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Abstract

Single-cell technologies can readily measure the expression of thousands of molecular features from
individual cells undergoing dynamic biological processes, such as cellular differentiation, immune
response, and disease progression. While examining cells along a computationally ordered pseudotime
offers the potential to study how subtle changes in gene or protein expression impact cell fate decision-
making, identifying characteristic features that drive continuous biological processes remains difficult
to detect from unenriched and noisy single-cell data. Given that all profiled sources of feature variation
contribute to the cell-to-cell distances that define an inferred cellular trajectory, including confounding
sources of biological variation (e.g. cell cycle or metabolic state) or noisy and irrelevant features (e.g.
measurements with low signal-to-noise ratio) can mask the underlying trajectory of study and hinder
inference. Here, we present DELVE (dynamic selection of locally covarying features), an unsupervised
feature selection method for identifying a representative subset of dynamically-expressed molecular
features that recapitulates cellular trajectories. In contrast to previous work, DELVE uses a bottom-up
approach to mitigate the effect of unwanted sources of variation confounding inference, and instead
models cell states from dynamic feature modules that constitute core regulatory complexes. Using
simulations, single-cell RNA sequencing data, and iterative immunofluorescence imaging data in the
context of the cell cycle and cellular differentiation, we demonstrate that DELVE selects features that
more accurately characterize cell populations and improve the recovery of cell type transitions. This
feature selection framework provides an alternative approach for improving trajectory inference and
uncovering co-variation amongst features along a biological trajectory. DELVE is implemented as an
open-source python package and is publicly available at: https://github.com/jranek/delve.

Introduction1

High-throughput single-cell technologies, such as flow and mass cytometry [1, 2, 3], single-cell RNA sequencing2

[4, 5, 6, 7], and imaging-based profiling techniques [8, 9, 10, 11] have transformed our ability to study how cell3

populations respond and dynamically change during processes like development [12, 13, 14, 15] and immune4

response [16, 17, 18]. By profiling many features (e.g. proteins or genes) for many thousands of cells from a5

biological sample, these technologies provide high-dimensional snapshot measurements that can be used to gain6

fundamental insights into the molecular mechanisms that govern phenotypic changes.7

Trajectory inference methods [19] have been developed to model dynamic biological processes from snapshot8

single-cell data. By assuming cells are asynchronously changing over time such that a profiled biological sample9

from a single experimental time point describes a range of the underlying dynamic process, computational trajectory10

inference approaches have leveraged minimum spanning tree approaches [20, 21, 22], curve-fitting [23, 24], graph-11

based techniques [25, 26, 27], probabilistic approaches [28, 29, 30], or optimal transport [31, 32] to order cells12

based on their similarities in feature expression. Once a trajectory model is fit, regression [33, 34, 35] can be13
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performed along estimated pseudotime (e.g. distance through the inferred trajectory from a start cell) to identify14

specific cell state changes associated with differentiation or disease trajectories. Moreover, these inferred cellular15

trajectories have the potential to elucidate higher-order gene interactions [36], gene regulatory networks [37],16

predict cell fate probabilities [29], or find shared mechanisms of expression dynamics across disease conditions or17

species [38, 39].18

While trajectory analysis has proven useful in the context of single-cell biology, the identification of characteristic19

genes or proteins that drive continuous biological processes relies on having inferred accurate cellular trajectories,20

which can be challenging, especially when trajectory inference is performed on the original full unenriched dataset.21

Single-cell data are noisy measurements that suffer from limitations in detection sensitivity, where dropout [40],22

low signal-to-noise, or sample degradation [41] can result in spurious signals that can overwhelm true biological23

differences. Furthermore, all profiled sources of feature variation contribute to the cell-to-cell distances that24

define the inferred cellular trajectory; thus, including confounding sources of biological variation (e.g. cell cycle,25

metabolic state) or irrelevant features (e.g. extracted imaging measurements that contain low signal-to-noise ratio)26

can distort or mask the intended trajectory of study [42, 43]. With the accumulation of large-scale single-cell data27

and multi-modal measurements [44], appropriate filtering of noisy, information-poor, or irrelevant features can28

serve as a crucial and necessary step for cell type identification, inference of dynamic phenotypes, and identification29

of punitive driver features (e.g. genes, proteins).30

Feature selection methods [45] are a class of supervised or unsupervised approaches that can remove redundant31

or information-poor features prior to performing trajectory inference, and therefore, they have great potential32

for improving the interpretation of downstream analysis, while easing the computational burden by reducing33

dataset dimension. In the supervised-learning regime, classification-based [46] or information-theoretic approaches34

[47, 48] have been used to evaluate features according to their discriminative power or association with cell types.35

Despite having great power to detect biologically-relevant features, these methods rely on expensive or laborious36

manual annotations (e.g. cell types) which are often unavailable [49] thus precluding them from use. In the37

unsupervised-learning regime, computational approaches often aim to identify relevant features based on intrinsic38

properties of the complete dataset; however, these methods have some limitations with respect to retaining features39

that are useful for defining cellular trajectories. Namely, although unsupervised variance-based approaches [50, 51],40

which effectively sample features based on their overall variation across cells, have been extensively used to identify41

features that define cell types without the need for ground truth annotations, (1) they can be overwhelmed by42

noisy or irrelevant features that dominate data variance, and (2) are insensitive to lineage-specific features (e.g.43

transcription factors) that have a small variance and gradual progression of expression. Alternatively, unsupervised44

similarity-based [52, 53, 25] or subspace-learning [54, 55] feature selection methods evaluate features according45

to their association with a cell-similarity graph defined by all features or the underlying structure of the data (e.g.46

pairwise similarities defined by uniform manifold approximation and projection (UMAP) [56], eigenvectors of47

the graph Laplacian matrix [57]). While these approaches have the potential to detect smoothly varying genes48

or proteins that define cellular transitions, they rely on the cell-similarity graph from the full dataset and can49

fail to identify relevant features when the number of noisy features outweighs the number of informative ones50

[58, 59].51

To address these limitations, we developed DELVE (dynamic selection of locally covarying features), an unsuper-52

vised feature selection method for identifying a representative subset of molecular features that robustly recapitulate53

cellular trajectories. In contrast to previous work [55, 52, 50, 54, 53, 25], DELVE uses a bottom-up approach to54

mitigate the effect of unwanted sources of variation confounding feature selection and trajectory inference, and55

instead models cell states from dynamic feature modules that constitute core regulatory complexes. Features are56

then ranked for selection according to their association with the underlying cell trajectory graph using data diffusion57

techniques. We demonstrate the power of our approach for improving inference of cellular trajectories through58

achieving an increased sensitivity to detect diverse and dynamically expressed features that better delineate cell59

types and cell type transitions from single-cell RNA sequencing and protein immunofluorescence imaging data.60

Overall, this feature selection framework provides an alternative approach for uncovering co-variation amongst61

features along a biological trajectory.62

Results63

Overview of the DELVE algorithm64

We propose DELVE, an unsupervised feature selection framework for modeling dynamic cell state transitions65

using graph neighborhoods (Fig. 1). Our approach extends previous unsupervised similarity-based [52, 53, 25]66
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or subspace-learning feature selection [55] methods by computing the dependence of each gene on the cellular67

trajectory graph structure using a two-step approach. Inspired by the molecular events that occur during differ-68

entiation, where the coordinated spatio-temporal expression of key regulatory genes govern lineage specification69

[60, 61, 62, 63], we reasoned that we can approximate cell state transitions by identifying groups of features that70

are temporally co-expressed or co-regulated along the underlying dynamic process.71

In step one, DELVE identifies groups of features that are temporally co-expressed by clustering features according72

to their average pairwise change in expression across prototypical cellular neighborhoods (Figure 1 step 1). As has73

been done previously [64, 65], we model cell states using a weighted k-nearest neighbor (k-NN) affinity graph,74

where nodes represent cells and edges describe the transcriptomic or proteomic similarity amongst cells according75

to all profiled features. Here, DELVE leverages a distribution-focused sketching method [66] to effectively sample76

cellular neighborhoods across all cell types. This sampling approach has three main advantages: (1) cellular77

neighborhoods are more reflective of the distribution of cell states, (2) redundant cell states are removed, and78

(3) fewer cellular neighborhoods are required to estimate feature dynamics resulting in increased scalability.79

Following clustering, each DELVE module contains a set of features with similar local changes in co-variation80

across prototypical cell states along the cellular trajectory. Feature-wise permutation testing is then used to assess81

the significance of dynamic expression variation across grouped features as compared to random assignment. By82

identifying and excluding modules of features that have static, random, or noisy patterns of expression variation,83

this approach effectively mitigates the effect of unwanted sources of variation confounding feature ranking and84

selection, and subsequent trajectory inference.85

In step two, DELVE approximates the underlying cellular trajectory by constructing an affinity graph between cells,86

where cell similarity is now redefined according to a core set of dynamically expressed regulators. All profiled87

features are then ranked according to their association with the underlying cellular trajectory graph using graph88

signal processing techniques [67, 68] (Fig. 1 step 2). More concretely, a graph signal is any function that has a89

real defined value on all of the nodes. In this context, we consider all features as graph signals and rank them90

according to their total variation in expression along the cellular trajectory graph using the Laplacian Score [52].91

Intuitively, DELVE retains features that are considered to be globally smooth, or have similar expression values92

amongst similar cells along the approximate cellular trajectory graph. In contrast, DELVE excludes features that93

have a high total variation in signal, or expression values that are rapidly oscillating amongst neighboring cells, as94

these features are likely noisy or not involved in the underlying dynamic process that was seeded. The output of95

DELVE is a ranked set of features that best preserve the local trajectory structure. For a more detailed description96

on the problem formulation, the mathematical foundations behind feature ranking, and the impact of nuisance97

features on trajectory inference, see DELVE in the Methods section.98

Figure 1: Schematic overview of the DELVE pipeline. Feature selection is performed in a two-step process.
In step 1, DELVE clusters features according to their expression dynamics along local representative cellular
neighborhoods defined by a weighted k-nearest neighbor affinity graph. Neighborhoods are sampled using a
distribution-focused sketching algorithm that preserves cell-type frequencies and spectral properties of the original
dataset [66]. A permutation test with a variance-based test statistic is used to determine if a set of features are (1)
dynamically changing (dynamic) or (2) exhibiting random patterns of variation (static). In step 2, dynamic modules
are used to seed or initialize an approximate cell trajectory graph and the trajectory is refined by ranking and
selecting features that best preserve the local structure using the Laplacian Score [52]. In this study, we compare
DELVE to the alternative unsupervised feature selection approaches on how well selected features preserve cell
type and cell type transitions according to several metrics.
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DELVE outperforms existing feature selection methods on representing cellular trajectories99

in the presence of single-cell RNA sequencing noise100

Although feature selection is a common preprocessing step in single-cell analysis [69] with the potential to reveal101

cell-type transitions that would have been masked in the original high-dimensional feature space [42], there has102

been no systematic evaluation of feature selection method performance on identifying biologically-relevant features103

for trajectory analysis in single-cell data, especially in the context of noisy data that contain biological or technical104

challenges (e.g. low total mRNA count, low signal-to-noise ratio, or dropout). In this study, we compared DELVE105

to eleven other feature selection approaches and evaluated methods on their ability to select features that represent106

cell types and cell type transitions using simulated data where the ground truth was known. In the sections below,107

we will describe an overview of the feature selection methods considered and outline the simulation design and108

evaluation criteria in more detail. We will then provide qualitative and quantitative assessments of how noise109

impacts feature selection method performance and subsequent inference of cellular trajectories.110

Overview of feature selection methods111

We performed a systematic evaluation of twelve feature selection methods for preserving cellular trajectories in noisy112

single-cell data. Feature selection methods were grouped into five general categories prior to evaluation: supervised,113

similarity, subspace-learning, variance, and baseline approaches. For more details on the feature selection methods114

implemented and hyperparameters, see Benchmarked feature selection methods and Supplementary Table 1.115

Supervised approaches: To illustrate the performance of ground-truth feature selection that could be obtained116

through supervised learning on expert annotated cell labels, we performed Random Forest classification. Random117

Forest classification [46] is a supervised ensemble learning algorithm that uses an ensemble of decision trees to118

partition the feature space such that all of the cells with the same cell type label are grouped together. Here, each119

decision or split of a tree was chosen by minimizing the Gini Impurity score [70]. This approach was included to120

provide context for unsupervised feature selection method performance.121

Similarity approaches: We considered four similarity-based approaches as unsupervised feature selection methods122

that rank features according to their association with a cell similarity graph defined by all profiled features (e.g.123

Laplacian Score, neighborhood variance, hotspot) or dynamically-expressed features (e.g. DELVE). First, the124

Laplacian Score (LS) [52] is an unsupervised locality-preserving feature selection method that ranks and selects125

features according to (1) the total variation in feature expression across neighboring cells using a cell similarity graph126

defined by all features and (2) a feature’s global variance. Next, neighborhood variance [25] is an unsupervised127

feature selection method that selects features with gradual changes in expression for building biological trajectories.128

Here, features are selected if their variance in expression across local cellular neighborhoods is smaller than their129

global variance. Hotspot [53] performs unsupervised feature selection through a local autocorrelation test statistic130

that measures the association of a gene’s expression with a cell similarity graph defined by all features. Lastly,131

