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Abstract

Inflammation, fibrosis and metabolic stress critically promote heart failure with preserved

ejection fraction (HFpEF). Exposure to high-fat diet and nitric oxide synthase inhibitor

N[w]-nitro-l-arginine methyl ester (L-NAME) recapitulate features of HFpEF in mice. To

identify disease specific traits during adverse remodeling, we profiled interstitial cells in early

murine HFpEF using single-cell RNAseq (scRNAseq). Diastolic dysfunction and perivascular

fibrosis were accompanied by an activation of cardiac fibroblast and macrophage subsets.

Integration of fibroblasts from HFpEF with two murine models for heart failure with reduced

ejection fraction (HFrEF) identified a catalog of conserved fibroblast phenotypes across

mouse models. Moreover, HFpEF specific characteristics included induced metabolic,

hypoxic and inflammatory transcription factors and pathways, including enhanced

expression of Angiopoietin-like 4 next to basement membrane compounds. Fibroblast

activation was further dissected into transcriptional and compositional shifts and thereby

highly responsive cell states for each HF model were identified. In contrast to HFrEF, where

myofibroblast and matrifibrocyte activation were crucial features, we found that these

cell-states played a subsidiary role in early HFpEF. These disease-specific fibroblast

signatures were corroborated in human myocardial bulk transcriptomes. Furthermore, we

found an expansion of pro-inflammatory Ly6Chighmacrophages in HFpEF, and we identified a

potential cross-talk between macrophages and fibroblasts via SPP1 and TNFɑ. Finally, a

marker of murine HFpEF fibroblast activation, Angiopoietin-like 4, was elevated in plasma

samples of HFpEF patients and associated with disease severity. Taken together, our study

provides a comprehensive characterization of molecular fibroblast and macrophage

activation patterns in murine HFpEF, as well as the identification of a novel biomarker for

disease progression in patients.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) represents one of the largest unmet

clinical needs in cardiovascular medicine, given that it accounts for about 50% of heart

failure (HF) patients and is increasing in prevalence1. However, apart from gliflozins, no

effective treatment strategies exist to reduce the associated diastolic dysfunction, fibrosis,

hypertrophy and the resulting pronounced morbidity and mortality. Therapeutic concepts and

established drugs for the treatment of heart failure with reduced ejection fraction (HFrEF)

failed broadly when tested for beneficial effects in HFpEF, suggesting fundamentally different

pathomechanisms1.

HFpEF comprises a complex and multifactorial interplay of the disease promoting risk

factors, such as hypertension, obesity, metabolic syndrome, chronic inflammation, and

aging. Suitable animal models were missing until a few years ago, when a two-hit mouse

model combining a 60% high-fat diet with inhibition of the constitutive nitric oxide synthase

by Nω-nitro-l-arginine methyl ester (L-NAME) recapitulated metabolic and hypertensive

stress in HFpEF2,3. Analysis of this model led to major mechanistic insights in the

pathophysiology of hypertrophy and cardiac immunometabolic alterations in HFpEF3–5 and

potential therapeutic targets. Since these studies focused predominantly on cardiomyocyte

hypertrophy and metabolism1, little knowledge was gathered about the distinct role of cardiac

interstitial cells and their cross-talk in ventricular stiffening and fibrosis1,4.

Single-cell RNA sequencing (scRNAseq) allows for the quantification of transcriptional

changes of individual cells and description of cell phenotype heterogeneity. Consequently,

scRNAseq has opened the door for fundamental insights into cellular heterogeneity,

developmental biology and molecular disease processes in the cardiovascular field6–8. Thus,

its application to a HFpEF model could shed light on the cellular disease mechanisms.

Here we present to our knowledge the first scRNAseq analysis of the ventricular interstitium

in mice receiving L-NAME and high fat diet (further called HFpEF model) in early stages of

diastolic dysfunction. We compared fibroblast phenotypes and disease signatures by

integration with scRNAseq data from other HF models that recapitulate HFrEF and identified

HFpEF specific patterns of fibroblast activation. We characterized HFpEF associated fibrotic

signatures and compared them with human bulk references, providing new

pathophysiological hypotheses relevant for the understanding of fibrosis in HFpEF

necessary for future anti-fibrotic drug development.
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Results

Disease model and data description

To mimic HFpEF, we used the established two-hit mouse model that induces metabolic and

hypertensive stress by 60% high-fat diet and L-NAME, respectively3. From seven weeks of

dietary intervention onwards, a diastolic dysfunction phenotype was observed

echocardiographically under preservation of systolic left ventricular function (Fig. 1A, Supp.

Fig. 1). Body and heart weight, normalized to tibia length, increased concordantly indicating

obesity and cardiac hypertrophy (Fig. 1A, Supp. Fig. 1A-C). To describe this early

remodeling, we isolated cardiac interstitial cells after seven weeks by MACSⓇ dead cell

depletion and FACS sorting of live and metabolically active cells (Fig. 1B). We performed

scRNAseq with the 10x Chromium droplet based platform to analyze cellular transcriptomic

changes within cardiac ventricular interstitial cells of two control and two HFpEF murine

hearts. After processing and quality control we retained expression profiles of 6,132 cells

described by 15,046 genes (mean UMI coverage per cell: 2,838) (Supp. Fig. 2).

Unsupervised clustering yielded 10 distinct clusters (Fig. 1C) representing major cell types of

the cardiac interstitium based on their top marker genes and known canonical markers. We

identified two fibroblast clusters (Col1a1+ and Wif1+), endothelial cells (EC) (Pecam1+),

natural killer cells (Gzma+), macrophages (CD68+), T effector cells (CD8+) and T helper

cells (CD4+), B cells (CD19+), granulocytes (S100a9+), smooth muscle cells and pericytes

(Acta2+) (Figure 1D).
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Figure 1. Study model and cell type assignment.
A) Murine HFpEF model characterization by ratio of heart weight to tibia length (HW/TL) and
echocardiographic hallmarks (E/E’, global-longitudinal strain and LVEF), purple data points represent
the animals used for single-cell RNA sequencing (scRNAseq). Statistical analysis performed by
one-way ANOVA, bar graphs indicate mean±SD, *p<0.05, **p<0.01, ***p<0.001. ns= deemed not
significant (p>0.05), LVEF= left ventricular ejection fraction, w= weeks. B) Schematic summary of
experimental setup for scRNAseq experiments using mice after 7 weeks of HFpEF or control diet. C)
UMAP embeddings of normalized scRNAseq data after processing and filtering. D) Marker gene
expression for cell type assignment. E) Cell type composition of main cell types as mean percentage
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per group, compared between HFpEF and control mice. *p < 0.05, p-values were calculated via label
permutation. F) Cosine distance ratios of highly variable genes between pseudobulked cell type
profiles. Median between group distance is divided by median within group distance. G)
Representative Picrosirius-Red stainings of interstitial fibrotic fibers (arrow heads) and perivascular
fibrosis (arrows) from control and different stages of HFpEF heart sections. Imaging performed in
594nm (Picrosirius-Red) and 488nm (autofluorescence) channels. White scale bars in the right bottom
corner correspond to 100μm.

Cell type composition and molecular profiles suggest fibroblast and
macrophage involvement in cardiac remodeling

To identify interstitial cells involved in HFpEF remodeling, we first compared the cellular

composition in control with HFpEF cardiac tissue, and evaluated the significance of

compositional changes by label permutation (see methods). This yielded a modest increase

of fibroblasts and macrophages and decrease of B cells and ECs in HFpEF (Fig. 1E, Supp.

Fig. 3A-B).

As cell type compositions are not independent and therefore only partially informative of the

importance of a cell type for disease process, we assessed whether the variation of gene

expression between experimental groups was higher than the variability expected within a

single group (see methods) (Fig. 1F). We found that fibroblasts displayed the highest ratio of

‘between to within group distance’ followed by macrophages. ECs and B cells did not display

high disease associated variability, suggesting that their relative decrease in proportion is not

associated with fundamental gene expression changes. We applied a cell type prioritization

method to rank cell types by classifier performance. This classifier was trained to separate

healthy from diseased cells and can provide an additional estimate for magnitude of

molecular changes in cell types9. This yielded the highest performance for macrophages and

endothelial cells, followed by modest performance for fibroblasts (Supp. Fig. 3C). L-NAME

treatment directly targets ECs, expected to induce direct transcriptional changes. Taken

togther, the compositional change and molecular differences suggested that fibroblasts and

macrophages are important contributors to the early HFpEF associated remodeling and

phenotype.

Fibroblast activity relates to cardiac fibrosis, which is a hallmark feature of human HFpEF10.

In parallel, we found a qualitative increase of interstitial and perivascular collagen deposition

with time in the HFpEF model (Fig. 1G). Thus, seven weeks of HFpEF diet already

recapitulated all features of HFpEF including cardiac fibrosis and mild functional changes of

the left ventricle at this time-point. While fibrosis represents one of the major

pathomechanisms without current mitigating therapeutic options, investigating early

fibroblast activation is of high interest to understand HFpEF-related cardiac fibrosis.
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Fibroblast phenotype definitions across murine heart failure models

Cardiac fibroblasts accomplish a wide range of biological functions, crucial for tissue

homeostasis and architecture11. In human HFrEF and HFpEF, cardiac fibrosis represents a

major axis of reparative and adverse remodeling. While histologically HFpEF has been

associated with interstitial and perivascular fibrosis, the underlying functional characteristics

of fibroblast activation remain unknown10,12. Thus, we sought to compare HFpEF fibroblast

activation with other cardiac fibrotic disease etiologies by integration of our single-cell data

with two other single-cell resources that represent different types of HFrEF: first, a model for

cardiac fibrosis and hypertrophy by hypertensive stress induced by two weeks of angiotensin

II (AngII) administration13 and second, an acute myocardial infarction (MI) model7 that

assessed early (<7 days) and later ischemic remodeling (7-14 days) (Fig. 2A). The MI model

is characterized by cell death and associated replacement fibrosis14 while the AngII

administration causes initially extensive reactive fibrosis15.

