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34 Abstract

35 CD4" T cellsare a key mediator of various autoimmune diseases; however, how they contribute to disease development
36 remains obscure primarily because of their cellular heterogeneity. Here, we evaluated CD4" T cell subpopulations by

37 decomposition-based transcriptome characterization together with canonical clustering strategies. This approach

38 identified 12 independent transcriptional gene programs governing whole CD4" T cell heterogeneity, which can explain
39  theambiguity of canonical clustering. In addition, we performed a meta-analysis using public single-cell data sets of over
40 1.8M peripheral CD4" T cells from 953 individuals by projecting cells onto the reference and cataloged cell frequency
41 and qualitative alterations of the populationsin 20 diseases. The analyses revealed that the 12 transcriptional programs
42 were useful in characterizing each autoimmune disease and predicting its clinical status. Moreover, genetic variants

43  associated with autoimmune diseases showed disease-specific enrichment within the 12 gene programs. The results

44  collectively provide alandscape of single-cell transcriptomes of CD4" T cell subpopulations involved in autoimmune

45 disease.
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48  Introduction

49 Numerous studies have shown that CD4" T cells contribute to autoimmune diseases 2, which affect 3-5% of the

50  population and are multifactorial and polygenic %, CD4" T cells exhibit a variety of states (e.g., naive, memory),

51 polarizations (e.g., Thl, Th2, Thi7, T follicular helper (Tfh)), and also include a distinct subpopulation engaged in the
52 maintenance of self-tolerance and homeostasis (regulatory T cells (Tregs)) *°. While agreat deal of effort has been

53  devoted to the detailed classification of CD4" T cells, the complete picture of heterogeneity and its relationship to

54  diseasesisstill controversal. Furthermore, making consistent assessments across reports is challenging since these

55 reports were based on incong stent cellular classifications.
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56 The recent emergence of single-cell analysis has greatly contributed to the elucidation of cellular diversities through

57  unbiased profiling . In addition, single-cell RNA-seq (ScRNA-seq) is suitable for robust cross-dataset data integration,
58  allowing large-scale investigations ***°. On the other hand, conventional clustering and marker gene detection strategies
59  for single-cell analysis possess the following weaknesses: 1. Cell fraction definition requires arbitrary boundaries; 2.

60 Marker genes for clusters can be occupied by redundant genes or uninterpretable genes, such as long noncoding or

61 ribosomal genes, due to the influence of larger cell population structures; 3. Pairwise differentially expressed gene

62  detection cannot capture global gene variation across multiple clusters. Though some studies have attempted to tackle

63  theseissues'®Y, these difficulties have still hindered the interpretations of complex and poorly demarcated cell

64  populations.

65 Here, we congtructed a consensus reference for CD4" T cellsin peripheral blood from autoimmune and healthy

66  individualscovering various inflammatory conditions. The reference consists of 18 cell types defined by a conventiona
67  clustering strategy and 12 transcriptomic gene programs extracted by conducting decomposition using non-negative

68 matrix factorization (NMF) *® without boundaries, which overcame the weakness of existing single-cell analyses. The

69 results showed that diverse CD4* T cell features were formed by a combination of 12 independent gene programs. We
70  asoillustrated that the gene features obtained by NMF could be projected to other bulk / single-cell RNA-seq data to

71 help interpret various datasets. Using these frameworks to examine the genetic contribution and subsequent changes of
72 CD4" T cellsin autoimmunity, we performed a meta-analysis that enrolled over 1.8 million CD4* T cells using published
73 single-cell data of 20 diseases and integrated genome-wide association study (GWAYS) statistics for 180 traits with our

74  dataset. These analyses provided afull picture of CD4" T cells in autoimmune diseases from the perspective of

75 phenotypes and genetics.

76  Results

77 Single-cell profiling of peripheral CD4" T cellsfrom healthy and autoimmune donor s

78 To characterize CD4" T cells in various autoimmune properties, we performed single-cell RNA-seq and T cell receptor
79 (TCR)-seq using droplet-based single-cell isolation technology and profiled CD4" T cells, which were collected from

80  three healthy donors, three myasthenia gravis (MG) patients, four multiple sclerosis (MS) patients, and three systemic

81 lupus erythematosus (SLE) patients (Figure 1A; Table S1). After quality control (QC), 103,153 cells were retained and
82 used for the downstream analyses. As the primary layer of clustering (cluster L1), we identified a dynamic differentiation

83  from anaive state via an effector state to aterminally differentiated state. In cluster L1, CD4" naive T cells (Tnaive;

84  CCR7' FAS), CD4" central memory T cells (Tcm; CCR7* FAS'), CD4" effector memory T cells (Tem; CCR7 FAS'),
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85 and CD4" terminally differentiated effector memory T cells (Temra; FAS" CD28-) were observed with distinct gene

86  expression patterns (Figures 1B,D, S1A; Table S2). Tregs were also observed as a distinct cluster with the expression of
87 the master regulator FOXP3. Next, we further divided the cellsinto 18 clusters as the secondary layer, cluster L2

88 (Figures 1C, S1B-D; Table S3). For example, we broke down cluster L1 cellsinto several T cell subclusters according to
89  well-known transcription factors and chemokine receptors such as Tcm cellsinto Tfh (Tfh; CXCR5, PDCD1), Th2

90  (GATA3, CCR4), Th17 (RORC, CCRS6); Tem cellsinto Th1/17 (TBX21/Tbet, RORC), Thl (TBX21/Tbet); Temracells
91 into Thl (Figures 1C,D, S1A-D). Treg cells were divided into three clusters; Treg Naive (CCR7), Treg Activated (1D2),
92 and Treg Effector (CCR4) (Figures 1C,D, S1A-D). In addition, several minor clusters were found, such as Tnaive MX1,
93  which preferentially expresses interferon signature genes (Figures 1C,D, S1A,C,D). Transcriptome profiles of each

94  cluster were concordant with bulk RNA-seq data from sorted CD4" T cell fractions provided by the DICE consortium *°
95 (Figure 1E). We found a CXCR5 PDCD1" cluster occupying 1% in CD4" T cells whose marker genes corresponded to
96  the canonical marker for T peripheral helper (Tph) cells*>*2 in Tem (Figures S1A,E). The population was annotated as
97  circulating Tph, although a few cells with the expression CXCR5 PDCD1* were also observed in broader populations,

98  suchasTcm and Temra, (Figures S1A,C,F). Overall, we identified cell populations of peripheral CD4" T cells from

99 healthy and autoi mmune states using sSCRNA-seq.

100 TCRfeaturesacross CD4" T cellsreflect cellular properties

101 Because TCR responses shape T-cell functions and differentiation, TCR diversities and overlaps provide useful

102 information for the properties and relationships of populations. Therefore, we analyzed single-cell TCR features

103 segquenced along with gene expression. Clonotype sizes and diversity across cluster L1 populations reveaed that Temra
104  wasmost clonally expanded, followed by Tem, Tcm, Treg, and Tnaive (Figures 1F,G). Similarly, in cluster L2

105 populations, Temra (Thl), Tem (Thl), and Tem (Th1/17) possessed alimited number of clonotypes, whereas Tnaive and
106 Treg Naive maintained diverse clonotype pools (Figure 1H). TCR similarity network showed repertoire sharing between
107 neighboring clusters, Tnaive and Tcm, Tcm and Tem, Tem and Temra, while the distal connection, such as from Tnaive
108  to Temrawas not observed, suggesting stepwi se development from Tnaive to Tcm, Tem, and Temra (Figures 11,J). The
109 repertoires were also mutually shared within Tem cell populations, suggesting the plasticity of T cell polarization against
110 the same epitopes. In addition, Treg Naive and naive conventional T cells (Tconvs) didn’t share repertories, whereas

111 Treg Act and Treg Eff shared repertoires with Tcm populations. We also measured the centrality of TCR networks for
112 each cdll type to evaluate the differentiation potential of each cluster. The centrality of Tcm (ThQ), Tem (Thl) pre, and

113 Tnaive were consigtently high, suggesting that these cells possess the possibility to differentiate into avariety of cell
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types (Figure S2A). In addition, TCR networks differed depending on the disease states (Figure 11). Especially the
centrality of Tecm (Tfh) and Treg Act were higher in SLE (Figures 1K, S2B). These resultsindicated that the kinetics of

CD4" T cell differentiation varied depending on the disease state.