DELVE (dynamic selection of locally covarying features) is an unsupervised feature selection method that ranks132

features according to their association with the underlying cellular trajectory graph. First, features are clustered into133

modules according to changes in expression across local representative cellular neighborhoods. Next, modules of134

features with dynamic expression patterns (denoted as dynamic seed) are used to construct an approximate cellular135

trajectory graph. Features are then ranked according to their association with the approximate cell trajectory graph136

using the Laplacian Score [52].137

Subspace learning approaches: We considered two subspace-learning feature selection methods as unsupervised138

methods that rank features according to how well they preserve the overall cluster structure (e.g. MCFS) or139

manifold structure (e.g. SCMER) of the data. First, multi-cluster feature selection (MCFS) [55] is an unsupervised140

feature selection method that selects features that best preserve the multi-cluster structure of data by solving an141

L1 regularized least squares regression problem on the spectral embedding defined by all profiled features. The142

optimization is solved using the least angles regression algorithm [71]. Next, single-cell manifold-preserving feature143

selection (SCMER) [54] is an unsupervised feature selection method that selects a subset of features that best144

preserves the pairwise similarity matrix between cells defined in uniform manifold approximation and projection145

[56] based on all profiled features. To do so, it uses elastic net regression to find a sparse solution that minimizes146

the KL divergence between a pairwise similarity matrix between cells defined by all features and one defined using147

only the selected features.148
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Variance approaches: We considered two variance-based feature selection approaches (e.g. highly variable genes149

[50], max variance) as unsupervised methods that use global expression variance as a metric for ranking feature150

importance. First, highly variable gene selection (HVG) [50] is an unsupervised feature selection method that151

selects features according to a normalized dispersion measure. Here, features are binned based on their average152

expression. Within each bin, genes are then z-score normalized to identify features that have a large variance, yet a153

similar mean expression. Next, max variance is an unsupervised feature selection method that ranks and selects154

features that have a large global variance in expression.155

Baseline approaches: We considered three baseline strategies (e.g. all, random, dynamic seed) that provide156

context for the overall performance of feature selection. First, all features illustrates the performance when feature157

selection is not performed and all features are included for analysis. Second, random features represents the158

performance quality when a random subset of features are sampled. Lastly, dynamic seed features indicate the159

performance from dynamically-expressed features identified in step 1 of the DELVE algorithm prior to feature160

ranking and selection.161

Single-cell RNA sequencing simulation design162

To validate our approach and benchmark feature selection methods on representing cellular trajectories, we163

simulated 90 single-cell RNA sequencing datasets with 1500 cells and 500 genes using Splatter. Splatter [72]164

simulates single-cell RNA sequencing data with various trajectory structures (e.g. linear, bifurcation, tree) using165

a gamma-Poisson hierarchical model. Importantly, this approach provides ground truth reference information166

(e.g. cell type annotations, differentially expressed genes per cell type and trajectory, and a latent vector that167

describes an individual cell’s progression through the trajectory) that we can use to robustly assess feature selection168

method performance, as well as quantitatively evaluate the limitations of feature selection strategies for trajectory169

analysis. Moreover, to comprehensively evaluate feature selection methods under common biological and technical170

challenges associated with single-cell RNA sequencing data, we added relevant sources of single-cell noise to the171

simulated data. First, we simulated low signal-to-noise ratio by enforcing a mean-variance relationship amongst172

genes; this ensures that lowly expressed genes are more variable than highly expressed genes. Next, we modified173

the total number of profiled mRNA transcripts, or library size. This has been shown previously to vary amongst174

cells within a single-cell experiment and can influence both the detection of differentially expressed genes [73],175

as well as impact the reproducibility of the inferred lower-dimensional embedding [74]. Lastly, we simulated the176

inefficient capture of mRNA molecules, or dropout, by undersampling gene expression from a binomial distribution;177

this increases the amount of sparsity present within the data. For more details on the splatter simulation, see178

Splatter simulation. For each simulated trajectory, we performed feature selection according to all described feature179

selection strategies, and considered the top 100 ranked features for downstream analysis and evaluation.180

Qualitative assessment of feature selection method performance181

Prior to evaluating feature selection method performance quantitatively, we began our analysis with a qualitative182

assessment of the importance of feature selection for representing cellular trajectories when the data contain183

irrelevant or noisy genes. First, we visually compared the cellular trajectories generated from a feature selection184

strategy with PHATE (potential of heat-diffusion for affinity-based transition embedding). PHATE [75] is a185

nonlinear dimensionality reduction method that has been shown to effectively learn and represent the geometry of186

complex continuous and branched biological trajectories. As an illustrative example, Fig. 2a shows the PHATE187

embeddings for simulated linear differentiation trajectories generated from four feature selection approaches (all,188

DELVE, Laplacian Score (LS), and random) when subjected to a decrease in the signal-to-noise ratio. Here,189

we simulated a reduction in the signal-to-noise ratio and stochastic gene expression by modifying the biological190

coefficient of variation (BCV) parameter within Splatter [72]. This scaling factor controls the mean-variance191

relationship between genes, where lowly expressed genes are more variable than highly expressed genes (See192

Splatter simulation). Under low noise conditions where the data contained a high signal-to-noise ratio, we observed193

that excluding irrelevant features with DELVE or the Laplacian Score (LS) produced a much smoother, denoised194

visualization of the linear trajectory, where cells were more tightly clustered according to cell type. This was195

compared to the more diffuse presentation of cell states obtained based on all genes. We then examined how196

noise influences the quality of selected features from a feature selection strategy. As the signal-to-noise ratio197

decreased (high, medium, low), we observed that the linear trajectory became increasingly harder to distinguish,198

whereby including both irrelevant and noisy genes often masked the underlying trajectory structure (Fig. 2a all199

genes, medium to low signal-to-noise ratio). Furthermore, we found that unsupervised similarity-based or subspace200

learning feature selection methods that initially define a cell similarity graph according to all irrelevant, noisy, and201
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informative genes often selected genes that produced noisier embeddings as the amount of noise increased (e.g. Fig.202

2a LS: medium signal-to-noise ratio), as compared to DELVE (e.g. Fig. 2a DELVE medium signal-to-noise ratio).203

We reason that this is due to spurious similarities amongst cells, reduced clusterability, and increased diffusion times.204

These qualitative observations were consistent across different noise conditions (e.g. decreased signal-to-noise,205

decreased library size, increased dropout) and trajectory types (e.g. linear, bifurcation, tree) (See Supplementary206

Figs. 1 - 9). Although a qualitative comparison, this example illustrates how including irrelevant or noisy genes can207

define spurious similarities amongst cells, which can (1) influence a feature selection method ability to identify208

biologically-relevant genes and (2) impact the overall quality of an inferred lower dimensional embedding following209

selection. Given that many trajectory inference methods use lower dimensional representations in order to infer210

a cell’s progression through a differentiation trajectory, it is crucial to remove information-poor features prior to211

performing trajectory inference in order to obtain high quality embeddings, clustering assignments, or cellular212

orderings that are reproducible for both qualitative interpretation and downstream trajectory analysis.213

Quantitative assessment of feature selection method performance214

We next quantitatively examined how biological or technical challenges associated with single-cell RNA sequencing215

data may influence a feature selection method’s ability to detect the particular genes that define cell types or cell type216

transitions. To do so, we systematically benchmarked the 12 described feature selection strategies on their capacity217

to preserve trajectories according to three sets of quantitative comparisons. Method performance was assessed by218

evaluating if selected genes from an approach were (1) differentially expressed within a cell type or along a lineage,219

(2) could be used to classify cell types, and (3) could accurately estimate individual cell progression through the220

cellular trajectory. Fig. 2b-d shows feature selection method performance for simulated linear differentiation221

trajectories when subjected to the technical challenge of having a reduction in the signal-to-noise ratio.222

Figure 2: Comparison of feature selection methods on preserving linear trajectories when subjected to a
reduction in the signal-to-noise ratio. (a) Example PHATE [75] visualizations of simulated linear trajectories
using four feature selection approaches (all features, DELVE, Laplacian Score (LS) [52], and random selection)
when subjected to a reduction in the signal-to-noise ratio (high, medium, low). Here, we simulated a reduction in
the signal-to-noise ratio and stochastic gene expression by modifying the biological coefficient of variation (bcv)
parameter within Splatter [72] that controls the mean-variance relationship between genes, where lowly expressed
genes are more variable than highly expressed genes (high: bcv = 0.1, medium: bcv = 0.25, low: bcv = 0.5).
d indicates the total number of genes (d = 500) and p indicates the number of selected genes following feature
selection (p = 100). (b-d) Performance of twelve different feature selection methods: random forest [46], DELVE,
dynamic seed features, LS [52], neighborhood variance [25], hotspot [53], multi-cluster feature selection (MCFS)
[55], single-cell manifold preserving feature selection (SCMER) [54], max variance, highly variable gene selection
(HVG) [50], all features, random features. Following feature selection, trajectory preservation was quantitatively
assessed according to several metrics: (b) the precision of differentially expressed genes at k selected genes, (c)
k-NN classification accuracy, and (d) pseudotime correlation to the ground truth cell progression across 10 random
trails. Error bars/bands represent the standard deviation. * indicates the method with the highest median score. For
further details across other trajectory types and noise conditions, see Supplementary Figs. 1 - 9.
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First, we assessed the biological relevancy of selected genes, as well as the overall recovery of relevant genes223

as the signal-to-noise ratio decreased by computing a precision score. Precision@k is a metric that defines the224

proportion of selected genes (k) that are known to be differentially-expressed within a cell type or along a lineage225

(See Precision@k). Overall, we found that DELVE achieved the highest precision@k score between selected genes226

and the ground truth, validating that our approach was able to select genes that are differentially expressed and227

was the strongest in defining cell types and cell type transitions (See Fig. 2b). Importantly, DELVE’s ability to228

recover informative genes was robust to the number of genes selected (k) and to the amount of noise present in the229

data. In contrast, variance-based, similarity-based, or subspace-learning approaches exhibited comparatively worse230

recovery of cell type and lineage-specific differentially expressed genes.231

Given that a key application of single-cell profiling technologies is the ability to identify cell types or cell states232

that are predictive of sample disease status, responsiveness to drug therapy, or are correlated with patient clinical233

outcomes [76, 77, 78, 79, 65], we then assessed whether selected genes from a feature selection strategy can234

correctly classify cells according to cell type along the underlying cellular trajectory; this is a crucial and necessary235

step of trajectory analysis. Therefore, we trained a k-nearest neighbor (k-NN) classifier on the selected feature236

set (see k-nearest neighbor classification) and compared the predictions to the ground truth cell type annotations237

by computing a cell type classification accuracy score. Across all simulated trajectories, we found that DELVE238

selected genes that often achieved the highest median k-NN classification accuracy score (high signal-to-noise ratio:239

0.937, medium signal-to-noise ratio: 0.882, low signal-to-noise ratio: 0.734) and produced k-NN graphs that were240

more faithful to the underlying biology (See Fig. 2c). Moreover, we observed a few results that were consistent241

with the qualitative interpretations. First, removing irrelevant genes with DELVE, LS, or MCFS achieved higher242

k-NN classification accuracy scores (e.g. high signal-to-noise ratio; DELVE = 0.937, LS = 0.915, and MCFS243

= 0.955, respectively) than was achieved by retaining all genes (all = 0.900). Next, DELVE outperformed the244

Laplacian Score, suggesting that using a bottom-up framework and excluding nuisance features prior to performing245

ranking and selection is crucial for recovering cell-type specific genes that would have been missed if the cell246

similarity graph was initially defined based on all genes. Lastly, when comparing the percent change in performance247

as the amount of noise corruption increased (e.g. high signal-to-noise ratio to medium signal-to-noise ratio) for248

linear trajectories, we found that DELVE often achieved the highest average classification accuracy score (0.905)249

and lowest percent decrease in performance (-6.398%), indicating that DELVE was the most robust unsupervised250

feature selection method to noise corruption (See Supplementary Fig. 10a). In contrast, the existing unsupervised251

similarity-based or subspace learning feature selection methods that achieved high to moderate average k-NN252

classification accuracy scores (e.g. MCFS = 0.905, LS = 0.874) had larger decreases in performance (e.g. MCFS =253

-9.673%, LS = -8.390%) as the amount of noise increased. This further highlights the limitations of current feature254

selection methods on identifying cell type-specific genes from noisy single-cell omics data.255

Lastly, when undergoing dynamic biological processes such as differentiation, cells exhibit a continuum of cell256

states with fate transitions marked by linear and nonlinear changes in gene expression [80, 81, 82]. Therefore, we257

evaluated how well feature selection methods could identify genes that define complex differentiation trajectories258

and correctly order cells along the cellular trajectory in the presence of noise. To infer cellular trajectories and259

to estimate cell progression, we used the diffusion pseudotime algorithm [83] on the selected gene set from each260

feature selection strategy, as this approach has been shown previously [19] to perform reasonably well for inference261

of simple or branched trajectory types (See Trajectory inference and analysis). Method performance was then262

assessed by computing the Spearman rank correlation between estimated pseudotime and the ground truth cell263

progression. We found that DELVE approaches more accurately inferred cellular trajectories and achieved the264

highest median pseudotime correlation to the ground truth measurements, as compared to alternative methods or265

all features (See Fig. 2d). Furthermore, similar to the percent change in classification performance, we found266

that DELVE was the most robust unsupervised feature selection method in estimating cell progression, as it often267

achieved the highest average pseudotime correlation (0.645) and lowest percent decrease in performance (-22.761%)268

as the amount of noise increased (See Supplementary Fig. 10b high to medium signal-to-noise ratio). In contrast, the269

alternative methods incorrectly estimated cellular progression and achieved lower average pseudotime correlation270

scores (e.g. MCFS = 0.602, LS = 0.526) and higher decreases in performance as the signal-to-noise ratio decreased271