We uniformly processed studies, annotated cell types and identified fibroblasts by selecting

Col1a1+, Pdgfra+ and Gsn+ cells (Supp. Fig. 4). Fibroblasts from three datasets were then

integrated with Harmony16 while accounting for sample and study batch effects that resulted

in an integrated cardiac fibroblast atlas of 26,455 cells, capturing a wide spectrum of

phenotype diversity across HF models. Study and sample batch effects were satisfactorily

mitigated (see methods) (Fig. 2B, C).
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Figure 2. Integrated atlas of cardiac fibroblasts from different disease models.
A) Schematic of the integrated murine HFpEF and HFrEF (AngII and MI) fibroblast studies. B+C)
UMAP embeddings of integrated fibroblasts, colored by disease (HF, Heart Failure) vs. control (B),
study (C). D) Overview of top cell state marker expression of integrated fibroblast states. E) UMAP
embeddings, showing the integrated fibroblast atlas colored by cell clusters, i.e. the integrated
fibroblast states (IFS). Labels indicate possible fibroblast differentiations based on functional
characterization. F) Estimated pathway activities with PROGENy based on effect size (avg log2 fold
change) of footprint genes in integrated fibroblast states. *PROGENy z-score > 2. G)
Overrepresentation analysis of extracellular matrix related gene sets with markers of integrated
fibroblast states. Hypergeometric test with Benjamini Hochberg correction, *q < 0.05, **q < 0.01, ***q
< 0.001.
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Previous studies identified cardiac fibroblast phenotypes at the single-cell level in healthy

and diseased hearts with limited consistency7,13,17–20. Thus, the integration allowed us to

robustly define high-level fibroblast phenotypes across different cardiac remodeling

scenarios that enable direct model comparison. In the integrated atlas, we identified eight

integrated fibroblast cell states (IFS) by performing unsupervised clustering. Each study

contributed to all IFS (Supp. Fig. 5A). To functionally characterize the IFS, we derived state

markers via differential expression analysis (Fig. 2D, Supp. Fig. 5B, Supp. Table 1).

First, we aimed to identify which of these IFS constitute cardiac specific fibroblasts. For this,

we compared IFS markers with markers of fibroblast states identified in a cross organ

fibroblast atlas (Supp. Fig. 5C)19. IFS 0 (Col15a1+), 3 ( Comp+) and 4 (Pi16+) displayed high

marker overlap (hypergeometric test p<0.01) which suggested that these states might

represent fibroblast phenotypes shared across organs. Conversely IFS 1, 2, 5, 6 and 7

displayed weaker or ambiguous associations and could represent rather cardiac specific

fibroblast phenotypes.

We expected that IFS could represent functional niches (i.e. specialization of fibroblasts to

fulfill certain tissue functions). We characterized functional niches (Fig. 2E) by performing

pathway activity (Fig. 2F) and gene set enrichment analysis (Fig 2G, Supp. Fig. 5F). IFS 0
fibroblasts were the most abundant cell type in every dataset (Supp. Fig. 5D) and have been

described as homeostatic fibroblasts that are characterized by Col15a1 and Dpep1

expression19. IFS 4 fibroblasts were characterized by Pi16 expression and constitute

adventitial stromal cells that might accomplish a reservoir function for downstream fibroblast

differentiation19,21. The IFS 3 can be termed matrifibrocytes and are characterized by Cilp,

Thbs4, Comp and Postn expression13,20. Pathway analysis indicated that IFS 3 demonstrated

highest TGFβ activity (Fig. 2F), which highlighted the pro-fibrotic potential of this IFS.

Extracellular matrix (ECM) remodeling is a major operation of fibroblasts and was assessed

by enrichment of ECM related gene sets22, suggesting that IFS 0 and IFS 3 fibroblasts are

the main ECM producers: both were characterized by expression of collagens and core

matrisome related genes, while IFS 0 uniquely expressed genes associated with the

basement membrane (e.g. Col4a1, Lamb1, Hspg2, Col15a1)(Fig. 2G). We identified three

IFS with inflammatory profiles: IFS 2, IFS 6 and IFS 7. IFS 2 appeared to be a heterogenous
group of fibroblasts that are partly characterized by Acta2 and Actb expression which

constitute myofibroblast characteristics, as well as pro-inflammatory genes involved in

antigen processing and representation (Psmd8, Psma6, Vamp8) and Chaperonin containing

T-complex polypeptide (CCT) genes (CCT3, CCT7, CCT4, CCT8) that have been
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associated with proliferative and fibrotic tissue remodeling23–25. Furthermore IFS 2 exhibited

highest PI3K pathway activity which has been shown to enable fibroblast migration26,27. IFS 6
fibroblasts were characterized by pro-inflammatory NFκB and TNFα signaling (Fig. 2F) and

cytokine expression of Ccl2, Cxcl5 suggested that IFS 6 participates in immune cell

attraction. IFS 7 cells formed a small cluster that every study contributed to with a

comparatively small number of cells (Supp. Fig. 5D) and was characterized by JAK-STAT

activity and interferon-γ related gene expressions (Ifit3, Isg15). The JAK-STAT pathway has

been linked to fibroblast activity in rheumatoid arthritis28,29 and osteoporosis30 but its function

in cardiac fibroblasts remains unclear. IFS 5 was characterized by, among others, Wif1 and

Dkk3 expression. In the heart, Wif1+ cells were previously shown to localize at the cardiac

valves and their adjacent hinge regions and are suggested to be specialized on this spatial

niche31. IFS 1 was characterized by expression of typically secreted gene products including

insulin-like growth factor 1 (Igf1) and fibrinogen-like protein 2 (Fgl2), which can control

cardiomyocyte growth32,33, next to the Igf-function regulators insulin-like growth factor-binding

proteins (Igfbp3, Igfbp4)34, glycoproteins like fibulin-1 (Fbln1), extracellular matrix protein 1

(Ecm1) and matrix-gla protein (Mgp).

In summary, the phenotype atlas of murine cardiac fibroblasts can be broadly categorized as

a set of eight fibroblast states, characterized by distinct key molecular programmes including

ECM remodeling (IFS 0, 3), immune modulation (IFS 2,6,7), secretion (IFS 1), and

presumably tissue homeostasis (IFS 1, 5).

Distinct fibroblast signature of HFpEF

To functionally compare fibroblast activation between study models, we performed

differential gene expression analysis between control and disease fibroblasts for each study

independently to avoid cross study batch comparison. Since the MI study included multiple

timepoints, we separated the samples by calculating signatures of early (days 1, 3, and 5)

and late (days 7 and 14) remodeling. The resulting signatures contained a small set of

upregulated (Timp1, Col1a1, Col1a2, Loxl1 and Sparc) and downregulated genes common

to all disease models (Fig. 3A, Supp. Table 2). Between the HF models we found little

overlap regarding the respective differentially expressed genes, except for AngII and late MI

signatures (Fig. 3B). Since only a few genes were shared between disease signatures, we

asked whether the direction of gene expression regulation, determining whether a gene's

activity is increased (upregulated) or decreased (downregulated), is nevertheless consistent

between HF models. We correlated fold change regulation of disease signatures between

studies and found the strongest correlation between AngII and late MI fibroblasts.
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Interestingly, the HFpEF signature did not correlate with AngII while displaying weak

agreements with early and late MI, indicating disease-specific fibroblast activation patterns.

To further elucidate the differences of these fibrotic features, we characterized signatures by

enriching annotated gene sets from the MSIG database. Fibrosis signatures across models

contained major ECM related gene sets (Fig. 3D), indicative of a common profibrotic task.

The HFpEF signature was uniquely characterized by heat shock factors, protein

glycosylations, basement membrane and laminin components, but contained less

components related to elastic fibers than AngII and MI (Fig. 3E). Next, we used fold change

regulation of regulon genes to infer upstream transcription factor (TF) activities (Fig. 3F).

Among others, Hsf1, Ppar-ɑ and Ppar-ɣ are suggested to be relevant TFs specifically in

HFpEF fibroblasts and could constitute important mediators of metabolic stress response. In

addition, Hif1ɑ activity was found in HFpEF and, as expected, in early MI fibroblasts. In

HFpEF, hypoxia may occur in obesity related tissue stress35, but its impact on cardiac

fibroblast function in HFpEF is unknown. All models displayed high Smad3 activity, which is

in line with the common knowledge that this TF is an important driver of cardiac fibrosis,

possibly via TGFβ signaling36. Indeed, when comparing pathway activities (Fig. 4G), TGFβ

was active in all HF models, however, strongest activity was found in AngII and late MI

models while in early MI fibroblasts proinflammatory TNFα, NFκB, as well as hypoxia, and

JAK-STAT pathways were induced. In HFpEF, besides TGFβ, the hypoxia37,38, TNFα39 and

p5340 pathways were predicted to be activated in fibroblasts.
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Figure 3. Comparison and interpretation of fibroblast disease signatures from
different heart failure models.

