

1 **Commensal lifestyle regulated by a negative feedback loop between *Arabidopsis***
2 **ROS and the bacterial T2SS**

3
4 Frederickson Entila^{1,2}, Xiaowei Han^{1,3,4}, Akira Mine^{5,6}, Paul Schulze-Lefert², Kenichi
5 Tsuda^{1,2,3,4*}

6
7 ¹National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei
8 Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong
9 Agricultural University, Wuhan 430070, China.

10 ²Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding
11 Research, Carl-von-Linne-Weg 10, Cologne 50829, Germany

12 ³Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan
13 430070, China.

14 ⁴Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome
15 Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics
16 Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong
17 518120, China

18 ⁵JST PRESTO, Kawaguchi-shi, Saitama 332-0012, Japan

19 ⁶Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto
20 606-8502, Japan

21
22 *To whom correspondence may be addressed. Email: tsuda@mail.hzau.edu.cn

23

24

25 **Abstract**

26 Despite the plant health-promoting effects of plant microbiota, these assemblages also
27 comprise potentially detrimental microbes. How plant immunity controls its microbiota to
28 promote plant health under these conditions remains largely unknown. We found that
29 commensal bacteria isolated from healthy *Arabidopsis* plants trigger diverse patterns of
30 reactive oxygen species (ROS) production via the NADPH oxidase RBOHD that
31 selectively inhibited specific commensals, notably *Xanthomonas* L148. Through random
32 mutagenesis, we found that L148 *gspE*, encoding a type II secretion system (T2SS)
33 component, is required for the damaging effects of *Xanthomonas* L148 on *rbohD* mutant
34 plants. *In planta* bacterial transcriptomics revealed that RBOHD suppresses most T2SS
35 gene expression including *gspE*. L148 colonization protected plants against a bacterial
36 pathogen, when *gspE* was inhibited by ROS or mutation. Thus, a negative feedback loop
37 between *Arabidopsis* ROS and the bacterial T2SS tames a potentially detrimental leaf
38 commensal and turns it into a microbe beneficial to the host.

39

40 **Introduction**

41 In nature, plants host diverse microbes called the plant microbiota¹. While the plant
42 microbiota collectively contributes to plant health, they comprise microorganisms ranging
43 from mutualistic to commensal, and pathogenic microbes². The property of microbes as
44 mutualistic, commensal, and pathogenic depends on the host and environmental
45 condition³⁻⁴. Thus, the plant microbiota is not simply a collection of beneficial microbes,
46 but various factors affect the property of microbes within the plant microbiota, which
47 consequently determines plant health.

48 Upon recognition of microbial molecules, plants activate a battery of immune
49 responses⁵. In the first layer of immunity, known as pattern-triggered immunity (PTI),
50 plasma membrane-localized pattern recognition receptors (PRRs) recognize microbe-
51 associated molecular patterns (MAMPs). For instance, the PRR FLAGELLIN SENSING
52 2 (FLS2) and EF-TU RECEPTOR (EFR) sense the bacteria-derived oligopeptides flg22
53 and elf18, respectively, in *Arabidopsis thaliana*^{6,7}. BRI1-ASSOCIATED RECEPTOR
54 KINASE 1 (BAK1) and its close homolog BAK1-LIKE 1 (BKK1) function as co-receptors
55 for LRR-RLK-type PRRs such as FLS2 and EFR⁸. The LysM-RLK CHITIN ELICITOR
56 RECEPTOR KINASE 1 (CERK1) is an essential co-receptor for fungal chitin and bacterial
57 peptidoglycans⁹. Activated PRRs trigger various immune responses such as the
58 production of reactive oxygen species (ROS), calcium influx, MAP kinase activation,
59 transcriptional reprogramming, and the production of defense phytohormones and
60 specialized metabolites¹⁰. PTI contributes not only to pathogen resistance but also to the
61 maintenance of healthy microbiota as evidenced by dysbiosis and disease symptoms
62 observed on leaves of *A. thaliana* genotypes with severely impaired PTI responses^{11,12}.
63 However, the molecular mechanism by which PTI-associated immune responses regulate
64 microbial pathogens and maintain healthy microbiota remains unclear.

65 One prominent PTI output involves activation of the plasma membrane-localized
66 NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), which
67 produces the ROS O₂⁻ in the extracellular space, which can then be readily converted to
68 H₂O₂ via superoxide dismutase in the apoplast¹³. Extracellular ROS can be sensed by a
69 plasma membrane-localized sensor and can be translocated into the cell to mediate plant
70 immune responses¹⁴. Extracellular ROS can also directly exert cellular toxicity on
71 microbes¹⁵. ROS functions in regulating not only resistance against pathogens, but also
72 the composition and functions of the plant microbiota. For instance, RBOHD-mediated
73 ROS production inhibits Pseudomonads in the *A. thaliana* rhizosphere¹⁶. ROS also
74 prohibits dysbiosis in *A. thaliana* leaves by suppressing *Xanthomonas*¹⁷. Plant RBOHD-
75 mediated ROS induces the production of the phytohormone auxin in the beneficial
76 bacterium *Bacillus velezensis* and promotes root colonization in *A. thaliana*¹⁸. These
77 studies exemplify the importance of RBOHD-mediated ROS production in the regulation
78 of plant microbiota. However, how ROS specifically regulates microbial metabolism and
79 growth remains unknown. Furthermore, while ROS exhibits general cell toxicity to

80 organisms, not all microbes are sensitive to plant-produced ROS. For instance, the
81 growth of the bacterial pathogen *Pseudomonas syringae* pv. *tomato* DC3000 (*Pto*) was
82 not affected by mutation in *RBOHD* in *A. thaliana*¹⁹. This indicates that ROS exerts
83 differential actions on microbes, but the basis for this selectivity needs to be explored.

84 Secretion systems are crucial for bacterial pathogens to efficiently infect the host
85 plant through the secretion of effector proteins, among which the type III secretion system
86 (T3SS) has been well documented as the essential pathogenicity component of many
87 phytopathogenic bacteria²⁰. The key function of T3SS is to introduce type III effectors
88 (T3Es) directly into the host cell, thereby suppressing plant immunity and promoting
89 virulence²⁰. Some nitrogen-fixing rhizobacteria also utilize the T3SS to promote symbiosis
90 with their legume host²¹⁻²². A number of T3Es have been identified to be recognized by
91 the intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs),
92 activating effector-triggered immunity²³. These indicate the paramount significance of the
93 T3SS for the interaction between host and bacteria. In addition to the T3SS, the type II
94 secretion system (T2SS) has been shown to be necessary for the pathogenesis of many
95 phytopathogenic bacteria and mainly functions to secrete enzymes to degrade host
96 barriers and promote virulence²⁰. Interestingly, the root commensal *Dyella japonica* MF79
97 requires the T2SS components *gspD* and *gspE* to release immune-suppressive factors
98 that help the root colonization of a non-immune suppressive commensal in *A. thaliana*²⁴.
99 However, whether and how plant immunity controls T2SS activity of its microbiota remains
100 unknown.

101 In this study, we investigated the impact of *A. thaliana* immune responses to
102 commensal bacteria isolated from healthy *A. thaliana* plants with a focus on RBOHD-
103 mediated ROS. Using a bacterial random mutagenesis screen and *in planta* bacterial
104 transcriptomics, we revealed that RBOHD-mediated ROS directly suppresses the T2SS
105 of a potentially harmful *Xanthomonas* L148, thereby converting *Xanthomonas* L148 into
106 a commensal. Moreover, this “tamed” *Xanthomonas* increased host resistance against
107 the bacterial pathogen *Pto*.

108

109

110 **Results**

111 **Different commensal bacteria trigger diverse ROS production patterns via distinct 112 mechanisms**

113 We investigated variations in immune responses triggered by the colonization of different
114 commensal bacteria in *A. thaliana* leaves with ROS production as the readout. First, we
115 measured ROS production in leaves of *fls2*, *efr*, *cerk1*, *fls2 efr cerk1* (*fec*), *bak1 bkk1*
116 *cerk1* (*bbc*), and *rbohD* mutants as well as Col-0 wild-type plants in response to the
117 MAMPs *flg22*, *elf18*, and chitin heptamer. ROS production was dependent on the
118 corresponding (co)receptor and *RBOHD*, indicating the suitability of our experimental
119 system (Figure 1a and Supplementary Figure S1). Next, we measured ROS production
120 in leaves of the same mutant panel in response to taxonomically diverse 20 live and heat-
121 killed commensal bacterial strains that were previously isolated from healthy *A. thaliana*

122 leaves and roots as well as soil²⁵ and that were used for plant-bacterial co-
123 transcriptomics²⁶ (Figure 1d). These commensal bacteria triggered diverse ROS
124 production patterns. For instance, both live and heat-killed *Pseudomonas* L127 triggered
125 ROS production with the heat-killed bacteria eliciting stronger ROS production, which is
126 a general trend for all commensal bacterial strains (Figure 1c and Supplementary Figure
127 S2). On the other hand, only heat-killed but not live *Burkholderia* L177 triggered ROS
128 production, suggesting that L177 possesses MAMP(s) that are potentially recognized by
129 plants but live L177 does not expose such MAMPs. Further, neither the live nor the heat-
130 killed *Flavobacterium* R935 triggered ROS production. We observed neither obvious
131 phylogenetic signatures predictive for the capability to induce ROS, nor of the tissue of
132 origin from which these commensals were isolated. We also observed different
133 dependencies of commensal bacteria-induced ROS on the MAMP (co)receptors. For
134 instance, ROS production by both live and heat-killed *Exiguobacterium* L187 was
135 dependent on *EFR* but not *FLS2* and *CERK1*. This *EFR* dependency for commensal
136 bacteria-induced ROS production was observed for other strains, but we detected no or
137 only weak effects of mutations in *FLS2* and *CERK1*. These results suggest that the
138 recognition of EF-Tu-derived peptides via *EFR* is the primary mechanism for ROS
139 production by commensal bacteria in *A. thaliana* leaves. However, there were commensal
140 bacteria such as *Pseudomonas* L127 that stimulated ROS in *fec* and *bbc* mutant plants
141 (Supplementary Figure S2), indicating that MAMPs other than flg22, elf18, and
142 peptidoglycans are responsible for ROS production induced by commensal bacteria in
143 some cases.

144

145 **Plant-derived ROS differentially affects the colonization of commensal bacteria**
146 We found that ROS production by all live and heat-killed commensal bacteria was
147 completely dependent on *RBOHD*, indicating that RBOHD is mainly responsible for plant
148 ROS production triggered by these commensal bacteria. Plant-produced ROS via
149 RBOHD can affect the colonization of commensal bacteria. We then determined total and
150 endophytic bacterial titers of different commensals in leaves of Col-0 wild-type and *rbohD*
151 as well as *fls2*, *efr*, *fec*, and *bbc* mutant plants. We grew plants on agar plates for 14 days
152 and flood-inoculated with individual commensal bacteria followed by the determination of
153 bacterial titer (Figure 1b, Supplementary Figure S3). To our surprise, while we did observe
154 increased colonization of some commensal bacteria in some of the MAMP (co)receptor
155 mutants compared with Col-0 wild-type plants, we were largely unable to detect any
156 impact of the *rbohD* mutation on either total or endophytic commensal colonization
157 (Figure 1d and Supplementary Figure S3). Also, there is no significant relationship
158 between the ROS immunogenicity and the colonization capacity of the commensal
159 bacteria (Supplementary Figure S4). These findings suggest that *Arabidopsis* recognizes
160 commensal bacteria and produces ROS that does not have a detectable impact on most
161 commensal bacterial colonization, at least in mono-associations. By contrast, both total
162 and endophytic colonization of *Xanthomonas* L148 was dramatically increased in *rbohD*
163 mutant compared with Col-0 wild-type plants (Figure 1d and Supplementary Figure S3),
164 suggesting that RBOHD-mediated ROS suppresses *Xanthomonas* L148 colonization,
165 consistent with a recent finding¹⁷.

166

167 ***Xanthomonas* L148 is detrimental to *rbohD* mutant but not Col-0 wild-type plants**

168 Leaf colonization of *rbohD* mutant plants with live *Xanthomonas* L148 led to host mortality
169 within 5 days post inoculation (dpi), in contrast to asymptomatic wild-type Col-0 plants
170 (Figure 2a). In an orthogonal system, we infiltrated leaves with *Xanthomonas* L148 and
171 observed disease-like symptoms only in *rbohD* after 3 dpi (Figure 2b-d). As *Xanthomonas*
172 L148 activated ROS burst in Col-0 leaves, but not in *rbohD*, *Xanthomonas* L148
173 pathogenicity might be suppressed by the ROS pathway (Figure 2e). Furthermore,
174 *Xanthomonas* L148 not only persisted on the leaf surface but aggressively colonized the
175 apoplast of *rbohD* mutants compared with Col-0 at 3 dpi (Figure 2f). Together,
176 *Xanthomonas* L148 is potentially pathogenic and its deleterious effect depends on the
177 absence of *RBOHD*.

178

179 ***Xanthomonas* L148 is largely insensitive to ROS *in vitro***

180 Due to their highly reactive nature, ROS can oxidize bacterial components, which can
181 lead to extensive cellular damage. This might explain why *Xanthomonas* L148 is
182 pathogenic to *rbohD* mutant but not to Col-0 wild-type plants. We tested the sensitivity of
183 *Xanthomonas* L148 to ROS compounds by instantaneous *in vitro* exposure to H₂O₂ or O₂⁻
184 ¹. To our surprise, *Xanthomonas* L148 seemed to tolerate acute treatments with ROS and
185 retained viability up to ROS concentrations of 1 mM (Supplementary Figure S5a-b).
186 Similar findings were obtained when a ROS-generating compound, paraquat (PQ,
187 Supplementary Figure S5c), was used. It can be argued that the adverse effects of ROS
188 *in vitro* can only be observed upon continuous ROS treatment. However, we did not
189 observe any significant effects on the growth rates of *Xanthomonas* L148 upon chronic
190 exposure to PQ (Supplementary Figure S5d). This suggests that the rampant proliferation
191 of *Xanthomonas* L148 in *rbohD* plants is not due to the direct microbiocidal effects of ROS
192 but other mechanisms.

193

194 ***Xanthomonas* L148 pathogenic potential is partially suppressed by the presence 195 of other leaf microbiota members**

196 *Xanthomonas* L148 was isolated from macroscopically healthy *A. thaliana* plants grown
197 in their natural habitat, indicating that it is a constituent of the native leaf microbiota of *A.*
198 *thaliana*. While *Xanthomonas* L148 was detrimental to *rbohD* mutant plants in a mono-
199 association condition, it can be postulated that in a microbial community setting,
200 *Xanthomonas* L148 is disarmed and *rbohD* plants become asymptomatic. To test this, we
201 constructed a synthetic bacterial community which consists of nine leaf-derived isolates
202 that were found to be robust leaf colonizers and cover the major phyla of the native
203 bacterial microbiota of leaves²⁷⁻²⁹, which we refer to as LeafSC (Supplementary Figure
204 S6b, please see Supplementary Table S2 for the strain details). We also assessed the
205 dose-dependency of the disease onset by using different proportions of *Xanthomonas*
206 L148 in relation to the entire LeafSC, with L148_{P1} as a dose equivalent to that of each
207 synthetic community member (*Xanthomonas* L148/LeafSC, 1:9), while L148_{P9} is a
208 dosage that is equal to the entire bacterial load of the synthetic community (*Xanthomonas*
209 L148/LeafSC, 9:9). Flood inoculation of plants with the LeafSC did not result in any
210 observable disease symptoms (Supplementary Figure S6a and S6c). As expected,
211 inoculation with *Xanthomonas* L148 resulted in substantial mortality of *rbohD* plants
212 compared with Col-0 wild-type plants. The killing activity of *Xanthomonas* L148 was
213 somewhat reduced in *rbohD* plants when other microbiota strains were present, but this

214 counter effect was overcome when a higher dose of *Xanthomonas* L148 was used
215 (Supplementary Figure S6a and S6c). These findings imply that a functional leaf
216 microbiota contributes to the partial mitigation of disease symptoms caused by
217 *Xanthomonas* L148 in *rbohD* plants, possibly through niche occupancy, resource
218 competition, or antibiosis.

219

220 ***Xanthomonas* L148::Tn5 mutant screening unveils genetic determinants of its 221 pathogenic potential**

222 *Xanthomonas* L148 is a conditional pathogen and its virulence is unlocked in the absence
223 of *RBOHD* in the plant host. We aimed to identify the bacterial genetic determinants of
224 this trait through a genome-wide mutant screening. We developed and optimized a robust
225 high-throughput screening protocol (Figure 3a, Supplementary Figure S7a) and
226 generated and validated a *Xanthomonas* L148 Tn5 mutant library (Supplementary Figure
227 S7b-d). Using the high-throughput protocol, this Tn5 mutant library was phenotyped for
228 the loss-of-*rbohD* mortality. From 6,862 transposon insertional mutants, 214 candidate
229 strains consistently failed to exert pathogenicity on *rbohD* mutant plants (Figure 3b, See
230 Supplementary Dataset S1 for the complete list of the candidate mutant strains). Most of
231 the 214 strains did not exhibit significant defects in their *in vitro* growth parameters (growth
232 rate, biofilm formation, and motility) in rich TSB medium or minimal XVM2 medium (Figure
233 3c). We found that out of the 214 strains, only 124 had transposon insertions in genes
234 with functional annotations. These strains were retested in a square plate agar format,
235 and 18 bacterial mutants exhibited consistent loss-of-*rbohD* mortality. Out of these 18
236 strains, three showed very strong phenotypes, namely *gspE*::Tn5, *alaA*::Tn5, and
237 *rpfF*::Tn5 (Figure 3d-f). The candidate gene *gspE* encodes a core ATPase component of
238 the T2SS; *alaA* encodes an alanine-synthesizing transaminase involved in amino acid
239 metabolism; and *rpfF* encodes a synthase for diffusible signaling factor (DSF), a
240 constituent of the quorum sensing machinery in bacteria (Figure 3d).

241

242 **T2SS, amino acid metabolism, and quorum sensing underpin the conditional 243 pathogenicity of *Xanthomonas* L148**

244 We re-evaluated the candidate mutant strains using leaf-infiltration assays. The results
245 showed that the disease progression required live *Xanthomonas* L148 as heat-killed
246 bacteria did not elicit the same response (Figure 4a). Consistent with the previous
247 systems (high-throughput and square plate set-ups), the mutant strains lost their capacity
248 to cause disease symptoms on *rbohD* mutant plants (Figure 4a). As shown before, wild-
249 type *Xanthomonas* L148 exhibited increased colonization in both total and endophytic
250 compartments of *rbohD* leaves. By contrast, *gspE*::Tn5 mutant exhibited colonization
251 capacities comparable to *Xanthomonas* L148 wild-type in Col-0 leaves, but failed to
252 colonize to the same level on *rbohD* plants (Figure 4b). On the other hand, *alaA*::Tn5
253 mutants had a compromised colonization capacity in Col-0 plants, while *rpfF*::Tn5 mutant
254 strains colonized *rbohD* leaves to a similar extent to wild-type *Xanthomonas* L148.
255 Nonetheless, all of the mutant strains not only persisted but were able to actively colonize
256 the leaf endosphere (Figure 4b). This indicates that *gspE*::Tn5 mutant retains its overall
257 colonization ability, while its capacity to efficiently colonize *rbohD* plants is specifically

258 compromised compared to wild-type L148. Correlation analysis revealed a negative
259 relationship between host colonization and plant health, indicating that the observed leaf
260 symptoms can be explained by the aggressive colonization of the wild-type strain (Figure
261 4d).

262 None of the three mutant strains were defective in growth, biofilm production, or
263 motility in rich TSB medium (Figure 5a-c). Also, the mutant strains remained insensitive
264 to PQ treatment, indicating retained tolerance to chronic ROS exposure (Figure 5a). *In*
265 *vitro* growth phenotypes were also unchanged in minimal XVM2 medium apart from an
266 increase in biofilm production for *gspE*::Tn5 and *alaA*::Tn5 mutant strains (Figure 5d).
267 Secretion of extracellular enzymes acting on plant cell walls is a canonical strategy used
268 by plant pathogens to breach the host's physical barriers²⁰. Bacterial pathogens often
269 utilize T2SS to deliver these enzymes into the apoplast of their plant host³⁰. We conducted
270 enzyme secretion plate assays to test the proficiency of these strains to degrade different
271 substrates (carbohydrates, protein, and lipids). Wild-type *Xanthomonas* L148 was able to
272 secrete extracellular enzymes that can degrade the proteinaceous compounds gelatin
273 and non-fat dry milk and the carbohydrates pectin and carboxymethyl-cellulose. Notably,
274 *gspE*::Tn5 mutant could not degrade these substrates in contrast to the wild-type and the
275 other mutant strains, indicating impaired secretion activities (Figure 5e-f). This suggests
276 that the lack of disease progression in *rbohD* plants with the *gspE*::Tn5 mutant strain can
277 be explained by its inability to secrete extracellular enzymes to degrade the host plant
278 cell walls via the T2SS.

279 To gain insight into the evolution of the pathogenicity of *Xanthomonas* L148,
280 available genomes of other Xanthomonadales members, including the potentially
281 pathogenic close-relative *Xanthomonas* L131¹⁷ and *Xanthomonas* L70 in the
282 AtSPHERE²⁵, together with several *Xanthomonas* pathogens and *X. massiliensis*, an
283 isolate from human feces were interrogated for the occurrence of secretion systems and
284 their potential CAZyme catalogues. In general, all Xanthomonadales strains encode both
285 T1SS and T2SS genes (Supplemental Figure S8a). The pathogenic and potentially
286 pathogenic Xanthomonadales strains have expanded their CAZyme repertoire with
287 proclivities for plant cell wall components: α -, β -glucans, β -mannans, arabinan, cellulose,
288 and pectin (Supplemental Figure S8b-c). This indicates that though secretion systems
289 are prevalent among the Xanthomonadales members, CAZyme repertoire expansion
290 might be key feature of pathogenic and potentially pathogenic strains.