(MCFS = -38.884%, LS = -40.208%).272

We performed this same systematic evaluation across a range of trajectory types (e.g. linear, bifurcation, tree)273

and biological or technical challenges associated with single-cell data (See Supplementary Figs. 1 - 12). Fig. 3274

displays the overall ranked method performance of feature selection methods on preserving cellular trajectories275

when subjected to different sources of single-cell noise (pink: decreased signal-to-noise ratio, green: decreased276

library size, and blue: increased dropout). Ranked aggregate scores were computed by averaging results across277

all datasets within a condition; therefore, this metric quantifies how well a feature selection strategy can recover278

genes that define cell types or cell type transitions underlying a cellular trajectory when subjected to that biological279
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or technical challenge (See Aggregate scores). Across all conditions, we found that DELVE often achieved an280

increased recovery of differentially expressed genes, higher cell type classification accuracy, higher correlation281

of estimated cell progression, and lower percent change in performance in noisy data. While feature selection282

method performance varied across biological or technical challenges, we found that the Laplacian score (LS) and283

multi-cluster feature selection (MCFS) performed reasonably well under low amounts of noise corruption and284

are often the second and third ranked unsupervised methods. Altogether, this simulation study demonstrates that285

DELVE more accurately recapitulates cellular dynamics and can be used to effectively interrogate cell identity and286

lineage-specific gene expression dynamics from noisy single-cell data.287

Figure 3: DELVE outperforms existing feature selection methods on representing trajectories in the pres-
ence of single-cell RNA sequencing noise. Feature selection methods were ranked by averaging their overall
performance across datasets from different trajectory types (e.g. linear, bifurcation, tree) when subjected to noise
corruption (e.g. decreased signal-to-noise ratio, decreased library size, and increased dropout). Several metrics were
used to quantify trajectory preservation, including, precision of dynamically-expressed genes with 50 selected genes
(p@50), precision at 100 selected genes (p@100), precision at 150 selected genes (p@150), k-NN classification
accuracy of cell type labels (acc), and pseudotime correlation (pst). Here, higher-ranked methods are indicated by a
longer lighter bar, and the star illustrates our approach (DELVE) as well as the performance from dynamic seed
features of step 1 of the algorithm. DELVE often achieves the highest precision of lineage-specific differentially
expressed genes, highest classification accuracy, and highest pseudotime correlation across noise conditions and
trajectory types. Of note, random forest was included as a baseline representation to illustrate feature selection
method performance when trained on ground truth cell type annotations; however, it was not ranked, as this study
is focused on unsupervised feature selection method performance on trajectory preservation.

Revealing molecular trajectories of proliferation and cell cycle arrest288

Recent advances in spatial single-cell profiling technologies [8, 9, 84, 10, 11, 85, 86, 87, 88] have enabled the289

simultaneous measurement of transcriptomic or proteomic signatures of cells, while also retaining additional290

imaging or array-derived features that describe the spatial positioning or morphological properties of cells. These291
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spatial single-cell modalities have provided fundamental insights into mammalian organogenesis [88, 89] and292

complex immune responses linked to disease progression [90, 91]. By leveraging imaging data to define cell-to-293

cell similarity, DELVE can identify smoothly varying spatial features that are strongly associated with cellular294

progression, such as changes in cell morphology or protein localization.295

To demonstrate this, we applied DELVE to an integrated live cell imaging and protein iterative indirect immunofluo-296

rescence imaging (4i) dataset consisting of 2759 human retinal pigmented epithelial cells (RPE) undergoing the cell297

cycle (See RPE analysis). In a recent study [92], we performed time-lapse imaging on an asynchronous population298

of non-transformed RPE cells expressing a PCNA-mTurquoise2 reporter to record the cell cycle phase (G0/G1, S,299

G2, M) and age (time since last mitosis) of each cell. We then fixed the cells and profiled them with 4i to obtain300

measurements of 48 core cell cycle effectors. The resultant dataset consisted of 241 imaging-derived features301

describing the expression and localization of different protein markers (e.g. nucleus, cytoplasm, perinuclear region –302

denoted as ring), as well as morphological measurements from the images (e.g. size and shape of the nucleus).303

Given that time-lapse imaging was performed prior to cell fixation, this dataset provides the unique opportunity to304

rigorously evaluate feature selection methods on a real biological system (cell cycle) with technical challenges (e.g.305

many features with low signal-to-noise ratio, autofluorescence, sample degradation).306

We first tested whether DELVE can identify a set of dynamically-expressed cell cycle-specific features to construct307

an approximate cellular trajectory graph for feature selection. Overall, we found that DELVE successfully identified308

dynamically-expressed seed features (p = 13) that are known to be associated with cell cycle proliferation (e.g.309

increase in DNA content and area of the nucleus) and captured key mechanisms previously shown to drive cell cycle310

progression (Fig. 4a right), including molecular events that regulate the G1/S and G2/M transitions. For example,311

the G1/S transition is governed by the phosphorylation of RB by cyclin:CDK complexes (e.g. cyclinA/CDK2 and312

cyclinE/CDK2), which control the expression of E2F transcription factors that regulate S phase genes [93]. We313

also observed an increase in expression of Skp2, which reduces p27-mediated inhibition of E2F1 target genes314

[94, 95]. In addition, our approach identified S phase events that are known to be associated with DNA replication,315

including an accumulation of PCNA foci at sites of active replication [96] and a DNA damage marker, pH2AX,316

which becomes phosphorylated in response to double-stranded DNA breaks in areas of stalled replication [97, 98].317

Lastly, we observed an increase in expression of cyclin B localized to different regions of the cell, which is a318

primary regulator of G2/M transition alongside CDK1 [99, 100]. Of note, phosphorylation of RB also controls cell319

cycle re-entry and is an important biomarker that is often used for distinguishing proliferating from arrested cells320

[101, 102]. Furthermore, by ordering the average pairwise change in expression of features across ground truth321

phase annotations, we observed that DELVE dynamically-expressed seed features exhibited non-random patterns322

of expression variation that gradually increased throughout the canonical phases of the cell cycle (Fig. 4a), and323

were amongst the top ranked features that were biologically predictive of cell cycle phase and age measurements324

using a random forest classification and regression framework, respectively (See Random forest, Figure 4a right,325

Supplementary Fig. 13). Collectively, these results illustrate that the dynamic feature module identified by DELVE326

represents a minimum cell cycle feature set (Fig. 4b dynamic seed) that precisely distinguishes individual cells327

according to their cell cycle progression status and can be used to construct an approximate cellular trajectory for328

ranking feature importance.329

We then comprehensively evaluated feature selection methods on their ability to retain imaging-derived features330

that define cell cycle phases and resolve proliferation and arrest cell cycle trajectories. We reasoned that cells331

in similar stages of the cell cycle (as defined by the cell cycle reporter) should have similar cell cycle signatures332

(4i features) and should be located near one another in a low dimensional projection. Fig. 4b shows the PHATE333

embeddings from each feature selection strategy. Using the DELVE feature set, we obtained a continuous PHATE334

trajectory structure that successfully captured the smooth progression of cells through the canonical phases of335

the cell cycle, where cells were tightly grouped together according to ground truth cell cycle phase annotations336

(Fig. 4b). Moreover, we observed that the two DELVE approaches (i.e. DELVE and dynamic seed), in addition to337

hotspot and HVG selection, produced qualitatively similar denoised lower-dimensional visualizations comparable338

to the supervised random forest approach that was trained on ground truth cell cycle phase annotations. In contrast,339

similarity-based approaches such as Laplacian score and neighborhood variance, which define a cell similarity340

graph according to all features, showed more diffuse presentations of cell states. Variance-based (max variance) or341

subspace-learning approaches (SCMER, MCFS) produced qualitatively similar embeddings to that produced using342

all features.343

To quantitatively assess if selected features from a feature selection strategy were biologically predictive of cell344

cycle phases, we performed three complementary analyses. We first focused on the task of cell state classification,345

where our goal was to learn the ground truth cell cycle phase annotations from the selected feature set. To do346

so, we trained a support vector machine (SVM) classifier and compared the accuracy of predictions to their347
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ground truth phase annotations (See Support Vector Machine). We performed nested 10-fold cross validation to348

obtain a distribution of predictions for each method. Overall, we found that DELVE achieved the highest median349

classification accuracy (DELVE = 0.960) obtaining a similar performance to the random forest classifier trained350

on cell cycle phase annotations (random forest = 0.957), and outperforming existing unsupervised approaches351

(e.g. hotspot = 0.935, max variance = 0.902, HVG = 0.889, MCFS = 0.870, SCMER = 0.797, LS = 0.770),352

as well as all features (0.946), suggesting that selected features with DELVE were more biologically predictive353

of cell cycle phases (Fig. 4d). We next aimed to assess how well a feature selection method could identify and354

rank cell cycle phase-specific features according to their representative power. To test this, we trained a random355

forest classifier on the ground truth phase annotations using nested 10-fold cross validation (See Random forest).356

We then compared the average ranked feature importance scores from the random forest to the selected features357

from a feature selection strategy using the precision@k metric. Strikingly, we found that DELVE achieved the358

highest median precision@k score (DELVE p@30 = 0.800) and appropriately ranked features according to their359

discriminative power of cell cycle phases despite being a completely unsupervised approach (Fig. 4d). This was360

followed by hotspot with a precision@k score of (hotspot p@30 = 0.633) and highly variable gene selection361

(HVG p@30 = 0.500). In contrast, the Laplacian Score and max variance obtained low precision scores (p@30 =362

0.367 and 0.333 respectively), whereas neighborhood variance and subspace-learning feature selection methods363

MCFS and SCMER were unable to identify cell cycle phase-specific features from noisy 4i data and exhibited364

precision scores near random (p@30 = 0.267, 0.267, and 0.233, respectively). Lastly, we assessed if selected365

image-derived features could be used for downstream analysis tasks like unsupervised cell population discovery.366

To do so, we clustered cells using the KMeans++ algorithm [103] on the selected feature set and compared the367

predicted labels to the ground truth annotations using a normalized mutual information (NMI) score over 25 random368

initializations (See Unsupervised clustering). We found that hotspot, DELVE, and dynamic seed features were369

better able to cluster cells according to cell cycle phases and achieved considerably higher median NMI scores370

(0.615, 0.599, 0.543, respectively), as compared to retaining all features (0.155) (Fig. 4d). Moreover, we found371

that clustering performance was similar to that of the random forest trained on cell cycle phase annotations (0.626).372

In contrast, variance-based approaches achieved moderate NMI clustering scores (HVG: 0.421, max variance:373

0.361) and alternative similarity-based and subspace learning approaches obtained low median NMI scores (∼ 0.2)374

and were unable to cluster cells into biologically-cohesive cell populations. Of note, many trajectory inference375

methods use clusters when fitting trajectory models [24, 104, 105, 23], thus accurate cell-to-cluster assignments376

following feature selection is crucial for both cell type annotation and discovery, as well as for accurate downstream377

trajectory analysis interpretation. Collectively, these results highlight that feature selection with DELVE identifies378

imaging-derived features from noisy protein immunofluorescence imaging data that are more biologically predictive379

of cell cycle phases.380

We then focused on the much harder task of predicting an individual cell’s progression through the cell cycle. A381

central challenge in trajectory inference is the destructive nature of single-cell technologies, where only a static382

snapshot of cell states is profiled. To move toward a quantitative evaluation of cell cycle trajectory reconstruction383

following feature selection, we leveraged the ground truth age measurements determined from time-lapse imaging384

of the RPE-PCNA reporter cell line. We first evaluated whether selected features could be used to accurately385

predict cell cycle age by training a support vector machine (SVM) regression framework using nested ten fold386

cross validation (See Support Vector Machine). Method performance was subsequently assessed by computing387

the mean squared error (MSE) between the predictions and the ground truth age measurements. Overall, we388

found that DELVE achieved the lowest median MSE (3.261), outperforming both supervised (random forest389

= 3.296) and unsupervised approaches (e.g. second best performer hotspot = 3.654) suggesting that selected390

features more accurately estimate the time following mitosis (Fig. 4c). Crucially, this highlights DELVE’s ability391

to learn new biologically-relevant features that might be missed when performing a supervised or unsupervised392

approach. Lastly, we assessed whether selected imaging features could be used to accurately infer proliferation393

and arrest cell cycle trajectories using common trajectory inference approaches (Fig. 4d). Briefly, we constructed394

predicted cell cycle trajectories using the diffusion pseudotime algorithm [83] under each feature selection strategy395

