

1

2

3 **Nutrient-driven dedifferentiation of enteroendocrine cells promotes
4 adaptive intestinal growth**

5

6

7 **Hiroki Nagai^{1,4} *, Luis Augusto Eijy Nagai², Sohei Tasaki³, Ryuichiro Nakato²,
8 Daiki Umetsu^{5,6}, Erina Kuranaga⁵, Masayuki Miura¹, and Yu-ichiro Nakajima^{1,4} ***

9 1. Graduate School of Pharmaceutical Sciences, The University of Tokyo

10 2. Institute for Quantitative Biosciences, The University of Tokyo

11 3. Graduate School of Science, Hokkaido University

12 4. Frontier Research Institute for Interdisciplinary Sciences, Tohoku University

13 5. Graduate School of Life Sciences, Tohoku University

14 6. Graduate School of Science, Osaka University

15

16 *Author for correspondence e-mail: h-nagai@g.ecc.u-tokyo.ac.jp (H.N.),

17 nakaji97@g.ecc.u-tokyo.ac.jp (Y.N.)

18 Tel: +81-3-5841-4863

19

20 **Text:** 7031 words

21 **Figures:** 7

22 **Supporting information:** supplemental figures S1-S7, supplemental tables S1-S6

23

24 **SUMMARY**

25 **Post-developmental organ resizing improves organismal fitness under constantly**
26 **changing nutrient environments. Although stem cell abundance is a fundamental**
27 **determinant of adaptive resizing, our understanding of its underlying mechanisms**
28 **remains primarily limited to the regulation of stem cell division. Here we**
29 **demonstrate that nutrient fluctuation induces dedifferentiation in the *Drosophila***
30 **adult midgut to drive adaptive intestinal growth. From lineage tracing and single-**
31 **cell RNA-sequencing, we identify a subpopulation of enteroendocrine cells (EEs)**
32 **that convert into functional intestinal stem cells (ISCs) in response to dietary glucose**
33 **and amino acids by activating the JAK-STAT pathway. Genetic ablation of EE-**
34 **derived ISCs severely impairs ISC expansion and midgut growth despite the**
35 **retention of resident ISCs, and *in silico* modeling further indicates that EE**
36 **dedifferentiation enables efficient increase in the midgut cell number while**
37 **maintaining epithelial cell composition. Our findings uncover a physiologically-**
38 **induced dedifferentiation that ensures ISC expansion during adaptive organ growth**
39 **in concert with nutrient conditions.**

40

41 **INTRODUCTION**

42 Adult organs in Metazoa flexibly remodel their structure in response to environmental
43 factors. In particular, the intestine adapts to nutrient availability by dynamically changing
44 its organ size: the intestine shrinks during starvation and enlarges upon refeeding, which
45 optimizes digestive and absorptive performance^{1–6}. Such adaptive resizing is crucial for
46 organ fitness and health since failure in regrowth leads to pathologies such as short bowel
47 syndrome^{6,7}. It should be noted that most adult organs harbor regional differences in
48 cellular composition and functions^{8–13}, implying that the mechanisms driving the adaptive
49 responses are diversified across distinct regions. Although the abundance of stem cells is
50 a fundamental determinant of organ size^{3,14,15}, it remains largely unknown how the organ-
51 wide expansion of the stem cell pool is coordinated in different regions and achieved
52 during adaptive resizing.

53 Accumulating evidence has revealed that daughters of tissue stem cells exert
54 differentiation plasticity under severely stressful conditions: the stem cell pool can be
55 restored even after their complete loss through the reversion of differentiated cells into
56 functional stem cells. This cell fate plasticity, hereafter called dedifferentiation, was
57 initially identified upon lens removal in newt, and is now recognized as an evolutionary
58 conserved regenerative strategy that revives lost stem cells^{14,16–18}. In mammals,
59 dedifferentiation has been identified in multiple tissues, among which the intestinal
60 epithelium exhibits a highly plastic nature: both absorptive and secretory lineages
61 undergo dedifferentiation into intestinal stem cells (ISCs) upon severe injury or during
62 inflammatory tumorigenesis^{19–26}. However, current observations of cell fate plasticity

63 have been limited to experimental systems either wherein near-total active stem cells are
64 eliminated or in pathological contexts^{16,18}. It thus remains largely unclear whether cell
65 fates are plastic under physiological conditions or as the result of naturally occurring
66 perturbations.

67 The cellular lineage of the adult intestinal epithelium is highly conserved
68 between *Drosophila* and mammals²⁷⁻²⁹. In the *Drosophila* adult midgut, asymmetric
69 division of an ISC generates another ISC and a progenitor, either an enteroblast (EB) or
70 an enteroendocrine progenitor (EEP); then the EB or the EEP differentiates into an
71 absorptive enterocyte (EC) or a secretory EE, respectively. After the eclosion of adult
72 flies, the number of ISCs, as well as the total cell number, dramatically increases in a
73 feeding-dependent manner (Figures 1A, 1B and S1A-S1F), driving adaptive intestinal
74 growth³. Previous reports have shown that food intake induces symmetric ISC division
75 via insulin signaling in the posterior region of the midgut^{3,30-32}, but whether self-renewal
76 of ISCs is the sole mechanism for ISC expansion in the rapidly growing midgut remains
77 unclear.

78 Here, we investigate the potential involvement of cell fate plasticity in nutrient-
79 dependent ISC expansion and subsequent intestinal growth using the *Drosophila* adult
80 midgut. In contrast to the posterior midgut where symmetric ISC division fuels stem cell
81 pool replenishing, we show that a subset of EEs frequently dedifferentiate into functional
82 ISCs in response to nutritional stimuli in the anterior midgut. Single-cell transcriptome
83 and *in vivo* lineage tracing identify AstC (somatostatin in mammals) positive EEs as the
84 EE subpopulation exhibiting high cell fate plasticity in the early adult midgut. We further

85 reveal that EE dedifferentiation functions as an irreplaceable source of additional ISCs
86 and thus drives intestinal growth. Notably, a starvation-refeeding cycle also induces the
87 EE-to-ISC conversion in mature adults, indicating that EE dedifferentiation generally
88 occurs in response to nutrient fluctuation. These results demonstrate the nutritional
89 regulation of and the role of dedifferentiation in physiologically induced stem cell
90 expansion.

91

92 **RESULTS**

93 **Self-renewal of ISC^s is not sufficient for nutrient-dependent ISC expansion in the**
94 **anterior midgut**

95 To test whether stem cell expansion is entirely dependent on symmetric ISC division, we
96 first examined the mitotic activity of ISC^s. To this end, we used a known ISC marker,
97 *esg*⁺*Su(H)*⁻, and counted the number of *esg*⁺*Su(H)*⁻ cells as well as the number of mitotic
98 marker (phosphohistone H3; PH3) positive cells in whole mount midguts by labeling
99 *esg*⁺*Su(H)*⁻ cells with the GAL4/UAS system (*esg-Gal4*, *tub-Gal80^{ts}*, *Su(H)GBE-*
100 *Gal80>UAS-eYFP*) (Figure 1A). The number of *esg*⁺*Su(H)*⁻ cells increased by ~1.5 fold
101 in both anterior and posterior regions during the first three days of the adult stage (Figures
102 1B and S1B). However, the PH3⁺ ratio of *esg*⁺*Su(H)*⁻ cells in the anterior midgut was
103 significantly lower than that of the posterior midgut at 1-day-old (Day 1, Figure 1C),
104 suggesting distinct mitotic activity between anterior and posterior ISC^s. We confirmed
105 these results utilizing the Gal4 driver of another ISC marker, *Dl* (Figure S1C), and using
106 the endogenously GFP-tagged protein trap line *esg-GFP* (Figures S1D-S1F).

107 Despite lower mitotic activity in the anterior midgut, the increase in ISC
108 number is comparable between the two regions (Figure 1B). One explanation for this
109 finding is that anterior ISC^s more preferentially divide symmetrically than do posterior
110 ISC^s in order to increase their number. To test this possibility, we generated twin-spot
111 clones using the mosaic analysis with a repressible cell marker (MARCM) technique that
112 allows for the identification of asymmetric and symmetric cell division of ISC^s³³ (Figures
113 1D and S1H). The proportion of symmetric ISC division in the anterior region was

114 comparable to or even lower than that in the posterior region throughout the first three
115 days after eclosion (Figure 1E), suggesting the existence of other mechanisms that
116 contribute to ISC expansion in the anterior midgut beyond symmetric division. Consistent
117 with this observation, induction of the dominant negative form of the insulin receptor,
118 which strongly blocks nutrient-dependent ISC division^{34,35}, only partially suppressed
119 stem cell expansion in the anterior region, while almost completely eliminating ISC
120 expansion in the posterior region (Figure 1F). These results suggest that symmetric ISC
121 division alone does not account for ISC expansion in the anterior midgut, raising the
122 possibility of as-yet unidentified cell fate reversion during nutrient-dependent intestinal
123 growth.

124

125 **Apoptosis-independent decline in EE number during midgut growth**

126 While the number of EBs, the enterocyte progenitor, increased both in the anterior and
127 the posterior region in the early adult intestine³ (Figure S1G), the dynamics of EEs are
128 unclear. We thus decided to explore the number of EEs under two conditions: using the
129 EE-specific driver *pros-Gal4* (*pros-Gal4>UAS-GFP*) and with anti-Pros staining for the
130 wild-type fly. We found that EE population significantly decreased during the first three
131 days of adult life, and then recovered on Day 7 (Figures 2A and S2A). Notably, the decline
132 in EE number was a feeding-dependent process, and was more prominent in the anterior
133 midgut, where we have established that self-renewal of ISCs is insufficient for the
134 expansion of the stem cell pool (Figures 2A, 2B, S2A, and S2B). We then tested the
135 possibility that EEs undergo apoptosis, but found that EEs rarely exhibited cell death

136 markers (Figures S2C-S2F). Furthermore, overexpression of apoptosis inhibitors *p35* or
137 *diap1* by *pros-Gal4* failed to suppress the decline of EE number (Figures S2G and S2H).
138 Together, these results excluded apoptosis as the cause of the EE decrease and led us to
139 hypothesize that cell fate conversion from EE to ISC underlies ISC expansion.

140

141 **A subset of EE converts into functional ISCs in response to food intake**

142 To investigate cell fate dynamics of EEs after eclosion, we performed a lineage tracing
143 experiment in which temperature shift induces permanent labeling of *pros*⁺ EE-derived
144 cells with GFP or lacZ (Figure 2C)^{36,37}. Since the formation of adult differentiated EEs
145 (Pros⁺esg⁻, Pros⁺piezo⁻, or Pros⁺Dl⁻ cells) is completed during the pupal stage (Figures
146 2D, 2E and S3A-S3D)³⁸⁻⁴⁰, we labeled EEs before eclosion and examined their cell fate
147 in the adult stage by examining expression of Pros and the stemness marker *escargot*
148 (*esg*)⁴¹ (Figure 2C). We first confirmed that our scheme specifically labeled Pros⁺esg⁻
149 cells at the beginning of lineage tracing (Figure 2F, 2G, and S3E; 100% of labeled cells
150 were Pros⁺esg⁻ in 11/13 midguts). While 99.3 ± 0.3% of traced cells maintained Pros
151 expression just after eclosion (Day 0), 9.7 ± 1.8% of *pros*-lineage cells lost Pros signal
152 and acquired expression of esg in Day 1 adults, and this proportion reached 27.3 ± 3.0%
153 in Day 4 adults (Figure 2F and 2G). The lineage-traced Pros negative cells also expressed
154 another ISC marker, *Delta (Dl)*, but rarely expressed the EB marker *Su(H)* (Figure S3F-
155 S3H), suggesting the direct conversion of EEs into a stem-like state. Importantly,
156 induction of the *pros*-derived esg⁺ population was dependent on food intake and was more
157 frequent in the anterior region (Figure 2G), similar to the dramatic decline in EE number

158 in the anterior midgut (Figures 2A, 2B, S2A, S2B). These results indicate that the first
159 food intake after eclosion induces cell fate reversion from EE to ISC.