291 Because of the *in planta*, *ex planta*, and *in vitro* phenotypes, we focused on
292 *gspE*::Tn5 mutant and characterized it extensively. To establish that *gspE* determines
293 *rbohD*-dependent pathogenicity, we generated two independent *gspE* deletion mutant
294 strains ($\Delta gspE_1$ and $\Delta gspE_2$) via homologous recombination. Both of the *gspE*
295 deletion mutants as well as the *gspE*::Tn5 mutant showed loss of secretion activities and
296 failed to cause disease in *rbohD* plants (Figure 6a-b). Taken together, *gspE*, an integral

297 component of T2SS, is essential for *Xanthomonas* L148 pathogenicity on *rbohD* mutant
298 plants.

299

300 **Plant ROS suppresses T2SS genes including *gspE* of *Xanthomonas* L148**

301 *Xanthomonas* L148 pathogenicity is exerted in the absence of ROS through *RBOHD*,
302 while our *in vitro* results do not indicate general cellular toxicity of ROS. Thus, it can be
303 assumed that *RBOHD*-mediated ROS production suppresses virulence of *Xanthomonas*
304 L148. To gain insight into this, we conducted *in planta* *Xanthomonas* L148 bacterial
305 transcriptome profiling for Col-0 and *rbohD* plants²⁶. Plants were flood-inoculated with
306 *Xanthomonas* L148 and shoots were sampled at 2 dpi, a time point at which bacterial
307 titers were still indistinguishable; these later became significantly different between Col-0
308 and *rbohD* leaves at 3 dpi (Figure 2f). Thus, with the bacterial transcriptomes observed
309 at this time point, one can exclude the possibility that the differences in expression are
310 due to the different bacterial population densities known to affect bacterial transcriptome³¹.

311 Principal component (PC) analysis revealed that *in planta* *Xanthomonas* L148
312 transcriptomes were distinct in Col-0 and *rbohD* plants (Figure 7b). Statistical analysis
313 revealed 2,946 differentially expressed genes (DEGs) upon comparing *in planta* bacterial
314 transcriptomes in Col-0 with *rbohD* leaves (threshold: q-values < 0.05): 563 genes were
315 up-regulated and 2,474 genes were down-regulated in Col-0 compared with *rbohD* plants
316 (Figure 7a and c, See Supplementary Dataset S2 for the details on DEGs). Strikingly,
317 most T2SS apparatus genes including *gspE* were down-regulated in Col-0 as compared
318 to *rbohD* (Figure 7c–e). The DEGs were significantly enriched for the candidate genes
319 detected from the *Xanthomonas* L148::Tn5 mutant screening (29 up-regulated and 73
320 down-regulated out of 214 genes in Col-0 as compared to *rbohD*-inoculated plants,
321 hypergeometric test, p-value = 1.00E-10***), which highlights a remarkable concurrence
322 of the genetic evidence with the bacterial transcriptome profiles obtained *in planta* (Figure
323 7a). The DEGs were also significantly over-represented for carbohydrate-active enzymes
324 (CAZyme, 4 up-regulated, 49 down-regulated out of 135 in Col-0 as compared to *rbohD*-
325 colonized plants, hypergeometric test, p-value = 1.53E-12***, Figure 7a, c), which is
326 consistent with the notion that CAZymes function in virulence. Moreover, six
327 *Xanthomonas* L148::Tn5 mutants have an insertion in genes annotated as CAZymes, five
328 of which are significantly down-regulated in Col-0 as compared with *rbohD* inoculated
329 plants. The significantly down-regulated CAZymes in Col-0 plants can potentially degrade
330 plant cell wall components cellulose, pectin, α -glucan, β -glucan, and β -mannan (Figure
331 7c, Supplementary Figure S9). Pathway enrichment analysis revealed that upregulated
332 gene clusters such as clusters 3, 9, and 14 are enriched for biological functions related
333 to chemotaxis and attachment (K15125, K13924, and K05874), while gene clusters down-
334 regulated in Col-0 such as clusters 8, 10, and 12 are enriched for pathways involved in
335 transport and detoxification processes (K02014 and K00799, Figure 7f, See
336 Supplementary Dataset S3 for the clustering membership and the enriched GO terms).

Upon closer inspection, expression of the identified candidate genes *gspE* and *alaA* was strongly repressed while *rpfF* was marginally downregulated in Col-0 compared to *rbohD*, which supports the hypothesis that these genes are required and thus tightly regulated by immunocompetent wild-type Col-0 plants to prevent disease progression (Figure 7g). These findings were re-confirmed in independent experiments using qRT-PCR where all the candidate genes were suppressed in Col-0 compared to *rbohD* plants (Figure 7h). It can be postulated that ROS directly regulates the expression of these genes. Therefore, *Xanthomonas* L148 bacterial cells were grown *in vitro* in the presence of PQ followed by gene expression analysis. We found that the expression of the candidate genes *gspE*, *alaA*, and *rpfF* is suppressed in *Xanthomonas* L148 upon chronic exposure to ROS (Figure 7i). Taken together, these findings suggest that *Xanthomonas* L148 colonization triggers RBOHD-mediated ROS production, which directly inhibits the expression of genes related to virulence, in particular components of the T2SS on Col-0 plants. By contrast, the absence of ROS production in *rbohD* mutant plants switches on the pathogenicity of *Xanthomonas* L148, leading to disease onset.

RBOHD-mediated ROS turns *Xanthomonas* L148 into a beneficial bacterium
The phyllosphere microbiota are known to confer protection against foliar pathogens³² and thus even a conditionally pathogenic microbiota member may provide beneficial services to its plant host. To address this question, Col-0 and *rbohD* plants were pre-colonized with wild-type *Xanthomonas* L148 or *gspE*::Tn5 mutant strain for five days and were then challenged with the bacterial pathogen *Pto*. Bacterial titers of *Xanthomonas* L148 and *Pto* were determined for the endophytic and total leaf compartments at 0 and 3 dpi. As *Xanthomonas* L148 killed *rbohD* mutant plants, we were not able to measure *Pto* titers under this condition. Pre-colonized Col-0 plants with either the wild-type *Xanthomonas* L148 or *gspE*::Tn5 mutant had increased resistance against *Pto* (Figure 8a-c). Interestingly, *rbohD* mutant plants pre-colonized with *gspE*::Tn5 strain showed increased resistance against *Pto*, resembling *Xanthomonas* L148 pre-colonized Col-0 plants (Figure 8a, c). Further, Col-0 and *rbohD* plants pre-colonized with *gspE*::Tn5 had slightly better plant performance than the non-inoculated plants after *Pto* challenge (Supplementary Figure S10a-b), suggesting that the strain promotes plant fitness in the presence of pathogens. Invasion by *Pto* did not result in a significant decline in *Xanthomonas* L148 and *gspE*::Tn5 populations (Figure 8b), indicating a strong colonization competence and resistance of the commensal *Xanthomonas* L148 against pathogen invasion. In summary, these results revealed that RBOHD-produced ROS turns the potentially harmful *Xanthomonas* L148 into a beneficial bacterium, thereby protecting the plant from aggressive pathogen colonization.

374
375
376

Discussion

377 Despite extensive studies on how plants recognize microbes and transduce signals within
378 the plant, how immune outputs control the growth and behavior of microbes is still largely
379 unknown. Furthermore, we mostly lack a mechanistic explanation for why certain
380 microbes are sensitive to particular immune responses. In this study, we have
381 investigated the impact of the RBOHD-mediated ROS burst as an early immune output
382 on 20 taxonomically diverse bacteria isolated from healthy *A. thaliana* plants and
383 demonstrated the poor association between RBOHD-mediated ROS burst and bacterial
384 colonization (Supplementary Figure S4). This highlights the notion that the perception of
385 the microbial signal, followed by the cascade of immune signals, and immune execution
386 leading to the restriction of microbial colonization are distinct events. This corroborates
387 our previous finding that plant and bacterial transcriptome responses are largely
388 uncoupled during an early stage of infection²⁶. In this study, we have revealed a
389 mechanism in which RBOHD-mediated ROS changes the growth and behavior of a leaf
390 commensal, *Xanthomonas* L148. This is a significant advance in our understanding of
391 how plant immune responses manipulate bacterial growth and behavior.

392 We have demonstrated that plant ROS licenses co-habitation with a potentially
393 detrimental *Xanthomonas* L148 while it trains L148 to guard against aggressive leaf
394 pathogens. Our results show that the plant host constrains proliferation of this microbiota
395 member by means of ROS as a molecular message to harness it for its own benefits.
396 Ecological and reductionist studies have revealed that potentially pathogenic strains
397 populate plant hosts without causing disease, and these strains are considered as *bona
398 fide* constituents of the plant microbiota^{29,33-35}. Some of these potentially detrimental
399 strains can be deleterious to the host in mono-associations^{29,33-37}. However, the adverse
400 effects of these potentially pathogenic microbes depend on the host, the environment,
401 and the co-occurring microbes^{17,32,34-38}. It has been shown that simultaneous defects in
402 PTI and the vesicle trafficking pathway under high humidity led to dysbiosis in the
403 phyllosphere and plant disease¹¹⁻¹². It appears to be a universal pattern across
404 multicellular organisms that ROS modulates the structure, composition, and function of
405 microbiota. In mice, a decrease in mitochondria-derived ROS is associated with increased
406 gut microbiota diversity³⁹. Also, ROS produced via the NOX1 pathway in the colon drives
407 anaerobic growth of *Citrobacter rodentium* and in turn remodel the epithelial milieu⁴⁰. In
408 plants, ROS induces the phytohormone auxin secretion by a beneficial rhizobacterium
409 *Bacillus velezensis* to protect against the damaging effects of plant-derived ROS, allowing
410 efficient root colonization of *B. velezensis*¹⁸. ROS production in roots constrains
411 *Pseudomonas* establishment in the rhizosphere¹⁶. It has also been genetically shown that
412 RBOHD-mediated ROS production is integral for maintaining leaf microbiota homeostasis
413 by keeping potentially harmful bacterial members at bay¹⁷. Nevertheless, the
414 mechanisms by which the plant host selectively constrains potentially pathogenic
415 members of the microbiota and whether these strains are functional to their host remains
416 unclear. Here, through a bacterial genome-wide transposon mutant screen and *in planta*

417 transcriptomics, we have revealed that plant ROS acts as a signaling cue for the
418 potentially pathogenic commensal *Xanthomonas* L148 to suppress its virulence by
419 downregulating its T2SS while promoting its beneficial function.

420 Other members of the phyllosphere microbiota may partially contribute to
421 attenuating the deleterious effects of *Xanthomonas* L148. However, *RBOHD* is needed
422 for full suppression of L148 deleterious activity in the community context (Supplementary
423 Figure S6), which is consistent with the observation that *Xanthomonas* L131, a closely-
424 related strain of L148, exerts its detrimental impact on *rbohD* mutant plants in a
425 community context¹⁷. Closely related, innocuous strains of the plant microbiota out-
426 compete or antagonize its potentially pathogenic counterparts, thereby preventing
427 disease progression but enabling the persistence and co-existence of these strains in
428 nature^{23,39}. However, this phenomenon is accession and strain-specific as this
429 commensal-mediated protection is lost in some plant genotypes and a particular harmful
430 *Pseudomonas* strain predominates the microbial community³⁹. Thus, allowing potentially
431 pathogenic strains within the microbiota requires stringent control of their function and
432 behavior by host immunity sectors and is facilitated in parts by other members of the plant
433 microbiota.

434 We have demonstrated that the pathogenicity of *Xanthomonas* L148 depends on
435 the T2SS component *gspE* (Figure 3d-f, 6a-b). The loss of the killing effect of *gspE*::Tn5
436 mutants strains on *rbohD* mutant plants can be explained by its compromised secretion
437 activities and hampered colonization of *rbohD* leaves (Figure 4b, 5e-f, 6a-b, Figure 7c,
438 and Supplementary Figure 9a-b). The T2SS is often utilized by plant pathogens to deliver
439 CAZymes which degrade plant cell walls, allowing host invasion and promoting disease³⁰.
440 For instance, the T2SS allows the root commensal *Dyella japonica* MF79 to efficiently
441 colonize the host and is required for virulence of pathogenic *Dickeya dadantii*^{24,41}.
442 Secreted CAZymes could also trigger immune responses such as ROS burst via direct
443 recognition of the CAZyme as a MAMP or release of recognized plant-derived Damage
444 Associated Molecular Patterns (DAMPs) due to their enzymatic action⁴¹⁻⁴⁴. Indeed, we
445 have shown that live T2SS-deficient *gspE*::Tn5 L148 mutant elicited less ROS than wild-
446 type L148, whereas heat-killed wild-type L148 and *gspE*::Tn5 mutant elicited
447 undistinguishable ROS burst, implying that T2SS-mediated CAZyme secretion may
448 further enhance the ROS response (Figure 4c). Plant ROS might act as a counter-
449 defense of L148 invasion via CAZymes by dampening T2SS expression (Figure 7c,
450 Supplementary Figure 9a-b). Considering that wild-type *Xanthomonas* L148 and the
451 *gspE*::Tn5 mutant had similar leaf colonization patterns in wild-type Col-0 plants (Figure
452 4b), this counter-defense likely functions to attenuate T2SS activity and make
453 *Xanthomonas* L148 a commensal bacterium in wild-type Col-0 plants. Thus, we propose
454 a model according to which the interaction of *Xanthomonas* L148 and Col-0 plants is
455 based on a delicate balance driven by host ROS levels, resulting in a negative feedback
456 loop to control the potentially pathogenic commensal (Figure 8c). Moreover, the plant

457 protective function of *Xanthomonas* L148 against the pathogen *Pto* is not genetically
458 coupled with its *gspE*-dependent pathogenic potential, as the *gspE*:Tn5 mutant can still
459 confer significant resistance against *Pto* in both Col-0 and *rbohD* mutant plants (Figure
460 8a, Supplementary Figure S10a-b). These findings suggest an important role of the T2SS
461 in the establishment of microorganisms in host tissues, making it conceivable that it is
462 targeted by the host to manipulate microbial behavior. Our finding that RBOHD-mediated
463 ROS targets *Xanthomonas* T2SS provides a new mechanism and concept that plant
464 immunity surveils potentially detrimental members of the plant microbiota by suppressing
465 the T2SS via ROS.

466 We have revealed different ROS burst patterns in response to individual members
467 of the plant microbiota that can be categorized into three classes of immune reactivity:
468 immune-active strains can elicit ROS with intact cells; immune-evasive strains only induce
469 ROS when they are heat-killed; and immune-quiescent strains do not elicit ROS whether
470 alive or dead (Figure 1c,d and Supplementary Figure S2). Immune-evasive strains can
471 possibly conceal their detection by preventing MAMP release or secrete proteins that
472 degrade/sequester self-derived MAMPs or that target host immune components to
473 suppress immune activation⁴⁶.

474 We have observed that most microbiota members of *A. thaliana* are perceived
475 through the surface-resident PRR EFR (Supplementary Figure S2), indicating that EF-Tu
476 peptides serve as major bacterial molecules eliciting defense programs in our
477 experimental setup. Consistent with this, a number of strains increased colonization in *efr*
478 mutant plants compared to wild-type Col-0, which emphasizes the fundamental link of
479 microbial perception with bacterial colonization (Supplementary Figure S3). Our
480 observation also coincides with a GWAS study in which *EFR* was found as a plausible
481 genetic determinant of responses to varying MAMP epitopes in natural populations of *A.*
482 *thaliana*⁴⁷. Although EFR is a Brassicaceae lineage-specific innovation⁷, other EF-Tu
483 fragments seem to be recognized by yet-unknown receptors and are immunogenic to
484 some rice cultivars⁴⁸. Also, interfamily transfer of *A. thaliana* EFR to solanaceous species
485 is sufficient to confer broad-spectrum resistance to pathogens, indicating that
486 components acting downstream of EFR perception are at least in parts evolutionarily
487 conserved⁴. These findings suggest that EF-Tu peptides might be a prevalent microbial
488 motif for host detection in various plant species.

489 Emerging evidence suggests that plant immunity modulates microbial processes
490 required for virulence in addition to its effects on general microbial metabolism, including
491 protein translation^{31,45}. For instance, the secreted aspartic protease SAP1 inhibits *Pto*
492 growth by cleaving the *Pto* protein MucD in *A. thaliana* leaves⁵⁰. Plants target the iron
493 acquisition system of *Pto* to inhibit *Pto* growth during effector-triggered immunity³¹. The
494 defense phytohormone salicylic acid and the specialized metabolite sulforaphane inhibit
495 the type III secretion system of pathogenic *Pto*^{45,51}. Our finding is consistent with the
496 notion that plant immunity targets microbial virulence to allow microbes to cohabit, which

497 can be a better plant strategy than eliminating microbes as plants need to maintain a
498 functional microbiota and potentially harmful microbes can even provide a service to the
499 host.

500
501

502 **Materials and Methods**

503 **Plant materials and growth conditions**

504 The *A. thaliana* Col-0 accession was the wild-type and the genetic background of all the
505 mutants utilized in this study. The mutants *fls2*⁷ (SAIL_691C4), *efr*⁸ (SALK_068675),
506 *cerk1*¹⁰ (GABI_096F09), *fec*¹¹, *bbc*¹¹, and *rbohD*¹³ (*atrbohD* D3) were previously
507 described. For agar plate assays, seeds were sterilized with Cl₂ gas for 2 h⁵². Seeds were
508 then stratified for 2–3 days at 4 °C on 0.5x Murashige and Skoogs (MS) medium agar
509 with 1% sucrose, germinated for 5 days, and subsequently transplanted to 0.5x MS plates
510 without sucrose. Plants were grown in a chamber at 23 °C/23 °C (day/night) with 10 h of
511 light. Then, 14-day-old seedlings were inoculated with bacterial strains and were
512 harvested or phenotyped at the indicated time points. For ROS burst and infiltration patho-
513 assays, plants were grown in greenhouse soil for 5–6 weeks in a chamber at 23 °C/23 °C
514 (day/night) with 10 h of light and 60% relative humidity (See Supplementary Table S1 for
515 details of the plant genotypes used).

516

517 **Bacterial strains and growth conditions**

518 All the bacterial strains derived from the AtSPHERE were previously described²⁵.
519 *Pseudomonas syringae* pv. *tomato* DC3000 (*Pto*) and *Pto* lux were described
520 previously⁵³⁻⁵⁴. All bacterial strains were grown in 0.5x Tryptic Soy Broth (TSB) for 24 h,
521 harvested through centrifugation, washed twice with sterile water, and diluted to the
522 appropriate OD₆₀₀ (See Supplementary Table S2 for the list of bacterial strains used).

523

524 **ROS burst measurement**

525 ROS burst was determined as in Smith and Heese, 2014 with slight modifications⁵⁵. In
526 brief, bacterial strains were grown in TSB at 28 °C for 16–18 h with shaking at 200 rpm.
527 Cells were harvested, washed twice with sterile water, and diluted to OD₆₀₀=0.5 in sterile
528 water. The day before the assay, leaf discs (4 mm) from leaves of the same physiological
529 state and size from 5-to-6-week-old plants grown in a chamber at 23 °C/23 °C (day/night)
530 with 10 h of light were harvested, washed twice with sterile water every 30 min, immersed
531 in sterile water in 96-well plates, and incubated in the same growth chamber for 20 h.
532 Prior to the assay, the elicitation solution was prepared by adding 5 µL 500x horseradish
533 peroxidase (HRP, P6782-10MG, Sigma-Aldrich) and 5 µL 500x luminol (A8511-5G,
534 Sigma-Aldrich) to 2.5 mL of bacterial suspension, 1 µM MAMP solutions (flg22 [ZBiolab
535 inc.], elf18 [Eurofins], chitinDP7 [N-acetylchitoheptaose, GN7, Elicityl]), or sterile
536 nanopure water as mock. During the assay, the water was carefully removed from the 96

537 well-plate and 100 μ L of the elicitation solution was added to the 96-well plate. With
538 minimal delay, the luminescence readings were obtained for 60 min using a luminometer
539 (TrisStar2 Multimode Reader, Berthold).

540

541 **Commensal bacterial colonization assay**

542 To prepare the bacterial inoculum, all bacterial strains were grown in 0.5x TSB for 24 h,
543 harvested through centrifugation, washed twice with sterile water, and suspended in
544 sterile water (final OD₆₀₀=0.005). Two-week-old seedlings grown on 0.5x MS medium
545 agar in a chamber at 23 °C/23 °C (day/night) with 10 h of light were flood-inoculated with
546 these bacterial suspensions and incubated in the same growth chamber. Leaf samples
547 were aseptically harvested at 3 to 5 dpi, weighed, and plated for two compartments: for
548 the total compartment, leaves were directly homogenized in 10 mM MgCl₂ with a
549 homogenizer (TissueLyser III, Qiagen), serially diluted with 10 mM MgCl₂, and plated on
550 0.5x TSB agar; for the endophytic compartment, leaves were surface-sterilized with 70%
551 ethanol for 1 min, washed twice with sterile water, homogenized, serially diluted, and then
552 plated as for the total compartment. Colonies were allowed to grow at 28 °C, and
553 photographs were taken for 1 to 3 days. Colonization was expressed as cfu mg⁻¹ sample.