(See Trajectory inference and analysis). Cells were separated into proliferation or arrest lineages according to396

their average expression of pRB, and cellular progression was estimated using ten random root cells that had the397

youngest age. Feature selection method performance on trajectory inference was then quantitatively assessed by398

computing the Spearman rank correlation between estimated pseudotime and the ground truth age measurements.399

We found that DELVE achieved the highest median correlation of estimated pseudotime to the ground truth age400

measurements (proliferation: 0.656, arrest: 0.405) as compared to alternative methods (second best performer401

hotspot; proliferation: 0.632, arrest: 0.333) or all features (proliferation: 0.330, arrest: 0.135), indicating that our402

approach was better able to resolve both proliferation and cell cycle arrest trajectories where other approaches403

failed (Fig. 4d). Of note, DELVE was robust to the choice in hyperparameters and obtained reproducible results404

across a range of hyperparameter choices (See Supplementary Fig. 14).405
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Figure 4: DELVE recovered signatures of proliferation and arrest in noisy protein immunofluorescence
imaging data. (a) DELVE identified one dynamic module consisting of 13 seed features that represented a minimum
cell cycle. (a left) UMAP visualization of image-derived features where each point indicates a dynamic or static
feature identified by the model. (a middle) The average pairwise change in expression of features within DELVE
modules ordered across ground truth cell cycle phase annotations. (a right top) Simplified signaling schematic of
the cell cycle highlighting the role of DELVE dynamic seed features within cell cycle progression. (a right bottom)
Heatmap of the standardized average expression of dynamic seed features across cell cycle phases. (b) Feature
selection was performed to select the top (p = 30) ranked features from the original (d = 241) feature set according
to a feature selection strategy. PHATE visualizations illustrating the overall quality of low-dimensional retinal
pigmented epithelial cell cycle trajectories following feature selection. Cells were labeled according to ground truth
cell cycle phase annotations from time-lapse imaging. Each panel represents a different feature selection strategy.
(c) PHATE visualizations following DELVE feature selection, where cells were labeled according to cell cycle
trajectory (top) or ground truth age measurements (bottom). (d) Performance of twelve feature selection methods
on representing the cell cycle according to several metrics, including classification accuracy between predicted
and ground truth phase annotations using a support vector machine classifier on selected features, normalized
mutual information (NMI) between predicted and ground truth phase labels to indicate clustering performance,
precision of phase-specific features determined by a random forest classifier trained on cell cycle phase annotations,
mean-squared error between predicted and ground truth molecular age measurements using a support vector
machine regression framework on selected features, and the correlation between estimated pseudotime to the
ground truth molecular age measurements following trajectory inference on selected features. Error bands represent
the standard deviation. * indicates the method with the highest median score. DELVE achieved the highest
classification accuracy, highest p@k score, and high NMI clustering score indicating robust prediction of cell cycle
phase. Furthermore, DELVE achieved the lowest mean squared error and highest correlation between arrest and
proliferation estimated pseudotime and ground truth age measurements indicating robust prediction of cell cycle
transitions. 11
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As a secondary validation, we applied DELVE to 9 pancreatic adenocarcinoma (PDAC) cell lines (e.g. BxPC3,406

CFPAC, MiaPaCa, HPAC, Pa01C, Pa02C, PANC1, UM53) profiled with 4i (See PDAC analysis) and performed a407

similar evaluation of cell cycle phase and phase transition preservation (See Supplementary Figs. 16 - 24). Across408

all cell lines and metrics, we found that DELVE approaches and hotspot considerably outperformed alternative409

methods on recovering the cell cycle from noisy 4i data and often achieved the highest classification accuracy410

scores, clustering scores, and the highest correlation of cellular progression along proliferative and arrested cell411

cycle trajectories (See Supplementary Fig. 15). Notably, DELVE was particularly useful in resolving cell cycle412

trajectories from the PDAC cell lines that had numerous imaging measurements with low signal-to-noise ratio (e.g.413

CFPAC, MiaPaCa, PANC1, and UM53), whereas the alternative strategies were unable to resolve cell cycle phases414

and achieved scores near random (See Supplementary Figs. 17, 19, 23, 24).415

Identifying molecular drivers of CD8+ T cell effector and memory formation416

To demonstrate the utility of our approach in a complex differentiation setting consisting of heterogeneous cell417

subtypes and shared and distinct molecular pathways, we applied DELVE to a single-cell RNA sequencing time418

series dataset consisting of 29,893 mouse splenic CD8+ T cells responding to acute viral infection [106]. Here,419

CD8+ T cells were profiled over 12 time points following infection with the Armstrong strain of lymphocytic420

choriomeningitis virus (LCMV): Naive, d3-, d4-, d5-, d6-, d7-, d10-, d14-, d21-, d32-, d60-, and d90- post-infection421

(See CD8 T cell differentiation analysis). During an immune response to acute viral infection, naive CD8+ T422

cells undergo a rapid activation and proliferation phase, giving rise to effector cells that can serve in a cytotoxic423

role to mediate immediate host defense, followed by a contraction phase giving rise to self-renewing memory424

cells that provide long-lasting protection and are maintained by antigen-dependent homeostatic proliferation425

[107, 108, 109]. Despite numerous studies detailing the molecular mechanisms of CD8+ T cell effector and426

memory fate specification, the molecular mechanisms driving activation, fate commitment, or T cell dysfunction427

continue to remain unclear due to the complex intra- and inter-temporal heterogeneity of the CD8+ T cell response428

during infection. Therefore, we applied DELVE to the CD8+ T cell dataset to resolve the differentiation trajectory429

and investigate transcriptional changes that are involved in effector and memory formation during acute viral430

infection with LCMV.431

Following unsupervised seed selection, we found that DELVE successfully identified three gene modules consti-432

tuting core regulatory complexes involved in CD8+ T cell viral response and had dynamic expression patterns433

that varied across experimental time following viral infection (Fig. 5a-c). Namely, dynamic module 0 contained434

genes involved in early activation and interferon response (e.g. Ly6a, Bst2, Ifi27l2a) [110, 111], and proliferation435

(e.g. Cenpa, Cenpf, Ccnb2, Ube2c, Top2a, Tubb4b, Birc5, Cks2, Cks1b, Nusap1, Hmgb2, Rrm2, H2afx, Pclaf,436

Stmn1) [112]. Dynamic module 1 contained genes involved in effector formation, including interferon-γ cytotoxic437

molecules, such as perforin/granzyme pathway (e.g. Gzma, Gzmk), integrins (e.g. Itgb1), killer cell lectin-like438

receptor family (e.g. Klrg1, Klrd1, Klrk1, Klrc1), chemokine receptors (e.g. Cxcr3, Cxcr6, Ccr2), and a canonical439

transcription factor involved in terminal effector formation (e.g. Id2) [113, 114, 115, 116]. Lastly, dynamic module440

2 contained genes involved in long-term memory formation (e.g. Sell, Bcl2, Il7r, Ltb) [117, 118, 119, 120]. To441

quantitatively examine if genes within a dynamic module were meaningfully associated with one another, or had442

experimental evidence of co-regulation, we constructed gene association networks using experimentally-derived443

association scores from the STRING database [121]. Here, a permutation test was performed to assess the statistical444

significance of the observed experimental association amongst genes within a DELVE module as compared to445

random gene assignment (See Protein-protein interaction networks). Notably, across all three dynamic modules,446

DELVE identified groups of genes that had statistically significant experimental evidence of co-regulation (p-value447

= 0.001), where DELVE networks had a larger average degree of experimentally-derived edges than the null448

distribution (Fig. 5b: dynamic modules). Degree centrality is a simple measurement of the number of edges (e.g.449

experimentally derived associations between genes) connected to a node (e.g. gene); therefore, in this context,450

networks with a high average degree may contain complexes of genes that are essential for regulating a biological451

process. In contrast, genes identified by DELVE that exhibited random or noisy patterns of expression variation452

(static module) had little to no evidence of co-regulation (p-value = 1.0) and achieved a much lower average degree453

than networks defined by random gene assignment (Fig. 5b).454

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.09.540043doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.09.540043
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: DELVE identified molecular drivers of CD8+ T cell effector and memory formation. (a) DELVE
identified three dynamic modules representing cell cycle and early activation (dynamic 0), effector formation and
cytokine signaling (dynamic 1), and long-term memory formation (dynamic 2) during CD8+ T cell differentiation
response to viral infection with lymphocytic choriomeningitis virus (LCMV). UMAP visualization of (d = 500)
genes where each point indicates a dynamic or static gene identified by the model. (b) A permutation test was
performed using experimentally-derived association scores from the STRING protein-protein interaction database
[121] to assess whether genes within DELVE dynamic modules had experimental evidence of co-regulation as
compared to random assignment. (b top) STRING association networks, where nodes represent genes from a
DELVE module and edges represent experimental evidence of association. (b middle) Average pairwise change in
expression amongst genes within a module ordered by time following infection. (b bottom) Histograms showing
the distribution of the average degree of experimentally-derived edges of gene networks from R = 1000 random
permutations. The dotted line indicates the observed average degree from genes within a DELVE module. p-values
were computed using a one-sided permutation test. (c) Heatmap visualization of the standardized average expression
of dynamically-expressed genes identified by DELVE ordered across time following infection. (d) Trajectory
inference was performed along the memory lineage using the diffusion pseudotime algorithm [83], where cell
similarity was determined by DELVE selected genes or highly variable genes (HVG). UMAP visualization of
memory T cell scores according to the average expression of known memory markers (Bcl-2, Sell, Il7r). Line
plot indicates the onset of expression and cellular commitment to the memory lineage following infection. (e)
Genes from the full dataset were regressed along estimated pseudotime using a generalized additive model to
determine lineage-specific significant genes. The venn diagram illustrates the quantification and overlap of memory
lineage-specific genes across feature selection strategies. The barplots show the top ten gene ontology terms
associated with the temporally-expressed gene lists specific to each feature selection strategy.
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Next, we examined if DELVE could be used to improve the identification of genes associated with long-term455

CD8+ T cell memory formation following trajectory inference. To do so, we first prioritized cells along the456

memory lineage by computing a memory T cell score according to the average expression of three known memory457

markers (Bcl2, Sell, and Il7r) (See CD8 T cell differentiation analysis, Fig. 5d). We then reconstructed the memory458

CD8+ T cell differentiation trajectory from middle-late stage cellular commitment using the diffusion pseudotime459

algorithm [83] on the top 250 ranked genes following DELVE feature selection or highly variable gene selection.460

Therefore, in this context, cell ordering was reflective of the differences in cell state along the memory lineage461

according to (1) dynamically-expressed genes that had experimental evidence of co-regulation or (2) variance-based462

selection. Lastly, we performed a regression analysis for each gene (d = 500) in the original dataset along463

estimated pseudotime using a negative binomial generalized additive model (GAM). Genes were considered to be464

differentially expressed along the memory lineage if they had a q−value < 0.05 following Benjamini-Hochberg465

false discovery rate correction [122] (See Trajectory inference and analysis). Overall, we found that ordering466

cells according to similarities in selected gene expression using DELVE was more reflective of long-term memory467

formation and achieved an increased recovery of memory lineage-specific genes, as directly compared to the468

standard approach of highly variable gene selection (Fig. 5e). To determine the biological relevance of these469

memory lineage-specific genes, we performed gene set enrichment analysis on the temporally-expressed genes470

specific to each feature selection strategy using EnrichR [123]. Here, DELVE obtained higher combined scores471

and identified more terms involved in immune regulation and memory CD8+ T cell formation, including negative472

regulation of cell cycle phase transition, negative regulation of T cell mediated cytotoxicity, lymphocyte mediated473

immunity, and negative regulation of T cell mediated immunity (Fig. 5e).474

Discussion475

Computational trajectory inference methods have transformed our ability to study the continuum of cellular states476

associated with dynamic phenotypes; however, current approaches for reconstructing cellular trajectories can be477

hindered by biological or technical noise inherent to single-cell data [42, 43]. To mitigate the effect of unwanted478

sources of variation confounding trajectory inference, we designed a bottom-up unsupervised feature selection479

method that ranks and selects features that best approximate cell state transitions from dynamic feature modules that480

constitute core regulatory complexes. The key innovation of this work is the ability to parse temporally co-expressed481

features from noisy information-poor features prior to performing feature selection; in doing so, DELVE constructs482

cell similarity graphs that are more reflective of cell state progression for ranking feature importance.483

In this study, we benchmarked twelve feature selection methods [46, 52, 25, 53, 55, 54, 50] on their ability to484

identify biologically relevant features for trajectory analysis from simulated single-cell RNA sequencing data where485

the ground truth was known. We found that DELVE achieved the highest recovery of differentially expressed486

genes within a cell type or along a cellular lineage, highest cell type classification accuracy, and most accurately487

estimated individual cell progression across a variety of trajectory topologies and biological or technical challenges.488

