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Abstract: Mammalian brains are larger and more densely packed with neurons than reptiles, but
the genetic mechanisms underlying the increased connection complexity amongst neurons are
unclear. The expression diversity of clustered protocadherins (Pcdhs), which is controlled by
CTCEF and cohesin, is crucial for proper dendritic arborization and cortical connectivity in
vertebrates. Here, we identify a highly-conserved and mammalian-restricted protein, ZFP661,
that binds antagonistically at CTCF barriers at the Pcdh locus, preventing CTCF from trapping
cohesin. ZFP661 balances the usage of Pcdh isoforms and increases Pcdh expression diversity.
Loss of Zfp661 causes cortical dendritic arborization defects and autism-like social deficits in
mice. Our study reveals both a novel mechanism that regulates the trapping of cohesin by CTCF
and a mammalian adaptation that promoted Pcdh expression diversity to accompany the
expanded mammalian brain.

One sentence summary: ZFP661 blocks cohesin trapping by CTCF and increases protocadherin
diversity for proper cortical dendritic arborization.

Main Text: Mammals have enlarged brains relative to reptiles, with greater numbers of neurons
and increased neuronal density, especially in the cerebrum and cerebellum (/, 2). The increased
number and density of neurons in mammals likely necessitated evolutionary adaptations to allow
neurites to properly identify each other and intermingle in a more crowded space during
development. However, the genetic mechanisms that underlie the adaptations are not well
understood. In vertebrates, the clustered protocadherin genes (Pcdhs), which encode cell
adhesion molecules, play a central role as neuronal identity tags (3-7). Pcdhs have dozens of
alternative isoforms, and only a selected subset of isoforms is expressed in individual neurons,
producing a large diversity of isoform combinations (5). Neurites with the same/similar Pcdh
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combinations repel each other (6-8) whereas neurites with diverse Pcdhs can intermingle (3, 6).
Repulsive signals amongst neurites are likely achieved from the formation of zipper-like chains
mediated by isoform-specific homophilic interactions of Pcdh molecules, in such a way that
isoform mismatch would terminate chain formation and reduce the chance of forming repulsive
signals (9-11). At the transcriptional level, the combination of repression (/2, /3) and stochastic
demethylation (/4) of alternative Pcdh promoters produces the diverse Pcdh isoforms that are
accessible for activation in individual neurons. The enhancers downstream of the Pcdh locus
further activate the expression of accessible Pcdh isoforms, dependent on CTCF and cohesin (/4-
16). CTCF and cohesin are two key players that control 3D genome structures and gene
expression; ATP-dependent cohesin extrusion of chromatin promotes enhancer-promoter
interactions, while CTCF acts as a barrier to stop (i.e., trap) cohesin extrusion and confine most
enhancer-promoter interactions within the CTCF boundary (/7-27). Whether the trapping of
cohesin by CTCF can be regulated is also unclear.

Kriippel-associated box zinc finger proteins (KRAB-ZFPs) represent the largest family of
transcription factors in mammals. Although many of these factors are species-restricted and bind
to and repress lineage specific retrotransposons (22-24), a large number also emerged in the last
common ancestor of mammals (23, 25). Some of these factors, like ZFP57/ZFP445 and ZFP568
play critical roles in mammalian-specific phenomenon like genomic imprinting and placental
Igf2 suppression (26-28), although the vast majority have gone unexplored. Many KRAB-ZFPs
are preferentially expressed in human fetal brains (29, 30) and a small number have been shown
to overlap CTCF and RAD21 (a subunit of cohesin complex) binding (23), indicating their
potential roles in brain development and evolution by rewiring chromatin loops. Here, we
identified a conserved KRAB-ZFP in Theria, ZFP661 (ZNF2 in humans), that binds to a small
subset of CTCEF sites genome-wide, including a cluster of CTCEF sites at the Pcdh locus. Using
mouse genetics, we uncovered a critical function for ZFP661 in modulating the trapping of
cohesin at CTCF barriers, diversifying neuronal Pcdh expression and shaping mammalian brain
development.