Previous studies have shown that T cells with stronger TCR stimulation within the thymus are more likely to
differentiate into Tregs than Tconvs . Therefore, Tregs have specific TCR properties, such as hydrophobicity in
complementary determining region 3 (CDR3) regions . We measured the Tregness of TCRp chains (TCR-intrinsic
regulatory potential, TiRP score 2%) and found that the mean TiRP score was higher in Treg cells compared with Tconv
cells (Figures 1L,M). On the contrary, Tem (Th1) showed a low TiRP score indicating that Tem (Th1) has experienced
the stimulation with non-self antigens. Among Treg cells, Treg Naive and Treg Act showed higher TiRP scores than Treg
Eff. It has been thought that naive Tregs contain predominantly thymic differentiated Tregs (tTregs), while effector Tregs
are compensated by peripherally differentiated Tregs in addition to tTregs %. This notion was concordant with our
observations that naive Tregs had the strongest Treg characteristics in the TCRs and that Treg Act and Eff shared TCRs
with Tconvs (Figures 11,3, S2C). Furthermore, in M S patients, the TiRP scores of the Treg Act were significantly low,
reflecting disease-dependent Treg compensation by Tconvs (Figure S2D). Overall, TCR repertoires provided valuable

insightsinto T cell characteristicsand relationships during the differentiation.

Decomposition of cellular programs using NMF

Next, we attempted to identify cellular programs within and across cell types. We noticed that conventional clustering
and marker gene detections could fail to capture meaningful clusters and genes. For example, differentially expressed
genes in our reference included overlapping genes among Th1 cell populations and nonsense genesin Tnaive cells,
suggesting the conventional marker gene detection isinsufficient for CD4* T cells (Figure S1C). We suspected that
artificially delineating in the clustering process is unsuitable for a gradual population such as CD4* T cells. In addition,
because marker gene detections are performed by pairwise comparison, global representations across cell types cannot be
detected. To overcome these limitations, we applied non-negative matrix factorization (NMF) *® to normalized gene
expression of our scRNA-seq data and unbiasedly dissected gene expression profilesinto a gene feature matrix W and a
cell feature matrix H (Figure 2A). To determine the number of components, we assessed the explained variances and
maximum inter-component correlations and selected 12 for the number of components as they kept sufficient information
and were not redundant (Figure S3A; methods). Based on the gene feature profiles and the enriched pathways, we
annotated the NMF components (Figures 2B-D, S3B; Table $4,5). Several factors were related to T-cell polarization,

such as Treg-Feature (Treg-F, NMFL1; genes with high weights; IKZF2, FOXP3), Th17-F (NMF 2; RORC, CCR6),
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143 TregEff/Th2-F (NMF5; HLA class || genes, CCR10, CCR4), Tfh-F (NMF6; TIGI T, CXCR5), Th1-F (NMF11; GZMK,
144  EOMES, CXCR3), and differentiations such as Naive-F (NMF3; CCR7, TCF7), Central Memory-F (NMF8; SL00AS,

145  ANXAL), and Cytotoxic-F (NMFO; GZMB, NKG7). NMF5 was enriched in both Th2 and Treg Eff, suggesting that

146 effector Treg cells and Th2 cells may be controlled by the shared program as previously suggested ¢ (Figure 2B). NMF6
147 (Tfh-F) also demonstrated moderate activity in Treg Act, suggesting an overlap between Treg Act and T-follicular

148 regulatory (Tfr) cells ¥ (Figure 2B). NMF11"9" cells were enriched in Tem (Tph), Tem (Th1), and Tem (Th1/17) cells
149 showing a wide range of Thlness gene usage across these subtypes. Moreover, NMF7 was atype | interferon signature
150 gene component enriched in Tnaive MX1 (Figures 1C, S3B). Intriguingly, NMF10 captured a global feature across cell
1561  typesconsisting of AP-1 family genes (JUNB, FOS), NFKBIA, CD69, and CXCR4 (Figure 2D). This feature was

152 concordant with tissue-homing T-cells observed in the thymoma of MG patients * and the central nervous system of

153 neurodegenerative disease patients 2, and was |abeled as Tissue-F. NMF4 (Act-F) was related to IL7R signaling, which
154  isanessential survival and differentiation signal %°. The proportion of explained variance (Evar) showed the most drastic
155 variationsin the peripheral CD4" T cells were differentiation from Tnaive to Tcm, Tem, and Temra, and the polarizations
156 wererelatively smaller changes and independent of the differentiation programs (Figure 2B). Altogether, NMF

157 succeeded in the decomposition of peripheral CD4" T cell gene programsinto 12 components and showed that complex

158  CD4" T cell populations were represented by a simple combination of the 12 components.

159 NMF projection enablesfast inter pretation of various CD4" T transcriptome datasets
160 One of the biggest challengesin single-cell analysisis theintegration of datasets. To achieve a simple integration, we
161 expanded the NMF framework to allow the projection of the pre-computed gene feature matrix onto other datasets by

162 developing a bioinformatics tool, NMFproj (Figure 2A, https://github.com/yyoshiaki/NM Fprojection). To measure how

163 the NMF features explain the variance of the query dataset, we introduced a QC metric named the proportion of

164  overlapped highly variable genes (POH) (Figure S3C). A low POH indicates that the query data set has much variability
165  other than the NMF features evaluated by NMFproj. We applied NMFproj to various datasets to validate the scal ability
166  (Supplementary Note). Analysis of bulk RNA-seq of sorted peripheral CD4" T cells provided by the DICE project *°
167  demonstrated that each fraction was well represented by the 12 NMF gene features (POH: 0.272, Figure S3D). Miyara
168  classification *, which classified CD4" T cellsinto Fr. | to Fr. VI by the expression of CD45RA and CD25, was re-

169  evaluated by NMFproj and showed that Fr. 111 (CD45RA” CD25"™) has Th17 type characteristicsin line with the original
170 report ** (POH: 0.542, Figure S3E, Supplementary Note). In addition, profiling of circulating Tph cells ® revealed that
171 Tph cells possessed both NMF6 (Tfh-F) and NMF11 (Th1-F) in concordance with Tem (Tph) we defined as cluster L2

172 (POH: 0.134, Figure S3F, Supplementary Note). We also attempted to utilize NM Fproj for the QC of in vitro induced
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173 Treg (iTreg) cells of mouse * and found that i Treg cellsinduced in optimized conditions for enhancing Treg

174 functionality showed higher NMF1 (Treg-F) values than conventional iTreg cells (POH: 0.182, Figure S3G,

175 Supplementary Note). We also applied NMFproj to ScRNA-seq datasets of cross-tissue immune cells * (Figure S5, POH:
176 0.560in CD4" T cells, Supplementary Note), pan-cancer tumor-infiltrating CD4" T cells *® (Figure S4A, POH: 0.530,
177 Supplementary Note), and mouse splenocytes * (Figure S4B, POH: 0.394, Supplementary Note), achieving robust

178 interpretations of cellular featuresin various conditions. Furthermore, cell-specific qualitative changes have been

179 reported in autoimmune diseases, such as Treg dysfunction in SLE *, and we hypothesized that NMFproj could be used
180  to detect these changesin individual cell populations. To test this, we applied NM Fproj to bulk RNA-seq data of sorted
181 peripheral CD4" T cell fractions from various autoimmune patients *. NMFproj detected a subset-specific gene program
182 robustly even in avariety of autoimmune disease conditions (Figure S6A, Supplementary Note). The results showed cell-
183  type wide enhancement of NMF7 (IFN-F) in SLE and mixed connective tissue disease (MCTD) and hampered NMF1
184  (Treg-F) in Fr.l nTregs (CD45RA* CD25") in SLE patients as previously reported * (Figure S6B). These results

185 indicated that NM Fproj could robustly assess the qualities of CD4" T cellsin various tissues and disease states,

186 regardless of bulk/single cell or human/mouse.

