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Abstract

Single-cell technologies can readily measure the expression of thousands of molecular features from
individual cells undergoing dynamic biological processes, such as cellular differentiation, immune
response, and disease progression. While examining cells along a computationally ordered pseudotime
offers the potential to study how subtle changes in gene or protein expression impact cell fate decision-
making, identifying characteristic features that drive continuous biological processes remains difficult
to detect from unenriched and noisy single-cell data. Given that all profiled sources of feature variation
contribute to the cell-to-cell distances that define an inferred cellular trajectory, including confounding
sources of biological variation (e.g. cell cycle or metabolic state) or noisy and irrelevant features (e.g.
measurements with low signal-to-noise ratio) can mask the underlying trajectory of study and hinder
inference. Here, we present DELVE (dynamic selection of locally covarying features), an unsupervised
feature selection method for identifying a representative subset of dynamically-expressed molecular
features that recapitulates cellular trajectories. In contrast to previous work, DELVE uses a bottom-up
approach to mitigate the effect of unwanted sources of variation confounding inference, and instead
models cell states from dynamic feature modules that constitute core regulatory complexes. Using
simulations, single-cell RNA sequencing data, and iterative immunofluorescence imaging data in the
context of the cell cycle and cellular differentiation, we demonstrate that DELVE selects features that
more accurately characterize cell populations and improve the recovery of cell type transitions. This
feature selection framework provides an alternative approach for improving trajectory inference and
uncovering co-variation amongst features along a biological trajectory. DELVE is implemented as an
open-source python package and is publicly available at: https://github.com/jranek/delve.

. Introduction

> High-throughput single-cell technologies, such as flow and mass cytometry [1} 2} 3], single-cell RNA sequencing
s [4,15016, 7], and imaging-based profiling techniques (8, 9} [10} [11] have transformed our ability to study how cell
4+ populations respond and dynamically change during processes like development [12} [13] {14} [15] and immune
s response [16, |17, [18]]. By profiling many features (e.g. proteins or genes) for many thousands of cells from a
¢ biological sample, these technologies provide high-dimensional snapshot measurements that can be used to gain
7 fundamental insights into the molecular mechanisms that govern phenotypic changes.

s Trajectory inference methods [[19] have been developed to model dynamic biological processes from snapshot
o single-cell data. By assuming cells are asynchronously changing over time such that a profiled biological sample
10 from a single experimental time point describes a range of the underlying dynamic process, computational trajectory
1 inference approaches have leveraged minimum spanning tree approaches [20} 21} 22], curve-fitting [23} 24]], graph-
12 based techniques [25} 26 27]], probabilistic approaches [28| 29, 30], or optimal transport [31} [32] to order cells
13 based on their similarities in feature expression. Once a trajectory model is fit, regression [33} 134} 135] can be
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14 performed along estimated pseudotime (e.g. distance through the inferred trajectory from a start cell) to identify
15 specific cell state changes associated with differentiation or disease trajectories. Moreover, these inferred cellular
16 trajectories have the potential to elucidate higher-order gene interactions [36], gene regulatory networks [37]],
17 predict cell fate probabilities [29], or find shared mechanisms of expression dynamics across disease conditions or
18 species [38, 39].

19 While trajectory analysis has proven useful in the context of single-cell biology, the identification of characteristic
20 genes or proteins that drive continuous biological processes relies on having inferred accurate cellular trajectories,
21 which can be challenging, especially when trajectory inference is performed on the original full unenriched dataset.
22 Single-cell data are noisy measurements that suffer from limitations in detection sensitivity, where dropout [40],
23 low signal-to-noise, or sample degradation [41]] can result in spurious signals that can overwhelm true biological
2 differences. Furthermore, all profiled sources of feature variation contribute to the cell-to-cell distances that
»s  define the inferred cellular trajectory; thus, including confounding sources of biological variation (e.g. cell cycle,
26 metabolic state) or irrelevant features (e.g. extracted imaging measurements that contain low signal-to-noise ratio)
27 can distort or mask the intended trajectory of study [42} 43]]. With the accumulation of large-scale single-cell data
23 and multi-modal measurements [44]], appropriate filtering of noisy, information-poor, or irrelevant features can
20 serve as a crucial and necessary step for cell type identification, inference of dynamic phenotypes, and identification
30 of punitive driver features (e.g. genes, proteins).

;1 Feature selection methods [45] are a class of supervised or unsupervised approaches that can remove redundant
32 or information-poor features prior to performing trajectory inference, and therefore, they have great potential
a3 for improving the interpretation of downstream analysis, while easing the computational burden by reducing
34 dataset dimension. In the supervised-learning regime, classification-based [46] or information-theoretic approaches
35 [47, 48] have been used to evaluate features according to their discriminative power or association with cell types.
s Despite having great power to detect biologically-relevant features, these methods rely on expensive or laborious
37 manual annotations (e.g. cell types) which are often unavailable [49] thus precluding them from use. In the
33 unsupervised-learning regime, computational approaches often aim to identify relevant features based on intrinsic
30 properties of the complete dataset; however, these methods have some limitations with respect to retaining features
40 that are useful for defining cellular trajectories. Namely, although unsupervised variance-based approaches [50, 511,
4 which effectively sample features based on their overall variation across cells, have been extensively used to identify
4 features that define cell types without the need for ground truth annotations, (1) they can be overwhelmed by
s noisy or irrelevant features that dominate data variance, and (2) are insensitive to lineage-specific features (e.g.
4 transcription factors) that have a small variance and gradual progression of expression. Alternatively, unsupervised
s similarity-based [52 153} 25]] or subspace-learning [54}55] feature selection methods evaluate features according
46 to their association with a cell-similarity graph defined by all features or the underlying structure of the data (e.g.
47 pairwise similarities defined by uniform manifold approximation and projection (UMAP) [56], eigenvectors of
s the graph Laplacian matrix [57]). While these approaches have the potential to detect smoothly varying genes
s or proteins that define cellular transitions, they rely on the cell-similarity graph from the full dataset and can
so fail to identify relevant features when the number of noisy features outweighs the number of informative ones
st [58L159].

s2 To address these limitations, we developed DELVE (dynamic selection of locally covarying features), an unsuper-
ss  vised feature selection method for identifying a representative subset of molecular features that robustly recapitulate
s« cellular trajectories. In contrast to previous work [55} 152} 50} 54, 53| 25]], DELVE uses a bottom-up approach to
ss mitigate the effect of unwanted sources of variation confounding feature selection and trajectory inference, and
ss instead models cell states from dynamic feature modules that constitute core regulatory complexes. Features are
sz then ranked for selection according to their association with the underlying cell trajectory graph using data diffusion
ss techniques. We demonstrate the power of our approach for improving inference of cellular trajectories through
so achieving an increased sensitivity to detect diverse and dynamically expressed features that better delineate cell
60 types and cell type transitions from single-cell RNA sequencing and protein immunofluorescence imaging data.
61 Overall, this feature selection framework provides an alternative approach for uncovering co-variation amongst
62 features along a biological trajectory.

« Results

s+« Overview of the DELVE algorithm

s We propose DELVE, an unsupervised feature selection framework for modeling dynamic cell state transitions
s using graph neighborhoods (Fig. [I). Our approach extends previous unsupervised similarity-based [52} 53, 25]
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e7 or subspace-learning feature selection [55]] methods by computing the dependence of each gene on the cellular
e trajectory graph structure using a two-step approach. Inspired by the molecular events that occur during differ-
e entiation, where the coordinated spatio-temporal expression of key regulatory genes govern lineage specification
7 [60}161,162,163], we reasoned that we can approximate cell state transitions by identifying groups of features that
7 are temporally co-expressed or co-regulated along the underlying dynamic process.

72 In step one, DELVE identifies groups of features that are temporally co-expressed by clustering features according
75 to their average pairwise change in expression across prototypical cellular neighborhoods (Figure[T]step 1). As has
7« been done previously [64,[65], we model cell states using a weighted k-nearest neighbor (k-NN) affinity graph,
s where nodes represent cells and edges describe the transcriptomic or proteomic similarity amongst cells according
76 to all profiled features. Here, DELVE leverages a distribution-focused sketching method [66] to effectively sample
77 cellular neighborhoods across all cell types. This sampling approach has three main advantages: (1) cellular
78 neighborhoods are more reflective of the distribution of cell states, (2) redundant cell states are removed, and
7 (3) fewer cellular neighborhoods are required to estimate feature dynamics resulting in increased scalability.
so Following clustering, each DELVE module contains a set of features with similar local changes in co-variation
81 across prototypical cell states along the cellular trajectory. Feature-wise permutation testing is then used to assess
s2 the significance of dynamic expression variation across grouped features as compared to random assignment. By
ss identifying and excluding modules of features that have static, random, or noisy patterns of expression variation,
s4 this approach effectively mitigates the effect of unwanted sources of variation confounding feature ranking and
ss  selection, and subsequent trajectory inference.

ss In step two, DELVE approximates the underlying cellular trajectory by constructing an affinity graph between cells,
37 where cell similarity is now redefined according to a core set of dynamically expressed regulators. All profiled
ss features are then ranked according to their association with the underlying cellular trajectory graph using graph
so  signal processing techniques [67, [68] (Fig. [T|step 2). More concretely, a graph signal is any function that has a
o0 real defined value on all of the nodes. In this context, we consider all features as graph signals and rank them
o1 according to their total variation in expression along the cellular trajectory graph using the Laplacian Score [52]].
o2 Intuitively, DELVE retains features that are considered to be globally smooth, or have similar expression values
93 amongst similar cells along the approximate cellular trajectory graph. In contrast, DELVE excludes features that
94 have a high total variation in signal, or expression values that are rapidly oscillating amongst neighboring cells, as
os these features are likely noisy or not involved in the underlying dynamic process that was seeded. The output of
s DELVE is a ranked set of features that best preserve the local trajectory structure. For a more detailed description
97 on the problem formulation, the mathematical foundations behind feature ranking, and the impact of nuisance
ss features on trajectory inference, see in the Methods section.
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Figure 1: Schematic overview of the DELVE pipeline. Feature selection is performed in a two-step process.
In step 1, DELVE clusters features according to their expression dynamics along local representative cellular
neighborhoods defined by a weighted k-nearest neighbor affinity graph. Neighborhoods are sampled using a
distribution-focused sketching algorithm that preserves cell-type frequencies and spectral properties of the original
dataset [66]. A permutation test with a variance-based test statistic is used to determine if a set of features are (1)
dynamically changing (dynamic) or (2) exhibiting random patterns of variation (static). In step 2, dynamic modules
are used to seed or initialize an approximate cell trajectory graph and the trajectory is refined by ranking and
selecting features that best preserve the local structure using the Laplacian Score [52]. In this study, we compare
DELVE to the alternative unsupervised feature selection approaches on how well selected features preserve cell
type and cell type transitions according to several metrics.
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DELVE outperforms existing feature selection methods on representing cellular trajectories
in the presence of single-cell RNA sequencing noise

Although feature selection is a common preprocessing step in single-cell analysis [69] with the potential to reveal
cell-type transitions that would have been masked in the original high-dimensional feature space [42], there has
been no systematic evaluation of feature selection method performance on identifying biologically-relevant features
for trajectory analysis in single-cell data, especially in the context of noisy data that contain biological or technical
challenges (e.g. low total mRNA count, low signal-to-noise ratio, or dropout). In this study, we compared DELVE
to eleven other feature selection approaches and evaluated methods on their ability to select features that represent
cell types and cell type transitions using simulated data where the ground truth was known. In the sections below,
we will describe an overview of the feature selection methods considered and outline the simulation design and
evaluation criteria in more detail. We will then provide qualitative and quantitative assessments of how noise
impacts feature selection method performance and subsequent inference of cellular trajectories.

Overview of feature selection methods

We performed a systematic evaluation of twelve feature selection methods for preserving cellular trajectories in noisy
single-cell data. Feature selection methods were grouped into five general categories prior to evaluation: supervised,
similarity, subspace-learning, variance, and baseline approaches. For more details on the feature selection methods
implemented and hyperparameters, see Benchmarked feature selection methods|and Supplementary Table [T}

Supervised approaches: To illustrate the performance of ground-truth feature selection that could be obtained
through supervised learning on expert annotated cell labels, we performed Random Forest classification. Random
Forest classification [46] is a supervised ensemble learning algorithm that uses an ensemble of decision trees to
partition the feature space such that all of the cells with the same cell type label are grouped together. Here, each
decision or split of a tree was chosen by minimizing the Gini Impurity score [70]. This approach was included to
provide context for unsupervised feature selection method performance.

Similarity approaches: ~We considered four similarity-based approaches as unsupervised feature selection methods
that rank features according to their association with a cell similarity graph defined by all profiled features (e.g.
Laplacian Score, neighborhood variance, hotspot) or dynamically-expressed features (e.g. DELVE). First, the
Laplacian Score (LS) [52] is an unsupervised locality-preserving feature selection method that ranks and selects
features according to (1) the total variation in feature expression across neighboring cells using a cell similarity graph
defined by all features and (2) a feature’s global variance. Next, neighborhood variance [25] is an unsupervised
feature selection method that selects features with gradual changes in expression for building biological trajectories.
Here, features are selected if their variance in expression across local cellular neighborhoods is smaller than their
global variance. Hotspot [53]] performs unsupervised feature selection through a local autocorrelation test statistic
that measures the association of a gene’s expression with a cell similarity graph defined by all features. Lastly,
DELVE (dynamic selection of locally covarying features) is an unsupervised feature selection method that ranks
features according to their association with the underlying cellular trajectory graph. First, features are clustered into
modules according to changes in expression across local representative cellular neighborhoods. Next, modules of
features with dynamic expression patterns (denoted as dynamic seed) are used to construct an approximate cellular
trajectory graph. Features are then ranked according to their association with the approximate cell trajectory graph
using the Laplacian Score [52].