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.539983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.09.539983
http://creativecommons.org/licenses/by-nc-nd/4.0/


A) Comparing intersections of upregulated genes in different heart failure (HF) models. B) Intersection
quantification via jaccard index. C) Comparison of direction of regulation between studies. Pearson
correlation was calculated between log fold change vectors of signature genes in pairwise
comparisons. Each study comparison was based on the upregulated genes from the study on the
x-axis. **p < 0.01. D+E) Heatmaps of geneset overrepresentation in study specific fibroblast disease
signatures. Significantly enriched gene sets common between signatures (D) and selected gene sets
to highlight HFpEF signature characteristics (E), ECM = extracellular matrix, EMT =
epithelial-mesenchymal transition. Each heatmap in E) represents a group of similar genesets.
Hypergeometric test with Benjamini Hochberg correction, *q <0.01, **q<0.001, ***q<0.0001. F)
Estimated transcription factor activities with DoRothEA based on effect size (log fold change) of target
genes compared between HF models. G) Estimated pathway activities with PROGENy based on
effect size (log fold change) of footprint genes compared between HF models. H) Expression values
of selected fibrosis and inflammatory genes in individual fibroblasts in HFpEF (grey) and control
(orange) mice. All genes were significantly upregulated (adj. p-value < 0.05). I) Immunofluorescence
images of collagen IV (red) and DAPI (blue) staining of left ventricular heart sections. Lower panels
show magnifications of the areas marked by white boxes. White arrows indicate capillaries or larger
blood vessels. Scale bars in the right bottom corner indicate 50 μm length. J) Immunohistological
staining of Angptl4 protein in left ventricular heart sections.

Besides the upregulation of main ECM components in HFpEF (e.g. Col1a1, Col1a2, Col4a1,

Sparc, Pcolce), we found collagen cross linking enzymes (Loxl1, Loxl2), metabolic and

inflammation related genes to be induced (e.g. Angptl4, Ace, Dpep1, If205 and Ccd80) (Fig.

3H). Col4a1 is an important component of the basement membrane and its accumulation

over time in the HFpEF model was confirmed by immunofluorescence stainings and

indicated a collagen IV pattern of interstitial sheathing of cardiac cells (Fig. 3I).

Angiopoietin-like 4 (Angptl4) is a lipoprotein lipase inhibitor that was barely expressed in

control fibroblasts, but strongly induced in HFpEF. It is known to be regulated via Ppar-ɑ and

Ppar-ɣ in other contexts41. Hence, Angptl4 could constitute an important indicator of

metabolic stress in fibroblasts in HFpEF. Qualitative protein staining of Angptl4 confirmed

upregulation especially in the cardiac interstitium (Fig. 3J).

While the common gene expression patterns between HF models related to TGFβ and

Smad3 activity together with upregulation of ECM genes, distinctive HFpEF fibroblast

activation patterns included upregulation of Angptl4 and other markers of metabolic stress,

basement membrane genes, and activation of proinflammatory pathways and TFs.
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Figure 4. Decomposing Fibroblast disease signatures.
A) Schematic of different expression patterns in regard to cell states that could yield an upregulation
of a disease signature. Compositional shifts by expanding cell number are distinguished from
transcriptional shifts via uniform (state independent) or non-uniform (state dependent) upregulation of
disease signatures. B) Composition change of integrated fibroblast states (IFS) between control and
heart failure per study. p-values calculated via label permutation, *p < 0.05, **p < 0.01. C)
Overrepresentation analysis of disease specific fibroblast signatures (x-axis) and top 100 IFS markers
(y-axis). Hypergeometric test, *p < 0.05. D) Gene set scores of study specific signatures (x-axis) were
used to calculate the area under the receiver operator curve (AUROC, y-axis) between control and
diseased cells within each IFS (color). E) HFpEF signature expression dependent on IFS category by
calculating the explained variance (eta² values) of gene-wise ANOVAs. Violin plots display normalized
expression values of three genes with lowest (lower panel) and highest (upper panel) variance
explained by cell state. F) Quantification of differences in state dependent regulation of disease
signatures across heart failure models. The ratio of the explained variance by IFS and disease class
was calculated for each HF model and its disease signature. Wilcoxon-test p-values are shown. G)
Explained variance (eta² values) by IFS on x-axis and explained variance by disease class (gene ~
disease class) on y-axis. Violett dots are part of the disease signature. H) The ratio of explained
variance by state and disease class of selected genes that were upregulated in all HF models. I)
Corroboration of murine fibroblast signatures in human myocardial samples. Human HFpEF and
HFrEF studies were curated and top differentially upregulated genes were selected (y-axis). Gene set
overlaps with fibroblast disease signatures from different study models (left-panel) or fibroblast state
marker (right panel) (hypergeometric test). AngII= angiotensin II model, HFpEF= heart failure with
preserved ejection fraction, MI= myocardial infarction. q-value = Benjamini Hochberg corrected
p-value, *q <0.05, **q<0.01, ***<0.001.

Compositional and transcriptional shifts in cardiac fibroblasts

In the previous sections, we characterized integrated fibroblast states (IFS) together with

their possible functional niches and interpreted model-specific disease signatures. To

combine both perspectives, we investigated how fibroblasts from different IFS contributed to

the model specific cardiac remodeling. This could help us understand the division of labor

between fibroblast states and compare study models from a cell population perspective.

We conceptualized different patterns of gene expression with respect to cell states that lead

to an upregulation of a disease signature (Fig. 4A). First, we distinguished between

compositional and transcriptional shifts42. The former describes a relatively stable expression

within a cell state where the disease signature upregulation is caused by an increase in the

proportion of that state. On the other hand, a transcriptional shift constitutes an upregulation

without a compositional increase. Here, we propose to differentiate between upregulation

focused within a state (state-dependent) and within many or all states (state-independent).

We will use these terms to broadly describe gene expression patterns from different HF

models, however, we acknowledge that these categories are not exclusive.

To investigate compositional shifts, we calculated compositional changes of IFS between

control and diseased mice per study (Fig. 4B). In HFpEF, composition changes were very
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small and only IFS 0 and 6 expanded slightly (label permutation p-value <0.05), while in

early MI the highest compositional dynamics were observed with expansion of IFS 2, 3, 5

and 6. Late MI remodeling displayed similar characteristics as the AngII model with an

increase of IFS 3 and 2. To support that these compositional shifts were associated with the

disease signatures we assessed the overlap of genes between IFS markers and disease

signatures (Fig. 4C). We found that IFS 0 shared markers with the HFpEF signature while

IFS 3 with AngII, late and early MI signatures; IFS 2 and 6 with early MI signature only

(hypergeometric test, p<0.05). This suggested that a compositional shift was happening in all

mouse models, but with different emphases of IFS across the HF models. No other model

shared the importance of IFS 0 with HFpEF, which could possibly be a unique feature of

HFpEF fibrosis.

To investigate transcriptional shifts, we quantified how well fibroblasts within the same IFS

can be distinguished regarding their control and disease label as a metric for a

transcriptional shift (Fig. 4D, Supp. Fig. 6A,B) (see methods). In general, the signatures were

increasingly expressed across IFS and thus a transcriptional shift was apparent in every

study model (Area under the receiver operator curves, AUROCs > 0.5). The highest

differences were achieved in the MI (early and late) models compared to HFpEF and AngII

models which could indicate that the latter displayed a less pronounced transcriptional shift.

This might be explained by acute tissue injury after MI as opposed to the chronic stimuli of

AngII administration or HFpEF diet. In addition, a different hierarchy of IFS responsiveness

was observed, indicating that the transcriptional shift is partially state dependent: While the

highest transcriptional shifts in HFpEF were found in IFS 7 and 0, the other models

consistently displayed IFS 3 and 7 as the most responsive states (Figure 4D). Furthermore,

IFS 5 fibroblasts were poorly responsive in all study models and thus probably less relevant

for disease remodeling which might relate to their reported localization particularly at the

cardiac valves.

In summary, we found that fibroblasts from IFS that did not display compositional shifts,

nevertheless, contributed to the remodeling by upregulating respective disease signatures.

However, fibroblasts from IFS that do display compositional shifts displayed also a high

transcriptional shift, suggesting that both concepts are biologically closely related. We

concluded that IFS that displayed i) state marker overlap, ii) compositional increase and iii) a

high within-state-transcriptional-shift, represented the desired functional niches and thereby

the prioritized states in each HF model. Those states were IFS 0 in HFpEF, IFS 2, 3 and 6 in

early MI and IFS 3 in late MI and AngII. However, besides this prioritization, all states apart

from IFS 5 partook in cardiac remodeling.
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Decomposing disease signatures and state dependency

After characterizing transcriptional and compositional shifts in the HF models, we next aimed

to decompose disease signatures regarding their state dependency. To quantify this

dependency we calculated eta² values (see methods). In HFpEF fibroblasts, genes related to

the basement membrane (Lamc1, Lamb1, Col4a1, Nid1) yielded highest eta² values

suggesting a state dependent expression. Metabolism (Angptl4, Ech1, Man2a, Acaa2) and

fibrosis associated genes (Col1a1, Col1a2, Timp1, Mmp1) displayed rather state

independent expression patterns (Fig. 4E). This indicated that basement membrane

remodeling might be a functional specialization of fibroblasts, while the upregulation of

metabolic and protein stress together with non basement membrane ECM markers are a

more general gene program of fibroblasts in HFpEF.