187 Meta-analysis of CD4" T cellsin various autoimmune diseases

188 To extend CD4" T cell profiling to various autoimmune and infectious diseases, we performed a meta-analysis using
189  publicly available single-cell data ®3%%>", We integrated publicly available datasets with two strategies: 1) quantitative
190 evaluation of cell frequencies by mapping to our reference and 2) evaluation of qualitative changes per cell type using
191 NM Fproj. We extracted CD4" T cells from peripheral blood mononuclear cells (PBMCs) using Azimuth * and then

192 mapped them to our reference using Symphony ** (Figure 3A, the pipelineis available at

193 https://github.com/yyoshiaki/screfmapping). We collected 1,809,668 CD4" T cells collected from 647 cases and 306

194 controlsfrom 25 projects (Figures 3B, S7A; Table S6). For quality assurance, only datasets in which both HC and

195  patients were present and at least 3 cases were included were used. As a prominent change, Tnaive decreased, and Temra
196 increased in various autoimmune diseases (Figure S7B; Table S7). It has been reported that Temraincreased in the

197 peripheral blood of rheumatoid arthritis (RA), M S, ulcerative colitis (UC), and Crohn's disease (CD) patients > which
198 was consistent with the present data. Kawasaki disease and Type 1 diabetes (T1D) were exceptions among autoimmune
199 diseases, with a slight increase in Tnaive and no significant change in Tcm, Tem, and Temra (Figure S7B), as reported
200 previously ®%, At cluster L2 resolution, we found that Tnaive MX1 increased in COVID-19, SLE, T1D, and primary
201 Sjogren syndrome (pSS) patients (Figure 3C). The type | IFN response is essential for viral elimination and has been

202 reported to be associated with COVID-19 pathology ® and also known to be associated with SLE %, pSS®, and T1D .
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203 Our meta-analysis could detect these effects as the increase of Tnaive MX1. Moreover, in our meta-analysis, Tcm (Thl17)
204  wasincreased in various diseases, including previously reported diseases such asMG %, MS ™™, and psoriasis ™.

205 Regarding Tregs, we reported that Fr. 11 (CD45RA” CD25") isincreased in sarcoidosis, while Fr. | and 111 are increased
206  inactive SLE *. Another group reported an increase of Tregsin pSS ”. In concordance with these observations, Treg
207 increased in SLE, neurosarcoidosis, sarcoidosis, and pSS, especially for Treg Eff in neurosarcoidosis and for Treg Act
208  and Treg Eff in SLE patients (Figures 3C, S7B). Interestingly, the acute infection responseto COVID-19 showed an

209 increase in Tnaive, whereas influenza infection showed an increase in Temra. We also found age-dependent Tnaive

210 decrease and Temra, Treg Eff increases concordant with previous reports ™ (Figure 3C). Sex differencesin immunity are
211 critical, especially for autoimmune diseases, because 80% of autoimmune disease occurs in females ™. Previous reports
212 have addressed several changesin females, such as the increase of recent thymic emigrants ™ and greater activation

213 responses by in vitro stimulation 7. Asfor gender differences, we observed a decrease in Tecm (Th2), Tem (Th1/17),

214 Temra(Thl), and Treg Eff and an increase in Tnaive Act, Tnaive MX1, Tnaive SOX4, Tem (Tph), and Treg Naivein
215  females. These alterations depending on diseases, gender, and age were also observed as specific distributions on the
216 PCA plot (Figures 3D-F, S7C,D). Overall, we profiled numerical features of CD4" T cells in broad autoimmune status,

217 age, and gender.

218 Next, to measure the quality changes in autoimmune diseases, we applied NMFproj to the datasets and invegtigated

219 NMF cell feature changes in each cluster L2 population (Figures 3G, S8B, S9; Table S9). The strongest skews were

220 enriched in NMF7 (INF-F) in SLE and COVID-19 patientsin a cell-type-wide manner. We also found that even neutral
221 populations such as Tnaive, Tnaive (Act), and Tcm (ThO) showed disease-specific propensities. For example, NMFO

222 (Cytotoxic-F) increased in RA, MS, and pSS, NMF10 (Tissue-F) wasincreased in MS, COVID-19, SLE, and

223 neurosarcoidosis, while NMF3 (Naive-F) decreased in abroad range of autoimmune diseases. In Treg cells, NMF1

224 (Treg-F) decreased in T1D, MG, and M S, indicating the dysfunction of Treg in these diseases independently of the

225 number of Treg cells. Age-dependent increases of NMF8 (Cent. Mem.-F) and NMF4 (Act-F) were also observed. In

226  females, NMF4 (Act-F) was enhanced broadly. The results of qualitative and quantitative changes were consistent with
227 previous reports, demonstrating the robustness of our catalog. For example, it has been reported that among CD4" T cells,
228  anincrease of CXCR4" Tnaive isthe dominant change in COVID-19 infection . Thisis concordant with the result of
229  our meta-analysis showing an increase in Thaive and an increase in NMF10 (Tissue-F), which contains CXCR4 asthe
230 feature gene (Table 4), specificdly in Tnaive cells. Other findings, such as the upregulation of an activation molecule,
231 CD69, which was the feature gene of NMF10 (Tissue-F), in MS and SLE ™, and the reduction of effector Tregs and their

232 decreased function in T1D #, are also consistent with our meta-analysis. In conclusion, by meta-analysis, in addition to
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233  quantitative changes, we identified qualitative changes depending on the disease, sex, and age at aresolution that is

234  difficult to observe in existing methodologies.

235  Autoimmune states ar e predictable only from peripheral CD4" T profiles

236 Given that each autoimmune disease disorder possessed a characteristic CD4" T cell profile, we hypothesized that

237  disease status might be predicted solely from CD4" T profiles by utilizing machine learning techniques and our

238 autoimmune-wide scRNA-seq dataset. To confirm this, we created three models for the prediction of disease status. The
239  first model took the frequency of each cell population in cluster L2, the second model took the cellular features of the
240 NMF in subsets, and the last model took both as input parameters (Figure 3H). We note that, for NM Fproj features, only
241 Tnaive and Tcm (ThO) cell features, which were affected by various conditions as discussed previously (Figures 3G,

242 SB8A), were used to avoid over-fitting. First, binary classification models were constructed for SLE, COVID-19, and MS
243 todistinguish between certain diseases and healthy individuals using logistic regression where equal numbers of diseased
244  and healthy subjects were used for the training, and the models were evaluated using samples from independent projects
245  from these used for the training (Figure 31). SLE and COVID-19 yielded relatively good predictions from cell

246  frequencies alone (AUC: 0.84, 0.82 in SLE and COVID-19, respectively). NMF cell features alone also could predict
247 SLE and COVID-19 well (AUC: 0.94, 0.85in SLE and COVID-19, respectively), and the perdition using both cell

248  frequencies and NMFproj values further improved accuracy (AUC: 0.94, 0.91 in SLE and COVID-19 respectively). For
249 MS, for which hematological biomarkers have not yet been well-established, prediction from cell frequencies or from
250 NM Fproj values alone was not successful (AUC: 0.61, 0.47 in cell frequency and NMFproj respectively), while both cell
251  frequencies and NMFproj values resulted in better predictions (AUC: 0.75) than previous reports . Next, we built

252 multiclass classification models that more closely resemble real-world clinical practice. The multiclass classification was
253  assumed to be a more difficult task due to the similarities among autoimmune diseases and the imbalance of training

254  sample sizes. We trained a gradient boosting model with 5-fold cross-validation on data from 714 samples from 8

255 diseases or healthy for which at least ten samples were available for training and then evaluated the model using the data
256 from the independent dataset (Figures S8B,C). The model trained only by cell frequencies or by NMFproj values could
257 predict COVID-19, SLE, HC, and MS (Area Under the Precision-Recall Curve (PR-AUC): 0.72, 0.68, 0.48, 0.12 in the
258 cell frequency model and 0.91, 0.75, 0.47, 0.35 in the NMFproj model, for COVID-19, SLE, HC, and M Srespectively),
259  and the model trained by both cell frequencies and NMFproj values in Tnaive and Tcm (Th0) was marked with superior
260 accuracy (PR-AUC: 0.92, 0.69, 050, 0.33 for COVID-19, SLE, HC, and M S respectively). These results highlight that
261  the disease-specific changesin CD4* T cells, both in terms of quantitative and qualitative aterations, contribute to the

262 prediction of disease status.
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263 Partitioned heritability of autoimmune diseases on CD4" T cell NMF features

264 We examined the association between CD4" T characteristics and genetic factors for each disease and trait. Studies using
265  GWAS statistics have reported associations between autoi mmune diseases and immune cells *®. In particular, stratified
266  linkage disequilibrium score regression (S-LDSC) has revealed the association between CD4" T cells and autoimmune
267  diseases by stratifying the heritability of polygenic autoimmune diseases by genetic features ##4, Since we captured

268  elaborate CD4" T cell features, we investigated which of these features were associated with each trait using the S-.LDSC
269  framework. In addition to the cell-type specific genes of cluster L2, 12-dimensional features extracted by NMF were

270  used as genetic features. The Roadmap Enhancer-Gene Linking (Roadmap) and Activity-By-Contact (ABC) strategies
271 introduced in the sclinker framework ® were used for linking genes and SNPs. Among 180 traits, autoimmune diseases
272 showed significantly high enrichment in NMF features (p=8.51 x 10™2), suggesting autoi mmunity is closely associated
273  with CD4" T cells (Figure 4A). Cross-sectional disease association revealed that many diseases, such as Inflammatory
274  bowel disease (IBD), RA, and MG, have an enrichment of heritability on NMF1 (Treg-F) (Figure 4B). By focusing on
275  the most accumulated factors for each disease, we found that autoimmune diseases can be divided into several groups.
276 For each disease, the most enriched gene features were observed as, NMF1 (Treg-F): RA, UC (deLange),