Subspace learning approaches: We considered two subspace-learning feature selection methods as unsupervised
methods that rank features according to how well they preserve the overall cluster structure (e.g. MCES) or
manifold structure (e.g. SCMER) of the data. First, multi-cluster feature selection (MCFS) [535]] is an unsupervised
feature selection method that selects features that best preserve the multi-cluster structure of data by solving an
L1 regularized least squares regression problem on the spectral embedding defined by all profiled features. The
optimization is solved using the least angles regression algorithm [71]. Next, single-cell manifold-preserving feature
selection (SCMER) [54]] is an unsupervised feature selection method that selects a subset of features that best
preserves the pairwise similarity matrix between cells defined in uniform manifold approximation and projection
[S6] based on all profiled features. To do so, it uses elastic net regression to find a sparse solution that minimizes
the KL divergence between a pairwise similarity matrix between cells defined by all features and one defined using
only the selected features.
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Variance approaches: We considered two variance-based feature selection approaches (e.g. highly variable genes
[50], max variance) as unsupervised methods that use global expression variance as a metric for ranking feature
importance. First, highly variable gene selection (HVG) [50] is an unsupervised feature selection method that
selects features according to a normalized dispersion measure. Here, features are binned based on their average
expression. Within each bin, genes are then z-score normalized to identify features that have a large variance, yet a
similar mean expression. Next, max variance is an unsupervised feature selection method that ranks and selects
features that have a large global variance in expression.

Baseline approaches: We considered three baseline strategies (e.g. all, random, dynamic seed) that provide
context for the overall performance of feature selection. First, all features illustrates the performance when feature
selection is not performed and all features are included for analysis. Second, random features represents the
performance quality when a random subset of features are sampled. Lastly, dynamic seed features indicate the
performance from dynamically-expressed features identified in step 1 of the DELVE algorithm prior to feature
ranking and selection.

Single-cell RNA sequencing simulation design

To validate our approach and benchmark feature selection methods on representing cellular trajectories, we
simulated 90 single-cell RNA sequencing datasets with 1500 cells and 500 genes using Splatter. Splatter [72]
simulates single-cell RNA sequencing data with various trajectory structures (e.g. linear, bifurcation, tree) using
a gamma-Poisson hierarchical model. Importantly, this approach provides ground truth reference information
(e.g. cell type annotations, differentially expressed genes per cell type and trajectory, and a latent vector that
describes an individual cell’s progression through the trajectory) that we can use to robustly assess feature selection
method performance, as well as quantitatively evaluate the limitations of feature selection strategies for trajectory
analysis. Moreover, to comprehensively evaluate feature selection methods under common biological and technical
challenges associated with single-cell RNA sequencing data, we added relevant sources of single-cell noise to the
simulated data. First, we simulated low signal-to-noise ratio by enforcing a mean-variance relationship amongst
genes; this ensures that lowly expressed genes are more variable than highly expressed genes. Next, we modified
the total number of profiled mRNA transcripts, or library size. This has been shown previously to vary amongst
cells within a single-cell experiment and can influence both the detection of differentially expressed genes [[73l],
as well as impact the reproducibility of the inferred lower-dimensional embedding [/4]]. Lastly, we simulated the
inefficient capture of mRNA molecules, or dropout, by undersampling gene expression from a binomial distribution;
this increases the amount of sparsity present within the data. For more details on the splatter simulation, see
[Splatter simulation| For each simulated trajectory, we performed feature selection according to all described feature
selection strategies, and considered the top 100 ranked features for downstream analysis and evaluation.

Qualitative assessment of feature selection method performance

Prior to evaluating feature selection method performance quantitatively, we began our analysis with a qualitative
assessment of the importance of feature selection for representing cellular trajectories when the data contain
irrelevant or noisy genes. First, we visually compared the cellular trajectories generated from a feature selection
strategy with PHATE (potential of heat-diffusion for affinity-based transition embedding). PHATE [75] is a
nonlinear dimensionality reduction method that has been shown to effectively learn and represent the geometry of
complex continuous and branched biological trajectories. As an illustrative example, Fig. [2h shows the PHATE
embeddings for simulated linear differentiation trajectories generated from four feature selection approaches (all,
DELVE, Laplacian Score (LS), and random) when subjected to a decrease in the signal-to-noise ratio. Here,
we simulated a reduction in the signal-to-noise ratio and stochastic gene expression by modifying the biological
coefficient of variation (BCV) parameter within Splatter [72]]. This scaling factor controls the mean-variance
relationship between genes, where lowly expressed genes are more variable than highly expressed genes (See
[Splatter simulation)). Under low noise conditions where the data contained a high signal-to-noise ratio, we observed
that excluding irrelevant features with DELVE or the Laplacian Score (LS) produced a much smoother, denoised
visualization of the linear trajectory, where cells were more tightly clustered according to cell type. This was
compared to the more diffuse presentation of cell states obtained based on all genes. We then examined how
noise influences the quality of selected features from a feature selection strategy. As the signal-to-noise ratio
decreased (high, medium, low), we observed that the linear trajectory became increasingly harder to distinguish,
whereby including both irrelevant and noisy genes often masked the underlying trajectory structure (Fig. 2h all
genes, medium to low signal-to-noise ratio). Furthermore, we found that unsupervised similarity-based or subspace
learning feature selection methods that initially define a cell similarity graph according to all irrelevant, noisy, and
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informative genes often selected genes that produced noisier embeddings as the amount of noise increased (e.g. Fig.
[k LS: medium signal-to-noise ratio), as compared to DELVE (e.g. Fig. Zh DELVE medium signal-to-noise ratio).
We reason that this is due to spurious similarities amongst cells, reduced clusterability, and increased diffusion times.
These qualitative observations were consistent across different noise conditions (e.g. decreased signal-to-noise,
decreased library size, increased dropout) and trajectory types (e.g. linear, bifurcation, tree) (See Supplementary
Figs. [T]-[0). Although a qualitative comparison, this example illustrates how including irrelevant or noisy genes can
define spurious similarities amongst cells, which can (1) influence a feature selection method ability to identify
biologically-relevant genes and (2) impact the overall quality of an inferred lower dimensional embedding following
selection. Given that many trajectory inference methods use lower dimensional representations in order to infer
a cell’s progression through a differentiation trajectory, it is crucial to remove information-poor features prior to
performing trajectory inference in order to obtain high quality embeddings, clustering assignments, or cellular
orderings that are reproducible for both qualitative interpretation and downstream trajectory analysis.

Quantitative assessment of feature selection method performance

We next quantitatively examined how biological or technical challenges associated with single-cell RNA sequencing
data may influence a feature selection method’s ability to detect the particular genes that define cell types or cell type
transitions. To do so, we systematically benchmarked the 12 described feature selection strategies on their capacity
to preserve trajectories according to three sets of quantitative comparisons. Method performance was assessed by
evaluating if selected genes from an approach were (1) differentially expressed within a cell type or along a lineage,
(2) could be used to classify cell types, and (3) could accurately estimate individual cell progression through the
cellular trajectory. Fig. 2Zb-d shows feature selection method performance for simulated linear differentiation
trajectories when subjected to the technical challenge of having a reduction in the signal-to-noise ratio.
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Figure 2: Comparison of feature selection methods on preserving linear trajectories when subjected to a
reduction in the signal-to-noise ratio. (a) Example PHATE [[73] visualizations of simulated linear trajectories
using four feature selection approaches (all features, DELVE, Laplacian Score (LS) [52]], and random selection)
when subjected to a reduction in the signal-to-noise ratio (high, medium, low). Here, we simulated a reduction in
the signal-to-noise ratio and stochastic gene expression by modifying the biological coefficient of variation (bcv)
parameter within Splatter [[72]] that controls the mean-variance relationship between genes, where lowly expressed
genes are more variable than highly expressed genes (high: bcv = 0.1, medium: bev = 0.25, low: bev = 0.5).
d indicates the total number of genes (d = 500) and p indicates the number of selected genes following feature
selection (p = 100). (b-d) Performance of twelve different feature selection methods: random forest [46]], DELVE,
dynamic seed features, LS [52]], neighborhood variance [25], hotspot [53]], multi-cluster feature selection (MCFS)
[53]}, single-cell manifold preserving feature selection (SCMER) [54]], max variance, highly variable gene selection
(HVG) [30], all features, random features. Following feature selection, trajectory preservation was quantitatively
assessed according to several metrics: (b) the precision of differentially expressed genes at k selected genes, (c)
k-NN classification accuracy, and (d) pseudotime correlation to the ground truth cell progression across 10 random
trails. Error bars/bands represent the standard deviation. * indicates the method with the highest median score. For
further details across other trajectory types and noise conditions, see Supplementary Figs. m—ﬂ
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First, we assessed the biological relevancy of selected genes, as well as the overall recovery of relevant genes
as the signal-to-noise ratio decreased by computing a precision score. Precision@k is a metric that defines the
proportion of selected genes (k) that are known to be differentially-expressed within a cell type or along a lineage
(See[Precision@K)). Overall, we found that DELVE achieved the highest precision@k score between selected genes
and the ground truth, validating that our approach was able to select genes that are differentially expressed and
was the strongest in defining cell types and cell type transitions (See Fig. [2b). Importantly, DELVE’s ability to
recover informative genes was robust to the number of genes selected (k) and to the amount of noise present in the
data. In contrast, variance-based, similarity-based, or subspace-learning approaches exhibited comparatively worse
recovery of cell type and lineage-specific differentially expressed genes.

Given that a key application of single-cell profiling technologies is the ability to identify cell types or cell states
that are predictive of sample disease status, responsiveness to drug therapy, or are correlated with patient clinical
outcomes [76, [77, 78 [79} 165]], we then assessed whether selected genes from a feature selection strategy can
correctly classify cells according to cell type along the underlying cellular trajectory; this is a crucial and necessary
step of trajectory analysis. Therefore, we trained a k-nearest neighbor (k-NN) classifier on the selected feature
set (see [k-nearest neighbor classification)) and compared the predictions to the ground truth cell type annotations
by computing a cell type classification accuracy score. Across all simulated trajectories, we found that DELVE
selected genes that often achieved the highest median k-NN classification accuracy score (high signal-to-noise ratio:
0.937, medium signal-to-noise ratio: 0.882, low signal-to-noise ratio: 0.734) and produced k-NN graphs that were
more faithful to the underlying biology (See Fig. [2k). Moreover, we observed a few results that were consistent
with the qualitative interpretations. First, removing irrelevant genes with DELVE, LS, or MCFS achieved higher
k-NN classification accuracy scores (e.g. high signal-to-noise ratio; DELVE = 0.937, LS = 0.915, and MCFS
= 0.955, respectively) than was achieved by retaining all genes (all = 0.900). Next, DELVE outperformed the
Laplacian Score, suggesting that using a bottom-up framework and excluding nuisance features prior to performing
ranking and selection is crucial for recovering cell-type specific genes that would have been missed if the cell
similarity graph was initially defined based on all genes. Lastly, when comparing the percent change in performance
as the amount of noise corruption increased (e.g. high signal-to-noise ratio to medium signal-to-noise ratio) for
linear trajectories, we found that DELVE often achieved the highest average classification accuracy score (0.905)
and lowest percent decrease in performance (-6.398%), indicating that DELVE was the most robust unsupervised
feature selection method to noise corruption (See Supplementary Fig. [I0h). In contrast, the existing unsupervised
similarity-based or subspace learning feature selection methods that achieved high to moderate average k-NN
classification accuracy scores (e.g. MCFS = 0.905, LS = 0.874) had larger decreases in performance (e.g. MCFS =
-9.673%, LS =-8.390%) as the amount of noise increased. This further highlights the limitations of current feature
selection methods on identifying cell type-specific genes from noisy single-cell omics data.

Lastly, when undergoing dynamic biological processes such as differentiation, cells exhibit a continuum of cell
states with fate transitions marked by linear and nonlinear changes in gene expression [80, 81, [82]]. Therefore, we
evaluated how well feature selection methods could identify genes that define complex differentiation trajectories
and correctly order cells along the cellular trajectory in the presence of noise. To infer cellular trajectories and
to estimate cell progression, we used the diffusion pseudotime algorithm [83]] on the selected gene set from each
feature selection strategy, as this approach has been shown previously [19] to perform reasonably well for inference
of simple or branched trajectory types (See [Trajectory inference and analysis). Method performance was then
assessed by computing the Spearman rank correlation between estimated pseudotime and the ground truth cell
progression. We found that DELVE approaches more accurately inferred cellular trajectories and achieved the
highest median pseudotime correlation to the ground truth measurements, as compared to alternative methods or
all features (See Fig. E}i). Furthermore, similar to the percent change in classification performance, we found
that DELVE was the most robust unsupervised feature selection method in estimating cell progression, as it often
achieved the highest average pseudotime correlation (0.645) and lowest percent decrease in performance (-22.761%)
as the amount of noise increased (See Supplementary Fig. [[0p high to medium signal-to-noise ratio). In contrast, the
alternative methods incorrectly estimated cellular progression and achieved lower average pseudotime correlation
scores (e.g. MCFS = 0.602, LS = 0.526) and higher decreases in performance as the signal-to-noise ratio decreased
(MCFS = -38.884%, LS =-40.208%).