160 To examine how EEs lose their identity and acquire ISC fate, we first monitored
161 the dedifferentiation process after feeding. In the young adult midgut, typical cellular
162 morphology delimited by anti-Armadillo staining is round for EEs and angular for
163 ISCs/EBs (Figure 3A)⁴²⁻⁴⁴. Interestingly, we found that *pros*-lineage cells transform their
164 morphology after acquiring *esg* expression: while the *pros*-derived *esg*⁺ cells exhibited a
165 rounded shape in Day 1 guts, their shape became angular in Day 4 guts (Figures 3A, 3B,
166 and S3I). We also found that remnants of neuropeptide CCHa1 persist in *pros*-lineage
167 *esg*⁺ cells in the Day 1 guts but disappear in the Day 4 guts (Figures 3C and S3J),
168 suggesting that these *esg*⁺ cells originated from mature EEs. These results together
169 indicate that characteristics of EEs are gradually lost in the fate converting cells, which
170 is consistent with the gradual transcriptional repression of dedifferentiating secretory cells
171 in the regenerating mammalian intestine²².

172 We next investigated whether the EE-derived stem-like cells exhibit
173 proliferative capacity and generate differentiated daughter cells. We detected PH3 signal
174 in EE-derived *esg*⁺ cells with a frequency comparable to non-EE-lineage ISCs (resident
175 ISCs, Figures 3D and 3E). To further examine the clonal expansion of EE-derived *esg*⁺
176 cells and compare their behavior with resident ISCs, we sparsely labeled *pros*-lineage
177 *esg*⁺ cells as well as *Dl*-lineage cells before eclosion, and observed clones at several time
178 points (Days 1, 4, 7; Figures 3F-3H). All *Dl*-lineage cells were *Pros*⁻*esg*⁺ at Day 1,
179 confirming that they represented resident ISCs (Figure 3H). The number of cells per clone

180 was comparable between the two stem cell populations (Figure S3K), but the clonal cell
181 composition was distinct between them: a subset of EE-derived *esg*⁺ cells, but none of
182 the *Dl*-lineage resident ISCs, completely differentiated into *esg*⁻ polyploid ECs at Day 7
183 (Figures 3G and 3I). Although the EC-only clones lost *esg*⁺ cells, their cell number was
184 similar to those retaining *esg*⁺ cells (Figure 3J), suggesting that the EC-only clones were
185 generated after several rounds of mitotic division. Moreover, the EE-derived clones that
186 retained *esg*⁺ cells also exhibited a higher ratio of ECs at the expense of *esg*⁺ cells
187 (Figures S3L and S3M). These results suggest that the EE-derived *esg*⁺ cells have a
188 differentiation bias toward ECs compared to resident ISCs. Notably, the ratio of the EC-
189 only clones was considerably higher in the anterior midgut than the posterior midgut
190 (Figure 3I), indicating the regional differences in the regulation of stem cell fate.

191 While a subset of EE-derived clones eventually became exclusively ECs, we
192 also observed clones containing *esg*⁻ diploid cells that are likely EEs (Figure S3N). To
193 test the multipotency in the EE-derived *esg*⁺ cells directly, we traced *AstC*⁺EE lineage
194 and assessed the EC marker Nubbin as well as the EE marker Tk. Nubbin⁺ECs were
195 detected in *AstC*-derived multicellular clones (Figure 3K), and EC character was further
196 confirmed using the Myo31DF (Myo1A) reporter (Figure S3O)⁴⁵. Furthermore, Tk⁺EE
197 was also detected in the *AstC*-derived clones (Figure 3K). Given that the expression of
198 *AstC* and Tk are mutually exclusive in differentiated EEs^{46,47}, the Tk⁺EE should be newly
199 generated from *AstC*⁺EE-derived stem-like cells. Based on these observations, we
200 concluded that the EE-derived *esg*⁺ cells are multipotent ISCs that preferentially generate
201 new ECs.

202

203 **Single-cell RNA sequencing identified a subpopulation of EEs undergoing**
204 **dedifferentiation**

205 To corroborate the dedifferentiation program of EEs with transcriptional profiling, we
206 performed single-cell RNA sequencing (scRNA-seq) for the whole midgut samples from
207 Day 1 and Day 3 young adults (Figures 4A and 4B). Transcriptome analysis of 4,184
208 high-quality cells (see STAR Methods) revealed 10 clusters that we annotated
209 individually using known cell type-specific markers (Table S1) and validated by
210 integrating with a published cell atlas from the Day 7 midgut⁴⁸ (Figures S4A-S4C).

211 Within the UMAP plot, ISCs and EEs in our scRNA-seq data formed two clusters each:
212 ISC1 and ISC2 as well as AstC⁺EE and Tk⁺EE, respectively (Figures 4A-4C). ISC1
213 differentially expressed genes over ISC2 were enriched for GO terms related to cellular
214 processes involved in the activation of tissue stem cells across species (Figure S4D)⁴⁹⁻⁵³.
215 AstC⁺EE and Tk⁺EE are the major subclasses of EEs whose neuropeptide expression
216 patterns are well recapitulated in our data (Figure S4C)^{46,48}. Notably, the ISC marker *Dl*
217 was highly expressed in AstC⁺EEs (Figure 4C), and the AstC⁺EE gene signature was
218 enriched for stem cell maintenance over Tk⁺EEs (Figures S4E-S4G). In addition, a
219 portion of AstC⁺EEs, largely derived from the Day 1 gut sample, were in close proximity
220 to the ISC1 cluster based on the UMAP coordinates, whereas Tk⁺EEs were distant from
221 ISCs, suggesting transcriptional similarities between the AstC⁺EE subpopulation and
222 ISCs in the early adult intestine (Figures 4A and 4B).

223 To identify EEs that undergo dedifferentiation, we next obtained RNA
224 velocities and the directional information by performing trajectory inference analysis⁵⁴⁻
225 ⁵⁶. $AstC^+$ EEs exhibited direction toward ISC1 and ultimately ended in ISC2, while
226 Tk^+ EEs had no specific direction toward other clusters (Figure 4D). Importantly, the
227 number of $AstC^+$ EEs, but not Tk^+ EEs, decreased after eclosion *in vivo* (Figure 4E), and
228 lineage tracing using *AstC-Gal4* or *Tk-Gal4* drivers confirmed that *AstC*-lineage more
229 frequently converts to *esg⁺* cells than does *Tk*-lineage (Figures 4F and 4G). Consistent
230 with these data, dedifferentiating EEs did not contain remnants of class II (Tk^+)
231 neuropeptides *Tk* or *NPF*, which was in stark contrast to the case of class I ($AstC^+$)
232 neuropeptides CCHa1/2 (Figures 3C, 4H, S4H)⁴⁶.

233 Because RNA velocity analysis suggested that not all $AstC^+$ EEs have a
234 direction toward ISCs, we further performed subclustering and identified two
235 subpopulations identified as $AstC^+$ EE_0 and $AstC^+$ EE_1 (Figure S4I). $AstC^+$ EE_0 is
236 formed by the majority of cells closer to ISC1 whereas $AstC^+$ EE_1 primarily constitutes
237 the distant $AstC^+$ EE cells on the UMAP coordinates (Figure 4I). Integration with the
238 previous scRNA-seq data from FACS-sorted EEs⁴⁶ revealed that $AstC^+$ EE_0 represented
239 Class I EEs in the anterior/posterior region that also showed similarity to ISCs, while
240 $AstC^+$ EE_1 and Tk^+ EE represented EEs in the middle midgut (Figures S4J and S4K).
241 Notably, $AstC^+$ EE_0 expressed both the ISC marker *Dl* and the EE marker *pros* while
242 lowering transcription of the neuropeptide *AstC*, suggesting their intermediate state
243 during dedifferentiation (Figure 4J). Consistently, we observed $AstC^+ Dl^+$ cells in the Day
244 1 anterior midgut, where the levels of *AstC* and *Dl* were inversely correlated (Figures 4K,

245 4L, and S4L). Furthermore, AstC⁺EE_0 highly expressed genes involved in stem cell
246 maintenance, including the actin remodeling factor *chic* (the *Drosophila* homolog of
247 Profilin)^{57,58}, which is consistent with the morphological transformation of
248 dedifferentiating EEs (Figures 3A, 3B, S3I, and S4M). These data together identify a
249 subpopulation of AstC⁺EEs that undergo dedifferentiation during midgut growth after
250 eclosion.

251

252 **Genetic ablation of EE-derived stem cell population**

253 ISC expansion in the early adult stage drives nutrient-dependent intestinal growth^{3,31,32},
254 and our results indicated that EE dedifferentiation could be a critical driver of adaptive
255 tissue growth in the anterior midgut by providing an additional ISC pool. To test this
256 hypothesis, we developed a genetic ablation strategy that allows for the selective
257 elimination of the EE-derived ISCs from the midgut. In brief, the Gal4/UAS system with
258 temperature-sensitive Gal80 allows transient FLP expression in EEs under the *pros-Gal4*.
259 FLP flips out the transcriptional repressor *tub-QS* in EEs, and then *esg-QF2*, which
260 recapitulates its original *esg-Gal4* pattern (Figure S5A), induces expression of the pro-
261 apoptotic gene *reaper (rpr)* in the EE-derived ISCs (Figure 5A). By transiently shifting
262 pupae to restrictive temperature (29°C) before eclosion, this strategy enables selective
263 ablation of ISCs that originate from EEs present at eclosion (Figure 5B). We confirmed
264 the efficiency of our ablation paradigm by labeling EE-derived ISCs with GFP. While
265 control GFP expression labeled diploid cells in both the anterior and posterior regions of
266 the adult midgut, *rpr* expression together with GFP reduced GFP⁺ cells (Figures 5C, 5D,

267 and S5B). Although *pros-Gal4* is active in neurons as well as in EEs, *pros*-derived *esg*⁺
268 cells were not detected in the adult brain due to the lack of *esg-QF2* expression in neurons
269 (Figures S5C and S5D). We can therefore conclude that genetic ablation occurs
270 exclusively in EE-lineage cells in the midgut.

271

272 **EE-to-ISC conversion contributes to nutrient-dependent midgut growth**

273 Using the ablation system for EE-derived ISCs, we examined the impact of EE
274 dedifferentiation on stem cell abundance in the adult midgut by measuring the proportion
275 of *Dl*⁺ ISCs. After ablation of EE-derived stem cells, the *Dl*⁺ ISC ratio decreased
276 significantly in Day 4 fed adults both in the anterior and posterior midgut with a stronger
277 effect in the anterior region (Figures 5D and 5E), consistent with the higher frequency of
278 dedifferentiation in the anterior midgut (Figures 2G and 3H). Surprisingly, the decreased
279 *Dl*⁺ ratio persisted in Day 10 fed guts even though the priming of *rpr* induction was
280 restricted exclusively to EEs existing at eclosion, suggesting that loss of EE-derived ISCs
281 cannot be recovered via other mechanisms (Figure 5E). The decline in the *Dl*⁺ ISC ratio
282 was not observed in either Day 4 starved adults or in Day 10 fed adults that did not
283 experience the *rpr* induction priming (Figures S5E-S5H).

284 To determine if organ size increase requires EE dedifferentiation, we measured
285 the size of adult midguts after ablation. The ablation of dedifferentiated ISCs significantly
286 impaired organ growth in response to food intake after eclosion, particularly by
287 attenuating the increase in thickness (Figure 5F, 5G, S5I, and S5J). Importantly, the

288 reduction of organ growth was not caused by any abnormality in feeding behavior since
289 *rpr* induction did not affect food intake (Figure S5K and S5L).

290 While the cell ablation experiments suggested that EE-to-ISC conversion
291 provides an additional stem cell pool for efficient midgut growth, *rpr* induction ablated
292 not only EE-derived ISCs in the anterior/posterior midgut but also $\text{Pros}^+\text{esg}^+$ EEs in the
293 middle midgut (Figure 5C)^{46,48}. To eliminate any potential effect caused by the loss of
294 middle EEs, we inhibited mitosis in the EE-derived ISCs by knocking down *cdk1*, *AurB*,
295 or *polo*⁵⁹. After confirming that mitotic inhibition did not affect the $\text{Pros}^+\text{esg}^+$ EEs in the
296 middle region (Figures S5M-S5O), we found that knockdown of these mitosis-related
297 genes impaired growth of the anterior midgut, but not of the posterior midgut (Figure
298 S5P). Therefore, the mitosis of EE-derived ISCs is the predominant contributor to the
299 resizing of the anterior midgut.