Furthermore, through a series or qualitative and quantitative comparisons, we illustrated how noise (e.g. stochasticity,489

sparsity, low library size) and information-poor features create spurious similarities amongst cells and considerably490

impact the performance of existing unsupervised similarity-based or subspace learning-based feature selection491

methods on identifying biologically-relevant features.492

Next, we applied DELVE to a variety of biological contexts and demonstrated improved recovery of cellular493

trajectories over existing unsupervised feature selection strategies. In the context of studying the cell cycle from494

protein imaging-derived features [92], we illustrated how DELVE identified molecular features that were strongly495

associated with cell cycle progression and were more biologically predictive of cell cycle phase and age, as496

compared to the alternative unsupervised feature selection methods. Importantly, DELVE often achieved similar or497

better performance to the supervised Random Forest classification approach without the need for training on ground498

truth cell cycle labels. Lastly, in the context of studying heterogeneous CD8+ T cell response to viral infection from499

single-cell RNA sequencing data [106], we showed how DELVE identified gene complexes that had experimental500

evidence of co-regulation and were strongly associated with CD8+ T cell differentiation. Furthermore, we showed501

how performing feature selection with DELVE prior to performing trajectory inference improved the identification502

and resolution of gene programs associated with long-term memory formation that would have been missed by the503

standard unsupervised feature selection approach.504

This study highlights how DELVE can be used to improve inference of cellular trajectories in the context of noisy505

single-cell omics data; however, it is important to note that feature selection can greatly bias the interpretation of the506

underlying cellular trajectory [42], thus careful consideration should be made when performing feature selection507

for trajectory analysis. Furthermore, we provided an unsupervised framework for ranking features according to508
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their association with temporally co-expressed genes, although we note that DELVE can be improved by using a509

set of previously established regulators (See Step 2: feature ranking). Future work could focus on extending this510

framework for applications such as (1) deconvolving cellular trajectories using biological system-specific seed511

graphs or (2) studying complex biological systems such as organoid models or spatial microenvironments.512

Methods513

DELVE514

DELVE identifies a subset of dynamically-changing features that preserve the local structure of the underlying515

cellular trajectory. In this section, we will (1) describe computational methods for the identification and ranking516

of features that have non-random patterns of dynamic variation, (2) explain DELVE’s relation to previous work,517

and (3) provide context for the mathematical foundations behind discarding information-poor features prior to518

performing trajectory inference.519

Problem formulation520

Let X = {xi}ni=1 denote a single-cell dataset, where xi ∈ Rd represents the vector of d measured features (e.g.521

genes or proteins) measured in cell i. We assume that the data have an inherent trajectory structure, or biologically-522

meaningful ordering, that can be directly inferred by a limited subset of p features where p ≪ d. Therefore, our523

goal is to identify this limited set of p features from the original high-dimensional feature set that best approximate524

the transitions of cells through each stage of the underlying dynamic process.525

Step 1: dynamic seed selection526

Graph construction: Our approach DELVE extends previous similarity-based [52, 25, 53] or subspace-learning527

[55] feature selection methods by computing the dependence of each gene on the underlying cellular trajectory.528

In step 1, DELVE models cell states using a weighted k-nearest neighbor affinity graph of cells (k = 10), where529

nodes represent cells and edges describe the transcriptomic or proteomic similarity amongst cells according to the d530

profiled features encoded in X. More specifically, let G = (V, E) denote a between-cell affinity graph, where V531

represents the cells and the edges, E , are weighted according to a Gaussian kernel as,532

wij =

exp

(
−∥xvi

−xvj
∥2

2σ2
i

)
, if vj ∈ Ni

0, otherwise.
(1)

Here, W is a n × n between-cell similarity matrix, where cells vi and vj are connected with an edge with edge533

weight wij if the cell vj is within the set of vi’s neighbors, as denoted by notation Ni. Moreover, σi, specific for534

a particular cell i, represents the Gaussian kernel bandwidth parameter that controls the decay of cell similarity535

edge weights. We chose a bandwidth parameter as the distance to the 3rd nearest neighbor as this has been shown536

previously in refs. [53] and [124] to provide reasonable decay in similarity weights.537

Identification of feature modules: To identify groups of features with similar co-expression variation, DELVE538

clusters features according to changes in expression across prototypical cell neighborhoods. First, cellular neighbor-539

hoods are defined according to the average expression of each set of k nearest neighbors (Ni) as, Z = {zi ∈ Rd}ni=1,540

where each zi =
1
k

∑
Ni

xi represents the center of the k nearest neighbors for cell i across all measured features.541

Next, DELVE leverages Kernel Herding sketching [66] to effectively sample m representative cell neighborhoods,542

or rows, from the per-cell neighbor averaged feature matrix, Z, as Z̃ = {z̃i ∈ Rd}mi=1. This sampling approach543

ensures that cellular neighborhoods are more reflective of the original distribution of cell states, while removing544

redundant cell states to aid in the scalability of estimating expression dynamics. DELVE then computes the average545

pairwise change in expression of features across representative cellular neighborhoods, ∆, as,546

∆ =
1

m− 1

m∑
i=1

(Z̃− jmz̃Ti ), (2)

where jm is a column vector of ones with length m, such that jm ∈ Rm. Lastly, features are clustered according to547

the transpose of their average pairwise change in expression across the representative cellular neighborhoods, ∆T,548
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using the KMeans++ algorithm [103]. In this context, each DELVE module contains a set of features with similar549

local changes in co-variation across cell states along the cellular trajectory.550

Dynamic expression variation permutation testing: To assess the significance of dynamic expression variation551

across grouped features within a DELVE module, we perform a permutation test as follows. Let S̄2
c (Pc) denote the552

average sample variance of the average pairwise change in expression across m cell neighborhoods for the set of p553

features (a set of features denoted as Pc) within a DELVE cluster c as,554

S̄2
c (Pc) =

1

|Pc|

|Pc|∑
p=1

m∑
i=1

(
∆i,p − ∆̄p

)2
m− 1

. (3)

Moreover, let Rq denote a set of randomly selected features sampled without replacement from the full feature555

space d, such that |Pc| = |Rq|, and S̃2
c (Rq) denote the average sample variance of randomly selected feature sets556

averaged across t random permutations as,557

S̃2
c (Rq) =

1

t

t∑
q=1

S̄2
c (Rq) . (4)

Here, DELVE considers a module of features as being dynamically-expressed if the average sample variance of the558

change in expression of the set of features within a DELVE cluster (or specifically feature set Pc), is greater than559

random assignment, Rq , across randomly permuted trials as,560

S̄c(Pc) > S̃c(Rq). (5)

In doing so, this approach is able to identify and exclude modules of features that have static, random, or noisy561

patterns of expression variation, while retaining dynamically expressed features for ranking feature importance. Of562

note, given that KMeans++ clustering is used to initially assign features to a group, feature-to-cluster assignments563

can tend to vary due to algorithm stochasticity. Therefore, to reduce the variability and find a core set of features564

that are consistently dynamically-expressed, this process is repeated across ten random clustering initializations565

and the set of dynamically-expressed features are defined as the intersection across runs.566

Step 2: feature ranking567

Following dynamic seed selection, in step two, DELVE ranks features according to their association with the568

underlying cellular trajectory graph. First, DELVE approximates the underlying cellular trajectory by constructing569

a between-cell affinity graph, where the nodes represent the cells and edges are now re-weighted according to a570

Gaussian kernel between all cells based on the core subset of dynamically expressed regulators from step 1, such571

that X̃ = {x̃i ∈ Rp} where p ≪ d as,572

w̃ij =

exp

(
−∥x̃vi

−x̃vj
∥2

2σ2
i

)
, if vj ∈ Ni

0, otherwise.
(6)

Here, W̃ is a n× n between-cell similarity matrix, where cells vi and vj are connected with an edge with edge573

weight w̃ij if the cell is within the set of vi’s neighbors, denoted as Ni. Moreover, as previously mentioned,574

σi represents the Gaussian kernel bandwidth parameter for a particular cell i as the distance to the 3rd nearest575

neighbor.576

Features are then ranked according to their association with the underlying cellular trajectory graph using graph577

signal processing techniques [52, 67, 68]. A graph signal f is any function that has a real defined value on all of the578

nodes, such that f ∈ Rn and fi gives the signal at the ith node. Intuitively, we can consider all features as graph579

signals and rank them according to their variation in expression along the approximate cell trajectory graph to see if580

they should be included or excluded from downstream analysis. Let L denote the unnormalized graph Laplacian,581

with L = D− W̃, where D is a diagonal degree matrix with each element as dii =
∑

j w̃ij . The local variation582

in the expression of feature signal f can then be defined as the weighted sum of differences in signals around a583

particular cell i as,584
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(Lf) (i) =
∑
j

w̃ij (f(i)− f(j)) . (7)

This metric effectively measures the similarity in expression of a particular node’s graph signal, denoted by the585

feature vector, f , around its k nearest neighbors. By summing the local variation in expression across all neighbors586

along the cellular trajectory, we can define the total variation in expression of feature graph signal f as,587

fTLf =
∑
ij

w̃ij (f(i)− f(j))
2
. (8)

Otherwise known as the Laplacian quadratic form, in this context, the total variation represents the global smoothness588

of the particular graph signal encoded in f (e.g. expression of a particular gene or protein) along the approximate589

cellular trajectory graph. Intuitively, DELVE ultimately retains features that have a low total variation in expression,590

or have similar expression values amongst similar cells along the approximate cellular trajectory graph. In contrast,591

DELVE excludes features that have a high total variation in expression, or those which have expression values that592

are rapidly oscillating amongst neighboring cells, as these features are likely noisy or not involved in the underlying593

dynamic process that was initially seeded.594

In this work, we ranked features according to their association with the cell-to-cell affinity graph defined by595

dynamically expressed features from DELVE dynamic modules using the Laplacian score [52]. This measure takes596

into account both the total variation in expression, as well as the overall global variance. For each of the original d597

measured features, or graph signals encoded in f with f ∈ Rn, the Laplacian score Lf is computed as,598

Lf =
f̃T Lf̃
f̃T Df̃

. (9)

Here, L represents the unnormalized graph Laplacian, such that L = D− W̃, D is a diagonal degree matrix with599

the ith element of the diagonal dii as dii =
∑

j w̃ij , f̃ represents the mean centered expression of feature f as600

f̃ = f − fTD1
1TD1

, and 1 = [1, . . . , 1]T . By sorting features in ascending order according to their Laplacian score,601

DELVE effectively ranks features that best preserve the local trajectory structure (e.g. an ideal numerator has602

a small local variation in expression along neighboring cells), as well as best preserve cell types (e.g. an ideal603

denominator has large variance in expression for discriminitive power).604

Benchmarked feature selection methods605

In this section, we describe the twelve feature selection methods evaluated for representing biological trajectories.606

For more details on implementation and hyperparameters, see Supplementary Table 1.607

Random forest To quantitatively compare feature selection approaches on preserving biologically relevant genes608

or proteins, we aimed to implement an approach that would leverage ground truth cell type labels to determine609

feature importance. Random forest classification [46] is a supervised ensemble learning algorithm that uses an610

ensemble of decision trees to partition the feature space such that all of the samples (cells) with the same class611

(cell type labels) are grouped together. Each decision or split of a tree was chosen by minimizing the Gini impurity612

score as,613

G(m) =
C∑
i=1

pmi(1− pmi). (10)

Here, pmi is the proportion of cells that belong to class i for a feature node m, and C is the total number of classes614

(e.g. cell types). We performed random forest classification using the sklearn v0.23.2 package in python. Nested615

10-fold cross-validation was performed using stratified random sampling to assign cells to either a training or616

test set. The number of trees was tuned over a grid search within each fold prior to training the model. Feature617

importance scores were subsequently determined by the average Gini importance across folds.618

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.09.540043doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.09.540043
http://creativecommons.org/licenses/by-nc-nd/4.0/


Max variance Max variance is an unsupervised feature selection approach that uses sample variance as a criterion
for retaining discriminative features, where Ŝ2

f represents the sample variance for feature f ∈ Rn as,

S2
f =

1

n− 1

n∑
i=1

(fi − f̄)2, (11)

where fi indicates the expression value of feature f in cell i. We performed max variance feature selection by619

sorting features in descending order according to their variance score and selecting the top p maximally varying620

features.621

Neighborhood variance Neighborhood variance [25] is an unsupervised feature selection approach that uses622

a local neighborhood variance metric to select gradually-changing features for building biological trajectories.623

Namely, the neighborhood variance metric S̃2
f quantifies how much feature f varies across neighboring cells624

as,625

S̃2
f =

1

nkc − 1

n∑
i=1

kc∑
j=1

(fi − fN(i,j)
)2. (12)

Here, fi represents the expression value of feature f for cell i, N(i,j) indicates the j nearest neighbor of cell i,626

and kc is the minimum number of k-nearest neighbors required to form a fully connected graph. Features were627

subsequently selected if they had a smaller neighborhood variance S̃2
f than global variance S2

f ,628

S2
f

S̃2
f

> 1. (13)

Highly variable genes Highly variable gene selection [50] is an unsupervised feature selection approach that629

selects features according to a normalized dispersion measure. First, features are binned based on their average630

expression. Within each bin, genes are then z-score normalized to identify features that have a large variance, yet a631

similar mean expression. We selected the top p features using the highly variable genes function in Scanpy v1.8.1632