To compare these expression patterns between HF models, we calculated eta² values for

state (indicative of state dependency) and group labels (indicative of an upregulation) for all

HF models separately (see methods).

First, we quantified the ratio of both eta² values to compare the general state dependency of

disease signatures between HF models (Fig. 4G). The two chronic models (HFpEF & AngII)

displayed a more state-dependent transcriptional shift compared to the MI (late & early)

fibroblasts (Wilcoxon test, p < e10), suggesting that the state dependent fibroblast response

might be a characteristic of chronic remodeling.

Second, we compared the state dependency of single genes between HF models (Fig. 4H).

State markers like Dkk3 (IFS 5) or Pi16 (IFS 4) displayed high state dependency and low

group dependency in all HF models, serving as examples for genes that are state markers

but without disease involvement. Angptl4 was exposed as a state independent marker,

specific for HFpEF. Postn displayed high group and state related variance in all HF models

except HFpEF, and thus represented a crucial marker with high disease association and

state dependency. Next, we focused on the core intersection of upregulated genes in all HF

models and assessed whether their regulation regarding state dependency might differ

between HF models (Fig 4H). We found that most genes were regulated state dependently.

Interestingly, Col1a1 and Col1a2 were expressed state-dependently in all HF models, except

HFpEF (Fig. 4G). Collagen I is a main ECM component and crucial for integrity and stiffness

of fibrotic tissue and it has been reported that matrifibrocytes in the heart are responsible for

the deposition of collagen I43. Our findings could indicate that fibrosis due to collagen I

deposition in the early HFpEF model might not be related to a state dependent task since

matrifibrocytes are not activated yet and the early fibrosis is achieved by a collagen

production by fibroblasts of all phenotypes.
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To demonstrate how the transcriptional shifts of the discussed key genes relate to IFS, we

quantified within state regulation of single genes (AUROCs) (Supp. Fig. 6C) and found that

Col1a1 and Col1a2 were upregulated in almost all IFS across models, showing highest

upregulation within IFS 3 in non HFpEF models. Col4a1 and Col4a2, although state

dependent expressed in all models, displayed a high transcriptional shift in most IFS in

HFpEF. This further elucidates that genes that are state-dependently expressed between

fibroblasts (such as collagen IV in IFS 0 or collagen I in IFS 3) are also upregulated by other

IFS but only in the respective disease context. In addition, Angptl4 displayed low state

dependent variance and a high transcriptional shift in all IFS in HFpEF, possibly rendering it

a key marker of state independent metabolic fibroblast stress.

Differential gene expression analysis can be confounded by background gene expression in

single-cell transcriptomics that could be associated with increased cell dissociation in

diseasesed tissue affecting contrast comparison. Other cell types in our single-cell data

could not be separated on the basis of the discussed disease signatures, suggesting that the

discussed transcriptional shifts were not confounded by background expression (Supp. Fig.

6D). Furthermore, the low correlation between HFpEF and other HF signatures (from Fig.

3B,C) caused other disease signatures to fail to separate HFpEF fibroblasts from control.

Corroborating fibroblast signatures in humans and mice

In the previous section we established the IFS prioritization by the different HF models. To

explore whether this IFS to HF phenotype association could be recovered in humans, we

curated myocardial bulk transcriptomic signatures acquired from HFrEF and HFpEF patients.

For HFrEF, we relied on a meta-analysis of a total of 653 patients with end stage heart

failure44 For HFpEF, due to limited by data availability, we re-analyzed data from 5 patients

that underwent coronary artery bypass graft surgery and met the echocardiographic and

diagnostic criteria for HFpEF45. We selected top upregulated genes from both bulk resources

and performed overrepresentation analysis with the fibroblast disease signatures (Fig. 4I, left

panel). The murine AngII and late MI signatures displayed a significant overlap with the

human HFrEF bulk reference, while murine HFpEF signatures were enriched in the human

HFpEF bulk reference (hypergeometric test, p<0.05). Next, we addressed whether this

intersection of disease signals between mouse and human could also be recovered for IFS

markers (Fig. 4I, right panel). We found that markers for the IFS 3 (matrifibrocytes) were

overrepresented in the human HFrEF signature, in agreement with recent reports from

human single-cell studies46,47. In the human HFpEF signature, only IFS 0 state markers were

overrepresented. This could possibly suggest a relevance of IFS 0 and its functional niche
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for human HFpEF. In general, the presented fibroblast signatures from AngII, MI and HFpEF,

as well as the IFS prioritizations of models are partially conserved across species (mouse to

human) as well as across data modalities (single-cell to bulk RNAseq).

Matrifibrocyte activation is a crucial event in cardiac fibrosis and we further explored the role

of this event in the murine HFpEF model. First, we compared the protein expression of

myofibroblast and matrifibrocyte markers, such as Cilp, in HFpEF with a MI model (Supp.

Fig. 7A). The matrifibrocyte marker Cilp (Cartilage Intermediate Layer Protein) is an ECM

protein abundant in articular cartilage and has been implicated in cardiac fibrosis before48,49.

Immunohistological staining of Cilp displayed moderate perivascular protein expression in

myocardial tissue of 10 weeks HFpEF compared to control mice, while strong expression

was observed after MI (Supp. Fig. 7B). Fibroblast activation protein (Fap) was introduced as

a marker for myofibroblast activation in cardiac fibrosis50,51. Fap stainings demonstrated that

its expression could only be observed in the MI fibrotic zone (Supp. Fig. 7B). We further

assessed Fap expression within the whole murine organism after 15 weeks of HFpEF diet by

PET-CT based 68Ga-FAPi-46 uptake (Supp. Fig. 7C), yielding no relevant expression

patterns across organs. This data indicated that based on myofibroblast and matrifibrocyte

markers (Fap and Cilp, respectively) the HFpEF model is not associated with a strong

response of these cell states.

Second, we explored myocardial gene expression after 10 and 15 weeks of HFpEF diet

(compared to seven weeks in the single-cell data only containing interstitial cells) (Supp. Fig.

8A). We contrasted both timepoints to control mice and found that the HFpEF, MI and AngII

disease signatures all enriched at 10 and 15 weeks (Supp. Fig. 8C). When comparing IFS

markers, we found that IFS 0, 1, 3, 5 and 7 enriched significantly (linear regression, p<0.05)

with IFS 3 yielding the highest enrichment score (Supp. Fig. 8D). This could indicate that a

matrifibrocyte activation as reflected by IFS 3 marker upregulation might occur later than

seven weeks in the HFpEF model. Nevertheless, IFS 0 and HFpEF disease signature

upregulation could be recovered as well, suggesting that the described cellular pathways are

partially coincidental events in the murine model over time.

Macrophage activation in single-cell transcriptomics and flow cytometry

The cellular and molecular pathways that lead to the activation of fibroblasts in HFpEF are

unknown. One possible role could be attributed to macrophages which have been discussed

as a crucial modulator of fibroblast activity in HFpEF12,52. Our single-cell data suggest

evidence for macrophage involvement (Fig. 1F), therefore we further investigated

macrophage phenotypes in the HFpEF model.
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We identified four cardiac macrophage and one Ccr2+/Ly6c+ monocyte cluster (Fig. 5A), the

latter expressed high levels of marker genes of inflammatory monocytes (Ly6c1 and Ccr2)

and fibrosis mediating genes (Fn1, Thbs1 and Vim). The macrophage cluster differed in

marker expression of monocyte-derived or resident macrophage related genes (Fig. 5B). To

estimate reliable macrophage compositions without a relevant sampling-error, which might

limit interpretation of our single-cell data due to low cell counts, we performed flow cytometry

experiments of the entire ventricular tissue. The flow cytometry data reveal a significantly

expanding proportion of pro-inflammatory Ly6Chigh monocytes/macrophages next to

decreased Ly6Clow macrophages. Gating macrophages according to their F4/80 and CD11b

expression showed a significantly reduced proportion of resident (not monocyte-derived)

macrophages, potentially driven by expanded monocyte-derived macrophages, which did

not reach statistical significance (Fig. 5C-D, Supp. Fig. 9A). Total counts of tissue

leukocytes, granulocytes and macrophages subsets did not differ significantly (Supp. Fig.