We performed this same systematic evaluation across a range of trajectory types (e.g. linear, bifurcation, tree)
and biological or technical challenges associated with single-cell data (See Supplementary Figs. [I]-[I2). Fig. 3]
displays the overall ranked method performance of feature selection methods on preserving cellular trajectories
when subjected to different sources of single-cell noise (pink: decreased signal-to-noise ratio, green: decreased
library size, and blue: increased dropout). Ranked aggregate scores were computed by averaging results across
all datasets within a condition; therefore, this metric quantifies how well a feature selection strategy can recover
genes that define cell types or cell type transitions underlying a cellular trajectory when subjected to that biological
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or technical challenge (See [Aggregate scores)). Across all conditions, we found that DELVE often achieved an
increased recovery of differentially expressed genes, higher cell type classification accuracy, higher correlation
of estimated cell progression, and lower percent change in performance in noisy data. While feature selection
method performance varied across biological or technical challenges, we found that the Laplacian score (LS) and
multi-cluster feature selection (MCFS) performed reasonably well under low amounts of noise corruption and
are often the second and third ranked unsupervised methods. Altogether, this simulation study demonstrates that
DELVE more accurately recapitulates cellular dynamics and can be used to effectively interrogate cell identity and
lineage-specific gene expression dynamics from noisy single-cell data.
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Figure 3: DELVE outperforms existing feature selection methods on representing trajectories in the pres-
ence of single-cell RNA sequencing noise. Feature selection methods were ranked by averaging their overall
performance across datasets from different trajectory types (e.g. linear, bifurcation, tree) when subjected to noise
corruption (e.g. decreased signal-to-noise ratio, decreased library size, and increased dropout). Several metrics were
used to quantify trajectory preservation, including, precision of dynamically-expressed genes with 50 selected genes
(p@>50), precision at 100 selected genes (p@100), precision at 150 selected genes (p@150), k-NN classification
accuracy of cell type labels (acc), and pseudotime correlation (pst). Here, higher-ranked methods are indicated by a
longer lighter bar, and the star illustrates our approach (DELVE) as well as the performance from dynamic seed
features of step 1 of the algorithm. DELVE often achieves the highest precision of lineage-specific differentially
expressed genes, highest classification accuracy, and highest pseudotime correlation across noise conditions and
trajectory types. Of note, random forest was included as a baseline representation to illustrate feature selection
method performance when trained on ground truth cell type annotations; however, it was not ranked, as this study
is focused on unsupervised feature selection method performance on trajectory preservation.

Revealing molecular trajectories of proliferation and cell cycle arrest

Recent advances in spatial single-cell profiling technologies [8], [9] [84] 11, have enabled the
simultaneous measurement of transcriptomic or proteomic signatures of cells, while also retaining additional
imaging or array-derived features that describe the spatial positioning or morphological properties of cells. These
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spatial single-cell modalities have provided fundamental insights into mammalian organogenesis [88), |89]] and
complex immune responses linked to disease progression [90,91]]. By leveraging imaging data to define cell-to-
cell similarity, DELVE can identify smoothly varying spatial features that are strongly associated with cellular
progression, such as changes in cell morphology or protein localization.

To demonstrate this, we applied DELVE to an integrated live cell imaging and protein iterative indirect immunofluo-
rescence imaging (41) dataset consisting of 2759 human retinal pigmented epithelial cells (RPE) undergoing the cell
cycle (See[RPE analysis). In a recent study [92]], we performed time-lapse imaging on an asynchronous population
of non-transformed RPE cells expressing a PCNA-mTurquoise2 reporter to record the cell cycle phase (GO/G1, S,
G2, M) and age (time since last mitosis) of each cell. We then fixed the cells and profiled them with 4i to obtain
measurements of 48 core cell cycle effectors. The resultant dataset consisted of 241 imaging-derived features
describing the expression and localization of different protein markers (e.g. nucleus, cytoplasm, perinuclear region —
denoted as ring), as well as morphological measurements from the images (e.g. size and shape of the nucleus).
Given that time-lapse imaging was performed prior to cell fixation, this dataset provides the unique opportunity to
rigorously evaluate feature selection methods on a real biological system (cell cycle) with technical challenges (e.g.
many features with low signal-to-noise ratio, autofluorescence, sample degradation).

We first tested whether DELVE can identify a set of dynamically-expressed cell cycle-specific features to construct
an approximate cellular trajectory graph for feature selection. Overall, we found that DELVE successfully identified
dynamically-expressed seed features (p = 13) that are known to be associated with cell cycle proliferation (e.g.
increase in DNA content and area of the nucleus) and captured key mechanisms previously shown to drive cell cycle
progression (Fig. @ right), including molecular events that regulate the G1/S and G2/M transitions. For example,
the G1/S transition is governed by the phosphorylation of RB by cyclin:CDK complexes (e.g. cyclinA/CDK2 and
cyclinE/CDK?2), which control the expression of E2F transcription factors that regulate S phase genes [93]. We
also observed an increase in expression of Skp2, which reduces p27-mediated inhibition of E2F1 target genes
[94.195]]. In addition, our approach identified S phase events that are known to be associated with DNA replication,
including an accumulation of PCNA foci at sites of active replication [96] and a DNA damage marker, pH2AX,
which becomes phosphorylated in response to double-stranded DNA breaks in areas of stalled replication [97, 98]
Lastly, we observed an increase in expression of cyclin B localized to different regions of the cell, which is a
primary regulator of G2/M transition alongside CDK1 [99] [100]. Of note, phosphorylation of RB also controls cell
cycle re-entry and is an important biomarker that is often used for distinguishing proliferating from arrested cells
[101,1102]. Furthermore, by ordering the average pairwise change in expression of features across ground truth
phase annotations, we observed that DELVE dynamically-expressed seed features exhibited non-random patterns
of expression variation that gradually increased throughout the canonical phases of the cell cycle (Fig. fh), and
were amongst the top ranked features that were biologically predictive of cell cycle phase and age measurements
using a random forest classification and regression framework, respectively (See Figure [dh right,
Supplementary Fig. [T3). Collectively, these results illustrate that the dynamic feature module identified by DELVE
represents a minimum cell cycle feature set (Fig. @b dynamic seed) that precisely distinguishes individual cells
according to their cell cycle progression status and can be used to construct an approximate cellular trajectory for
ranking feature importance.

We then comprehensively evaluated feature selection methods on their ability to retain imaging-derived features
that define cell cycle phases and resolve proliferation and arrest cell cycle trajectories. We reasoned that cells
in similar stages of the cell cycle (as defined by the cell cycle reporter) should have similar cell cycle signatures
(4i features) and should be located near one another in a low dimensional projection. Fig. @b shows the PHATE
embeddings from each feature selection strategy. Using the DELVE feature set, we obtained a continuous PHATE
trajectory structure that successfully captured the smooth progression of cells through the canonical phases of
the cell cycle, where cells were tightly grouped together according to ground truth cell cycle phase annotations
(Fig. [@p). Moreover, we observed that the two DELVE approaches (i.e. DELVE and dynamic seed), in addition to
hotspot and HVG selection, produced qualitatively similar denoised lower-dimensional visualizations comparable
to the supervised random forest approach that was trained on ground truth cell cycle phase annotations. In contrast,
similarity-based approaches such as Laplacian score and neighborhood variance, which define a cell similarity
graph according to all features, showed more diffuse presentations of cell states. Variance-based (max variance) or
subspace-learning approaches (SCMER, MCFS) produced qualitatively similar embeddings to that produced using
all features.

To quantitatively assess if selected features from a feature selection strategy were biologically predictive of cell
cycle phases, we performed three complementary analyses. We first focused on the task of cell state classification,
where our goal was to learn the ground truth cell cycle phase annotations from the selected feature set. To do
so, we trained a support vector machine (SVM) classifier and compared the accuracy of predictions to their


https://doi.org/10.1101/2023.05.09.540043
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.09.540043; this version posted May 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

made available under aCC-BY-NC-ND 4.0 International license.

ground truth phase annotations (See |Support Vector Machinel). We performed nested 10-fold cross validation to
obtain a distribution of predictions for each method. Overall, we found that DELVE achieved the highest median
classification accuracy (DELVE = 0.960) obtaining a similar performance to the random forest classifier trained
on cell cycle phase annotations (random forest = 0.957), and outperforming existing unsupervised approaches
(e.g. hotspot = 0.935, max variance = 0.902, HVG = 0.889, MCFS = 0.870, SCMER = 0.797, LS = 0.770),
as well as all features (0.946), suggesting that selected features with DELVE were more biologically predictive
of cell cycle phases (Fig. d). We next aimed to assess how well a feature selection method could identify and
rank cell cycle phase-specific features according to their representative power. To test this, we trained a random
forest classifier on the ground truth phase annotations using nested 10-fold cross validation (See[Random forest).
We then compared the average ranked feature importance scores from the random forest to the selected features
from a feature selection strategy using the precision@k metric. Strikingly, we found that DELVE achieved the
highest median precision@k score (DELVE p@30 = 0.800) and appropriately ranked features according to their
discriminative power of cell cycle phases despite being a completely unsupervised approach (Fig. [d). This was
followed by hotspot with a precision@k score of (hotspot p@30 = 0.633) and highly variable gene selection
(HVG p@30 = 0.500). In contrast, the Laplacian Score and max variance obtained low precision scores (p@30 =
0.367 and 0.333 respectively), whereas neighborhood variance and subspace-learning feature selection methods
MCFS and SCMER were unable to identify cell cycle phase-specific features from noisy 4i data and exhibited
precision scores near random (p@30 = 0.267, 0.267, and 0.233, respectively). Lastly, we assessed if selected
image-derived features could be used for downstream analysis tasks like unsupervised cell population discovery.
To do so, we clustered cells using the KMeans+-+ algorithm [[103] on the selected feature set and compared the
predicted labels to the ground truth annotations using a normalized mutual information (NMI) score over 25 random
initializations (See|Unsupervised clustering). We found that hotspot, DELVE, and dynamic seed features were
better able to cluster cells according to cell cycle phases and achieved considerably higher median NMI scores
(0.615, 0.599, 0.543, respectively), as compared to retaining all features (0.155) (Fig. E}i). Moreover, we found
that clustering performance was similar to that of the random forest trained on cell cycle phase annotations (0.626).
In contrast, variance-based approaches achieved moderate NMI clustering scores (HVG: 0.421, max variance:
0.361) and alternative similarity-based and subspace learning approaches obtained low median NMI scores (~ 0.2)
and were unable to cluster cells into biologically-cohesive cell populations. Of note, many trajectory inference
methods use clusters when fitting trajectory models [24} 104} (105} 23], thus accurate cell-to-cluster assignments
following feature selection is crucial for both cell type annotation and discovery, as well as for accurate downstream
trajectory analysis interpretation. Collectively, these results highlight that feature selection with DELVE identifies
imaging-derived features from noisy protein immunofluorescence imaging data that are more biologically predictive
of cell cycle phases.

We then focused on the much harder task of predicting an individual cell’s progression through the cell cycle. A
central challenge in trajectory inference is the destructive nature of single-cell technologies, where only a static
snapshot of cell states is profiled. To move toward a quantitative evaluation of cell cycle trajectory reconstruction
following feature selection, we leveraged the ground truth age measurements determined from time-lapse imaging
of the RPE-PCNA reporter cell line. We first evaluated whether selected features could be used to accurately
predict cell cycle age by training a support vector machine (SVM) regression framework using nested ten fold
cross validation (See[Support Vector Machine)). Method performance was subsequently assessed by computing
the mean squared error (MSE) between the predictions and the ground truth age measurements. Overall, we
found that DELVE achieved the lowest median MSE (3.261), outperforming both supervised (random forest
= 3.296) and unsupervised approaches (e.g. second best performer hotspot = 3.654) suggesting that selected
features more accurately estimate the time following mitosis (Fig. @). Crucially, this highlights DELVE’s ability
to learn new biologically-relevant features that might be missed when performing a supervised or unsupervised
approach. Lastly, we assessed whether selected imaging features could be used to accurately infer proliferation
and arrest cell cycle trajectories using common trajectory inference approaches (Fig. dd). Briefly, we constructed
predicted cell cycle trajectories using the diffusion pseudotime algorithm [83]] under each feature selection strategy
(See [Trajectory inference and analysis]). Cells were separated into proliferation or arrest lineages according to
their average expression of pRB, and cellular progression was estimated using ten random root cells that had the
youngest age. Feature selection method performance on trajectory inference was then quantitatively assessed by
computing the Spearman rank correlation between estimated pseudotime and the ground truth age measurements.
We found that DELVE achieved the highest median correlation of estimated pseudotime to the ground truth age
measurements (proliferation: 0.656, arrest: 0.405) as compared to alternative methods (second best performer
hotspot; proliferation: 0.632, arrest: 0.333) or all features (proliferation: 0.330, arrest: 0.135), indicating that our
approach was better able to resolve both proliferation and cell cycle arrest trajectories where other approaches
failed (Fig. id). Of note, DELVE was robust to the choice in hyperparameters and obtained reproducible results
across a range of hyperparameter choices (See Supplementary Fig. [I4).