300 Results from the cell ablation and mitotic inhibition experiments suggested that
301 EE-to-ISC conversion provides an additional stem cell pool for efficient midgut growth.
302 To further test this concept without blocking the functions of EE-derived ISCs, we
303 established a population dynamics model that recapitulates our observations of cell
304 population changes in the early adult midgut (Figures 5H [with dedifferentiation], S6, and
305 Table S2). In this model, dedifferentiation occurs only during the first four days after
306 eclosion, mirroring the life stage when the EE-to-ISC conversion occurs (Figures 2F and
307 2G). *In silico* simulation revealed that, if the anterior midgut does not rely on the
308 dedifferentiation of EEs, ISCs must increase the proportion of symmetric self-renewing
309 division to maximize the expansion of total cells (Figure 5I). The shift of division mode

310 to symmetric division decreased the production of new ECs (Figure 5H). Intriguingly, the
311 proportion of symmetric division in the anterior midgut *in vivo* (Figure 1E) was close to
312 the optimal value (0.55) estimated by the mathematical model for increasing midgut cell
313 number (Figure 5I). These results indicate that EE dedifferentiation functions as an
314 irreplaceable source of new ISC s that relieves the need for symmetric ISC division and
315 promotes the generation of new ECs. Consistently, the higher frequency of
316 dedifferentiation in the anterior midgut (Figure 2G) accompanied a higher ratio of
317 asymmetric ISC division at Day 2 and Day 3 compared to that in the posterior midgut *in*
318 *vivo* (Figure 1E), further supporting the role of EE dedifferentiation in promoting EC
319 generation.

320

321 **Dietary glucose and amino acids induce EE dedifferentiation**

322 To gain insight into EE dedifferentiation mechanisms, we first investigated the nutrients
323 required for the EE-to-ISC conversion by culturing lineage-tracing fly adults on holidic
324 medium, a synthetic fly food⁶⁰. Holidic medium lacking either sucrose or amino acids
325 (AAs) significantly reduced the frequency of EE dedifferentiation, and food lacking both
326 sucrose and AAs almost completely eliminated it to near the level of the water-only
327 condition (Figure 6A). In contrast, dietary cholesterol was not necessary for EE
328 dedifferentiation (Figure 6A). Intriguingly, ingestion of both sucrose and AAs induced
329 cell fate conversion, albeit at a lower frequency than that induced by nutrient-complete
330 medium (Figure 6B). These results suggest that dietary sugar and AAs are minimal
331 nutrients required for dedifferentiation, while other nutrients also promote it.

332 The feeding assay used the fluorescently labeled deoxyglucose (2-NBDG)
333 revealed that anterior EEs incorporated more glucose than posterior EEs did (Figure S7A-
334 S7B), raising the possibility that glucose directly acts on EEs to regulate their plasticity.
335 To test this hypothesis, we introduced another lineage tracing system, T-trace^{61,62}, in
336 which lineage labeling requires not only temperature shift but also estrogen feeding
337 (Figure 6C). This two-step regulation enables us to knock down genes of interest in EEs
338 while performing lineage tracing (Figures 6C and 6D). We first confirmed that T-trace
339 exhibited no leaky labeling during our tracing duration and reproduced the regional
340 difference in the frequency of EE-to-ISC conversion (Figures S7C-S7E). Then we tested
341 the requirement of two glucose transporters, Glut1 and Sut1, which have been reported
342 to function in EEs^{63,64}, as well as Pgi, a downstream glycolytic enzyme. Knockdown of
343 *Glut1* and *Pgi*, but not *sut1*, suppressed cell fate conversion (Figures 6E and 6F).
344 Moreover, the *Pgi:GFP* reporter⁶⁵ revealed that anterior EEs expressed more Pgi protein
345 than posterior EEs in Day 1 midguts (Figures S7F and S7G). These results suggest that
346 EEs directly sense glucose and metabolize it to revert into stem cells.

347

348 **The JAK-STAT pathway underlies EE-to-ISC conversion**

349 Given that several signaling pathways (e.g. Wnt, Notch, and EGFR) have been reported
350 to regulate cellular reprogramming during intestinal regeneration^{19,23,24,66}, we next
351 performed candidate screening to identify the signaling pathway underlying the nutrient-
352 dependent dedifferentiation of EEs. In this screening, we repressed signaling factors in
353 EEs using *pros-Gal4* and counted the number of Pros⁺EEs at Day 3, when EEs decreased

354 in the control midgut (Figures S2A and S2B). Knockdown of *Notch*, *Stat92E*, and
355 *domeless* (a receptor in the JAK-STAT pathway) resulted in a significant increase of EEs
356 (Figures S7H-S7L). From T-trace experiments, we identified *Stat92E*, but not *Notch*, as
357 a regulator of EE-to-ISC conversion (Figure 6G and 6H). Furthermore, flies lacking both
358 *upd2* and *upd3* (*upd2-3A*), which encode ligands for the Domeless receptor, failed to
359 induce the dedifferentiation (Figure 6I and 6J). These results indicate that the JAK-STAT
360 pathway is crucial for the cell fate reversion of EEs.

361 Previous work showed that starvation induces *upd3* expression in the adult
362 midgut⁶⁷, raising a possibility that the JAK-STAT pathway is activated during food
363 scarcity. Indeed, the expression of *upd2*, *upd3*, and *socs36E* (a downstream target of
364 *Stat92E*), but not *upd1*, was high in pre-feeding Day 0 (“D0”) anterior midguts, but their
365 expression decreased after food intake (“D4, complete”) (Figure 6K). When dietary
366 sucrose and AAs were depleted from fly food, the levels of *upd2*, *upd3*, and *socs36E*
367 remained high in Day 4 anterior midguts (Figure 6K), suggesting that the JAK-STAT
368 pathway continues to be activated until adult flies ingest enough nutrients to induce
369 dedifferentiation (Figure 6A). We further found that transcriptional activity of *Stat92E*
370 was high in Day 0 EEs compared to EEs in the Day 4 fed condition (Figures 6L and 6M).
371 Importantly, AstC⁺EEs exhibited higher *Stat92E* activity among Pros⁺ population (Figure
372 6N and 6O), and in scRNA-seq data, AstC+EE_0 expressed *domeless*, *Stat92E*, and
373 *Socs36E* to a higher degree than Tk+EE (Figure S4N), which is in line with the higher
374 plasticity in this EE subtype (Figure 4D and 4G). The *upd3-Gal4>GFP* reporter also
375 revealed that *upd3* was upregulated in the Day 0 midguts (Figures S7M and S7N).

376 Consistent with the previous report⁶⁷, it was not EEs but mainly ECs that produced *upd3*
377 in the anterior midgut (Figure S7O). Collectively, Stat92E is activated in anterior EEs
378 under nutrient-restricted conditions, which is necessary to induce dedifferentiation in
379 response to subsequent food intake.

380

381 **Dedifferentiation of EEs occurs generally in response to nutrient fluctuation**

382 Given that the midgut of the newly eclosed adult is food-naïve due to the lack of food
383 intake during the pupal stages, fluctuation in nutrient conditions may trigger fate
384 conversion of EEs throughout life. To test this hypothesis, we examined the behavior of
385 EEs after a feed-starve-refeed cycle and found that the total cell number increased in
386 response to refeeding³ (Figures 7A, S7P, and S7Q). The number of EEs, measured using
387 *pros-Gal4* (Figure 7B) or anti-Pros (Figure 7C), significantly decreased upon refeeding
388 in the anterior midgut, suggesting that anterior EEs maintain the potential to
389 dedifferentiate even after midgut maturation. Concordantly, lineage tracing revealed that
390 EEs, especially AstC⁺EEs, convert into *esg*⁺ cells after refeeding in the anterior region
391 (Figures 7D and 7E). The behaviors of the EE-derived *esg*⁺ cells were similar to those in
392 the early adult midgut: after 7 days of refeeding, they clonally expanded and exhibited
393 multipotency as well as differentiation bias toward ECs, although the ratio of the EC-only
394 clones was lower compared to that in the early adult midgut (Figures 7F-7J). Moreover,
395 *Stat92E* is required in EEs to induce the EE-to-ISC conversion, and the transcriptional
396 activity of *Stat92E* was high in AstC⁺EEs compared to other EEs before refeeding

397 (Figures 7K-7N). Taken together, these results indicate that dedifferentiation of EEs can
398 occur generally during recovery from starvation.

399

400 **DISCUSSION**

401 Here, we demonstrate that dedifferentiation of EEs occurs during adaptive midgut
402 resizing when the number of ISCs additively increases in early *Drosophila* adults (Figure
403 7O). Although cell fate plasticity *in vivo* has been well documented under the conditions
404 of stem cell loss, our results provide evidence that physiologically-induced
405 dedifferentiation contributes more broadly to stem cell expansion beyond the cases of
406 regeneration and disease. Indeed, enteroendocrine lineage in the mice intestine exhibits
407 rare stem cell activity even without severe injury²⁶. Given that diverse species including
408 mammals dynamically resize digestive organs depending on nutrient availability^{2,4-6}, it is
409 tempting to speculate that dedifferentiation is an evolutionarily conserved mechanism
410 underlying adaptive tissue growth.

411 Both in mammals and flies, EEs are diversified according to neuropeptide
412 expression, and specific subtypes sense different types of luminal environment to induce
413 local and/or systemic responses^{68,69}. In *Drosophila*, class II EEs secrete Tk, which
414 activates ISC proliferation via insulin signaling upon food intake³⁰. The higher cell fate
415 plasticity of a subset of class I EEs (Figures 4F and 4G) whose endocrine functions are
416 more important during starvation than under fed conditions^{70,71} likely indicates that
417 paracrine signaling from class II EEs and dedifferentiation from class I EEs cooperatively
418 promote ISC expansion in response to food intake. Although dedifferentiation causes a

419 partial loss of class I EEs, the supply can be restored after intestinal growth (Figures 2A
420 and S2A), suggesting that the enlarged intestine replenishes the starvation-responsive
421 population to prepare for potential future food scarcity.

422 While nutritional inputs shift the division mode of ISCs toward symmetric
423 renewal^{3,31,32,72}, the mechanisms employed to sustain the generation of differentiated cells
424 during midgut growth are unclear. Our mathematical modeling shows that the existence
425 of nutrient-dependent EE dedifferentiation secures EC lineage-generating asymmetric
426 ISC division by supplying EE-derived ISCs during the rapid midgut growth phase
427 (Figures 5H and 5I), highlighting the potential significance of physiological
428 dedifferentiation for organ growth. Moreover, the EE-derived ISC itself also
429 preferentially generates ECs, especially in the anterior midgut (Figures 3G, 3I, 7F and
430 7H). Given the critical roles of ECs in digestion and absorption, the generation of new
431 ECs in the growing intestine may help to optimize the intestine's capacity to maximize
432 nutrient availability. This digestive function is particularly important in the anterior region,
433 a major site of macromolecule degradation essential for subsequent nutrient absorption^{9,11}.
434 Consistent with this notion, the *Drosophila* anterior midgut exhibits a higher
435 dedifferentiation rate with a relatively high ratio of asymmetric ISC division (Figures 1E
436 and 2G).

437 While cell fate reversion during intestinal regeneration relies on Wnt, Notch,
438 and EGFR pathways^{19,23,24,66}, our candidate screening newly identified Stat92E as a
439 signaling factor required for the nutrient-dependent dedifferentiation of EEs (Figures
440 S7H-S7L, 6G, and 6H). In line with our finding, the ligands of the JAK-STAT pathway,

441 but not those of Wnt and EGFR pathways, are specifically up-regulated in the adult
442 midgut during starvation⁶⁷. Interestingly, activated STAT3 binds to progenitor-related
443 genes to induce dedifferentiation of mouse hepatocytes during liver regeneration⁷³.
444 However, in the case of nutrient-dependent intestinal growth, refeeding of glucose and
445 AAs is also required in addition to the Stat92E activity to trigger the dedifferentiation
446 process (Figures 6A and 6B). Future studies should investigate how dietary glucose and
447 AAs cooperate with Stat92E to induce EE-to-ISC conversion in response to refeeding.

448 On the basis of our findings, we propose that the coordination of cell fate
449 plasticity and stem cell division ensures functional organ growth in which both stem cells
450 and differentiated cells concomitantly increase their number in response to nutrition
451 changes. In this scenario, EEs may enable an “on-demand” supply of additional ISCs by
452 sensing luminal nutrients^{68,69}, which fluctuate with food availability in the wild as well as
453 under pathophysiological conditions^{74,75}. The number of EEs remains constant during
454 starvation (Figure 2B and S2B), supporting the idea that EEs function as a backup
455 population that undergoes dedifferentiation only when responding to tissue demand for
456 stem cells. Collectively, our study illuminates the physiological regulation of cell fate
457 plasticity and its role in adaptive organ resizing.