9B-E). To analyze whether the shift to pro-inflammatory macrophages is related to a splenic

activation as a major source for myeloid cells in acute tissue injury53,54, we performed flow

cytometry analysis of spleen and also peritoneal macrophages as potentially contributing

inflammatory compartments following HFpEF diet. Neither splenic nor peritoneal

macrophages showed a significant induction of pro-inflammatory subsets, such as Ly6Chigh

spleen or small peritoneal macrophages55 (Supp. Fig. 9F-J). Taken together, next to

expanding Cxcl2+, Ccr2+/H2-Ab+ and Lyve1+ macrophages in single-cell transcriptomics

(Supp. Fig. 9K), we observed local changes in HFpEF cardiac tissue towards a

pro-inflammatory monocyte/ macrophage composition, but not systemically in splenic and

peritoneal compartments.
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Figure 5. Macrophage engagement in HFpEF.
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A) UMAP embedding of reintegrated and reclustered macrophages from control and HFpEF mice. B)
Top marker gene expression for macrophage and monocyte subtypes. C) Representative flow
cytometry plots of Ly6Chigh/low monocytes and macrophages (MՓ) (upper row), monocyte-derived/
resident MՓ (center row) and MHCII+ MՓ in HFpEF vs control mice. Cells were gated on
CD45+Lin+CD11b+ cardiac cells. D) Quantification of flow cytometry results. Statistical analysis using
t-test, bar graphs indicate mean±SD, n= 6/group *p<0.05, ns= not significant. E) Ligand-Receptor
network based on LIANA, receptors in fibroblasts shown in red, blue depicts ligands from
macrophages. Node size visualizes effect size of upregulation in HFpEF mice, edge width visualizes
HFpEF specificity (see methods). F) Pearson correlation of top predicted ligands in HFpEF (from E) in
NicheNet (left panel). Top NicheNet ligands and their regulatory potential with fibroblast target genes
(right panel). G) Top ligands and their normalized expression visualized in UMAP embedding in
macrophages.

Cell-cell communication between Macrophages and Fibroblasts

The observed fibroblast activation and inflammatory response of macrophages lead us to

hypothesize about potential cellular communication between both cell types. We used

LIANA56 to score ligand-receptor (LR) interactions between macrophages and fibroblasts in

control and HFpEF mice (see methods, Supp. Fig. 10A). Top predicted LR pairs were

upregulated in HFpEF (Supp. Fig. 10B) and included Spp1 binding CD44 or Itgb1, and Tnf

binding Tnfsrsf21 (Fig. 5E). To identify possible links to the HFpEF fibroblast disease

signature we used NicheNet57 to assess the regulatory potential of predicted ligands (Fig. 5F,

left panel). Spp1 is predicted with regulatory potential affecting core fibrotic genes such as

Col1a2, Col3a1, Adamts2 and Timp1, while Tnf ligand might be associated with basement

membrane component Col4a1 and Angptl4 regulation (Fig. 5F, right panel). Expression

patterns of ligands (Fig. 5G) suggest that Cxcl2++ macrophages could communicate via

Spp1, Vegfa, Gdf15, and Plau ligands while Lyve1+ macrophages might secrete Gas6 and

Pdgfa ligands. Tnf and Vefgb ligands are expressed in both states. We assessed regulatory

patterns of these predicted LR pairs in the other HF models and found that Spp1 was

induced in HFpEF and early MI and thus constitute a mediator of the inflammatory axis that

is not involved in matrifibrocyte activation (Supp. Fig. 10D, E).

Circulating ANGPTL4 levels in HFpEF vs. non-HFpEF patients

Identifying traceable markers of fibroblast activation in humans could help to assess and

possibly target HFpEF remodeling at an early stage. We described the expression pattern of

Angptl4 as a state independent marker of fibroblast activation in murine HFpEF with little

expression in other interstitial cell types (Fig. 6A). We further confirmed A upregulation on

protein level and reported Ppar-ɑ and Ppar-ɣ to be active TFs as possible upstream

regulators, together with a regulatory potential via macrophage based TNFɑ. Angptl4 is
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functionally linked to inflammation, metabolism and fibrosis58. Thus, we hypothesized that

ANGPTL4 might be a promising candidate to be involved in HFpEF pathophysiology and

evaluated whether ANGPTL4 could serve as a biomarker detectable in human plasma.

We analyzed circulating levels of ANGPTL4 in 20 plasma samples of HFpEF and 20

non-HFpEF (control) patients. All patients were diagnosed for symptomatic atrial fibrillation

and screened for HFpEF by echocardiography, stress echocardiography, NT-proBNP, and

HFA-PEFF-score59. Plasma samples were analyzed by ELISA, which revealed significantly

higher circulating ANGPTL4 levels in HFpEF (Fig. 6B). ANGPTL4 levels increased

significantly in higher NYHA stages in all patients (Fig. 6C) and correlated significantly with

NT-proBNP, but not with high-sensitivity troponin T (Fig. 6D). In a subanalysis of the HFpEF

cohort, high ANGPTL4 levels related positively to counts of supraventricular extrasystoles in

holter ECGs and left atrial volume index (biplane, ml/m2), at 6- and 12-months follow-up,

respectively (Fig. 6D-E), but not at baseline indicating an association with disease

progression as it is known that left atrial dilatation and supraventricular arrhythmias are

associated with HFpEF severity59. Exclusively in HFpEF, but not in control patients, plasma

ANGPTL4 was associated with troponin T levels and global longitudinal strain (Fig. 6E). This

data suggested that plasma levels of ANGPTL4 might be mechanistically linked to disease

characteristics of human HFpEF and its therapeutic or prognostic potential should be further

evaluated.
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Figure 6. ANGPTL4 expression is increased in murine HFpEF hearts and in plasma of
HFpEF patients.
A) Angptl4 normalized gene expression among different cardiac interstitial cell types derived from the
scRNAseq data showing control (left columns) and HFpEF (right columns) separated per cell type. B)
Circulating levels of ANGPTL4 in human plasma samples of HFpEF and age matched controls
measured by sandwich ELISA. n=19/20, Mann-Whitney U test, *p<0.05. C) ANGPTL4 plasma levels
in relation to NYHA functional class of all recruited patients. ANOVA, p-value <0.05, n= 10/21/3 in
baseline and n= 11/18/5 in 12 months (12M) follow-up. D) Correlation of clinical parameters to
ANGPTL4 circulating levels in all patients (control and HFpEF) and E) as subanalysis only in HFpEF
patients using simple linear regression. p-val indicates p-value. hs= high sensitivity, LA= left atrial,
MFU= months follow-up, SVES= supraventricular extrasystoles. Plots in B,C display mean±SD.
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Discussion

In this study, we provided a first comprehensive characterization of interstitial cardiac

remodeling in a two-hit HFpEF mouse model on single-cell level. Deterioration of cardiac

diastolic function was accompanied by increased perivascular fibrosis in murine HFpEF

hearts. This phenotype was associated with a pro-fibrotic gene program in fibroblasts. By

integrating single-cell atlases of two additional murine HFrEF models, we identified

conserved fibroblast states across models and derived common and unique functional

characteristics of fibroblast activation in HFpEF compared to HFrEF. We corroborated

disease signatures in human transcriptome data, and suggested possible involvement of

macrophages in the activation of fibroblasts in HFpEF. Finally, we suggested that Angptl4,

which was elevated in HFpEF patients and related to disease characteristics and functional

capacity, could serve as a potential biomarker for disease severity in patients.

Fibroblast activation and cardiac fibrosis are hallmark features of ventricular remodeling in

heart failure (HF). However, disease specific molecular patterns of fibroblast function in

different types of HF are unknown. Here, we compared fibroblast activation in early HFpEF

(two-hit model), renin-angiotensin-aldosterone system activation-induced HFrEF (AngII

model) and early and later ischemic HFrEF (myocardial infarction model) to identify common

fibroblast phenotypes across models. Among fibroblasts, different phenotypes are assumed

to represent functional and/or spatial niches60,61. However, a consensus and nomenclature of

cell states has not been accomplished yet, in part due to shortcomings of the concept of cell

states attempting to i) categorize a continuity and ii) distinguish between a more transient

functional nature of a state or a cell differentiation60. By integrating multiple studies, we

provided a catalog of conserved cardiac fibroblast cell phenotypes in heart failure, possibly

representing the hallmarks of cardiac fibroblast function, including ECM production (IFS 0,

3), secretory function (IFS 1), immune system modulation (IFS 6,2,7), migration (IFS 2) and

tissue homeostasis (IFS 4, IFS 5).

Despite this functional diversity, ECM remodeling and collagen deposition was a common

fibroblast task across models, reflecting fibrosis as disease characteristic in each HF model.

In HFpEF fibroblasts, metabolic stress, heat shock proteins and glycosylation of proteins

were accompanied by upregulation of ECM components, in particular basement membrane

compounds. The basement membrane represents a highly active ECM that underlies many

cell types such as ECs and SMCs and provides a scaffold that connects cardiomyocytes to

the ECM62. Functionally, it plays an important role in angiogenesis, mechanotransduction

and cell differentiation63. The role of the basement membrane in HFpEF has not been
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sufficiently explored yet, but its modulation of laminins has been suggested to cause gene

expression changes in cardiomyocytes related to increased stiffening64. Interestingly, HFpEF

shared proinflammatory features like hypoxia and TNFα pathway activity with early MI

fibroblasts, while late MI and AngII fibroblast displayed highest TGFꞵ activity. In addition, we

observed an expansion of pro-inflammatory Ly6Chigh monocytes/macrophages in HFpEF

hearts and predicted a mutual activation occurs in the cross-talk with fibroblast via Spp1 and

TNFα. A potential therapeutic benefit of TNFα inhibitors in HFpEF has not been investigated

and deserves further investigation.