ZFP661 is highly conserved in Theria and suppresses cohesin trapping at CTCF barriers
without altering CTCF binding

To identify a candidate to explore the potential role of KRAB-ZFPs in rewiring 3D genome
structures, we re-analyzed ChIP-seq data of 221 human KRAB-ZFPs (23) and found that 77.4%
(171/221) of KRAB-ZFPs had binding peaks that significantly overlapped CTCF and RAD21
peaks (Fig. 1A). Amongst these KRAB-ZFPs, ZNF2 (known as ZFP661 in mice), was unique
due to both the number and proportion of ChIP peaks that overlapped with CTCF and RAD21
(Fig. 1A). We determined that ZFP661 originated before the divergence of placental mammals
and marsupials and that it is present in most (89/94) of the available therian genomes (Fig. 1B)
according to a gain/loss tree at Ensembl. Notably both the DNA-binding domain (DBD) (90.1%
identity across three representative species) and zinc fingerprint amino acids that are responsible
for making specific DNA base contacts (97.2% identity) are highly conserved (fig. S1),
suggesting it serves an important function in mammals.

In mice, Zfp661 mRNA is broadly expressed at low levels with detectable expression in
mouse embryonic stem cells (MESCs) and relatively higher expression in the developing brain
compared to other organs (fig. S2). To explore the function of ZFP661 during embryonic
development, we generated Zfp661 knockout (KO) mESCs and mice, endogenously tagged
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ZFP661-3HA mESCs and transgenic mice using CRISPR-Cas9 technology, and ZFP661-3HA
stably overexpressing (OE) mESCs using lentiviral vectors (Fig. 1C). We determined ZFP661
binding locations in the mouse genome using ChIP-seq, revealing that over 80% of ZFP661
binding peaks overlapped with those of CTCF and cohesin in both endogenously tagged
ZFP661-3HA mESCs (Fig. 1D) and ZFP661-3HA OE mESCs (fig. S3), consistent with its
ortholog ZNF2 in human (Fig. 1A). We further identified a putative ZFP661 binding motif that
closely matched a computationally predicted ZFP661 binding motif, which was present in all 200
peak regions that were used to detect motifs (fig. S4).

Unlike many KRAB-ZFPs that strongly recruit the co-factor KAP1 and subsequently
SETDBI to establish H3K9me3 heterochromatin at genomic targets (28, 31, 32), ZFP661 target
regions only presented weak KAP1 and H3K9me3 signals after overexpression of ZFP661 (fig.
S5), indicating a potentially atypical functional mechanism. To determine whether ZFP661
might influence CTCF or cohesin binding, we performed ChIP-seq for CTCF and RAD21 in
Zfp6617-mESCs and ZFP661-3HA OE mESCs relative to wild-type controls. Surprisingly, we
found that ZFP661 decouples CTCF and cohesin binding; Zfp661 loss-of-function increased
RAD?21 binding, whereas overexpression of ZFP661 suppressed RAD21 binding at CTCF sites
co-occupied with ZFP661, without altering CTCF binding (Figs. 1E and IF).

ZFP661 binds exclusively inside CTCF loop anchors and allows cohesin to pass through
CTCEF barriers

To determine whether ZFP661 co-occupies targets simultaneously with CTCF, we performed
ChIP-reChIP-seq assays with anti-HA (1%t ChIP) and anti-CTCF (2"¢ ChIP) antibodies in
ZFP661-3HA OE mESCs. These experiments confirmed that ZFP661 and CTCF are co-bound
(Fig. 2A). Previous studies have demonstrated that chromatin loops occur primarily between two
convergent CTCF binding sites (as shown in the upper portion of Fig. 2B) (33, 34) and that
reversal of the orientation of CTCF binding sites prevents cohesin from being trapped at CTCF
barriers (/6). To gain insights into how ZFP661 might influence cohesin binding, we analyzed
ZFP661 binding locations, indicated by ChIP summits, relative to CTCF barriers. We found that
ZFP661 bound exclusively inside CTCF loop anchors, like cohesin (Fig. 2B). We confirmed this
finding by analyzing the position of ZFP661 binding sites relative to CTCF binding sites, which
were consistently located inside the loop anchors (fig. S6).