458

459 **Limitations of study**

460 In this study, we investigated the cell fate plasticity that underlies the nutrient-dependent
461 intestinal growth. Although intestinal size can dynamically change under other
462 physiological contexts such as mating⁷⁶⁻⁷⁹ and regeneration^{80,81}, it remains to be

463 investigated whether these external stimuli also induce cell fate reversion of EEs. Notably,
464 it was reported that pathogenic infection by *Pseudomonas entomophila* did not alter the
465 identity of either Class I (AstA⁺) EEs or Class II (Tk⁺) EEs⁸², while EBs revert into ISCs
466 in response to the bacterial infection⁶⁶. It is thus possible that the cell type undergoing
467 dedifferentiation may vary with physiological context. DSS-induced enteritis induces
468 reversion of Paneth cells in the mouse intestine²³, raising the possibility that inflammatory
469 cues, including Upd3 (orthologous to mammalian IL-6), identified in this study, regulates
470 cellular reprogramming during inflammation. Consistently, macrophage-derived IL-6
471 induces dedifferentiation of hepatocytes during liver regeneration⁷³. It will be worthwhile
472 to investigate whether nutritional and Stat-dependent mechanisms control cell fate
473 reversion beyond starvation-refeeding contexts.

474

475 **ACKNOWLEDGEMENTS**

476 We thank H. Jasper, N. Perrimon, T. Akiyama, H. Bruce, H. Steller, S. Bray, R. Niwa, T.
477 Ida, E.Y. Kim, N. Buchon, S. Hou, I. Miguel-Aliaga, BDSC, the Kyoto Stock Center,
478 NIG, and DSHB for fly stocks and reagents; S. Kondo and T. Akiyama for critical
479 suggestions for and comments on the manuscript.

480 This work was supported by JSPS/MEXT KAKENHI (grant numbers JP22J01430 to
481 H.N., JP17H06327, JP19K03645 to S.T., JP17H06331 to R.N., JP21H05105 to D.U.,
482 JP26114003, JP21H05255, JP24687027, JP16H04800 to E.K., JP21H04774,
483 JP21K19206 to M.M., and JP17H06332, JP19K22550, JP22H02762 to Y.N.), JST
484 CREST (JPMJCR1852 to E.K.), JST FOREST Program (J210000474 to D.U.), AMED-

485 Aging (JP21gm5010001 to M.M.), AMED-PRIME (JP22gm6310012 to R.N.,
486 JP21gm6110025 to Y.N.), Takeda Science Foundation (D.U.), and Sadako O. Hirai Ban
487 Award for Young Researchers (H.N.).

488

489 **AUTHOR CONTRIBUTIONS**

490 Conceptualization: H.N., Y.N.
491 Investigation: H.N., L.A.E.N., S.T.
492 Methodology: H.N., L.A.E.N., S.T., D.U.

493 Validation: H.N., L.A.E.N., S.T., D.U., E.K., R.N., M.M., Y.N.

494 Data curation: H.N., L.A.E.N., S.T., Y.N.

495 Writing – original draft: H.N., L.A.E.N., S.T., D.U.

496 Writing – review & editing: H.N., L.A.E.N., S.T., D.U., E.K., R.N., M.M., Y.N.

497 Supervision: E.K., R.N., M.M., Y.N.

498 Funding acquisition: H.N., S.T., R.N., D.U., E.K., M.M., Y.N.

499

500 **DECLARATION OF INTERESTS**

501 The authors declare no competing interests.

502

503 **FIGURE LEGENDS**

504 **Figure 1. Self-renewal of ISCs is not sufficient for ISC expansion in the anterior**
505 **midgut.**

506 (A) Schematic of ISC expansion in early adult stage. The anterior, middle, and posterior
507 region of the adult midgut is indicated in the confocal image (see also STAR Methods for
508 determination of regional boundaries). (B) The relative increase of *esg*⁺*Su(H)*⁻ cell
509 number between Day 1 and Day 3 guts. (C) The mitotic activity of *esg*⁺*Su(H)*⁻ cells. The
510 same samples are quantified in (B) and (C). (D) Twin spot MARCM technique labels one
511 ISC daughter with GFP and the other with RFP. In the case of symmetric division, both
512 ISC daughters generate additional cells, resulting in multiple cells both in the GFP and
513 the RFP clones. In the case of asymmetric division, one daughter differentiates and stops
514 mitosis while the other daughter continues to proliferate, resulting in one clone with one
515 cell and the other with multiple cells. Please see also STAR Methods for the classification
516 of symmetric/asymmetric division. (E) The ratio of symmetric/asymmetric ISC division
517 in the Day 1, 2, and Day 3 midgut. (F) The relative increase of *esg*⁺*Su(H)*⁻ cell number
518 in midguts overexpressing the dominant negative form of InR (InR^{DN}).

519 N.S., not significant: P>0.05, *P≤0.05, **P≤0.01, ***P≤0.001. One-way ANOVAs with
520 post hoc Tukey test (B, C, F), chi-square test (E). *n* indicates the number of midguts in
521 (B, C, F) and the number of clones in (E). Scale bars: 500 μm (A), 20 μm (D). See also
522 Figure S1.

523

524 **Figure 2. A subset of EEs dedifferentiates into ISCs in response to food intake after**

525 **eclosion.**

526 (A and B) The number of *pros-Gal4>UAS-GFP⁺* EEs in Day 1, 2, 3 and Day 7 fed (A)

527 and starved (B) guts.

528 (C) Schematic of lineage tracing. Adult EEs were labeled with lacZ (β -gal) or GFP before

529 eclosion, and their cell fate was checked after eclosion.

530 (D) Representative image of Pros⁺ cells and esg-GFP⁺ cells in the midgut at 6 days after

531 puparium formation. Arrowhead indicates Pros⁺esg⁺ cell.

532 (E) Quantification of Pros⁻esg⁺ cells (green), Pros⁺esg⁻ cells (magenta), and Pros⁺esg⁺

533 cells (yellow) at 6, 7, and 8 days after puparium formation.

534 (F) Representative images of lineage tracing. Arrows: *pros*-lineage⁺Pros⁺esg⁻ cells,

535 arrowheads: *pros*-lineage⁺Pros⁻esg⁺ cells.

536 (G) Quantification of Pros⁺esg⁻ and Pros⁻esg⁺ ratio in *pros*-lineage cells. Both fed (f) and

537 starved (st) conditions were assessed for Day 4.

538 N.S., not significant: $P>0.05$, $*P\leq0.05$, $**P\leq0.01$, $***P\leq0.001$. One-way ANOVAs with

539 post hoc Tukey tests. n indicates the number of midguts. Scale bars: 50 μ m. See also

540 Figure S2 and S3.

541

542 **Figure 3: pros-derived Pros⁻esg⁺ cells are functional ISCs.**

543 (A) Histological analysis of cellular shape. Lineage tracing of EEs was performed, and

544 the shape of EEs (Pros⁺esg⁻), EE-derived esg⁺ cells (*pros*-lineage⁺Pros⁻esg⁺, arrowheads),

545 and non-EE-derived esg⁺ cells (*pros*-lineage⁻Pros⁻esg⁺) was examined by anti-Arm

546 staining that visualizes adherens junction.

547 (B) Quantification of (A). Circularity of EEs, EE-derived esg⁺ cells, and non-EE-derived
548 esg⁺ cells in the anterior region were quantified.

549 (C) EE-derived esg⁺ cells (arrowheads) contained the remnants of the CCHa1 peptide in
550 Day 1 fed guts but not in Day 4 fed guts.

551 (D) PH3 signal in EE-derived esg⁺ cells.

552 (E) The mitotic activity of EE-derived esg⁺ cells was comparable to that of conventional
553 (non-EE-derived) esg⁺ cells. PH3 staining was performed after paraquat feeding (5 mM,
554 Day 4-5).

555 (F) Schematic for sparse labeling. Two hours incubation at 29°C sparsely labeled EE
556 lineage cells (*pros*) and resident ISC lineage cells (*Dl*).

557 (G) Representative images of EE-derived esg⁺ cell clone at Day 1, 4, and 7. The clone
558 containing only polyploid ECs (EC only) and the one retaining esg⁺ cells (with esg⁺) are
559 shown for Day 7.

560 (H) Quantification of Pros⁺esg⁻ and Pros⁻esg⁺ ratio in EE lineage and resident ISC lineage
561 at Day 1.

562 (I) The ratio of EC-only clones in lineage traced clones.

563 (J) The number of cells per clone at Day 7 for each clone type.

564 (K) Nub⁺ECs and Tk⁺EE in one clone that derived from AstC⁺EE. Arrows: Nub⁺ECs,
565 arrowhead: Tk⁺EE.

566 N.S., not significant: P>0.05, *P≤0.05, ***P≤0.001. Two tailed *t* tests (E), one-way
567 ANOVAs with post hoc Tukey test (B, J), chi-square test (H). *n* indicates the number of
568 cells (B), guts (E), and clones (H-J). Scale bars: 5 μm (A, C, D), 50 μm (G, K). See also

569 Figure S3.

570

571 **Figure 4. scRNA-seq identifies a subpopulation of EEs undergoing dedifferentiation.**

572 (A) UMAP projection of the 4,184 cells that passed quality control filtering. Data from
573 Day 1 and Day 3 guts were merged and subjected to a graph-based clustering using the
574 Louvain algorithm with Seurat v.4.

575 (B) Side-by-side UMAP embedding showing the distribution of cells in Day 1 and Day 3
576 samples.

577 (C) Projection of *Dl* mRNA levels onto the UMAP plot.

578 (D) Projection of RNA velocities onto the UMAP plot. A subset of *AstC*⁺EEs exhibit
579 direction toward the ISC1 cluster (inset).

580 (E) The number of *AstC-Gal4>UAS-GFP*⁺ cells and *Tk-Gal4>UAS-GFP*⁺ cells in Day
581 1, 2, and 3 fed anterior midguts.

582 (F) Representative images of *AstC/Tk* lineage tracing. Arrows: *Pros*⁺*esg*⁻ cells,
583 arrowheads: *Pros*⁻*esg*⁺ cells.

584 (G) Quantification of the *Pros*⁺*esg*⁻ and *Pros*⁻*esg*⁺ ratio in *AstC/Tk*-lineage cells.

585 (H) Neuropeptide staining in the anterior region of *pros*-lineage tracing sample. In Day 1
586 fed guts, EE-derived *esg*⁺ cells (arrowheads) contain remnants of CCHa2 peptide but not
587 of Tk or NPF.

588 (I) Projection of *AstC*⁺EE subclusters onto the UMAP plot.

589 (J) Expression of the ISC marker (*Dl*) and the EE markers (*pros*, *AstC*, *Tk*) in the indicated
590 cell population.

591 (K) Representative image for SABER FISH of *Dl* mRNA in the *AstC-Gal4>UAS-RFP*
592 midgut.

593 (L) Quantification of (K). A correlation analysis of mean fluorescence intensity of *Dl*
594 mRNA and *AstC>RFP* indicates that *AstC*⁺EEs exhibiting high *Dl* mRNA signal show
595 low RFP signal, and vice versa. Pearson' correlation coefficient (R) was calculated:

596 $R=-0.735$, $R^2 = 0.540$.

597 N.S., not significant: $P>0.05$, * $P\leq0.05$, ** $P\leq0.01$, *** $P\leq0.001$. n indicates the number
598 of midguts. One-way ANOVAs with post hoc Tukey test. Scale bars: 50 μm (F), 10 μm
599 (H), 20 μm (K). See also Figure S4.

600

601 **Figure 5. Dedifferentiation of EEs contributes to nutrient-dependent intestinal
602 growth.**

603 (A) Schematic of the genetic system that allows ablation of EE-derived ISCs.

604 (B) Ablation experiment scheme.

605 (C) Ablation of *pros*-lineage *esg*⁺ cells by *rpr* induction at Day 1 and Day 10.

606 (D and E) Representative images of anti-*Dl*⁺ cells and EE-derived *esg-QF2>GFP*⁺ cells
607 in the control (*GFP*) and the ablated (*GFP, rpr*) anterior midguts at Day 10 (D). *Dl*⁺ cell
608 abundance is quantified in (E).

609 (F and G) Representative images of the control and the ablated whole midgut at Day 10.

610 Size of the guts is quantified in (G).

611 (H) Population dynamics in the anterior region over time. Two conditions, one wherein
612 EEs undergo dedifferentiation and the other wherein ISCs divide more symmetrically due

613 to the lack of EE dedifferentiation, are simulated. Dots and error bars (mean \pm SE)
614 indicate the cell number observed *in vivo*.