Single-cell transcriptomics enable a deeper characterization of cell type function in disease

by regarding the division of labor between cells and their functional or spatial niches65,66. We

demonstrated that fibroblast activation is a mixture of compositional and transcriptional shifts

in all HF models with the strongest transcriptional shift following MI, indicating that acute

tissue injury induces more population wide cell responses. Besides these programs,

prioritized states were identified in each model, suggested by high transcriptional shifts

co-occurring with compositional shifts in these states. We found that during early MI,

migratory myofibroblasts (IFS 2), matrifibrocytes (IFS 3) together with other proinflammatory

states (IFS 7 and 6) were prioritized, in contrast to AngII and late MI which mainly exerted

fibrosis via matrifibrocytes. The early HFpEF-associated fibrosis might differ from these

respective HFrEF-like remodeling processes, as we found little disease signals of

matrifibrocytes, but identified homeostatic IFS 0 fibroblasts and basement membrane

remodeling as key characteristics. Collagen I deposition is crucial for pro-fibrotic ECM

remodeling and has been described as a characteristic of matrifibrocyte activity. In early

HFpEF, the division of labor of collagen I synthesis was shifted from a state dependent task

of matrifibrocytes to a general fibroblast task. This could possibly be associated with the

extent of the observed cardiac fibrosis. A subsidiary role of matrifibrocyte activation in

HFpEF has been suggested before by the evidence of ECM production in the absence of

TGFβ signaling and presence of metabolic stimulation10. Our data further supported this

hypothesis by demonstrating that no relevant FAP expression was observed in HFpEF

hearts in contrast to the previously described upregulation in acute MI and AngII/PE50,67. The

translational potential of our findings to human disease is highlighted by the corroboration of

the described fibrotic signatures in myocardial transcriptomes of human HFrEF and HFpEF.

Therefore, it can be assumed that the established treatment options for HFrEF that improve

maladaptive cardiac fibrosis, such as inhibitors of the renin-angiotensin-aldosterone

system68,69, failed to obtain this therapeutic potential for HFpEF possibly due to distinctive

fibroblast activation patterns different from HFrEF with less implications of matrifibrocyte and

myofibroblast activation and higher impact of metabolic alterations.
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Regarding metabolic changes in HFpEF interstitial cells, we observed a strong induction of

Angptl4 as opposed to very decent RNA and protein levels in control hearts. Angptl4 is

linking metabolic, inflammatory, and fibrotic mechanisms by acting as a secreted

matricellular protein and by controlling metabolism by inhibiting intracellular lipoprotein lipase

in divergent tissues58. Induction of Angptl4 gene expression via Ppar-β/δ in cardiomyocytes,

triggered by dietary fatty acid administration, exhibited a protective effect against lipid

overload and subsequent fatty acid–induced oxidative stress70. Next to its important role as

metabolic regulator in cardiomyocytes, Angptl4 is expressed in mesenchymal stem cells and

might balance innate immune responses such as promoting anti-inflammatory macrophage

polarization following MI71. In non-cardiac endothelial cells hypoxia enhanced Angptl4

expression and full-length Angptl4 deposition was observed in the subendothelial

perivascular space of ischaemic hindlimbs and suggested to be originated from endothelial

cells, even though the authors did not consider other potential sources, like fibroblasts72,73.

Here, we suspected fibroblasts as the central interstitial cell type for Angptl4 secretion into

the ECM. However, the functional role of Angptl4 expression in cardiac fibroblasts remains

barely investigated. Our single-cell fibroblast data predicted an activation of transcription

factors Ppar-ɑ, Ppar-ɣ, Hif1ɑ and hypoxia pathways in murine HFpEF. In our small patient

collective with atrial fibrillation circulating ANGPTL4 was related to reduced functional

capacity, NT-proBNP and HFpEF disease progression by relating to left atrial dilation and

burden of supraventricular extrasystoles at follow-ups, but correlated positively with

global-longitudinal strain. In contrast, murine studies showed that recombinant Angptl4

attenuated Ang II-induced atrial fibrillation and atrial fibrosis via Sirt3, Ppar-ɑ, and Ppar-ɣ,

signaling pathways71,74. Next to conflicting murine reports about adverse effects, such as

reduced cardiac function in Angptl4 overexpressing mice, an association of high circulating

Angptl4 levels with the risk of coronary artery disease, atherosclerosis and type 2 diabetes in

humans was described71,74. While Angptl4 has been shown to play a major role in regulating

intracellular metabolic adaptation, its effects appear to be diverse and context-dependent,

with both beneficial and partially detrimental functions across different cell types and

compartments. Further research is needed to fully elucidate its mechanistic role in cardiac

fibroblasts and its impact on HFpEF disease traits and outcome, with the aim of identifying

novel therapeutic approaches based on the distinct pathomechanisms.

The main limitations of our study relate to the sample size of the single-cell experiment.

Subtle disease changes, such as gene programs occurring in more rare cell types or cell

states, were probably not detectable. At the same time, our statistical approach for

differential expression and composition analysis might result in a higher rate of false
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positives than more robust approaches that rely on higher sample size. However, multiple

confirmation experiments suggested that disease signatures were reproducible in other data.

Our study design focused on early changes of the murine HFpEF model. As a longer dietary

regimen might lead to further disease progression, we cannot provide insights into potential

dynamics of the reported cellular disease signatures on single-cell level. A potential role of

matrifibrocytes during later stages of the HFpEF model was suggested by upregulation of

matrifibrocyte markers in bulk transcriptomics. However, it is unclear which time point of the

murine model represents most closely human HFpEF. Corroboration in human bulk

transcriptome demonstrated that matrifibrocyte markers are upregulated in human HFrEF,

but not in HFpEF patients. Additional validation of these findings in larger human HFpEF

studies could not be accomplished, due to the small number of publicly available datasets of

gene and protein expression in human HFpEF.

Common fibrotic pathways are active across pathologies, organs and species and include

hallmark signaling mediated by TGFβ, integrins, cytokines and vasoactive substances75,

resulting in increased ECM production and reparative tissue replacement.

Pharmacomodulation of these major fibrotic axes has been mainly unsuccessful in the past,

partially because of their fundamental impact on global tissue homeostasis. As evidence on

more granular differences in fibrotic signaling, fibroblast phenotypic heterogeneity and

coordinated functionality is accumulating19,76, better targeted antifibrotic therapies might

come within reach77. To summarize, we provided a first description of adverse interstitial

remodeling in HFpEF at a single-cell level. Our work generated new insights into distinct and

common features of cardiac fibrosis in heart failure and might serve as a valuable resource

for the scientific community to identify disease specific treatment strategies for HFpEF in the

future.

Online Methods

Animals

All animal experiments were conducted in agreement with the animal welfare guidelines and

German national laws. All animal procedures and study protocols were authorized and

approved by the responsible authority (permit No. G-252/20 and G-121/21,

Regierungspräsidium Karlsruhe, Baden-Württemberg, Germany). C57BL/6N male mice,

obtained from Janvier Labs, were used at an age of 10 weeks. Mice were kept at 23 °C

ambient temperature and in 12 h light/dark cycle ﻿and had unrestricted access to food

(D12450B, control diet rodents 5% fat and D12492, rodent 60% high-fat diet for the HFpEF
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group, Ssniff) and water. HFpEF was induced as reported previously3. Briefly,

Nω-nitro-l-arginine methyl ester (L-NAME, 0.5 g/l, Sigma-Aldrich), adjusted to pH 7.4, was

supplied by the drinking water in light-protected bottles for the indicated time. Fig. 1A (left

panel) and Supp. Fig. 1B+D included n=11 controls (7, 10 and 15 week control diet), n= 8

7-week HFpEF, n= 9 10-week and n= 7 15-week HFpEF animals. Acute MI paraffin

embedded sections were derived from a C57BL/6N mouse 28 days after minimal-invasive

occlusion of the LAD, as described previously78. Infarct size of large MI can be gathered from

Supp. Fig. 8A.

﻿Echocardiographic measurements

Transthoracic echocardiography was performed on a VisualSonics Vevo 2100 system

equipped with MS400 transducer (Visual Sonics). Left ventricular (LV) parasternal long axis

and short axis views at the mid-papillary muscle level were acquired by induction (4 vol%)

and short maintenance (0.5–1.5 vol%) of isoflurane anesthesia. LV end-diastolic volume

(LVEDV), fractional area change (FAC), LV fractional shortening (FS) and LV ejection

fraction (LVEF) were obtained at a heart rate between 500-600 bpm. Parasternal long-axis

traces were used to calculate the global longitudinal strain software- and speckle-tracking

algorithm-based (VevoStrain software,Visual Sonics). Borders of the endocardium and

epicardium were subsequently traced before a semi-automated strain analysis was

performed by the software.

For diastolic function, mice were anesthetized under body temperature-controlled conditions

and maintenance (1.5-3 vol%) of isoflurane anesthesia aiming to keep the heart rate in the

range of 400–450 bpm. Apical four-chamber views were obtained and pulsed-wave and

tissue Doppler imaging at the level of the mitral valve performed to record the following

parameters: peak Doppler blood inflow velocity across the mitral valve during early (E) and

late diastole (A), isovolumic relaxation time (IVRT) and peak tissue Doppler of myocardial

relaxation velocity at the mitral valve annulus during early diastole (E’). Analysis was

performed with VisualSonics Vevo Lab software, using semi-automated LV tracing

measurements for LVEF and FS. All parameters were measured in at least three cycles, and

means were presented. GLS measurements could not be performed retrospectively in the

animals used for scRNASeq due to bad semi-automated tracing of the images.