(flavor = Seurat, bins = 20, n_top_genes = p).633

Laplacian score Laplacian score (LS) [52] is a locality-preserving unsupervised feature selection method that634

ranks features according to (1) how well a feature’s expression is consistent across neighboring cells defined by a635

between-cell similarity graph define by all profiled features and (2) the feature’s global variance. First, a weighted636

k-nearest neighbor affinity graph of cells (k = 10) is constructed according to pairwise Euclidean distances between637

cells based on all features, X. More specifically, let G = (V, E), where V represents the cells and edges, E , are638

weighted using a Gaussian as follows. Specifically, edge weights between cells i and j can be defined as,639

wij =

exp

(
−∥xvi

−xvj
∥2

2σ2
i

)
, if vj ∈ Ni

0, otherwise.
(14)

Here W is a n × n between-cell similarity matrix, where cells vi and vj are connected with an edge with edge640

weight wij if the cell vj is within the set of vi’s neighbors, Ni. Moreover, as previously described, σi represents641

the bandwidth parameter for cell i defined as the distance to the 3rd nearest neighbor. For each feature f, where642

f ∈ Rn represents the value of the feature across all n cells, we compute the Laplacian score, Lf as,643

Lf =
f̃T Lf̃
f̃T Df̃

. (15)

Here, L represents the unnormalized graph Laplacian, with L = D − W, D is a diagonal degree matrix with the ith644

element of the diagonal dii as dii =
∑

j wij , f̃ represents the mean centered expression of feature f as f̃ = f− fT D1
1T D1 ,645

and 1 = [1, . . . , 1]T . We performed feature selection by sorting features in ascending order according to their646

Laplacian score and selecting the top p features.647
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MCFS Multi-cluster feature selection (MCFS) [55] is an unsupervised feature selection method that selects for648

features that best preserve the multi-cluster structure of data by solving an L1 regularized least squares regression649

problem on the spectral embedding. Similar to the Laplacian score, first k-nearest neighbor affinity graph of cells650

(k = 10) is computed to encode the similarities in feature expression between cells i and j using a Gaussian kernel651

as,652

wij =

exp

(
−∥xvi

−xvj
∥2

2σ2
i

)
, if vj ∈ Ni

0, otherwise.
(16)

Similar to previous formulations above, W is an n× n between cell affinity matrix, where a pair of cells vi and vj653

are connected with an edge with weight wij if cell vj is within the set of vi’s neighbors, Ni. Further, σi represents654

the kernel bandwidth parameter chosen to be the distance to the third nearest neighbor from cell i. Next, to represent655

the intrinsic dimensionality of the data, the spectral embedding [125] is computed through eigendecomposition of656

the unnormalized graph Laplacian L, where L = D − W as,657

Ly = λDy. (17)

Here, Y = {y}Kk=1 are the eigenvectors corresponding to the K smallest eigenvalues, W is a symmetric affinity658

matrix encoding cell similarity weights, and D represents a diagonal degree matrix with each element as dii =659 ∑
j wij . Given that eigenvectors of the graph Laplacian represent frequency harmonics [68] and low frequency660

eigenvectors are considered to capture the informative structure of the data, MCFS computes the importance of661

each feature along each intrinsic dimension yk by finding a relevant subset of features by minimizing the error662

using an L1 norm penalty as,663

min
ak

∥yk − XT ak∥2 s.t. ∥ak∥1 ≤ γ. (18)

Here, the non-zero coefficients, ak, indicate the most relevant features for distinguishing clusters from the embedding664

space, yk and γ controls the sparsity and ensures the least relevant coefficients are shrunk to zero. The optimization665

is solved using the least angles regression algorithm [71], where for every feature, the MCFS score is defined666

as,667

MCFS(j) = max
k

∥ak,j∥. (19)

Here, j and k index feature and eigenvector, respectively. We performed multi-cluster feature selection with the668

number of eigenvectors K chosen to be the number of ground truth cell types present within the data, as this is the669

traditional convention in spectral clustering [57] and the number of nonzero coefficients was set to the number of670

selected features, p.671

SCMER Single-cell manifold-preserving feature selection (SCMER) [54] selects a subset of p features that672

represent the embedding structure of the data by learning a sparse weight vector w by formulating an elastic net673

regression problem that minimizes the KL divergence between a cell similarity matrix defined by all features and674

one defined by a reduced subset of features. More specifically, let P denote a between-cell pairwise similarity675

matrix defined in UMAP [56] computed with the full data matrix X ∈ Rn×d and Q denote a between-cell pairwise676

similarity matrix defined in UMAP computed with the dataset following feature selection Y ∈ Rn×p, where677

Y = Xw and p ≪ d. Here, elastic net regression is used to find a sparse and robust solution of w that minimizes678

the KL divergence as,679

KL (P∥Q) =
∑
i

∑
j

pij log
pij
qij

. (20)

Features with non-zero weights in w are considered useful for preserving the embedding structure and selected680

for downstream analysis. We performed SCMER feature selection using the scmer v.0.1.0a3 package in python681

by constructing a k-nearest neighbor graph (k = 10) according to pairwise Euclidean distances of cells based682

on their first 50 principal components and using the default regression penalty weight parameters (lasso =683

3.87e− 4, ridge = 0).684
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Hotspot Hotspot [53] is an unsupervised gene module identification approach that performs feature selection685

through a test statistic that measures the association of a gene’s expression with the between-cell similarity graph686

defined based on the full feature matrix, X. More specifically, first, a k-nearest neighbor cell affinity graph (k = 10)687

is defined based on pairwise Euclidean distances between all pairs of cells using a Gaussian kernel as,688

wij =

{
exp

(
−∥xvi

−xvij
∥2

σ2
i

)
, if vj ∈ Ni

0, otherwise.
(21)

Here, cells vi and vj are connected with an edge with edge weight wij if the cell vj is within the set of vi’s689

neighbors such that
∑

j wij = 1 for each cell and σi represents the bandwidth parameter for cell i defined as the690

distance to the k
3 neighbor. For a given feature f ∈ Rn, representing expression across all n cells where fi is the691

mean-centered and standardized expression of feature f in cell i according to a null distribution model of gene692

expression, the local autocorrelation test statistic representing the dependence of each gene on the graph structure is693

defined as,694

Hf =
∑
i

∑
j ̸=i

wijfifj . (22)

Hotspot was implemented using the hotspot v1.1.1 package in python, where we selected the top p features by695

sorting features in ascending order according to their significance with respect to a null model defined by a negative696

binomial distribution with the mean dependent on library size.697

All features To consider a baseline representation without feature selection, we evaluated performance using all698

features from each dataset following quality control preprocessing.699

Random features As a second baseline strategy, we simply selected a subset of random features without700

replacement. Results were computed across twenty random initializations for each dataset.701

DELVE DELVE was run as previously described. Here, we constructed a weighted k-nearest neighbor affinity702

graph of cells (k = 10), and 1000 neighborhoods were sketched to identify dynamic seed feature clusters (c = 3703

for the simulated dataset, c = 5 for the RPE cell cycle dataset, c = 5 for the CD8 T cell differentiation dataset,704

and c = 10 for PDAC cell cycle datasets). Results were computed across twenty random initializations for each705

dataset.706

Datasets707

We evaluated feature selection methods based on how well retained features could adequately recover biological708

trajectories under various noise conditions, biological contexts, and single-cell technologies.709

Splatter simulation Splatter [72] is a single-cell RNA sequencing simulation software that generates count data710

using a gamma-Poisson hierarchical model with modifications to alter the mean-variance relationship amongst711

genes, the library size, or sparsity. We used splatter to simulate a total of 90 ground truth datasets with different712

trajectory structures (e.g. linear, bifurcation, and tree topologies). First, we estimated simulation parameters713

by fitting the model to a real single-cell RNA sequencing dataset consisting of human pluripotent stem cells714

differentiating into mesoderm progenitors [126]. We then used the estimated parameters (mean_rate = 0.0173,715

mean_shape = 0.54, lib_loc = 12.6, lib_scale = 0.423, out_prob = 0.000342, out_fac_loc = 0.1,716

out_fac_scale = 0.4, bcv = 0.1, bcv_df = 90.2, dropout = None) to simulate a diverse set of ground717

truth reference trajectory datasets with the splatter paths function (python wrapper scprep SplatSimulate v1.1.0 of718

splatter v1.18.2). Here, a reference trajectory structure (e.g. bifurcation) was used to simulate linear and nonlinear719

changes in the mean expression of genes along each step of the specified differentiation path. We simulated ten720

differentiation datasets (1500 cells, 500 genes, 6 clusters) for each trajectory type (linear, bifurcation, tree) by721

modifying (1) the probability of a cell belonging to a cluster by randomly sampling from a Dirichelet distribution722

with six categories and a uniform concentration of one and (2) the path skew by randomly sampling from a beta723

distribution (α = 10, β = 10). The output of each simulation is a ground truth reference consisting of cell-to-cluster724

membership, differentially expressed genes per cluster or path, as well as a latent step vector that indicates the725
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progression of each cell within a cluster. Lastly, we modified the step vector to be monotonically increasing across726

clusters within the specified differentiation path to obtain a reference pseudotime measurement.727

To estimate how well feature selection methods can identify genes that represent cell populations and are differen-728

tially expressed along a differentiation path in noisy single-cell RNA sequencing data, we added relevant sources of729

biological and technical noise to the reference datasets.730

1. Biological Coefficient of Variation (BCV): To simulate the effect of stochastic gene expression, we modified731

the biological coefficient of variation parameter within splatter (BCV = 0.1, 0.25, 0.5). This scaling factor732

controls the mean-variance relationship between genes, where lowly expressed genes are more variable than733

highly expressed genes, following a γ distribution.734

2. Library size: The total number of profiled mRNA transcripts per cell, or library size, can vary between cells735

within a single-cell RNA sequencing experiment and can influence the detection of differentially expressed736

genes [73], as well as impact the reproducibility of the lower-dimensional representation of the data [74].737

To simulate the effect of differences in sequencing depth, we proportionally adjusted the gene means for738

each cell by modifying the location parameter (lib_loc = 12, 11, 10) of the log-normal distribution within739

splatter that estimates the library size scaling factors.740

3. Technical dropout: Single-cell RNA sequencing data contain a large proportion of zeros, where only a small
fraction of total transcripts are detected due to capture inefficiency and amplification noise [127]. To simulate
the inefficient capture of mRNA molecules and account for the trend that lowly expressed genes are more
likely to be affected by dropout, we undersampled mRNA counts by sampling from a binomial distribution
with the scale parameter or dropout rate proportional to the mean expression of each gene as previously
described in ref. [128] as,

ri = exp(−λµ2
i ). (23)

Here, µi represents the log mean expression of gene i, and λ is a hyperparameter that controls the magnitude741

of dropout (λ = 0, 0.05, 0.1).742

In our subsequent feature selection method analyses, we selected the top p = 100 features under each feature743

selection approach.744

RPE analysis The retinal pigmented epithelial (RPE) dataset [92] is an iterative indirect immunofluorescence745

imaging (4i) dataset consisting of RPE cells undergoing the cell cycle. Here, time-lapse imaging was performed746

on an asynchronous population of non-transformed human retinal pigmented epithelial cells expressing a PCNA-747

mTurquoise2 reporter in order to record the cell cycle phase (G0/G1, S, G2, M) and molecular age (time since last748

mitosis) of each cell. Following time-lapse imaging, cells were fixed and 48 core cell cycle effectors were profiled749

using 4i [8]. For preprocessing, we min-max normalized the data and performed batch effect correction on the750

replicates using ComBat [129]. Lastly, to refine phase annotations and distinguish G0 from G1 cells, we selected751

cycling G1 cells according to the bimodal distribution of pRB
RB expression as described in ref. [92]. Of note, cells752

were excluded if they did not have ground truth phase or age annotations. The resultant dataset consisted of 2759753

cells × 241 features describing the expression and localization of different protein markers. For our subsequent754

analysis, we selected the top p = 30 features for each feature selection approach.755

PDAC analysis The pancreatic ductal adenocarcinoma (PDAC) dataset is an iterative indirect immunofluorescence756

imaging dataset consisting of 9 human PDAC cell lines: BxPC3, CFPAC, HPAC, MiaPaCa, Pa01C, Pa02C, Pa16C,757

PANC1, UM53. For each cell line (e.g. BxPC3) under control conditions, we min-max normalized the data. Cell758

cycle phases (G0, G1, S, G2, M) were annotated a priori based on manual gating cells according to the abundance759

of core cell cycle markers. Phospho-RB (pRB) was used to distinguish proliferative cells (G1/S/G2/M, high pRB)760

from arrested cells (G0, low pRB). DNA content, E2F1, cyclin A (cycA), and phospho-p21 (p-p21) were used to761

distinguish G1 (DNA content = 2C, low cycA), S (DNA content = 2-4C, high E2F1), G2 (DNA content = 4C, high762

cycA), and M (DNA content = 4C, high p-p21). For our subsequent analysis, we selected the top p = 30 features763

for each feature selection approach.764

CD8 T cell differentiation analysis The CD8 T cell differentiation dataset [106] is a single-cell RNA sequencing765

dataset consisting of mouse splenic CD8+ T cells profiled over 12-time points (d = day) following infection766

with the Armstrong strain of the lymphocytic choriomeningitis virus: Naive, d3-, d4-, d5-, d6-, d7-, d10-, d14-,767

d21-, d32-, d60-, d90- post-infection. Spleen single-cell RNA sequencing data were accessed from the Gene768