10
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Figure 4: DELVE recovered signatures of proliferation and arrest in noisy protein immunofluorescence
imaging data. (a) DELVE identified one dynamic module consisting of 13 seed features that represented a minimum
cell cycle. (a left) UMAP visualization of image-derived features where each point indicates a dynamic or static
feature identified by the model. (a middle) The average pairwise change in expression of features within DELVE
modules ordered across ground truth cell cycle phase annotations. (a right top) Simplified signaling schematic of
the cell cycle highlighting the role of DELVE dynamic seed features within cell cycle progression. (a right bottom)
Heatmap of the standardized average expression of dynamic seed features across cell cycle phases. (b) Feature
selection was performed to select the top (p = 30) ranked features from the original (d = 241) feature set according
to a feature selection strategy. PHATE visualizations illustrating the overall quality of low-dimensional retinal
pigmented epithelial cell cycle trajectories following feature selection. Cells were labeled according to ground truth
cell cycle phase annotations from time-lapse imaging. Each panel represents a different feature selection strategy.
(c) PHATE visualizations following DELVE feature selection, where cells were labeled according to cell cycle
trajectory (top) or ground truth age measurements (bottom). (d) Performance of twelve feature selection methods
on representing the cell cycle according to several metrics, including classification accuracy between predicted
and ground truth phase annotations using a support vector machine classifier on selected features, normalized
mutual information (NMI) between predicted and ground truth phase labels to indicate clustering performance,
precision of phase-specific features determined by a random forest classifier trained on cell cycle phase annotations,
mean-squared error between predicted and ground truth molecular age measurements using a support vector
machine regression framework on selected features, and the correlation between estimated pseudotime to the
ground truth molecular age measurements following trajectory inference on selected features. Error bands represent
the standard deviation. * indicates the method with the highest median score. DELVE achieved the highest
classification accuracy, highest p@k score, and high NMI clustering score indicating robust prediction of cell cycle
phase. Furthermore, DELVE achieved the lowest mean squared error and highest correlation between arrest and
proliferation estimated pseudotime and ground truth age measurements indicating robust prediction of cell cycle
transitions. 11
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As a secondary validation, we applied DELVE to 9 pancreatic adenocarcinoma (PDAC) cell lines (e.g. BxPC3,
CFPAC, MiaPaCa, HPAC, Pa01C, Pa02C, PANCI1, UM53) profiled with 4i (See and performed a
similar evaluation of cell cycle phase and phase transition preservation (See Supplementary Figs. [T6]-[24). Across
all cell lines and metrics, we found that DELVE approaches and hotspot considerably outperformed alternative
methods on recovering the cell cycle from noisy 4i data and often achieved the highest classification accuracy
scores, clustering scores, and the highest correlation of cellular progression along proliferative and arrested cell
cycle trajectories (See Supplementary Fig. [I5)). Notably, DELVE was particularly useful in resolving cell cycle
trajectories from the PDAC cell lines that had numerous imaging measurements with low signal-to-noise ratio (e.g.
CFPAC, MiaPaCa, PANC1, and UM53), whereas the alternative strategies were unable to resolve cell cycle phases
and achieved scores near random (See Supplementary Figs. 17} [19] 23] [24).

Identifying molecular drivers of CD8+ T cell effector and memory formation

To demonstrate the utility of our approach in a complex differentiation setting consisting of heterogeneous cell
subtypes and shared and distinct molecular pathways, we applied DELVE to a single-cell RNA sequencing time
series dataset consisting of 29,893 mouse splenic CD8+ T cells responding to acute viral infection [106]. Here,
CD8+ T cells were profiled over 12 time points following infection with the Armstrong strain of lymphocytic
choriomeningitis virus (LCMV): Naive, d3-, d4-, d5-, d6-, d7-, d10-, d14-, d21-, d32-, d60-, and d90- post-infection
(See |[CDS T cell differentiation analysis). During an immune response to acute viral infection, naive CD8+ T
cells undergo a rapid activation and proliferation phase, giving rise to effector cells that can serve in a cytotoxic
role to mediate immediate host defense, followed by a contraction phase giving rise to self-renewing memory
cells that provide long-lasting protection and are maintained by antigen-dependent homeostatic proliferation
[LO7, 108 [109]. Despite numerous studies detailing the molecular mechanisms of CD8+ T cell effector and
memory fate specification, the molecular mechanisms driving activation, fate commitment, or T cell dysfunction
continue to remain unclear due to the complex intra- and inter-temporal heterogeneity of the CD8+ T cell response
during infection. Therefore, we applied DELVE to the CD8+ T cell dataset to resolve the differentiation trajectory
and investigate transcriptional changes that are involved in effector and memory formation during acute viral
infection with LCMV.

Following unsupervised seed selection, we found that DELVE successfully identified three gene modules consti-
tuting core regulatory complexes involved in CD8+ T cell viral response and had dynamic expression patterns
that varied across experimental time following viral infection (Fig. Bp-c). Namely, dynamic module 0 contained
genes involved in early activation and interferon response (e.g. Ly6a, Bst2, Ifi2712a) [[110} [111], and proliferation
(e.g. Cenpa, Cenpf, Ccnb2, Ube2c, Top2a, Tubb4b, Birc5, Cks2, Ckslb, Nusapl, Hmgb2, Rrm2, H2afx, Pclaf,
Stmnl1) [112]. Dynamic module 1 contained genes involved in effector formation, including interferon-~y cytotoxic
molecules, such as perforin/granzyme pathway (e.g. Gzma, Gzmk), integrins (e.g. Itgbl), killer cell lectin-like
receptor family (e.g. Klrgl, Klrdl1, Klrk1, Klrc1), chemokine receptors (e.g. Cxcr3, Cxcr6, Ccr2), and a canonical
transcription factor involved in terminal effector formation (e.g. 1d2) [113} 114115/ [116)]. Lastly, dynamic module
2 contained genes involved in long-term memory formation (e.g. Sell, Bcl2, I17r, Ltb) [117, 118119} [120]. To
quantitatively examine if genes within a dynamic module were meaningfully associated with one another, or had
experimental evidence of co-regulation, we constructed gene association networks using experimentally-derived
association scores from the STRING database [121]]. Here, a permutation test was performed to assess the statistical
significance of the observed experimental association amongst genes within a DELVE module as compared to
random gene assignment (See |[Protein-protein interaction networks). Notably, across all three dynamic modules,
DELVE identified groups of genes that had statistically significant experimental evidence of co-regulation (p-value
= 0.001), where DELVE networks had a larger average degree of experimentally-derived edges than the null
distribution (Fig. [Bb: dynamic modules). Degree centrality is a simple measurement of the number of edges (e.g.
experimentally derived associations between genes) connected to a node (e.g. gene); therefore, in this context,
networks with a high average degree may contain complexes of genes that are essential for regulating a biological
process. In contrast, genes identified by DELVE that exhibited random or noisy patterns of expression variation
(static module) had little to no evidence of co-regulation (p-value = 1.0) and achieved a much lower average degree
than networks defined by random gene assignment (Fig. [5p).
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Figure 5: DELVE identified molecular drivers of CD8+ T cell effector and memory formation. (a) DELVE
identified three dynamic modules representing cell cycle and early activation (dynamic 0), effector formation and
cytokine signaling (dynamic 1), and long-term memory formation (dynamic 2) during CD8+ T cell differentiation
response to viral infection with lymphocytic choriomeningitis virus (LCMV). UMAP visualization of (d = 500)
genes where each point indicates a dynamic or static gene identified by the model. (b) A permutation test was
performed using experimentally-derived association scores from the STRING protein-protein interaction database
[121]) to assess whether genes within DELVE dynamic modules had experimental evidence of co-regulation as
compared to random assignment. (b top) STRING association networks, where nodes represent genes from a
DELVE module and edges represent experimental evidence of association. (b middle) Average pairwise change in
expression amongst genes within a module ordered by time following infection. (b bottom) Histograms showing
the distribution of the average degree of experimentally-derived edges of gene networks from R = 1000 random
permutations. The dotted line indicates the observed average degree from genes within a DELVE module. p-values
were computed using a one-sided permutation test. (c) Heatmap visualization of the standardized average expression
of dynamically-expressed genes identified by DELVE ordered across time following infection. (d) Trajectory
inference was performed along the memory lineage using the diffusion pseudotime algorithm [83]], where cell
similarity was determined by DELVE selected genes or highly variable genes (HVG). UMAP visualization of
memory T cell scores according to the average expression of known memory markers (Bcl-2, Sell, 117r). Line
plot indicates the onset of expression and cellular commitment to the memory lineage following infection. (e)
Genes from the full dataset were regressed along estimated pseudotime using a generalized additive model to
determine lineage-specific significant genes. The venn diagram illustrates the quantification and overlap of memory
lineage-specific genes across feature selection strategies. The barplots show the top ten gene ontology terms
associated with the temporally-expressed gene lists specific to each feature selection strategy.
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Next, we examined if DELVE could be used to improve the identification of genes associated with long-term
CD8+ T cell memory formation following trajectory inference. To do so, we first prioritized cells along the
memory lineage by computing a memory T cell score according to the average expression of three known memory
markers (Bcl2, Sell, and I17r) (See[CD8 T cell differentiation analysis| Fig. [5d). We then reconstructed the memory
CDS8+ T cell differentiation trajectory from middle-late stage cellular commitment using the diffusion pseudotime
algorithm [83]] on the top 250 ranked genes following DELVE feature selection or highly variable gene selection.
Therefore, in this context, cell ordering was reflective of the differences in cell state along the memory lineage
according to (1) dynamically-expressed genes that had experimental evidence of co-regulation or (2) variance-based
selection. Lastly, we performed a regression analysis for each gene (d = 500) in the original dataset along
estimated pseudotime using a negative binomial generalized additive model (GAM). Genes were considered to be
differentially expressed along the memory lineage if they had a g—value < 0.05 following Benjamini-Hochberg
false discovery rate correction [122]] (See [Trajectory inference and analysis). Overall, we found that ordering
cells according to similarities in selected gene expression using DELVE was more reflective of long-term memory
formation and achieved an increased recovery of memory lineage-specific genes, as directly compared to the
standard approach of highly variable gene selection (Fig. [5g). To determine the biological relevance of these
memory lineage-specific genes, we performed gene set enrichment analysis on the temporally-expressed genes
specific to each feature selection strategy using EnrichR [123]]. Here, DELVE obtained higher combined scores
and identified more terms involved in immune regulation and memory CD8+ T cell formation, including negative
regulation of cell cycle phase transition, negative regulation of T cell mediated cytotoxicity, lymphocyte mediated
immunity, and negative regulation of T cell mediated immunity (Fig. Bp).

Discussion

Computational trajectory inference methods have transformed our ability to study the continuum of cellular states
associated with dynamic phenotypes; however, current approaches for reconstructing cellular trajectories can be
hindered by biological or technical noise inherent to single-cell data [42}43]]. To mitigate the effect of unwanted
sources of variation confounding trajectory inference, we designed a bottom-up unsupervised feature selection
method that ranks and selects features that best approximate cell state transitions from dynamic feature modules that
constitute core regulatory complexes. The key innovation of this work is the ability to parse temporally co-expressed
features from noisy information-poor features prior to performing feature selection; in doing so, DELVE constructs
cell similarity graphs that are more reflective of cell state progression for ranking feature importance.

In this study, we benchmarked twelve feature selection methods [46l |52} 251 153 155} 154} I50] on their ability to
identify biologically relevant features for trajectory analysis from simulated single-cell RNA sequencing data where
the ground truth was known. We found that DELVE achieved the highest recovery of differentially expressed
genes within a cell type or along a cellular lineage, highest cell type classification accuracy, and most accurately
estimated individual cell progression across a variety of trajectory topologies and biological or technical challenges.
Furthermore, through a series or qualitative and quantitative comparisons, we illustrated how noise (e.g. stochasticity,
sparsity, low library size) and information-poor features create spurious similarities amongst cells and considerably
impact the performance of existing unsupervised similarity-based or subspace learning-based feature selection
methods on identifying biologically-relevant features.

Next, we applied DELVE to a variety of biological contexts and demonstrated improved recovery of cellular
trajectories over existing unsupervised feature selection strategies. In the context of studying the cell cycle from
protein imaging-derived features [92]], we illustrated how DELVE identified molecular features that were strongly
associated with cell cycle progression and were more biologically predictive of cell cycle phase and age, as
compared to the alternative unsupervised feature selection methods. Importantly, DELVE often achieved similar or
better performance to the supervised Random Forest classification approach without the need for training on ground
truth cell cycle labels. Lastly, in the context of studying heterogeneous CD8+ T cell response to viral infection from
single-cell RNA sequencing data [[106]], we showed how DELVE identified gene complexes that had experimental
evidence of co-regulation and were strongly associated with CD8+ T cell differentiation. Furthermore, we showed
how performing feature selection with DELVE prior to performing trajectory inference improved the identification
and resolution of gene programs associated with long-term memory formation that would have been missed by the
standard unsupervised feature selection approach.