We hypothesized two possible mechanisms that could explain ZFP661 decoupling of CTCF
and cohesin signals: 1) ZFP661 could allow cohesin to pass through CTCF barriers or 2) ZFP661
could promote cohesin release from chromatin. To distinguish amongst these hypotheses, we
tested the insulation scores at CTCF barriers and the proportion of chromatin loops that passed
through CTCF barriers, reasoning that cohesin release would not decrease the barrier function of
CTCF. We generated high-resolution Hi-C maps (1.18 billion valid interaction pairs in total) in
ZFP661-3HA OE relative to empty vector (EV) controls. This allowed us to calculate both the
insulation scores at CTCF barriers and the distribution of loop anchors at and over CTCF
barriers. We found that overexpression of ZFP661 reduced insulation function of CTCF barriers
(i.e., increased insulation scores) (Fig. 2C) and promoted loops to pass through CTCF barriers
(rather than being trapped by CTCF) (Fig. 2D) at CTCEF sites co-occupied with ZFP661.
Moreover, this effect was not seen at CTCF barriers that were not co-occupied with ZFP661
(Fig. 2C), demonstrating that ZFP661 binding suppresses the trapping of cohesin at CTCF
barriers (Figs. 1E, 1F, and 2C). In sum, these results demonstrate that ZFP661 suppresses
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cohesin binding by allowing cohesin to pass through CTCF barriers. Considering that the
interaction of the CTCF N-terminus (the portion facing cohesin extrusion and ZFP661 binding)
with cohesin is critical for cohesin trapping (35), combined with our finding that ZFP661 binds
at the same location where cohesin is typically trapped (Fig. 2B), we speculate that ZFP661
suppresses cohesin trapping by decreasing the probability of cohesin interaction with CTCF
and/or competition with trapped cohesin (Fig. 2E).

ZFP661 promotes the interaction of downstream enhancers with distal Pcdh promoters

To determine the potential role of ZFP661 during development by modulating the strength of
CTCF barriers, we generated Zfp661 null (Zfp661--) mice (Fig. 1C). Zfp661”- mice were viable
and fertile, and displayed no overt phenotypes. Therefore, we suspected that ZFP661 might play
a more subtle role in development. We performed Gene Ontology enrichment analysis of
ZFP661 target genes (based on proximity to binding sites) and identified “homophilic cell
adhesion via membrane adhesion molecules” as the most significantly enriched biological
process (Fig. 3A). Interestingly, 21 of 25 target genes associated with this term belong to the
protocadherin (Pcdh) gene clusters (the occupancy of ZFP661 and CTCF at the Pcdh locus is
shown in Fig. 3B and fig. S7A). There are three Pcdh gene clusters (Pcdha/a, Pcdhp/b and
Pcdhy/g) in mammalian genomes, representing 14 Pcdho and 21 Pcdhy isoforms (excluding
Pcdhgb8, which is annotated as a non-coding gene), each with alternative promoters, and 22
Pcdhf genes in the mouse genome (fig. S7TA). Pcdhs are activated by downstream enhancers
dependent on the cooperation of CTCF and cohesin, where CTCF located at each promoter can
stop cohesin extrusion to facilitate the contact of this promoter with downstream enhancers (/4-

16).