554

555 **Generation of bacterial mutants**

556 A *Xanthomonas* L148::Tn5 library was constructed via conjugation of *Xanthomonas* L148
557 with *E. coli* SM10λpir harboring puTn5TmKm2⁵⁶ in which both strains were mixed in equal
558 portions (OD₆₀₀=0.10), spot-plated on TSB medium, and incubated for 2 d at 28 °C. The
559 resulting mating plaques were diluted and plated on TSB with kanamycin and
560 nitrofurantoin for selection for L148 transformants and counter-selection against *E. coli*,
561 respectively. To constitute the entire library, around 7,000 individual colonies were picked,
562 re-grown in 0.5x TSB, aliquoted for glycerol stocks, and stored at -80 °C. Around 20
563 strains from this *Xanthomonas* L148::Tn5 library were randomly selected for confirmation
564 of Tn5 insertion in the genome via nested PCR (first PCR with primers FDE117 and
565 FDE118; second PCR with primers FDE119 and mTn5AC) and the final amplicons were
566 Sanger-sequenced (see Supplementary Table S3 for details). For the generation of
567 targeted deletion mutants for *gspE*, the pK18mobsacB suicide plasmid⁵⁷ (GenBank
568 accession: FJ437239) was PCR linearized (primers FDE234 and FDE235) with Phusion
569 Taq polymerase (F-5305, Thermo Scientific); 750 bp of upstream (primers FDE278 and
570 FDE279) and downstream (primers FDE280 and FDE281) flanking regions of *gspE*
571 coding sequence with terminal sequences overlapping with the linearized pK18mobsacB
572 were amplified using Phusion Taq polymerase (F-5305, ThermoScientific) and were
573 sequence-verified. The plasmid construct was assembled using Gibson cloning⁵⁸
574 (E5510S, New England Biolabs) following the manufacturer's instructions. The plasmid
575 construct was transformed into *E. coli* cells (DH5 α strain) and then delivered into
576 *Xanthomonas* L148 via triparental mating with the helper strain pRK600⁵⁹. Transformants

577 were selected using kanamycin and nitrofurantoin and the second homologous
578 recombination was induced with sucrose in 0.5x TSB. The deletion mutants were
579 individually picked and stored at -80 °C in glycerol stocks and were verified by PCRs
580 (using primers FDE196 and FDE197 for the presence of the plasmid with the inserts;
581 primers FDE125 and FDE126 for the presence of *gspE* gene in the genome; and primers
582 FDE279 and FDE280 for the removal of *gspE* gene in the genome) and Sanger-
583 sequencing, and were plated on 0.5x TSB containing 10 µg/mL kanamycin. True deletion
584 mutants should not contain the plasmid, lose the *gspE* gene, and be sensitive to
585 kanamycin (See Supplementary Table S3 for list of primers and PCR profile used).

586

587 **L148::Tn5 library 96-well screening**

588 Seedlings of *rbohD* were grown in 96-well plates with 0.5x MS agar with 1% sucrose for
589 14 days. Concomitantly, the Tn5 insertion mutants (~7,000 individually picked colonies)
590 were grown in 96-well plates with TSB at 28 °C for 3 days with 200 rpm agitation till
591 saturation. The resulting bacterial suspension was diluted six times (resulting in a
592 concentration of approximately 6x10⁹ bacterial cells per mL) and 20 µL aliquots were
593 inoculated onto the seedlings. Plants were phenotyped for survival after 5 days. The
594 resulting 214 *Xanthomonas* L148::Tn5 candidate strains which showed the loss of the
595 *rbohD* killing activity from the two independent 96-well plate screenings were genotyped
596 to identify the Tn5 insertion locus in the genome via nested PCR (first PCR with primers
597 FDE117 and FDE118; second PCR with primers FDE119 and mTn5AC) and the final
598 amplicons were Sanger-sequenced (see Supplementary Table S3 for list of primers and
599 PCR profile used and Supplementary Figure S7). The 124 *Xanthomonas* L148::Tn5
600 candidate mutants which have insertions on genes with functional annotations (please
601 see Supplementary Dataset S1 for the list) were further screened using plants grown in
602 agar plates to re-evaluate the phenotypes as described for the commensal bacterial
603 colonization assay.

604

605 ***In vitro* assays**

606 For instantaneous ROS treatment, *Xanthomonas* L148 was grown for 24 h, pelleted, and
607 diluted to OD₆₀₀ = 0.02. A 500 µL of the bacterial suspension was mixed with H₂O₂
608 (H10009-500ML, Sigma-Aldrich) at final concentrations of 0–2000 µM, incubated for 30
609 min, and plated for colony counts. Similarly, 500 µL of the bacterial suspension was mixed
610 with 1 mM xanthine (X7375-10G, Sigma-Aldrich) and 10 U/mL xanthine oxidase from
611 bovine milk (X4875-10UN, Sigma-Aldrich) to generate O₂⁻¹, and samples were plated at
612 different time points (1 mol of xanthine is converted to 1 mol O₂⁻¹ with 1 U xanthine oxidase
613 at pH 7.5 at 25 °C in a min, thus 0, 2, 4, 10, 20, 40, 60, and 80 min incubations should
614 have produced O₂⁻¹ equivalent to 0, 50, 100, 250, 500, 1000, 2000 µM respectively) for
615 colony counts. Chronic exposure to ROS was implemented by growing the strains in TSB
616 ± 10 µM paraquat (856177-1G, Sigma-Aldrich), a ROS-generating compound, for three

617 days while obtaining OD₆₀₀ readings using spectrophotometer (Tecan Infinite Microplate
618 reader M200 Pro) to calculate growth curves and rates. The candidate *Xanthomonas*
619 L148::Tn5 mutants were phenotyped *in vitro* via growing bacterial culture with an initial
620 inoculum of 10 µL OD₆₀₀=0.1 in 96-well plates supplemented with 140 µL TSB or XVM2
621 (a minimal medium designed for *Xanthomonas* strains⁶⁰) for three days while obtaining
622 absorbance readings at OD₆₀₀ using a spectrophotometer (Tecan Infinite Microplate
623 reader M200 Pro) to calculate growth curves and rates. The resulting cultures were gently
624 and briefly washed with water and cells adhering on the plates were stained with 0.1%
625 crystal violet (27335.01, Serva) for 15 min. The staining was solubilized with 125 µL 30%
626 acetic acid (A6283, Sigma-Aldrich) to quantify biofilm formation at OD₅₅₀ using a
627 spectrophotometer (Tecan Infinite Microplate reader M200 Pro). Motility was assayed by
628 point-inoculating bacterial cultures (OD₆₀₀=0.1) on 0.5x TSB with 0.8% agar and colony
629 sizes were measured after 2 to 3 days. Secretion activities were profiled via point-
630 inoculating (1 µL culture, OD₆₀₀=0.1) bacterial strains on 0.5x TSB agar with 0.1%
631 substrate-of-interest (carbohydrates: pectin, carboxymethyl-cellulose, α-cellulose, xylan,
632 starch; protein: milk and gelatin; lipid: Tween 20), incubated at 28 °C for 2 days. For
633 gelatin, halo of degradation was visualized by incubating the plates in saturated
634 ammonium persulfate for 15 min. For carbohydrates, clearance zones were visualized by
635 staining the plates with 0.1% Congo red (C-6767, SigmaAldrich) for 15 min followed by
636 washing with 6 ppm NaCl solution (0601.1, Roth). All plates were photographed before
637 and after the staining procedures. The enzymatic indices were calculated by dividing the
638 zones of clearing by the colony size
639

640 ***In planta* bacterial RNA-Seq**

641 The *in planta* *Xanthomonas* L148 RNA-Seq was done in accordance to Nobori et al,
642 2018⁶¹. Briefly, two-week-old plants grown in agar plates were flood-inoculated with
643 *Xanthomonas* L148 (OD₆₀₀=0.005 in 10 mM MgCl₂) and shoots of approximately 150
644 plants were harvested and pooled per sample at 2 dpi when bacterial populations were
645 similar between Col-0 and *rbohD* plants. Samples were harvested, snap-frozen in liquid
646 N₂, and stored at -80 °C until RNA extraction. The whole experiment was repeated three
647 times. Samples were crushed with metal beads and incubated for 24 h at 4 °C with the
648 isolation buffer⁶¹. Bacterial cells were separated from the plant tissue via centrifugation.
649 The RNA was isolated from the bacterial pellets using TRIzol (15596026, Invitrogen) and
650 were treated with Turbo DNase (AM1907, Invitrogen) prior to sending to the Max Planck-
651 Genome-Centre Cologne for RNA Sequencing with plant ribo-depletion and cDNA library
652 construction (Universal Prokaryotic RNA-Seq Library Preparation Kit, Tecan) using the
653 Illumina HiSeq 3000 system with 150 bp strand-specific single-end reads resulting in
654 approximately 10 million reads per sample. The resulting reads were mapped to the
655 *Xanthomonas* L148 genome²⁵ using the align() function with the default parameters in
656 Rsubread package⁶² to generate BAM files. Mapping rates ranged from 20–46%, which

657 is within the expected values³¹. Mapped reads were counted using DESeq2⁶³ using the
658 function featureCounts() from the BAM files and were normalized using the voom()
659 function in limma package⁶⁴ prior to analysis. RNA-Seq raw reads and processed data
660 were deposited in the NCBI GEO repository with accession number GSE226583.

661 Upon passing quality checks (assessing batch effects through PCA and MA plots
662 for data dispersion), differentially expressed genes were determined using a linear model
663 (gene expression ~ 0 + genotype + rep; contrast = Col-0 - *rbohD*) and Empirical Bayes
664 statistics with eBayes() function in limma⁶⁴. False discovery rates were accounted for p-
665 values using qvalue⁶⁵. The threshold for significantly differentially expressed genes was
666 set to q-value < 0.05. Principal component analysis was done using the prcomp function⁶⁶;
667 the optimal number of clusters was determined using NbClust() function in NbClust
668 package⁶⁷, cluster memberships were computed with the k-means algorithm⁶⁸, heatmaps
669 were generated using Heatmap() function in ComplexHeatmap package⁶⁹, and pathway
670 enrichment analysis was done for each of the identified gene clusters using enricher()
671 function in clusterProfiler package in R⁷⁰.

672

673 **Synthetic community experiment**

674 Two-week-old plants grown in agar plates in a chamber at 23 °C/23°C (day/night) with 10
675 h of light were flood-inoculated with *Xanthomonas* L148 with or without the leaf-derived
676 synthetic communities (LeafSC, 9 leaf prevalent and functional leaf isolates²⁷⁻²⁹) in two
677 different doses: L148_{P1} + LeafSC contains equal portions of each strain including L148 in
678 the inoculum (*Xanthomonas* L148/LeafSC, 1:9, each strain would have a final OD₆₀₀=0.01
679 totaling to OD₆₀₀=0.09 for LeafSC) and L148_{P9} + Leaf SC contains a population of
680 *Xanthomonas* L148 that equals the entire bacterial load of the LeafSC (*Xanthomonas*
681 L148/LeafSC, 9:9, L148 and the LeafSC at OD₆₀₀=0.09), and were incubated in the same
682 growth chamber. Plants were phenotyped for shoot fresh weights at 14 dpi (See
683 Supplementary Table S2 for list of bacterial strains).

684

685 **Protective function experiment**

686 Two-week-old plants grown in agar plates in a chamber at 23 °C/23 °C (day/night) with
687 10 h of light were flood-inoculated with *Xanthomonas* L148 strains (OD₆₀₀=0.005) and
688 incubated for 5 days. *Pto* lux (OD=0.005) or water was aseptically spray-inoculated
689 (approximately 200 µL per plate) onto the pre-colonized plants. Samples were collected
690 at 0 and 3 dpi to count L148 and *Pto* colonies for different leaf compartments. For the
691 total compartment, leaves were directly homogenized, serially diluted, and plated; for the
692 endophytic compartment, leaves were surface-sterilized with 70% ethanol for 1 min,
693 washed twice with sterile water, homogenized, serially diluted, and then plated. Colonies
694 were allowed to grow on 0.5x TSB agar at 28 °C, and photographs were taken for 1 to 3
695 days. Colonies were differentiated via their color and chemiluminescence and
696 colonization was expressed as cfu mg⁻¹ leaf sample.

697

698 **qPCR analysis**

699 Bacterial RNA was isolated from plant samples inoculated with *Xanthomonas* L148 2 dpi
700 or from bacterial pellets from *Xanthomonas* L148 grown in 0.5x TSB with or without 10
701 μ M PQ using TRIzol (15596026, Invitrogen) followed by treatment with Turbo DNase
702 (AM1907, Invitrogen). The cDNA libraries were synthesized with 1 μ g RNA input using
703 SuperScript II reverse transcriptase (18064-014, Invitrogen) and random hexamers as
704 primers following the manufacturer's instructions. An input of 50 ng of cDNA was used for
705 qPCR analyses (CFX Connect Real-Time System, Biorad) of the bacterial genes (please
706 see Supplementary Table S3 for the list of primers and genes tested). The Δ Cq was
707 computed by subtracting the Cq of the gene-of-interest from the Cq of the *gyrA* gene from
708 *Xanthomonas* L148.

709

710 **Statistical analysis**

711 The R programming environment (R version 4.2.2) was used for data analysis and
712 visualization⁶⁶. The data were inspected for the assumptions of the linear model
713 (homoscedasticity, independence, and normality) and were normalized, if necessary, prior
714 to statistical analysis using ANOVA with *post hoc* Tukey's HSD test or the Least Significant
715 Difference (LSD) test using the package agricolae⁷¹.

716

717 **Genomic interrogation for CAZyme functions**

718 Genomes for *Xanthomonas* L148 and other *Xanthomonadales* strains within the
719 AtSPHERE²⁵ and known *Xanthomonas* pathogens (downloaded from NCBI; Sayers, et
720 al, 2022) were annotated for CAZyme functions (<http://www.cazy.org/>)⁷² using the eggNOG
721 mapper (<http://eggnog-mapper.embl.de/>)⁷³ to determine the CAZyme repertoire of the
722 bacterial strains and their potential substrates.

723

724 **Data deposition**

725 The *in planta* bacterial RNA-Seq data reported in this paper have been deposited in the
726 Gene Expression Omnibus (GEO) database, <https://www.ncbi.nlm.nih.gov/geo>
727 (accession no. GSE226583).

728

729 **Code availability**

730 No custom code was generated for this study.

731

732

733 **References**

- 734 1 Müller, D. B., Vogel, C., Bai, Y., & Vorholt, J. A. (2016). The Plant Microbiota: Systems-Level
735 Insights and Perspectives. *Annual review of genetics*, 50, 211–234.
736 <https://doi.org/10.1146/annurev-genet-120215-034952>
- 737 2 Drew, G. C., Stevens, E. J., & King, K. C. (2021). Microbial evolution and transitions along the
738 parasite-mutualist continuum. *Nature reviews. Microbiology*, 19(10), 623–638.
739 <https://doi.org/10.1038/s41579-021-00550-7>

740 3 Jochum, L., & Stecher, B. (2020). Label or Concept - What Is a Pathobiont?. *Trends in*
741 *microbiology*, 28(10), 789–792. <https://doi.org/10.1016/j.tim.2020.04.011>

742 4 Caballero-Flores, G., Pickard, J. M., & Núñez, G. (2022). Microbiota-mediated colonization
743 resistance: mechanisms and regulation. *Nature reviews. Microbiology*, 10.1038/s41579-022-
744 00833-7. Advance online publication. <https://doi.org/10.1038/s41579-022-00833-7>

745 5 Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant-
746 pathogen interactions. *Nature reviews. Genetics*, 11(8), 539–548.
747 <https://doi.org/10.1038/nrg2812>

748 6 Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D., Felix, G., & Boller, T. (2004).
749 Bacterial disease resistance in *Arabidopsis* through flagellin perception. *Nature*, 428(6984),
750 764–767. <https://doi.org/10.1038/nature02485>

751 7 Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T., & Felix, G. (2006).
752 Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts *Agrobacterium*-
753 mediated transformation. *Cell*, 125(4), 749–760. <https://doi.org/10.1016/j.cell.2006.03.037>

754 8 Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F.
755 G., Tör, M., de Vries, S., & Zipfel, C. (2011). The *Arabidopsis* leucine-rich repeat receptor-like
756 kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic
757 and biotrophic pathogens. *The Plant cell*, 23(6), 2440–2455.
758 <https://doi.org/10.1105/tpc.111.084301>

759 9 Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami,
760 N., Kaku, H., & Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin
761 elicitor signaling in *Arabidopsis*. *Proceedings of the National Academy of Sciences of the*
762 *United States of America*, 104(49), 19613–19618. <https://doi.org/10.1073/pnas.0705147104>

763 10 Boller, T., & Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated
764 molecular patterns and danger signals by pattern-recognition receptors. *Annual review of*
765 *plant biology*, 60, 379–406. <https://doi.org/10.1146/annurev.applant.57.032905.105346>

766 11 Xin, X. F., Nomura, K., Aung, K., Velásquez, A. C., Yao, J., Boutrot, F., Chang, J. H., Zipfel,
767 C., & He, S. Y. (2016). Bacteria establish an aqueous living space in plants crucial for
768 virulence. *Nature*, 539(7630), 524–529. <https://doi.org/10.1038/nature20166>

769 12 Chen, T., Nomura, K., Wang, X. *et al.* A plant genetic network for preventing dysbiosis in the
770 phyllosphere. *Nature* 580, 653–657 (2020). <https://doi.org/10.1038/s41586-020-2185-0>

771 13 Torres, M. A., Dangl, J. L., & Jones, J. D. (2002). *Arabidopsis* gp91phox homologues AtrbohD
772 and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant
773 defense response. *Proceedings of the National Academy of Sciences of the United States of*
774 *America*, 99(1), 517–522. <https://doi.org/10.1073/pnas.012452499>

775 14 Castro, B., Cittericò, M., Kimura, S., Stevens, D. M., Wrzaczek, M., & Coaker, G. (2021).
776 Stress-induced reactive oxygen species compartmentalization, perception and
777 signalling. *Nature plants*, 7(4), 403–412. <https://doi.org/10.1038/s41477-021-00887-0>

778 15 Bolwell, G.P., Daudi, A. (2009). Reactive Oxygen Species in Plant–Pathogen Interactions. In:
779 Rio, L., Puppo, A. (eds) *Reactive Oxygen Species in Plant Signaling. Signaling and*
780 *Communication in Plants*. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00390-5_7

782 16 Song, Y., Wilson, A. J., Zhang, X. C., Thoms, D., Sohrabi, R., Song, S., Geissmann, Q., Liu,
783 Y., Walgren, L., He, S. Y., & Haney, C. H. (2021). FERONIA restricts *Pseudomonas* in the
784 rhizosphere microbiome via regulation of reactive oxygen species. *Nature plants*, 7(5), 644–
785 654. <https://doi.org/10.1038/s41477-021-00914-0>

786 17 Pfeilmeier, S., Petti, G. C., Bortfeld-Miller, M., Daniel, B., Field, C. M., Sunagawa, S., &
787 Vorholt, J. A. (2021). The plant NADPH oxidase RBOHD is required for microbiota
788 homeostasis in leaves. *Nature microbiology*, 6(7), 852–864. <https://doi.org/10.1038/s41564-021-00929-5>

790 18 Tzipilevich, E., Russ, D., Dangl, J. L., & Benfey, P. N. (2021). Plant immune system activation
791 is necessary for efficient root colonization by auxin-secreting beneficial bacteria. *Cell host &*
792 *microbe*, 29(10), 1507–1520.e4. <https://doi.org/10.1016/j.chom.2021.09.005>

793 19 Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D.,
794 Shirasu, K., Menke, F., Jones, A., & Zipfel, C. (2014). Direct regulation of the NADPH oxidase
795 RBOHD by the PRR-associated kinase BIK1 during plant immunity. *Molecular cell*, 54(1), 43–

796 55. <https://doi.org/10.1016/j.molcel.2014.02.021>

797 20 Salmond, G. P. (1994). Secretion of extracellular virulence factors by plant pathogenic

798 bacteria. *Annual review of phytopathology*, 32(1), 181-200.

799 21 Tampakaki A. P. (2014). Commonalities and differences of T3SSs in rhizobia and plant

800 pathogenic bacteria. *Frontiers in plant science*, 5, 114. <https://doi.org/10.3389/fpls.2014.00114>

801 22 Kambara, K., Ardissoni, S., Kobayashi, H., Saad, M. M., Schumpp, O., Broughton, W. J., &

802 Deakin, W. J. (2009). Rhizobia utilize pathogen-like effector proteins during

803 symbiosis. *Molecular microbiology*, 71(1), 92–106. <https://doi.org/10.1111/j.1365-2958.2008.06507.x>

804 23 Maekawa, T., Kufer, T. A., & Schulze-Lefert, P. (2011). NLR functions in plant and animal

805 immune systems: so far and yet so close. *Nature immunology*, 12(9), 817–826.

806 <https://doi.org/10.1038/ni.2083>

807 24 Teixeira, P. J. P. L., Colaianni, N. R., Law, T. F., Conway, J. M., Gilbert, S., Li, H., Salas-

808 González, I., Panda, D., Del Risco, N. M., Finkel, O. M., Castrillo, G., Mieczkowski, P., Jones,

809 C. D., & Dangl, J. L. (2021). Specific modulation of the root immune system by a community

810 of commensal bacteria. *Proceedings of the National Academy of Sciences of the United*

811 *States of America*, 118(16), e2100678118. <https://doi.org/10.1073/pnas.2100678118>

812 25 Bai, Y., Müller, D., Srinivas, G. et al. (2015). Functional overlap of the *Arabidopsis* leaf and

813 root microbiota. *Nature* 528, 364–369, <https://doi.org/10.1038/nature16192>

814 26 Nobori, T., Cao, Y., Entila, F., Dahms, E., Tsuda, Y., Garrido-Oter, R., & Tsuda, K. (2022).

815 Dissecting the cotranscriptome landscape of plants and their microbiota. *EMBO reports*,

816 23(12), e55380. <https://doi.org/10.15252/embr.202255380>

817 27 Carlström, C.I., Field, C.M., Bortfeld-Miller, M. et al. Synthetic microbiota reveal priority effects

818 and keystone strains in the *Arabidopsis* phyllosphere. *Nat Ecol Evol* 3, 1445–1454 (2019).

819 <https://doi.org/10.1038/s41559-019-0994-z>

820 28 Thiergart, T., Durán, P., Ellis, T. et al. Root microbiota assembly and adaptive differentiation

821 among European *Arabidopsis* populations. *Nat Ecol Evol* 4, 122–131 (2020).