This study highlights how DELVE can be used to improve inference of cellular trajectories in the context of noisy
single-cell omics data; however, it is important to note that feature selection can greatly bias the interpretation of the
underlying cellular trajectory [42], thus careful consideration should be made when performing feature selection
for trajectory analysis. Furthermore, we provided an unsupervised framework for ranking features according to
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their association with temporally co-expressed genes, although we note that DELVE can be improved by using a
set of previously established regulators (See [Step 2: feature ranking)). Future work could focus on extending this
framework for applications such as (1) deconvolving cellular trajectories using biological system-specific seed
graphs or (2) studying complex biological systems such as organoid models or spatial microenvironments.

Methods
DELVE

DELVE identifies a subset of dynamically-changing features that preserve the local structure of the underlying
cellular trajectory. In this section, we will (1) describe computational methods for the identification and ranking
of features that have non-random patterns of dynamic variation, (2) explain DELVE’s relation to previous work,
and (3) provide context for the mathematical foundations behind discarding information-poor features prior to
performing trajectory inference.

Problem formulation

Let X = {x;}?_, denote a single-cell dataset, where x; € R? represents the vector of d measured features (e.g.
genes or protems) measured in cell ¢. We assume that the data have an inherent trajectory structure, or biologically-
meaningful ordering, that can be directly inferred by a limited subset of p features where p < d. Therefore, our
goal is to identify this limited set of p features from the original high-dimensional feature set that best approximate
the transitions of cells through each stage of the underlying dynamic process.

Step 1: dynamic seed selection

Graph construction: Our approach DELVE extends previous similarity-based [52] [25] 53] or subspace-learning
[S5] feature selection methods by computing the dependence of each gene on the underlying cellular trajectory.
In step 1, DELVE models cell states using a weighted k-nearest neighbor affinity graph of cells (k = 10), where
nodes represent cells and edges describe the transcriptomic or proteomic similarity amongst cells according to the d
profiled features encoded in X. More specifically, let G = (V, £) denote a between-cell affinity graph, where V
represents the cells and the edges, £, are weighted according to a Gaussian kernel as,

o, —%0 I .
exp <—’2U2’ , ifv; eN;

i

Wi =

(D

0, otherwise.

Here, W is a n x n between-cell similarity matrix, where cells v; and v; are connected with an edge with edge
weight w;; if the cell v; is within the set of v;’s neighbors, as denoted by notation N;. Moreover, o;, specific for
a particular cell 4, represents the Gaussian kernel bandwidth parameter that controls the decay of cell similarity
edge weights. We chose a bandwidth parameter as the distance to the 3rd nearest neighbor as this has been shown
previously in refs. [53] and [124] to provide reasonable decay in similarity weights.

Identification of feature modules: To identify groups of features with similar co-expression variation, DELVE
clusters features according to changes in expression across prototypical cell neighborhoods. First, cellular neighbor-
hoods are defined according to the average expression of each set of k nearest neighbors (\;) as, Z = {z; € R4},
where each z; = £ Z A, Xi represents the center of the k nearest neighbors for cell ¢ across all measured features.
Next, DELVE leverages Kernel Herding sketching [66] to effectively sample m representative cell neighborhoods,
or rows, from the per-cell neighbor averaged feature matrix, Z, as Z = {Z; € R%}™ . This sampling approach
ensures that cellular neighborhoods are more reflective of the original distribution of cell states, while removing
redundant cell states to aid in the scalability of estimating expression dynamics. DELVE then computes the average
pairwise change in expression of features across representative cellular neighborhoods, A, as,

m

A=——(Z—jnz}), @)

=1

where j,,, is a column vector of ones with length m, such that j,, € R™. Lastly, features are clustered according to
the transpose of their average pairwise change in expression across the representative cellular neighborhoods, AT,
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using the KMeans++ algorithm [[103]. In this context, each DELVE module contains a set of features with similar
local changes in co-variation across cell states along the cellular trajectory.

Dynamic expression variation permutation testing: To assess the significance of dynamic expression variation
across grouped features within a DELVE module, we perform a permutation test as follows. Let 52 (P.) denote the
average sample variance of the average pairwise change in expression across m cell neighborhoods for the set of p
features (a set of features denoted as P.) within a DELVE cluster c as,

1 [Pe| m (Ai,p_Ap)Q

52 (PQ)ZEZ; o1 3)

Moreover, let I, denote a set of randomly selected features sampled without replacement from the full feature
space d, such that |P.| = |R,|, and S? (R,) denote the average sample variance of randomly selected feature sets
averaged across ¢ random permutations as,

. 1<
S? (Rq)zgz S(Rq>- 4)

Here, DELVE considers a module of features as being dynamically-expressed if the average sample variance of the
change in expression of the set of features within a DELVE cluster (or specifically feature set P,), is greater than
random assignment, I}, across randomly permuted trials as,

Se(P.) > S.(Ry). ©)

In doing so, this approach is able to identify and exclude modules of features that have static, random, or noisy
patterns of expression variation, while retaining dynamically expressed features for ranking feature importance. Of
note, given that KMeans-++ clustering is used to initially assign features to a group, feature-to-cluster assignments
can tend to vary due to algorithm stochasticity. Therefore, to reduce the variability and find a core set of features
that are consistently dynamically-expressed, this process is repeated across ten random clustering initializations
and the set of dynamically-expressed features are defined as the intersection across runs.

Step 2: feature ranking

Following dynamic seed selection, in step two, DELVE ranks features according to their association with the
underlying cellular trajectory graph. First, DELVE approximates the underlying cellular trajectory by constructing
a between-cell affinity graph, where the nodes represent the cells and edges are now re-weighted according to a
Gaussian kernel between all cells based on the core subset of dynamically expressed regulators from step 1, such
that X = {%; € RP} where p < d as,

Hiv.—iv,ﬂz .
- - exp (—7'202J s lij S M
Wij = i

(6)

0, otherwise.

Here, W is a n X n between-cell similarity matrix, where cells v; and v; are connected with an edge with edge
weight w;; if the cell is within the set of v;’s neighbors, denoted as ;. Moreover, as previously mentioned,
o; represents the Gaussian kernel bandwidth parameter for a particular cell 7 as the distance to the 3rd nearest
neighbor.

Features are then ranked according to their association with the underlying cellular trajectory graph using graph
signal processing techniques [52}167,168]]. A graph signal f is any function that has a real defined value on all of the
nodes, such that f € R™ and f; gives the signal at the ith node. Intuitively, we can consider all features as graph
signals and rank them according to their variation in expression along the approximate cell trajectory graph to see if
they should be included or excluded from downstream analysis. Let L denote the unnormalized graph Laplacian,
with L = D — W, where D is a diagonal degree matrix with each element as d;; = j w;;. The local variation
in the expression of feature signal f can then be defined as the weighted sum of differences in signals around a
particular cell ¢ as,
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(Lﬂ(ﬂzz}jﬁmﬂf@>—fun- (7)

This metric effectively measures the similarity in expression of a particular node’s graph signal, denoted by the
feature vector, f, around its k nearest neighbors. By summing the local variation in expression across all neighbors
along the cellular trajectory, we can define the total variation in expression of feature graph signal f as,

ﬂifz}j@mﬁww—ﬂﬁf- ®)

Otherwise known as the Laplacian quadratic form, in this context, the total variation represents the global smoothness
of the particular graph signal encoded in f (e.g. expression of a particular gene or protein) along the approximate
cellular trajectory graph. Intuitively, DELVE ultimately retains features that have a low total variation in expression,
or have similar expression values amongst similar cells along the approximate cellular trajectory graph. In contrast,
DELVE excludes features that have a high total variation in expression, or those which have expression values that
are rapidly oscillating amongst neighboring cells, as these features are likely noisy or not involved in the underlying
dynamic process that was initially seeded.

In this work, we ranked features according to their association with the cell-to-cell affinity graph defined by
dynamically expressed features from DELVE dynamic modules using the Laplacian score [52]. This measure takes
into account both the total variation in expression, as well as the overall global variance. For each of the original d
measured features, or graph signals encoded in f with f € R, the Laplacian score L ¢ is computed as,

fILE

' Df ©

Ly

Here, L represents the unnormalized graph Laplacian, such that L = D — W,Disa diagonal degree matrix with
the ith element of the diagonal d;; as d;; = ) j W;;, f represents the mean centered expression of feature f as

f=rf— %, and 1 = [1,...,1]7. By sorting features in ascending order according to their Laplacian score,
DELVE effectively ranks features that best preserve the local trajectory structure (e.g. an ideal numerator has
a small local variation in expression along neighboring cells), as well as best preserve cell types (e.g. an ideal

denominator has large variance in expression for discriminitive power).

Benchmarked feature selection methods

In this section, we describe the twelve feature selection methods evaluated for representing biological trajectories.
For more details on implementation and hyperparameters, see Supplementary Table|[I]

Random forest To quantitatively compare feature selection approaches on preserving biologically relevant genes
or proteins, we aimed to implement an approach that would leverage ground truth cell type labels to determine
feature importance. Random forest classification [46] is a supervised ensemble learning algorithm that uses an
ensemble of decision trees to partition the feature space such that all of the samples (cells) with the same class
(cell type labels) are grouped together. Each decision or split of a tree was chosen by minimizing the Gini impurity
score as,

C
G(m) = pmi(l = pmi)- (10)
=1

Here, p,,; is the proportion of cells that belong to class ¢ for a feature node m, and C'is the total number of classes
(e.g. cell types). We performed random forest classification using the sklearn v0.23.2 package in python. Nested
10-fold cross-validation was performed using stratified random sampling to assign cells to either a training or
test set. The number of trees was tuned over a grid search within each fold prior to training the model. Feature
importance scores were subsequently determined by the average Gini importance across folds.
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Max variance Max variance is an unsupervised feature selection approach that uses sample variance as a criterion
for retaining discriminative features, where SJ% represents the sample variance for feature f € R as,

1< .

2 _ L F\2

Sf=— 2 U= D% (1)
=1

where f; indicates the expression value of feature f in cell i. We performed max variance feature selection by

sorting features in descending order according to their variance score and selecting the top p maximally varying

features.

Neighborhood variance Neighborhood variance [25] is an unsupervised feature selection approach that uses
a local neighborhood variance metric to select gradually-changing features for building biological trajectories.
Namely, the neighborhood variance metric SJ% quantifies how much feature f varies across neighboring cells
as,

ke

- 1 n
5= WZZU% — TN (12)

i=1 j=1

Here, f; represents the expression value of feature f for cell i, N, ;) indicates the j nearest neighbor of cell 4,
and k. is the minimum number of k-nearest neighbors required to form a fully connected graph. Features were
subsequently selected if they had a smaller neighborhood variance SJ% than global variance SJ%,

5 >1 (13)
Sz

Highly variable genes Highly variable gene selection [S0] is an unsupervised feature selection approach that
selects features according to a normalized dispersion measure. First, features are binned based on their average
expression. Within each bin, genes are then z-score normalized to identify features that have a large variance, yet a
similar mean expression. We selected the top p features using the highly variable genes function in Scanpy v1.8.1
(flavor = Seurat, bins = 20, n_top_genes = p).

Laplacian score Laplacian score (LS) [52] is a locality-preserving unsupervised feature selection method that
ranks features according to (1) how well a feature’s expression is consistent across neighboring cells defined by a
between-cell similarity graph define by all profiled features and (2) the feature’s global variance. First, a weighted
k-nearest neighbor affinity graph of cells (k = 10) is constructed according to pairwise Euclidean distances between
cells based on all features, X. More specifically, let G = (V, ), where V represents the cells and edges, &, are
weighted using a Gaussian as follows. Specifically, edge weights between cells ¢ and j can be defined as,

i

”x’Uj_x’Uj H2 .
exp | ——E 54 ), ifv; EN;
wig=q " ( 27 ) ’ (14)

0, otherwise.

Here W is a n x n between-cell similarity matrix, where cells v; and v; are connected with an edge with edge
weight w;; if the cell v; is within the set of v;’s neighbors, ;. Moreover, as previously described, o; represents
the bandwidth parameter for cell ¢ defined as the distance to the 3rd nearest neighbor. For each feature f, where
f € R" represents the value of the feature across all n cells, we compute the Laplacian score, L as,

fLE

= 5= 15
' Df (1)

Ly
Here, L represents the unnormalized graph Laplacian, with L = D — W, D is a diagonal degree matrix with the ith
element of the diagonal d;; as d;; = > ; Wij» f represents the mean centered expression of feature fas f = f — %,
and 1 = [1,...,1]T. We performed feature selection by sorting features in ascending order according to their
Laplacian score and selecting the top p features.
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MCFS Multi-cluster feature selection (MCFS) [55] is an unsupervised feature selection method that selects for
features that best preserve the multi-cluster structure of data by solving an L1 regularized least squares regression
problem on the spectral embedding. Similar to the Laplacian score, first k-nearest neighbor affinity graph of cells
(k = 10) is computed to encode the similarities in feature expression between cells ¢ and j using a Gaussian kernel
as,

Hx“. X H2 .
ex - if v; S N
wij = p( 77 ) s (16)

0, otherwise.