615 (I) Computational simulation indicates the effect of symmetric ISC division on the total
616 cell number in the anterior midgut with or without dedifferentiation.

617 N.S., not significant: $P>0.05$, $*P\leq0.05$, $***P\leq0.001$, two tailed *t* tests. *n* indicates the
618 number of midguts in (C) and (G), and the number of images analyzed in (E). Scale bars:
619 10 μ m (D), 500 μ m (F). See also Figure S5 and S6.

620

621 **Figure 6. Dietary glucose and amino acids as well as the JAK-STAT pathway
622 regulate EE dedifferentiation**

623 (A, B) Quantification of the $\text{Pros}^-\text{esg}^+$ ratio in *pros*-lineage cells in the Day 4 anterior
624 midgut.

625 (C) Schematic of the T-trace system.

626 (D) Scheme for the T-trace in the early adult stage.

627 (E, G) Representative images for the T-trace of *pros* lineage in the anterior midgut.

628 Arrows: $\text{Pros}^+\text{esg}^-$ cells, arrowheads: $\text{Pros}^-\text{esg}^+$ cells.

629 (F, H) Quantification of $\text{Pros}^-\text{esg}^+$ ratio in *pros*-lineage cells in T-trace experiments. The
630 Day 4 anterior midguts were analyzed.

631 (I) Representative images for *pros*-lineage cells in the control and *upd2-3A* anterior
632 midgut. Arrows: $\text{Pros}^+\text{esg}^-$ cells, arrowheads: $\text{Pros}^-\text{esg}^+$ cells.

633 (J) Quantification of the $\text{Pros}^-\text{esg}^+$ ratio in *pros*-lineage cells in the Day 4 anterior midgut.

634 (K) RT-qPCR for *upd1*, *upd2*, *upd3*, and *socs36E*. The anterior midguts were collected

635 from Day 0 (D0) and Day 4 (D4) adults.

636 (L) Representative images of 10 \times Stat92E-GFP signal in the anterior midgut. Arrowheads:

637 GFP^{high}Pros⁺ cells.

638 (M) Quantification of 10 \times Stat92E-GFP signal intensity in Pros⁺EEs.

639 (N) Representative images of 10 \times Stat92E-GFP signal in AstC-Gal4>RFP anterior midgut.

640 Arrowheads: GFP^{high}Pros⁺ cells, arrows: GFP^{low}Pros⁺ cells.

641 (O) Quantification of 10 \times Stat92E-GFP signal intensity in AstC⁺Pros⁺EEs and

642 AstC⁻Pros⁺EEs in the Day 0 anterior midgut.

643 N.S., not significant: P>0.05, * P \leq 0.05, **P \leq 0.01, ***P \leq 0.001. One-way ANOVAs with

644 post hoc Tukey test. *n* indicates the number of guts (A, B, F, H, J), RNA samples (K), and

645 cells (M, O). Scale bars: 50 μ m. See also Figure S7.

646

647 **Figure 7. Dedifferentiation of EEs occurs generally in response to nutrient**

648 **fluctuation.**

649 (A) Experimental schematic of the feed-starve-refeed cycle. Newly eclosed female adults

650 were fed for 7 days, starved for 3 days (0.5% sucrose), and then refed for 1, 2, 3, or 4

651 days. Lineage labeling was performed during the last two days of starvation (from Day 8

652 to Day 10).

653 (B, C) Refeeding decreased the number of *pros>GFP⁺* cells (B) and anti-Pros⁺ cells (C)

654 in the anterior midgut. No decrease was observed in the posterior midgut.

655 (D) Quantification of the Pros⁺esg⁻:Pros⁻esg⁺ ratio in *pros/AstC/Tk*-lineage cells in the

656 anterior midgut.

657 (E) Representative images of *AstC/Tk* lineage tracing in the Day 14 anterior midgut.
658 Arrows: $\text{Pros}^+\text{esg}^-$ cells, arrowheads: $\text{Pros}^-\text{esg}^+$ cells.

659 (F) Representative images of *pros*-lineage clones 7-days after refeeding (Day 17). The
660 clone containing only polyploid ECs (EC only) and the one retaining esg^+ cells (with
661 esg^+) are shown.

662 (G) The number of cells per *pros*-lineage clone at Day 17 in the anterior midgut.

663 (H) The ratio of EC-only clones in *pros*-lineage clones.

664 (I) The cell type composition in *pros*-lineage clones that retained esg^+ cells at Day 17.

665 (J) Nub^+ECs and a Tk^+EE in one clone that derived from an *AstC*⁺*EE*. Arrows: Nub^+ECs ,
666 arrowhead: Tk^+EE .

667 (K) Representative images of *pros*-lineage cells in the control and *Stat92E RNAi* midgut.

668 (L) Quantification of the $\text{Pros}^-\text{esg}^+$ ratio in *pros*-lineage cells.

669 (M) Representative images of 10×*Stat92E*-GFP signal in the *AstC-Gal4>RFP* anterior
670 midgut. Arrowheads: $\text{GFP}^{\text{high}}\text{Pros}^+$ cells, arrows: $\text{GFP}^{\text{low}}\text{Pros}^+$ cells.

671 (N) Quantification of 10×*Stat92E*-GFP signal intensity in Pros^+ cells.

672 (O) Model schematic. The anterior midgut highly relies on EE dedifferentiation for
673 nutrient-dependent intestinal growth, whereas symmetric ISC division is the dominant
674 mechanism in the posterior midgut. The EE-to-ISC conversion is regulated by dietary
675 glucose and AAs as well as the JAK-STAT pathway.

676 N.S., not significant: $P>0.05$, $**P\leq 0.01$, $***P\leq 0.001$. Two-tailed *t* tests (D, G, L, N), chi-
677 square test (H). *n* indicates the number of midguts (B, C, D, L), the number of clones
678 observed (G-I), and the number of cells (N). See also Figure S7.

679

680 **STAR Methods**

681

682 **RESOURCE AVAILABILITY**

683

684 **Lead contact**

685 Further information and requests for resources and reagents should be directed to and will
686 be fulfilled by the lead contact, Yu-ichiro Nakajima (nakaji97@g.ecc.u-tokyo.ac.jp).

687

688 **Materials availability**

689 All *Drosophila* stocks generated in this study are available from the Lead Contact without
690 restriction.

691

692 **Data and code availability**

- 693 • Raw scRNA-seq datasets are available from NCBI GEO (accession number
694 GSE207662). Microscopy data reported in this paper will be shared by the lead
695 contact upon request.
- 696 • The docker image used in the single-cell analysis is available at DockerHub
697 (<https://hub.docker.com/r/rnakato/shortcake>). The scRNA-seq analysis scripts are
698 available on GitHub
699 (https://github.com/eijynagai/Drosophila_dedifferentiation_Nagai).
- 700 • Any additional information required to reanalyze the data reported in this paper is
701 available from the lead contact upon request.

702

703

704 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

705

706 ***Drosophila* stocks**

707 All stocks were maintained on a standard diet containing 4% cornmeal, 6% baker's yeast
708 (Saf Yeast), 6% glucose (Wako, 049-31177), and 0.8% agar (Kishida chemical, 260-
709 01705) with 0.3% propionic acid (Tokyo Chemical Industry, P0500) and 0.05% nipagin
710 (Wako, 132-02635). Canton S was utilized as the wild type strain. Transgenic fly lines
711 were obtained from Bloomington *Drosophila* Stock Center, Kyoto Stock Center, NIG-

712 FLY, Vienna *Drosophila* Resource Center. Following lines are gifts from fly community:
713 *w; esg-Gal4, UAS-eYFP; tub-Gal80ts, Su(H)GBE-Gal80* (Deng et al., 2015)⁸³, *w; Dl-*
714 *Gal4* (Zeng et al., 2010)⁸⁴, *w; upd3-Gal4* (Agaisse et al., 2003)⁸⁵, *UAS-myc::DIAP1* (Hay
715 et al., 1995)⁸⁶, *yw; QUAS-rpr* (Pérez-Garijo et al., 2013)⁸⁷, *w; UAS-FLP, Act-FRT-stop-*
716 *FRT-lacZ* (Akiyama and Gibson, 2015)⁸⁸, *w; Ubi-loxP-stop-loxP-GFP* (Zeng and Hou,
717 2015)⁶¹, *w; tub-Gal80ts, UAS-Cre[EBD304]* (Zeng and Hou, 2015)⁶¹, *esg-*
718 *GFP[P01986]* (Le Bras and Van Doren, 2006)⁸⁹, *Su(H)GBE-lacZ* (Furriols and Bray,
719 2001)⁹⁰, *w; Pgi:GFP* (Hudry et al., 2019)⁶⁵. Following lines are generated in this study:
720 *w; esg-QF2, w; QUAS-Cdk1 RNAi, w; QUAS-AurB RNAi, w; QUAS-polo RNAi, w;*
721 *Myo31DF-Venus*. See **Table S3** for the genotypes present in each figure.

722

723

724 **METHOD DETAILS**

725

726 ***Drosophila* genetics**

727 Virgin female adults were used in all experiments. When Day 0 adults were raised under
728 starvation, raised on holidic medium, and treated with 2-NBDGs, female adults were
729 collected within 2 hours after eclosion.

730 Experimental crosses that did not involve Gal80^{ts}-mediated temporal control
731 were performed at 25°C. When using Gal80ts, experimental crosses were maintained at
732 18°C, and female white pupae were transferred to new vials. The collected pupae were
733 raised at 18°C and then shifted to 29°C per the following time course: 18°C for 7 days
734 and then 29°C for 1, 2, or 3 days (**Figure 1B, 1C, 1F, S1B, S2G, and S2H**); 18°C for 6
735 days, 29°C for 12 hrs, and then 18°C until experiments (**Figure 2F, 2G, 3A-3E, 4F-4H,**
736 **5C-5G, 6A, 6B, 6I, 6J, S3E-S3J, S3O, S4H, S5B, S5D, S5E, S5G, S5I-S5K, and S5P**);
737 18°C for 6 days, 29°C for 2 hrs, and then 18°C until experiments (sparse labeling, **Figure**
738 **3G-3K and S3K-S3N**).

739 In T-trace experiments in the early adult stage (**Figure 6E-6H and S7D-S7E**),
740 Day 0 adults were transferred to 29°C and fed with 300 µg/ml β-estradiol (Sigma, E4389)
741 dissolved in 0.5% (w/v) sucrose (Wako, 196-00015) for 2 days. Then flies were
742 transferred to 18°C and fed with normal cornmeal food that did not contain β-estradiol
743 for 4 days. In T-trace experiments in the feed-starve-refeed contexts (**Figure 7A, 7D, 7E,**
744 **7K and 7L**), female adults were fed for 7 days at 18°C, then starved by treating 0.5%

745 sucrose for 3 days at 29°C. During the last two days of starvation, they were treated with
746 300 µg/ml β-estradiol. After starvation, flies were refed for 4 or 7 days at 18°C. For sparse
747 labeling (**Figure 7F-7J**), 150 µg/ml β-estradiol (Sigma, E4389) was used.

748 For twin-spot MARCM analysis (**Figure 1D-1E and S1H**), female adults were
749 collected within 2 hours after eclosion and maintained at 25°C for 1, 2, or 3 days. Then
750 twin spot clones were induced by heat shock at 37°C for 1 hour. Symmetric or asymmetric
751 outcome of the induced clones was determined 3-4 days after heat shock.

752 In the experiments for **Figure S5N**, 3-4 days old female adults were fed with
753 83 mg/ml quinic acid (Sigma, 138622, dissolved in 5% sucrose) at 18°C for 7 days to
754 induce QF2-mediated knockdown of *cdk1*, *AurB*, and *polo*. We added 200 µl of the quinic
755 acid solution on the top of the cornmeal food and put filter paper (Whatmann 3MM) on
756 it to soak the solution.

757

758 **Starvation experiments**

759 For newly eclosed adults (**Figure 2B, 2G, S1F, S2B, S5E, S5G**), virgin females were
760 collected within 2 hours after eclosion and transferred to vials with filter paper
761 (Whatmann 3MM) soaked with 400 µl of water. For mature adults (**Figure 7**), 0.5% (w/v)
762 sucrose was used instead of water. Flies were transferred to new vials every day during
763 starvation.