277 hypothyroidism; NMF2 (Th17-F): CD (deLange), IBD (deLange), MG; NMF5 (TregEff/Th2-F): celiac disease, T1D;
278 NMF7 (IFN-F): SLE, primary biliary cirrhosis; NMF10 (Tissue-F): MS, psoriass. In MS, accumulation was observed in
279  variousfeatures, including NMF2 (Th17-F) and NMF11 (Th1-F). The heritability of each autoimmune disease was

280  accumulated in several factors, suggesting that autoimmune diseases have multiple susceptibilities. In other traits, weak
281 accumulation on NMFL1 (Treg-F), NMF2 (Th17-F), and NMF11 (Th1-F) was common in COVID-19 in both severe

282 symptomsand infection, while NMF7 (IFN-F) was infection-specific (Figure S10A). Lymphocyte counts were also

283  susceptibleto NMF4 (Act-F) (Figure S10A). We also examined enrichment in cell-type-specific genes. Similar

284  enrichment patterns, such as Treg Naive in most autoimmune diseases and Tnaive MX1 in SLE, were observed, while
285 caution should be taken as marker gene detection is not optimal for CD4" T cellsasin the previous section (Figure S10B).
286  Taken together, we comprehensively profiled heritability enrichment on CD4" T cell gene features across autoimmune

287 diseases.

288 Partitioned heritability is associated with qualitative and/or quantitative changesin CD4" T in a disease-specific
289  manner

290 Lastly, we compared partitioned heritability and observed changesin CD4" T in terms of quantity (cell frequency) and
291 quality (NMFproj) to assess the genetic effect on phenotypic changes (Figure 5A). We first investigated the correlation

292 between enriched heritability and changesin cell frequency and NMF features for diseases that were enrolled in our
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293  analysisfor both GWAS and meta-analysis. We found several patterns depending on the disease (Figure 5B). First, in
294 MG and psoriasis, both changes in cell frequency and NMF feature correlated with heritability accumulation. In severe
295 COVID-19 (COVID19-A, COVID19-B) and RA, the correlation was mainly observed with changes in quality only. SLE,

296  celiac disease, UC, and SARS-CoV-2 infection (COVID19-C) showed poor correlation with cell frequency.

297 Next, we examined MS, MG, and SLE, whose samples were collected in this study, in more detail (Figure 5C). In MG,
298 NMF2 (Th17-F), which accumulated heritability most significantly, was increased in Tcm (Th17) and Tem (Th1/17) in
299  correlation with genetic factor accumulation, and the cell frequency was also correlated with genetic factors (Figures 5C,
300 S9). On the other hand, NMF1 (Treg-F), which showed the next highest accumulation of heritability, was negatively

301 correlated with the genetic effect and lower in Treg cells (Figure S9), indicating that the dysfunction of Treg cells might
302 be enhanced by the genetic effect. In MS, the highest heritability accumulation was observed in NMF10 (Tissue-F). This
303  factor wasincreased in all cell populations without cell specificity, resulting in alow correlation with the heritability.
304  SLE susceptibility was most accumulated in NMF7 (IFN-F). In our meta-analysis, an enhancement of NMF7 (IFN-F)
305  wasobservedin al cell populations, especially in Tnaive MX1. Overall, our study cataloged heritability enrichment and
306  phenotypic changes across autoimmune diseases, enabling elucidation of the disease-specific effect of underlying genetic

307  factorson CD4" T cell phenotypes.

308  Discussion

309 The classifications and characterizations of CD4" T cells have been challenging, with cellular heterogeneity being a

310 major obstacle *. In this study, by performing single-cell analysis on CD4" T cells from autoimmune and healthy subjects,
311  wesucceeded in mutually exclusive and collectively exhaustive subtype identifications of peripheral CD4* T cells.

312 Moreover, in contrast to the conventional dudistic comparisons such as Thl vs. Th2 and Treg vs. Th17, the NMF-based
313 decomposition revealed that CD4" T cells are formed by a combination of 12 features rather than simple contradistinction.
314 While qualitative profiling by NMF was not suitable for numerical evaluation, it allowed for a more robust assessment of
315 gradual cell populations. Moreover, our results can also be extrapolated for other single-cell and bulk RNA-seq studies

316 by using alabel transfer and the projection of NMF features.

317 These analytical frameworks also allowed usto perform autoimmune-wide single-cell meta-analyses and integration of
318 CD4" T cell features with GWAS. As aresult, we comprehensively cataloged CD4" T cell alterations in 20 diseases,
319 providing a valuable resource for a broad range of disease research. The assessment of quditative changesthrough

320 NM Fproj enabled usto explore biological insghts, such as Treg functional abnormalities, that were previously

321 unattainable using cytometry. Furthermore, the decomposition of gene programs using NMF was beneficial not only for
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322 T-cell profiling but also for interpreting GWAS results. We found that genetic factors can have both disease-specific and
323  cross-disease impacts on autoimmune conditions. The accumulation of heritability on Tregs across diseases and the

324  disease specificity of other features may be potential cluesfor future therapeutic development.

325 By examining genetic factors, CD4" T cell changes, and TCR characteristicsin a disease-specific manner, we gained
326  valuable insightsinto various diseases. For example, MG is caused by autoantibodies against the neuromuscular junction,
327  with germinal center responses involving Tfh cellsand B cells within the thymus “®. While Th17 function enhancement
328  hasbeen reported in MG %%, we also observed a heritability enrichment in NMF2 (Th17-F), suggesting that tissue

329  damage by Th17 cells may contribute to symptom completion and persistence. In MS, we observed an increase in

330 NMF10 (Tissue-F) and heritability enrichment in addition to the previously known Th17 and Thl increase and functional
331  enhancement "°™%, These results suggested that a strong tissue inflammatory response isinvolved in MS. These results
332  emphasized that the tissue-specific gene program centered on the AP-1 family may be a novel M S-specific therapeutic
333 target ®. Additionally, in MS, while Treg Eff slightly increased, the quality of Treg cellsin terms of transcriptome and
334  TCRwaslow, indicating that the compensation of Tregs from Tconvs is an explanation for Treg dysfunction in MS®. In
335 SLE, our analysis of heritability enrichment and qualitative alterations supported the traditional belief that Typel IFN is

336 central to the disease **. Type | IFN drives differentiation into Tregs and Thi cells %%

, and our result suggested that the
337 pleiotropic effect of Type | IFN contributed to the complicated cell frequency changes observed in this study.

338 Furthermore, TCR overlaps between Tcm (Tfh) and Treg Act were observed specifically in SLE, suggesting potential
339  Treg-Tfh plasticity in SLE similar to reported Tfh-Treg plasticity under certain inflammatory conditions *. We

340  identified distinct CD4" T cell responses between COVID-19 and influenzainfection, with an increase in Tnaive cellsin
341 COVID-19 and Temracellsin flu. This divergence may reflect differences between pre-trained immunity to influenza
342 andinitial responsesto SARS-CoV-2, as most COVID-19 samples were collected before the vaccine rollout. In addition,
343  our meta-analysis revealed sex and age-related CD4" T cell changes, with new observations such asincreased Tnaive

344  MX1 and Tem (Tph) in females, potentially contributing to gender differencesin autoimmune disease incidence. Thus,

345  our study highlights the CD4" T cell features of each disease and condition, providing new insights for consideration.

346 Additionally, this study created a comprehensive CD4" T cell catalog across various diseases for the first time, providing
347  the opportunity to tackle the challenging task of assessing whether disease prediction is feasible using CD4* T cell
348 profiles. The machine learning model showed that disease status could be predicted only from CD4" T profiles. Although
349  westill could not collect samples abundantly for the model training for clinical applications, this study showed the

350  potential for capturing undiagnosed autoimmune diseases from cellular conditionsin the future. The predictability also
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indicated that changesin CD4" T profiles clearly characterized each disease, emphasizing the importance of fine-tuned

treatments for individual diseases.

In our discussion, it isimportant to address a key limitation of our study, which is that it focused on peripheral blood
and did not evaluate tissue alterations, such as barrier tissue-specific programs *. This might be the reason that we could
not capture some known vital phenomena for CD4" T cells, such as anergy and exhaustion. On the other hand, the NMF
defined in peripheral blood fitted well with tissue CD4" T cells and tumor-infiltrating T cells, suggesting that peripheral

blood can be used as a snapshot of complex T cell responses and that these profiles are applicable to tissues.

