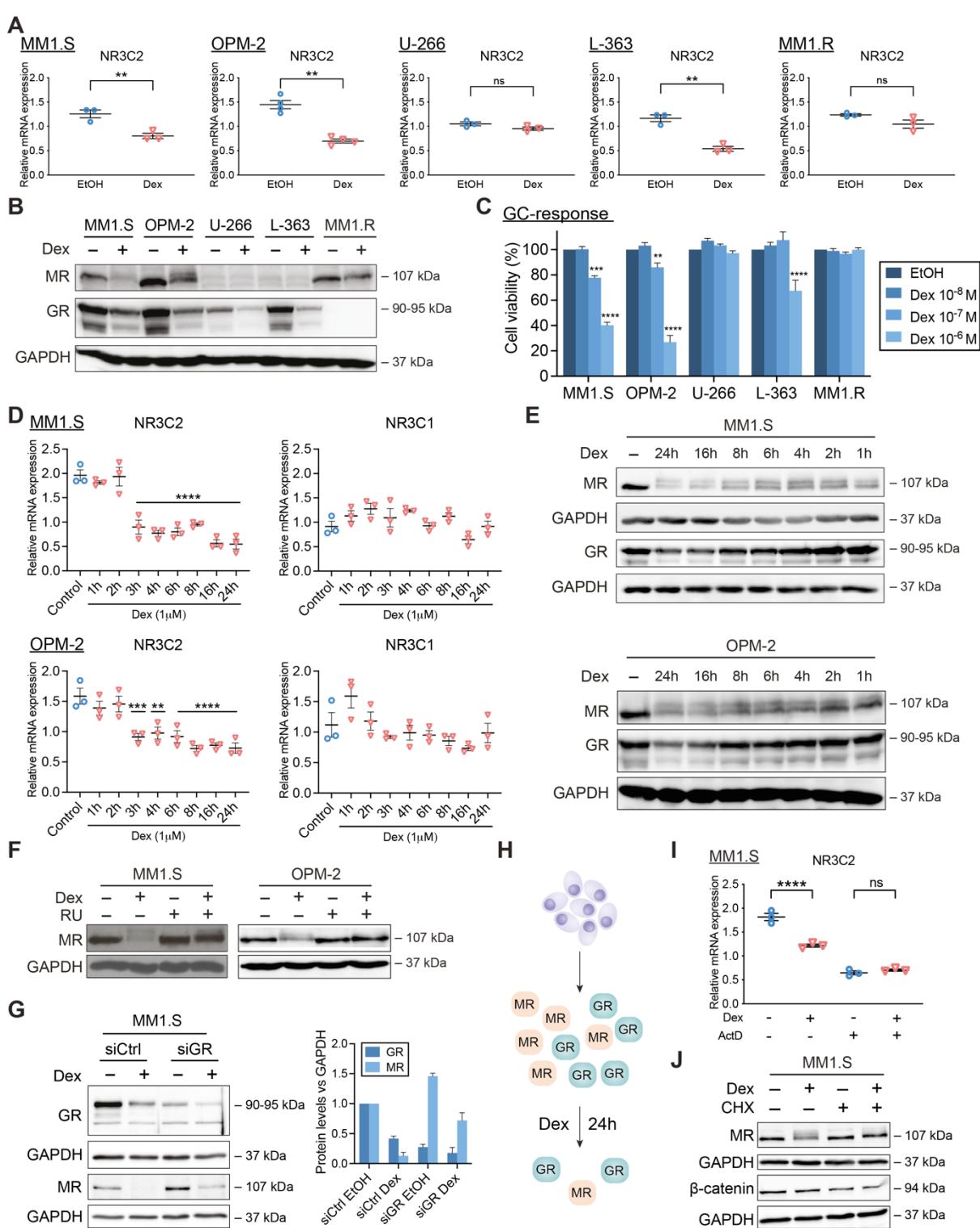
900 68. Simic, P. *et al.* Systemically Administered Bone Morphogenetic Protein-6 Restores Bone
901 in Aged Ovariectomized Rats by Increasing Bone Formation and Suppressing Bone Resorption*.
902 *Journal of Biological Chemistry* **281**, 25509–25521 (2006).

903 69. Sandri, M., Sandri, C., Gilbert, A., Skurk, C. & Calabria, E. Foxo Transcription Factors
904 Induce the Atrophy- Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. *Cell*
905 **117**, 1–2 (2004).

906 70. Planey, S. L., Derfoul, A., Steplewski, A., Robertson, N. M. & Litwack, G. Inhibition of
907 glucocorticoid-induced apoptosis in 697 pre-B lymphocytes by the mineralocorticoid receptor N-
908 terminal domain. *The Journal of biological chemistry* **277**, 42188–96 (2002).

909 71. Szalat, R. *et al.* Nucleotide excision repair is a potential therapeutic target in multiple
910 myeloma. *Leukemia* **32**, 111–119 (2018).

911 72. Dewint, P. *et al.* A plant-derived ligand favoring monomeric glucocorticoid receptor
912 conformation with impaired transactivation potential attenuates collagen-induced arthritis. *Journal*
913 *of Immunology* **180**, 2608–2615 (2008).