764

765 **Holidic medium**

766 We followed the published recipe⁶⁰ with modification based on exome matching⁹¹. The
767 final concentration for each ingredient is: 15 g/L agar, 3g/L KH₂PO₄, 1g/L NaHCO₃, 83.9
768 mg/L CaCl₂·6H₂O, 1.25 mg/L CuSO₄·5H₂O, 12.5 mg/L FeSO₄·7H₂O, 256 mg/L
769 MgSO₄·7H₂O, 0.5 mg/L MnCl₂·4H₂O, 12.5 mg/L ZnSO₄·7H₂O, 0.3 g/L cholesterol, 17.2
770 g/L sucrose, 1.97 g/L L-arginine monohydrochloride, 0.65 g/L L-histidine, 1.71 g/L L-
771 lysine monohydrochloride, 0.6 g/L L-methionine, 1.01 g/L L-phenylalanine, 1.11 g/L L-
772 threonine, 0.32 g/L L-tryptophan, 1.2 g/L L-valine, 1.1 g/L L-alanine, 1.03 g/L L-
773 asparagine, 1.52 g/L L-aspartic acid sodium salt monohydrate, 0.44 g/L L-Cysteine, 1.12
774 g/L L-Glutamine, 0.77 g/L Glycine, 0.98 g/L L-proline, 1.38 g/L L-serine, 1.75 g/L L-
775 glutamic acid monosodium salt hydrate, 1.12 g/L L-isoleucine, 2.03 g/L L-leucine, 0.93
776 g/L L-tyrosine, 1.4 mg/L thiamine hydrochloride, 0.704 mg/L (-)-riboflavin, 8.45 mg/L
777 nicotinic acid, 10.9 mg/L D-pantothenic acid hemicalcium, 1.76 mg/L pyridoxine

778 hydrochloride, 0.14 mg/L biotin, 0.5 mg/L folic acid, 50 mg/L choline chloride, 5.04
779 mg/L myo-inositol, 65 mg/L inosine, 60 mg/L uridine, 6 ml/L propionic acid, and 10 ml/L
780 nipagin.

781

782 **Generation of *esg-QF2* line**

783 The *esg-QF2* line was generated using the homology assisted CRISPR knock-in (HACK)
784 method⁹², which converts the *X-Gal4* transgene into *X-QF2* through CRISPR-mediated
785 introduction of double strand break and subsequent homology-directed repair. In brief,
786 *esg-Gal4* (Kyoto Stock Center 104863) was crossed with *nos-Cas9*, and F1 embryos were
787 injected with a *pBPGUw-HACK-G4>QF2* donor plasmid (Addgene #80277). Successful
788 knock-in events were screened by identifying *w⁺* marker and eye marker *3×P3-RFP*.
789 Injection and selection were performed by WellGenetics (Taiwan, R.O.C.).

790

791 **Generation of *QUAS-cdk1/AurB/polo RNAi* line**

792 To construct the *QUAS-cdk1, AurB, polo shRNA* plasmids, *pQUAS-WALIUM20* vector
793 (*Drosophila* Genomics Resource Center, #1474) was digested with *EcoRI* and *NheI*, and
794 then ligated with a DNA fragment for each gene (See **Table S4** for the sequences), based
795 on pre-existing RNAi sequences (*cdk1*: HMS01531, *AurB*: HMJ22415, *polo*:
796 HMS00530). The ligated plasmids were injected into *y[1] M{vas-int.Dm}ZH 2A*
797 *w[*];P{y[+t7.7]=CaryP}attP2* embryos. Injection and selection were performed by
798 WellGenetics (Taiwan, R.O.C.).

799

800 **Generation of *Myo31DF-Venus* line**

801 For the *Myo31DF* knock-in construct plasmid, the pBlueScriptII SK+ vector was digested
802 with *EcoRI*, and then ligated with a cassette containing the fluorescent protein Venus
803 whose sequence was excised from the pPVxRF3 plasmid with *Esp3I* and homologous
804 recombination (HR) arms by the In-Fusion HD kit (Clontech). HR arms were amplified
805 by PCR from genomic DNA extracted from a single CAS-0003 (NIG-FLY) adult fly. The
806 knock-in construct was designed to insert the knock-in cassette containing the full length
807 Venus sequence into the site in front of the termination codon of the gene. PCRs were
808 performed using the primers 5'-
809 GCTTGATATCGAATTACAAGCAGGCTAACCGCGCCTTCATCG-3' and 5'-
810 AGTTGGGGCGTAGGAACGCAGTACGCCGCCGACCTCG-3' for the left HR

811 arm and 5'-TAGTATAAGGAACCTCGCGGAATCAACTCCGCCAACTGTATTG-3'
812 and 5'-CGGGCTGCAGGAATTCTTGGGGAAATTGACGAAATGACCG-3' for
813 the right HR arm. To construct the gRNA plasmid for CRISPR/Cas9, the pBFv-U6.2
814 vector was digested with BbsI and ligated with the double stranded oligo DNA sequences
815 5'-CTTCGCCTAACGCGAGTACGCCGC-3' and 5'-
816 AAACCGCGCGTACTGCGTTAGGC-3'. To generate knock-in strains using
817 CRISPR/Cas9, the gRNA plasmid and the knock-in plasmid were injected into the nos-
818 Cas9 flies (CAS-0003 from NIG-FLY) as early embryos. The injection was performed
819 by BestGene Inc. Isogenized DsRed-positive transformants were confirmed by genomic
820 PCR and sequencing.

821

822 Immunofluorescence

823 Samples were dissected in 1X PBS and fixed in 4% PFA for 30-45 minutes at room
824 temperature (RT). The following primary antibodies were used with indicated dilution
825 into 1X PBS containing 0.5% BSA and 0.1% Triton X-100: rabbit anti-PH3 (Millipore
826 06-570, 1:1000), mouse anti-Prospero (DSHB MR1A, 1:100), rabbit anti-GFP (MBL 598,
827 1:500), rat anti-GFP (Nacalai tesque 04404-26, 1:400), rabbit anti-dsRed (Clontech
828 632496, 1:1000), chicken anti-β-galactosidase (Abcam ab9361, 1:500), mouse anti-
829 Armadillo (DSHB N27A1, 1:100), rabbit anti-CCHa1 (T. Ida, 1:1000)⁹³, rabbit anti-
830 CCHa2 (T. Ida, 1:1000)⁹³, guinea pig anti-NPF (R. Niwa, 1:2000)⁶⁴, guinea pig anti-DTk
831 (E.Y. Kim, 1:200)⁹⁴, mouse anti-Nubbin (DSHB 2D4, 1:100), mouse anti-rCD2 (BIO-
832 RAD MCA154GA, 1:2000), and mouse anti-Delta (DSHB C594.9B, 1:100).

833 After overnight incubation with primary antibodies at 4°C, samples were incubated
834 with fluorescent secondary antibodies (Jackson ImmunoResearch and Invitrogen, 1:500)
835 for 1 hour at RT. Hoechst 33342 (Invitrogen, final concentration: 10 µg/ml) was used to
836 visualize DNA. Samples were mounted in Slowfade Diamond (ThermoFisher, S36963)
837 and imaged with confocal microscopy (Zeiss LSM880 or Leica SP5). Whole
838 midgut/brain images were obtained using the tile scan tool together with the z-stack tool
839 (**Figure 1A, 5F, S3E, S5B-S5D, S7C, S7M, S7Q**). Other magnified images were taken
840 from the R2 region of the anterior midgut unless noted otherwise in the figures.

841

842 TUNEL staining

843 Dissected midguts were fixed in 4% PFA for 1 hour at RT. The samples were then
844 incubated with TUNEL reagents (Roche, 12156792910) in the dark at 37°C for 2 hours
845 with 300 rpm shaking. The TUNEL signal was detected after Hoechst staining using the
846 543 nm He-Ne laser of the Leica SP5. For a positive control that increases TUNEL⁺ cells,
847 we prepared flies that were fed with 5 mM paraquat (Sigma, 856177) overnight.

848

849 **Sytox staining**

850 Dissected midguts were incubated with 1 µM Sytox orange (Invitrogen, S11368) together
851 with 10 µg/ml Hoechst33342 for 10 minutes at RT without fixation. The samples were
852 then immediately observed with the Leica SP5. Paraquat was used for the positive control,
853 as described in TUNEL staining.

854

855 **Sample preparation for scRNA-seq**

856 Digestive tracts were dissected in sterilized cold 1× PBS and stored on ice. We removed
857 the hindgut, Malpighian tubules, and proventriculus to collect midguts (~160 midguts for
858 the Day 1 sample and ~130 midguts for the Day 3 sample) after all samples were dissected.
859 Midguts were then dissociated in 500 µl of 0.5% Trypsin-EDTA (Wako, 208-17251) at
860 RT for 30 minutes with gentle pipetting every 10 minutes. The digestion was stopped by
861 adding an equal amount of 1% BSA (Wako, 012-23381). Dissociated cells were passed
862 through a 37 µm cell strainer, pelleted at 400 × g for 10 minutes at 4°C, and resuspended
863 in 1% BSA. Cell suspension was loaded on the top of 1.12 g/ml gradient Optiprep reagent
864 (Axis-Shield, 1114542). After centrifugation at 800 × g for 20 minutes, viable cells were
865 isolated from the interphase, pelleted at 500 × g for 5 minutes, and resuspended in 100 µl
866 of 0.1% BSA. Cell concentration and viability was assessed using auto cell-counter TC-
867 20 (BIO-RAD, 1450109J1) and 0.4% Trypan-blue (Wako, 207-17081). The samples
868 (Day 1: 922 cells/µl, 81% viability; Day 3: 780 cells/µl, 73% viability) were then
869 processed with 10X Chromium v3.1 and sequenced with DNBSEQ System (MGI) by
870 Genewiz Japan.

871

872 **Single-cell bioinformatic analyses**

873 Raw scRNA-seq reads were mapped onto genome sequences using the CellRanger
874 pipeline (version 6.0.1)⁹⁵. The Drosophila genome and annotation from the Berkeley
875 Drosophila Genome Project, release 6 version 32 (BDGP6.32), were downloaded from

876 the Ensembl Metazoa database⁹⁶. We employed Velocyto (version 0.17.17)⁵⁵ to obtain
877 loom files that describe the spliced/unspliced expression matrices. We merged the loom
878 files with Loompy (version 2.0.16) and converted the merged file into a Seurat object
879 (version 4.0.4)⁹⁷. Quality check and preprocessing were performed using Seurat. We
880 filtered out cells that expressed less than 1,000 or more than 5,000 genes, along with cells
881 with a proportion of mitochondrial RNA larger than 5% from the downstream analysis.
882 We also filtered out hemocytes and visceral muscle cell clusters, as they were considered
883 contamination. Doublets were inferred and removed using DoubletFinder (version
884 2.0.3)⁹⁸ using standard parameters and the 10X Genomics doublet rate estimation of 0.8%.
885 The remaining 4,184 high-quality cells were normalized and rescaled by regressing on
886 per-cell number of UMIs and mitochondrial content by SCTransform (version 0.3.2)⁹⁹.
887 Dimension reduction was performed by UMAP¹⁰⁰ using the top-30 principal components
888 from principal component analysis (PCA). We tested multiple resolutions for Louvain
889 graph-based clustering (0.3, 0.5, 0.6, 0.8, 1.0, 1.6), and chose 0.5 for the final fixed
890 resolution. Marker genes were identified using Seurat’s “FindAllMarkers,” with a log
891 fold-change threshold of 0.7 and a minimum percentage of cells of 10%. Gene Ontology
892 term enrichment analysis was performed on the gene sets ($p < 0.01$, $q < 0.01$) using
893 ClusterProfiler (version 4.2.2)¹⁰¹.

894 We assessed and annotated the clustering results based on validated markers
895 (**Table S1**). We also compared our annotated clusters to the cell atlas of the adult
896 *Drosophila* midgut⁴⁸ and FACS-sorted EEs⁴⁶ using multidimensional scaling (MDS)
897 scores and combined UMAP coordinates.

898 Trajectory analysis was performed with scVelo (version 0.2.4)⁵⁴ using
899 “dynamical model” mode, and the UMAP coordinates were imported from the Seurat
900 analysis. The cell fate and terminal state probabilities were calculated considering all
901 clusters using CellRank (version 1.5.1)⁵⁶. For the EE subpopulation identification
902 analysis, we isolated the cluster “AstC⁺EE” and then subjected it to another clustering
903 using the same pipeline with 20 dimensions. Subclustered cell populations AstC⁺EE_0
904 and AstC⁺EE_1 were renamed on top of AstC⁺EE and used for further comparisons with
905 ISC1, ISC2, and Tk⁺EE clusters.