Similar to previous formulations above, W is an n X n between cell affinity matrix, where a pair of cells v; and v;
are connected with an edge with weight w;; if cell v; is within the set of v;’s neighbors, N;. Further, o; represents
the kernel bandwidth parameter chosen to be the distance to the third nearest neighbor from cell . Next, to represent
the intrinsic dimensionality of the data, the spectral embedding [125]] is computed through eigendecomposition of
the unnormalized graph Laplacian L, where L = D — W as,

Ly = A\Dy. a7

Here, Y = {y}+_, are the eigenvectors corresponding to the K smallest eigenvalues, W is a symmetric affinity
matrix encoding cell similarity weights, and D represents a diagonal degree matrix with each element as d;; =
> ; Wi Given that eigenvectors of the graph Laplacian represent frequency harmonics [68] and low frequency
eigenvectors are considered to capture the informative structure of the data, MCFS computes the importance of
each feature along each intrinsic dimension y, by finding a relevant subset of features by minimizing the error
using an L1 norm penalty as,

n;inHyk — XTakH2 st Jaglh <. (18)

Here, the non-zero coefficients, ay,, indicate the most relevant features for distinguishing clusters from the embedding
space, y,, and y controls the sparsity and ensures the least relevant coefficients are shrunk to zero. The optimization
is solved using the least angles regression algorithm [71]], where for every feature, the MCFS score is defined
as,

MCFS(j) = mI?XHakJH. (19)

Here, j and k index feature and eigenvector, respectively. We performed multi-cluster feature selection with the
number of eigenvectors K chosen to be the number of ground truth cell types present within the data, as this is the
traditional convention in spectral clustering [S7] and the number of nonzero coefficients was set to the number of
selected features, p.

SCMER Single-cell manifold-preserving feature selection (SCMER) [54] selects a subset of p features that
represent the embedding structure of the data by learning a sparse weight vector w by formulating an elastic net
regression problem that minimizes the KL divergence between a cell similarity matrix defined by all features and
one defined by a reduced subset of features. More specifically, let P denote a between-cell pairwise similarity
matrix defined in UMAP [56]] computed with the full data matrix X € R™*4 and Q denote a between-cell pairwise
similarity matrix defined in UMAP computed with the dataset following feature selection Y € R"*P, where
Y = Xw and p < d. Here, elastic net regression is used to find a sparse and robust solution of w that minimizes
the KL divergence as,

KL(PQ) = 323 pijlog - (20)
J t

g

Features with non-zero weights in w are considered useful for preserving the embedding structure and selected
for downstream analysis. We performed SCMER feature selection using the scmer v.0.1.0a3 package in python
by constructing a k-nearest neighbor graph (k¥ = 10) according to pairwise Euclidean distances of cells based
on their first 50 principal components and using the default regression penalty weight parameters (lasso =
3.87e — 4,ridge = 0).
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Hotspot Hotspot [53] is an unsupervised gene module identification approach that performs feature selection
through a test statistic that measures the association of a gene’s expression with the between-cell similarity graph
defined based on the full feature matrix, X. More specifically, first, a k-nearest neighbor cell affinity graph (k = 10)
is defined based on pairwise Euclidean distances between all pairs of cells using a Gaussian kernel as,

waxuvjuZ) ¢
_ i i3 , . EM
VVZJ = {exp( a'? ! UJ (21)

0, otherwise.

Here, cells v; and v; are connected with an edge with edge weight w;; if the cell v; is within the set of v;’s
neighbors such that > jWij = 1 for each cell and o; represents the bandwidth parameter for cell ¢ defined as the

distance to the g neighbor. For a given feature f € R, representing expression across all n cells where f; is the
mean-centered and standardized expression of feature f in cell < according to a null distribution model of gene
expression, the local autocorrelation test statistic representing the dependence of each gene on the graph structure is
defined as,

i jFi

Hotspot was implemented using the hotspot v1.1.1 package in python, where we selected the top p features by
sorting features in ascending order according to their significance with respect to a null model defined by a negative
binomial distribution with the mean dependent on library size.

All features To consider a baseline representation without feature selection, we evaluated performance using all
features from each dataset following quality control preprocessing.

Random features As a second baseline strategy, we simply selected a subset of random features without
replacement. Results were computed across twenty random initializations for each dataset.

DELVE DELVE was run as previously described. Here, we constructed a weighted k-nearest neighbor affinity
graph of cells (k = 10), and 1000 neighborhoods were sketched to identify dynamic seed feature clusters (¢ = 3
for the simulated dataset, ¢ = 5 for the RPE cell cycle dataset, c = 5 for the CD8 T cell differentiation dataset,
and ¢ = 10 for PDAC cell cycle datasets). Results were computed across twenty random initializations for each
dataset.

Datasets

We evaluated feature selection methods based on how well retained features could adequately recover biological
trajectories under various noise conditions, biological contexts, and single-cell technologies.

Splatter simulation  Splatter [72] is a single-cell RNA sequencing simulation software that generates count data
using a gamma-Poisson hierarchical model with modifications to alter the mean-variance relationship amongst
genes, the library size, or sparsity. We used splatter to simulate a total of 90 ground truth datasets with different
trajectory structures (e.g. linear, bifurcation, and tree topologies). First, we estimated simulation parameters
by fitting the model to a real single-cell RNA sequencing dataset consisting of human pluripotent stem cells
differentiating into mesoderm progenitors [126]. We then used the estimated parameters (mean_rate = 0.0173,
mean_shape = 0.54, 1ib_loc = 12.6, 1lib_scale = 0.423, out_prob = 0.000342, out_fac_loc = 0.1,
out_fac_scale = 0.4, bcv = 0.1, bev_df = 90.2, dropout = None) to simulate a diverse set of ground
truth reference trajectory datasets with the splatter paths function (python wrapper scprep SplatSimulate v1.1.0 of
splatter v1.18.2). Here, a reference trajectory structure (e.g. bifurcation) was used to simulate linear and nonlinear
changes in the mean expression of genes along each step of the specified differentiation path. We simulated ten
differentiation datasets (1500 cells, 500 genes, 6 clusters) for each trajectory type (linear, bifurcation, tree) by
modifying (1) the probability of a cell belonging to a cluster by randomly sampling from a Dirichelet distribution
with six categories and a uniform concentration of one and (2) the path skew by randomly sampling from a beta
distribution (o« = 10, 8 = 10). The output of each simulation is a ground truth reference consisting of cell-to-cluster
membership, differentially expressed genes per cluster or path, as well as a latent step vector that indicates the
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progression of each cell within a cluster. Lastly, we modified the step vector to be monotonically increasing across
clusters within the specified differentiation path to obtain a reference pseudotime measurement.

To estimate how well feature selection methods can identify genes that represent cell populations and are differen-
tially expressed along a differentiation path in noisy single-cell RNA sequencing data, we added relevant sources of
biological and technical noise to the reference datasets.

1. Biological Coefficient of Variation (BCV): To simulate the effect of stochastic gene expression, we modified
the biological coefficient of variation parameter within splatter (BCV = 0.1, 0.25, 0.5). This scaling factor
controls the mean-variance relationship between genes, where lowly expressed genes are more variable than
highly expressed genes, following a ~y distribution.

2. Library size: The total number of profiled mRNA transcripts per cell, or library size, can vary between cells
within a single-cell RNA sequencing experiment and can influence the detection of differentially expressed
genes [73]], as well as impact the reproducibility of the lower-dimensional representation of the data [[74].
To simulate the effect of differences in sequencing depth, we proportionally adjusted the gene means for
each cell by modifying the location parameter (1ib_loc = 12,11, 10) of the log-normal distribution within
splatter that estimates the library size scaling factors.

3. Technical dropout: Single-cell RNA sequencing data contain a large proportion of zeros, where only a small
fraction of total transcripts are detected due to capture inefficiency and amplification noise [[127]. To simulate
the inefficient capture of mRNA molecules and account for the trend that lowly expressed genes are more
likely to be affected by dropout, we undersampled mRNA counts by sampling from a binomial distribution
with the scale parameter or dropout rate proportional to the mean expression of each gene as previously
described in ref. [128]] as,

;i = exp(—Au?). (23)

Here, 11; represents the log mean expression of gene ¢, and ) is a hyperparameter that controls the magnitude
of dropout (A = 0,0.05,0.1).

In our subsequent feature selection method analyses, we selected the top p = 100 features under each feature
selection approach.

RPE analysis The retinal pigmented epithelial (RPE) dataset [92] is an iterative indirect immunofluorescence
imaging (41) dataset consisting of RPE cells undergoing the cell cycle. Here, time-lapse imaging was performed
on an asynchronous population of non-transformed human retinal pigmented epithelial cells expressing a PCNA-
mTurquoise2 reporter in order to record the cell cycle phase (GO/G1, S, G2, M) and molecular age (time since last
mitosis) of each cell. Following time-lapse imaging, cells were fixed and 48 core cell cycle effectors were profiled
using 4i [8]. For preprocessing, we min-max normalized the data and performed batch effect correction on the
replicates using ComBat [129]. Lastly, to refine phase annotations and distinguish GO from G1 cells, we selected
cycling G1 cells according to the bimodal distribution of ;}1%3 expression as described in ref. [92]. Of note, cells
were excluded if they did not have ground truth phase or age annotations. The resultant dataset consisted of 2759
cells x 241 features describing the expression and localization of different protein markers. For our subsequent
analysis, we selected the top p = 30 features for each feature selection approach.

PDAC analysis The pancreatic ductal adenocarcinoma (PDAC) dataset is an iterative indirect immunofluorescence
imaging dataset consisting of 9 human PDAC cell lines: BxPC3, CFPAC, HPAC, MiaPaCa, Pa01C, Pa02C, Pal6C,
PANCI1, UMS53. For each cell line (e.g. BXxPC3) under control conditions, we min-max normalized the data. Cell
cycle phases (GO, G1, S, G2, M) were annotated a priori based on manual gating cells according to the abundance
of core cell cycle markers. Phospho-RB (pRB) was used to distinguish proliferative cells (G1/S/G2/M, high pRB)
from arrested cells (GO, low pRB). DNA content, E2F1, cyclin A (cycA), and phospho-p21 (p-p21) were used to
distinguish G1 (DNA content = 2C, low cycA), S (DNA content = 2-4C, high E2F1), G2 (DNA content = 4C, high
cycA), and M (DNA content = 4C, high p-p21). For our subsequent analysis, we selected the top p = 30 features
for each feature selection approach.

CDS8 T cell differentiation analysis The CDS8 T cell differentiation dataset [100] is a single-cell RNA sequencing
dataset consisting of mouse splenic CD8+ T cells profiled over 12-time points (d = day) following infection
with the Armstrong strain of the lymphocytic choriomeningitis virus: Naive, d3-, d4-, d5-, d6-, d7-, d10-, d14-,
d21-, d32-, d60-, d90- post-infection. Spleen single-cell RNA sequencing data were accessed from the Gene
Expression Omnibus using the accession code GSE131847 and concatenated into a single matrix. The dataset was
subsequently quality control filtered according to the distribution of molecular counts. To remove dead or dying
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cells, we filtered cells that had more than twenty percent of their total reads mapped to mitochondrial transcripts.
Genes that were observed in less than three cells or had less than 400 counts were also removed. Following cell
and gene filtering, the data were transcripts-per-million normalized, log+1 transformed, and variance filtered using
highly variable gene selection, such that the resulting dataset consisted of 29893 cells x 500 genes (See[Highly|
[variable genes). Lastly, to obtain lineage labels for trajectory analysis, cells were scored and gated according to
their average expression of known memory markers (Bcl2, Sell, I17r) using the score_genes function in Scanpy
v1.8.1. When evaluating feature selection methods, we selected the top p = 250 features for each feature selection
approach.

Evaluation
Classification and regression

k-nearest neighbor classification To quantitatively compare feature selection methods on retaining features that
are representative of cell types, we aimed to implement an approach that would assess the quality of the graph
structure. k—nearest neighbors classification is a supervised learning algorithm that classifies data based on labels
of the k-most similar cells according to their gene or protein expression, where the output of this algorithm is a
set of labels for every cell. We performed k-nearest neighbors classification to predict cell type labels from the
simulated single-cell RNA sequencing datasets as follows. First, 3-fold cross-validation was performed using
stratified random sampling to assign cells to either a training or a test set. Stratified random sampling was chosen
to mitigate the effect of cell type class imbalance. Within each fold, feature selection was then performed on the
training data to identify the top p = 250 relevant features according to a feature selection strategy. Next, a k-nearest
neighbor classifier (k = 3) was fit on the feature selected training data to predict the cell type labels of the feature
selected test query points. Here, labels are predicted as the mode of the cell type labels from the closest training
data points according to Euclidean distance. Classification performance was subsequently assessed according to the
median classification accuracy with respect to the ground truth cell type labels across folds.

Support Vector Machine The Support Vector Machines (SVM) [130] is a supervised learning algorithm that con-
structs hyperplanes in the high-dimensional feature space to separate classes. We implemented SVM classification
or regression using the sklearn v0.23.4 package in python. SVM classification was used to predict cell cycle phase
labels for both RPE and PDAC 4i datasets, whereas regression was used to predict age measurements from time
lapse imaging for the RPE dataset. Here, Nested 10-fold cross-validation was performed using stratified random
sampling to assign cells to either a training set or a test set. Within each fold, feature selection was performed to
identify the p most relevant features according to a feature selection strategy. SVM hyperparameters were then
tuned over a grid search and phase labels were subsequently predicted from the test data according to those p
features. Classification performance was assessed according to the median classification accuracy with respect to
the ground truth cell type labels across folds. Regression performance was assessed according to the average mean
squared error with respect to ground truth age measurements across folds.