822 <https://doi.org/10.1038/s41559-019-1063-3>

823 29 Karasov, T. L., Almario, J., Friedemann, C., Ding, W., Giolai, M., Heavens, D., Kersten, S.,

824 Lundberg, D. S., Neumann, M., Regalado, J., Neher, R. A., Kemen, E., & Weigel, D. (2018).
825 *Arabidopsis thaliana* and *Pseudomonas* Pathogens Exhibit Stable Associations over

826 Evolutionary Timescales. *Cell host & microbe*, 24(1), 168–179.e4.

827 <https://doi.org/10.1016/j.chom.2018.06.011>

828 30 Cianciotto N. P. (2005). Type II secretion: a protein secretion system for all seasons. *Trends*

829 in *microbiology*, 13(12), 581–588. <https://doi.org/10.1016/j.tim.2005.09.005>

830 31 Nobori, T., Velásquez, A. C., Wu, J., Kvitko, B. H., Kremer, J. M., Wang, Y., He, S. Y., &

831 Tsuda, K. (2018). Transcriptome landscape of a bacterial pathogen under plant

832 immunity. *Proceedings of the National Academy of Sciences of the United States of*

833 *America*, 115(13), E3055–E3064. <https://doi.org/10.1073/pnas.1800529115>

834 32 Vogel, C. M., Potthoff, D. B., Schäfer, M., Barandun, N., & Vorholt, J. A. (2021). Protective

835 role of the *Arabidopsis* leaf microbiota against a bacterial pathogen. *Nature*

836 *microbiology*, 6(12), 1537–1548. <https://doi.org/10.1038/s41564-021-00997-7>

837 33 Jakob, K., Goss, E. M., Araki, H., Van, T., Kreitman, M., & Bergelson, J. (2002).
838 *Pseudomonas viridisflava* and *P. syringae*—natural pathogens of *Arabidopsis*

839 *thaliana*. *Molecular plant-microbe interactions : MPMI*, 15(12), 1195–1203.

840 <https://doi.org/10.1094/MPMI.2002.15.12.1195>

841 34 Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, et al. (2016) Microbial Hub Taxa

842 Link Host and Abiotic Factors to Plant Microbiome Variation. *PLoS Biol* 14(1): e1002352.

843 <https://doi.org/10.1371/journal.pbio.1002352>

844 35 Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., &

845 Hacquard, S. (2018). Microbial Interkingdom Interactions in Roots Promote *Arabidopsis*

846 Survival. *Cell*, 175(4), 973–983.e14. <https://doi.org/10.1016/j.cell.2018.10.020>

847 36 Ma, K.W., Niu, Y., Jia, Y. et al. Coordination of microbe–host homeostasis by crosstalk with

848 plant innate immunity. *Nat. Plants* 7, 814–825 (2021). <https://doi.org/10.1038/s41477-021-00920-2>

849 37 Shalev, O., Karasov, T.L., Lundberg, D.S. et al. Commensal *Pseudomonas* strains facilitate

850

851

852 protective response against pathogens in the host plant. *Nat Ecol Evol* **6**, 383–396 (2022).
853 <https://doi.org/10.1038/s41559-022-01673-7>

854 38 Wolinska, K. W., Vannier, N., Thiergart, T., Pickel, B., Gremmen, S., Piasecka, A., Piślewska-
855 Bednarek, M., Nakano, R. T., Belkadir, Y., Bednarek, P., & Hacquard, S. (2021). Tryptophan
856 metabolism and bacterial commensals prevent fungal dysbiosis
857 in *Arabidopsis* roots. *Proceedings of the National Academy of Sciences of the United States
858 of America*, **118**(49), e2111521118. <https://doi.org/10.1073/pnas.2111521118>

859 39 Yardeni, T., Tanes, C. E., Bittinger, K., Mattei, L. M., Schaefer, P. M., Singh, L. N., Wu, G. D.,
860 Murdock, D. G., & Wallace, D. C. (2019). Host mitochondria influence gut microbiome
861 diversity: A role for ROS. *Science signaling*, **12**(588), eaaw3159.
862 <https://doi.org/10.1126/scisignal.aaw3159>

863 40 Miller, B. M., Liou, M. J., Zhang, L. F., Nguyen, H., Litvak, Y., Schorr, E. M., Jang, K. K.,
864 Tiffany, C. R., Butler, B. P., & Bäumler, A. J. (2020). Anaerobic Respiration of NOX1-Derived
865 Hydrogen Peroxide Licenses Bacterial Growth at the Colonic Surface. *Cell host &
866 microbe*, **28**(6), 789–797.e5. <https://doi.org/10.1016/j.chom.2020.10.009>

867 41 Expert, D., Patriti, O., Shevchik, V. E., Perino, C., Boucher, V., Creze, C., Wenes, E., & Fagard,
868 M. (2018). *Dickeya dadantii* pectic enzymes necessary for virulence are also responsible for
869 activation of the *Arabidopsis thaliana* innate immune system. *Molecular plant pathology*, **19**(2),
870 313–327. <https://doi.org/10.1111/mpp.12522>

871 42 Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X.,
872 Tyler, B. M., & Wang, Y. (2015). A *Phytophthora sojae* Glycoside Hydrolase 12 Protein Is a
873 Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. *The Plant
874 cell*, **27**(7), 2057–2072. <https://doi.org/10.1105/tpc.15.00390>

875 43 Wang, Y., Xu, Y., Sun, Y., Wang, H., Qi, J., Wan, B., Ye, W., Lin, Y., Shao, Y., Dong, S., Tyler,
876 B. M., & Wang, Y. (2018). Leucine-rich repeat receptor-like gene screen reveals that *Nicotiana
877 RXEG1* regulates glycoside hydrolase 12 MAMP detection. *Nature communications*, **9**(1), 594.
878 <https://doi.org/10.1038/s41467-018-03010-8>

879 44 Gui, Y. J., Chen, J. Y., Zhang, D. D., Li, N. Y., Li, T. G., Zhang, W. Q., Wang, X. Y., Short, D. P.
880 G., Li, L., Guo, W., Kong, Z. Q., Bao, Y. M., Subbarao, K. V., & Dai, X. F. (2017). *Verticillium
881 dahliae* manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with
882 carbohydrate-binding module 1. *Environmental microbiology*, **19**(5), 1914–1932.
883 <https://doi.org/10.1111/1462-2920.13695>

884 45 Nobori, T., Wang, Y., Wu, J. et al. Multidimensional gene regulatory landscape of a bacterial
885 pathogen in plants. *Nat. Plants* **6**, 883–896 (2020). <https://doi.org/10.1038/s41477-020-0690-7>

887 46 Teixeira, P. J. P., Colaianni, N. R., Fitzpatrick, C. R., & Dangl, J. L. (2019). Beyond pathogens:
888 microbiota interactions with the plant immune system. *Current opinion in microbiology*, **49**, 7–
889 17. <https://doi.org/10.1016/j.mib.2019.08.003>

890 47 Vetter, M., Karasov, T. L., & Bergelson, J. (2016). Differentiation between MAMP Triggered
891 Defenses in *Arabidopsis thaliana*. *PLoS genetics*, **12**(6), e1006068.
892 <https://doi.org/10.1371/journal.pgen>

893 48 Furukawa, T., Inagaki, H., Takai, R., Hirai, H., & Che, F. S. (2014). Two distinct EF-Tu epitopes
894 induce immune responses in rice and *Arabidopsis*. *Molecular plant-microbe interactions :
895 MPMI*, **27**(2), 113–124. <https://doi.org/10.1094/MPMI-10-13-0304-R>

896 49 Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, H. P.,
897 Smoker, M., Rallapalli, G., Thomma, B. P., Staskawicz, B., Jones, J. D., & Zipfel, C. (2010).
898 Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial
899 resistance. *Nature biotechnology*, **28**(4), 365–369. <https://doi.org/10.1038/nbt.1613>

900 50 Wang, Y., Garrido-Oter, R., Wu, J. et al. Site-specific cleavage of bacterial MucD by secreted
901 proteases mediates antibacterial resistance in *Arabidopsis*. *Nat Commun* **10**, 2853 (2019).
902 <https://doi.org/10.1038/s41467-019-10793-x>

903 51 Wang, W., Yang, J., Zhang, J., Liu, Y. X., Tian, C., Qu, B., Gao, C., Xin, P., Cheng, S., Zhang,
904 W., Miao, P., Li, L., Zhang, X., Chu, J., Zuo, J., Li, J., Bai, Y., Lei, X., & Zhou, J. M. (2020). An
905 *Arabidopsis* Secondary Metabolite Directly Targets Expression of the Bacterial Type III
906 Secretion System to Inhibit Bacterial Virulence. *Cell host & microbe*, **27**(4), 601–613.e7.
907 <https://doi.org/10.1016/j.chom.2020.03.004>

908 52 Lindsey, B. E., 3rd, Rivero, L., Calhoun, C. S., Grotewold, E., & Brkljacic, J. (2017).
909 Standardized Method for High-throughput Sterilization of *Arabidopsis* Seeds. *Journal of*
910 *visualized experiments : JoVE*, (128), 56587. <https://doi.org/10.3791/56587>
911 53 Hinsch M, Staskawicz B. (1996). Identification of a new *Arabidopsis* disease resistance locus,
912 RPs4, and cloning of the corresponding avirulence gene, *avrRps4*, from *Pseudomonas*
913 *syringae* pv. *pisii*. *Mol Plant Microbe Interact*. 9(1):55-61. doi: 10.1094/mpmi-9-0055. PMID:
914 8589423.
915 54 Ayumi Matsumoto, Titus Schlüter, Katharina Melkonian, Atsushi Takeda, Hirofumi Nakagami,
916 Akira Mine. (2022). A versatile Tn7 transposon-based bioluminescence tagging tool for
917 quantitative and spatial detection of bacteria in plants, *Plant Communications*, Volume 3,
918 Issue 1, 2022, 100227, ISSN 2590-3462, <https://doi.org/10.1016/j.xplc.2021.100227>.
919 55 Smith, J.M., Heese, A. (2014). Rapid bioassay to measure early reactive oxygen species
920 production in *Arabidopsis* leave tissue in response to living *Pseudomonas syringae*. *Plant*
921 *Methods* **10**, 6 . <https://doi.org/10.1186/1746-4811-10-6>
922 56 Merrell, D.S., Hava, D.L. and Camilli, A. (2002). Identification of novel factors involved in
923 colonization and acid tolerance of *Vibrio cholerae*. *Molecular Microbiology*, 43: 1471-
924 1491. <https://doi.org/10.1046/j.1365-2958.2002.02857.x>
925 57 Kvitko, B. H., & Collmer, A. (2011). Construction of *Pseudomonas syringae* pv. *tomato* DC3000
926 mutant and polymutant strains. *Methods in Molecular Biology* (Clifton, N.J.), 712, 109-128.
927 58 Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009).
928 Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nature Methods*, 6(5),
929 343-345.
930 59 Kessler, B., V. de Lorenzo, and K. N. Timmis. (1992). A general system to integrate lacZ
931 fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm-promotor of
932 the Tol-plasmid studied with all controlling elements in monocopy. *Mol. Gen. Genet.* 233:293-
933 301.
934 60 Wengelnik, K., Marie, C., Russel, M., & Bonas, U. (1996). Expression and localization of
935 HrpA1, a protein of *Xanthomonas campestris* pv. *vesicatoria* essential for pathogenicity and
936 induction of the hypersensitive reaction. *Journal of bacteriology*, 178(4), 1061-1069.
937 <https://doi.org/10.1128/jb.178.4.1061-1069.1996>
938 61 Nobori, T., & Tsuda, K. (2018). *In planta* Transcriptome Analysis of *Pseudomonas*
939 *syringae*. *Bio-protocol*, 8(17), e2987. <https://doi.org/10.21769/BioProtoc.2987>
940 62 Liao Y, Smyth GK, Shi W (2019). “The R package Rsubread is easier, faster, cheaper and
941 better for alignment and quantification of RNA sequencing reads.” *Nucleic Acids*
942 *Research*, **47**, e47. doi: 10.1093/nar/gkz114.
943 63 Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for
944 RNA-seq data with DESeq2.” *Genome Biology*, **15**, 550. doi: 10.1186/s13059-014-0550-8.
945 64 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers
946 differential expression analyses for RNA-sequencing and microarray studies.” *Nucleic Acids*
947 *Research*, **43**(7), e47. doi: 10.1093/nar/gkv007.
948 65 Storey JD, Bass AJ, Dabney A, Robinson D (2022). *qvalue: Q-value estimation for false*
949 *discovery rate control*. R package version 2.30.0, <http://github.com/jdstorey/qvalue>.
950 66 R Core Team (2013). R: A language and environment for statistical computing. R Foundation
951 for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, <http://www.R-project.org/>.
952 67 Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R Package for
953 Determining the Relevant Number of Clusters in a Data Set. *Journal of Statistical*
954 *Software*, 61(6), 1-36. <https://doi.org/10.18637/jss.v061.i06>
955 68 Struyf A, Hubert M, Rousseeuw P (1997). “Clustering in an Object-Oriented
956 Environment.” *Journal of Statistical Software*. doi:10.18637/jss.v001.i04.
957 69 Gu Z (2022). “Complex Heatmap Visualization.” *iMeta*. doi: 10.1002/imt2.43
958 70 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu x, Liu S, Bo
959 X, Yu G (2021). “clusterProfiler 4.0: A universal enrichment tool for interpreting omics
960 data.” *The Innovation*, **2**(3), 100141. doi: 10.1016/j.xinn.2021.100141
961 71 Mendiburu F and Yaseen M. (2020). agricolae: Statistical Procedures for Agricultural
962 Research. R package version 1.4.0 ,<https://myaseen208.github.io/agricolae/><https://cran.r-project.org/package=agricolae>.

964 72 Drula, E., Garron, M. L., Dogan, S., Lombard, V., Henrissat, B., & Terrapon, N. (2022). The
965 carbohydrate-active enzyme database: functions and literature. Nucleic acids research,
966 50(D1), D571.D577. <https://doi.org/10.1093/nar/gkab1045>
967 73 Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P., & Huerta-Cepas, J. (2021).
968 eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction
969 at the Metagenomic Scale. Molecular biology and evolution, 38(12), 5825.5829.
970 <https://doi.org/10.1093/molbev/msab293>

971

972

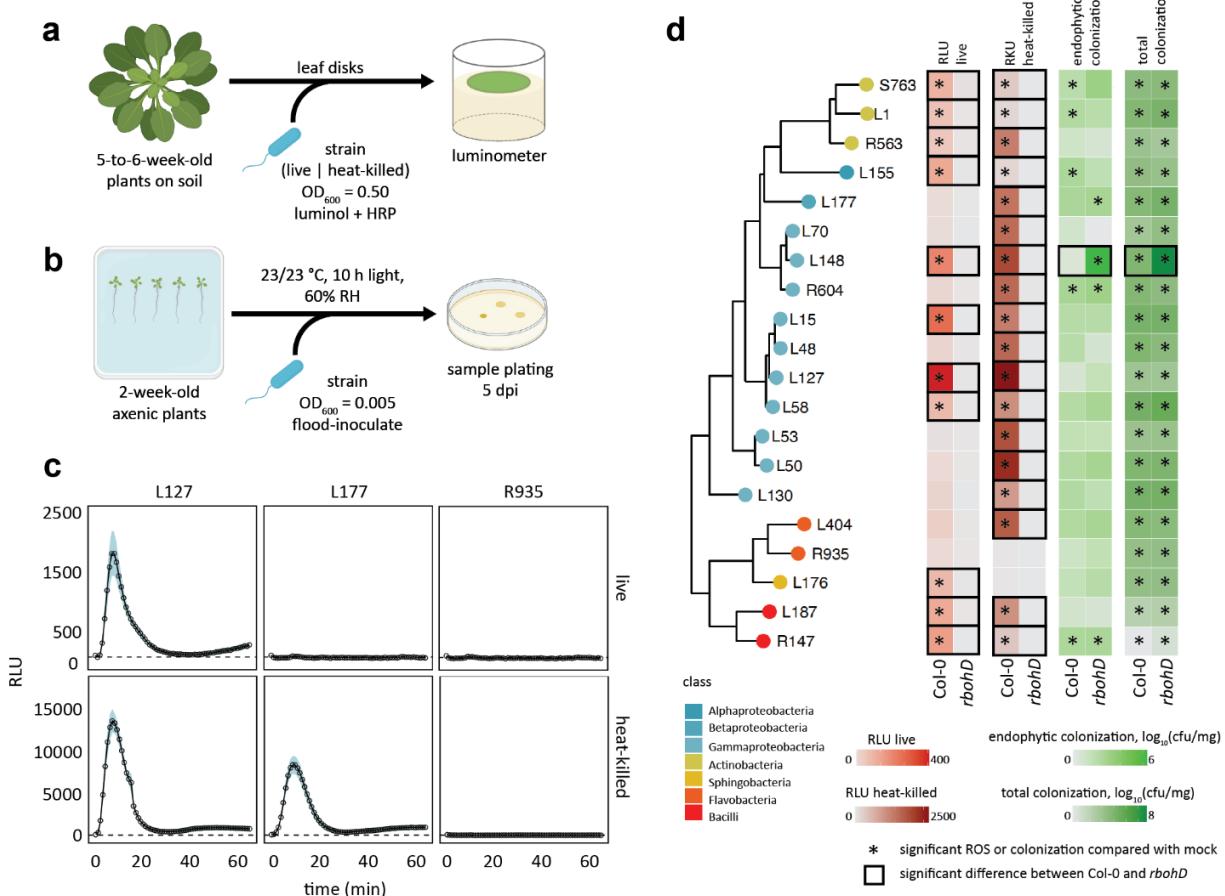
973 **Acknowledgements**

974 We thank Neysan Donnelly for editing and Wanqing Jiang for providing helpful comments
975 on the manuscript. This work was supported by the National Key R&D Program of China
976 (2022YFA1304403 to K.T.), the National Natural Science Foundation of China
977 (32250710139 to K.T.), Joint Funding of Huazhong Agricultural University and Agricultural
978 Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences
979 (S2YJY2021007 to K.T. and X.H.), the Max Planck Society (to P.S.-L and K.T.), and a
980 German Research Foundation (DFG) grant (SPP2125) (to P.S.-L and K.T.).

981

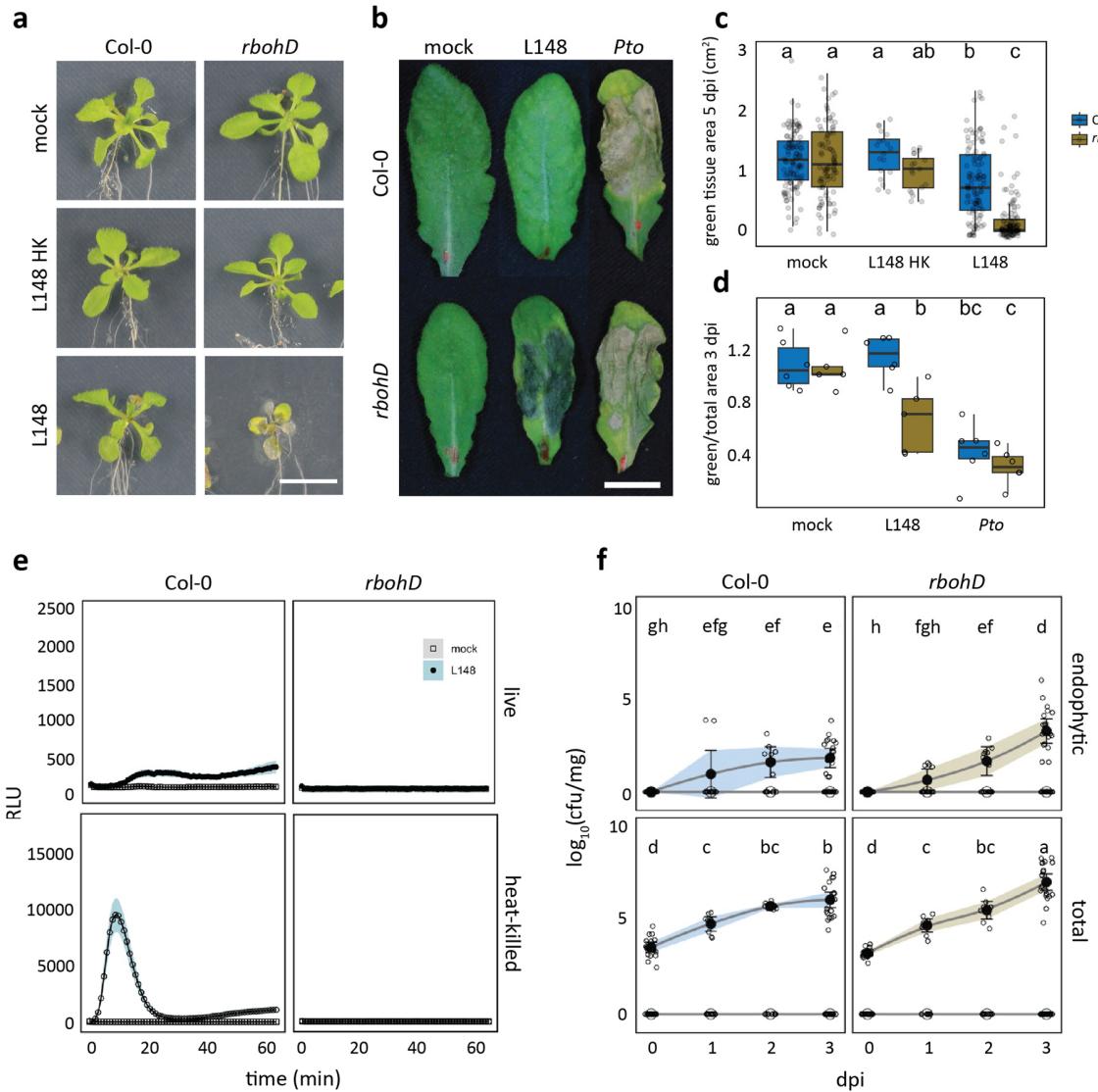
982 **Author Contribution**

983 F.E. and K.T. conceived the research. F.E., X.H., P.S.-L, and K.T. designed the research.
984 A.M. designed and constructed *Pto* lux. F.E. performed all of the experimental work and
985 the analysis of the data. F.E. and K.T. wrote the manuscript with input from all the authors.