Collectively, we constructed the frameworks for extracting the CD4* T cell programs, enabling a comprehensive
interpretation of CD4" T cells. Moreover, the landscape of disease-specific CD4* T cell alterations and genetic effects

provides biological insights for potential precision medicine.

STAR Methods
Human samples

The study using human samples was reviewed and approved by the Research Ethics Committee of Osaka University
and carried out in accordance with the guidelines and regulations. Human samples were collected under approved Osaka

University's review board protocols: ID 708-10. Written informed consent was obtained from all donors.

Cell preparation and sequencing of ScCRNA-seq

From blood collected using heparin-coated tubes, we firgt collected PBM Cs using Ficoll-Paque (Cytiva). PBMCs were
washed, blocked with Fc Receptor Binding Inhibitor Polyclonal Antibody, Functional Grade, eBioscience™ (Thermo
Fisher Scientific), and stained with FITC-labeled anti-CD3 mAb (dilution: /100, UCHT1, BD Bioscience), APC-labeled

anti-CD4 mADb (dilution: /100, RPA-T4, Thermo Fisher Scientific), PE-labeled anti-CD19 mAb (HIB19, BioLegend),

Live/Dead (Thermo Fisher Scientific). Live-CD3"CD4"'CD19- cells were isolated using BD Biosciences FACS Arialll or

BD Biosciences FACS Arialll. CD4" T cellsand B cells were mixed in equal numbersin some samples.

The sorted cells were loaded to Chromium Next GEM Chip G (10x Genomics) on Chromium Controller (10x
Genomics) for barcoding and cDNA synthesis. The library construction was performed using Chromium Next GEM
Single Cell 5' Kit v2 and Chromium Single Cell Human TCR Amplification Kit (10x Genomics) for 5' according to the

manufacturer's protocol. The libraries were sequenced on NovaSeq6000 (I1lumina).
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Prepr ocess of sScCRNA-seq data

Sequenced reads were processed using Cell Ranger (v4.0.0) with pre-built reference refdata-gex-GRCh38-2020-A and
refdata-cellranger-vdj-GRCh38-alts-ensembl-4.0.0 downloaded at 10x GENOMICS website. Quantified expressions
were preprocessed and visualized using Scanpy 1.8.1 %" and Python 3.8.0. For CD4* T cell and B cell mixed samples, we
extracted only CD4" T cells as following procedures. Briefly, we normalized (sc.pp.normalize_total) gene expression,
log-transformed it (sc.pp.loglp), extracted highly variable genes (HV Gs) (sc.pp.highly_variable geneswith
min_mean=0.0125, max_mean=3, min_disp=0.5), computed PCA (sc.tl.pca) and neighbors (sc.pl.neighbors with
n_neighbors=10, n_pcs=40), computed clusters using Leiden algorithm (sc.tl.leiden), and embedded using UMAP
algorithm (sc.tl.umap). CD3E-positive and M S4A1-negative clusters were extracted as CD4" T cells and used for the
analysis. Cells with mitochondrial genes were higher than 10%, detected genes less than 200, or annotated as multichain
by scirpy were filtered out. Variable genes of TCR apha and beta were removed for the clustering and embedding to
remove the effect of clonal expansion. Gene expressions were preprocessed by sc.pp.normalize_per_cell with
counts _per_cell_after=1e4, sc.pp.loglpp, retained HVGs. The inference of the cell cycle was performed using the
sc.tl.score_genes cell_cycle function following the tutorial
(https://nbviewer.jupyter.org/github/thel slab/scanpy_usage/blob/master/180209_cell_cycle/cell_cycle.ipynb). Total
counts of UMI, % mitochondrial genes, S score, G2M score were regressed out using sc.tl.regress_out and scaled using
sc.tl.scale. Then, principal components were computed using sc.tl.pca. The batch effect of samples was removed by the
Harmony algorithm *3, Cells were embedded by UMAP using sc.tl.umap (spread=1.5), and clustered using sc.tl.leiden
(resolution=1.2). Re-clustering and embedding were performed using sc.tl.umap (spread=1.5), clustered using sc.tl.leiden
(resolution=1.7) after removing clusters containing doublets with B cells, monocyte lineages, etc. We defined cluster L1
asa large classification usng the leiden clusters. Next, for some clugters, concatenation or re-clustering was performed
with sc.tl.leiden (resolution 0.3-1) to divide clusters at the minimum resolution with distinct marker genes. We defined
cluster L2 asasmaller classification. Marker genes were determined using sc.tl.rank_genes groups with method="t-

test_overestim_var’.

Integration with bulk RNA-seq dataset

Fastq files were processed using an RNA-seq integrative pipeline, ikra (v2.0.1) *, composed of Trim Galore! 0.6.7 %,
Salmon 1.4.0 ', tximport 1.6.0 *** with the reference Gencode M 26 for mice and 37 for humans. Datasets for which the
TPM matrix was provided were downloaded and used directly for analyses. For the ImmuNexUT (E-GEAD-397) dataset,

the downloaded count matrix was converted to TPM.
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406 For the correlations between bulk RNA-seq and sScRNA-seq datasets, TPM or scaledTPM expression matrix of bulk
407 RNA-seq were normalized using sc.pp.normalize_per_cell (counts per_cell_after=1e4), sc.pp.loglp, sc.pp.scale
408 (max_value=10), concatenated to SCRNA-seq object, and calculated the correlations using sc.tl.dendrogram with the

409  default parameters.

410  Gene expression decomposition using NMF
411 To decompose cellular processes, we applied NMF implemented in scikit-learn (v0.24.2) to normalize gene expression
412 of HVGs. Using NMF, the normalized gene expression X was decomposed as follows;
13 X=W-H
414 , Where W and H possess n components. In the analysis, we set the number of components as 12 based on the two
415  criterig i) more than the elbow in the digtribution of explained variance, ii) before the jump up of the maximum inter-
416 components Spearman's correlation. The explained variance was calculated as follows;
— 2

RSS, = E (45 — Wiche)
417 ij

EzplainedVariance =1 — RSS,/ E s,
418 1,5
419 For the pathway enrichment analysis, we extracted the top 100 genes with the highest feature value for each component

420 and converted gene symbolsinto Entrezid using the bitr function provided by clusterProfiler (3.16.1) 2

and computed
421  enriched Reactome pathways using the compareCluster function of clusterProfiler with the enrichPathway function in

422 ReactomePA (1.32.0). For the projection of gene features defined by NMF, we performed NMF with pre-computed W
423 using scikit-learn. The matrix W was converted to mouse genes using a list of human and mouse homologs provided at

424 http://www.informatics.jax.org/homology.shtml. For genes with multiple homologs, one of the genes was retained. For

425  the NMF calculation, only overlapped genes were used. To examine whether the selected HV Gs of fixed W can capture
426 HVGsin aquery dataset, we calculated the proportion of the number of HVGs included in fixed W against the number of
427  HVGsin the query dataset as POH. In the CD4" T data set, we determined that if the POH is below 0.1, which isthe

428 conservative threshold from the distribution of the null hypothesis (Figure S3C), there is a variance that cannot be

429 represented by the NMFproj. sc.pp.highly_variable_genesin scanpy with the following parameters, min_mean=0.0125,
430 max_mean=3, min_disp=0.1 was used for the calculation of HVGs of the query datasets and selected top 500 genes

431 regarding normalized dispersion *® with the exclusion of VDJ genes of TCR and IG. A framework for NMF projection is

432 available at https://github.com/yyoshiaki/NM Fprojection.
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For the analysis of ImmuNexUT, the count data was downloaded at (https://humandbs.biosciencedbc.jp/en/fhum0214-

v3) and converted to TPM. We removed BD, AAV, AOSD, and SjS samples from the analysis because these samples are
processed in adifferent procedure from other samples. TPM matrix was decomposed with the pre-computed gene feature
matrix using NMFproj. Extracted NMF feature H was tested using a multiple linear regression provided as the

formula.api.ols function by a python package statsmodels (0.12.0) with a model, NMF_i ~ Disease + Age + Gender + 1.

TCR analysis

For TCR analysis, we used the standard pipeline of scirpy 0.10.1 *** according to the official tutorial
(https://scverse.org/scirpy/latest/tutorial S'tutorial_3k_ter.html). Briefly, clones were defined by clonotypes using
scirpy.tl.define_clonotypes with parameters; receptor_arms="all", dual_ir="primary_only". Repertoire similarities were
measured using the function scirpy.tl.repatoire_overlap. TiRP score was calculated according to the instruction in the

repository (https://github.com/immunogenomics/ TiRP.git).