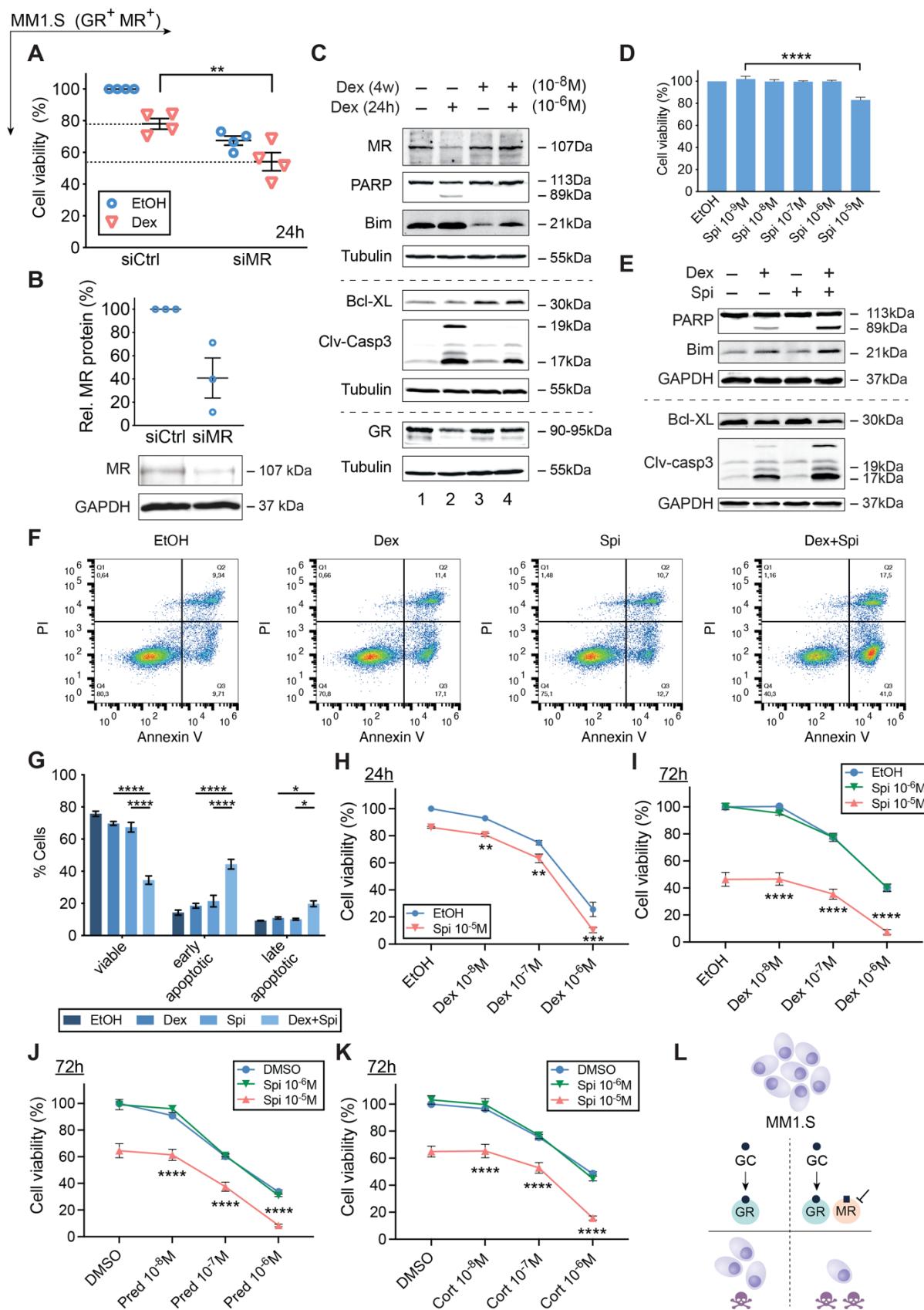

914 73. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for
915 interpreting genome-wide expression profiles. *Proceedings of the National Academy of Sciences*
916 **102**, 15545–15550 (2005).

917 74. Clarisse, D. *et al.* Coregulator profiling of the glucocorticoid receptor in lymphoid
918 malignancies. *Oncotarget* **8**, 109675–109691 (2017).