Single-cell RNA sequencing

Sample preparation and sequencing of murine cardiac interstitial cells was performed

according to the detailed protocol published previously with only minor modifications79. In

brief, rapidly after sacrificing the animals by cervical dislocation, the still beating heart was

30

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.539983doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=6788216&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12715401&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10389377&pre=&suf=&sa=0
https://doi.org/10.1101/2023.05.09.539983
http://creativecommons.org/licenses/by-nc-nd/4.0/


directly placed in ice-cold HBSS where atria and large vessels were dissected. After

chopping the heart into small pieces, enzymatic digestion was initiated in two rounds of

15min duration at 37°C using collagenase type II (﻿Worthington Biochemical Corporation, ﻿#

LS004177). The single-cell suspension was subsequently passed through a 40 µm cell

strainer, washed and red blood cell lysis performed. Dead cells were removed by Dead Cell

Removal MicroBeads ﻿(Miltenyi Biotec, 130-090-101) binding to MACS ﻿LS columns (Miltenyi

Biotec, 130-042-401). Prior to loading the 10x platform, live nucleated cells (DRAQ5+,

propidium iodine-) were sorted using a FACSAriaTM IIu (BD) cell sorter. Following washing

and resuspending in PBS, cells were counted manually using trypan blue and a Neubauer

chamber. We aimed to load about 5,000 cells per lane on a Chromium Next GEM Chip (10x

Genomics, 1000127), that was placed into a 10X Chromium Controller (10X Genomics). The

cDNA output was amplified and library construction was performed according to the

manufacturer’s instructions using the Chromium Next GEM Single Cell 3' Kit v3.1 (10x

Genomics, 1000269) and Dual Index Kit TT Set A (10x Genomics, 1000215). Respective

library quantification and quality controls were performed using an Agilent 2100 Bioanalyzer

and in addition a Qubit HS Assay. Indexed libraries were equimolarly pooled resulting in two

sequencing runs (control1+HFpEF1; control2+HFpEF2) using a High Output kit v2.5

(Illumina, 20024907) and a NextSeq® 550 (Illumina) sequencer.

Data preprocessing and QC

The resulting single-cell RNA-seq outputs were processed using CellRanger provided by 10x

genomics. Count data was processed sample wise with the following filters: >300 Feature

numbers, <25% mitochondrial genes, <1% ribosomal genes and >500 RNA counts. Doublet

scores were calculated with the R-package scDblFinder80 and only predicted singlets were

kept. We further calculated a dissociation score by estimating expression of dissociation

associated gene expression81 with Seurat’s82 AddModuleScore function and we removed

cells above the 99% quantile. Data was log-normalized. Samples were clustered individually

by selecting the 3,000 highest variable genes with the FindVariableFeatures function from

the Seurat package. From the overlap of these lists, the top 3,000 genes were selected to

calculate principal components (PCs). Top 30 PC embeddings were adjusted with harmony

R-package, with samples as covariates. In the resulting integrated feature space the nearest

neighbor approach and graph based louvain algorithm implemented in Seurat was used to

cluster cells and stepwise test optimal cluster resolution (from 0.1 to 1.6 in 0.1 steps) and

computing silhouette widths. Celltype markers were calculated with the FindMarkers function

with default parameters (wilcoxon test) in Seurat and cell types were manually annotated

based on known canonical markers.
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We removed four distinct small clusters that were inconclusive for different reasons, i.e. high

expression of mitochondrial genes, expression of multiple cell type markers, consistently low

RNA and Feature counts. After removal the integration process was repeated and a final

atlas was created.

Composition analysis

We tested if cell type or state composition changes between groups are meaningful by

implementing a permutation approach to estimate a null distribution. For each individual cell,

we considered the sample it came from and the cell type label it was assigned. From this

table, we created 1000 permutations. For each permutation run we calculated the cell

proportions for each sample and calculated the mean proportion per cell per group (control,

HF), from which the difference in cell proportion was calculated as test statistic. By

calculating the proportion per sample and not per group, we simulated unequal cell numbers

in samples. The resulting 1000 random cell proportion differences are an estimate for a null

distribution (Supp. Fig. 3A). All distributions passed Shapiro-Wilk test for normality (p>0.05).

We calculated the area under the normal curve from the mean and standard deviation of the

null distribution to estimate the probability of observing the actual measured proportional

difference (Supp. Fig. 3B).

Sample distance

To prioritize cell types displaying disease signatures we calculated distances between cell

types per sample42. First, highly variable features were calculated per cell type with

FindVarFeature function from Seurat and the top 1000 features were selected for distance

calculation. For each cell type and sample, pseudobulk profiles were TMM normalized and

voom transformed with the edgeR and voom R-package and cosine distances were

calculated. We calculated median sample distances within groups and between groups to

assess the distance ratio. Cell types with distance ratio below 1 show higher sample

distances between groups than within groups and are candidates for differential gene

expression analysis.

In addition to sample distance, we applied the R-package Augur9 to train random forests to

classify the experimental group (control vs. heart failure) of individual cells. We used the

calculate_auc function with default parameters.

Differential gene expression analysis

To control for different absolute numbers of cells per sample we subsampled the total

number of cells to the lowest cell number in a sample. For these cells we calculated
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differentially expressed genes with FindMarker function from Seurat R-package. To

ameliorate sampling effects we repeated this subsampling process 5 times, and reported the

gene intersection of genes with Benjamini Hochberg corrected p-value <0.05 and absolute

log2FC >0.1. Upregulated genes were considered as the disease signature of the respective

HF model.

Cell state analysis

To identify cell states in macrophages, we subset each sample to macrophages and

reintegrated samples by following the same steps as described above. For fibroblasts, the

integrated atlas was used to calculate meaningful distances between cells via construction a

nearest neighbor graph. Cell states were then defined by the louvain clustering algorithm

implemented in Seurat’s FindCluster function, and optimal cluster resolution (0.1 to 1 in 0.1

steps) was determined by selecting the resolution with maximal silhouette width. Cellstate

interpretation was aided by processing cell states reported in19 from steady and perturbed

state cell markers.

Functional Analysis

We performed functional analysis of top 100 cell state markers and fibrotic signatures.

Overrepresentation analysis was performed with enrichR, with GO-molecular function and

biological function terms. Additionally, functional gene sets were acquired from MSIG DB

and subjected to hypergeometric testing. Pathway analysis was performed with PROGENy83.

To calculate cell state pathway activities, we summed up cells per cell state to create pseudo

bulk profiles, which were analyzed for pathway activities. For the integrated atlas we relied

on running pathway analysis per cell to not sum uncorrected counts to pseudobulks. For

study comparison we used log fold change as an effect size reported per study to calculate

progeny scores. We used TF regulons obtained from DoRoThEA84,85 and the decoupleR84,85

R-package to estimate TF activities. We used univariate linear models to estimate TF activity

on logFC vectors from different studies. Finally, we calculated module scores which are

weighted expression means for genesets with the AddModuleScore function in Seurat.

Study Integration

Two additional 10x Genomics scRNAseq datasets were analyzed by downloading raw

FASTQ files and processing via cell ranger pipeline as described above. Sample integration

was performed via canonical correlation analysis as implemented in Seurat. Unsupervised

clustering and cluster marker assessment was used to identify fibroblasts in each study,

which were subset to perform study integration. We integrated fibroblast cell data from three
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datasets via calculating highly variable features in each dataset, using 3000 overlapping

features of all datasets. We used Harmony with study and sample ID as covariates for

dataset integration. Downstream analysis was performed as described above. Integrated

data was reclustered to identify cell states and markers for each cluster were calculated

based on log transformed data. To evaluate integration performance we ensured that each

study contributed cells to each cluster (Supp. Fig. 6). To quantify batch effects from different

studies, samples and experimental groups, we calculated a batch mixing score based on

average silhouette width as proposed previously86. A score of 1 represents a balanced

integration while 0 represents strong batch effect conservation. The Integrated fibroblasts

atlas yielded a batch score of ~0.99 for study labels, ~1 for group labels and ~0.97 for

sample labels. To avoid study batch effects in differential expression analysis, we calculated

differentially expressed genes between control and disease models per study. We performed

downsampling to equalize cell numbers per sample as described earlier. We collected genes

that appeared in at least 4 of 5 downsampling runs by passing Benjamini Hochberg adjusted

wilcoxon p-value <0.05.

Assessing state dependency of transcriptional shifts

To estimate transcriptional shifts of disease signatures, we estimated how well these

signatures separate healthy and disease cells within an assigned cell state. We first

calculated gene set scores for each cell of the respective HF model via the AddModuleScore

function from Seurat R-package (Supp. Fig. 6A). The difference of these gene set scores

was then assessed by calculating the area under the receiver operator curve (AUROC)

(Supp. Fig. 6B) as a metric for the transcriptional shift within a state.

For a single gene being expressed in a state dependent manner we expected that

expression levels would vary between states. To quantify this dependency, we fit ANOVA

models for each gene of the disease signatures by modeling their expression value by IFS

category (gene X ~ IFS) and extracted the explained variance of the model (eta² values). To

compare these with disease related variance we fit ANOVA models for the same genes but

with group labels (gene X ~ group). The ANOVAs were calculated for all HF models

separately.

