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Abstract 34 

CD4+ T cells are a key mediator of various autoimmune diseases; however, how they contribute to disease development 35 

remains obscure primarily because of their cellular heterogeneity. Here, we evaluated CD4+ T cell subpopulations by 36 

decomposition-based transcriptome characterization together with canonical clustering strategies. This approach 37 

identified 12 independent transcriptional gene programs governing whole CD4+ T cell heterogeneity, which can explain 38 

the ambiguity of canonical clustering. In addition, we performed a meta-analysis using public single-cell data sets of over 39 

1.8M peripheral CD4+ T cells from 953 individuals by projecting cells onto the reference and cataloged cell frequency 40 

and qualitative alterations of the populations in 20 diseases. The analyses revealed that the 12 transcriptional programs 41 

were useful in characterizing each autoimmune disease and predicting its clinical status. Moreover, genetic variants 42 

associated with autoimmune diseases showed disease-specific enrichment within the 12 gene programs. The results 43 

collectively provide a landscape of single-cell transcriptomes of CD4+ T cell subpopulations involved in autoimmune 44 

disease. 45 

Keywords 46 

CD4+ T cells, autoimmune diseases, single-cell RNA-seq, GWAS 47 

Introduction 48 

Numerous studies have shown that CD4+ T cells contribute to autoimmune diseases 1,2, which affect 3-5% of the 49 

population and are multifactorial and polygenic 1,3. CD4+ T cells exhibit a variety of states (e.g., naive, memory), 50 

polarizations (e.g., Th1, Th2, Th17, T follicular helper (Tfh)), and also include a distinct subpopulation engaged in the 51 

maintenance of self-tolerance and homeostasis (regulatory T cells (Tregs)) 4,5. While a great deal of effort has been 52 

devoted to the detailed classification of CD4+ T cells, the complete picture of heterogeneity and its relationship to 53 

diseases is still controversial. Furthermore, making consistent assessments across reports is challenging since these 54 

reports were based on inconsistent cellular classifications. 55 
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 The recent emergence of single-cell analysis has greatly contributed to the elucidation of cellular diversities through 56 

unbiased profiling 6–11. In addition, single-cell RNA-seq (scRNA-seq) is suitable for robust cross-dataset data integration, 57 

allowing large-scale investigations 12–15. On the other hand, conventional clustering and marker gene detection strategies 58 

for single-cell analysis possess the following weaknesses: 1. Cell fraction definition requires arbitrary boundaries; 2. 59 

Marker genes for clusters can be occupied by redundant genes or uninterpretable genes, such as long noncoding or 60 

ribosomal genes, due to the influence of larger cell population structures; 3. Pairwise differentially expressed gene 61 

detection cannot capture global gene variation across multiple clusters. Though some studies have attempted to tackle 62 

these issues 16,17, these difficulties have still hindered the interpretations of complex and poorly demarcated cell 63 

populations. 64 

 Here, we constructed a consensus reference for CD4+ T cells in peripheral blood from autoimmune and healthy 65 

individuals covering various inflammatory conditions. The reference consists of 18 cell types defined by a conventional 66 

clustering strategy and 12 transcriptomic gene programs extracted by conducting decomposition using non-negative 67 

matrix factorization (NMF) 18 without boundaries, which overcame the weakness of existing single-cell analyses. The 68 

results showed that diverse CD4+ T cell features were formed by a combination of 12 independent gene programs. We 69 

also illustrated that the gene features obtained by NMF could be projected to other bulk / single-cell RNA-seq data to 70 

help interpret various datasets. Using these frameworks to examine the genetic contribution and subsequent changes of 71 

CD4+ T cells in autoimmunity, we performed a meta-analysis that enrolled over 1.8 million CD4+ T cells using published 72 

single-cell data of 20 diseases and integrated genome-wide association study (GWAS) statistics for 180 traits with our 73 

dataset. These analyses provided a full picture of CD4+ T cells in autoimmune diseases from the perspective of 74 

phenotypes and genetics. 75 

Results 76 

Single-cell profiling of peripheral CD4+ T cells from healthy and autoimmune donors 77 

 To characterize CD4+ T cells in various autoimmune properties, we performed single-cell RNA-seq and T cell receptor 78 

(TCR)-seq using droplet-based single-cell isolation technology and profiled CD4+ T cells, which were collected from 79 

three healthy donors, three myasthenia gravis (MG) patients, four multiple sclerosis (MS) patients, and three systemic 80 

lupus erythematosus (SLE) patients (Figure 1A; Table S1). After quality control (QC), 103,153 cells were retained and 81 

used for the downstream analyses. As the primary layer of clustering (cluster L1), we identified a dynamic differentiation 82 

from a naive state via an effector state to a terminally differentiated state. In cluster L1, CD4+ naive T cells (Tnaive; 83 

CCR7+ FAS−), CD4+ central memory T cells (Tcm; CCR7+ FAS+), CD4+ effector memory T cells (Tem; CCR7- FAS+), 84 
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and CD4+ terminally differentiated effector memory T cells (Temra; FAS+ CD28−) were observed with distinct gene 85 

expression patterns (Figures 1B,D, S1A; Table S2). Tregs were also observed as a distinct cluster with the expression of 86 

the master regulator FOXP3. Next, we further divided the cells into 18 clusters as the secondary layer, cluster L2 87 

(Figures 1C, S1B-D; Table S3). For example, we broke down cluster L1 cells into several T cell subclusters according to 88 

well-known transcription factors and chemokine receptors such as Tcm cells into Tfh (Tfh; CXCR5, PDCD1), Th2 89 

(GATA3, CCR4), Th17 (RORC, CCR6); Tem cells into Th1/17 (TBX21/Tbet, RORC), Th1 (TBX21/Tbet); Temra cells 90 

into Th1 (Figures 1C,D, S1A-D). Treg cells were divided into three clusters; Treg Naive (CCR7), Treg Activated (ID2), 91 

and Treg Effector (CCR4) (Figures 1C,D, S1A-D). In addition, several minor clusters were found, such as Tnaive MX1, 92 

which preferentially expresses interferon signature genes (Figures 1C,D, S1A,C,D). Transcriptome profiles of each 93 

cluster were concordant with bulk RNA-seq data from sorted CD4+ T cell fractions provided by the DICE consortium 19 94 

(Figure 1E). We found a CXCR5- PDCD1+ cluster occupying 1% in CD4+ T cells whose marker genes corresponded to 95 

the canonical marker for T peripheral helper (Tph) cells 20–22 in Tem (Figures S1A,E). The population was annotated as 96 

circulating Tph, although a few cells with the expression CXCR5- PDCD1+ were also observed in broader populations, 97 

such as Tcm and Temra, (Figures S1A,C,F). Overall, we identified cell populations of peripheral CD4+ T cells from 98 

healthy and autoimmune states using scRNA-seq.  99 

TCR features across CD4+ T cells reflect cellular properties 100 

 Because TCR responses shape T-cell functions and differentiation, TCR diversities and overlaps provide useful 101 

information for the properties and relationships of populations. Therefore, we analyzed single-cell TCR features 102 

sequenced along with gene expression. Clonotype sizes and diversity across cluster L1 populations revealed that Temra 103 

was most clonally expanded, followed by Tem, Tcm, Treg, and Tnaive (Figures 1F,G). Similarly, in cluster L2 104 

populations, Temra (Th1), Tem (Th1), and Tem (Th1/17) possessed a limited number of clonotypes, whereas Tnaive and 105 

Treg Naive maintained diverse clonotype pools (Figure 1H). TCR similarity network showed repertoire sharing between 106 

neighboring clusters, Tnaive and Tcm, Tcm and Tem, Tem and Temra, while the distal connection, such as from Tnaive 107 

to Temra was not observed, suggesting stepwise development from Tnaive to Tcm, Tem, and Temra (Figures 1I,J). The 108 

repertoires were also mutually shared within Tcm cell populations, suggesting the plasticity of T cell polarization against 109 

the same epitopes. In addition, Treg Naive and naive conventional T cells (Tconvs) didn’t share repertories, whereas 110 

Treg Act and Treg Eff shared repertoires with Tcm populations. We also measured the centrality of TCR networks for 111 

each cell type to evaluate the differentiation potential of each cluster. The centrality of Tcm (Th0), Tem (Th1) pre, and 112 

Tnaive were consistently high, suggesting that these cells possess the possibility to differentiate into a variety of cell 113 
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types (Figure S2A). In addition, TCR networks differed depending on the disease states (Figure 1I). Especially the 114 

centrality of Tcm (Tfh) and Treg Act were higher in SLE (Figures 1K, S2B). These results indicated that the kinetics of 115 

CD4+ T cell differentiation varied depending on the disease state. 116 

 Previous studies have shown that T cells with stronger TCR stimulation within the thymus are more likely to 117 

differentiate into Tregs than Tconvs 23. Therefore, Tregs have specific TCR properties, such as hydrophobicity in 118 

complementary determining region 3 (CDR3) regions 24. We measured the Tregness of TCRβ chains (TCR-intrinsic 119 

regulatory potential, TiRP score 24) and found that the mean TiRP score was higher in Treg cells compared with Tconv 120 

cells (Figures 1L,M). On the contrary, Tem (Th1) showed a low TiRP score indicating that Tem (Th1) has experienced 121 

the stimulation with non-self antigens. Among Treg cells, Treg Naive and Treg Act showed higher TiRP scores than Treg 122 

Eff. It has been thought that naive Tregs contain predominantly thymic differentiated Tregs (tTregs), while effector Tregs 123 

are compensated by peripherally differentiated Tregs in addition to tTregs 25. This notion was concordant with our 124 

observations that naive Tregs had the strongest Treg characteristics in the TCRs and that Treg Act and Eff shared TCRs 125 

with Tconvs (Figures 1I,J, S2C). Furthermore, in MS patients, the TiRP scores of the Treg Act were significantly low, 126 

reflecting disease-dependent Treg compensation by Tconvs (Figure S2D). Overall, TCR repertoires provided valuable 127 

insights into T cell characteristics and relationships during the differentiation. 128 