At the Pcdh locus, ZFP661 binding regions were co-bound by CTCF and were primarily
located at the proximal promoters closest to the downstream enhancer cluster of Pcdhy (Fig. 3B
and fig. S7TA). We generated capture Hi-C maps in mouse E16.5 forebrains (when neurons
occupy the largest proportion by cell population in the developing mouse brain (36)) and
demonstrated that the downstream enhancers of Pcdhy interact with Pcdhfi and Pcdhy clusters
(Fig. 3B), indicating they control both Pcdhf and Pcdhy expression (37). We reasoned that
ZFP661 binding at enhancer proximal promoters might promote cohesin to pass through CTCF
barriers, allowing the enhancers to contact and activate more distal promoters of the Pcdhf and
Pcdhy clusters. To test this hypothesis, we performed Capture Hi-C experiments of the Pcdh
locus in E16.5 forebrains of Zfp6617+ and Zfp661" littermates. Importantly, we found that loss of
Zfp661 increased the contacts of enhancers with proximal promoter regions (4/5 increased) while
decreasing contacts with more distal promoters (21/29 decreased; Figs. 3C and 3D). Consistent
with this result, we found that ZFP661 overexpression (in ZFP661-3HA OE mESCs) decreased
the contacts of these enhancers with proximal regions (fig. S7B) and promoted contacts with
distal promoters (fig. S7C).

ZFP661 balances the usage of Pcdh isoforms and increases Pcdh expression diversity

Previous studies have demonstrated that the interaction between downstream enhancers and
Pcdh alternative promoters is the basis for activating Pcdh expression (15, 16, 37). To
investigate how the alteration of enhancer-promoter interactions affects the Pcdh expression
repertoire in individual neurons, we performed single-cell 5> RNA-seq in mouse E16.5
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forebrains to distinguish each Pcdh isoform. The number of unique molecular identifiers (UMIs)
and genes detected per cell between Zfp661"* and Zfp661-" littermates were matched by
adjusting for sequencing depth and by down-sampling UMIs to avoid possible biases in
downstream analyses (figs. S8A and S8B). Cell types were assigned by projection onto a cell
atlas of developing mouse brains at the corresponding ages (36)(fig. S8C and Fig. 4A).
Compared with Zfp661*"* brains, Zfp661~" brains had no obvious alterations in cell populations
(Fig. 4A) or in the overall expression level of Pcdhs within cortical or hippocampal
glutamatergic neurons (referred to as “glutamatergic neurons”) or forebrain GABAergic neurons
(referred to as “GABAergic neurons”) (Fig. 4B). Compared with GABAergic neurons,
glutamatergic neurons expressed higher levels of Pcdhs (Fig. 4B), perhaps due to their
requirement for farther neurite projection (38). When comparing the usage of Pcdh isoforms,
Zfp661~" brains had greater usage of enhancer proximal isoforms at the expense of distal
isoforms in pooled neurons (Fig. 4C), glutamatergic neurons (fig. S9A) and GABAergic neurons
(fig. S9B), consistent with the underlying chromatin-interaction results (Figs. 3C and 3D).

Diversity in the Pcdh expression repertoire allows neurites to co-share local space and form
more complex connections (5). To better quantify Pcdh diversity and explore the impact of Pcdh
usage alteration in Zfp661~ neurons, we calculated a similarity score between all pairs of cells
within the population, which represents the probability that a Pcdh isoform taken from one cell
will match an isoform from another cell (as shown in the upper portion of Fig. 4D). By
comparing median similarity scores of 1000 subsamples from all pairs of cells within each
population, we determined that Zfp661-- neurons possessed significantly greater similarity (i.e.,
reduced diversity) than Zfp661"* neurons, both within glutamatergic and GABAergic neuron
types and between the two types (Fig. 4D). To further investigate the impact of this reduced
diversity on neuronal dendrite repulsion, we calculated repulsive signals, which represent the
probability of sequential matching of Pcdh isoforms during continuous comparison by
stimulating the chain formation of Pcdh molecules (9) (as shown in the upper portion of Fig. 4E).
The results demonstrate that ZFP661 dramatically decreases repulsive signals from Pcdh chain
formation, both within glutamatergic and GABAergic neuron types and between types (Fig. 4E).
In sum, these data reveal that the loss of Zfp661 leads to reduced complexity in Pcdh expression,
which increases the likelihood that a cell will encounter another cell with the same or highly
similar Pcdh expression repertoire. This subsequently results in increased repulsive signals
during dendritic projection, potentially reducing the number of dendrites that can fit in a local
space.