Precision@k

To evaluate the biological relevance of selected features from each method, we computed precision@k (pQk) as
the proportion of top k selected features that were considered to be biologically relevant according to a ground
truth reference as,

|Fs,k N F7~|

Qk =
P |Fs,k

, 4)

where F, ; indicates the set of selected features at threshold k, where F; ;, C F;, and F,. indicates the set of
reference features. Reference features were defined as either (1) the ground truth differentially expressed features
Wwithin a cluster or along a differentiation path from the single-cell RNA sequencing simulation study (see [Splatter]
or (2) the features determined to be useful for classifying cells according to cell cycle phase using
a random forest classifier trained on ground truth phase annotations from time-lapse imaging for the protein
immunofluorescence imaging datasets (See[Random forest, [RPE analysis|[PDAC analysis).

Unsupervised clustering

To evaluate feature selection method performance on retaining features that are informative for identifying canonical
cell types, we performed unsupervised clustering on the data defined by the top p ranked features from a feature
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selection strategy. More specifically, for each feature selection approach, clustering was performed on the selected
data using either the KMeans++ algorithm [103]] with the number of centroids set as the same number of
ground truth cell cycle phase labels for the protein immunofluorescence imaging datasets (RPE: ¢ = 4, PDAC:
c=25).

To assess the accuracy of clustering assignments, we quantified a normalized mutual information (NMI) score
between the predicted cluster labels and the ground truth cell type labels. Normalized mutual information [131]] is a
clustering quality metric that measures the amount of shared information between two cell-to-cluster partitions (u
and v, such that the ith entry u; gives the cluster assignment of cell ) as,

2I(u; v)

MM ey

(25)

where, I(u; v) measures the mutual information between ground truth cell type labels u and cluster labels v, and
H(u) or H(v) indicates the Shannon entropy or the amount of uncertainty for a given set of labels. Here, a score of
1 indicates that clustering on the selected features perfectly recovers the ground truth cell type labels. KMeans++
clustering was implemented using the KMeans function in sklearn v0.23.4.

Protein-protein interaction networks

In this work, we aimed to test whether features within DELVE dynamic clusters had experimental evidence
of co-regulation as compared to random assignment. The STRING (search tool for the retrieval of interacting
genes/proteins) database [[121]] is a relational database that computes protein association scores according to
information derived from several evidence channels, including computational predictions (e.g. neighborhood,
fusion, co-occurance), co-expression, experimental assays, pathway databases, and literature text mining. To assess
the significance of protein interactions amongst features within a DELVE cluster, we performed a permutation test
with a test statistic derived from STRING association scores using experimental evidence as follows.

Let G, = (N, &) denote a graph of p proteins from a DELVE cluster comprising the nodes NV, and &, denote the
set of edges, where edge weights encode the association scores of experimentally-derived protein-protein interaction
evidence from the STRING database. Moreover, let G, = (N, £,.) denote a graph of r proteins randomly sampled
without replacement from the full feature space d such that » = p comprising the nodes N,., and &, denote the
set of edges encoding the experimentally-derived association scores between those r proteins from the STRING
database. We compute the permutation p-value as described previously in ref. [132] as,

N+1
—value = ——. 26
p—value Rel (26)
Here N indicates the number of times that 7, > T, out of R random permutations (R = 1000), where T; is
the average degree of a STRING association network from randomly permuted features as T;, = \‘/;frl\ , and Tps

is the average degree of a STRING association network from the features identified within a DELVE cluster as
Tobs = “Jgf‘l. Of note, networks with higher degree are more connected, and thus show greater experimental
evidence of protein-protein interactions. Experimental evidence-based association scores were obtained from
the STRING database using the stringdb v0.1.5 package in python and networks were generated using networkx

v2.5.1.

Trajectory inference and analysis

To evaluate how well feature selection methods could identify features that recapitulate the underlying cellular
trajectory and can be used for trajectory analysis, we computed three metrics to assess trajectory preservation at
different stages of inference: accuracy of the inferred trajectory graph, correlation of estimated pseudotime to
the ground truth cell progression measurements, and the significance of dynamic features identified following
regression analysis.

To obtain predicted trajectories, we performed trajectory inference using the diffusion pseudotime algorithm [83]]
based on 20 diffusion map components generated from a k-nearest neighbor graph (k = 10), where edge weights
were determined by pairwise Euclidean distances between cells according to selected feature expression. Inference
was performed for the following lineages — simulated trajectories: all cells, arrested trajectory: cells with GO phase
annotation, proliferative trajectory: cells with G1, S, G2, or M phase annotation, CD8 T cell memory lineage: cells
following day 7 of infection with a memory score. Moreover, for each feature selection approach, we estimated
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pseudotime using ten random root cells according to a priori biological knowledge. Root cells were chosen as
either (1) cells with the smallest ground truth pseudotime annotation for the simulated datasets, (2) cells with the
youngest molecular age for 4i cell cycle datasets, or (3) cells from the day 7 population along the memory lineage
for the CD8 T cell differentiation dataset. Feature selection trajectory performance was subsequently assessed as
follows.

1. Trajectory graph similarity: Partition-based graph abstraction (PAGA) [104] performs trajectory inference
by constructing a coarse grained trajectory graph of the data. First cell populations are determined either
through unsupervised clustering, graph partitioning, or a prior experimental annotations. Next, a statistical
measure of edge connectivity is computed between cell populations to estimate the confidence of a cell
population transition. To assess if feature selection methods retain features that represent coarse cell type
transitions, we compared predicted PAGA trajectory graphs to ground truth cell cycle reference trajectories
curated from the literature [92]. First, PAGA connectivity was estimated between ground truth cell cycle
phase groups using the k-nearest neighbor graph (k = 10) based on pairwise Euclidean distances between
cells according to selected feature expression. We then computed the Jaccard distance between predicted and
reference trajectories as,

Wy N W, |

_— 27
W, UW,| @n

di (Wp,W,)=1-

W,, indicates the predicted cell type transition adjacency matrix, where each entry W, ;; represents the
connectivity strength between cell populations ¢ and j from PAGA and W,. indicates the reference trajectory
adjacency matrix with entries encoding ground truth cell type transitions curated from the literature. Here, a
lower Jaccard distance indicates that predicted trajectories better capture known cellular transitions.

2. Pseudotime correlation: To evaluate if feature selection methods retain features that accurately represent a
cell’s progression through a biological trajectory, we computed the Spearman rank correlation coefficient
between estimated pseudotime following feature selection and ground truth cell progression annotations
(e.g. the ground truth pseudotime labels generated from simulations, time-lapse imaging molecular age
measurements).

3. Regression analysis: To identify genes associated with the inferred CD8+ T cell differentiation trajectory
following feature selection, we performed regression analysis for each gene (d = 500) along estimated
pseudotime using a negative binomial generalized additive model (GAM). Genes were considered to be
differentially expressed along the memory lineage if they had a g—value < 0.05 following Benjamini-
Hochberg false discovery rate correction [[122].

4. Gene Ontology: To identify the biological relevance of the differentially expressed genes along inferred
CD8+ T cell differentiation trajectories specific to each feature selection strategy, we performed gene set
enrichment analysis on the set difference of significant genes from either highly variable gene selection or
DELVE feature selection using Enrichr [123]]. Here, we considered the mouse gene sets from GO Biological
Process 2021.

Diffusion pseudotime was implemented using the dpt function in Scanpy v1.8.1, PAGA was implemented using
the paga function in scanpy v1.8.1, GAM regression was implemented using the statsmodels v0.12.2 package in
python, and gene set enrichment analysis was performed using the enrichr function in gseapy v1.0.4 package in
python.

PHATE visualizations

To qualitatively compare lower dimensional representations from each feature selection strategy, we performed non-
linear dimensionality reduction using PHATE (potential of heat-diffusion for affinity-based transition embedding)
[75]] as this approach performs reasonably well for representing complex continuous biological trajectories. PHATE
was implemented using the phate v1.0.7 package in python. Here, we used the same set of hyperparameters across
all feature selection strategies (knn = 30, t = 10, decay = 40).

Aggregate scores

To rank feature selection methods on preserving biological trajectories in the presence of single-cell noise, we
computed rank aggregate scores by taking the mean of scaled method scores across simulated single-cell RNA
sequencing datasets from a trajectory type and noise condition (e.g. linear trajectory, dropout noise). More
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specifically, we first defined an overall method score per dataset as the median of each metric. Method scores were
subsequently min-max scaled to ensure datasets were equally weighted prior to computing the average.

Data and code availability

The raw publicly available single-cell datasets used in this study are available in the Zenodo repository https:
//doi.org/10.5281/zenodo.4525425 for the RPE cell cycle dataset [133]], the Zenodo repository https://
doi.org/10.5281/zenodo. 7860332 for the PDAC cell cycle datasets [134], and the Gene Expression Omnibus
(GEO) under the accession code GSE131847 for the CD8 T cell differentiation dataset [[135]. The preprocessed
datasets are available in the Zenodo repository https://doi.org/10.5281/zenodo.7883604|[136]. DELVE
is implemented as an open-source python package and is publicly available at https://github.com/jranek/
delve, Source code including all functions for benchmarking feature selection methods including preprocessing,
feature selection, evaluation, and plotting are publicly available at: https://github.com/jranek/delve_
benchmarkl.
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s Supplementary Information