Decomposition of cellular programs using NMF 129 

 Next, we attempted to identify cellular programs within and across cell types. We noticed that conventional clustering 130 

and marker gene detections could fail to capture meaningful clusters and genes. For example, differentially expressed 131 

genes in our reference included overlapping genes among Th1 cell populations and nonsense genes in Tnaive cells, 132 

suggesting the conventional marker gene detection is insufficient for CD4+ T cells (Figure S1C). We suspected that 133 

artificially delineating in the clustering process is unsuitable for a gradual population such as CD4+ T cells. In addition, 134 

because marker gene detections are performed by pairwise comparison, global representations across cell types cannot be 135 

detected. To overcome these limitations, we applied non-negative matrix factorization (NMF) 18 to normalized gene 136 

expression of our scRNA-seq data and unbiasedly dissected gene expression profiles into a gene feature matrix W and a 137 

cell feature matrix H (Figure 2A). To determine the number of components, we assessed the explained variances and 138 

maximum inter-component correlations and selected 12 for the number of components as they kept sufficient information 139 

and were not redundant (Figure S3A; methods). Based on the gene feature profiles and the enriched pathways, we 140 

annotated the NMF components (Figures 2B-D, S3B; Table S4,5). Several factors were related to T-cell polarization, 141 

such as Treg-Feature (Treg-F, NMF1; genes with high weights; IKZF2, FOXP3), Th17-F (NMF 2; RORC, CCR6), 142 
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TregEff/Th2-F (NMF5; HLA class II genes, CCR10, CCR4), Tfh-F (NMF6; TIGIT, CXCR5), Th1-F (NMF11; GZMK, 143 

EOMES, CXCR3), and differentiations such as Naive-F (NMF3; CCR7, TCF7), Central Memory-F (NMF8; S100A8, 144 

ANXA1), and Cytotoxic-F (NMF0; GZMB, NKG7). NMF5 was enriched in both Th2 and Treg Eff, suggesting that 145 

effector Treg cells and Th2 cells may be controlled by the shared program as previously suggested 26 (Figure 2B). NMF6 146 

(Tfh-F) also demonstrated moderate activity in Treg Act, suggesting an overlap between Treg Act and T-follicular 147 

regulatory (Tfr) cells 27 (Figure 2B). NMF11high cells were enriched in Tem (Tph), Tem (Th1), and Tem (Th1/17) cells 148 

showing a wide range of Th1ness gene usage across these subtypes. Moreover, NMF7 was a type I interferon signature 149 

gene component enriched in Tnaive MX1 (Figures 1C, S3B). Intriguingly, NMF10 captured a global feature across cell 150 

types consisting of AP-1 family genes (JUNB, FOS), NFKBIA, CD69, and CXCR4 (Figure 2D). This feature was 151 

concordant with tissue-homing T-cells observed in the thymoma of MG patients 7 and the central nervous system of 152 

neurodegenerative disease patients 28, and was labeled as Tissue-F. NMF4 (Act-F) was related to IL7R signaling, which 153 

is an essential survival and differentiation signal 29. The proportion of explained variance (Evar) showed the most drastic 154 

variations in the peripheral CD4+ T cells were differentiation from Tnaive to Tcm, Tem, and Temra, and the polarizations 155 

were relatively smaller changes and independent of the differentiation programs (Figure 2B). Altogether, NMF 156 

succeeded in the decomposition of peripheral CD4+ T cell gene programs into 12 components and showed that complex 157 

CD4+ T cell populations were represented by a simple combination of the 12 components. 158 

NMF projection enables fast interpretation of various CD4+ T transcriptome datasets 159 

 One of the biggest challenges in single-cell analysis is the integration of datasets. To achieve a simple integration, we 160 

expanded the NMF framework to allow the projection of the pre-computed gene feature matrix onto other datasets by 161 

developing a bioinformatics tool, NMFproj (Figure 2A, https://github.com/yyoshiaki/NMFprojection). To measure how 162 

the NMF features explain the variance of the query dataset, we introduced a QC metric named the proportion of 163 

overlapped highly variable genes (POH) (Figure S3C). A low POH indicates that the query data set has much variability 164 

other than the NMF features evaluated by NMFproj. We applied NMFproj to various datasets to validate the scalability 165 

(Supplementary Note). Analysis of bulk RNA-seq of sorted peripheral CD4+ T cells provided by the DICE project 19 166 

demonstrated that each fraction was well represented by the 12 NMF gene features (POH: 0.272, Figure S3D). Miyara 167 

classification 30, which classified CD4+ T cells into Fr. I to Fr. VI by the expression of CD45RA and CD25, was re-168 

evaluated by NMFproj and showed that Fr. III (CD45RA- CD25int) has Th17 type characteristics in line with the original 169 

report 30 (POH: 0.542, Figure S3E, Supplementary Note). In addition, profiling of circulating Tph cells 20 revealed that 170 

Tph cells possessed both NMF6 (Tfh-F) and NMF11 (Th1-F) in concordance with Tem (Tph) we defined as cluster L2 171 

(POH: 0.134, Figure S3F, Supplementary Note). We also attempted to utilize NMFproj for the QC of in vitro induced 172 
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Treg (iTreg) cells of mouse 31 and found that iTreg cells induced in optimized conditions for enhancing Treg 173 

functionality showed higher NMF1 (Treg-F) values than conventional iTreg cells (POH: 0.182, Figure S3G, 174 

Supplementary Note). We also applied NMFproj to scRNA-seq datasets of cross-tissue immune cells 32 (Figure S5, POH: 175 

0.560 in CD4+ T cells, Supplementary Note), pan-cancer tumor-infiltrating CD4+ T cells 15 (Figure S4A, POH: 0.530, 176 

Supplementary Note), and mouse splenocytes 33 (Figure S4B, POH: 0.394, Supplementary Note), achieving robust 177 

interpretations of cellular features in various conditions. Furthermore, cell-specific qualitative changes have been 178 

reported in autoimmune diseases, such as Treg dysfunction in SLE 34, and we hypothesized that NMFproj could be used 179 

to detect these changes in individual cell populations. To test this, we applied NMFproj to bulk RNA-seq data of sorted 180 

peripheral CD4+ T cell fractions from various autoimmune patients 35. NMFproj detected a subset-specific gene program 181 

robustly even in a variety of autoimmune disease conditions (Figure S6A, Supplementary Note). The results showed cell-182 

type wide enhancement of NMF7 (IFN-F) in SLE and mixed connective tissue disease (MCTD) and hampered NMF1 183 

(Treg-F) in Fr.I nTregs (CD45RA+ CD25+) in SLE patients as previously reported 34 (Figure S6B). These results 184 

indicated that NMFproj could robustly assess the qualities of CD4+ T cells in various tissues and disease states, 185 

regardless of bulk/single cell or human/mouse. 186 

Meta-analysis of CD4+ T cells in various autoimmune diseases 187 

 To extend CD4+ T cell profiling to various autoimmune and infectious diseases, we performed a meta-analysis using 188 

publicly available single-cell data 6,8,36–57. We integrated publicly available datasets with two strategies: 1) quantitative 189 

evaluation of cell frequencies by mapping to our reference and 2) evaluation of qualitative changes per cell type using 190 

NMFproj. We extracted CD4+ T cells from peripheral blood mononuclear cells (PBMCs) using Azimuth 58 and then 191 

mapped them to our reference using Symphony 14 (Figure 3A, the pipeline is available at 192 

https://github.com/yyoshiaki/screfmapping). We collected 1,809,668 CD4+ T cells collected from 647 cases and 306 193 

controls from 25 projects (Figures 3B, S7A; Table S6). For quality assurance, only datasets in which both HC and 194 

patients were present and at least 3 cases were included were used. As a prominent change, Tnaive decreased, and Temra 195 

increased in various autoimmune diseases (Figure S7B; Table S7). It has been reported that Temra increased in the 196 

peripheral blood of rheumatoid arthritis (RA), MS, ulcerative colitis (UC), and Crohn's disease (CD) patients 59–62, which 197 

was consistent with the present data. Kawasaki disease and Type 1 diabetes (T1D) were exceptions among autoimmune 198 

diseases, with a slight increase in Tnaive and no significant change in Tcm, Tem, and Temra (Figure S7B), as reported 199 

previously 63,64. At cluster L2 resolution, we found that Tnaive MX1 increased in COVID-19, SLE, T1D, and primary 200 

Sjögren syndrome (pSS) patients (Figure 3C). The type I IFN response is essential for viral elimination and has been 201 

reported to be associated with COVID-19 pathology 65 and also known to be associated with SLE 66, pSS 67, and T1D 68. 202 
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Our meta-analysis could detect these effects as the increase of Tnaive MX1. Moreover, in our meta-analysis, Tcm (Th17) 203 

was increased in various diseases, including previously reported diseases such as MG 69, MS 70,71, and psoriasis 72. 204 

Regarding Tregs, we reported that Fr. II (CD45RA- CD25+) is increased in sarcoidosis, while Fr. I and III are increased 205 

in active SLE 30. Another group reported an increase of Tregs in pSS 73. In concordance with these observations, Treg 206 

increased in SLE, neurosarcoidosis, sarcoidosis, and pSS, especially for Treg Eff in neurosarcoidosis and for Treg Act 207 

and Treg Eff in SLE patients (Figures 3C, S7B). Interestingly, the acute infection response to COVID-19 showed an 208 

increase in Tnaive, whereas influenza infection showed an increase in Temra. We also found age-dependent Tnaive 209 

decrease and Temra, Treg Eff increases concordant with previous reports 74 (Figure 3C). Sex differences in immunity are 210 

critical, especially for autoimmune diseases, because 80% of autoimmune disease occurs in females 75. Previous reports 211 

have addressed several changes in females, such as the increase of recent thymic emigrants 76 and greater activation 212 

responses by in vitro stimulation 77. As for gender differences, we observed a decrease in Tcm (Th2), Tem (Th1/17), 213 