919

920 **Figures and figure legends**
 921
 922
 923

Fig. 1

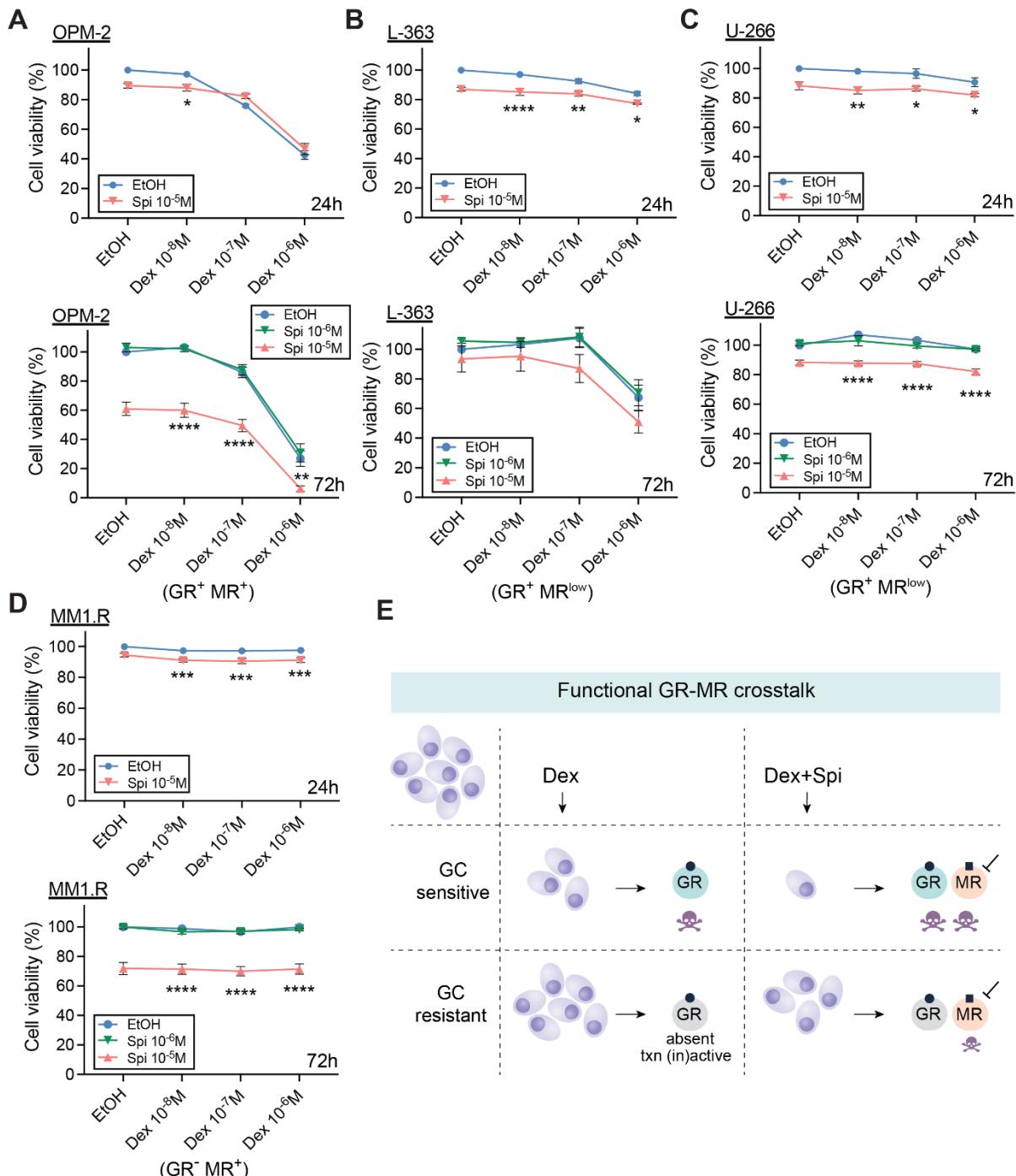


924
 925
 926

927 **Fig. 1: GCs downregulate MR mRNA and protein levels in a GR-dependent way.**
928 **(A-B)** MM1.S, OPM-2, U-266, L-363 and MM1.R cells were treated with Dex (10^{-6} M) or solvent control
929 (EtOH), **(A)** for 6h, followed by RT-qPCR (all N=3, except OPM-2: N=4), assessing the mRNA levels of
930 *NR3C2*, or **(B)** for 24h, followed by WB analysis (N=3). The protein levels of MR (107kDa) and GR (90-
931 95kDa) were determined, with GAPDH (37kDa) as loading control.
932 **(C)** MM1.S, OPM-2, U-266, L-363 and MM1.R cells were treated for 72h with a Dex concentration range
933 (10^{-6} M- 10^{-8} M) or solvent control (EtOH, set as 100%), followed by a CelltiterGlo cell viability assay (72h
934 Dex range recapitulated from Fig. 2I and 3B-D). The bar plots represent the mean +/- SEM. Statistical
935 analyses were performed using GraphPad Prism 9, using a two-way ANOVA with post-hoc testing. Per
936 cell line, 10^{-6} M Dex and 10^{-7} M Dex conditions were statistically compared to the 10^{-8} M Dex condition.
937 **(D-E)** MM1.S or OPM-2 cells were treated for different time points with Dex (10^{-6} M) or solvent control
938 (EtOH) followed by **(D)** RT-qPCR (N=3), assessing the mRNA levels of *NR3C2* and *NR3C1* and in
939 which statistical analyses compared each time point to solvent control, or **(E)** WB analysis (N=3), in
940 which the protein levels of MR (107kDa) and GR (90-95kDa) were determined, with GAPDH (37kDa)
941 as loading control.
942 **(F)** OPM-2 and MM1.S cells were treated with Dex (10^{-6} M), RU (10^{-5} M), a combination thereof or solvent
943 control for 24h, followed by WB analysis (N=3). The protein levels of MR (107kDa) were determined,
944 with GAPDH (37kDa) as loading control.
945 **(G)** MM1.S cells were nucleofected with siCtrl (scrambled) or siGR and 48h post-nucleofection treated
946 for another 24h with Dex (10^{-6} M) or solvent control; followed by WB analysis (N=3) and band
947 densitometric analysis (bar plot). The latter shows the normalized GR or MR protein levels (vs. GAPDH),
948 averaged over 3 biological replicates.
949 **(H)** Graphical summary. In MM cells containing GR and MR protein, Dex downregulates GR protein
950 levels and to an even higher extent MR protein levels, especially at 24h.
951 **(I)** MM1.S cells were treated for 3h with Dex (10^{-6} M), ActD (1 μ g/mL), a combination thereof or solvent,
952 followed by RT-qPCR (N=3), assessing the mRNA levels of *NR3C2*.
953 **(J)** MM1.S cells were treated for 6h with Dex (10^{-6} M), CHX (20 μ g/mL), a Dex/CHX combination or
954 solvent control, followed by WB analysis (N=3) and band densitometric analysis. The protein levels of
955 MR (107kDa), or β -catenin (94kDa; positive control for inhibition of protein translation) were determined,
956 with GAPDH (37kDa) as loading control.
957
958 Data information: **(A, D, I)** RT-qPCRs were analyzed using qBaseplus with *SDHA*, *RPL13A* and
959 *YWHAZ* serving as reference genes. The scatter plots represent the mean (solid line) +/- SEM.
960 Statistical analyses were performed using GraphPad Prism 9, using a one-way ANOVA with post-hoc
961 testing. **(B, E, F, G, J)** One representative image is shown for each WB experiment, with the number of
962 biological replicates mentioned in each panel description.
963