906

907 **SABER FISH**

908 We referred to Kishi et al.¹⁰² and Amamoto et al.¹⁰³ for probe design, primer
909 concatemerization, and FISH methodology. The probe set for *Dl* was selected from
910 balance type sequences defined in the Oligominer pipeline¹⁰⁴ (**Table S4**).
911 Concatemerization was performed in the reaction mixture (0.2 U/ml Bst LF polymerase,
912 2.0 μ M primer mix, 0.2 μ M Clean G, 1.0 μ M hairpin, 0.3 mM dNTPs without dGTP, 10
913 mM MgSO₄) at 37°C for 2 hrs and then at 80°C for 20 min. Concatemers were purified
914 using the MinElute PCR Purification Kit (QIAGEN).

915 Dissected midguts were fixed with 4% PFA for 30 min at RT, washed with
916 0.1% Tween-20 at RT, and then with pre-warmed wHyb solution (2 \times SSC, 1% Tween-20,
917 40% Formamide) for >15 min at 43°C. Samples were incubated with the primary oligo
918 (1 μ g concatemer in 2 \times SSC, 1% Tween-20, 40% Formamide, 10% Dextran) for 16-24
919 hrs at 43°C, washed with wHyb at 43°C for 2 \times 30 min, with 2 \times SSC at 43°C for 2 \times 15 min,
920 then with 0.1% Tween-20 at 37°C for 2 \times 5 min. After incubation with the secondary
921 fluorescent oligo (final 0.2 μ M, **Table S4**) at 37°C for 15 min, samples were washed with
922 0.1% Tween-20 at RT for 2 \times 5 min, then further immunostained at RT for 45 min.
923 Subsequent incubation with secondary antibody was also performed at RT for 45 min.
924 After nuclear staining using Hoechst 33342, samples were mounted in Slowfade
925 Diamond and imaged with confocal microscopy. Following antibodies were used for
926 immunostaining: anti-GFP (MBL, 1:500), anti-dsRed (Clontech 632496, 1:1000). Both
927 antibodies were dissolved in 0.1% Tween-20.

928

929 **Feeding assay**

930 Food intake was measured using cornmeal food containing 1% (w/v) FCF blue dye
931 (Wako, 027-12842). Female adults were fed with the dyed medium for 2 hrs at 18°C and
932 were then homogenized in a 1.5 ml tube containing 150 μ l MillQ water (8 flies/tube).
933 Supernatant was collected after centrifugation at 10,000 x g for 10 minutes. Dye content
934 in the supernatant was measured by reading absorbance at 630 nm with Nanodrop 2000c
935 (ThermoFisher). The standard curve was generated by measuring serial dilutions of pure
936 FCF dye (0.00025%, 0.0005%, 0.001%, 0.0025%, 0.005%).

937

938 ***In silico* modeling**

939 The mathematical model predicting each cell number was constructed at the cell
940 population level with continuous variables:

941
$$\frac{dI}{dt} = q_S I - q_{2B} I + qE - d_I I,$$

942
$$\frac{dB}{dt} = q_B I + 2q_{2B} I - q_C B - d_B B$$

943
$$\frac{dC}{dt} = q_C B - d_C C$$

944
$$\frac{dE_p}{dt} = q_{E_p} I - (q_{1E} + q_{2E}) E_p - d_{E_p} E_p$$

945
$$\frac{dE}{dt} = (q_{1E} + 2q_{2E}) E_p - qE - d_E E$$

946 where each term represents cell differentiation and dedifferentiation (**Figure S6A**), and
 947 cell death. The variables I , B , C , E_p and E represent the number of ISC, EB, EC,
 948 EEP and EE cells, respectively, and t (day) is time. See **Table S2** for a list of parameter
 949 values and see below for definitions of the functions that depend on time t or the above
 950 variables I , B , C , E_p , and E .

951

952 The cell division rate $a = a(t)$ is defined as:

953
$$a(t) = \begin{cases} \{a_0 + a_1 \exp(-bt_0)\} \frac{t}{t_0} & (t \leq t_0) \\ a_0 + a_1 \exp(-bt) & (t > t_0) \end{cases}$$

954 where a_0 is the steady state cell division rate, and the other parameters are estimated
 955 from measured mitotic activity (**Figure S6B**). Then the symmetric division rate is $q_S =$
 956 ap_S , where p_S is the ratio of symmetric division. The asymmetric division rate $q_B =$
 957 ap_B , $q_{E_p} = ap_{E_p}$ and the symmetric differentiation rate $q_{2B} = ap_{2B}$ are defined
 958 similarly. Note that $p_S + p_B + p_{E_p} + p_{2B} = 1$. Each division ratio p_i varies piecewise
 959 linearly in time (**Figure S6C**):

960
$$p_i(t) = \begin{cases} p_{i,\text{initial}} - (p_{i,\text{initial}} - p_{i,\text{early}}) \frac{t}{t_1} & (t \leq t_1) \\ p_{i,\text{early}} & (t_1 < t \leq 3) \\ p_{i,\text{early}} - (p_{i,\text{early}} - p_{i,\text{late}}) (t - 3) & (3 < t \leq 4) \\ p_{i,\text{late}} & (t > 4) \end{cases}$$

961 where $i = S, B, E_p, 2B$.

962

963 The rate of dedifferentiation q reaches a maximum value at day 1, then decays, and is
 964 zero after day 4 (**Figure S6D**):

$$965 \quad q(t) = \begin{cases} q_{\max} t & (t \leq 1) \\ q_{\max} \frac{4-t}{3} & (1 < t \leq 4) \\ 0 & (t > 4) \end{cases}$$

966 The differentiation rate q_C from EBs to ECs also reaches its maximum at day 1 and then
 967 decreases over time. Conversely, the cell death rate d_B of EBs increases over time¹⁰⁵.
 968 The time changes after day 1 are described by the Hill function (**Figure S6E**):

$$969 \quad q_C(t) = \begin{cases} q_{C,\max} t & (t \leq 1) \\ q_{C,\max} - (q_{C,\max} - q_{C,\infty}) \frac{(t-1)^{m_1}}{K_1^{m_1} + (t-1)^{m_1}} & (t > 1) \end{cases}$$

$$970 \quad d_B(t) = \begin{cases} 0 & (t \leq 1) \\ d_{B,\infty} \frac{(t-1)^{m_2}}{K_2^{m_2} + (t-1)^{m_2}} & (t > 1) \end{cases}$$

971
 972 The rate constants $q_{C,\infty}$, $d_{B,\infty}$ and the cell death rates d_I , d_C , d_E are determined by
 973 steady state conditions:

$$974 \quad q_{C,\infty} + d_{B,\infty} = a_0(p_B + 2p_{2B}) \frac{I_{SS}}{B_{SS}}, \quad q_{C,\infty} : d_{B,\infty} = 1:4$$

$$975 \quad d_I = a_0(p_S - p_{2B}) \left(\frac{I}{I_{SS}} \right)^{n_I}$$

$$976 \quad d_C = \frac{a_0 q_{C,\infty}}{q_{C,\infty} + d_{B,\infty}} (p_B + 2p_{2B}) \frac{I_{SS}}{C_{SS}} \left(\frac{C}{C_{SS}} \right)^{n_C}$$

$$977 \quad d_E = \frac{a_E}{a_E + d_{E_p}} (p_{1E} + 2p_{1E}) a_0 p_{E_p} \frac{I_{SS}}{E_{SS}} \left(\frac{E}{E_{SS}} \right)^{n_E}$$

978 where I_{SS} , B_{SS} , C_{SS} , and E_{SS} represent the steady state values of I , B , C , and E ,
 979 respectively, and are determined by (Marianes and Spradling, 2013)¹¹:

$$981 \quad I_{SS} : B_{SS} : C_{SS} : E_{SS} = \begin{cases} 1 : 1 : 7 : 0.7 & \text{(anterior)} \\ 1 : 1 : 7 : 0.5 & \text{(posterior)} \end{cases}$$

$$982 \quad I_{SS} = 600$$

980

983 **RT-qPCR**

984 Total RNA was purified from 10-15 midguts using the ReliaPrep RNA Tissue Miniprep
985 System (Promega). cDNA was made from 100 or 200 ng of RNA using PrimeScript RT
986 Reagent Kit (TaKaRa). Quantitative PCR was performed using TB Green Premix Ex Taq
987 II (TaKaRa) and a QuantStudio 6 Flex Real-Time PCR System (ThermoFisher). *RpL32*
988 was used as an internal control. Primer sequences were listed in **Table S4**.

989

990 QUANTIFICATION AND STATISTICAL ANALYSIS

991

992 Boundary between midgut compartments

993 The midgut region (anterior, middle, and posterior) was determined based on defined
994 morphological characteristics^{9,11}. We first searched for characteristic constrictions at the
995 boundary between the anterior-middle and middle-posterior. We also verified these
996 boundaries by checking the length of each region (the ratio of length,
997 anterior:middle:posterior, is roughly 4:1:4). We focused on the anterior and the posterior
998 midgut given the different lineage hierarchy in the middle midgut^{28,29}.

999

1000 Twin spot clone type

1001 In twin spot MARCM experiments (**Figure 1D, 1E, and S1H**), heat shock induces mitotic
1002 recombination that results in clonal labeling of one ISC daughter with GFP and the other
1003 daughter with RFP. Both fluorescent proteins are expressed by ubiquitous promoter, thus
1004 visualizing clonal expansion of the two ISC daughters individually^{3,31,33}. Symmetric ISC
1005 division generates two ISCs that undergo additional rounds of mitosis. We therefore
1006 classified symmetric division as when both the GFP clone and RFP clone contain ≥ 2
1007 cells (total ≥ 4 cells in a twin spot). On the other hand, asymmetric ISC division generates
1008 one ISC and one differentiated cell that loses mitotic activity. We therefore classified
1009 asymmetric division as when either color consists of only one cell and the other color
1010 contains ≥ 2 cells (total ≥ 3 cells in a twin spot). We excluded twin spots with only one
1011 cell in both colors (total 2 cells in a twin spot) from the quantification, since we cannot
1012 distinguish whether the singly labeled cell is a differentiating cell or an ISC that does not
1013 undergo additional mitosis. We also excluded single-color clones without an adjacent
1014 clone of the opposite color (e.g., GFP clone without adjacent RFP clone, Figure S1I),
1015 which likely arise from cell death in one color.

1016 Although a subset of rare EEPs also exhibit mitotic activity in addition to ISCs³⁸,
1017 EEPs can divide only once, and resultant daughters are post-mitotic EEs. Thus, if mitotic
1018 recombination occurs in EEPs, both colors remain a one cell clone (total 2 cells in a twin
1019 spot). We excluded 2-cell twin spots as described above, thus focusing on twin spots
1020 originated from ISC division.

1021

1022 **Quantification of cellular shape**

1023 Cell shape (**Figure 3A, 3B, S3I**) was quantified using Fiji software. The cell membrane
1024 was visualized by anti-Armadillo staining and recorded as the ROI with the polygon
1025 selection tool. The circularity of ROIs was measured using the Shape descriptors plugin.
1026 High circularity indicates a rounded shape (similar to a complete circle) whereas low
1027 circularity indicates an angular and/or elongated shape. Cell type was determined by
1028 combining anti-Pros staining, *esg-lacZ* reporter, and lineage tracing using *pros-Gal4*: EEs
1029 were Pros⁺β-gal⁻, esg⁺ cells were Pros⁻β-gal⁺lineage⁻, and EE-derived esg⁺ cells were
1030 Pros⁻β-gal⁺lineage⁺.

1031

1032 **Quantification of Dl⁺ cell ratio**

1033 The Dl⁺ cell ratio (**Figure 5E, S5E, and S5F**) was measured by counting the total cell
1034 number as well as the Dl⁺ cell number using Fiji. Quantification of total cell number was
1035 performed as follows: (1) Remove noise signal of Hoechst staining with the Despeckle
1036 command. (2) Binarize using the Threshold command. (3) Fill stainless nuclear
1037 compartments such as the nucleolus using the Fill Holes command. (4) Divide multiple
1038 nuclei that are continuously adjacent using the Watershed command. (5) Measure the
1039 number of nuclei using the Analyze Particles command. The Dl⁺ cells were defined as
1040 diploid cells with membrane or punctate Dl signal.