986

987 **Competing interests**

988 The authors declare no competing interests.


989

990 **Figures and Figure legends**
991
992
993

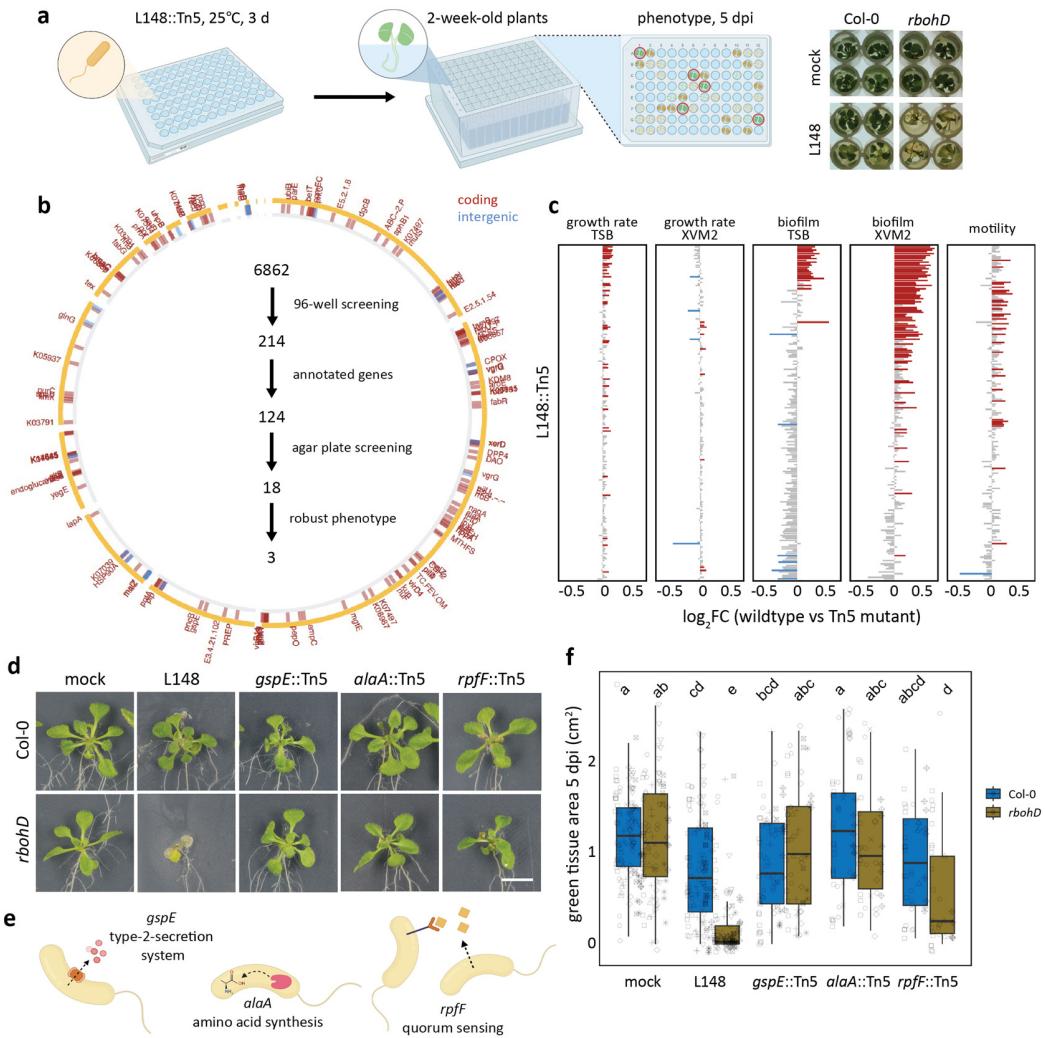
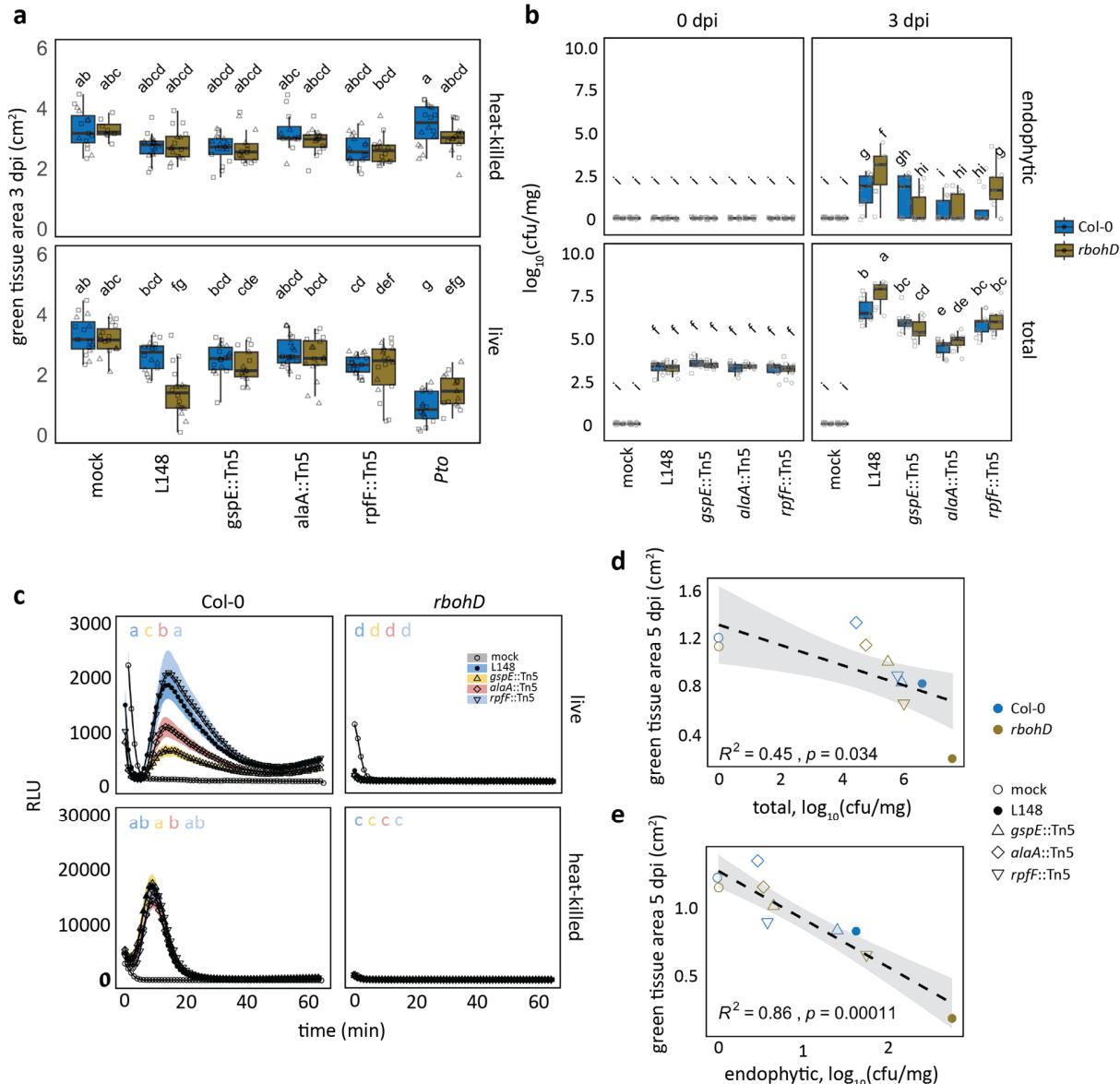
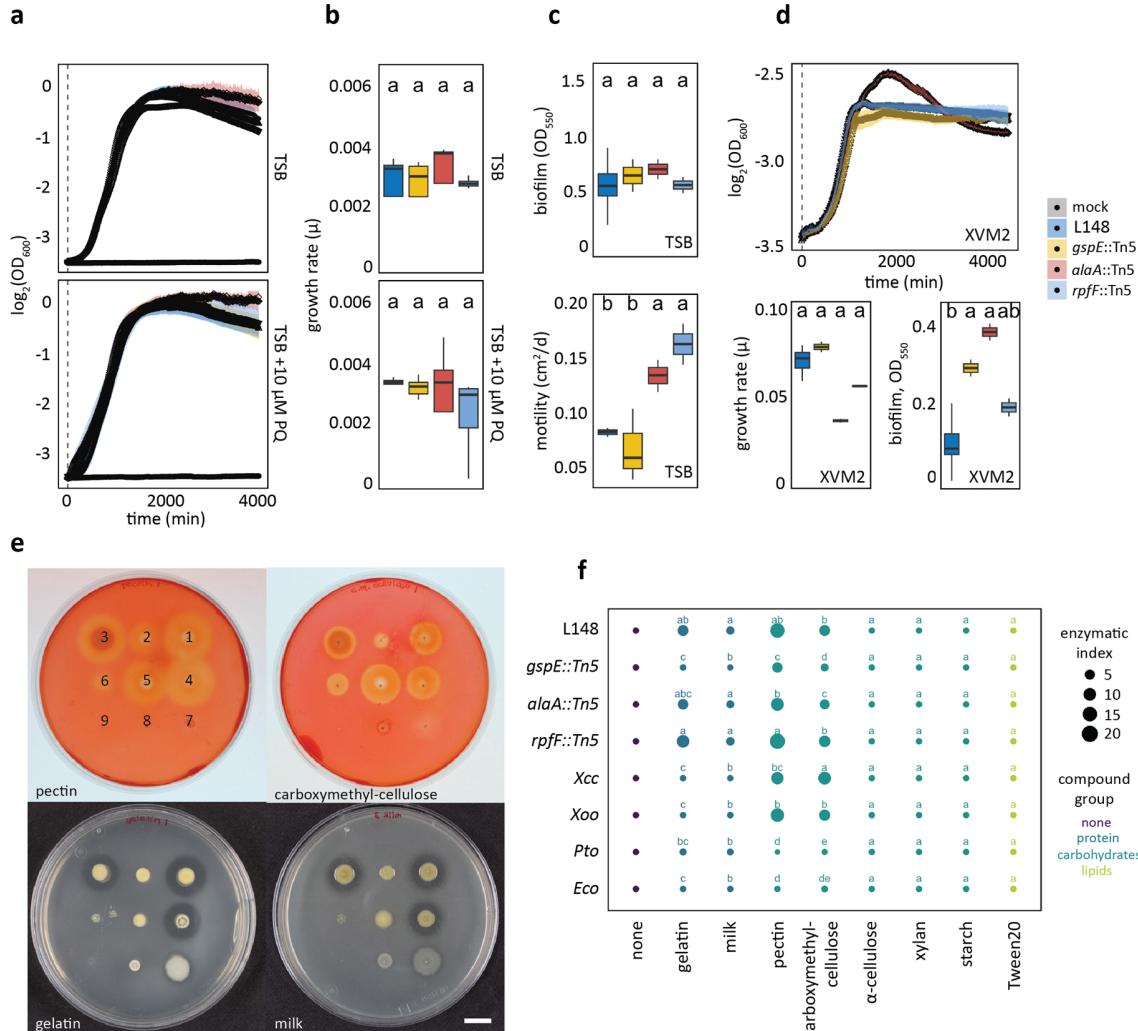


Figure 1. Immunogenic and colonization profile of microbiota members in mono-associations.
Schematic diagram of ROS burst assay (a) in leaf discs from 5 to 6-week-old Col-0 plants treated with live or heat-killed bacterial cells ($OD_{600}=0.5$) and colonization capacities (b) of the microbiota members upon flood inoculation ($OD_{600}=0.005$) of 2-week-old Col-0 plants at 5 dpi. c, ROS burst profile of representative strains with varying behaviors: immune-active, -evasive, and -quiescent, for *Pseudomonas* L127, *Burkholderia* L177, and *Flavobacterium* R935, respectively (see Supplementary Figure S2 for the full ROS burst profiles). d, Phylogenetic relationship of the selected microbiota members and the heatmap representation of their corresponding ROS burst profiles using live and heat-killed cells, and their respective colonization capacities in leaves of Col-0 and *rbohD* plants; * indicates significant within-genotype difference of the trait between mock and the bacterial strain in question; □ indicates significant within-strain difference of the trait between Col-0 and *rbohD* plants (ANOVA with *post hoc* Tukey's test, $P \leq 0.05$). Experiments were repeated at least two times each with 8 biological replicates for ROS assay and 3–4 biological replicates for colonization assays (See Supplementary Figure S3 for the full colonization profiles and Supplementary Table S2 for detailed descriptions of the strains included). Some illustrations were created with BioRender.

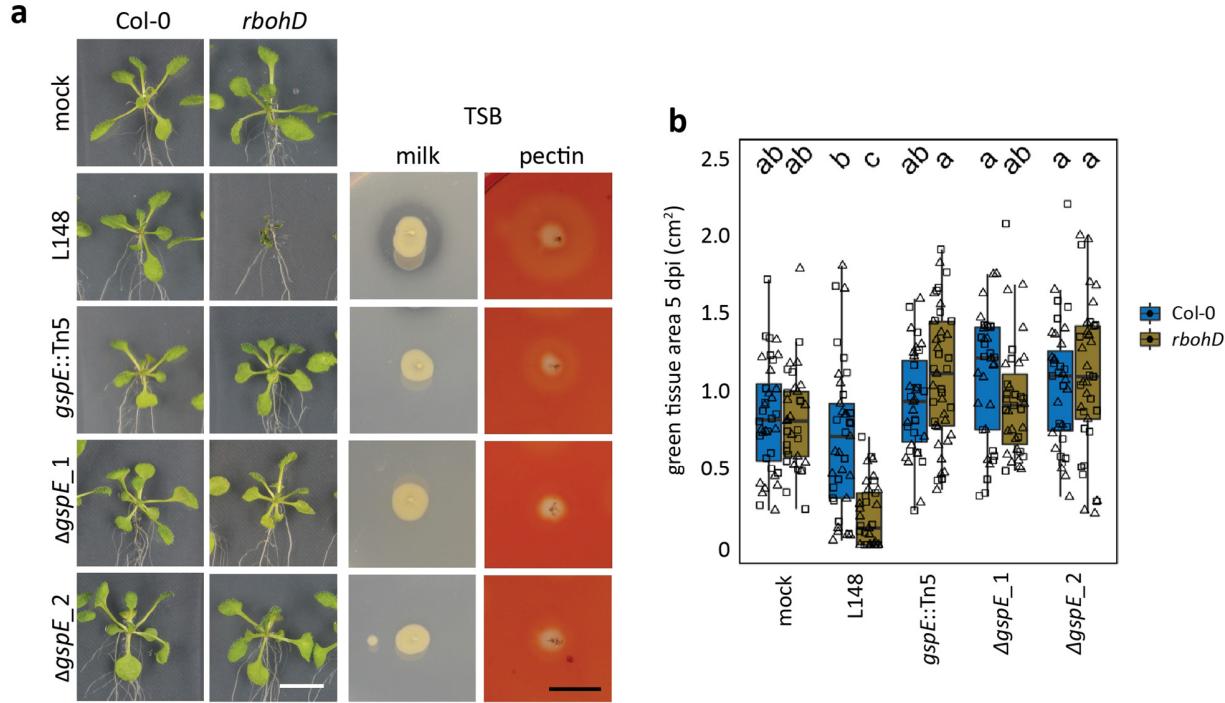

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

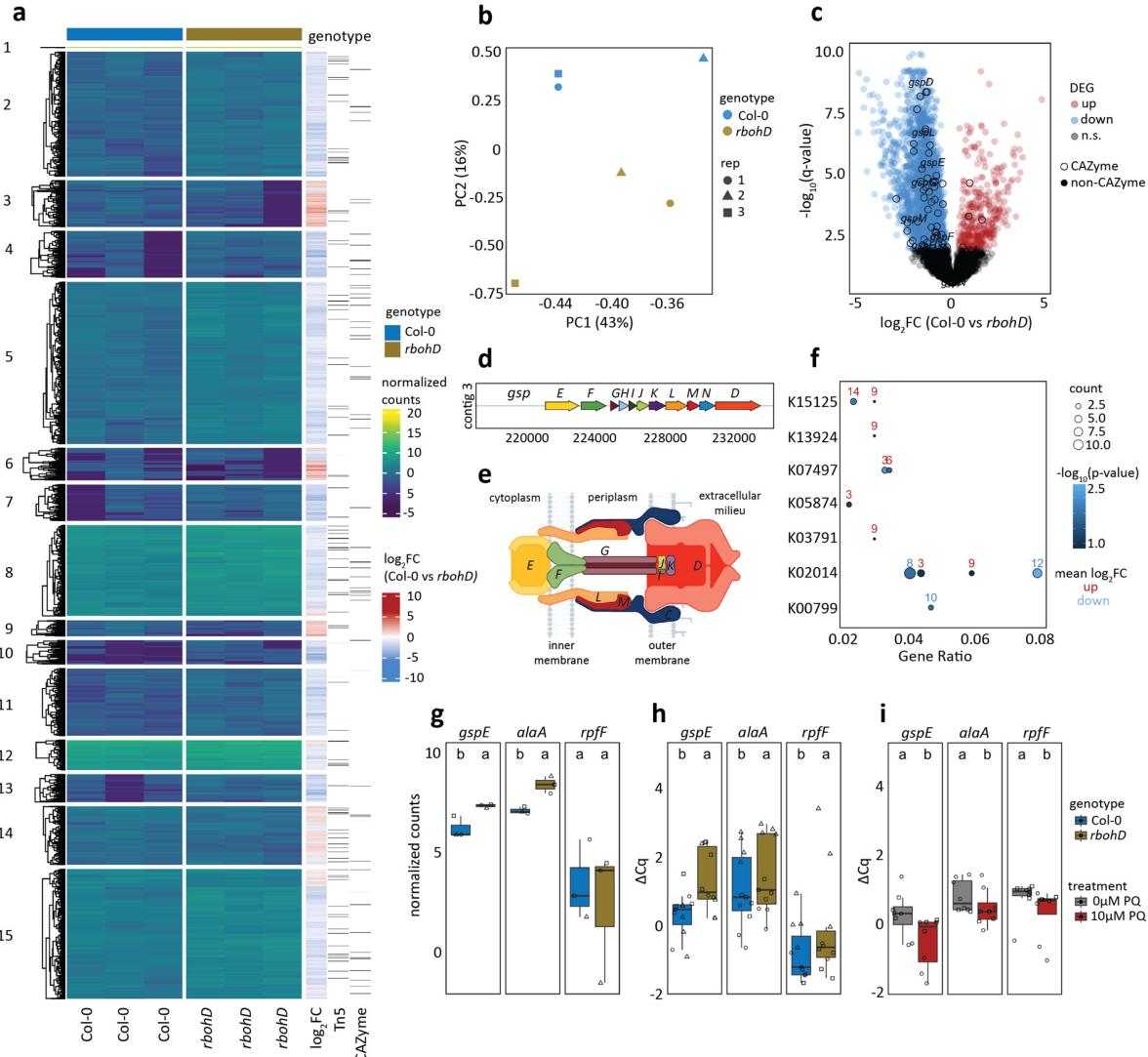
1012
1013
1014 **Figure 2. *Xanthomonas* L148 is detrimental to *rbohD* mutant but not to Col-0 wild-type plants. a, c.**
1015 Representative images (a) and quantification of green tissue area (c) as the plant health parameter. 14-
1016 day-old Col-0 and *rbohD* plants grown on agar plates were flood-inoculated with mock and live and heat-
1017 killed (HK) *Xanthomonas* L148 ($OD_{600}=0.005$). Samples were taken at 5 dpi (4 independent experiments
1018 each with at least 5 biological replicates). b, d. Representative images (b) and quantification of percentage
1019 green tissue of leaves (d) hand-infiltrated with mock, *Xanthomonas* L148 and *Pto* ($OD_{600}=0.2$). Samples
1020 were taken at 3 dpi (2 independent experiments each with 3–4 biological replicates). e, ROS burst profile
1021 of leaf discs of 5–6-week-old Col-0 and *rbohD* plants treated with live and heat-killed *Xanthomonas* L148
1022 ($OD_{600}=0.5$) (at least 4 independent experiments each with 8 biological replicates). f, Infection dynamics of
1023 *Xanthomonas* L148 upon flood inoculation of 14-day-old Col-0 and *rbohD* plants grown in agar plates
1024 ($OD_{600}=0.005$). Leaf samples were harvested at 0 to 3 dpi for total and endophytic compartments (2
1025 independent experiments each with 3–4 biological replicates). Results in c and d are depicted as box plots
1026 with the boxes spanning the interquartile range (IQR, 25th to 75th percentiles), the mid-line indicates the
1027 median, and the whiskers cover the minimum and maximum values not extending beyond 1.5x of the IQR.
1028 Results in f are shown as line graphs using Locally Estimated Scatter Plot Smoothing (LOESS) with error
1029 bars and shadows indicating the standard errors of the mean. c,d,f, ANOVA with *post hoc* Tukey's test.
1030 Different letters indicate statistically significant differences ($P \leq 0.05$).



1031
1032 **Figure 3. Xanthomonas L148::Tn5 mutant screening unveils genetic determinants of its pathogenic**
1033 **potential.** **a**, Schematic diagram of the optimized high-throughput genetic screening for the *Xanthomonas*
1034 *L148::Tn5* mutant library. Bacterial strains were inoculated onto 2-week-old *rbohD* plants followed by
1035 phenotyping at 5 dpi. **b**, Genomic coordinates of genes disrupted in the 214 *Xanthomonas L148::Tn5*
1036 candidate strains. A total of 6,862 *Xanthomonas L148::Tn5* strains were screened for loss of *rbohD* killing
1037 activity in a 96-well high-throughput format (2 independent experiments). We identified 124 strains with
1038 functional annotations, which were subsequently screened using the agar plate format, resulting in 18
1039 strains with robust phenotypes. Finally, 3 strains were selected as the best-performing candidate strains. **c**,
1040 *In vitro* phenotypes of the 214 candidate strains: growth rates, biofilm production, and motility in rich TSB
1041 medium; growth rates and biofilm production in a minimal XVM2 medium. Data from 2 independent
1042 experiments each with 2–3 biological replicates were used for ANOVA with a *post hoc* Least Significant
1043 Difference (LSD) test. Red and blue bars indicate significantly higher or lower than the wild-type
1044 *Xanthomonas L148* ($P \leq 0.05$), respectively. **d**, **f**, Representative images (**d**) and quantification of green
1045 tissue area (**f**) as plant health parameter of Col-0 and *rbohD* plants flood mono-inoculated with
1046 *Xanthomonas L148::Tn5* strains ($OD_{600}=0.005$). Samples were harvested at 5 dpi. Data from at least 4
1047 independent experiments each with 3–4 biological replicates were used for ANOVA with a *post hoc* Tukey's
1048 test. Different letters indicate statistically significant differences ($P \leq 0.05$). **e**, Graphical representation of
1049 the functions of the candidate genes. Results in **f** are depicted as box plots with the boxes spanning the
1050 interquartile range (IQR, 25th to 75th percentiles), the mid-line indicates the median, and the whiskers cover
1051 the minimum and maximum values not extending beyond 1.5x of the IQR. Some of the illustrations were
1052 created using BioRender.