964
965

Fig. 2


966
967

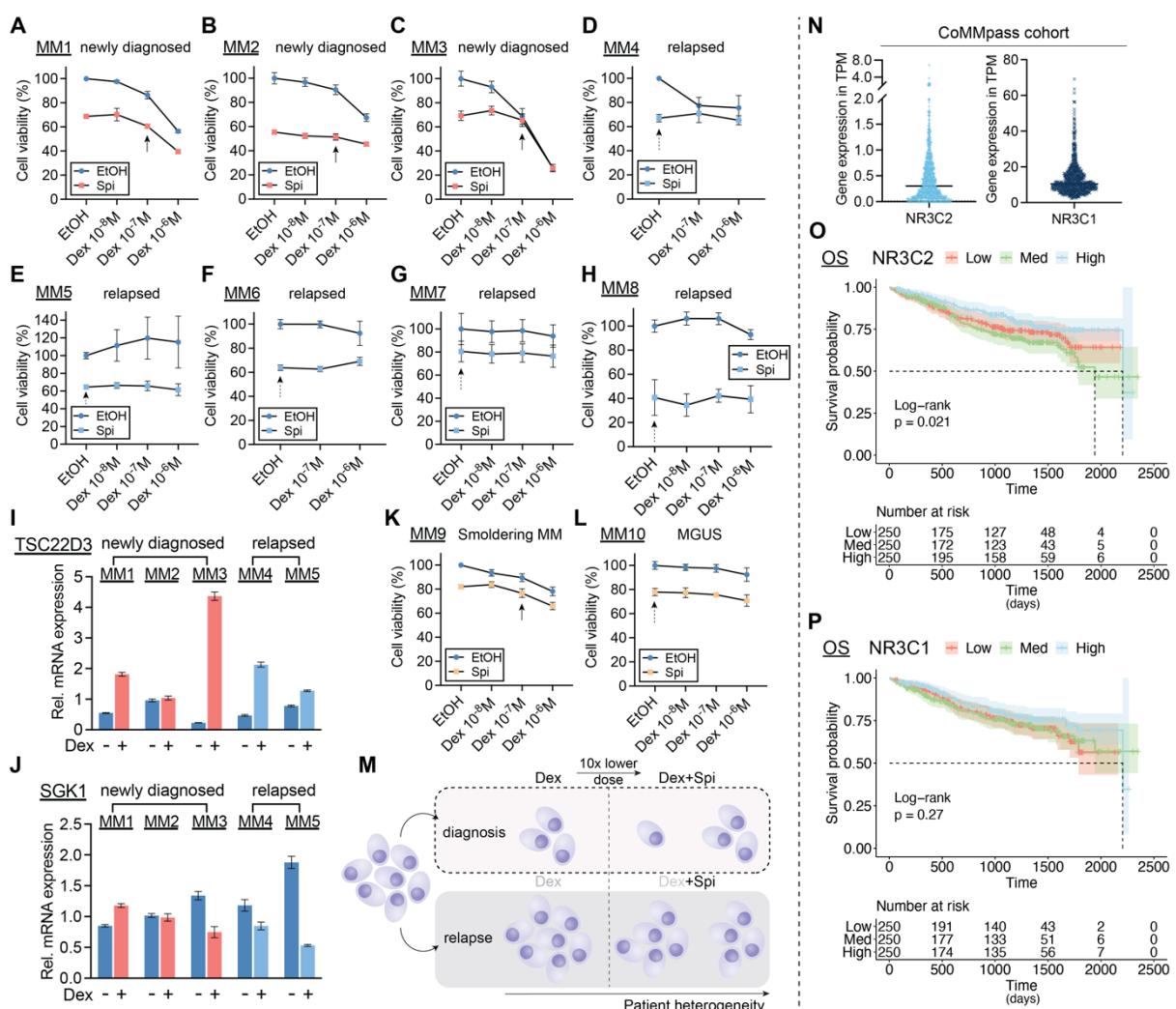
968 **Fig. 2: GC-induced MM1.S cell killing is promoted by the MR antagonist Spi.**
969 **(A)** MM1.S cells were nucleofected with siCtrl (scrambled) or siMR. 48h post-nucleofection, cells were
970 reseeded and treated for another 24h with Dex (10^{-6} M) or solvent control (EtOH), followed by a
971 CelltiterGlo assay. The scatter plot represents the mean (solid line) +/- SEM (N=4). The siCtrl solvent
972 condition was set as 100% and the other conditions were recalculated accordingly.
973 **(B)** 72h post-nucleofection with siCtrl or siMR, WB analyses were performed and MR protein levels
974 relative to GAPDH were quantified by band densitometric analysis using ImageJ. The scatter plot
975 represents the mean +/- SEM (N=3).
976 **(C)** MM1.S cells were treated for 4 weeks with 10^{-8} M Dex (or EtOH), followed by 24h 10^{-6} M Dex (or
977 EtOH), and subjected to WB analyses (N=3).
978 **(D)** MM1.S cells were treated with a Spi concentration range (10^{-5} M- 10^{-9} M) or solvent control (set as
979 100%), followed by a CelltiterGlo assay (N=3).
980 **(E-G)** MM1.S cells were treated with Dex (10^{-6} M), Spi (10^{-5} M) or a Dex-Spi combination for 24h, followed
981 by **(E)** WB analyses (N=4) or **(F-G)** Annexin V/PI flow cytometric analyses (N=4). **(F)** Representative
982 quadrant plots of 4 independent experiments for each treatment condition, with **(G)** bar plots showing
983 the percentage of viable (Q4), early apoptotic (Q3), late apoptotic (Q2) averaged over all 4 biological
984 repetitions +/- SEM.
985 **(H-I)** MM1.S cells were treated with Dex (10^{-6} M- 10^{-8} M), Spi (10^{-5} - 10^{-6} M) or a Dex-Spi combination for
986 **(H)** 24h (N=5) or **(I)** 72h (N=3), followed by a CelltiterGlo assay (solvent control set as 100%).
987 **(J-K)** MM1.S cells were treated with Pred or Cort (10^{-6} M- 10^{-8} M), Spi (10^{-5} - 10^{-6} M) or a Pred/Spi or
988 Cort/Spi combination for 72h (N=3), followed by a CelltiterGlo assay (solvent control set as 100%).
989 **(L)** Summarizing model demonstrating that MR blockade increases Dex-induced MM1.S cell killing.
990

991 Data information:
992 **(A, D, F-J)** Statistical analyses were performed using GraphPad Prism 9, using **(A, D)** one-way or **(G-
993 K)** two-way ANOVA with post-hoc testing. **(C, E)** Protein lysates were subjected to WB analyses,
994 visualizing the protein levels of MR (107kDa), GR (90-95kDa), PARP (89 and 113kDa), Bim (21kDa),
995 Bcl-XL (30kDa) and cleaved-caspase 3 (17 and 19 kDa). Tubulin (55kDa) or GAPDH (37kDa) served
996 as loading controls. One representative image is shown for each WB experiment, with the number of
997 biological replicates mentioned in each panel description.
998
999

1000
1001

Fig. 3

1002


1003 **Fig. 3: The MR antagonist Spi promotes cell killing of MM cells with varying degrees of Dex
1004 responsiveness.**

1005 (A-D) Different myeloma cell lines including (A) OPM-2, (B) L-363, (C) U-266 and (D) MM1.R cells were
1006 treated with Dex (10^{-6} M- 10^{-8} M), Spi (10^{-5} - 10^{-6} M), a Dex-Spi combination or solvent control (set as 100%)
1007 for 24h or 72h, followed by a CelltiterGlo assay. Biological replicates: OPM-2 (24h N=6; 72h N=4), L-
1008 363 (24h and 72h N=3), U-266 (24h N=4, 72h N=3) and MM1.R (24h N=4, 72h N=3).
1009 (E) Graphical summary highlighting the existence of a functional crosstalk between GR and MR in MM
1010 cells. In GC-sensitive MM cells containing GR, Dex induces MM cell killing, which is further enhanced
1011 by the addition of Spi. In GC-resistant cells, where GR is either absent or transcriptionally (in)active,
1012 Dex loses its anti-MM activity, while Spi addition does trigger significant MM cell killing.