Loss of Zfp661 causes deficits in dendritic arborization and social interaction

To determine whether the reduced Pcdh expression diversity in Zfp661”- mice might cause
dendritic projection defects, we performed Golgi-Cox staining on early adult mouse brains (P60-
66) and imaged pyramidal neurons at layer II/III of somatomotor areas (Bregma: 1.70 to 1.18
mm), where we could easily ensure consistency in neuron type and location during sampling.
Sholl analysis, which measures the complexity of neuronal dendrites, confirmed that Zfp6617-
neurons have deficits in arborization and the distribution of neuronal dendrites (fig. S10 and Fig.
5A). Compared with Zfp661"* neurons, Zfp661”- neurons displayed a significant decrease in both
the branch number (Fig. 5B) and total branch length of neuronal dendrites (Fig. 5C). These data
are consistent with the hypothesis that the loss of Zfp661, which causes greater repulsive signals
during Pcdh tiling (Fig. 4E), might inhibit the elongation and arborization of neuronal dendrites.
This is also consistent with previous studies that demonstrated that direct decreases in Pcdh
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diversity (via genetic ablation) also cause deficits in dendritic arborization (39-417). Finally, we
explored how Zfp661 loss-of-function might impact behavior. Sociability tests revealed that
Zfp661~-mice displayed deficits in social interactions (Fig. 5D), similar to mice that have
reduced Pcdh diversity (42, 43).

Discussion

CTCEF binding is well known to act as a barrier for cohesin extrusion, but how CTCEF stops the
extrusion of cohesin is still unclear. Genetic modifications, including reversal of the orientation
of CTCF binding sites (/6) and destruction of CTCF-cohesin interaction (35) can suppress
cohesin trapping without altering CTCF binding. These highlight the roles of CTCF binding
orientation and CTCF-cohesin interactions in cohesin trapping. Here, we uncovered a novel
mechanism that decouples CTCF and cohesin binding; ZFP661 exclusively binds inside CTCF
loop anchors (Fig. 2B) and allows cohesin to pass through CTCF barriers (Figs. 2D and 3C and
fig. S7B), indicating that the accessibility of CTCF-cohesin interface is crucial for cohesin
trapping. The chromatin loops established by CTCF and cohesin confine over 90% of enhancer-
promoter interactions that occur within CTCF boundaries (27). Consequently, the need for
enhancer-promoter interactions to occur across specific CTCF barriers may require the breaking
of CTCF boundaries. Our findings demonstrate that ZFP661 directly regulates CTCF-mediated
cohesin trapping at CTCF barriers, providing a potentially rapid and reversible way to open/close
CTCF boundaries.

During neural development, 3D genome structures are dramatically changed to accompany
altered gene expression patterns (44). Numerous KRAB-ZFPs that originated during mammal
evolution (23, 25) are preferentially expressed in developing brains (29) and bind at CTCF
barriers (Fig. 1A), similar to ZFP661. Our findings suggest that KRAB-ZFP-dependent
CTCF/cohesin modulation may have played important roles in driving the evolution of 3D
genome structures in mammalian brain development.

Nodes and edges (i.e., connections amongst nodes) are two key components of a network.
Increased connections per node are required after node expansion to maintain proper network
architecture and avoid network fragmentation (as shown in the simplified cases in Fig. S5E),
which also holds true in neuronal networks. During mammalian evolution, ZFP661 emerged as a
factor that increases the diversity of Pcdh expression (Fig. 4D), which decreases the repulsive
signals amongst neurons during dendritic projection (Fig. 4E). We hypothesize that this allows
more neuronal dendrites to fit in a tighter space and promotes the arborization and elongation of
neuronal dendrites during development (Fig. 5F), providing a possible solution that ensures
proper neuronal connections and network preservation in the expanded mammalian brain.
Multiple findings indicate this function is critical throughout Theria: 1) ZFP661 is retained in
most therian genomes (Fig. 1B); 2) ZFP661 has a highly conserved DNA binding domain with
97.2% (35/36) of fingerprint amino acids that determine DNA bases to contact being conserved
(fig. S1); 3) the ZFP661/ZNF2 binding motif (fig. S11A), its association with CTCF binding
(Figs. 1A and 1D), and its binding at the Pcdh locus (fig. S11B) are conserved between human
and mouse.