Expression Omnibus using the accession code GSE131847 and concatenated into a single matrix. The dataset was769

subsequently quality control filtered according to the distribution of molecular counts. To remove dead or dying770
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cells, we filtered cells that had more than twenty percent of their total reads mapped to mitochondrial transcripts.771

Genes that were observed in less than three cells or had less than 400 counts were also removed. Following cell772

and gene filtering, the data were transcripts-per-million normalized, log+1 transformed, and variance filtered using773

highly variable gene selection, such that the resulting dataset consisted of 29893 cells × 500 genes (See Highly774

variable genes). Lastly, to obtain lineage labels for trajectory analysis, cells were scored and gated according to775

their average expression of known memory markers (Bcl2, Sell, Il7r) using the score_genes function in Scanpy776

v1.8.1. When evaluating feature selection methods, we selected the top p = 250 features for each feature selection777

approach.778

Evaluation779

Classification and regression780

k-nearest neighbor classification To quantitatively compare feature selection methods on retaining features that781

are representative of cell types, we aimed to implement an approach that would assess the quality of the graph782

structure. k−nearest neighbors classification is a supervised learning algorithm that classifies data based on labels783

of the k-most similar cells according to their gene or protein expression, where the output of this algorithm is a784

set of labels for every cell. We performed k-nearest neighbors classification to predict cell type labels from the785

simulated single-cell RNA sequencing datasets as follows. First, 3-fold cross-validation was performed using786

stratified random sampling to assign cells to either a training or a test set. Stratified random sampling was chosen787

to mitigate the effect of cell type class imbalance. Within each fold, feature selection was then performed on the788

training data to identify the top p = 250 relevant features according to a feature selection strategy. Next, a k-nearest789

neighbor classifier (k = 3) was fit on the feature selected training data to predict the cell type labels of the feature790

selected test query points. Here, labels are predicted as the mode of the cell type labels from the closest training791

data points according to Euclidean distance. Classification performance was subsequently assessed according to the792

median classification accuracy with respect to the ground truth cell type labels across folds.793

Support Vector Machine The Support Vector Machines (SVM) [130] is a supervised learning algorithm that con-794

structs hyperplanes in the high-dimensional feature space to separate classes. We implemented SVM classification795

or regression using the sklearn v0.23.4 package in python. SVM classification was used to predict cell cycle phase796

labels for both RPE and PDAC 4i datasets, whereas regression was used to predict age measurements from time797

lapse imaging for the RPE dataset. Here, Nested 10-fold cross-validation was performed using stratified random798

sampling to assign cells to either a training set or a test set. Within each fold, feature selection was performed to799

identify the p most relevant features according to a feature selection strategy. SVM hyperparameters were then800

tuned over a grid search and phase labels were subsequently predicted from the test data according to those p801

features. Classification performance was assessed according to the median classification accuracy with respect to802

the ground truth cell type labels across folds. Regression performance was assessed according to the average mean803

squared error with respect to ground truth age measurements across folds.804

Precision@k805

To evaluate the biological relevance of selected features from each method, we computed precision@k (p@k) as806

the proportion of top k selected features that were considered to be biologically relevant according to a ground807

truth reference as,808

p@k =
|Fs,k ∩ Fr|

|Fs,k|
, (24)

where Fs,k indicates the set of selected features at threshold k, where Fs,k ⊂ Fs, and Fr indicates the set of809

reference features. Reference features were defined as either (1) the ground truth differentially expressed features810

within a cluster or along a differentiation path from the single-cell RNA sequencing simulation study (see Splatter811

simulation) or (2) the features determined to be useful for classifying cells according to cell cycle phase using812

a random forest classifier trained on ground truth phase annotations from time-lapse imaging for the protein813

immunofluorescence imaging datasets (See Random forest, RPE analysis, PDAC analysis).814

Unsupervised clustering815

To evaluate feature selection method performance on retaining features that are informative for identifying canonical816

cell types, we performed unsupervised clustering on the data defined by the top p ranked features from a feature817
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selection strategy. More specifically, for each feature selection approach, clustering was performed on the selected818

data using either the KMeans++ algorithm [103] with the number of centroids set as the same number of819

ground truth cell cycle phase labels for the protein immunofluorescence imaging datasets (RPE: c = 4, PDAC:820

c = 5).821

To assess the accuracy of clustering assignments, we quantified a normalized mutual information (NMI) score822

between the predicted cluster labels and the ground truth cell type labels. Normalized mutual information [131] is a823

clustering quality metric that measures the amount of shared information between two cell-to-cluster partitions (u824

and v, such that the ith entry ui gives the cluster assignment of cell i) as,825

NMI =
2I(u; v)
H(u)H(v)

, (25)

where, I(u; v) measures the mutual information between ground truth cell type labels u and cluster labels v, and826

H(u) or H(v) indicates the Shannon entropy or the amount of uncertainty for a given set of labels. Here, a score of827

1 indicates that clustering on the selected features perfectly recovers the ground truth cell type labels. KMeans++828

clustering was implemented using the KMeans function in sklearn v0.23.4.829

Protein-protein interaction networks830

In this work, we aimed to test whether features within DELVE dynamic clusters had experimental evidence831

of co-regulation as compared to random assignment. The STRING (search tool for the retrieval of interacting832

genes/proteins) database [121] is a relational database that computes protein association scores according to833

information derived from several evidence channels, including computational predictions (e.g. neighborhood,834

fusion, co-occurance), co-expression, experimental assays, pathway databases, and literature text mining. To assess835

the significance of protein interactions amongst features within a DELVE cluster, we performed a permutation test836

with a test statistic derived from STRING association scores using experimental evidence as follows.837

Let Gp = (Np, Ep) denote a graph of p proteins from a DELVE cluster comprising the nodes Np, and Ep denote the838

set of edges, where edge weights encode the association scores of experimentally-derived protein-protein interaction839

evidence from the STRING database. Moreover, let Gr = (Nr, Er) denote a graph of r proteins randomly sampled840

without replacement from the full feature space d such that r = p comprising the nodes Nr, and Er denote the841

set of edges encoding the experimentally-derived association scores between those r proteins from the STRING842

database. We compute the permutation p-value as described previously in ref. [132] as,843

p−value =
N + 1

R+ 1
. (26)

Here N indicates the number of times that Tr ≥ Tobs out of R random permutations (R = 1000), where Tr is844

the average degree of a STRING association network from randomly permuted features as Tr =
|Nr|
|Er| , and Tobs845

is the average degree of a STRING association network from the features identified within a DELVE cluster as846

Tobs =
|Np|
|Ep| . Of note, networks with higher degree are more connected, and thus show greater experimental847

evidence of protein-protein interactions. Experimental evidence-based association scores were obtained from848

the STRING database using the stringdb v0.1.5 package in python and networks were generated using networkx849

v2.5.1.850

Trajectory inference and analysis851

To evaluate how well feature selection methods could identify features that recapitulate the underlying cellular852

trajectory and can be used for trajectory analysis, we computed three metrics to assess trajectory preservation at853

different stages of inference: accuracy of the inferred trajectory graph, correlation of estimated pseudotime to854

the ground truth cell progression measurements, and the significance of dynamic features identified following855

regression analysis.856

To obtain predicted trajectories, we performed trajectory inference using the diffusion pseudotime algorithm [83]857

based on 20 diffusion map components generated from a k-nearest neighbor graph (k = 10), where edge weights858

were determined by pairwise Euclidean distances between cells according to selected feature expression. Inference859

was performed for the following lineages – simulated trajectories: all cells, arrested trajectory: cells with G0 phase860

annotation, proliferative trajectory: cells with G1, S, G2, or M phase annotation, CD8 T cell memory lineage: cells861

following day 7 of infection with a memory score. Moreover, for each feature selection approach, we estimated862
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pseudotime using ten random root cells according to a priori biological knowledge. Root cells were chosen as863

either (1) cells with the smallest ground truth pseudotime annotation for the simulated datasets, (2) cells with the864

youngest molecular age for 4i cell cycle datasets, or (3) cells from the day 7 population along the memory lineage865

for the CD8 T cell differentiation dataset. Feature selection trajectory performance was subsequently assessed as866

follows.867

1. Trajectory graph similarity: Partition-based graph abstraction (PAGA) [104] performs trajectory inference868

by constructing a coarse grained trajectory graph of the data. First cell populations are determined either869

through unsupervised clustering, graph partitioning, or a prior experimental annotations. Next, a statistical870

measure of edge connectivity is computed between cell populations to estimate the confidence of a cell871

population transition. To assess if feature selection methods retain features that represent coarse cell type872

transitions, we compared predicted PAGA trajectory graphs to ground truth cell cycle reference trajectories873

curated from the literature [92]. First, PAGA connectivity was estimated between ground truth cell cycle874

phase groups using the k-nearest neighbor graph (k = 10) based on pairwise Euclidean distances between875

cells according to selected feature expression. We then computed the Jaccard distance between predicted and876

reference trajectories as,877

dj (Wp,Wr) = 1− |Wp ∩ Wr|
|Wp ∪ Wr|

. (27)

Wp indicates the predicted cell type transition adjacency matrix, where each entry Wp,ij represents the878

connectivity strength between cell populations i and j from PAGA and Wr indicates the reference trajectory879

adjacency matrix with entries encoding ground truth cell type transitions curated from the literature. Here, a880

lower Jaccard distance indicates that predicted trajectories better capture known cellular transitions.881

2. Pseudotime correlation: To evaluate if feature selection methods retain features that accurately represent a882

cell’s progression through a biological trajectory, we computed the Spearman rank correlation coefficient883

between estimated pseudotime following feature selection and ground truth cell progression annotations884

(e.g. the ground truth pseudotime labels generated from simulations, time-lapse imaging molecular age885

measurements).886

3. Regression analysis: To identify genes associated with the inferred CD8+ T cell differentiation trajectory887

following feature selection, we performed regression analysis for each gene (d = 500) along estimated888

pseudotime using a negative binomial generalized additive model (GAM). Genes were considered to be889

differentially expressed along the memory lineage if they had a q−value < 0.05 following Benjamini-890

Hochberg false discovery rate correction [122].891

4. Gene Ontology: To identify the biological relevance of the differentially expressed genes along inferred892

CD8+ T cell differentiation trajectories specific to each feature selection strategy, we performed gene set893

enrichment analysis on the set difference of significant genes from either highly variable gene selection or894

DELVE feature selection using Enrichr [123]. Here, we considered the mouse gene sets from GO Biological895

Process 2021.896

Diffusion pseudotime was implemented using the dpt function in Scanpy v1.8.1, PAGA was implemented using897

the paga function in scanpy v1.8.1, GAM regression was implemented using the statsmodels v0.12.2 package in898

python, and gene set enrichment analysis was performed using the enrichr function in gseapy v1.0.4 package in899

python.900

PHATE visualizations901

To qualitatively compare lower dimensional representations from each feature selection strategy, we performed non-902

linear dimensionality reduction using PHATE (potential of heat-diffusion for affinity-based transition embedding)903

[75] as this approach performs reasonably well for representing complex continuous biological trajectories. PHATE904

was implemented using the phate v1.0.7 package in python. Here, we used the same set of hyperparameters across905

all feature selection strategies (knn = 30, t = 10, decay = 40).906

Aggregate scores907

To rank feature selection methods on preserving biological trajectories in the presence of single-cell noise, we908

computed rank aggregate scores by taking the mean of scaled method scores across simulated single-cell RNA909

sequencing datasets from a trajectory type and noise condition (e.g. linear trajectory, dropout noise). More910
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specifically, we first defined an overall method score per dataset as the median of each metric. Method scores were911

subsequently min-max scaled to ensure datasets were equally weighted prior to computing the average.912

Data and code availability913

The raw publicly available single-cell datasets used in this study are available in the Zenodo repository https:914

//doi.org/10.5281/zenodo.4525425 for the RPE cell cycle dataset [133], the Zenodo repository https://915

doi.org/10.5281/zenodo.7860332 for the PDAC cell cycle datasets [134], and the Gene Expression Omnibus916

(GEO) under the accession code GSE131847 for the CD8 T cell differentiation dataset [135]. The preprocessed917

datasets are available in the Zenodo repository https://doi.org/10.5281/zenodo.7883604 [136]. DELVE918

is implemented as an open-source python package and is publicly available at https://github.com/jranek/919

delve. Source code including all functions for benchmarking feature selection methods including preprocessing,920

feature selection, evaluation, and plotting are publicly available at: https://github.com/jranek/delve_921

benchmark.922
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Supplementary Information1343

Supplementary Tables1344

Supplementary Table 1: Implemented feature selection method parameters

Method name Supervision Parameter description Parameters

Random Forest classifier supervised cell type labels cell type labels
number of trees n_estimators = 10, 100, 500

DELVE unsupervised
number of nearest neighbors k = 10

number of representative neighborhoods m = 1000
number of modules c = 3, 5, 10

Laplacian score unsupervised number of nearest neighbors k = 10
kernel bandwidth parameter σi = 3rd-nearest neighbor distance

Neighborhood variance unsupervised NA NA

Hotspot unsupervised

number of nearest neighbors k = 10
kernel bandwidth parameter σi = k/3-nearest neighbor distance

number of principal components n_pcs = 50
model danb

MCFS unsupervised

number of nearest neighbors k = 10
kernel bandwidth parameter σi = 3rd-nearest neighbor distance

number of nonzero coefficients p
number of eigenvectors c = number of known cell types