1013
1014 Data information: (A-D) Statistical analyses were performed using GraphPad Prism 9 using two-way
1015 ANOVA with post-hoc testing.
1016

1017
1018

Fig. 4

1019
1020
1021

1022 **Fig. 4: Combining lower doses of Dex with the MR antagonist Spi enhances cell killing in primary**
1023 **myeloma cells depending on the disease stage.**

1024 (A-H) Patient-derived MM cells from bone marrow aspirates of (A-C) newly diagnosed, (D-H) relapsed
1025 or MM patients were treated with a Dex concentration range (10^{-6} M- 10^{-8} M), Spi (10^{-5} M), a Dex-Spi
1026 combination or solvent control (EtOH) for 24h (A, C-G) or 72h (B, H), followed by a CelltiterGlo cell
1027 viability assay.

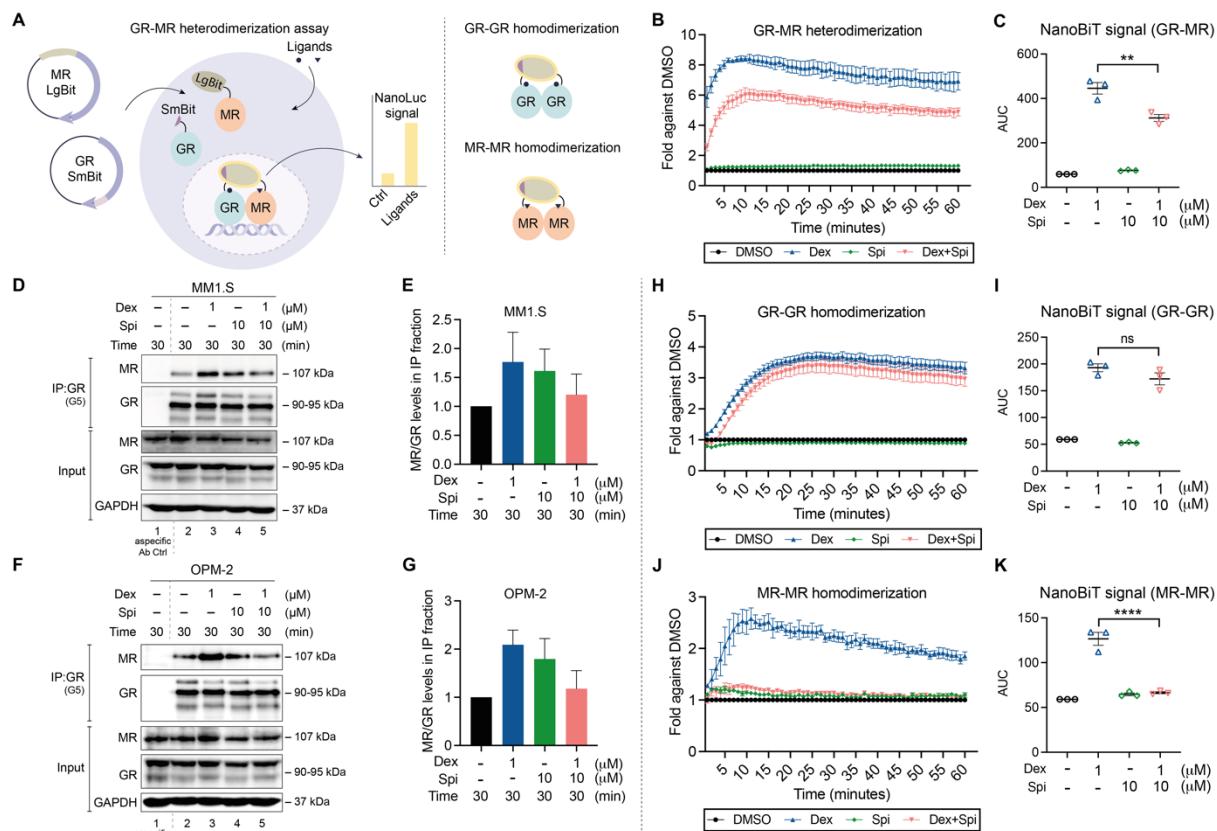
1028 (I-J) When the primary cell yield was sufficient, primary MM cells were treated for 6h with Dex (10^{-6} M)
1029 or solvent control, followed by RNA isolation and RT-qPCR analyses to determine the expression levels
1030 of *TSCD22D3* (GILZ) and *SGK1*. Data analyses were performed using qBaseplus with *SDHA*, *RPL13A*
1031 and *YWHAZ* serving as reference genes. The bar plots represent the mean +/- SD of 3 technical
1032 replicates. Overall, no statistical analyses were performed because only 1 biological replicate could be
1033 carried out given the limited culturing time of primary MM cells isolated from a BM aspirate.

1034 (K-L) Patient-derived MM cells from bone marrow aspirates of premalignant (smoldering MM or MGUS)
1035 myeloma patients were treated with a Dex concentration range (10^{-6} M- 10^{-8} M), Spi (10^{-5} M), a Dex-Spi
1036 combination or solvent control (EtOH) for 24h (L) or 48h (K) followed by a CelltiterGlo cell viability
1037 assay.

1038 (M) Graphical summary demonstrating that primary MM cells isolated at diagnosis undergo profound
1039 Dex-mediated cell killing, while the addition of Spi to a 10-fold lower Dex dose triggers more extensive
1040 cell killing, although not the same extent in all patients. In the relapsed setting, Dex is unable to induce
1041 significant primary MM cell killing, while Spi triggers a substantial MM cell killing response. The extent
1042 of the described cell killing effects varies from patient to patient, due to interpatient heterogeneity, which
1043 is well known in MM.

1044 (N) TPM (transcripts per million) gene expression values, generated via RNA-sequencing, of *NR3C2*
1045 and *NR3C1* in the CoMMpass cohort; only samples at diagnosis were taken along.