Temra (Th1), and Treg Eff and an increase in Tnaive Act, Tnaive MX1, Tnaive SOX4, Tem (Tph), and Treg Naive in 214 

females. These alterations depending on diseases, gender, and age were also observed as specific distributions on the 215 

PCA plot (Figures 3D-F, S7C,D). Overall, we profiled numerical features of CD4+ T cells in broad autoimmune status, 216 

age, and gender. 217 

 Next, to measure the quality changes in autoimmune diseases, we applied NMFproj to the datasets and investigated 218 

NMF cell feature changes in each cluster L2 population (Figures 3G, S8B, S9; Table S9). The strongest skews were 219 

enriched in NMF7 (INF-F) in SLE and COVID-19 patients in a cell-type-wide manner. We also found that even neutral 220 

populations such as Tnaive, Tnaive (Act), and Tcm (Th0) showed disease-specific propensities. For example, NMF0 221 

(Cytotoxic-F) increased in RA, MS, and pSS, NMF10 (Tissue-F) was increased in MS, COVID-19, SLE, and 222 

neurosarcoidosis, while NMF3 (Naive-F) decreased in a broad range of autoimmune diseases. In Treg cells, NMF1 223 

(Treg-F) decreased in T1D, MG, and MS, indicating the dysfunction of Treg in these diseases independently of the 224 

number of Treg cells. Age-dependent increases of NMF8 (Cent. Mem.-F) and NMF4 (Act-F) were also observed. In 225 

females, NMF4 (Act-F) was enhanced broadly. The results of qualitative and quantitative changes were consistent with 226 

previous reports, demonstrating the robustness of our catalog. For example, it has been reported that among CD4+ T cells, 227 

an increase of CXCR4+ Tnaive is the dominant change in COVID-19 infection 78. This is concordant with the result of 228 

our meta-analysis showing an increase in Tnaive and an increase in NMF10 (Tissue-F), which contains CXCR4 as the 229 

feature gene (Table S4), specifically in Tnaive cells. Other findings, such as the upregulation of an activation molecule, 230 

CD69, which was the feature gene of NMF10 (Tissue-F), in MS and SLE 79, and the reduction of effector Tregs and their 231 

decreased function in T1D 80, are also consistent with our meta-analysis. In conclusion, by meta-analysis, in addition to 232 
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quantitative changes, we identified qualitative changes depending on the disease, sex, and age at a resolution that is 233 

difficult to observe in existing methodologies. 234 

Autoimmune states are predictable only from peripheral CD4+ T profiles  235 

 Given that each autoimmune disease disorder possessed a characteristic CD4+ T cell profile, we hypothesized that 236 

disease status might be predicted solely from CD4+ T profiles by utilizing machine learning techniques and our 237 

autoimmune-wide scRNA-seq dataset. To confirm this, we created three models for the prediction of disease status. The 238 

first model took the frequency of each cell population in cluster L2, the second model took the cellular features of the 239 

NMF in subsets, and the last model took both as input parameters (Figure 3H). We note that, for NMFproj features, only 240 

Tnaive and Tcm (Th0) cell features, which were affected by various conditions as discussed previously (Figures 3G, 241 

S8A), were used to avoid over-fitting. First, binary classification models were constructed for SLE, COVID-19, and MS 242 

to distinguish between certain diseases and healthy individuals using logistic regression where equal numbers of diseased 243 

and healthy subjects were used for the training, and the models were evaluated using samples from independent projects 244 

from these used for the training (Figure 3I). SLE and COVID-19 yielded relatively good predictions from cell 245 

frequencies alone (AUC: 0.84, 0.82 in SLE and COVID-19, respectively). NMF cell features alone also could predict 246 

SLE and COVID-19 well (AUC: 0.94, 0.85 in SLE and COVID-19, respectively), and the perdition using both cell 247 

frequencies and NMFproj values further improved accuracy (AUC: 0.94, 0.91 in SLE and COVID-19 respectively). For 248 

MS, for which hematological biomarkers have not yet been well-established, prediction from cell frequencies or from 249 

NMFproj values alone was not successful (AUC: 0.61, 0.47 in cell frequency and NMFproj respectively), while both cell 250 

frequencies and NMFproj values resulted in better predictions (AUC: 0.75) than previous reports 81. Next, we built 251 

multiclass classification models that more closely resemble real-world clinical practice. The multiclass classification was 252 

assumed to be a more difficult task due to the similarities among autoimmune diseases and the imbalance of training 253 

sample sizes. We trained a gradient boosting model with 5-fold cross-validation on data from 714 samples from 8 254 

diseases or healthy for which at least ten samples were available for training and then evaluated the model using the data 255 

from the independent dataset (Figures S8B,C). The model trained only by cell frequencies or by NMFproj values could 256 

predict COVID-19, SLE, HC, and MS (Area Under the Precision-Recall Curve (PR-AUC): 0.72, 0.68, 0.48, 0.12 in the 257 

cell frequency model and 0.91, 0.75, 0.47, 0.35 in the NMFproj model, for COVID-19, SLE, HC, and MS respectively), 258 

and the model trained by both cell frequencies and NMFproj values in Tnaive and Tcm (Th0) was marked with superior 259 

accuracy (PR-AUC: 0.92, 0.69, 050, 0.33 for COVID-19, SLE, HC, and MS respectively). These results highlight that 260 

the disease-specific changes in CD4+ T cells, both in terms of quantitative and qualitative alterations, contribute to the 261 

prediction of disease status. 262 
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Partitioned heritability of autoimmune diseases on CD4+ T cell NMF features 263 

 We examined the association between CD4+ T characteristics and genetic factors for each disease and trait. Studies using 264 

GWAS statistics have reported associations between autoimmune diseases and immune cells 1,82. In particular, stratified 265 

linkage disequilibrium score regression (S-LDSC) has revealed the association between CD4+ T cells and autoimmune 266 

diseases by stratifying the heritability of polygenic autoimmune diseases by genetic features 83,84. Since we captured 267 

elaborate CD4+ T cell features, we investigated which of these features were associated with each trait using the S-LDSC 268 

framework. In addition to the cell-type specific genes of cluster L2, 12-dimensional features extracted by NMF were 269 

used as genetic features. The Roadmap Enhancer-Gene Linking (Roadmap) and Activity-By-Contact (ABC) strategies 270 

introduced in the sclinker framework 85 were used for linking genes and SNPs. Among 180 traits, autoimmune diseases 271 

showed significantly high enrichment in NMF features (p=8.51 x 10-12), suggesting autoimmunity is closely associated 272 

with CD4+ T cells (Figure 4A). Cross-sectional disease association revealed that many diseases, such as Inflammatory 273 

bowel disease (IBD), RA, and MG, have an enrichment of heritability on NMF1 (Treg-F) (Figure 4B). By focusing on 274 

the most accumulated factors for each disease, we found that autoimmune diseases can be divided into several groups. 275 

For each disease, the most enriched gene features were observed as; NMF1 (Treg-F): RA, UC (deLange), 276 

hypothyroidism; NMF2 (Th17-F): CD (deLange), IBD (deLange), MG; NMF5 (TregEff/Th2-F): celiac disease, T1D; 277 

NMF7 (IFN-F): SLE, primary biliary cirrhosis; NMF10 (Tissue-F): MS, psoriasis. In MS, accumulation was observed in 278 

various features, including NMF2 (Th17-F) and NMF11 (Th1-F). The heritability of each autoimmune disease was 279 

accumulated in several factors, suggesting that autoimmune diseases have multiple susceptibilities. In other traits, weak 280 

accumulation on NMF1 (Treg-F), NMF2 (Th17-F), and NMF11 (Th1-F) was common in COVID-19 in both severe 281 

symptoms and infection, while NMF7 (IFN-F) was infection-specific (Figure S10A). Lymphocyte counts were also 282 

susceptible to NMF4 (Act-F) (Figure S10A). We also examined enrichment in cell-type-specific genes. Similar 283 

enrichment patterns, such as Treg Naive in most autoimmune diseases and Tnaive MX1 in SLE, were observed, while 284 

caution should be taken as marker gene detection is not optimal for CD4+ T cells as in the previous section (Figure S10B). 285 

Taken together, we comprehensively profiled heritability enrichment on CD4+ T cell gene features across autoimmune 286 

diseases.  287 

Partitioned heritability is associated with qualitative and/or quantitative changes in CD4+ T in a disease-specific 288 

manner 289 

 Lastly, we compared partitioned heritability and observed changes in CD4+ T in terms of quantity (cell frequency) and 290 

quality (NMFproj) to assess the genetic effect on phenotypic changes (Figure 5A). We first investigated the correlation 291 

between enriched heritability and changes in cell frequency and NMF features for diseases that were enrolled in our 292 
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analysis for both GWAS and meta-analysis. We found several patterns depending on the disease (Figure 5B). First, in 293 

MG and psoriasis, both changes in cell frequency and NMF feature correlated with heritability accumulation. In severe 294 

COVID-19 (COVID19-A, COVID19-B) and RA, the correlation was mainly observed with changes in quality only. SLE, 295 

celiac disease, UC, and SARS-CoV-2 infection (COVID19-C) showed poor correlation with cell frequency. 296 

 Next, we examined MS, MG, and SLE, whose samples were collected in this study, in more detail (Figure 5C). In MG, 297 

NMF2 (Th17-F), which accumulated heritability most significantly, was increased in Tcm (Th17) and Tem (Th1/17) in 298 

correlation with genetic factor accumulation, and the cell frequency was also correlated with genetic factors (Figures 5C, 299 