Heritability partitioning
To assess the contribution of each cell-type-specific gene expression and the NMF component, we applied S-LDSC
with Roadmap ABC-immune enhancer-gene linking strategy implemented using an sc-linker pipeline ® with slight

modifications (https.//github.com/yyoshiaki/sclinker-skg). We only used HV Gs defined by the preprocessing section in

the analysis. We used min-max scaled gene scores for the cell-type gene programs as the gene weights. For NMF
components, we used the gene feature matrix W with the min-max scaling for the gene weights. Using the gene weights,
LD scores for each category were calculated with European LD scores used in the article ® and Roadmap_U_ABC for

blood (https.//storage.googleapis.com/broad-al kesgroup-public/LDSCORE/Dey Enhancer MasterReg/processed data,

https://storage.googleapis.convbroad-al kesgroup-

public/L DSCORE/Deepl earning/Dey DeepBoost Imperio/data_extra/AllPredictions. AvgHi C.ABC0.015.minus150.wit

hcolnames.ForABCPaper.itxt.gz). In addition to the sumgtats files provided in gs://broad-alkesgroup-

public/LDSCORE/all_sumstats, we used several additional sumstats by processing using munge_sumstats.py in LDSC

v1.0.1 (Table S10). S-LDSC was performed with the baseline-L D model v2.1 (https.//storage.googleapis.com/broad-

alkesgroup-public/L DSCORE/1000G _Phase3 baselineLD v2.1 Idscores.tgz). The Enrichment score (Escore) was

calculated as the difference between the enrichment for annotation in a particular program against an SNP annotation for
all protein-coding genes with a predicted enhancer-gene link in the blood. We also used FDR calculated from the p-value

of Enrichment outputted by S-LDSC.
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Meta-analysisof CD4" T cells from public datasets

We collected scRNA-seq data from PBM C generated by 10x platforms, Seq-Well or SPLiT-seq (Parse BiosciencesWT
Mega) &35 (Table SB). If the count matrix was available, we used the quantified matrix. Otherwise, we quantified the
expression using Cell Ranger with pre-built reference refdata-gex-GRCh38-2020-A. As the sample QC, samples with
XIST mean expression (count) > 0.05 were inferred as female. If the inferred gender and metadata differed, we removed
the sample from the analysis. We extracted CD4" T cells from published data of PBMCs using Azimuth 0.4.4 *®. We

created Seurat Object using the CreateSeuratObject function implemented in Seurat 4.1.0 ® with parameters min.cells=3,

min.features=200. We also filtered out the cells that express210% mitochondrial genesin their total gene expression. We

normalized the expression using SCTransform with parameters method= "glmGamPoi", ncells=2000, n_genes=2000,
do.correct.umi=FALSE. In this procedure, we used Azimuth reference data v1.0.0 human_pbmc loaded from the website
(https://seurat.nygenome.org/azi muth/references/'v1.0.0/human_pbmc). We found anchors between query data and
Azimuth reference data (FindTransferAnchors with parameters k.filter=NA, normalization.method="SCT", dims=1:50,
n.trees=20, mapping.score.k=100), transferred cell type labels (TransferData with parameters dims=1:50, n.trees=20) and
calculated the embeddings on the reference supervised PCA (IntegrateEmbeddings with the default options) and
neighbors (FindNeighbors with parameter 12.norm=TRUE). We transformed an NN index (NNTransform with the
default parameters) and projected the query data to the reference UMAP (RunUMAP with the default parameters). We

visualized query data by DimPlot, DotPlot, and FeaturePlot.

Next, we mapped extracted cells on our reference using symphony 0.1.0 * following the vignettes

(https://github.com/immunogenomi cs/symphony/blob/main/vignettes/Seurat.ipynb). First, we created a symphony

reference using our dataset. Our scanpy object saved as an h5ad file was converted to hS5Seurat using SeuratDisk and
loaded as a Seurat object. We used only HVGs for symphony reference to reduce batch effect strictly. Then, the object
was preprocessed as follows; SCTransform (method= "glmGamPoi"), ScaleData, RunPCA, RunHarmony.Seurat
(group.by= "sample"), FindNeighbors (dims=1:30), RunUMAP2, and buildReferenceFromSeurat. For query mapping,
extracted CD4" T cells were normalized (SCTransform with parameter method= "glmGamPoi") and mapped (mapQuery
with parameter do_normalize=FAL SE, vars = "batch") with batch correction againg each sample. The cluster L1 and L2
assignments were performed using the knnPredict.Seurat function. We visualized the mapping results by DimPlot and
FeaturePlot as the quality control. We are providing the label transfer pipeline at

https://github.com/yyoshiaki/screfmapping.
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489 Binominal regression was performed with the formula; (n_cat, n_total - n_cat) ~ Disease + Age + Gender + Project
490  using the R gim function. For the analysis of enriched NMF components, we first calculated cell profiles using NMFproj
491  with raw counts, and linear regression was performed with the formula; NMF_i ~ Disease + Age + Gender + Project
492 using the R glm function. For the PCA plot of individuals, we corrected the batch effect by a project by regressing out
493 using GLM with the formula; cell frequency ~ Disease + Age + Gender + Project. The Chord diagrams were created

494  using pycirclize (0.1.3).

495 Machine learning for the prediction of autoimmune states

496 First, the training and test datasets were split without the study overlap. Cell frequencies and/or NMFproj valuesin Tcm
497 (ThO) and Tnaive were scaled using StandardScaler (scikit-learn 1.0.2). Note that Tnaive and Tcm(Th0), which have a
498 high degree of nodes in the network, were selected for the NM Fproj results to keep the number of parameterslow. NMF
499  values wereimputed using Simplelmputer (scikit-learn 1.0.2) with parameter strategy="most_frequent' trained by training
500  datasets. For the binary classification, we used the LogisticRegression in scikit-learn with the default parameters. For the
501 multiclass classification, the label imbalance was corrected using SMOTE (imbalanced-learn 0.9.1) with parameter

502  sampling_strategy="all". Then, LightGBM 3.3.2 ® was used for the model with parameters, 'objective’="multiclass and

503 ‘early_stopping_rounds=10.

504  Statical analyses
505 All statigtical analyses were performed in R (4.0.3 or 4.1.2) and Python (3.8.0). FDR was obtained by the Benjamini-
506 Hochberg procedure implemented by a Python package statsmodels (0.12.0). All other statistical analyses are detailed in

507  therespective sections of the article.
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Figuretitlesand legends

Figure 1 Global profiling of CD4" T cells

(A) Sample collection strategy.

(B and C) Clusters L1 and L2 on UMAP embeddings.

(D) Dot plot depicting signature genes' mean express on levels and percentage of cells expressing them across clusters.
Marker genes for the plot were manually selected. See also Figure S1C for automatically extracted marker genes.

(E) Expression correlation of clusters with bulk RNA-seq for sorted CD4" T cell fractions (DICE).

(F) UMAP plot showing clonotype size.

(G and H) Clonotype size distributions across clusters.
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543 (I and J) TCR similarity networks in autoimmune patients, healthy donors (1), and all donors (J). TCR similarity was

544  calculated for each sample, and only edges where overlapping clonotypes were detected in >=2 (I) or >=4 (J) samples are
545  depicted as robust overlaps. The edge color indicates the average TCR similarity of all samples.

546  (K) Degree centrality of TCR networks. Significance across clusters was calculated by one-way ANOVA, and after

547 multiple test corrections by FDR, Tcm (Tfh) and Treg Act were retained as significant cell types. Then, pairwise Tukey-
548 HSD posthoc tests were performed. *: pag < 0.05 in comparison with HC.

549 (L) TiRP scoredigtributions on UMAP plot. Mean scores for each cluster L2 were shown.

550 (M) TiRP score distribution across cluster L2. The dot shows the mean, and the CI shows 95% CI of the bootstrap

551  distribution of means (n=1000). Adjusted p-values of significant clusters, Tnaive MX1 1.29x10%, Tem (Th1) 5.82 x 10™,
552  Temra(Thl) 4.84x10%, Treg Naive 2.14 x 103, Treg Act 2.14 x 10", Treg Eff 3.82 x 10°° (Two-sided Mann-Whitney's

553 U-test was performed for one cluster vs. the other clustersiteratively).

554  Figure2 NMF captured 12 CD4" T cell features

555 (A) Schematic view of NMF and NMF projection.

556  (B) Matrixplot showing the mean scaled NMF feature weight for each cluster L2 population. The explained variance

557 (Evar) isaso shown on theright. The NMF feature weight is scaled by the maximum value for each feature for

5568  visualization.