Both the loss of Zfp661 (Figs. SA to 5D) and reduced Pcdh diversity from direct genetic
ablation (39-43) can induce cortical dendritic arborization defects and social deficits. Autism
Spectrum Disorder (ASD) is one of most common brain developmental disorders in humans
associated with social deficits, which impacts about 2.3% children in the United States (45). The


https://doi.org/10.1101/2023.05.08.539838
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.08.539838; this version posted May 8, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

causes of ASD are largely unclear, but growing evidence suggests that defects in neuronal
connections are a major underlying cause (46). Remarkably, ZNF2 binding at the Pcdh locus is
conserved in humans (fig. S11B), and structural variations at ZNF2 (fig. S12) and Pcdh loci (47)
are associated with ASD in humans. These results highlight an important link between the
regulation of Pcdh diversity by ZFP661(ZNF2), neuronal connections, and ASD.
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Fig. 1. ZFP661, a conserved KRAB-ZFP in Theria, suppresses cohesin binding at CTCF
sites without altering CTCF binding. (A) Overlap of binding peaks for 221 human KRAB-
ZFPs with those of CTCF and RAD21 for screening purposes. The proportion of random peaks
overlapping with CTCF and RAD21 was used as background (y=1.06), and single-tailed exact
binomial tests were performed (threshold: FDR adjusted P < 0.01). (B) Presence/absence of
ZFP661 in different vertebrate clades. ZFP661orthologs are detected in most therian genomes
(89/94) but not monotremes or birds/reptiles. (C) Cell and mouse models generated to explore
ZFP661 function. (D) Overlap of ZFP661 binding peaks with CTCF and RAD21 peaks in
ZFP661-3HA mESCs. (E and F) Influence of ZFP661 on CTCF and RAD21 binding in Zfp661
knockout mESCs (E) and ZFP661-3HA OE mESCs (F). CTCF and RAD21 peaks that do not
overlap with ZFP661 peaks were used as controls. ZFP661 binding significantly suppresses the
binding of RAD21 but not CTCF in both Zfp661 knockout mESCs (E) and ZFP661-3HA OE
mESCs (F). EV represents empty vector control. Single-tailed Wilcoxon rank sum tests were
performed.

Fig. 2. ZFP661 binds exclusively inside CTCF loop anchors and allows cohesin to pass
through CTCF barriers. (A) ChIP-reChIP assay in ZFP661 OE mESCs shows that ZFP661 and
CTCEF simultaneously co-bind to targets. The 1% ChIP was performed using anti-HA antibody,
and the 2" ChIP was performed using anti-CTCF and anti-IgG antibodies, respectively. ChIP-
reChIP signals in the heatmap represent anti-CTCF signals subtracted by anti-IgG signals.
ZFP661-only and CTCF-only peaks, which are not co-occupied with each other, were used as
controls. (B) Binding locations of ZFP661 and RAD?21, indicated by ChIP summits, relative to
those of CTCF. CTCF binding orientation is shown as the motif in the upper portion. (C)
Influence of ZFP661 binding on the insulation score at CTCF barriers that are co-occupied with
ZFP661. CTCEF barriers that are not co-occupied with ZFP661 were used as controls. Single-
tailed paired t-tests were performed. (D) Comparison of the distribution of chromatin loops
trapped around or passing over CTCF barriers that are co-occupied with ZFP661 between EV
control and ZFP661 OE. (E) Schematic diagram illustrates the working model of ZFP661.
ZFP661 binding at CTCF barriers blocks cohesin trapping and allows cohesin to pass through the
barriers.