S9). On the other hand, NMF1 (Treg-F), which showed the next highest accumulation of heritability, was negatively 300 

correlated with the genetic effect and lower in Treg cells (Figure S9), indicating that the dysfunction of Treg cells might 301 

be enhanced by the genetic effect. In MS, the highest heritability accumulation was observed in NMF10 (Tissue-F). This 302 

factor was increased in all cell populations without cell specificity, resulting in a low correlation with the heritability. 303 

SLE susceptibility was most accumulated in NMF7 (IFN-F). In our meta-analysis, an enhancement of NMF7 (IFN-F) 304 

was observed in all cell populations, especially in Tnaive MX1. Overall, our study cataloged heritability enrichment and 305 

phenotypic changes across autoimmune diseases, enabling elucidation of the disease-specific effect of underlying genetic 306 

factors on CD4+ T cell phenotypes. 307 

Discussion 308 

The classifications and characterizations of CD4+ T cells have been challenging, with cellular heterogeneity being a 309 

major obstacle 4. In this study, by performing single-cell analysis on CD4+ T cells from autoimmune and healthy subjects, 310 

we succeeded in mutually exclusive and collectively exhaustive subtype identifications of peripheral CD4+ T cells. 311 

Moreover, in contrast to the conventional dualistic comparisons such as Th1 vs. Th2 and Treg vs. Th17, the NMF-based 312 

decomposition revealed that CD4+ T cells are formed by a combination of 12 features rather than simple contradistinction. 313 

While qualitative profiling by NMF was not suitable for numerical evaluation, it allowed for a more robust assessment of 314 

gradual cell populations. Moreover, our results can also be extrapolated for other single-cell and bulk RNA-seq studies 315 

by using a label transfer and the projection of NMF features. 316 

 These analytical frameworks also allowed us to perform autoimmune-wide single-cell meta-analyses and integration of 317 

CD4+ T cell features with GWAS. As a result, we comprehensively cataloged CD4+ T cell alterations in 20 diseases, 318 

providing a valuable resource for a broad range of disease research. The assessment of qualitative changes through 319 

NMFproj enabled us to explore biological insights, such as Treg functional abnormalities, that were previously 320 

unattainable using cytometry. Furthermore, the decomposition of gene programs using NMF was beneficial not only for 321 
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T-cell profiling but also for interpreting GWAS results. We found that genetic factors can have both disease-specific and 322 

cross-disease impacts on autoimmune conditions. The accumulation of heritability on Tregs across diseases and the 323 

disease specificity of other features may be potential clues for future therapeutic development. 324 

 By examining genetic factors, CD4+ T cell changes, and TCR characteristics in a disease-specific manner, we gained 325 

valuable insights into various diseases. For example, MG is caused by autoantibodies against the neuromuscular junction, 326 

with germinal center responses involving Tfh cells and B cells within the thymus 7,86. While Th17 function enhancement 327 

has been reported in MG 69,87, we also observed a heritability enrichment in NMF2 (Th17-F), suggesting that tissue 328 

damage by Th17 cells may contribute to symptom completion and persistence. In MS, we observed an increase in 329 

NMF10 (Tissue-F) and heritability enrichment in addition to the previously known Th17 and Th1 increase and functional 330 

enhancement 70,71,88. These results suggested that a strong tissue inflammatory response is involved in MS. These results 331 

emphasized that the tissue-specific gene program centered on the AP-1 family may be a novel MS-specific therapeutic 332 

target 89. Additionally, in MS, while Treg Eff slightly increased, the quality of Treg cells in terms of transcriptome and 333 

TCR was low, indicating that the compensation of Tregs from Tconvs is an explanation for Treg dysfunction in MS 90. In 334 

SLE, our analysis of heritability enrichment and qualitative alterations supported the traditional belief that Type I IFN is 335 

central to the disease 91. Type I IFN drives differentiation into Tregs and Th1 cells 92,93, and our result suggested that the 336 

pleiotropic effect of Type I IFN contributed to the complicated cell frequency changes observed in this study. 337 

Furthermore, TCR overlaps between Tcm (Tfh) and Treg Act were observed specifically in SLE, suggesting potential 338 

Treg-Tfh plasticity in SLE similar to reported Tfh-Treg plasticity under certain inflammatory conditions 94,95. We 339 

identified distinct CD4+ T cell responses between COVID-19 and influenza infection, with an increase in Tnaive cells in 340 

COVID-19 and Temra cells in flu. This divergence may reflect differences between pre-trained immunity to influenza 341 

and initial responses to SARS-CoV-2, as most COVID-19 samples were collected before the vaccine rollout. In addition, 342 

our meta-analysis revealed sex and age-related CD4+ T cell changes, with new observations such as increased Tnaive 343 

MX1 and Tem (Tph) in females, potentially contributing to gender differences in autoimmune disease incidence. Thus, 344 

our study highlights the CD4+ T cell features of each disease and condition, providing new insights for consideration. 345 

 Additionally, this study created a comprehensive CD4+ T cell catalog across various diseases for the first time, providing 346 

the opportunity to tackle the challenging task of assessing whether disease prediction is feasible using CD4+ T cell 347 

profiles. The machine learning model showed that disease status could be predicted only from CD4+ T profiles. Although 348 

we still could not collect samples abundantly for the model training for clinical applications, this study showed the 349 

potential for capturing undiagnosed autoimmune diseases from cellular conditions in the future. The predictability also 350 
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indicated that changes in CD4+ T profiles clearly characterized each disease, emphasizing the importance of fine-tuned 351 

treatments for individual diseases.  352 

In our discussion, it is important to address a key limitation of our study, which is that it focused on peripheral blood 353 

and did not evaluate tissue alterations, such as barrier tissue-specific programs 96. This might be the reason that we could 354 

not capture some known vital phenomena for CD4+ T cells, such as anergy and exhaustion. On the other hand, the NMF 355 

defined in peripheral blood fitted well with tissue CD4+ T cells and tumor-infiltrating T cells, suggesting that peripheral 356 

blood can be used as a snapshot of complex T cell responses and that these profiles are applicable to tissues. 357 

Collectively, we constructed the frameworks for extracting the CD4+ T cell programs, enabling a comprehensive 358 

interpretation of CD4+ T cells. Moreover, the landscape of disease-specific CD4+ T cell alterations and genetic effects 359 

provides biological insights for potential precision medicine. 360 

STAR Methods 361 

Human samples 362 

The study using human samples was reviewed and approved by the Research Ethics Committee of Osaka University 363 

and carried out in accordance with the guidelines and regulations. Human samples were collected under approved Osaka 364 

University's review board protocols: ID 708-10. Written informed consent was obtained from all donors. 365 

Cell preparation and sequencing of scRNA-seq 366 

From blood collected using heparin-coated tubes, we first collected PBMCs using Ficoll-Paque (Cytiva). PBMCs were 367 

washed, blocked with Fc Receptor Binding Inhibitor Polyclonal Antibody, Functional Grade, eBioscience™ (Thermo 368 

Fisher Scientific), and stained with FITC-labeled anti-CD3 mAb (dilution: 1/100, UCHT1, BD Bioscience), APC-labeled 369 

anti-CD4 mAb (dilution: 1/100, RPA-T4, Thermo Fisher Scientific), PE-labeled anti-CD19 mAb (HIB19, BioLegend), 370 

Live/Dead (Thermo Fisher Scientific). Live-CD3+CD4+CD19− cells were isolated using BD Biosciences FACS Aria II or 371 

BD Biosciences FACS Aria III. CD4+ T cells and B cells were mixed in equal numbers in some samples. 372 

The sorted cells were loaded to Chromium Next GEM Chip G (10x Genomics) on Chromium Controller (10x 373 

Genomics) for barcoding and cDNA synthesis. The library construction was performed using Chromium Next GEM 374 

Single Cell 5' Kit v2 and Chromium Single Cell Human TCR Amplification Kit (10x Genomics) for 5' according to the 375 

manufacturer's protocol. The libraries were sequenced on NovaSeq6000 (Illumina). 376 
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Preprocess of scRNA-seq data 377 

Sequenced reads were processed using Cell Ranger (v4.0.0) with pre-built reference refdata-gex-GRCh38-2020-A and 378 

refdata-cellranger-vdj-GRCh38-alts-ensembl-4.0.0 downloaded at 10x GENOMICS' website. Quantified expressions 379 

were preprocessed and visualized using Scanpy 1.8.1 97 and Python 3.8.0. For CD4+ T cell and B cell mixed samples, we 380 

extracted only CD4+ T cells as following procedures. Briefly, we normalized (sc.pp.normalize_total) gene expression, 381 

log-transformed it (sc.pp.log1p), extracted highly variable genes (HVGs) (sc.pp.highly_variable_genes with 382 

min_mean=0.0125, max_mean=3, min_disp=0.5), computed PCA (sc.tl.pca) and neighbors (sc.pl.neighbors with 383 

n_neighbors=10, n_pcs=40), computed clusters using Leiden algorithm (sc.tl.leiden), and embedded using UMAP 384 

algorithm (sc.tl.umap). CD3E-positive and MS4A1-negative clusters were extracted as CD4+ T cells and used for the 385 

analysis. Cells with mitochondrial genes were higher than 10%, detected genes less than 200, or annotated as multichain 386 

by scirpy were filtered out. Variable genes of TCR alpha and beta were removed for the clustering and embedding to 387 

remove the effect of clonal expansion. Gene expressions were preprocessed by sc.pp.normalize_per_cell with 388 

counts_per_cell_after=1e4, sc.pp.log1pp, retained HVGs. The inference of the cell cycle was performed using the 389 

sc.tl.score_genes_cell_cycle function following the tutorial 390 

(https://nbviewer.jupyter.org/github/theislab/scanpy_usage/blob/master/180209_cell_cycle/cell_cycle.ipynb). Total 391 

counts of UMI, % mitochondrial genes, S score, G2M score were regressed out using sc.tl.regress_out and scaled using 392 

sc.tl.scale. Then, principal components were computed using sc.tl.pca. The batch effect of samples was removed by the 393 