559 (C) NMF cell feature value on UMAP plots.

560 (D) Gene features for each component. The top 10 genes for each feature were selected.

561 The 12 gene features are annotated using top genes and previous reports as NMFO Cytotoxic-Feature (F), NMF1 Treg-F,
562 NMF2 Th17-F, NMF3 Naive-F, NMF4 Activation-F (Act-F), NMF5 TregEff/Th2-F, NMF6 Tfh-F, NMF7 IFN-F, NMF8

563 Central Memory-F, NMF9 Thymic emigrant-F, NMF10 Tissue-F, NMF11 Thl-F.

564  Figure 3 Pan-autoimmune meta-analysis of peripheral CD4" T cells

565  (A) Strategy for meta-analysis of peripheral CD4" T cells across diseases. First, CD4" T cells were extracted from PBMC
566  scRNA-seq datasets using Azimuth *. Extracted CD4" T cells were mapped on our reference using Symphony * with a
567 batch correction. Mapped cells were used to assess cell frequency and NMF cell features for each cluster.

568 (B) Bar plots showing the number of samples (left) and the number of CD4" T cells (right) enrolled in the meta-analysis.

569  Thedashed linein the left plot indicates a sample size of 10.
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(C) Dot plot showing changesin cell frequency at cluster L2 resolution. Dot colors show coefficients, and sizes show the
significance of the Generalized Linear Model (Methods). Detailed statistics can be found in Table S8. Only significant
dots (pag; < 0.05) are shown.

(D-F) PCA plots of samples based on cell frequencies. Sample distributions for each disease state (D), loading vectors for
each cell type (E), and sample characteristics in healthy donors (F) are shown.

(G) Chord diagram showing the top 100 significant associations with positive coefficients between NMF features and
cellsin each condition, calculated by GLM (Methods). Detailed statistics are shown in Table S9. The thickness of edges
indicates the coefficient of GLM, and colors indicate conditions such as diseases, gender, and age.

(H) Strategy for predicting autoimmune states from CD4" T cell profiles using machine learning framework. As the input
parameters, one model took only cell frequency, age, and gender (without NM Fproj), while the other took cell frequency,
NMF cell featuresin Tcm (ThO) and Tnaive, age, and gender (with NMFproj).

(I Receiver operating characteristic (ROC) curves of logistic regression models trained by cell frequencies (top left), by
NM Fproj valuesin Tnaive and Tcm (ThO) (top right), and both cell frequencies and NMFproj values (bottom). SLE,
COVID-19, and SLE patients were trained on 159, 116, and 35 patients with the same number of healthy subjects, and
evaluated on 40, 89, and 17 patients and the same number of healthy subjects from independent data sets. Numbersin

parentheses indi cate the area under the curve (AUC).

Figure 4 Partitioned heritability of autoimmune diseases by CD4" T cell features

(A) Bar plot showing maximum -log;o(q_Escore) anong NMF gene features. Partitioned heritability was measured using
the sclinker framework. Enrichment of each category is the following, Autoimmune diseases: p=8.51 x 10,
inflammatory traits: p=0.131, and blood cell count: p=7.59 x 10°® (Two-sided Mann-Whitney's U-test).

(B) Dot plot showing enrichment of partitioned heritability of autoimmune diseases across NMF gene features. The
dashed boxesindicate the factor with the highest Escore for each disease. Duplicated traits were removed for the

visualization. Full statistics are shown in Table S11.

Figure 5 Relationship between genetic factor s and phenotypic changesin CD4" T cells

(A) Model of genetic effect on phenotypic changesin CD4" T cells. CD4" T cell changes are observed as qualitative
(NMFproj cell features) and quantitative (cell-type frequencies) changes.

(B) Scatter plot showing the genetic effect on cell frequencies (x-axis) and NMF features (y-axis). Sclinker weight per
cell was calculated by dot products of sclinker outcome (NMF) and NMF cell features. For cell frequencies and NMF

cell features, coefficients of GLM output for each cluster L2 population were used. Spearman’ s correlation of sclinker
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599  weight and cell frequency / NMF cell feature changes were calculated. For the correlation with sclinker and NMF cell
600  feature changes, we used the maximum R among NMF features for the visualization. COVID19-A : Very severe

601 respiratory symptom, COVID19-B : Hospitalized, COVID19-C: SARS-CoV-2 infection.

602 (C) Individual sclinker weights, cell frequency changes (Coef. for each cluster L2), and NMF cell feature changesin the
603  factor with the highest Escore (Coef. for each cluster L2) of MS, MG, and SLE were visualized on the UMAP

604  embeddings (left panel). For the coefficient of the NMF cell feature changes, only one representative factor with the

605 highest Escore for each disease was shown. The bar plot of Spearman’s correlation of cell frequency and NMFproj

606  changeswith partitioned heritability is shown in the right panel. The colors of the bar,s except for cell frequency, indicate
607 Escores calculated using sclinker.

608
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Supplementary Figure Legends

Figure S1. Global char acterization of CD4" T cells

(A) UMAP plots depicting gene expressions of marker genes.

(B) Sankey diagrams showing cluster assignment of cellsin clustersL1 and L2.

(C) Dot plot depicting signature genes' mean expression levels and percentage of cells expressing them across clugters.
Marker genes for the plot were calculated by pairwise comparison with a group and the other groups iteratively using
scanpy.tl.rank_genes_groups function.

(D) Density plot of cell distributions for cluster L2 populations.

(E) Dot plot depicting Tph and Tfh marker genes' mean expression levels and percentage of cells expressing themin Tcm
(Tfh) and Tem (Tph).

(F) Pearson's correlation of transcriptome profiles between sorted T cell fractions, including Tph (SDY 939) and our
scRNA-seq (cluster L2).

(G) Density plot of cell distributions for each disease.

Figure S2. Centralities of TCR networ ks vary depending on the diseases

(A) Degree centrality of TCR networksfor cluster L2. The average of each disease was shown.

(B) Individual value of degree centrality of TCR networks.

(C) Distribution of mean TiRP scores across Treg clusters. Pairwise Tukey-HSD posthoc tests. The multiple test
correction was performed using atwo-stage FDR strategy. *: pag < 0.05, **: pgag < 0.01, ***: p,gy < 0.001.

(D) Changesin TiRP scores in Treg clusters associated with disease states, age, and sex. The estimated coefficients and

the 95 percentiles by multiple linear regression were plotted.

Figure S3. NMF and NMF projection

(A) The satistics for the determination of the number of components. The Y -axis shows explained variance (upper) and
maximum correlation of the inter-component (lower). The X-axis shows the number of components. Spearman's
correlation between components of gene features was calculated.

(B) Reactome pathways enriched in each gene feature. The dot size indicates the gene ratio or the fraction of genes found

in the gene set, and the color indicates P
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635 (C) Histogram of POH under the null hypothesis for this study setting. We randomly sampled 5000 POH in the null

636  hypothesis calculated from the overlap between random 500 (number of HVGs for the calculation of POH) genes and
637 1271 (number of HV Gs of CD4" T cell) genes. Red dashed lines show 2.5 and 97.5 percentiles.

638 (D) Heatmap showing NMF values of DICE bulk RNA-seq datasets of sorted CD4" T cell fractions. Explained variance
639 (Evar) was also shown on theright side.

640  (E) Heatmap showing NMF values of sorted CD4" T cell fractions by Miyara's classification (JGAD000214). Explained
641  variance (Evar) was also shown on the right side.

642 (F) Heatmap showing NMF values of sorted Tph fractions (SDY 939). Explained variance (Evar) was also shown on the
643 right side.

644  (G) Heatmap showing NMF values of iTreg cells cultured in different conditions (DRA008294). Explained variance

645 (Evar) was also shown on theright side.

646 Figure 4. NMFproj applicationsin tumor -infiltrating T cellsand mouse splenocytes
647 (A and B) UMAP plots showing original cell types (left) and projected NMF cell feature values (right) in pan-cancer

648  tumor-infiltrating T cells ScRNA-seq data (GSE156728) (A) and mouse splenic CD4" T cdlls (SCP490) (B).

649 Figure S5. NMFproj contributesto inter preting cross-tissue T cells

650  (A) Projected NMF cell feature value of cross-tissue T cells sScRNA-seq datasets on the UMAP plots. The T & innate
651 lymphoid cells dataset was used for the analysis (https://www.ti ssueimmunecellatlas.org/).

652 (B and C) Original cell types (B) and the expression of CD4 and CD8A (C) were shown on the UMAP plots.