=« Supplementary Tables

Supplementary Table 1: Implemented feature selection method parameters

Method name Supervision Parameter description Parameters
. . cell type labels cell type labels
Random Forest classifier  supervised number of trees n_estimators = 10, 100, 500
number of nearest neighbors k=10
DELVE unsupervised number of representative neighborhoods m = 1000
number of modules c=3,5,10
Laplacian score unsupervised number of nearest neighbors k=10
P P kernel bandwidth parameter o; = 3rd-nearest neighbor distance
Neighborhood variance ~ unsupervised NA NA
number of nearest neighbors k=10
. kernel bandwidth parameter o0; = k/3-nearest neighbor distance
Hotspot unsupervised .
number of principal components n_pcs = 50
model danb
number of nearest neighbors k=10
MCFS unsupervised kernel bandwidth parame.ter o; = 3rd-nearest neighbor distance
number of nonzero coefficients P
number of eigenvectors ¢ = number of known cell types
number of nearest neighbors k=10
1 1 . — 5
SCMER unsupervised number of prlnc.lpal components n_pcs = 50
lasso regression parameter lasso = 3.87e — 4
ridge regression parameter ridge =0
Max variance unsupervised NA NA
flavor Seurat
Highly variable genes unsupervised bins 20
n_top_genes p
All features NA NA NA
Random features NA NA NA
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Supplementary Figure 1: Comparison of feature selection methods on preserving linear differentiation
trajectories under a reduction in the signal-to-noise ratio. (a) Example PHATE [73] visualizations of simulated
linear differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the signal-
to-noise ratio (high, medium, low). The signal-to-noise ratio was altered by modifying the biological coefficient
of variation parameter within Splatter (high: BCV = 0.1, medium: BCV = 0.25, low: BCV = 0.5). This scaling
factor controls the mean-variance relationship between genes, where lowly expressed genes are more variable
than highly expressed genes. d indicates the total number of genes (d = 500) and p indicates the number of
selected genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods
when subjected to a reduction in the signal-to-noise ratio. Following feature selection, trajectory preservation was
quantitatively assessed according to several metrics: the precision of differentially expressed genes at k selected
genes (top), k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails.
Error bars/ bands represent the standard deviation. * indicates the method with the highest median score. - indicates
that the method identified no features.
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Supplementary Figure 2: Comparison of feature selection methods on preserving linear differentiation
trajectories in the presence of library size noise. (a) Example PHATE [73] visualizations of simulated linear
differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the total mRNA
count (high, medium, low). Library size was reduced by modifying the location parameter in the log-normal
distribution in Splatter that specifies library size scaling factors (high: location = 12, medium: location =
11, low: location = 10). d indicates the total number of genes (d = 500) and p indicates the number of selected
genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods when
subjected to a reduction in total mMRNA count. Following feature selection, trajectory preservation was quantitatively
assessed according to several metrics: the precision of differentially expressed genes at k selected genes (top),
k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails. Error bars/
bands represent the standard deviation. * indicates the method with the highest median score. - indicates that the
method identified no features.
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Supplementary Figure 3: Comparison of feature selection methods on preserving linear differentiation
trajectories is the presence of dropout noise. (a) Example PHATE (73] visualizations of simulated linear
differentiation trajectories for twelve feature selection strategies when subjected to an increase in the amount of
dropout (low, medium, high). Technical dropout was simulated by undersampling mRNA counts by sampling from
a binomial distribution with the scale parameter or dropout rate proportional to the mean expression of each gene
(low: A = 0, medium: A = 0.05, low: A = 0.1). d indicates the total number of genes (d = 500) and p indicates
the number of selected genes following feature selection (p = 100). (b) Performance of twelve different feature
selection methods when subjected to an increase in the amount of dropout noise. Following feature selection,
trajectory preservation was quantitatively assessed according to several metrics: the precision of differentially
expressed genes at k selected genes (top), k-NN classification accuracy (middle), and pseudotime correlation
(bottom) across 10 random trails. Error bars/ bands represent the standard deviation. * indicates the method with
the highest median score. - indicates that the method identified no features.
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Supplementary Figure 4: Comparison of feature selection methods on preserving bifurcation differentiation
trajectories under a reduction in the signal-to-noise ratio. (a) Example PHATE [73] visualizations of simulated
bifurcation differentiation trajectories for twelve feature selection strategies when subjected to a reduction in
the signal-to-noise ratio (high, medium, low). The signal-to-noise ratio was altered by modifying the biological
coefficient of variation parameter within Splatter (high: BCV = 0.1, medium: BCV = 0.25, low: BCV = 0.5).
This scaling factor controls the mean-variance relationship between genes, where lowly expressed genes are more
variable than highly expressed genes. d indicates the total number of genes (d = 500) and p indicates the number of
selected genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods
when subjected to a reduction in the signal-to-noise ratio. Following feature selection, trajectory preservation was
quantitatively assessed according to several metrics: the precision of differentially expressed genes at k selected
genes (top), k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails.
Error bars/ bands represent the standard deviation. * indicates the method with the highest median score. - indicates
that the method identified no features.
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Supplementary Figure 5: Comparison of feature selection methods on preserving bifurcation differentiation
trajectories in the presence of library size noise. (a) Example PHATE [[73]) visualizations of simulated bifurcation
differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the total mRNA
count (high, medium, low). Library size was reduced by modifying the location parameter in the log-normal
distribution in Splatter [72] that specifies library size scaling factors (high: location = 12, medium: location =
11, low: location = 10). d indicates the total number of genes (d = 500) and p indicates the number of selected
genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods when
subjected to a reduction in total mRNA count. Following feature selection, trajectory preservation was quantitatively
assessed according to several metrics: the precision of differentially expressed genes at k selected genes (top),
k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails. Error bars/
bands represent the standard deviation. * indicates the method with the highest median score. - indicates that the
method identified no features.
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Supplementary Figure 6: Comparison of feature selection methods on preserving bifurcation differentiation
trajectories is the presence of dropout noise. (a) Example PHATE (73] visualizations of simulated bifurcation
differentiation trajectories for twelve feature selection strategies when subjected to an increase in the amount of
dropout (low, medium, high). Technical dropout was simulated by undersampling mRNA counts by sampling from
a binomial distribution with the scale parameter or dropout rate proportional to the mean expression of each gene
(low: A = 0, medium: A = 0.05, low: A = 0.1). d indicates the total number of genes (d = 500) and p indicates
the number of selected genes following feature selection (p = 100). (b) Performance of twelve different feature
selection methods when subjected to an increase in the amount of dropout noise. Following feature selection,
trajectory preservation was quantitatively assessed according to several metrics: the precision of differentially
expressed genes at k selected genes (top), k-NN classification accuracy (middle), and pseudotime correlation
(bottom) across 10 random trails. Error bars/ bands represent the standard deviation. * indicates the method with
the highest median score. - indicates that the method identified no features.
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Supplementary Figure 7: Comparison of feature selection methods on preserving tree differentiation
trajectories under a reduction in the signal-to-noise ratio. (a) Example PHATE [73] visualizations of simulated
tree differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the signal-
to-noise ratio (high, medium, low). The signal-to-noise ratio was altered by modifying the biological coefficient
of variation parameter within Splatter (high: BCV = 0.1, medium: BCV = 0.25, low: BCV = 0.5). This scaling
factor controls the mean-variance relationship between genes, where lowly expressed genes are more variable
than highly expressed genes. d indicates the total number of genes (d = 500) and p indicates the number of
selected genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods
when subjected to a reduction in the signal-to-noise ratio. Following feature selection, trajectory preservation was
quantitatively assessed according to several metrics: the precision of differentially expressed genes at k selected
genes (top), k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails.
Error bars/ bands represent the standard deviation. * indicates the method with the highest median score. - indicates
that the method identified no features.
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Supplementary Figure 8: Comparison of feature selection methods on preserving tree differentiation
trajectories in the presence of library size noise. (a) Example PHATE [73] visualizations of simulated tree
differentiation trajectories for twelve feature selection strategies when subjected to a reduction in the total mRNA
count (high, medium, low). Library size was reduced by modifying the location parameter in the log-normal
distribution in Splatter [72] that specifies library size scaling factors (high: location = 12, medium: location =
11, low: location = 10). d indicates the total number of genes (d = 500) and p indicates the number of selected
genes following feature selection (p = 100). (b) Performance of twelve different feature selection methods when
subjected to a reduction in total mRNA count. Following feature selection, trajectory preservation was quantitatively
assessed according to several metrics: the precision of differentially expressed genes at k selected genes (top),
k-NN classification accuracy (middle), and pseudotime correlation (bottom) across 10 random trails. Error bars/
bands represent the standard deviation. * indicates the method with the highest median score. - indicates that the
method identified no features.
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Supplementary Figure 9: Comparison of feature selection methods on preserving tree differentiation trajec-
tories is the presence of dropout noise. (a) Example PHATE (73] visualizations of simulated tree differentiation
trajectories for twelve feature selection strategies when subjected to an increase in the amount of dropout (low,
medium, high). Technical dropout was simulated by undersampling mRNA counts by sampling from a binomial
distribution with the scale parameter or dropout rate proportional to the mean expression of each gene (low: A = 0,
medium: A = 0.05, low: A = 0.1). d indicates the total number of genes (d = 500) and p indicates the number
of selected genes following feature selection (p = 100). (b) Performance of twelve different feature selection
methods when subjected to an increase in the amount of dropout noise. Following feature selection, trajectory
preservation was quantitatively assessed according to several metrics: the precision of differentially expressed
genes at k selected genes (top), k-NN classification accuracy (middle), and pseudotime correlation (bottom) across
10 random trails. Error bars/ bands represent the standard deviation. * indicates the method with the highest median
score. - indicates that the method identified no features.
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Supplementary Figure 10: Comparison of the robustness of feature selection methods on inferring differenti-
ation trajectories under a reduction in the signal-to-noise ratio. (a) Average k-NN classification accuracy vs.
average percent change in k-NN classification accuracy as the signal-to-noise ratio decreased (high to medium)
and the mean-variance relationship amongst genes increased. The signal-to-noise ratio was altered by modifying
the biological coefficient of variation parameter within Splatter [72] (high: BCV = 0.1, medium: BCV = 0.25). (b)
Average pseudotime correlation vs. average percent change in pseudotime correlation as the signal-to-noise ratio
decreased (high to medium).
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Supplementary Figure 11: Comparison of the robustness of feature selection methods on inferring differenti-
ation trajectories under library size noise corruption. (a) Average k-NN classification accuracy vs. average
percent change in k-NN classification accuracy as the total mRNA count decreased (high to medium). Library
size was reduced by modifying the location parameter in the log-normal distribution in Splatter [72] that specifies
library size scaling factors (high: location = 12, medium: location = 11). (b) Average pseudotime correlation vs.
average percent change in pseudotime correlation as the total mRNA count decreased (high to medium).
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Supplementary Figure 12: Comparison of the robustness of feature selection methods on inferring differenti-
ation trajectories under dropout noise corruption. (a) Average k-NN classification accuracy vs. average percent
change in £-NN classification accuracy as the amount of dropout or sparsity increased (low to medium). Technical
dropout was simulated by undersampling mRNA counts by sampling from a binomial distribution with the scale
parameter or dropout rate proportional to the mean expression of each gene (low: A = 0, medium: A = 0.05). (b)
Average pseudotime correlation vs. average percent change in pseudotime correlation as the amount of dropout or
sparsity increased (low to medium).
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Supplementary Figure 13: Validation of DELVE seed selection on retinal pigmented epithelial (RPE) cell
cycle dataset. Top ranked features identified by a (a) random forest classifier trained on ground truth cell cycle
phase annotations or (b) random forest regressor trained on ground truth cell cycle age measurements. Features
highlighted in red were also identified by DELVE seed selection (See FigureEP heatmap).
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Supplementary Figure 14: DELVE is robust to changes in hyperparameters for the retinal pigmented
epithelial (RPE) cell cycle dataset. DELVE achieves similar classification accuracy, normalized mutual information
(NMI) clustering score, and pseudotime correlation across a range of (top) cluster sizes and (bottom) subsampled
cells. Plots show results over 20 random trials. Error bars represent the standard deviation.
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Supplementary Figure 15: Feature selection method performance on pancreatic adenocarcinoma (PDAC)
cell cycle datasets. Performance of twelve feature selection methods on preserving cell cycle trajectories from 9
PDAC cancer cell lines (BxPC3, CFPAC, HPAC, MiaPaCa, Pa02C, Pa01C, Pal6C, PANCI1, and UMS53) profiled
with protein immunofluorescence imaging. Following feature selection, cell cycle preservation was quantitatively
assessed according to several metrics including: support vector machine classification accuracy to the ground
truth phase annotations, normalized mutual information (NMI) clustering score to ground truth phase annotations,
precision of cell cycle phase-specific imaging-derived features as measured by a random forest classifier trained on
ground truth phase annotations, Jaccard distance between predicted cell cycle trajectory graphs and a ground truth
reference cell cycle trajectory curated from the literature, and the Spearman rank correlation between estimated
pseudotime and the ground truth as measured by a random forest classifier trained on ground truth phase annotations.
Heatmaps show the average performance. Approaches with the highest average score are highlighted in yellow.
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Supplementary Figure 16: DELVE recovers BxPC3 pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. BxPC3 cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified two modules of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[73] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 17: DELVE recovers CFPAC pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. CFPAC cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[73] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 18: DELVE recovers HPAC pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. HPAC cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[73]] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
51


https://doi.org/10.1101/2023.05.09.540043
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.09.540043; this version posted May 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

a
< dynamic static dynamic .
- % 02 1 2(1)
e g "
4 N s
8 oo / 1 G2
£ = M
g
~ § 02 2233822528
o E C\‘jﬁ@u‘cwﬂcuﬂg
s S & 2 Fd Y & 2 F N %% Sz E83
[~ Q.
> @ dynamic © static phase phase Vo 5o
UMAP1 scaled exp.
0 1
all features  random forest DELVE dynamic seed LS neic_,lh. variance
(d=253) (p=30) (p=10) (p=30) p = 30)

(p=30)

PHATE 2

eGO oGl S oG2 oM

PHATE 1

C
classification accuracy NMI precision @ k
(cell cycle phase) (cell cycle phase) (random forest)
0.9{sT ° 1.0
08 % g i' i@‘ o,3§§i 08
% 0.7 ’ é g g o 2 S X
“06 @ . o 47
05 01 °
- &
04
jaccard distance arrest pseudotime corr.  prolif. pseudotime corr.
trajectory graph (random forest) (random forest)
070 1.00{ 1.00fe

060

score
o o
N (4.
(%] o
0 ® CRTEDI®
coliBw
© &
Do
o o
oo—o o
° o e
score
o o
Noa
(&) o
R TR K
soddBIBPeo
oo@Bhoo
o—odiiilooo
oo ©
o—diile
oo Gt
o—dgio—o
<ot

supervised unsupervised
DELVE M dynamicseed BILS M neigh.variance Mhotspot
B MCFS BSCMER M maxvariance | HVG Hall random )

random forest

Supplementary Figure 19: DELVE recovers MiaPaCa pancreatic adenocarcinoma cell cycle trajectories
in protein immunofluorescence imaging data. MiaPaCa cells were profiled with protein immunofluorescence
imaging to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a)
DELVE identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization
of image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[73] visualizations of cell cycle trajectories for twelve feature selection approaches. (¢) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score. 52
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Supplementary Figure 20: DELVE recovers Pa01C pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. Pa01C cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[73] visualizations of cell cycle trajectories for twelve feature selection approaches. (¢) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 21: DELVE recovers Pa02C pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. Pa02C cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[73]] visualizations of cell cycle trajectories for twelve feature selection approaches. (¢) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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Supplementary Figure 22: DELVE recovers Pal6C pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. Pal6C cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[73] visualizations of cell cycle trajectories for twelve feature selection approaches. (c) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median

score.
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Supplementary Figure 23: DELVE recovers PANCI1 pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. PANCI1 cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[73] visualizations of cell cycle trajectories for twelve feature selection approaches. (¢) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median

score.
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Supplementary Figure 24: DELVE recovers UMS53 pancreatic adenocarcinoma cell cycle trajectories in
protein immunofluorescence imaging data. UMS53 cells were profiled with protein immunofluorescence imaging
to measure 63 core cell cycle effectors resulting in a dataset with d = 253 imaging-derived features. (a) DELVE
identified one module of dynamic features representing a minimum cell cycle. (a left) UMAP visualization of
image-derived features where each point indicates a dynamic or static feature identified by the model. (a middle)
The average pairwise change in expression for features within a module ordered across ground truth cell cycle phase
annotations. (a right) Heatmap illustrating the standardized average expression of dynamic seed features across
cell cycle phases. (b) Feature selection was performed to select the top p = 30 ranked features. Example PHATE
[73] visualizations of cell cycle trajectories for twelve feature selection approaches. (¢) Quantitative assessment
of twelve feature selection methods on preserving cell cycle phases and phase transitions according to several
metrics including: support vector machine classification accuracy to the ground truth phase annotations, normalized
mutual information (NMI) clustering score to ground truth phase annotations, precision of cell cycle phase-specific
imaging-derived features as measured by a random forest classifier trained on ground truth phase annotations,
Jaccard distance between predicted cell cycle trajectory graphs and a ground truth reference cell cycle trajectory
curated from the literature, and the Spearman rank correlation between estimated pseudotime and the ground truth
as measured by a random forest classifier trained on ground truth phase annotations. Boxplots show the results over
10 random trials, error bands represent the standard deviation, and * indicates the method with the highest median
score.
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