Harmony algorithm 13. Cells were embedded by UMAP using sc.tl.umap (spread=1.5), and clustered using sc.tl.leiden 394 

(resolution=1.2). Re-clustering and embedding were performed using sc.tl.umap (spread=1.5), clustered using sc.tl.leiden 395 

(resolution=1.7) after removing clusters containing doublets with B cells, monocyte lineages, etc. We defined cluster L1 396 

as a large classification using the leiden clusters. Next, for some clusters, concatenation or re-clustering was performed 397 

with sc.tl.leiden (resolution 0.3-1) to divide clusters at the minimum resolution with distinct marker genes. We defined 398 

cluster L2 as a smaller classification. Marker genes were determined using sc.tl.rank_genes_groups with method=’t-399 

test_overestim_var’.  400 

Integration with bulk RNA-seq dataset 401 

Fastq files were processed using an RNA-seq integrative pipeline, ikra (v2.0.1) 98, composed of Trim Galore! 0.6.7 99, 402 

Salmon 1.4.0 100, tximport 1.6.0 101 with the reference Gencode M26 for mice and 37 for humans. Datasets for which the 403 

TPM matrix was provided were downloaded and used directly for analyses. For the ImmuNexUT (E-GEAD-397) dataset, 404 

the downloaded count matrix was converted to TPM. 405 
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 For the correlations between bulk RNA-seq and scRNA-seq datasets, TPM or scaledTPM expression matrix of bulk 406 

RNA-seq were normalized using sc.pp.normalize_per_cell (counts_per_cell_after=1e4), sc.pp.log1p, sc.pp.scale 407 

(max_value=10), concatenated to scRNA-seq object, and calculated the correlations using sc.tl.dendrogram with the 408 

default parameters. 409 

Gene expression decomposition using NMF 410 

To decompose cellular processes, we applied NMF implemented in scikit-learn (v0.24.2) to normalize gene expression 411 

of HVGs. Using NMF, the normalized gene expression X was decomposed as follows; 412 

 413 

, where W and H possess n components. In the analysis, we set the number of components as 12 based on the two 414 

criteria; i) more than the elbow in the distribution of explained variance, ii) before the jump up of the maximum inter-415 

components Spearman's correlation. The explained variance was calculated as follows; 416 

 417 

 418 

For the pathway enrichment analysis, we extracted the top 100 genes with the highest feature value for each component 419 

and converted gene symbols into Entrezid using the bitr function provided by clusterProfiler (3.16.1) 102 and computed 420 

enriched Reactome pathways using the compareCluster function of clusterProfiler with the enrichPathway function in 421 

ReactomePA (1.32.0). For the projection of gene features defined by NMF, we performed NMF with pre-computed W 422 

using scikit-learn. The matrix W was converted to mouse genes using a list of human and mouse homologs provided at 423 

http://www.informatics.jax.org/homology.shtml. For genes with multiple homologs, one of the genes was retained. For 424 

the NMF calculation, only overlapped genes were used. To examine whether the selected HVGs of fixed W can capture 425 

HVGs in a query dataset, we calculated the proportion of the number of HVGs included in fixed W against the number of426 

HVGs in the query dataset as POH. In the CD4+ T data set, we determined that if the POH is below 0.1, which is the 427 

conservative threshold from the distribution of the null hypothesis (Figure S3C), there is a variance that cannot be 428 

represented by the NMFproj. sc.pp.highly_variable_genes in scanpy with the following parameters; min_mean=0.0125, 429 

max_mean=3, min_disp=0.1 was used for the calculation of HVGs of the query datasets and selected top 500 genes 430 

regarding normalized dispersion 103 with the exclusion of VDJ genes of TCR and IG. A framework for NMF projection is431 

available at https://github.com/yyoshiaki/NMFprojection. 432 

 of 

 is 
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For the analysis of ImmuNexUT, the count data was downloaded at (https://humandbs.biosciencedbc.jp/en/hum0214-433 

v3) and converted to TPM. We removed BD, AAV, AOSD, and SjS samples from the analysis because these samples are 434 

processed in a different procedure from other samples. TPM matrix was decomposed with the pre-computed gene feature 435 

matrix using NMFproj. Extracted NMF feature H was tested using a multiple linear regression provided as the 436 

formula.api.ols function by a python package statsmodels (0.12.0) with a model, NMF_i ~ Disease + Age + Gender + 1.  437 

TCR analysis 438 

For TCR analysis, we used the standard pipeline of scirpy 0.10.1 104 according to the official tutorial 439 

(https://scverse.org/scirpy/latest/tutorials/tutorial_3k_tcr.html). Briefly, clones were defined by clonotypes using 440 

scirpy.tl.define_clonotypes with parameters; receptor_arms="all", dual_ir="primary_only". Repertoire similarities were 441 

measured using the function scirpy.tl.repatoire_overlap. TiRP score was calculated according to the instruction in the 442 

repository (https://github.com/immunogenomics/TiRP.git). 443 

Heritability partitioning 444 

To assess the contribution of each cell-type-specific gene expression and the NMF component, we applied S-LDSC 445 

with Roadmap ABC-immune enhancer-gene linking strategy implemented using an sc-linker pipeline 85 with slight 446 

modifications (https://github.com/yyoshiaki/sclinker-skg). We only used HVGs defined by the preprocessing section in 447 

the analysis. We used min-max scaled gene scores for the cell-type gene programs as the gene weights. For NMF 448 

components, we used the gene feature matrix W with the min-max scaling for the gene weights. Using the gene weights, 449 

LD scores for each category were calculated with European LD scores used in the article 85 and Roadmap_U_ABC for 450 

blood (https://storage.googleapis.com/broad-alkesgroup-public/LDSCORE/Dey_Enhancer_MasterReg/processed_data, 451 

https://storage.googleapis.com/broad-alkesgroup-452 

public/LDSCORE/DeepLearning/Dey_DeepBoost_Imperio/data_extra/AllPredictions.AvgHiC.ABC0.015.minus150.wit453 

hcolnames.ForABCPaper.txt.gz). In addition to the sumstats files provided in gs://broad-alkesgroup-454 

public/LDSCORE/all_sumstats, we used several additional sumstats by processing using munge_sumstats.py in LDSC 455 

v1.0.1 (Table S10). S-LDSC was performed with the baseline-LD model v2.1 (https://storage.googleapis.com/broad-456 

alkesgroup-public/LDSCORE/1000G_Phase3_baselineLD_v2.1_ldscores.tgz). The Enrichment score (Escore) was 457 

calculated as the difference between the enrichment for annotation in a particular program against an SNP annotation for 458 

all protein-coding genes with a predicted enhancer-gene link in the blood. We also used FDR calculated from the p-value 459 

of Enrichment outputted by S-LDSC. 460 
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Meta-analysis of CD4+ T cells from public datasets 461 

We collected scRNA-seq data from PBMC generated by 10x platforms, Seq-Well or SPLiT-seq (Parse Biosciences WT 462 

Mega) 6,8,36–57 (Table S6). If the count matrix was available, we used the quantified matrix. Otherwise, we quantified the 463 

expression using Cell Ranger with pre-built reference refdata-gex-GRCh38-2020-A. As the sample QC, samples with 464 

XIST mean expression (count) > 0.05 were inferred as female. If the inferred gender and metadata differed, we removed 465 

the sample from the analysis. We extracted CD4+ T cells from published data of PBMCs using Azimuth 0.4.4 58. We 466 

created Seurat Object using the CreateSeuratObject function implemented in Seurat 4.1.0 58 with parameters min.cells=3, 467 

min.features=200. We also filtered out the cells that express≧10% mitochondrial genes in their total gene expression. We 468 

normalized the expression using SCTransform with parameters method= "glmGamPoi", ncells=2000, n_genes=2000, 469 

do.correct.umi=FALSE. In this procedure, we used Azimuth reference data v1.0.0 human_pbmc loaded from the website 470 

(https://seurat.nygenome.org/azimuth/references/v1.0.0/human_pbmc). We found anchors between query data and 471 

Azimuth reference data (FindTransferAnchors with parameters k.filter=NA, normalization.method= "SCT", dims=1:50, 472 

n.trees=20, mapping.score.k=100), transferred cell type labels (TransferData with parameters dims=1:50, n.trees=20) and 473 

calculated the embeddings on the reference supervised PCA (IntegrateEmbeddings with the default options) and 474 

neighbors (FindNeighbors with parameter l2.norm=TRUE). We transformed an NN index (NNTransform with the 475 

default parameters) and projected the query data to the reference UMAP (RunUMAP with the default parameters). We 476 

visualized query data by DimPlot, DotPlot, and FeaturePlot.  477 

Next, we mapped extracted cells on our reference using symphony 0.1.0 14 following the vignettes 478 

(https://github.com/immunogenomics/symphony/blob/main/vignettes/Seurat.ipynb). First, we created a symphony 479 

reference using our dataset. Our scanpy object saved as an h5ad file was converted to h5Seurat using SeuratDisk and 480 

loaded as a Seurat object. We used only HVGs for symphony reference to reduce batch effect strictly. Then, the object 481 

was preprocessed as follows; SCTransform (method= "glmGamPoi"), ScaleData, RunPCA, RunHarmony.Seurat 482 

(group.by= "sample"), FindNeighbors (dims=1:30), RunUMAP2, and buildReferenceFromSeurat. For query mapping, 483 

extracted CD4+ T cells were normalized (SCTransform with parameter method= "glmGamPoi") and mapped (mapQuery 484 

with parameter do_normalize=FALSE, vars = "batch") with batch correction against each sample. The cluster L1 and L2 485 

assignments were performed using the knnPredict.Seurat function. We visualized the mapping results by DimPlot and 486 