Fig. 3. ZFP661 promotes the interaction of Pcdhy downstream enhancers with distal
protocadherin (Pcdh) promoters. (A) Gene Ontology (GO) enrichment analysis of ZFP661
target genes in “biological processes”. (B) Capture Hi-C map at the Pcdh locus in E16.5 mouse
forebrains (upper) and ZFP661 and CTCF occupancy in mESCs (lower). The Capture Hi-C data
demonstrate that the enhancer cluster downstream of Pcdhy locus interacts with both Pcdhf and
Pcdhy promoters. (C and D) Alterations in contacts at the Pcdhf and Pcdhy regions (C) and
contacts between the enhancer cluster and individual promoters (TSS + 2.5 kb) (D) after Zfp661
knockout in the Capture Hi-C map of E16.5 forebrains. Loss of Zfp661 leads to increased
contacts of enhancers with proximal isoforms (C) and reduced contacts with distal promoters

(D).

Fig. 4. ZFP661 balances the usage of Pcdh isoforms and increases the diversity of Pcdh
expression. (A) UMAP visualization of the cell atlas in Zfp661"" and Zfp661-”- E16.5 mouse
forebrains. (B) Unique molecular identifier (UMI) counts of Pcdhs detected in glutamatergic and
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GABAergic neurons of Zfp661"* and Zfp661°- brains. The y-axis was square-root transformed.
(C) Usage alterations of Pcdhf/y isoforms in pooled glutamatergic and GABAergic neurons of
Zfp661"" and Zfp661°7- brains. The lines represent isoform usage, and lollipops represent the
difference in isoform usage between Zfp661"* and Zfp661”- neurons. ZFP661 allows for greater
usage of distal Pcdh isoforms. (D) The distribution of median similarity scores of the Pcdh
repertoire between all pairs of single neurons within glutamatergic (left), GABAergic (center), or
between glutamatergic and GABAergic neurons (right) in Zfp661™* and Zfp661~- brains.
Similarity scores within each type were subsampled 50% of the datapoints for 1000 times, and P
values were calculated based on the 1000 subsamples. (E) Ratio of repulsive signals between
Zfp661*"" and Zfp66 17~ neurons by simulating Pcdh chain formation. Repulsive signal represents
the probability that a Pcdh isoform from one neuron matches the isoform from another neuron
during continuous comparisons. ZFP661 decreases Pcdh-based repulsive signals amongst
neurons (data are shown as mean =+ SD).

Fig. 5. Loss of ZFP661 causes deficits in neuronal dendritic arborization and social
interaction. (A) Sholl analysis of dendrites of pyramidal neurons in layer II/III of the cerebral
cortex in Zfp661"" and Zfp6617- mouse brains (P60-66). Representative examples of 3D-
reconstructions of Zfp661*"* and Zfp661~- neurons are shown above (data are shown as mean +
SEM; n=24, 8 neurons per mouse and 3 mice per genotype, one-way repeated measures
ANOVA).(B and C) Comparison of the branch number (B) and total branch length of neuronal
dendrites (C) between Zfp661"7+ and Zfp6617- neurons (n=24, single-tailed Wilcoxon rank sum
test). (D) Zfp661°- mice show social interaction deficits in sociability tests (n=6, 3 male and 3
female mice per genotype, single-tailed paired Wilcoxon rank sum test). Littermate pairs
between Zfp661*"" and Zfp661~- mice are connected using dashed lines. (E) Two simplified
diagrams demonstrating the necessity of additional connections (dashed edges) for new neurons
(green nodes) to integrate well into original brain networks to avoid fragmentation. (F)
Schematic diagram illustrates that ZFP661 increases Pcdh expression diversity and promotes
intermingling and co-sharing of local space amongst neuronal dendrites by balancing the
expression of Pcdh isoforms. This may have helped to accommodate the larger mammalian
brain.
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