1053
1054


1055 **Figure 4. T2SS, amino acid metabolism, and quorum sensing underpin conditional pathogenicity of**
1056 ***Xanthomonas* L148 in *rbohD* plants.** **a,** Quantification of green tissue area of hand-infiltrated 5 to 6-week-old Col-0 and *rbohD* leaves with *Xanthomonas* L148::Tn5 mutant strains using live and heat-killed cells as inoculum ($OD_{600}=0.2$). Samples were collected at 3 dpi (2 independent experiments each with 3–4 biological replicates). **b,** Infection dynamics in axenic Col-0 and *rbohD* plants flood-inoculated with *Xanthomonas* L148::Tn5 mutant strains ($OD_{600}=0.005$). Samples were harvested at 0 to 3 dpi for total and endophytic leaf compartments (2 independent experiments each with 3–4 biological replicates). **a,b,** ANOVA with post hoc Tukey's test. Different letters indicate statistically significant differences ($P \leq 0.05$). Results in **a** and **b** are depicted as box plots with the boxes spanning the interquartile range (IQR, 25th to 75th percentiles), the mid-line indicates the median, and the whiskers cover the minimum and maximum values not extending beyond 1.5x of the IQR. **c,** ROS burst profile of leaf discs of 5–6-week-old Col-0 and *rbohD* plants treated with live and heat-killed *Xanthomonas* L148 wild-type and L148::Tn5 mutant strains ($OD_{600}=0.5$) (at least 4 independent experiments each with 8 biological replicates). **d,e,** Pearson correlation analyses of plant health performance measured as green tissue area against bacterial colonization capacities in the total (**d**) and endophytic (**e**) compartments (R^2 , coefficient of determination).



1070

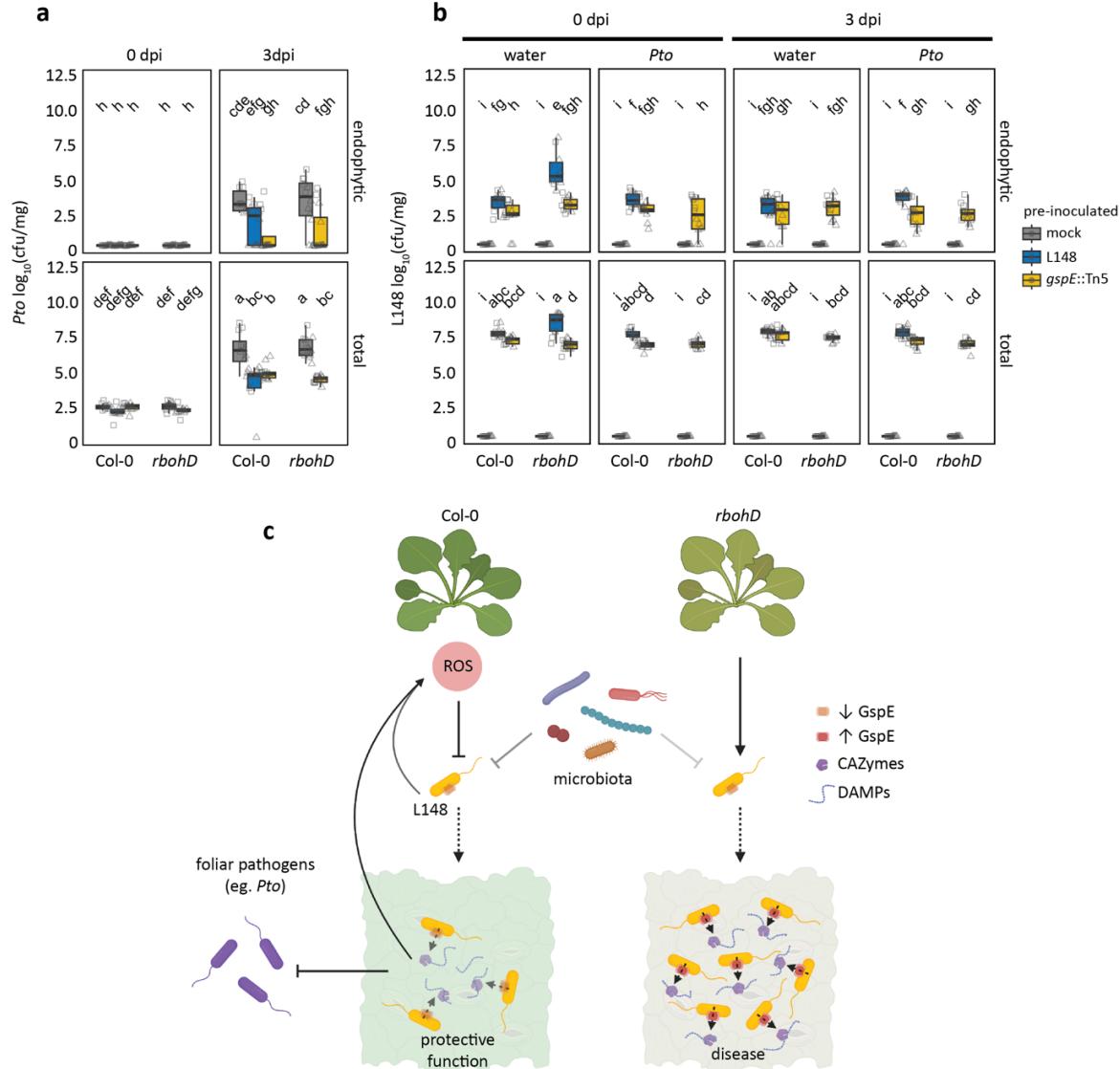
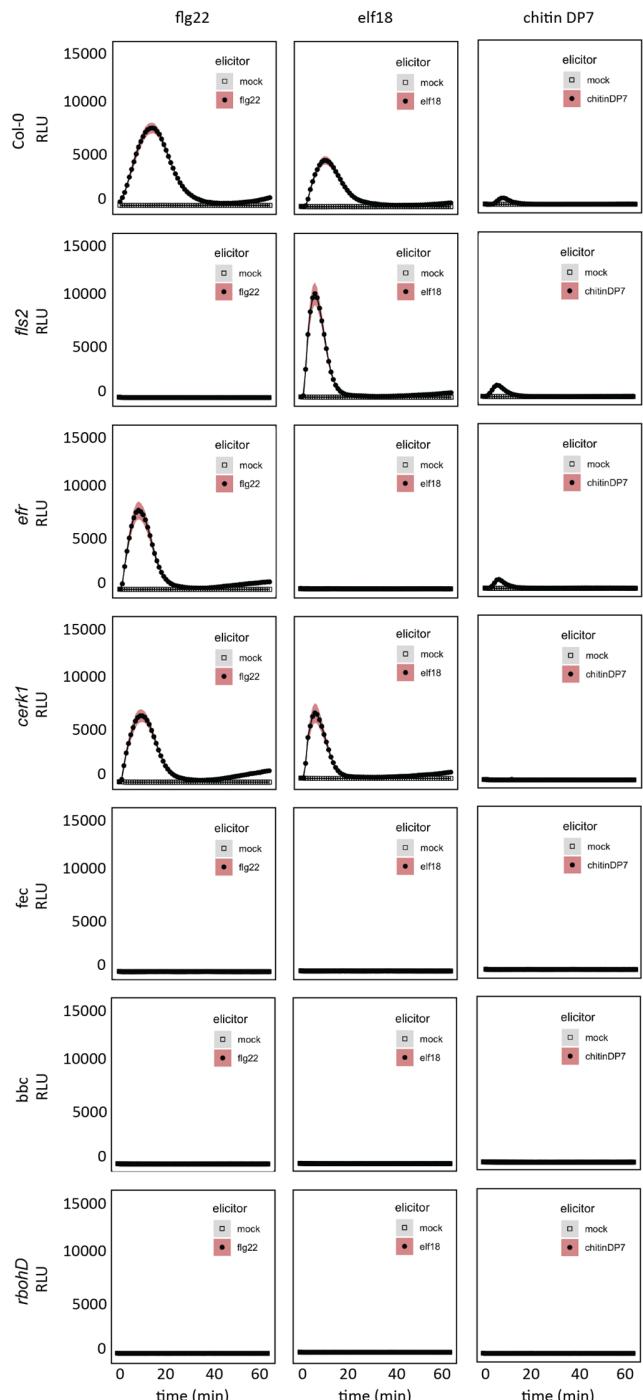
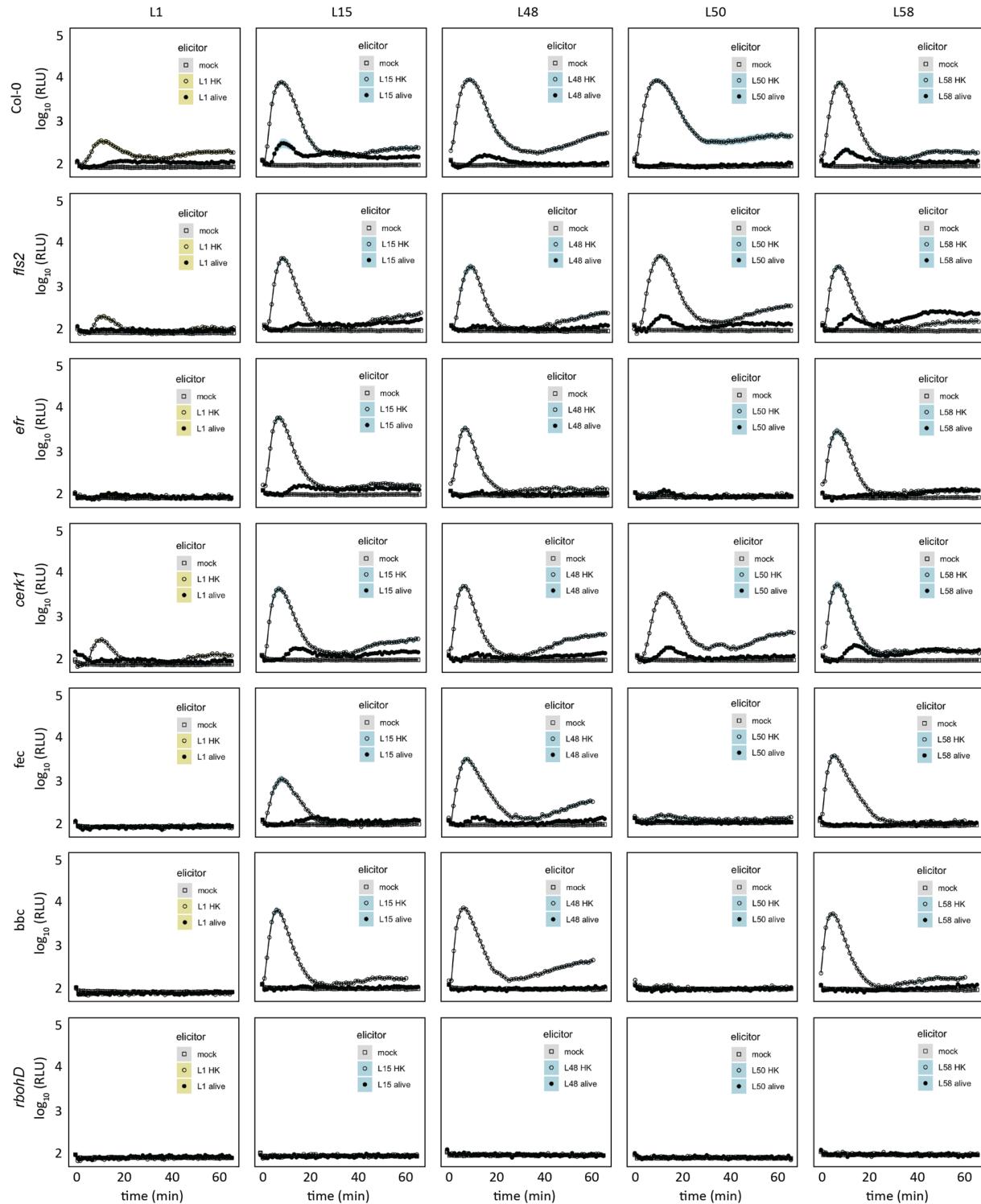

1071

Figure 5. The *Xanthomonas* L148 *gspE*::Tn5 mutant exhibits compromised extracellular secretion activity. **a,b**, Growth curves (a) and rates (b) of *Xanthomonas* L148::Tn5 candidate mutant strains in TSB upon chronic exposure to 0 or 10 μ M PQ for 4000 min (2 independent experiments each with 3 biological replicates). **c**, Biofilm production and motility of *Xanthomonas* L148::Tn5 candidate mutant strains in TSB medium (2 independent experiments each with 2–3 biological replicates). **d**, Growth curves, growth rates, and biofilm production of *Xanthomonas* L148::Tn5 candidate mutants in XVM2 (2 independent experiments each with 2–3 biological replicates). **e**, Exemplary images of plate assays for secretion activities of bacterial strains (1 = wildtype *Xanthomonas* L148; 2 = *gspE*::Tn5; 3 = *alaA*::Tn5; 4 = *rpfF*::Tn5; 5 = *Xanthomonas campestris* pv. *campestris* [Xcc]; 6 = *X. oryzae* pv. *oryzae* [Xoo]; 7 = *P. syringae* pv. *tomato* DC3000 [Pto]; 8 = *E. coli* HB101 [Eco]; and 9 = mock) for the carbohydrates pectin and carboxymethylcellulose, and gelatin and milk proteins. **f**, Enzymatic indices for bacterial strains grown on TSB supplemented with 0.1% substrates (proteins: gelatin and milk; carbohydrates: pectin, carboxymethyl-cellulose, α -cellulose, xylan, and starch; lipids: Tween20) after 2 day-incubation at 28 °C (3 biological replicates). The enzymatic indices were calculated by subtracting the size of the colony with the zone of clearance, indicative of substrate degradation by the strain after 2–3 d. **b,d**, the growth rate, μ , was calculated by running rolling regression with a window of 5 h along the growth curves to determine the maximum slope. **b–d, f**, Different letters indicate statistically significant differences (ANOVA with *post hoc* Tukey's test, $P \leq 0.05$). Results in **b, c** and **d** are depicted as box plots with the boxes spanning the interquartile range (IQR, 25th to 75th percentiles), the mid-line indicates the median, and the whiskers cover the minimum and maximum values not extending beyond 1.5x of the IQR.


1105
1106 **Figure 7. Plant ROS suppress T2SS genes including gspE of *Xanthomonas* L148.** **a**, Heatmap
1107 representation of *in planta* bacterial transcriptome landscape of the wildtype *Xanthomonas* L148 in Col-0
1108 and rbohD plants. Leaves of 2-week-old plants were flood-inoculated with L148 and samples were taken
1109 at 2 dpi. Gene clusters were based on k-means clustering of the normalized read counts. DEGs were
1110 defined based on q-value < 0.05. Sidebars indicate the log₂ fold changes of Col-0 compared with rbohD,
1111 *Xanthomonas* L148::Tn5 candidate genes (the 214 candidates), and the genes annotated as CAZymes
1112 highlighted. **b**, Principal component (PC) analysis of the *in planta* *Xanthomonas* L148 transcriptome for DEGs in Col-0 and
1113 rbohD plants. **c**, Volcano plot of the DEGs with which T2SS component genes were labelled and CAZymes
1114 highlighted. **d**, Genomic architecture of the T2SS genes. **e**, Graphical representation of T2SS assembly. **f**,
1115 KEGG pathway enrichment analysis of the gene clusters (indicated in numbers) in **a**. **g**, RNA-Seq
1116 normalized counts of gspE, alaA, and rpfF. **h**, Independent qRT-PCR experiments for *in planta* expression
1117 profiling of gspE, alaA, and rpfF. Experiments were performed as in RNA-seq with 2 independent
1118 experiments each with 3–4 biological replicates. **i**, qRT-PCR *in vitro* expression profiling of gspE, alaA, and
1119 rpfF in *Xanthomonas* L148 wildtype strain grown in TSB ± 10 μM PQ for 24 h (2 independent experiments
1120 each with 3–4 biological replicates). **h,i**, Gene expression was normalized against the housekeeping gene
1121 *gyrA*. Different letters indicate statistically significant differences (ANOVA with *post hoc* Tukey's test, $P \leq$
1122 0.05). Results in **g–i** are depicted as box plots with the boxes spanning the interquartile range (IQR, 25th to
1123 75th percentiles), the mid-line indicates the median, and the whiskers cover the minimum and maximum
1124 values not extending beyond 1.5x of the IQR. Some illustrations were created with BioRender.

1125
1126 **Figure 8. RBOHD-mediated ROS turn *Xanthomonas* L148 into a beneficial bacterium.** **a, b**, 14-day-
1127 old Col-0 and *rbohD* plants grown on agar plates were flood-inoculated with wildtype *Xanthomonas* L148
1128 and *gspE::Tn5* ($OD_{600}=0.005$) for 5 days followed by spray infection with *Pto*. Bacterial titers were
1129 determined at 0 and 3 dpi (**a**, *Pto*; **b**, L148) (2 independent experiments each with 6 (**a**) or 3–5 (**b**) biological
1130 replicates). Different letters indicate statistically significant differences (ANOVA with *post hoc* Tukey's test,
1131 $P \leq 0.05$). Results in **a–b** are depicted as box plots with the boxes spanning the interquartile range (IQR,
1132 25th to 75th percentiles), the mid-line indicates the median, and the whiskers cover the minimum and
1133 maximum values not extending beyond 1.5x of the IQR. **c**, Mechanistic model for plant ROS licensing of
1134 co-habitation with a potentially pathogenic *Xanthomonas* L148 commensal, where the microbe releases
1135 MAMPs that are perceived by plants and trigger ROS production. The T2SS delivers CAZymes to the host
1136 to degrade cell wall liberating DAMPs and/or the CAZymes act as a MAMP, which both can potentially
1137 bolster ROS generation. The ROS then acts as a molecular beacon for *Xanthomonas* L148 to suppress its
1138 pathogenicity, in particular by dampening the activity of T2SS resulting in a negative feedback regulation of
1139 the bacterial activity by the plant host. We propose that in wild-type Col-0 plants, the ROS- and the
1140 microbiota-mediated suppression of *Xanthomonas* L148 promotes the cooperative behavior of L148 with
1141 the host plant and in turn confers protective function against subsequent invasion by foliar pathogens. In
1142 the case of *rbohD* mutant plants wherein plant ROS is absent, *Xanthomonas* L148 virulence is unlocked,
1143 resulting in disease. Some illustrations were created with BioRender.