1046 (O-P) Kaplan-Meier curve of the MMRF patient cohort, depicting the survival probability in function of
1047 overall survival (OS) for low, medium or high expression of (O) *NR3C2* or (P) *NR3C1*. Statistical
1048 analyses were performed in R (package survival), using a log-rank test.


1049

1050 Data information: (A-H, K-L) Each data point represents the mean +/- SD of technical replicates
1051 because only one biological repetition could be performed with the primary myeloma cells. The solvent
1052 condition was set as 100% and the other conditions were recalculated accordingly. Full arrows highlight
1053 the effect of the combination of a 10-fold lower Dex dose with Spi, while dashed arrows indicate the
1054 effect of Spi alone.

1055

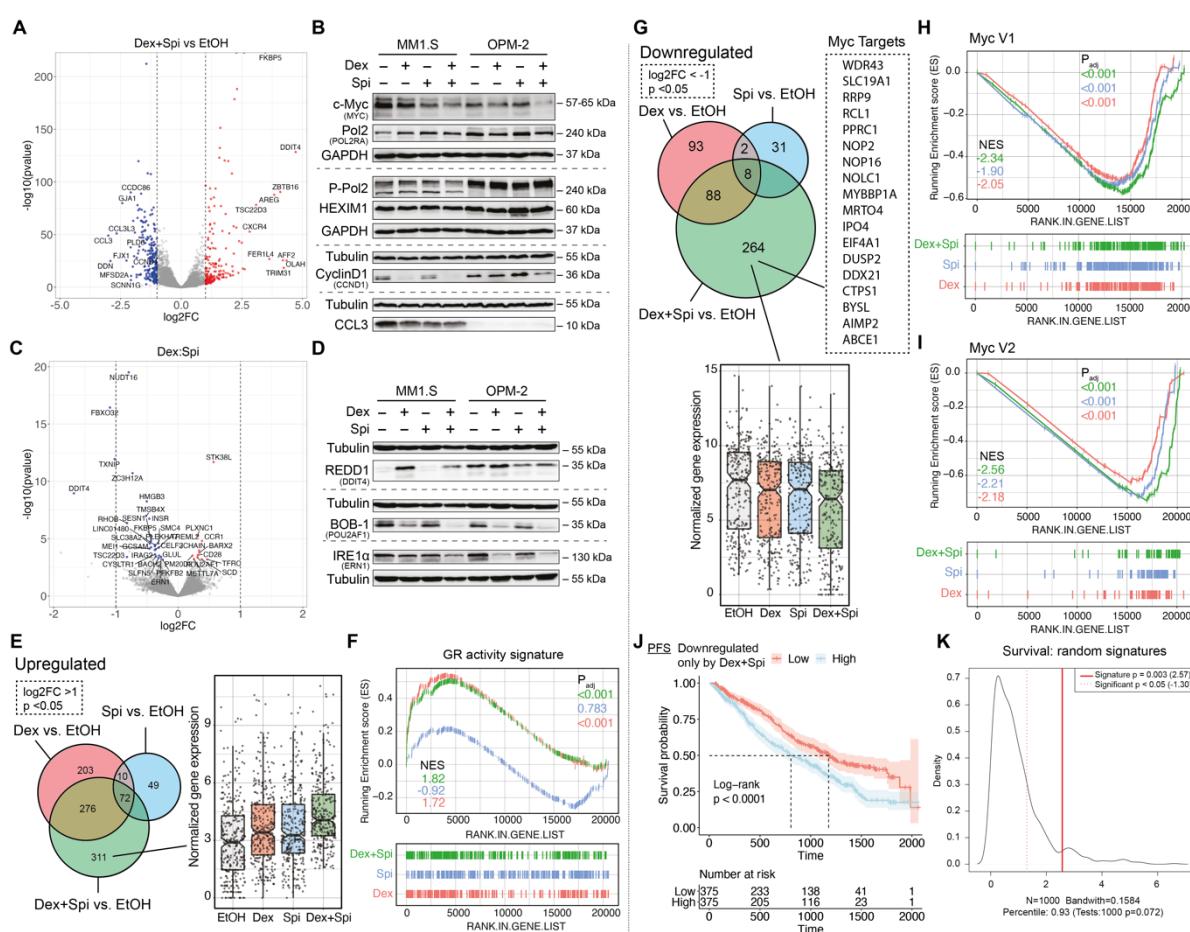
1056

1057 **Fig. 5**
1058

1059
1060

1061 **Fig. 5: Crosstalk between GR and MR may result from an endogenous interaction that can be**
1062 **modulated with ligands.**

1063 (A) NanoBiT-based GR-MR heterodimerization assay. The Large BiT (LgBiT) and Small BiT (SmBiT)
1064 fragments of the NanoLuc® luciferase, which have very low affinity for each other, are coupled to MR
1065 (at the N-terminus) or GR (at the C-terminus), respectively, and transfected into HEK293T cells. When
1066 the addition of ligand promotes GR-MR heterodimerization, the LgBiT and SmBiT come in close
1067 proximity of each other, hereby reconstituting the functional NanoLuc® luciferase. Following substrate
1068 addition (furimazine, cell-permeable substrate), the bioluminescent signal can be measured in intact
1069 cells. This NanoBiT-based assay was expanded to also measure GR-GR and MR-MR
1070 homodimerization. In both cases, LgBiT was coupled to the N-terminus and SmBiT to the C-terminus
1071 of both respective receptors.


1072 (B-C) HEK293T cells were transfected with LgBiT-MR and GR-SmBiT. 24h post-transfection, substrate
1073 is added and the baseline luminescence is recorded. Thereafter, cells are treated with Dex (10^{-6} M), Spi
1074 (10^{-5} M), the combination thereof, or solvent control and luminescence is measured continuous during
1075 60min (1min intervals) (N=3). (C) Statistical comparison of the area under the curve of Dex vs Dex-Spi
1076 NanoBiT results in panel B (N=3).