FeaturePlot as the quality control. We are providing the label transfer pipeline at 487 

https://github.com/yyoshiaki/screfmapping. 488 
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Binominal regression was performed with the formula; (n_cat, n_total - n_cat) ~ Disease + Age + Gender + Project 489 

using the R glm function. For the analysis of enriched NMF components, we first calculated cell profiles using NMFproj 490 

with raw counts, and linear regression was performed with the formula; NMF_i ~ Disease + Age + Gender + Project 491 

using the R glm function. For the PCA plot of individuals, we corrected the batch effect by a project by regressing out 492 

using GLM with the formula; cell frequency ~ Disease + Age + Gender + Project. The Chord diagrams were created 493 

using pycirclize (0.1.3). 494 

Machine learning for the prediction of autoimmune states 495 

First, the training and test datasets were split without the study overlap. Cell frequencies and/or NMFproj values in Tcm 496 

(Th0) and Tnaive were scaled using StandardScaler (scikit-learn 1.0.2). Note that Tnaive and Tcm(Th0), which have a 497 

high degree of nodes in the network, were selected for the NMFproj results to keep the number of parameters low. NMF 498 

values were imputed using SimpleImputer (scikit-learn 1.0.2) with parameter strategy='most_frequent' trained by training 499 

datasets. For the binary classification, we used the LogisticRegression in scikit-learn with the default parameters. For the 500 

multiclass classification, the label imbalance was corrected using SMOTE (imbalanced-learn 0.9.1) with parameter 501 

sampling_strategy='all'. Then, LightGBM 3.3.2 105 was used for the model with parameters, 'objective'='multiclass' and 502 

'early_stopping_rounds'=10. 503 

Statical analyses 504 

All statistical analyses were performed in R (4.0.3 or 4.1.2) and Python (3.8.0). FDR was obtained by the Benjamini-505 

Hochberg procedure implemented by a Python package statsmodels (0.12.0). All other statistical analyses are detailed in 506 

the respective sections of the article.  507 
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Figure titles and legends 534 

Figure 1 Global profiling of CD4+ T cells 535 

(A) Sample collection strategy. 536 

(B and C) Clusters L1 and L2 on UMAP embeddings. 537 

(D) Dot plot depicting signature genes' mean expression levels and percentage of cells expressing them across clusters. 538 

Marker genes for the plot were manually selected. See also Figure S1C for automatically extracted marker genes. 539 

(E) Expression correlation of clusters with bulk RNA-seq for sorted CD4+ T cell fractions (DICE).  540 

(F) UMAP plot showing clonotype size. 541 

(G and H) Clonotype size distributions across clusters. 542 
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(I and J) TCR similarity networks in autoimmune patients, healthy donors (I), and all donors (J). TCR similarity was 543 

calculated for each sample, and only edges where overlapping clonotypes were detected in >=2 (I) or >=4 (J) samples are 544 

depicted as robust overlaps. The edge color indicates the average TCR similarity of all samples. 545 

(K) Degree centrality of TCR networks. Significance across clusters was calculated by one-way ANOVA, and after 546 

multiple test corrections by FDR, Tcm (Tfh) and Treg Act were retained as significant cell types. Then, pairwise Tukey-547 

HSD posthoc tests were performed. *: padj < 0.05 in comparison with HC. 548 

(L) TiRP score distributions on UMAP plot. Mean scores for each cluster L2 were shown.  549 

(M) TiRP score distribution across cluster L2. The dot shows the mean, and the CI shows 95% CI of the bootstrap 550 

distribution of means (n=1000). Adjusted p-values of significant clusters, Tnaive MX1 1.29x10-2, Tem (Th1) 5.82 x 10-11, 551 

Temra (Th1) 4.84x10-22, Treg Naive 2.14 x 10-13, Treg Act 2.14 x 10-13, Treg Eff 3.82 x 10-5 (Two-sided Mann-Whitney's 552 

U-test was performed for one cluster vs. the other clusters iteratively). 553 

Figure 2 NMF captured 12 CD4+ T cell features  554 

(A) Schematic view of NMF and NMF projection. 555 

(B) Matrixplot showing the mean scaled NMF feature weight for each cluster L2 population. The explained variance 556 

(Evar) is also shown on the right. The NMF feature weight is scaled by the maximum value for each feature for 557 

visualization. 558 

(C) NMF cell feature value on UMAP plots. 559 

(D) Gene features for each component. The top 10 genes for each feature were selected. 560 

The 12 gene features are annotated using top genes and previous reports as NMF0 Cytotoxic-Feature (F), NMF1 Treg-F, 561 

NMF2 Th17-F, NMF3 Naive-F, NMF4 Activation-F (Act-F), NMF5 TregEff/Th2-F, NMF6 Tfh-F, NMF7 IFN-F, NMF8 562 

Central Memory-F, NMF9 Thymic emigrant-F, NMF10 Tissue-F, NMF11 Th1-F. 563 

Figure 3 Pan-autoimmune meta-analysis of peripheral CD4+ T cells 564 

(A) Strategy for meta-analysis of peripheral CD4+ T cells across diseases. First, CD4+ T cells were extracted from PBMC 565 

scRNA-seq datasets using Azimuth 58. Extracted CD4+ T cells were mapped on our reference using Symphony 14 with a 566 

batch correction. Mapped cells were used to assess cell frequency and NMF cell features for each cluster. 567 

(B) Bar plots showing the number of samples (left) and the number of CD4+ T cells (right) enrolled in the meta-analysis. 568 

The dashed line in the left plot indicates a sample size of 10. 569 
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(C) Dot plot showing changes in cell frequency at cluster L2 resolution. Dot colors show coefficients, and sizes show the 570 

significance of the Generalized Linear Model (Methods). Detailed statistics can be found in Table S8. Only significant 571 

dots (padj < 0.05) are shown. 572 

(D-F) PCA plots of samples based on cell frequencies. Sample distributions for each disease state (D), loading vectors for 573 

each cell type (E), and sample characteristics in healthy donors (F) are shown.  574 

(G) Chord diagram showing the top 100 significant associations with positive coefficients between NMF features and 575 

cells in each condition, calculated by GLM (Methods). Detailed statistics are shown in Table S9. The thickness of edges 576 

indicates the coefficient of GLM, and colors indicate conditions such as diseases, gender, and age. 577 

(H) Strategy for predicting autoimmune states from CD4+ T cell profiles using machine learning framework. As the input 578 

parameters, one model took only cell frequency, age, and gender (without NMFproj), while the other took cell frequency, 579 

NMF cell features in Tcm (Th0) and Tnaive, age, and gender (with NMFproj). 580 

(I) Receiver operating characteristic (ROC) curves of logistic regression models trained by cell frequencies (top left), by 581 

NMFproj values in Tnaive and Tcm (Th0) (top right), and both cell frequencies and NMFproj values (bottom). SLE, 582 

COVID-19, and SLE patients were trained on 159, 116, and 35 patients with the same number of healthy subjects, and 583 

evaluated on 40, 89, and 17 patients and the same number of healthy subjects from independent data sets. Numbers in 584 

parentheses indicate the area under the curve (AUC). 585 

Figure 4 Partitioned heritability of autoimmune diseases by CD4+ T cell features 586 

(A) Bar plot showing maximum -log10(q_Escore) among NMF gene features. Partitioned heritability was measured using 587 

the sclinker framework. Enrichment of each category is the following, Autoimmune diseases: p=8.51 x 10-12, 588 

inflammatory traits: p=0.131, and blood cell count: p=7.59 x 10-8 (Two-sided Mann-Whitney's U-test). 589 

(B) Dot plot showing enrichment of partitioned heritability of autoimmune diseases across NMF gene features. The 590 

dashed boxes indicate the factor with the highest Escore for each disease. Duplicated traits were removed for the 591 

visualization. Full statistics are shown in Table S11.  592 

Figure 5 Relationship between genetic factors and phenotypic changes in CD4+ T cells 593 

(A) Model of genetic effect on phenotypic changes in CD4+ T cells. CD4+ T cell changes are observed as qualitative 594 

(NMFproj cell features) and quantitative (cell-type frequencies) changes.  595 

(B) Scatter plot showing the genetic effect on cell frequencies (x-axis) and NMF features (y-axis). Sclinker weight per 596 

cell was calculated by dot products of sclinker outcome (NMF) and NMF cell features. For cell frequencies and NMF 597 

cell features, coefficients of GLM output for each cluster L2 population were used. Spearman’s correlation of sclinker 598 
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weight and cell frequency / NMF cell feature changes were calculated. For the correlation with sclinker and NMF cell 599 

feature changes, we used the maximum R among NMF features for the visualization. COVID19-A : Very severe 600 

respiratory symptom, COVID19-B : Hospitalized, COVID19-C: SARS-CoV-2 infection. 601 

(C) Individual sclinker weights, cell frequency changes (Coef. for each cluster L2), and NMF cell feature changes in the 602 

factor with the highest Escore (Coef. for each cluster L2) of MS, MG, and SLE were visualized on the UMAP 603 

embeddings (left panel). For the coefficient of the NMF cell feature changes, only one representative factor with the 604 

highest Escore for each disease was shown. The bar plot of Spearman’s correlation of cell frequency and NMFproj 605 

changes with partitioned heritability is shown in the right panel. The colors of the bar,s except for cell frequency, indicate 606 

Escores calculated using sclinker.  607 

608 
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Supplementary Figure Legends 609 

Figure S1. Global characterization of CD4+ T cells 610 

(A) UMAP plots depicting gene expressions of marker genes. 611 

(B) Sankey diagrams showing cluster assignment of cells in clusters L1 and L2. 612 

(C) Dot plot depicting signature genes' mean expression levels and percentage of cells expressing them across clusters. 613 