1144
1145

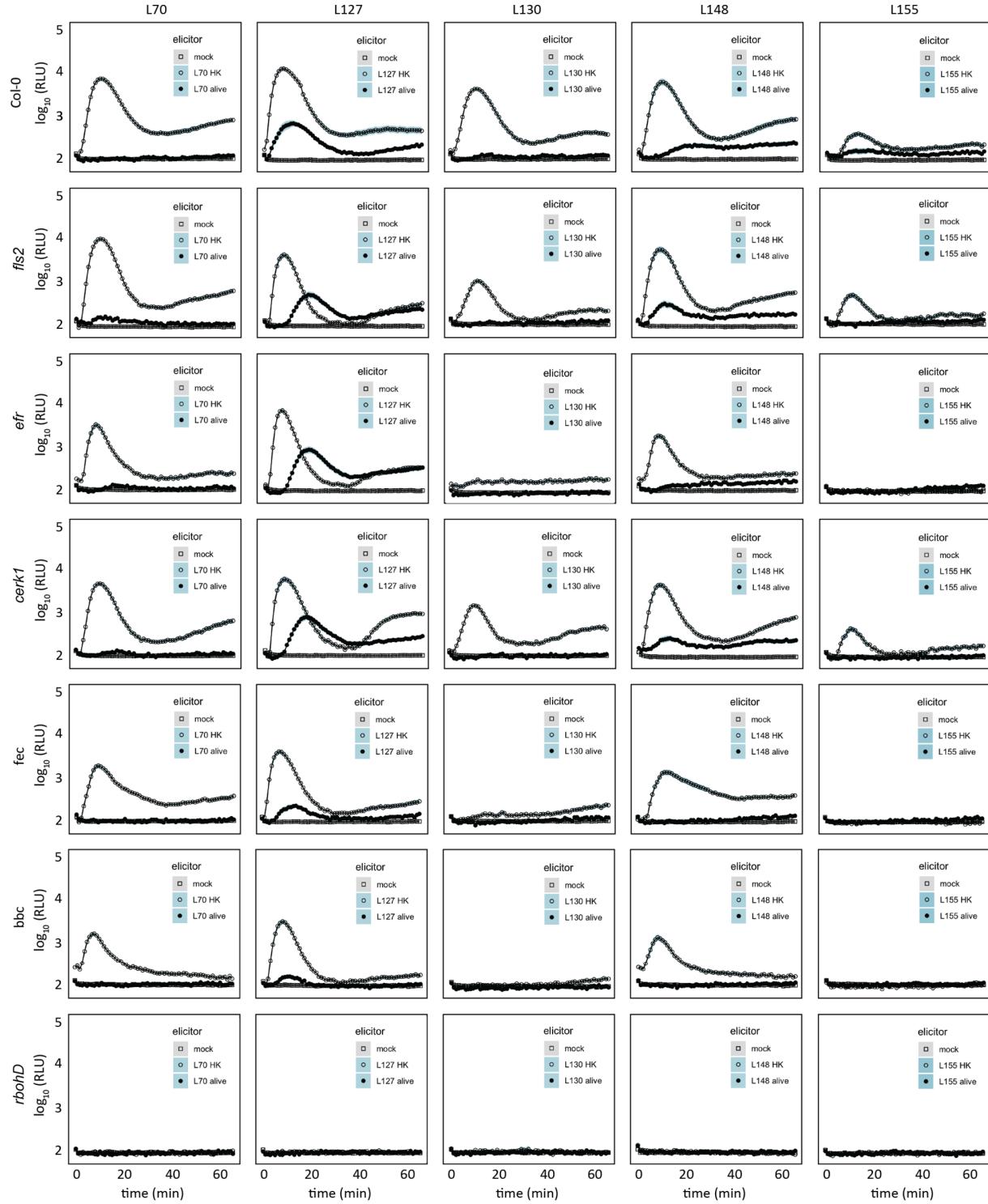

Supplementary Figures and legends

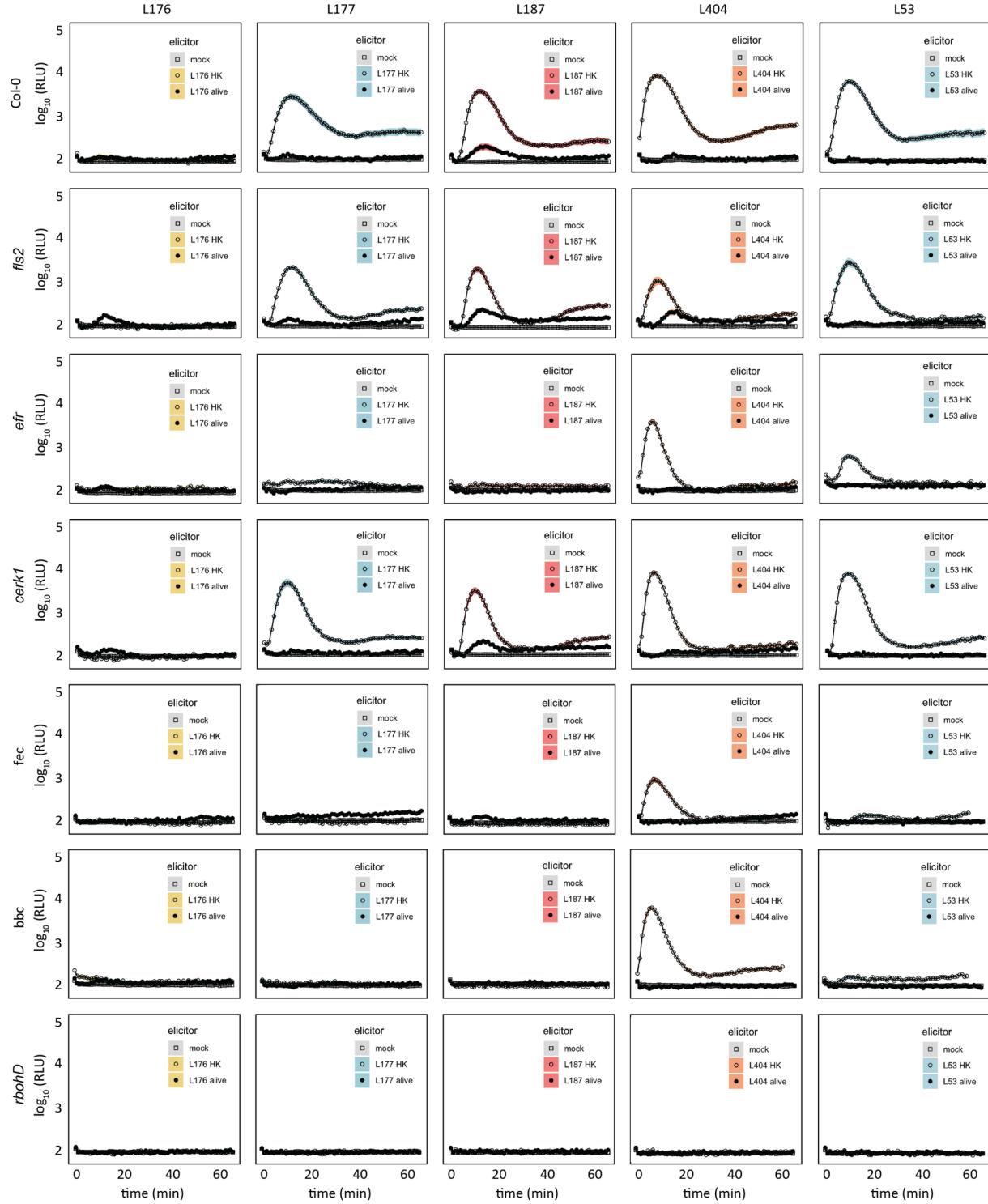
1146
1147
1148
1149
1150
1151
1152

Supplementary Figure S1. ROS burst profile of immune-compromised mutants and Col-0 wildtype plants with MAMPs. Leaf discs from 5-to-6-week-old plants were treated with 1 μ M of MAMPs, flg22, elf18, and chitinDP7. The immune-compromised mutant *fls2* lacks the receptor recognizing flg22, *efr* lacks the receptor for elf18, and *cerk1* lacks the co-receptor for chitinDP7; *fec* (*fls2* *efr*, *cerk1*) and *bbc* (*bak1* *bbc1* *cerk1*) are triple mutants lacking the MAMP (co) receptor. Data from at least 2 independent experiments each with 8 biological replicates were used.

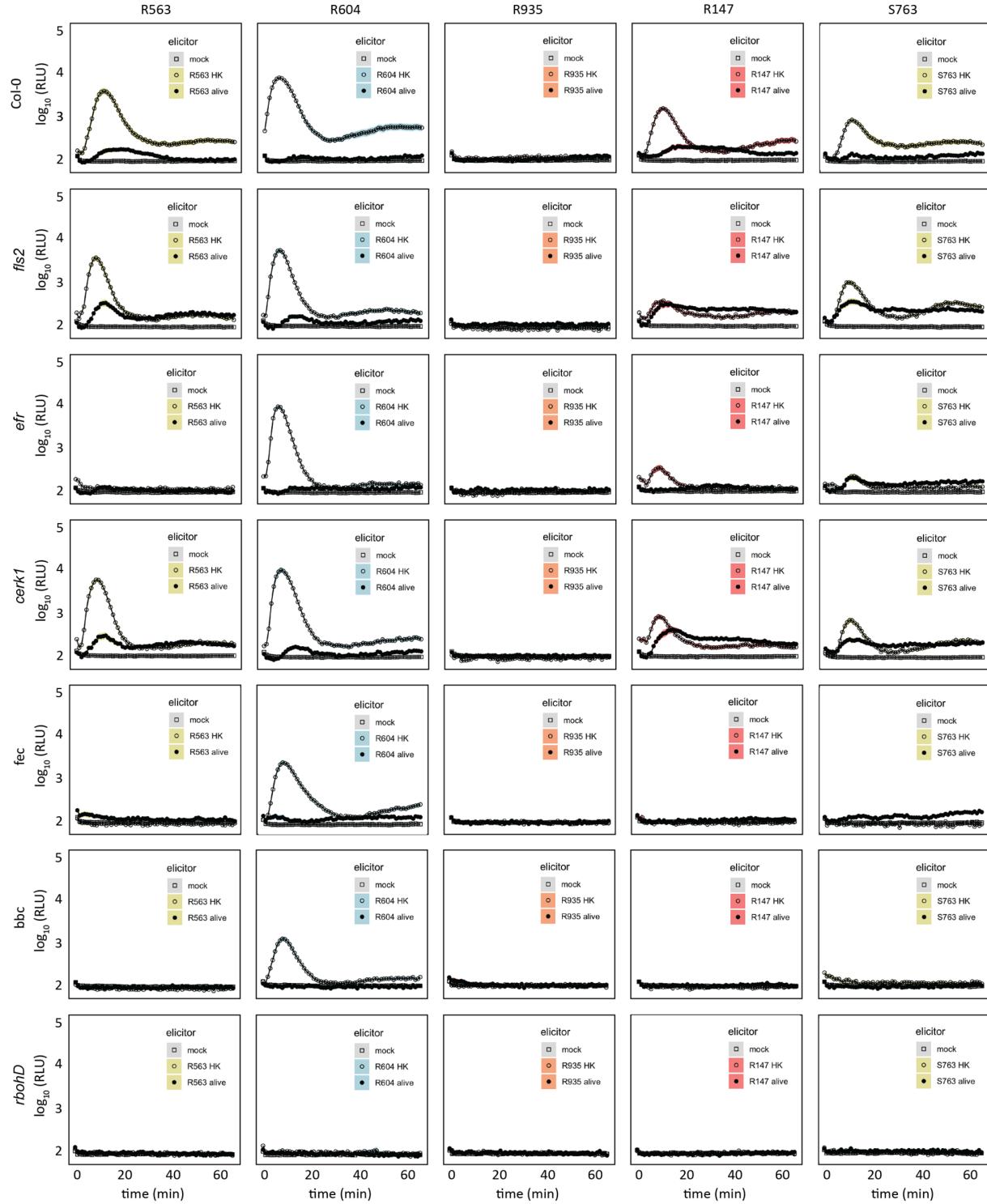
1153

1154


1155


1156

1157

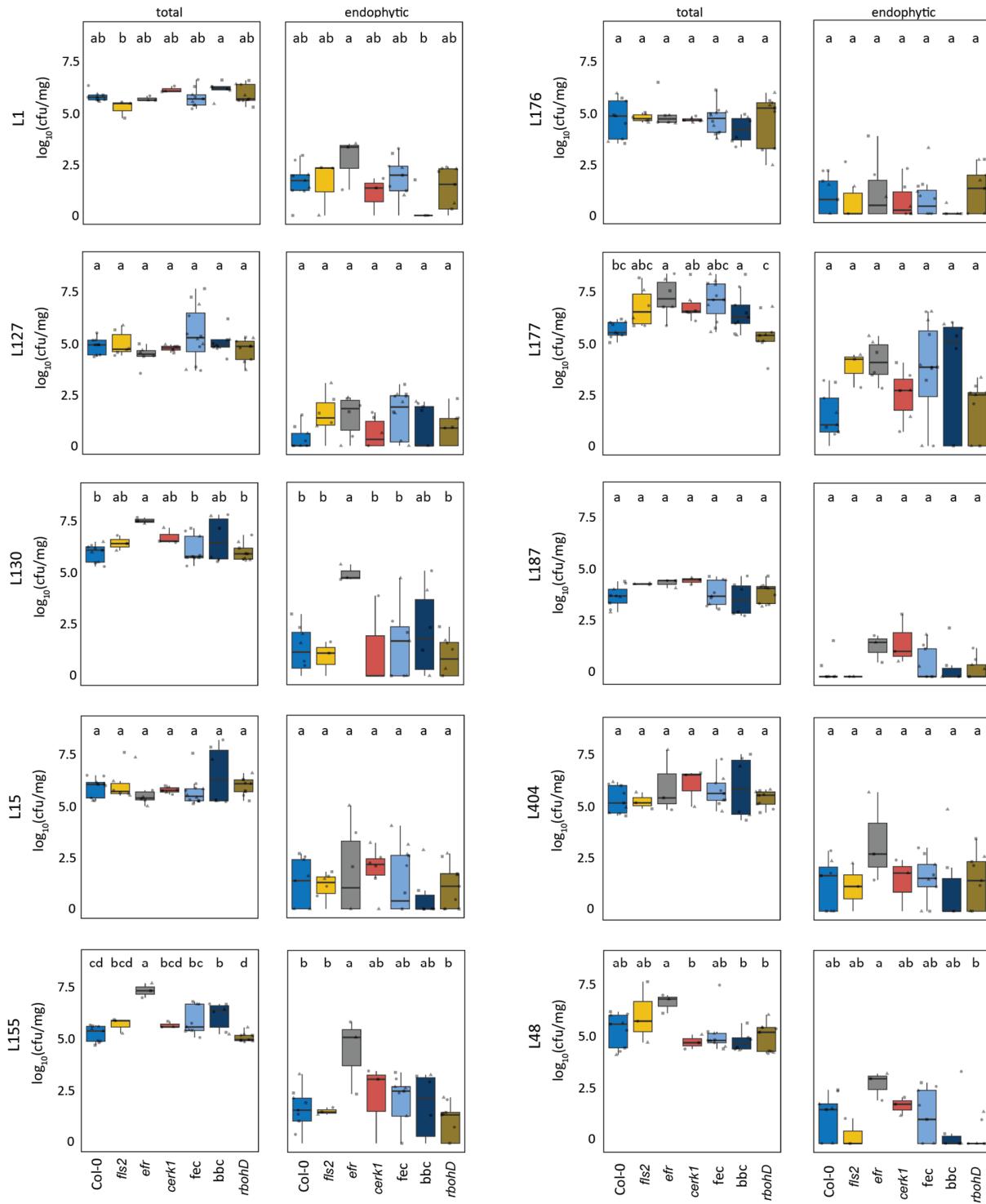

1158

1159

1163
1164
1165
1166
1167

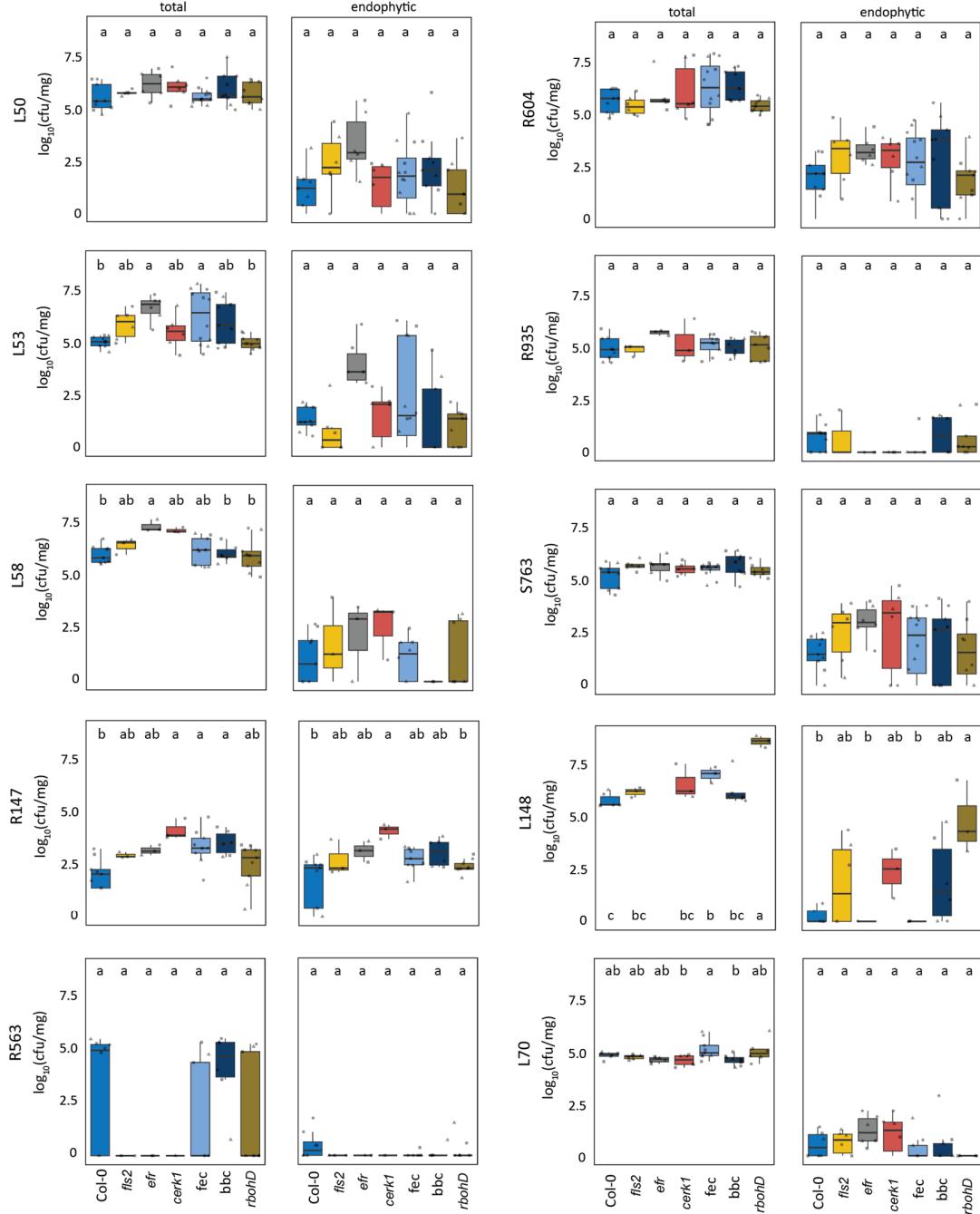
1168

1169

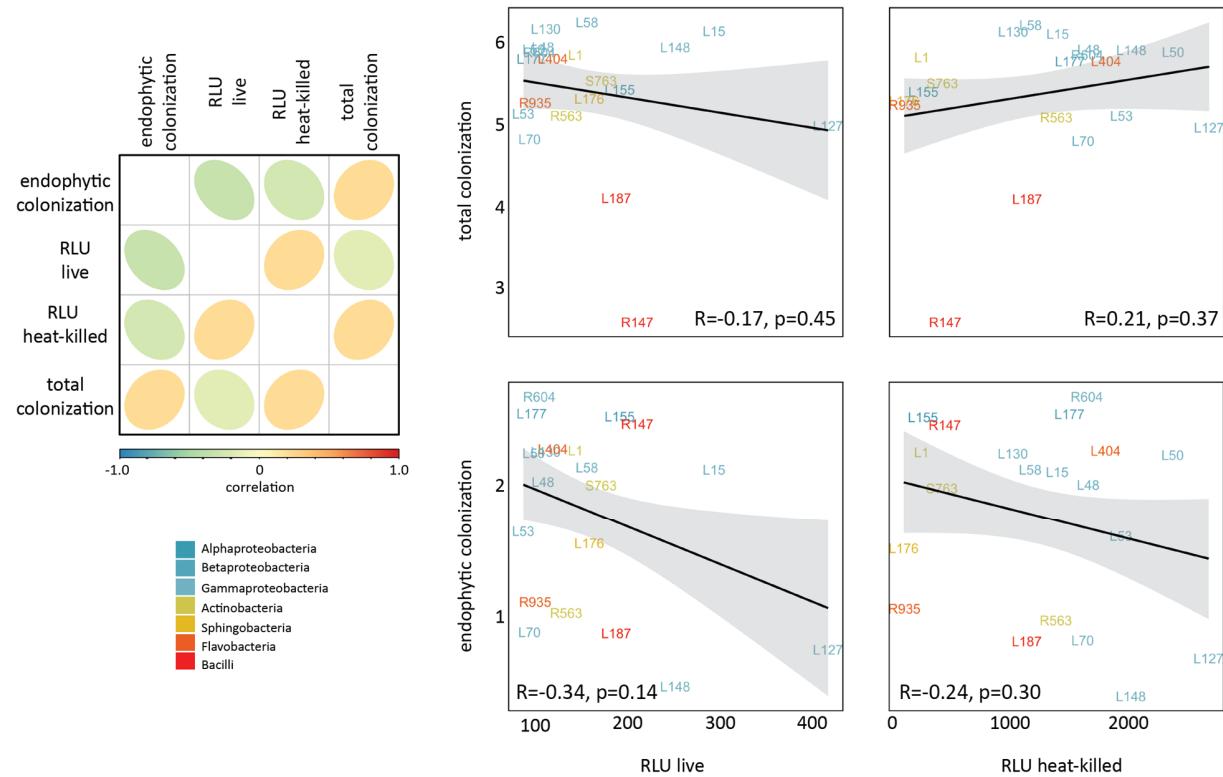

1170

1171

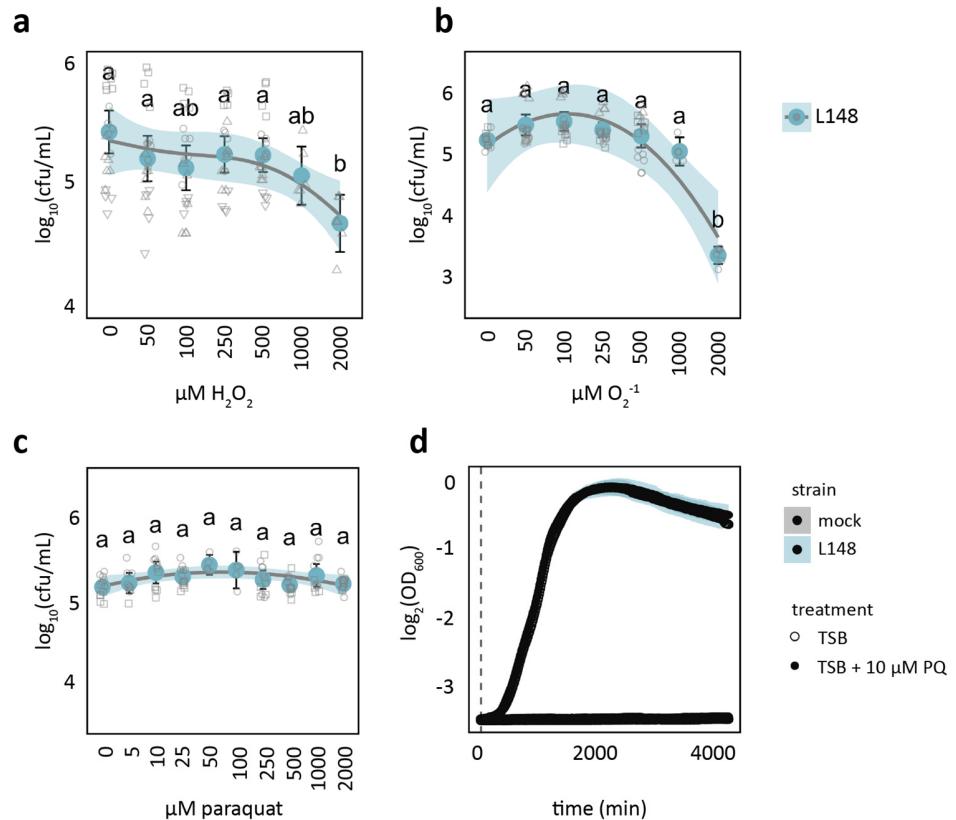
1172


1173

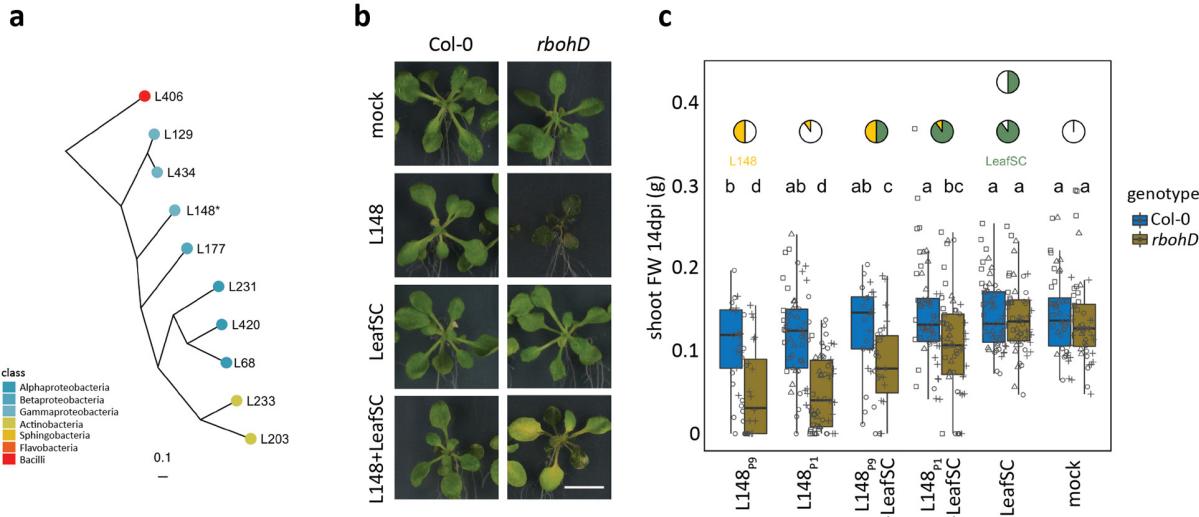
Supplementary Figure S2. ROS burst profile of immune-compromised mutants and Col-0 wild-type plants with commensal bacteria. Leaf discs from 5-to-6-week-old plants were inoculated with live or heat-killed microbiota strains ($OD_{600}=0.5$) in mono-associations for ROS burst assays. Data from at least 2 independent experiments each with 8 biological replicates were used.