1077 (D-G) Two myeloma cell lines, i.e. (D) MM1.S and (H) OPM-2 cells were treated with Dex (10^{-6} M), Spi
1078 (10^{-5} M), a Dex-Spi combination or solvent control for 30min. Protein lysates were prepared and
1079 subjected to endogenous immunoprecipitation using GR (G5) antibody (both cell lines N=2). Thereafter,
1080 WB analyses were performed to determine co-immunoprecipitation of GR (90-95kDa) with MR
1081 (107kDa). GAPDH served as loading control for the input fraction. Lane 1 represents the non-specific
1082 antibody control. (E, G) In the IP fraction, MR protein levels were quantified relative to GR protein levels
1083 by band densitometric analysis using ImageJ. The bar plot displays the ratio of MR/GR in the IP fraction
1084 averaged over both biological repetitions (+/ SEM).

1085 (H-K) HEK293T cells were transfected with (H) LgBiT-GR and GR-SmBiT, or (J) LgBiT-MR and MR-
1086 SmBiT. 24h post-transfection, substrate is added and the baseline luminescence is recorded.
1087 Thereafter, cells are treated with Dex (10^{-6} M), Spi (10^{-5} M), the combination thereof, or solvent control
1088 and luminescence is measured continuous during 60min (1min intervals) (N=3). (I, K) Statistical
1089 comparison of the area under the curve of Dex vs Dex-Spi NanoBiT results in panel H and J (N=3).

1090
1091 Data information: (D, H) One representative image is shown for each co-IP experiment; the other
1092 biological replicates are available for consultation in Supplementary Fig.5.
1093

1094 Fig. 6
1095

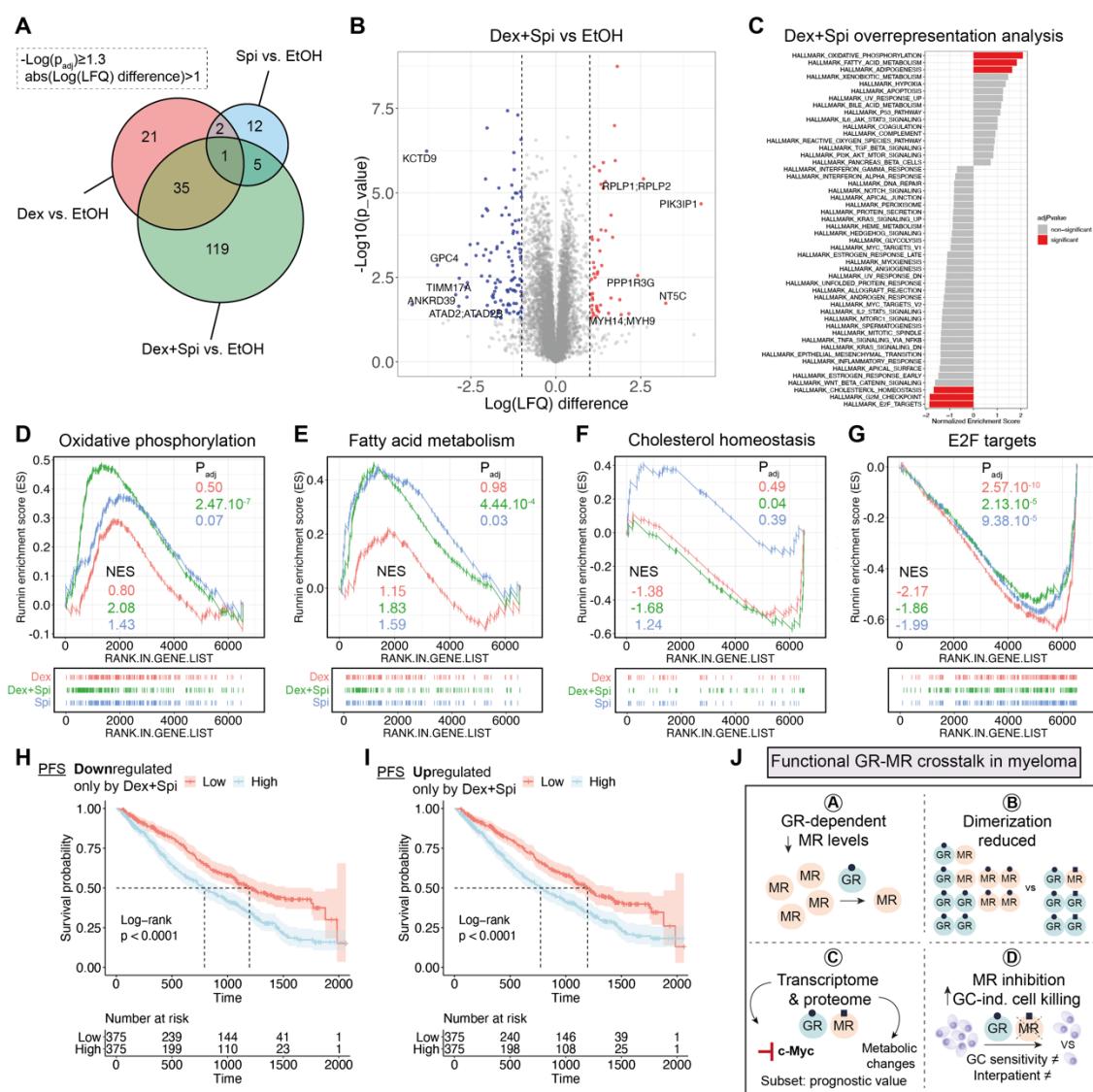
1096

1097 **Fig. 6: c-Myc and its target genes are inhibited most by Dex-Spi treatment, while a subset of**
1098 **Dex-Spi downregulated genes may predict prognosis.**

1099 (A, C) MM1.S cells were treated with Dex (10^{-6} M), Spi (10^{-5} M), a Dex-Spi combination or solvent control
1100 (EtOH) for 6h, followed by RNA-seq analysis. (A, C) Volcano plots depicting the p_{adj} (log10 scale) in
1101 function of the log2FC for all genes with baseMean ≥ 50 for (A) the pairwise comparison Dex-Spi vs
1102 EtOH or (C) the interaction term genes (= those for which the response following Dex-Spi treatment is
1103 significantly different from combining the separate responses of Dex and Spi). Significantly regulated
1104 genes ($p_{adj} < 0.05$) are colored in red (log2FC > 1 in A, log2FC > 0 for C, upregulated) or blue (log2FC < -1
1105 in A, log2FC < 0 for C, downregulated); non-significant genes ($p_{adj} > 0.05$) in grey. The gene names are
1106 displayed for those genes having the largest abs(log2FC) values (top 10 upregulated/downregulated).
1107 The dashed lines are set at abs(log2FC)=1.