Marker genes for the plot were calculated by pairwise comparison with a group and the other groups iteratively using 614 

scanpy.tl.rank_genes_groups function. 615 

(D) Density plot of cell distributions for cluster L2 populations. 616 

(E) Dot plot depicting Tph and Tfh marker genes' mean expression levels and percentage of cells expressing them in Tcm 617 

(Tfh) and Tem (Tph). 618 

(F) Pearson's correlation of transcriptome profiles between sorted T cell fractions, including Tph (SDY939) and our 619 

scRNA-seq (cluster L2). 620 

(G) Density plot of cell distributions for each disease. 621 

Figure S2. Centralities of TCR networks vary depending on the diseases 622 

(A) Degree centrality of TCR networks for cluster L2. The average of each disease was shown.  623 

(B) Individual value of degree centrality of TCR networks. 624 

(C) Distribution of mean TiRP scores across Treg clusters. Pairwise Tukey-HSD posthoc tests. The multiple test 625 

correction was performed using a two-stage FDR strategy. *: padj < 0.05, **: padj < 0.01, ***: padj < 0.001. 626 

(D) Changes in TiRP scores in Treg clusters associated with disease states, age, and sex. The estimated coefficients and 627 

the 95 percentiles by multiple linear regression were plotted. 628 

Figure S3. NMF and NMF projection  629 

(A) The statistics for the determination of the number of components. The Y-axis shows explained variance (upper) and 630 

maximum correlation of the inter-component (lower). The X-axis shows the number of components. Spearman's 631 

correlation between components of gene features was calculated. 632 

(B) Reactome pathways enriched in each gene feature. The dot size indicates the gene ratio or the fraction of genes found 633 

in the gene set, and the color indicates padj. 634 
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(C) Histogram of POH under the null hypothesis for this study setting. We randomly sampled 5000 POH in the null 635 

hypothesis calculated from the overlap between random 500 (number of HVGs for the calculation of POH) genes and 636 

1271 (number of HVGs of CD4+ T cell) genes. Red dashed lines show 2.5 and 97.5 percentiles. 637 

(D) Heatmap showing NMF values of DICE bulk RNA-seq datasets of sorted CD4+ T cell fractions. Explained variance 638 

(Evar) was also shown on the right side. 639 

(E) Heatmap showing NMF values of sorted CD4+ T cell fractions by Miyara's classification (JGAD000214). Explained 640 

variance (Evar) was also shown on the right side. 641 

(F) Heatmap showing NMF values of sorted Tph fractions (SDY939). Explained variance (Evar) was also shown on the 642 

right side. 643 

(G) Heatmap showing NMF values of iTreg cells cultured in different conditions (DRA008294). Explained variance 644 

(Evar) was also shown on the right side. 645 

Figure S4. NMFproj applications in tumor-infiltrating T cells and mouse splenocytes  646 

(A and B) UMAP plots showing original cell types (left) and projected NMF cell feature values (right) in pan-cancer 647 

tumor-infiltrating T cells scRNA-seq data (GSE156728) (A) and mouse splenic CD4+ T cells (SCP490) (B). 648 

Figure S5. NMFproj contributes to interpreting cross-tissue T cells 649 

(A) Projected NMF cell feature value of cross-tissue T cells scRNA-seq datasets on the UMAP plots. The T & innate 650 

lymphoid cells dataset was used for the analysis (https://www.tissueimmunecellatlas.org/). 651 

(B and C) Original cell types (B) and the expression of CD4 and CD8A (C) were shown on the UMAP plots. 652 

(D and E) Distribution of POH (D) and Evar (E) in each tissue. THY: Thymus, BLD: Blood, BMA: Bone marrow, MLN: 653 

Mesenchymal lymph nodes, LLN: Lung-draining lymph nodes, SPL: Spleen, SKM: Skeletal muscle, LNG: Lung, LIV: 654 

Liver, OME: Omentum, TCL: Transverse colon, SCL: Sigmoid colon, DUO: Duodenum, CAE: Caecum, ILE: Ileum, 655 

JEJLP: Jejunum lamina propria, JEJEPI: Jejunum epithelial. The dashed line indicates the 97.5 percentile of simulated 656 

null distribution (Fig. S3C). 657 

(F and G) Distribution of POH (F) and Evar (G) in each cell type. B and Myeloid cells were also added to the analysis. 658 

The dashed line indicates the 97.5 percentile of simulated null distribution (Fig. S3C). 659 

Figure S6. NMFproj reveals disease-specific qualitative changes 660 

(A) Heatmap showing NMF values of sorted CD4+ T cell fractions collected from autoimmune patients (E-GEAD-397). 661 

Explained variance (Evar) was also shown on the right side. 662 
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(B) Dot plot depicting NMF cell feature changes in each cell type in E-GEAD-397. Dot colors show coefficients, and 663 

sizes show the significance of GLM. GLM was performed with a model, cell frequency, or NMF cell feature ~ disease + 664 

age + gender. IIM: idiopathic inflammatory myopathy, MCTD: mixed connective tissue disease, RA: rheumatoid arthritis, 665 

SLE: systemic lupus erythematosus, SSc: systemic sclerosis, TAK: Takayasu arteritis. 666 

Figure S7. Quantitative alterations revealed by meta-analysis  667 

(A) Swarm plot showing frequencies of cell types in each sample. 668 

(B) Dot plot showing changes in cell frequency at cluster L1 resolution. Dot colors show coefficients, and sizes show the 669 

significance of the Generalized Linear Model (Methods). Detailed statistics can be found in Table S7. Only significant 670 

dots (padj < 0.05) are shown. 671 

(C) Cell frequencies of each population are shown on the PCA plots. 672 

(D) Distribution of samples for each disease. 673 

Figure S8. Alterations in CD4+ T cells revealed by meta-analysis 674 

(A) Chord diagram showing the top 100 significant associations with negative coefficients between NMF features and 675 

cells in each condition, calculated by GLM (Methods). Detailed statistics are shown in Table S9. The thickness of edges 676 

indicates the absolute value of the coefficient of GLM, and colors indicate conditions such as diseases, gender, and age. 677 

(B) Strategy for multiclass classification by machine learning. The training was performed with cross-validation. The 678 

evaluation was performed using the independent dataset of training datasets. 679 

(C) Evaluations of models trained by cell frequencies (upper panel), by NMFproj values in Tnaive and Tcm (Th0) 680 

(middle panel), and by both cell frequencies and NMFproj values (lower panel). The confusion matrix (left) and PR-681 

AUC (right) are shown. The dashed lines in the PR-AUC plot show the expected PR-AUC scores in random models. The 682 

number of samples used for the training is 263, 27, 62, 11, 43, 20, 156, 116, 11 subjects for HC, sarcoidosis, psoriasis, 683 

celiac disease, MS, RA, SLE, COVID-19, and T1D, and evaluated on 89, 43, 43, and 9 subjects from independent data 684 

sets. 685 

Figure S9. NMF cell feature changes depending on diseases 686 

Dot plots depicting NMF cell feature changes in each cell type. Dot colors show coefficients, and sizes show the 687 

significance of GLM. GLM was performed with a model, NMF cell feature ~ disease + age + gender + project. Only 688 

significant dots (padj < 0.05) are shown. 689 

Figure S10. Partitioned heritability 690 
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(A and B) Dot plots showing partitioned heritability of diseases across NMF gene features (A) or cell types 691 

(B). Duplicated traits were removed for the visualization. Full statistics are shown in Tables S11 and 12.  692 
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Supplementary Note - The applications of NMFproj - 968 

Miyara classification (bulk RNA-seq) 969 

We utilized NMFproj to bulk RNA-seq data of sorted peripheral CD4+ T cells for each fraction in the Miyara 970 

classification 30, which classifies CD4+ T cells by CD25 and CD45RA (Figure S3E, POH: 0.542). Consistent with 971 

previous findings 30, Fr. I and Fr. II exhibited high NMF1 (Treg-F), while Fr. V and Fr. IV showed low NMF1 (Treg-F). 972 

Similarly, NMF3 (Naive-F) was found to be high in Fr. I and Fr. VI, and low in Fr. II and Fr. V, which also aligns with 973 

existing knowledge. Furthermore, Fr. III has been reported to possess weak suppressive activity and a Th17-like 974 

phenotype 30, and this was concordant with our observation that NMF1 (Treg-F) was lower in Fr. III compared to Fr. I 975 

and Fr. II, and NMF2 (Th17-F) was higher. 976 

Tph cells (bulk RNA-seq) 977 

Profiling of sorted Tph cells also revealed that Tph is a population with both Tfhness (NMF6) and Th1ness (NMF11) 978 

(Figure S3F, POH: 0.134).  979 

iTreg cells (bulk RNA-seq) 980 

When we applied NMFproj to in vitro induced Tregs (iTregs) 31, NMF1 (Treg-F) was higher in nTreg cells than iTreg 981 

cells (Figure S3G). iTreg cells made in conditions to stabilize Treg function with CD28 depletion and two times resting 982 

showed higher NMF1 (Treg-F) than other iTreg cells concordantly with the experimentally measured suppressive 983 

functions. This suggests that NMFproj can be used for the evaluation of Tregness in a genome-wide manner rather than 984 

the tracing of single or a few genes, as performed in most studies, as well as monitoring of unwanted polarization.  985 

Pan-cancer CD4+ T cells (scRNA-seq) 986 

We analyzed scRNA-seq of the pan-cancer CD4+ T cell dataset 15 by utilizing NMFproj (Figure S4A; POH: 0.53). The 987 

12 factors were also conserved in the tumor microenvironments. Most Treg cells possessed high NMF5 (TregEff/Th2-F), 988 

indicating Treg activation in tumor environments. NMF10 (Tissue-F) was broadly high in tumor CD4+ T cells. 989 