653 (D and E) Digtribution of POH (D) and Evar (E) in each tissue. THY: Thymus, BLD: Blood, BMA: Bone marrow, MLN:
654  Mesenchymal lymph nodes, LLN: Lung-draining lymph nodes, SPL: Spleen, SKM: Skeletal muscle, LNG: Lung, LI1V:
655 Liver, OME: Omentum, TCL: Transverse colon, SCL: Sigmoid colon, DUO: Duodenum, CAE: Caecum, ILE: Ileum,
656  JEJLP: Jgjunum lamina propria, JEJEPI: Jgjunum epithelial. The dashed line indicates the 97.5 percentile of simulated
657 null distribution (Fig. S3C).

658 (Fand G) Digtribution of POH (F) and Evar (G) in each cell type. B and Myeloid cells were also added to the analysis.

659  Thedashed line indicates the 97.5 percentile of simulated null distribution (Fig. S3C).

660 Figure S6. NMFpr o reveals disease-specific qualitative changes
661 (A) Heatmap showing NMF values of sorted CD4" T cell fractions collected from autoimmune patients (E-GEAD-397).

662 Explained variance (Evar) was also shown on theright side.
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(B) Dot plot depicting NMF cell feature changes in each cell type in E-GEAD-397. Dot colors show coefficients, and
sizes show the significance of GLM. GLM was performed with a model, cell frequency, or NMF cell feature ~ disease +
age + gender. 1IM: idiopathic inflammatory myopathy, MCTD: mixed connective tissue disease, RA: rheumatoid arthritis,

SLE: systemic lupus erythematosus, SSc: systemic sclerosis, TAK: Takayasu arteritis.

Figure S7. Quantitative alterationsrevealed by meta-analysis

(A) Swarm plot showing frequencies of cell typesin each sample.

(B) Dot plot showing changesin cell frequency at cluster L1 resolution. Dot colors show coefficients, and sizes show the
significance of the Generalized Linear Model (Methods). Detailed statistics can be found in Table S7. Only significant
dots (p.g < 0.05) are shown.

(C) Cell frequencies of each population are shown on the PCA plots.

(D) Distribution of samples for each disease.

Figure S8. Alterationsin CD4" T cellsrevealed by meta-analysis

(A) Chord diagram showing the top 100 significant associations with negative coefficients between NMF features and
cellsin each condition, calculated by GLM (Methods). Detailed statistics are shown in Table S9. The thickness of edges
indicates the absolute value of the coefficient of GLM, and colors indicate conditions such as diseases, gender, and age.
(B) Strategy for multiclass classification by machine learning. The training was performed with cross-validation. The
evaluation was performed using the independent dataset of training datasets.

(C) Bvaluations of models trained by cell frequencies (upper panel), by NMFproj valuesin Tnaive and Tcm (ThO)
(middle panel), and by both cell frequencies and NMFproj values (lower panel). The confusion matrix (left) and PR-
AUC (right) are shown. The dashed linesin the PR-AUC plot show the expected PR-AUC scoresin random models. The
number of samples used for the training is 263, 27, 62, 11, 43, 20, 156, 116, 11 subjects for HC, sarcoidosi's, psoriasis,
celiac disease, MS, RA, SLE, COVID-19, and T1D, and evaluated on 89, 43, 43, and 9 subjects from independent data

sets.

Figure 9. NMF cell featur e changes depending on diseases
Dot plots depicting NMF cell feature changes in each cell type. Dot colors show coefficients, and sizes show the
significance of GLM. GLM was performed with amodel, NMF cell feature ~ disease + age + gender + project. Only

significant dots (pa < 0.05) are shown.

Figure S10. Partitioned heritability
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(A and B) Dot plots showing partitioned heritability of diseases across NMF gene features (A) or cell types

(B). Duplicated traits were removed for the visualization. Full statistics are shown in Tables S11 and 12.
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968 Supplementary Note - The applications of NMFproj -

969 Miyara classification (bulk RNA-seq)

970  We utilized NMFproj to bulk RNA-seq data of sorted peripheral CD4" T cells for each fraction in the Miyara

971  classification *, which classifies CD4" T cells by CD25 and CD45RA (Figure S3E, POH: 0.542). Consistent with

972 previous findings *, Fr. | and Fr. |1 exhibited high NMF1 (Treg-F), while Fr. V and Fr. IV showed low NMF1 (Treg-F).
973 Similarly, NMF3 (Naive-F) was found to be highin Fr. | and Fr. VI, and low in Fr. Il and Fr. V, which also aligns with
974  existing knowledge. Furthermore, Fr. 111 has been reported to possess weak suppressive activity and a Th17-like

975 phenotype *, and this was concordant with our observation that NMF1 (Treg-F) was lower in Fr. |11 compared to Fr. |

976  andFr. I, and NMF2 (Th17-F) was higher.

977 Tph cells (bulk RNA-seq)
978 Profiling of sorted Tph cells also revealed that Tph isa population with both Tfhness (NMF6) and Thiness (NMF11)

979 (Figure S3F, POH: 0.134).

980  iTregcells (bulk RNA-seq)

981  When we applied NMFproj to in vitro induced Tregs (iTregs) *', NMF1 (Treg-F) was higher in nTreg cells than iTreg
982  cells(Figure S3G). iTreg cells made in conditions to stabilize Treg function with CD28 depletion and two times resting
983  showed higher NMF1 (Treg-F) than other iTreg cells concordantly with the experimentally measured suppressive

984  functions. This suggests that NM Fproj can be used for the evaluation of Tregnessin a genome-wide manner rather than

985  thetracing of single or afew genes, as performed in most studies, as well as monitoring of unwanted polarization.

986  Pan-cancer CD4" T cells (ScRNA-seq)
987  Weanalyzed scRNA-seq of the pan-cancer CD4* T cell dataset *° by utilizing NMFproj (Figure S4A; POH: 0.53). The
988 12 factorswere also conserved in the tumor microenvironments. Most Treg cells possessed high NMF5 (TregEff/Th2-F),

989 indicating Treg activation in tumor environments. NMF10 (Tissue-F) was broadly high in tumor CD4" T cells.

990 Mouse splenocytes (SCRNA-seq)

991 Single-cell data from mouse splenocytes * were analyzed to confirm whether cross-species projection was possible. We
992  found that NMFproj could capture not only relatively large populations of Treg and Tfh but also small populations such
993  asThl7 and Th2, which were not indicated in the original paper (Figure S4B, POH: 0.394). Thisresult indicates that
994  cross-species projection is also possible and, moreover, that NM Fproj isinformative even for single-cell data with a

995 small number of cells.
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996  Cross-tissue immune cells (sScRNA-seq)
997  Wereanalyzed the single-cell cross-tissue dataset * to investigate how the gene features created using peripheral blood
998  would behavein organs (Figure Sb). The projected cell features were concordant with the defined cell population, except
999  for the absence of cytotoxic CD4" Temra. Then, we noticed that the cytotoxic CD4" Temrawas incorrectly defined asa
1000 CD8'T population and part of CD8" T as CD4" T in the origina report. We had similar experiences where CD4" T cells
1001 and CD8" T cells were not well separated and embedded as a mixed cluster in single-cell analysis. We hypothesized that
1002 CD4" T and CD8" T use similar genetic programs, examined the POH of each cell type, and found that, surprisingly,
1003 CD8" T cells, innate T cells, and even B cells and myeloid cells marked relatively high POH. When Evar was examined,
1004  CD8'T cellsandinnate T cells were found to preferentially use NMFO (cytotoxic-F), while B cells and Myeloid cells
1005 used NMF5 (TregEff/Th2-F). These observations suggested that gene programs were evolutionally developed and
1006  conserved across cell populations. Examination of POH in CD4" T cells by tissue showed that POH was highin
1007 peripheral blood and secondary lymphoid tissues, while POH was low in tissues such as the liver and muscle, suggesting
1008  that the gene features defined using peripheral CD4" T cellsdo not fully represent the tissue response. In addition, the
1009 Evar of TregEff/Th2-F, Th17-F, and Thl-F were found to be high in tissues, suggesting that polarization isa prominent

1010 event in tissues.

1011 Sorted CD4" T cell fractions from autoimmune patients (bulk RNA-seq)

1012 NM Fproj was adapted to the ImmuNexUT dataset **, which contains sorted CD4" T cell fractions across autoimmune
1013 diseasesto capture qualitative changesin each CD4" T cell population (Figure S6 POH: 0.586). The most prominent
1014 variationis NMF7 (IFN-F), which is elevated across cell typesin SLE and MCTD. Also, Tregness (NMF1) decreased in

1015 SLE in naive Treg, indicating Treg dysfunction in SLE patients.
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