1108 (B, D) MM1.S and OPM-2 cells were treated with Dex (10^{-6} M), Spi (10^{-5} M), a Dex-Spi combination or
1109 solvent control (EtOH) for 24h (both N=3). Protein lysates were prepared and subjected to WB analyses,
1110 hereby assessing the protein levels of (P-Ser2) RNA-Pol2 (240kDa), GR (90-95kDa), c-myc (57-
1111 65kDa), cyclin D1 (36kDa), MIP-1 α (CCL3, 10kDa), DDIT4 (35kDa), IRE1 α (110-130kDa) and BOB-1
1112 (35kDa). GAPDH (37kDa) and Tubulin (55kDa) served as loading controls.

1113 (E, G) Venn-diagram of three pairwise comparisons, split up in genes that were either (E) upregulated
1114 or (G) downregulated. In addition, the normalized gene expression profiles of the genes that are
1115 uniquely regulated by Dex-Spi are shown.


1116 (F, H, I) Gene set enrichment analysis (GSEA) of single hallmarks, i.e. (F) a GR activity signature and
1117 (H, I) two sets of Myc target genes (V1, V2), for each pairwise comparison, along with the respective
1118 normalized enrichment score (NES) and p_{adj} .

1119 (J) Kaplan-Meier curve of the MMRF patient cohort (N=750), depicting the survival probability in function
1120 of progression-free survival (PFS) for low or high expression of genes that were uniquely downregulated
1121 by the Dex-Spi combination. Statistical analyses were performed in R (package survival), using a log-
1122 rank test.

1123 (K) Prognostic factor analysis of the genes uniquely downregulated Dex-Spi (red solid curve) versus
1124 random signatures (red dotted curve). Prognostic power as determined by SigCheck (R package) of
1125 the genes uniquely downregulated by Dex-Spi (red dotted line) with 1000 random gene-sets of the
1126 same size (P value <0.05 is indicated by the red dotted line) for the overall survival parameter in the
1127 CoMMpass cohort.

1128
1129 Data information: (B, D) One representative image is shown for each WB experiment, with the number
1130 of biological replicates mentioned in each panel description.
1131

1132 **Fig. 7**
1133

1134
1135
1136

1137 **Fig. 7: Several metabolic pathways are deregulated most by the Dex-Spi combination treatment.**
1138 (A) MM1.S cells were treated with Dex (10^{-6} M), Spi (10^{-5} M), a Dex-Spi combination or solvent control
1139 (EtOH) for 24h, followed by MS-based shotgun proteomics. Venn-diagram of pairwise comparisons in
1140 which significantly regulated proteins ($-\log(p_{\text{adj}}) \geq 1.3$) with a $\text{abs}(\log(\text{LFQ difference})) > 1$ were
1141 considered.
1142 (B) Volcano plot depicting the p_{adj} (log10 scale) in function of the $\log(\text{LFQ})$ in the pairwise comparison
1143 Dex-Spi vs EtOH. Significantly regulated proteins $-\log(p_{\text{adj}}) \geq 1.3$ are colored in red ($\log(\text{LFQ}) > 1$,
1144 upregulated) or blue ($\log(\text{LFQ}) < -1$, downregulated); non-significant genes ($-\log(p_{\text{adj}}) < 1.3$) in grey.
1145 (C) GSEA-based overrepresentation analysis for the proteins regulated by Dex-Spi, hereby identifying
1146 hallmarks that are significantly (red) or non-significantly (grey) enriched.
1147 (D-G) GSEA of single hallmarks, i.e. (D) oxidative phosphorylation, (E) fatty acid metabolism, (F)
1148 cholesterol homeostasis or (G) E2F targets, for each pairwise comparison, along with the respective
1149 normalized enrichment score (NES) and p_{adj} .
1150 (H-I) Kaplan-Meier curves of the MMRF patient cohort (N=750), depicting the survival probability in
1151 function of progression-free survival (PFS) for low or high expression of proteins that were uniquely (H)
1152 downregulated or (I) upregulated by the Dex and Spi combination. Statistical analyses were performed
1153 in R (package survival), using a log-rank test.
1154 (J) Several lines of evidence support a crosstalk between GR and MR in MM: A) GCs induce a GR-
1155 dependent MR downregulation; B) GR and MR engage in a direct, physiologically relevant endogenous
1156 interaction that can be modulated by ligands. Spi was shown to reduce the Dex-induced GR-MR
1157 heterodimer levels and abolished Dex-induced MR-MR homodimers. Spi did not impact Dex-induced
1158 GR-GR homodimerization; C) Dex and Spi combination gives rise to a differential gene and protein
1159 expression profile, in which the inhibition of c-myc and its target genes, and several metabolic pathways
1160 are modulated most pronounced by Dex-Spi, respectively. A specific subset of targets may even have
1161 prognostic significance; D) MR inhibition enhances GC-induced cell killing in MM cell lines depending
1162 on their GC responsiveness and in primary (heterogeneous) MM cells depending on the disease stage.
1163
1164

1165 **Tables**

1166

1167 **Table 1: Patient demographics and disease stage.** MGUS, monoclonal gammopathy of
1168 undetermined significance; SMM, smoldering myeloma.

1169

Pseudonym	Gender	Age	Stage	M protein type
MM1	F	60	Newly diagnosed, prior to first therapy	IgG κ
MM2	F	69	Newly diagnosed, prior to first therapy	IgG κ
MM3	M	64	Newly diagnosed, prior to first therapy	κ light chain
MM4	F	71	Relapsed, prior to start of 6th line therapy	IgG λ
MM5	M	66	Relapsed, prior to start of 6th line therapy	λ light chain
MM6	M	64	Relapsed, prior to 2nd line of therapy	IgG κ
MM7	F	71	Relapsed, prior to 2nd line of therapy	κ light chain
MM8	M	56	Relapsed, prior to 2nd line of therapy	IgA κ
MM9	F	31	High risk SMM	IgG λ
MM10	M	53	MGUS	IgM κ

1170