Mouse splenocytes (scRNA-seq) 990 

Single-cell data from mouse splenocytes 33 were analyzed to confirm whether cross-species projection was possible. We 991 

found that NMFproj could capture not only relatively large populations of Treg and Tfh but also small populations such 992 

as Th17 and Th2, which were not indicated in the original paper (Figure S4B, POH: 0.394). This result indicates that 993 

cross-species projection is also possible and, moreover, that NMFproj is informative even for single-cell data with a 994 

small number of cells.  995 
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Cross-tissue immune cells (scRNA-seq) 996 

We reanalyzed the single-cell cross-tissue dataset 32 to investigate how the gene features created using peripheral blood 997 

would behave in organs (Figure S5). The projected cell features were concordant with the defined cell population, except 998 

for the absence of cytotoxic CD4+ Temra. Then, we noticed that the cytotoxic CD4+ Temra was incorrectly defined as a 999 

CD8+ T population and part of CD8+ T as CD4+ T in the original report. We had similar experiences where CD4+ T cells 1000 

and CD8+ T cells were not well separated and embedded as a mixed cluster in single-cell analysis. We hypothesized that 1001 

CD4+ T and CD8+ T use similar genetic programs, examined the POH of each cell type, and found that, surprisingly, 1002 

CD8+ T cells, innate T cells, and even B cells and myeloid cells marked relatively high POH. When Evar was examined, 1003 

CD8+ T cells and innate T cells were found to preferentially use NMF0 (cytotoxic-F), while B cells and Myeloid cells 1004 

used NMF5 (TregEff/Th2-F). These observations suggested that gene programs were evolutionally developed and 1005 

conserved across cell populations. Examination of POH in CD4+ T cells by tissue showed that POH was high in 1006 

peripheral blood and secondary lymphoid tissues, while POH was low in tissues such as the liver and muscle, suggesting 1007 

that the gene features defined using peripheral CD4+ T cells do not fully represent the tissue response. In addition, the 1008 

Evar of TregEff/Th2-F, Th17-F, and Th1-F were found to be high in tissues, suggesting that polarization is a prominent 1009 

event in tissues.  1010 

Sorted CD4+ T cell fractions from autoimmune patients (bulk RNA-seq) 1011 

NMFproj was adapted to the ImmuNexUT dataset 35, which contains sorted CD4+ T cell fractions across autoimmune 1012 

diseases to capture qualitative changes in each CD4+ T cell population (Figure S6 POH: 0.586). The most prominent 1013 

variation is NMF7 (IFN-F), which is elevated across cell types in SLE and MCTD. Also, Tregness (NMF1) decreased in 1014 

SLE in naive Treg, indicating Treg dysfunction in SLE patients. 1015 
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Figure 2
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Figure 4
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Figure 5
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Sup Figure 3
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Sup Figure 4
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Sup Figure 5
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Sup Figure 6
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Sup Figure 10

A

B

UKB460K Asthma

UKB460K Eczema

Child Onset Asthma (Ferreira2019)

Adult Onset Asthma (Ferreira2019)

N
M

F0
 C

yt
ot

ox
ic

−F
N

M
F1

 T
re

g−
F

N
M

F2
 T

h1
7−

F
N

M
F3

 N
ai

ve
−F

N
M

F4
 A

ct
−F

N
M

F5
 T

re
gE

ff/
Th

2−
F

N
M

F6
 T

fh
−F

N
M

F7
 IF

N
−F

N
M

F8
 C

en
t. 

M
em

.−
F

N
M

F9
 T

hy
m

ic
 E

m
i.−

F
N

M
F1

0 
Ti

ss
ue

−F
N

M
F1

1 
Th

1−
F

−log10(qEscore)

0

1

2

3

4

0

2

4

6

Escore

UKB460K Monocyte Count
UKB460K Mean Sphered Cell Vol

UKB460K Mean Corpuscular Hemoglobin
UKB460K Platlet Distrib Width

UKB460K Mean Platelet Vol
UKB460K Platelet Count

UKB460K High Light Scatter Reticulocyte Count
UKB460K WBC Count

UKB460K RBC  Distrib Width
UKB460K Lymphocyte Count

UKB460K Eosinophil Count
UKB460K RBC Count

N
M

F0
 C

yt
ot

ox
ic

−F
N

M
F1

 T
re

g−
F

N
M

F2
 T

h1
7−

F
N

M
F3

 N
ai

ve
−F

N
M

F4
 A

ct
−F

N
M

F5
 T

re
gE

ff/
Th

2−
F

N
M

F6
 T

fh
−F

N
M

F7
 IF

N
−F

N
M

F8
 C

en
t. 

M
em

.−
F

N
M

F9
 T

hy
m

ic
 E

m
i.−

F
N

M
F1

0 
Ti

ss
ue

−F
N

M
F1

1 
Th

1−
F

0

3

6

9

Escore

−log10(qEscore)

0

2

4

6

COVID19-C (Infection)

COVID19-B (Hospitalized)

COVID19-A (Very severe)

N
M

F0
 C

yt
ot

ox
ic

−F
N

M
F1

 T
re

g−
F

N
M

F2
 T

h1
7−

F
N

M
F3

 N
ai

ve
−F

N
M

F4
 A

ct
−F

N
M

F5
 T

re
gE

ff/
Th

2−
F

N
M

F6
 T

fh
−F

N
M

F7
 IF

N
−F

N
M

F8
 C

en
t. 

M
em

.−
F

N
M

F9
 T

hy
m

ic
 E

m
i.−

F
N

M
F1

0 
Ti

ss
ue

−F
N

M
F1

1 
Th

1−
F

0

10

20

30

Escore

−log10(qEscore)

0.0

0.1

0.2

0.3

UKB460K Autoimmune Diseases ALL
 Rheumatoid Arthritis

UC (deLange2017)
Type 1 Diabetes

IBD (deLange2017)
UKB460K Psoriasis

Primary Biliary Cirrhosis
Myasthenia Gravis

Multiple sclerosis
CD (deLange2017)

UKB460K Hypothyroidism (Self Rep)
Celiac
Lupus

Tn
ai

ve
Tn

ai
ve

 M
X

1
Tn

ai
ve

 A
ct

Tn
ai

ve
 S

O
X

4
Tc

m
 (T

h0
)

Tc
m

 (T
fh

)
Tc

m
 (T

h0
) A

ct
Tc

m
 (T

h1
7)

Tc
m

 (T
h2

)
Tc

m
 P

H
LD

A
3

Te
m

 (T
h1

)
Te

m
 (T

ph
)

Te
m

 (T
h1

) p
re

Te
m

 (T
h1

/1
7)

Te
m

ra
 (T

h1
)

Tr
eg

 N
ai

ve
Tr

eg
 A

ct
Tr

eg
 E

ff

−log10(qEscore)

2

4

6

8

0

10

20

30

Escore

UKB460K Lymphocyte Count
UKB460K Platelet Distrib Width

UKB460K Platelet Count
UKB460K Mean Platelet Vol

UKB460K RBC Count
UKB460K  RBC Distrib Width

UKB460K Mean Sphered Cell Vol
UKB460K Mean Corpuscular Hemoglobin

UKB460K WBC Count
UKB460K Monocyte Count

UKB460K High Light Scatter Reticulocyte Count
UKB460K Eosinophil Count

Tn
ai

ve
Tn

ai
ve

 M
X

1
Tn

ai
ve

 A
ct

Tn
ai

ve
 S

O
X

4
Tc

m
 (T

h0
)

Tc
m

 (T
fh

)
Tc

m
 (T

h0
) A

ct
Tc

m
 (T

h1
7)

Tc
m

 (T
h2

)
Tc

m
 P

H
LD

A
3

Te
m

 (T
h1

)
Te

m
 (T

ph
)

Te
m

 (T
h1

) p
re

Te
m

 (T
h1

/1
7)

Te
m

ra
 (T

h1
)

Tr
eg

 N
ai

ve
Tr

eg
 A

ct
Tr

eg
 E

ff

0

2

4

6

Escore

−log10(qEscore)

0

2

4

6

COVID19-C (Infection)

COVID19-B (Hospitalized)

COVID19-A (Very severe)

Tn
ai

ve
Tn

ai
ve

 M
X

1
Tn

ai
ve

 A
ct

Tn
ai

ve
 S

O
X

4
Tc

m
 (T

h0
)

Tc
m

 (T
fh

)
Tc

m
 (T

h0
) A

ct
Tc

m
 (T

h1
7)

Tc
m

 (T
h2

)
Tc

m
 P

H
LD

A
3

Te
m

 (T
h1

)
Te

m
 (T

ph
)

Te
m

 (T
h1

) p
re

Te
m

 (T
h1

/1
7)

Te
m

ra
 (T

h1
)

Tr
eg

 N
ai

ve
Tr

eg
 A

ct
Tr

eg
 E

ff

−log10(qEscore)

0.0

0.1

0.2

0.3

0.4

0.0

2.5

5.0

7.5

10.0

Escore

UKB460K Eczema

UKB460K Asthma

Child Onset Asthma (Ferreira2019)

Adult Onset Asthma (Ferreira2019)

Tn
ai

ve
Tn

ai
ve

 M
X

1
Tn

ai
ve

 A
ct

Tn
ai

ve
 S

O
X

4
Tc

m
 (T

h0
)

Tc
m

 (T
fh

)
Tc

m
 (T

h0
) A

ct
Tc

m
 (T

h1
7)

Tc
m

 (T
h2

)
Tc

m
 P

H
LD

A
3

Te
m

 (T
h1

)
Te

m
 (T

ph
)

Te
m

 (T
h1

) p
re

Te
m

 (T
h1

/1
7)

Te
m

ra
 (T

h1
)

Tr
eg

 N
ai

ve
Tr

eg
 A

ct
Tr

eg
 E

ff

0

1

2

3

4

5

Escore

−log10(qEscore)

0

1

2

3

4

COVID-19

COVID-19

Autoimmune

Inflammatory disease

lnflammatory disease

Blood

Blood

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.540089doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.09.540089
http://creativecommons.org/licenses/by-nc-nd/4.0/