SCMER unsupervised

number of nearest neighbors k = 10
number of principal components n_pcs = 50

lasso regression parameter lasso = 3.87e− 4
ridge regression parameter ridge = 0

Max variance unsupervised NA NA

Highly variable genes unsupervised
flavor Seurat
bins 20

n_top_genes p

All features NA NA NA

Random features NA NA NA
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Supplementary Figures1345

Supplementary Figure 1: Comparison of feature selection methods on preserving linear differentiation
trajectories under a reduction in the signal-to-noise ratio. (a) Example PHATE [75] visualizations of simulated
linear differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the signal-
to-noise ratio (high, medium, low). The signal-to-noise ratio was altered by modifying the biological coefficient
of variation parameter within Splatter (high: BCV = 0.1, medium: BCV = 0.25, low: BCV = 0.5). This scaling
factor controls the mean-variance relationship between genes, where lowly expressed genes are more variable
than highly expressed genes. d indicates the total number of genes (d = 500) and p indicates the number of
selected genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods
when subjected to a reduction in the signal-to-noise ratio. Following feature selection, trajectory preservation was
quantitatively assessed according to several metrics: the precision of differentially expressed genes at k selected
genes (top), k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails.
Error bars/ bands represent the standard deviation. * indicates the method with the highest median score. - indicates
that the method identified no features.
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Supplementary Figure 2: Comparison of feature selection methods on preserving linear differentiation
trajectories in the presence of library size noise. (a) Example PHATE [75] visualizations of simulated linear
differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the total mRNA
count (high, medium, low). Library size was reduced by modifying the location parameter in the log-normal
distribution in Splatter [72] that specifies library size scaling factors (high: location = 12, medium: location =
11, low: location = 10). d indicates the total number of genes (d = 500) and p indicates the number of selected
genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods when
subjected to a reduction in total mRNA count. Following feature selection, trajectory preservation was quantitatively
assessed according to several metrics: the precision of differentially expressed genes at k selected genes (top),
k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails. Error bars/
bands represent the standard deviation. * indicates the method with the highest median score. - indicates that the
method identified no features.
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Supplementary Figure 3: Comparison of feature selection methods on preserving linear differentiation
trajectories is the presence of dropout noise. (a) Example PHATE [75] visualizations of simulated linear
differentiation trajectories for twelve feature selection strategies when subjected to an increase in the amount of
dropout (low, medium, high). Technical dropout was simulated by undersampling mRNA counts by sampling from
a binomial distribution with the scale parameter or dropout rate proportional to the mean expression of each gene
(low: λ = 0, medium: λ = 0.05, low: λ = 0.1). d indicates the total number of genes (d = 500) and p indicates
the number of selected genes following feature selection (p = 100). (b) Performance of twelve different feature
selection methods when subjected to an increase in the amount of dropout noise. Following feature selection,
trajectory preservation was quantitatively assessed according to several metrics: the precision of differentially
expressed genes at k selected genes (top), k-NN classification accuracy (middle), and pseudotime correlation
(bottom) across 10 random trails. Error bars/ bands represent the standard deviation. * indicates the method with
the highest median score. - indicates that the method identified no features.
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Supplementary Figure 4: Comparison of feature selection methods on preserving bifurcation differentiation
trajectories under a reduction in the signal-to-noise ratio. (a) Example PHATE [75] visualizations of simulated
bifurcation differentiation trajectories for twelve feature selection strategies when subjected to a reduction in
the signal-to-noise ratio (high, medium, low). The signal-to-noise ratio was altered by modifying the biological
coefficient of variation parameter within Splatter (high: BCV = 0.1, medium: BCV = 0.25, low: BCV = 0.5).
This scaling factor controls the mean-variance relationship between genes, where lowly expressed genes are more
variable than highly expressed genes. d indicates the total number of genes (d = 500) and p indicates the number of
selected genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods
when subjected to a reduction in the signal-to-noise ratio. Following feature selection, trajectory preservation was
quantitatively assessed according to several metrics: the precision of differentially expressed genes at k selected
genes (top), k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails.
Error bars/ bands represent the standard deviation. * indicates the method with the highest median score. - indicates
that the method identified no features.
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Supplementary Figure 5: Comparison of feature selection methods on preserving bifurcation differentiation
trajectories in the presence of library size noise. (a) Example PHATE [75] visualizations of simulated bifurcation
differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the total mRNA
count (high, medium, low). Library size was reduced by modifying the location parameter in the log-normal
distribution in Splatter [72] that specifies library size scaling factors (high: location = 12, medium: location =
11, low: location = 10). d indicates the total number of genes (d = 500) and p indicates the number of selected
genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods when
subjected to a reduction in total mRNA count. Following feature selection, trajectory preservation was quantitatively
assessed according to several metrics: the precision of differentially expressed genes at k selected genes (top),
k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails. Error bars/
bands represent the standard deviation. * indicates the method with the highest median score. - indicates that the
method identified no features.
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Supplementary Figure 6: Comparison of feature selection methods on preserving bifurcation differentiation
trajectories is the presence of dropout noise. (a) Example PHATE [75] visualizations of simulated bifurcation
differentiation trajectories for twelve feature selection strategies when subjected to an increase in the amount of
dropout (low, medium, high). Technical dropout was simulated by undersampling mRNA counts by sampling from
a binomial distribution with the scale parameter or dropout rate proportional to the mean expression of each gene
(low: λ = 0, medium: λ = 0.05, low: λ = 0.1). d indicates the total number of genes (d = 500) and p indicates
the number of selected genes following feature selection (p = 100). (b) Performance of twelve different feature
selection methods when subjected to an increase in the amount of dropout noise. Following feature selection,
trajectory preservation was quantitatively assessed according to several metrics: the precision of differentially
expressed genes at k selected genes (top), k-NN classification accuracy (middle), and pseudotime correlation
(bottom) across 10 random trails. Error bars/ bands represent the standard deviation. * indicates the method with
the highest median score. - indicates that the method identified no features.
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Supplementary Figure 7: Comparison of feature selection methods on preserving tree differentiation
trajectories under a reduction in the signal-to-noise ratio. (a) Example PHATE [75] visualizations of simulated
tree differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the signal-
to-noise ratio (high, medium, low). The signal-to-noise ratio was altered by modifying the biological coefficient
of variation parameter within Splatter (high: BCV = 0.1, medium: BCV = 0.25, low: BCV = 0.5). This scaling
factor controls the mean-variance relationship between genes, where lowly expressed genes are more variable
than highly expressed genes. d indicates the total number of genes (d = 500) and p indicates the number of
selected genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods
when subjected to a reduction in the signal-to-noise ratio. Following feature selection, trajectory preservation was
quantitatively assessed according to several metrics: the precision of differentially expressed genes at k selected
genes (top), k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails.
Error bars/ bands represent the standard deviation. * indicates the method with the highest median score. - indicates
that the method identified no features.
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Supplementary Figure 8: Comparison of feature selection methods on preserving tree differentiation
trajectories in the presence of library size noise. (a) Example PHATE [75] visualizations of simulated tree
differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the total mRNA
count (high, medium, low). Library size was reduced by modifying the location parameter in the log-normal
distribution in Splatter [72] that specifies library size scaling factors (high: location = 12, medium: location =
11, low: location = 10). d indicates the total number of genes (d = 500) and p indicates the number of selected
genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods when
subjected to a reduction in total mRNA count. Following feature selection, trajectory preservation was quantitatively
assessed according to several metrics: the precision of differentially expressed genes at k selected genes (top),
k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails. Error bars/
bands represent the standard deviation. * indicates the method with the highest median score. - indicates that the
method identified no features.
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Supplementary Figure 9: Comparison of feature selection methods on preserving tree differentiation trajec-
tories is the presence of dropout noise. (a) Example PHATE [75] visualizations of simulated tree differentiation
trajectories for twelve feature selection strategies when subjected to an increase in the amount of dropout (low,
medium, high). Technical dropout was simulated by undersampling mRNA counts by sampling from a binomial
distribution with the scale parameter or dropout rate proportional to the mean expression of each gene (low: λ = 0,
medium: λ = 0.05, low: λ = 0.1). d indicates the total number of genes (d = 500) and p indicates the number
of selected genes following feature selection (p = 100). (b) Performance of twelve different feature selection
methods when subjected to an increase in the amount of dropout noise. Following feature selection, trajectory
preservation was quantitatively assessed according to several metrics: the precision of differentially expressed
genes at k selected genes (top), k-NN classification accuracy (middle), and pseudotime correlation (bottom) across
10 random trails. Error bars/ bands represent the standard deviation. * indicates the method with the highest median
score. - indicates that the method identified no features.
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Supplementary Figure 10: Comparison of the robustness of feature selection methods on inferring differenti-
ation trajectories under a reduction in the signal-to-noise ratio. (a) Average k-NN classification accuracy vs.
average percent change in k-NN classification accuracy as the signal-to-noise ratio decreased (high to medium)
and the mean-variance relationship amongst genes increased. The signal-to-noise ratio was altered by modifying
the biological coefficient of variation parameter within Splatter [72] (high: BCV = 0.1, medium: BCV = 0.25). (b)
Average pseudotime correlation vs. average percent change in pseudotime correlation as the signal-to-noise ratio
decreased (high to medium).
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Supplementary Figure 11: Comparison of the robustness of feature selection methods on inferring differenti-
ation trajectories under library size noise corruption. (a) Average k-NN classification accuracy vs. average
percent change in k-NN classification accuracy as the total mRNA count decreased (high to medium). Library
size was reduced by modifying the location parameter in the log-normal distribution in Splatter [72] that specifies
library size scaling factors (high: location = 12, medium: location = 11). (b) Average pseudotime correlation vs.
average percent change in pseudotime correlation as the total mRNA count decreased (high to medium).
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Supplementary Figure 12: Comparison of the robustness of feature selection methods on inferring differenti-
ation trajectories under dropout noise corruption. (a) Average k-NN classification accuracy vs. average percent
change in k-NN classification accuracy as the amount of dropout or sparsity increased (low to medium). Technical
dropout was simulated by undersampling mRNA counts by sampling from a binomial distribution with the scale
parameter or dropout rate proportional to the mean expression of each gene (low: λ = 0, medium: λ = 0.05). (b)
Average pseudotime correlation vs. average percent change in pseudotime correlation as the amount of dropout or
sparsity increased (low to medium).

Supplementary Figure 13: Validation of DELVE seed selection on retinal pigmented epithelial (RPE) cell
cycle dataset. Top ranked features identified by a (a) random forest classifier trained on ground truth cell cycle
phase annotations or (b) random forest regressor trained on ground truth cell cycle age measurements. Features
highlighted in red were also identified by DELVE seed selection (See Figure 4a heatmap).
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Supplementary Figure 14: DELVE is robust to changes in hyperparameters for the retinal pigmented
epithelial (RPE) cell cycle dataset. DELVE achieves similar classification accuracy, normalized mutual information
(NMI) clustering score, and pseudotime correlation across a range of (top) cluster sizes and (bottom) subsampled
cells. Plots show results over 20 random trials. Error bars represent the standard deviation.
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Supplementary Figure 15: Feature selection method performance on pancreatic adenocarcinoma (PDAC)
cell cycle datasets. Performance of twelve feature selection methods on preserving cell cycle trajectories from 9
PDAC cancer cell lines (BxPC3, CFPAC, HPAC, MiaPaCa, Pa02C, Pa01C, Pa16C, PANC1, and UM53) profiled
with protein immunofluorescence imaging. Following feature selection, cell cycle preservation was quantitatively
assessed according to several metrics including: support vector machine classification accuracy to the ground
truth phase annotations, normalized mutual information (NMI) clustering score to ground truth phase annotations,
precision of cell cycle phase-specific imaging-derived features as measured by a random forest classifier trained on
ground truth phase annotations, Jaccard distance between predicted cell cycle trajectory graphs and a ground truth
reference cell cycle trajectory curated from the literature, and the Spearman rank correlation between estimated
pseudotime and the ground truth as measured by a random forest classifier trained on ground truth phase annotations.
Heatmaps show the average performance. Approaches with the highest average score are highlighted in yellow.
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Supplementary Figure 16: DELVE recovers BxPC3 pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. BxPC3 cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified two modules of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[75] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 17: DELVE recovers CFPAC pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. CFPAC cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[75] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 18: DELVE recovers HPAC pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. HPAC cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[75] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 19: DELVE recovers MiaPaCa pancreatic adenocarcinoma cell cycle trajectories
in protein immunofluorescence imaging data. MiaPaCa cells were profiled with protein immunofluorescence
imaging to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a)
DELVE identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization
of image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[75] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 20: DELVE recovers Pa01C pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. Pa01C cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[75] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 21: DELVE recovers Pa02C pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. Pa02C cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[75] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 22: DELVE recovers Pa16C pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. Pa16C cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[75] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 23: DELVE recovers PANC1 pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. PANC1 cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[75] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 24: DELVE recovers UM53 pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. UM53 cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[75] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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