1174
1175
1176
1177
1178
1179
1180

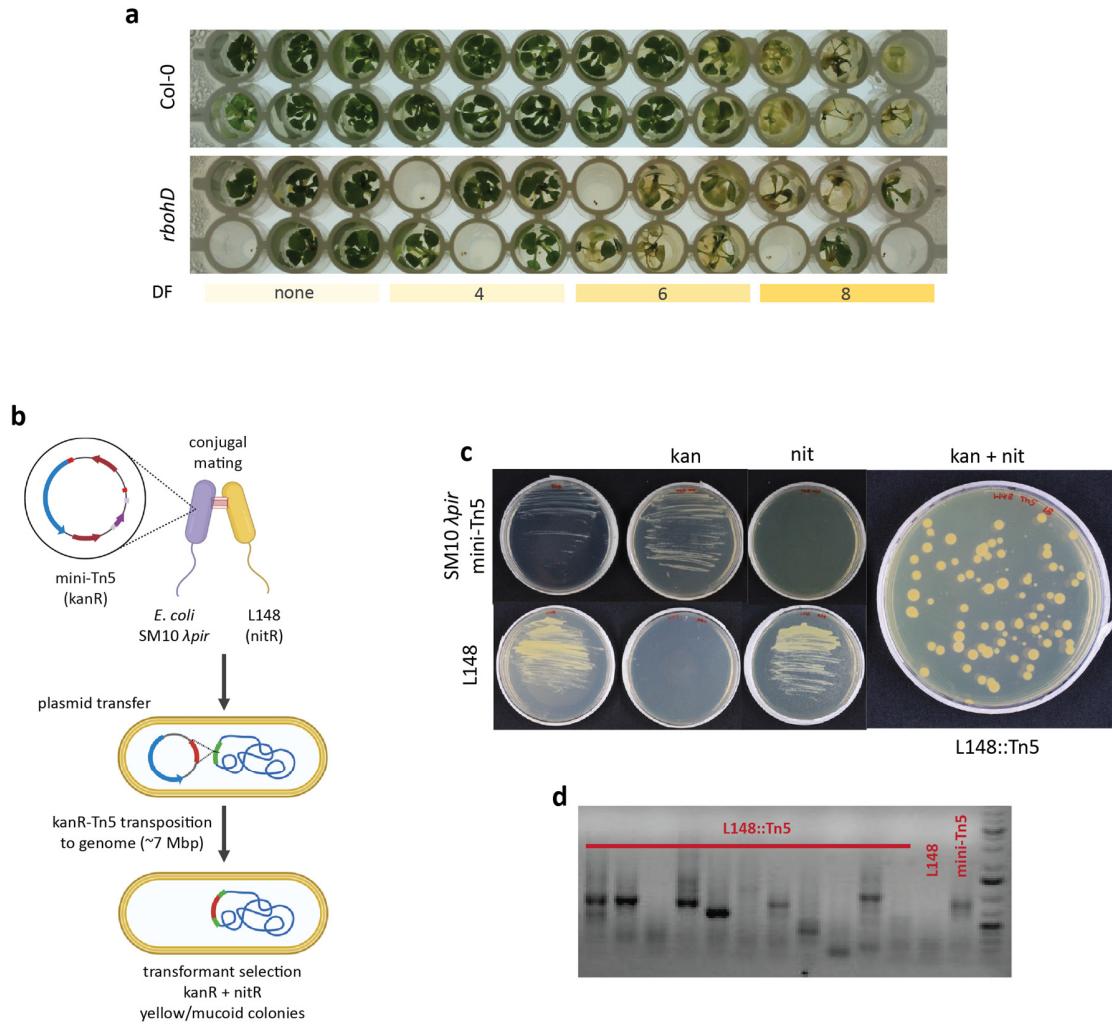
1181
1182



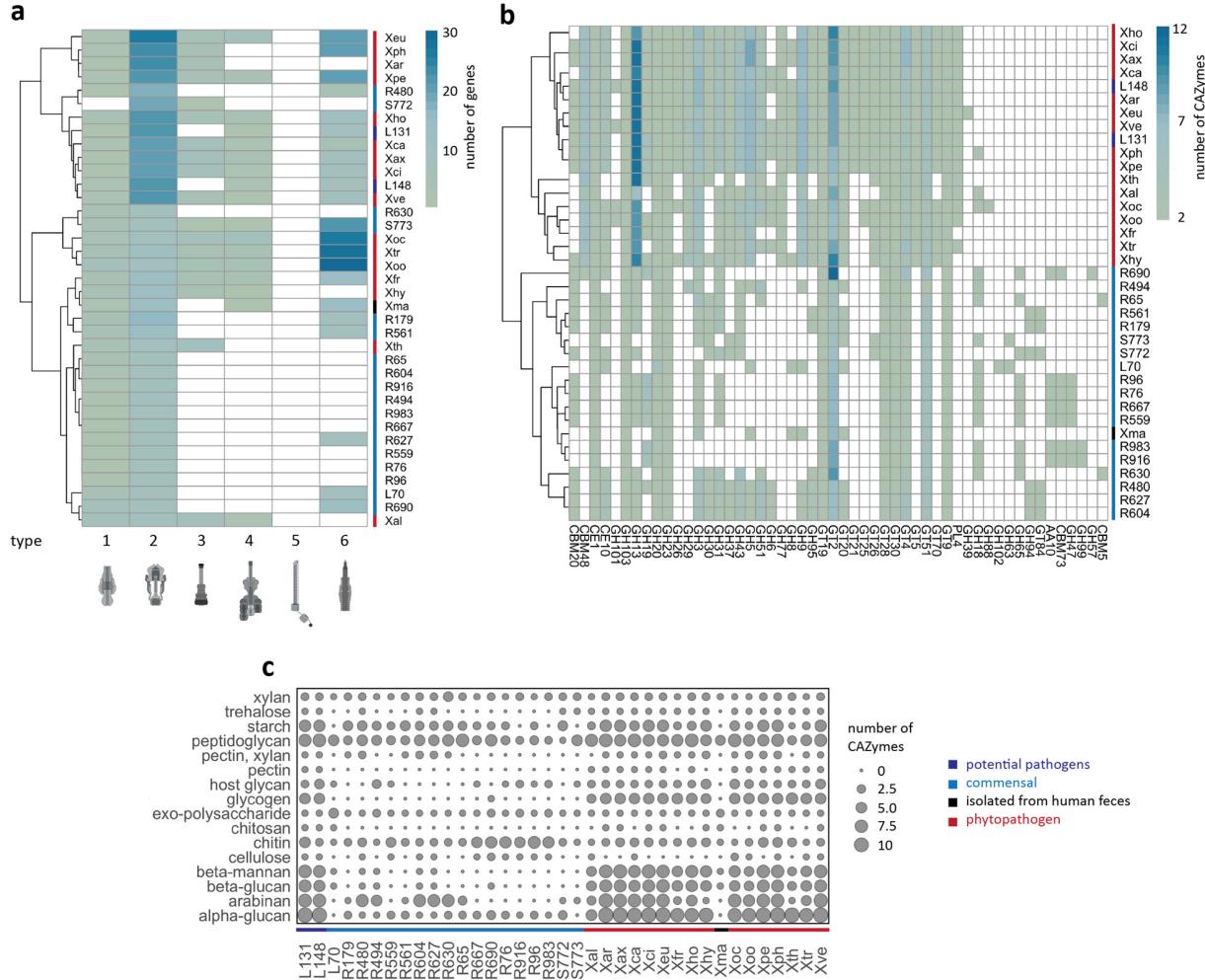
1183
1184


1185 **Supplementary Figure S3. Leaf colonization capacities of commensal bacteria on immune-**
1186 **compromised mutants and Col-0 wildtype plants.** Two-week-old axenic plants were flood-inoculated
1187 with microbiota strains ($OD_{600}=0.005$) and were plated for colony counts for the total and endophytic leaf
1188 compartments at 5 dpi. Data from at least 2 independent experiments each with 8 biological replicates were
1189 used. Different letters indicate statistically significant differences (ANOVA with *post hoc* Tukey's test, $P \leq$
1190 0.05). Results are depicted as box plots with the boxes spanning the interquartile range (IQR, 25th to 75th
1191 percentiles), the mid-line indicates the median, and the whiskers cover the minimum and maximum values
1192 not extending beyond 1.5x of the IQR.

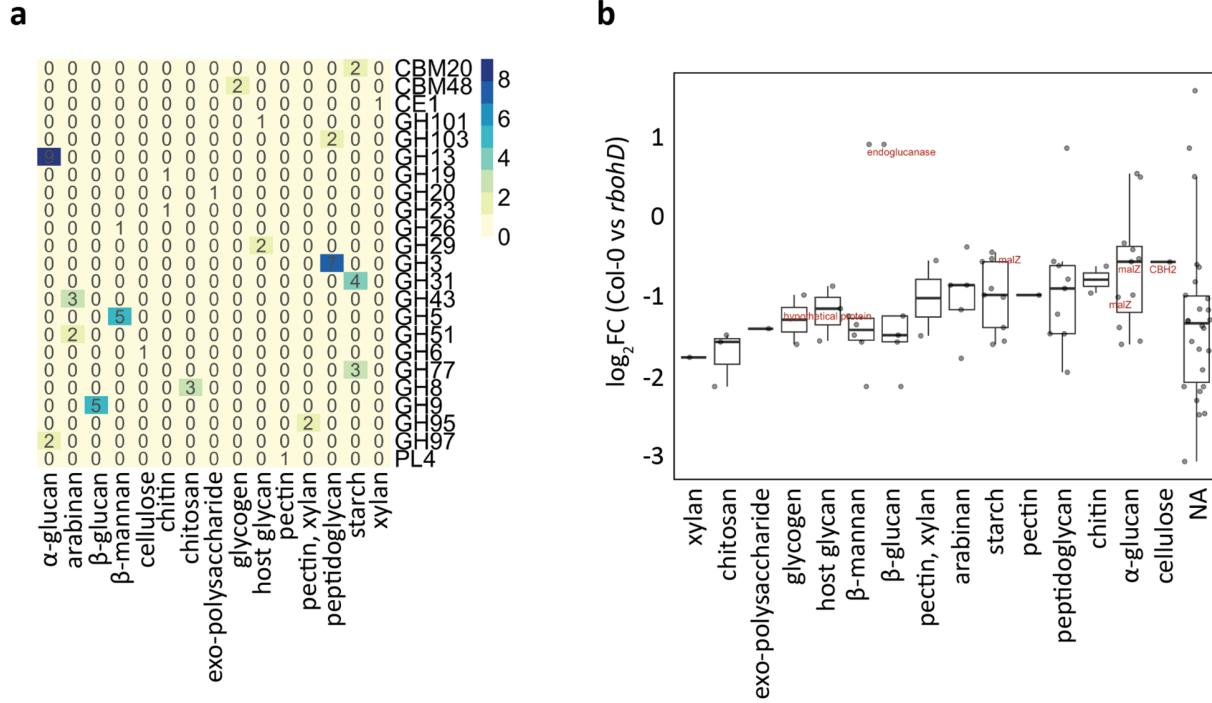
1193
1194
1195 **Supplementary Figure S4. The ROS outburst profile and colonization capacities in Col-0 wild-type**
1196 **plants with the microbiota members have poor correlation.** Correlational analysis of the capacity of the
1197 strain (live or heat-killed versions) to induce ROS and their corresponding colonization profiles in wild-type
1198 Col-0 plants (R, coefficient of determination, $p \leq 0.02$). For ROS outburst assay, leaf discs from 5-to-6-
1199 week-old plants were triggered with live or heat-killed microbiota strains ($OD_{600}=0.5$) in mono-associations.
1200 For colonization assays, two-week-old axenic plants were flood-inoculated with microbiota strains
1201 ($OD_{600}=0.005$) and were plated for colony counts for the total and endophytic leaf compartments at 5 dpi.



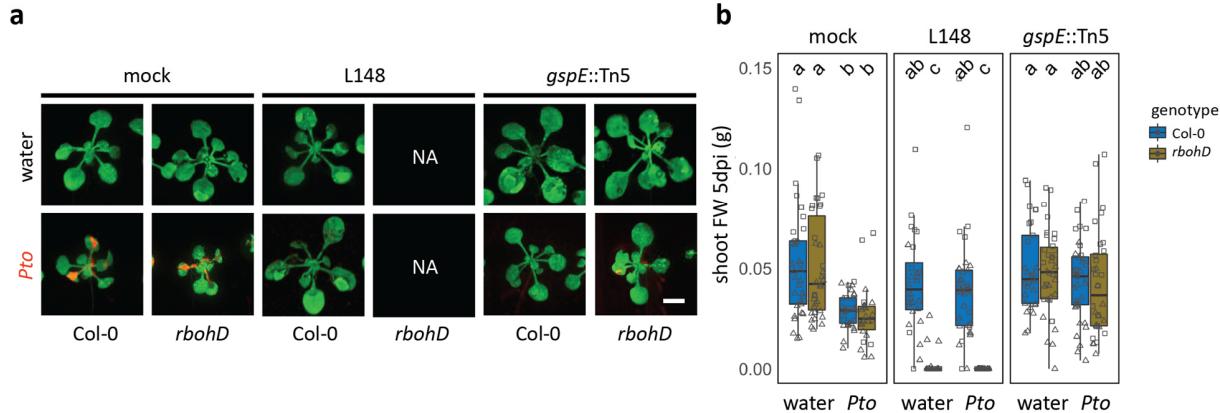
1202
1203
1204
1205 **Supplementary Figure S5. *Xanthomonas* L148 is not sensitive to *in vitro* exposure to ROS**
1206 **compounds.** a-c, Recovery of *Xanthomonas* L148 bacterial cells (initial inoculum $\text{OD}_{600} = 0.02$) upon acute
1207 exposure with ROS compounds H_2O_2 (a), O_2^- (b), and PQ (c) in different concentrations (0–2000 μM). H_2O_2
1208 was applied at different doses for 30 min. For O_2^- treatment, 1 mol of xanthine is converted to 1 mol O_2^-
1209 with 1 U xanthine oxidase at pH 7.5 at 25 °C in 1 min; reactions were commenced and bacterial cells were
1210 sampled at different time points: 0, 2, 4, 10, 20, 60, and 80 min to produce 0, 50, 100, 250, 500, 1000, and
1211 2000 $\mu\text{M O}_2^-$, respectively. d, Growth curves of *Xanthomonas* L148 in TSB upon chronic exposure of 0 or
1212 10 μM PQ for 4000 min. a-d, Data were from at least 2 independent experiments each with 3–4 biological
1213 replicates. Different letters indicate statistically significant differences (ANOVA with *post hoc* Tukey's test,
1214 $P \leq 0.05$).
1215


1216
1217 **Supplementary Figure S6. *Xanthomonas* L148 pathogenic potential was partially suppressed by the**
1218 **presence of other leaf commensals. a, Phylogenetic relationship of the strains comprising the leaf-**
1219 **derived synthetic community (LeafSC) which consists of strains that are robust and prevalent leaf colonizers,**
1220 **and taxonomically represents diverse members of the leaf microbiota. b, c, Representative image (b)**
1221 **and the measured shoot fresh weights (c) of Col-0 and *rbohD* plants flood-inoculated with mock, LeafSC, L148_{P1}**
1222 **+ LeafSC (equal portions of *Xanthomonas* L148 with each strain: L148/LeafSC, 1:9, final OD₆₀₀=0.01),**
1223 **L148_{P9} + LeafSC (portion of *Xanthomonas* L148 equals the bacterial load of the all strains: L148/LeafSC,**
1224 **9:9, final OD₆₀₀=0.01), and the equivalent doses of *Xanthomonas* L148 (L148_{P1} and L148_{P9}, P9 is 9 times**
1225 **the dose of P1). The pies indicate the relative proportion of the *Xanthomonas* L148 = yellow and LeafSC =**
1226 **green. White horizontal bar = 1 cm. Data from 2 independent experiments each with 3–4 replicates were**
1227 **used. Different letters indicate statistically significant differences (ANOVA with *post hoc* Tukey's test, $P \leq$**
1228 **0.05).**

1229
1230


1231
1232

1233 **Supplementary Figure S7. Optimization of high-throughput genome-wide screening and generation**
1234 **of the *Xanthomonas* L148::Tn5 mutant library.** **a**, Representative image of Col-0 wild-type and *rbohD*
1235 mutant plants inoculated with serially diluted *Xanthomonas* L148 suspensions in the high-throughput 96-
1236 well plate format. A dilution factor (DF) of 6 was chosen for the best contrast between Col-0 and *rbohD*. **b**,
1237 Schematic diagram of the construction of the *Xanthomonas* L148::Tn5 mutant library via conjugation with
1238 *E. coli* harboring the mini-Tn5 plasmid. **c**, Antibiotic resistance of *Xanthomonas* L148, *E. coli* SM10λpir and
1239 the *Xanthomonas* L148::Tn5 mutants. The parental strain *Xanthomonas* L148 is resistant to nitrofurantoin
1240 (nit, 50 µg/mL in TSB medium) which was used for counter-selection for the plasmid carrier *E. coli*. The
1241 mini-Tn5 carrying *E. coli* is resistant to kanamycin (kan, 50 µg/mL in TSB medium) and was used for
1242 selecting against the wild-type *Xanthomonas* L148. *Xanthomonas* L148::Tn5 transformants are resistant to
1243 both nit and kan in TSB medium. **d**, Electrophoretogram of the genomic transposon insertion PCR validation
1244 for the randomly selected *Xanthomonas* L148::Tn5 mutant strains. PCR products were Sanger-sequenced
1245 to determine the transposon insertion site.
1246



1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

Supplementary Figure S8. Secretion systems and CAZyme repertoire of Xanthomonadales clade. a-b, genomic examination of Xanthomonadales members of *A. thaliana* microbiota (20) and pathogenic *Xanthomonas* strains (17): Xal = *X. albineans*; Xar = *X. arboricola*; Xax = *X. axonopodis*; Xca = *X. campestris*; Xci = *X. citri*; Xeu = *X. euvesicatoria*; Xfr = *X. fragariae*; Xho = *X. hortorum*; Xhy = *X. hyacinthi*; Xoc = *X. oryzae* pv. *oryzicola*; Xoo = *X. oryzae* pv. *oryzae*; Xpe = *X. perforans*; Xph = *X. phaseoli*; Xth = *X. theicola*; Xtr = *X. translucens*; Xve = *X. vesicatoria*. Xma = *X. massiliensis* is non-pathogenic strain isolated from human feces; L148 (in this study) and L131 (Pfeilmeier et al, 2021) are potentially pathogenic. **a**, occurrence of type 1 to 6 secretion systems. **b**, CAZyme repertoire of the Xanthomonadales. **c**, potential substrates of the genome encoded CAZymes. Some illustrations created in BioRender.

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

1271
1272 **Supplementary Figure S10. Performance of plants pre-colonized with commensals after pathogen**
1273 **invasion.** **a,b,** Representative images (a) and quantification of shoot fresh weight as a plant health
1274 parameter (b). 14-day-old Col-0 and *rbohD* plants grown on agar plates were flood-inoculated with wildtype
1275 *Xanthomonas* L148 and *gspE::Tn5* ($OD_{600}=0.005$) for 5 days followed by spray infection with *Pto*. Samples
1276 were taken at 5 dpi (2 independent experiments each with 3–5 biological replicates). Red patches in the
1277 images indicates colonization by the pathogen. Different letters indicate statistically significant differences
1278 (ANOVA with *post hoc* Tukey's test, $P \leq 0.05$). Results in b are depicted as box plots with the boxes
1279 spanning the interquartile range (IQR, 25th to 75th percentiles), the mid-line indicates the median, and the
1280 whiskers cover the minimum and maximum values not extending beyond 1.5x of the IQR.

1281

1282

1283

1284

1285 List of Supplementary Tables and Datasets

1286

1287 **Supplementary Table S1.** List of *Arabidopsis thaliana* wild-type and mutants used in
1288 this study

1289 **Supplementary Table S2.** List of bacterial strains used and generated in this study.

1290 **Supplementary Table S3.** List of primers and PCR profiles used in this study

1291

1292 **Supplementary Dataset S1.** List of *Xanthomonas* L148::Tn5 mutant candidates with
1293 loss-of-mortality in *rbohD* phenotypes using the high-throughput screening.

1294 **Supplementary Dataset S2.** Top table of the DEGs for *in planta* *Xanthomonas* L148
1295 transcriptome Col-0 vs. *rbohD* colonized plants.

1296 **Supplementary Dataset S3.** Clustering membership of the DEGs and the GO term
1297 enrichment analysis for the gene clusters.