Cell-cell communication

We used two approaches to estimate cell-cell communication. First, we performed

ligand-receptor (LR) analysis with the method aggregation tool LIANA56. Second, we used

NichNet57 to connect ligands with receiver cell gene expression57. To lower the false positive

rate of LR pairs, we only analyzed macrophages and fibroblasts as both cell types displayed
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the strongest disease response. We ran LIANA on control and HFpEF mice separately.

Within each group we aggregated ranked LR pairs from 6 LR tools with the aggregate_l

function in LIANA. We assumed that an LR pair is specific for HFpEF if it is ranked low in

control and high in HFpEF mice. To quantify this we calculated a HFpEF specificity score (S)

by: .𝑆 =  (1 −  𝑅𝑎𝑛𝑘𝐶𝑇) *  𝑅𝑎𝑛𝑘𝐻𝐹

We selected top 30 LR pairs based on S and filtered for ligands being expressed by more

than 0.15 percent in HFpEF sender cells and to be upregulated >0.1 log2FC; receptors were

filtered for expression percentage >0.15 in HFpEF receiver cells (Supp. Fig. 9E). The top

ligands from macrophages were used as input for NicheNet to model regulatory potential for

the HFpEF disease signature. Since the prior knowledge graph in NicheNet is undirected,

directional regulation of target genes cannot be modeled. For this reason we used up- and

downregulated genes in HFpEF fibroblasts as the target cell gene set.

Human Bulk RNA-seq

For human HFpEF bulk analysis, raw count data was downloaded from European nucleotide

archive, accession number E-MTAB-7454. We filtered genes by a minimum of two RNA

counts in at least 30% of samples per experimental group. We TMM normalized samples

and voom transformed for variance stabilization and performed DEA with limma and edgeR

R-packages. HFrEF bulk data from the Reference of the Heart Failure Transcriptome

(ReHeaT)44 is available at: https://zenodo.org/record/3797044#.XsQPMy2B2u5. We selected

the top 500 genes for overrepresentation analysis.

Murine bulk RNA-seq of different timepoints from HFpEF hearts

Mice of the HFpEF model were used after 10 (n=4) and 15 (n=4) weeks of diet protocol and

compared to mice that received control diet (n=3). After sacrificing the animals by cervical

dislocation, the still beating heart was directly placed in ice-cold HBSS where atria and large

vessels were dissected and immediately placed into liquid nitrogen and stored at -80°. The

tissue was homogenized and total RNA isolated using TRIzol (Thermo Fischer Scientific).

Quantification and quality controls were performed by DS-11 spectrophotometer (DeNovix)

and 5300 Fragment Analyzer System (Agilent) and samples used with RNA Integrity Number

(RIN)>8 (mean RIN 9.2 ± 0.5 SD). Library construction and sequencing was performed by

the GeneCore Facility at EMBL Heidelberg. Briefly, libraries were prepared from 1 µg total

RNA using respective Illumina mRNA Kits according to the manufacturer’s instructions.

Samples were multiplexed and single-end sequencing performed on an NextSeq 500

(Illumina). Raw BCL data were demultiplexed and then converted to FASTQ files. Reads

were aligned via ArchS4 pipeline implemented in BioJupies87. We filtered lowly expressed

35

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.539983doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=10801062&pre=&suf=&sa=0
https://zenodo.org/record/3797044#.XsQPMy2B2u5
https://sciwheel.com/work/citation?ids=6032898&pre=&suf=&sa=0
https://doi.org/10.1101/2023.05.09.539983
http://creativecommons.org/licenses/by-nc-nd/4.0/


genes and normalized samples using the trimmed mean of M-values (edgeR 88) and

subsequent variance-stabilizing transformation (limma voom) and performed differential

expression analysis (limma89). Resulting t-values were used for enrichment analysis via

run_ulm function from decoupleR84,85 R-package.

Flow cytometry

In order to obtain a single-cell suspension, the removed hearts were minced and digested in

450 U/mL collagenase I, 125 U/mL collagenase XI, 60 U/mL DNase I, and 60 U/mL

hyaluronidase (MilliporeSigma) for 1 hour at 37°C under agitation. Cells were washed,

counted and diluted to 100µl per 10x106 cells prior staining. The whole cardiac sample was

further proceeded for and passed through multiparameter flow cytometry analysis. An

additional control sample was used for unstained and fluorescence-minus-one gating

controls. Spleens were passed through a 40µm cell strainer and washed prior to further

staining. Peritoneal macrophages were collected directly after sacrificing the animal by

peritoneal lavage performed by injecting 5ml of ice-cold PBS with 3% FCS using a 27G

needle. After an abdominal massage for 30sec the fluid was collected by a plastic pipette

through a small incision of the abdominal wall. Cells were kept on ice, washed and

resuspended for 1:100 antibody staining. For all samples, Fc receptor blocking was

performed for 10min prior to fluorescent antibody staining using anti-CD45-PerCP-Cy5.5 (BD

Biosciences, clone 30-F11), anti-CD11b-APC-Cy7 (BD Biosciences, clone M1/70),

anti-Ly6C-BV605 (Biolegend, clone AL-21), anti-F4/80-PE-Cy7 (Biolegend, clone BM8),

anti-MHCII-BV421 (BD Biosciences, clone M5/114.15.2), anti-CCR2-APC (R&D Systems,

clone #475301). For lineage exclusion PE-conjugated anti-Ter119 (BD Biosciences, clone

TER-119), anti-NKT (BD Biosciences, clone U5A2-13), anti-B220 (BD Biosciences, clone

RA3-6B2), anti-CD49b (BD Biosciences, clone DX5), anti-90.2 (BD Biosciences, clone

53-2.1) and anti-Ly6G (BD Biosciences, clone 1A8) antibodies were used. Gating strategies

and representative plots are presented in the supplementary figures (Supp. Fig. 11). Flow

cytometry was performed on a FACSCelesta (BD) and data analysis conducted by FlowJo

(BD) software.

Histological analysis

Harvested hearts were rinsed in PBS, and fixed for 7 days in 10% buffered formalin at room

temperature. Hearts were subsequently dehydrated, paraffinized, and sectioned (5 μm).

Cardiac fibrosis was assessed by using the cardiac muscle Picrosirius-Red Stain Kit (abcam,

ab245887) according to the manufacturer's instructions. Immunohistochemistry (IHC) was

performed using heat-mediated antigen retrieval in sodium-citrate buffer at pH 6.0 and an

anti-rabbit secondary antibody containing HRP/DAB Detection IHC Kit (abcam, ab64261)
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according to the manufacturer's instructions. The following primary antibodies were used:

anti-ANGPTL4 (#710186, ThermoFisher Scientific, clone 1HCLC), anti-CILP (CAU24345,

Biomatik), anti-FAP (ab207178, Abcam). Slides were mounted and imaged using a

brightfield (SP2, Leica) and fluorescence microscope (Axio Observer, Zeiss).

Immunofluorescence

For immunofluorescence staining, in TissueTek embedded and frozen heart-derived cryostat

sections were fixed in 3,7% PFA, permeabilized for 20min, blocked with 5% BSA for 1h, and

stained overnight with anti-CollagenIV (1:200, ab6586, Abcam) and the following day for one

hour with goat anti-rabbit AlexaFluor594 (1:400, ab150080, abcam) secondary antibody.

Nuclei were stained with a DAPI-containing mounting medium, covered and images

captured using a Axio Observer (Zeiss) fluorescence microscope.

FAPI PET-CT

We performed murine PET-CT imaging with 68Ga-FAPI-46 as described previously90. Briefly,

the radiotracer (ca. 13MBq), produced and approved for patient application, was injected via

the tail vein of isoflurane anesthetized mice and 10min static images recorded using a

small-animal PET/CT scanner (Inveon; Siemens).

HFpEF patient population

The study protocol is in accordance with the declaration of Helsinki and has been approved

by the local ethics committee of the University Hospital Heidelberg and was registered on

ClinicalTrials.gov (Identifier Number: NCT04317911). Written informed consent was obtained

prior to participation. Details, inclusion criteria, patient characteristics and further methods

were described previously59. Briefly, 102 patients, admitted for atrial fibrillation cryoablation

having an EF > 50%, were enrolled prospectively and screened for HFpEF by

echocardiography, stress-echocardiography, 6-minute-walking-test and blood biomarker

tests. 20 patients fulfilling the current HFpEF diagnosis criteria of the Heart Failure

Association (HFA) of the ESC91 were compared with 20 propensity score matched controls

derived from the enrolled non-HFpEF atrial fibrillation patients. Clinical follow-up was

performed after 6 and 12 months including baseline examinations and 24h holter ECG.

Human ANGPTL4 plasma ELISA

Peripheral venous blood was drawn from the right femoral veins during vessel access prior

to percutaneous pulmonary vein isolation and plasma aliquots stored at -80°C. A human

ANGPTL4 solid-phase sandwich ELISA kit (#EHANGPTL4, ThermoFisher) was used
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according to the provided manufacturer’s protocol. Samples were analyzed in doublets, 100

µL 1:2 diluted plasma incubated overnight under agitation at 4°C. Absorbance was detected

at 450 nm using an EnSpire (PerkinElmer Inc) plate reader. The standard curve and final

protein concentrations were calculated using Prism 9 (GraphPad). ROUT test for outlier

identification was performed (Q=0.1%) and one outlier in the HFpEF group was excluded,

which exhibited a lipemic plasma sample.
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