1041

1042 **Quantification of midgut size**

1043 The midgut area (**Figure 5G, S5G-S5J, and S5P**) was measured using a previously
1044 established macro for Fiji⁷⁷. Briefly, staining artifacts and fluorescent signal of other
1045 tissues (Malpighian tubules and trachea) were cut out using the line tool. Then the midgut
1046 ROI was selected and binarized. The size, length, and thickness of selected ROIs were
1047 measured automatically.

1048

1049 **Statistics**

1050 Statistical analyses were performed using Excel and RStudio. Two tailed *t* tests were used
1051 for comparisons between two groups. One-way ANOVAs with post hoc Tukey tests were
1052 performed when comparing three or more groups. chi-square tests were used for
1053 comparisons for the symmetric-asymmetric ratio (**Figure 1E**) and the ratio of EC-only
1054 clones (**Figure 7H**). Significance is indicated in the figures as follows: * $P\leq 0.05$,
1055 ** $P\leq 0.01$, *** $P\leq 0.001$, Not Significant (N.S.): $P>0.05$. Bar graphs show mean \pm standard
1056 error. Boxplots show median (thick line in the box), first and third quartiles (bottom and
1057 top of the box), minimum value (lower whisker), and maximum value (upper whisker).
1058 Dots in bar graphs and boxplots indicate individual values. Violin plots indicate
1059 distribution of individual values.

1060

1061 **Supplemental Tables**

1062

1063 Table S1. Marker genes utilized for cell type annotation

1064 Table S2. List of parameters used in the simulation

1065 Table S3. Detailed genotypes in each experiment

1066 Table S4. Oligo sequences

1067 Table S5. Absolute cell counts for main figures

1068 Table S6. Absolute cell counts for supplemental figures

1069 *Table S1-S3 are included in this file, and Table S4-S6 are separately uploaded as Excel

1070 spreadsheets.

1071

1072 **Supplemental figure legends**

1073

1074 **Figure S1. The number of ISCs and EBs increases after eclosion.**

1075 (A) Total cell number in the anterior midgut. In the fed condition, the total cell number
1076 increased in a feeding dependent manner between Day 1 and Day 3. In the starved
1077 condition, the total cell number increased between Day 0 and Day 1; however, there was
1078 no further increase between Day 1 and Day 3. Fed: n=10 (Day 0), 9 (Day 1), 11 (Day 2),
1079 12 (Day 3), 12 (Day 7). Starved: n=11 (Day 0), 9 (Day 1), 11 (Day 3).

1080 (B) The absolute number of *esg⁺Su(H)⁻* cells in Day 1, Day 2, and Day 3 guts (related to
1081 Figure 1B). n=13 (Day 1), 11 (Day 2), 10 (Day 3) midguts.

1082 (C) The number of *Dl-Gal4>GFP⁺* cells and the mitotic activity of *Dl>GFP⁺* cells. The
1083 number of *Dl>GFP⁺* cells similarly increases both in the anterior/posterior midgut,
1084 however, their mitotic activity is lower in the anterior midgut than in the posterior midgut.
1085 n= 12 (Day 1), 11 (Day 2), 13 (Day 3) midguts.

1086 (D) The absolute number of *esg-GFP⁺* ISCs/EBs in Day 1, Day 2, and Day 3 guts. n=9
1087 (Day 1), 12 (Day 2), 10 (Day 3) midguts.

1088 (E) The relative number and the mitotic activity of *esg-GFP⁺* ISCs/EBs. While the
1089 number of ISCs/EBs increases ~1.5 fold both in anterior and posterior midguts, the
1090 mitotic activity of *esg-GFP⁺* cells is significantly lower in the anterior midgut than in the
1091 posterior midgut.

1092 (F) There is no increase in ISC/EB number under starved condition. n=14 (Day 1), 10
1093 (Day 2), 12 (Day 3) midguts.

1094 (G) The number of *Su(H)GBE-Gal4>GFP⁺* EBs increases after eclosion in both midgut
1095 regions in the fed condition. n=11 (Day 1), 11 (Day 2), 10 (Day 3) midguts.

1096 (H) Representative image of a non-twin clone (white arrows) that exhibits only one
1097 fluorescence type in the twin-spot MARCM system. The typical twin-color clone is
1098 indicated by yellow arrows. The right graph shows quantification for the ratio of the non-
1099 twin clones in all clones. Scale bar: 50 μ m.

1100 Not Significant (N.S.): P>0.05, **P \leq 0.01, ***P<0.001. One-way ANOVAs with post hoc
1101 Tukey tests.

1102

1103 **Figure S2. The feeding-dependent and apoptosis-independent decline in EE number
1104 in the early adult midgut.**

1105 (A and B) The number of EEs is measured by anti-Prospero staining. Prospero⁺ cells
1106 decrease in the fed condition (A) but not in the starved condition (B). n=10 (Day 0), 9
1107 (Day 1), 11 (Day 2), 12 (Day 3), 12 (Day 7) midguts in (A), and n=11 (Day 0), 9 (Day 1),
1108 11 (Day 2), 11 (Day 3) midguts in (B).
1109 (C) Representative images of TUNEL staining. Paraquat (PQ) feeding acts as a positive
1110 control for midgut cell death. *pros>GFP*⁺ cells rarely exhibit TUNEL signal. Scale bar:
1111 100 μ m.
1112 (D and E) Quantification of TUNEL signal. PQ feeding significantly increases the number
1113 of TUNEL⁺ cells, suggesting that TUNEL staining successfully detects apoptotic events
1114 (D). TUNEL⁺ EEs are rare both in PQ treated guts and early adult guts (E). n=6 (PQ), 8
1115 (Day 1), 6 (Day 2) midguts.
1116 (F) Sytox staining, which detects the membrane permeability characteristic of dead cells,
1117 is rarely detected in EEs. Paraquat feeding acts as a positive control for midgut cell death.
1118 Scale bar: 20 μ m.
1119 (G) Overexpression of *p35* does not inhibit the decrease of EE number after eclosion.
1120 n=11 (Day 1), 10 (Day 2), 6 (Day 3) midguts.
1121 (H) Overexpression of *Diap1* does not inhibit the decrease of EE number after eclosion.
1122 n=8 (Day 1), 5 (Day 2), 15 (Day 3) midguts.
1123 N.S., not significant: P>0.05, *P \leq 0.05, **P \leq 0.01, ***P \leq 0.001. One-way ANOVAs with
1124 post hoc Tukey tests.
1125

1126 **Figure S3. Direct conversion from mature EEs into ISCs.**

1127 (A) The Pros⁺*piezo*⁺ EEPs are detected in midguts 3 days after puparium formation (APF),
1128 but not in those 4 days APF. The *piezo-KI-Gal4>RFP* pattern reproduces the data in
1129 previous report⁴⁰.
1130 (B) Quantification of Pros⁺*piezo*⁺ cells among Pros⁺ cells. Pros⁺*piezo*⁺ EEPs are rarely
1131 detected in midguts 4 days APF. n=15 (3 days), 28 (4 days) images.
1132 (C) Representative images of apical protrusion in mature EEs. The morphology of Pros⁺
1133 cells were examined by expressing mCD8:GFP with *Gal4* drivers that mark pan-EE
1134 lineage (*pros-Gal4*) or immature EE progenitors (*esg-Gal4*^{40,61}, *Dl-Gal4*^{38,39}, *Piezo-KI-*
1135 *Gal4*⁴⁰) to see the apical protrusion, which was proposed as a characteristic of
1136 differentiated EEs^{43,82}. In the adult midguts, Pros⁺ cells that are labeled by *pros-Gal4*
1137 extend cellular protrusion toward the apical lumen, while those marked with *esg-Gal4*,

1138 *Dl-Gal4*, or *Piezo-KI-Gal4* lack this structure and exhibit round shape. At 4d APF, Pros⁺
1139 cells that are marked with *pros-Gal4* also exhibit the apical protrusion, suggesting that
1140 Pros⁺ cells complete maturation into EEs before eclosion.

1141 (D) The length of apical protrusion was quantified by using z-stack images of Pros⁺ cells.
1142 We measured the length from the apical tip of nuclear Hoechst signal to the apical tip of
1143 mCD8:GFP signal.

1144 (E) Whole midgut image of pros-lineage tracing sample (genotype: *pros-Gal4*, *tub-*
1145 *Gal80ts>UAS-FLP*, *Ubi-FRT-stop-FRT-GFP*). No leaky labeling is detected at Day 7
1146 when flies were kept at 18°C, while temperature shift to 29°C (Figure 2C) induces GFP⁺
1147 cells.

1148 (F) A subset of *pros*-lineage cells loses Pros expression and instead acquires *Dl* expression
1149 after eclosion (arrowhead). Experimental scheme is the same as in Figure 2C.

1150 (G) Quantification of *Dl*⁺ ratio in *pros*-lineage cells in fed samples. n=6 (Day 1), 11 (Day
1151 4) midguts.

1152 (H) *pros*-lineage cells rarely exhibit *Su(H)* expression in Day 1 fed guts and Day 4 fed
1153 guts. n=6 (Day 1), 4 (Day 4) midguts.

1154 (I) Quantification of Figure 3A for posterior midgut. Circularity of EEs, EE-derived esg⁺
1155 cells, and non-EE-derived esg⁺ cells were quantified. n=21 (Day 1, EE), 9 (Day 1, EE-
1156 derived esg⁺), 13 (Day 1, non-EE-derived esg⁺), 23 (Day 4, EE), 12 (Day 4, EE-derived
1157 esg⁺), 10 (Day 4, non-EE-derived esg⁺) cells.

1158 (J) Quantification of Figure 3C. CCHa1 intensity is significantly higher in EE-derived
1159 (lineage⁺) esg⁺ cells compared to non-EE-derived (lineage⁻) esg⁺ cells in the Day 1
1160 anterior midgut. n=14 (Day 1, lineage⁻esg⁺), 18 (Day 1, lineage⁺esg⁻CCHa1⁺), 12 (Day
1161 1, lineage⁺esg⁺), 5 (Day 4, lineage⁻esg⁺), 8 (Day 4, lineage⁺esg⁻CCHa1⁺), 6 (Day 4,
1162 lineage⁺esg⁺) cells.

1163 (K) The number of cells per clone at Day 1, Day 4, and Day 7.

1164 (L-N) The ratio of esg⁺ cells (L), esg⁻ polyploid cells (M), and esg⁻ diploid cells (N) in
1165 the Day 7 *pros*-lineage clones (EE-derived ISCs) and *Dl*-lineage clones (resident ISCs).
1166 n=32 (EE-derived ISC, anterior), 42 (resident ISC, anterior), 34 (EE-derived ISC,
1167 posterior), 25 (EE-derived ISC, posterior) clones.

1168 (O) Myo31DF-Venus (Myo1A-Venus) localizes to the apical membrane in the *pros*-
1169 lineage polyploid cell (arrow). The *pros*-lineage esg⁺ cell (arrowhead) is also detected
1170 adjacent to the *pros*-lineage polyploid cell. The subcellular localization of Myo31DF-

1171 Venus is similar to that of anti-Myo1A and Myo1A^{CPTI004107} protein trap line^{45,81}.
1172 N.S., not significant: P>0.05, *P≤0.05, **P≤0.001, One-way ANOVAs with post hoc
1173 Tukey tests. Scale bar: 50 μm (A), 500 μm (E), 10 μm (F), and 25 μm (O).

1174

1175 **Figure S4. Validation of clusters annotations and gene signature in EEs.**

1176 (A) Integrated UMAP plot of our single cell dataset with that of Hung et al⁴⁸. Datasets
1177 were normalized by SCTransform before Louvain clustering. Clusters in our dataset are
1178 shown with bright colors while those in Hung et al. are shown in gray.

1179 (B) MDS plot, together with the UMAP plot, indicates the correlation between our
1180 clusters and those of Hung et al.

1181 (C) Neuropeptide expression pattern in our dataset. Our AstC⁺EEs highly express
1182 neuropeptides of class I EE (AstC, AstA, Orcokinin, CCHa1, CCHa2)⁴⁶. Similarly,
1183 Tk⁺EEs in our dataset express neuropeptides of class II EE (Tk, NPF, Dh31)⁴⁶.
1184 Neuropeptides of class III EE (sNPF, CCHa2) are expressed in our AstC⁺EEs, suggesting
1185 that class III EEs are not separated in our dataset.

1186 (D) Gene ontology enrichment for ISC1 over ISC2.

1187 (E) Gene ontology enrichment for AstC⁺EEs over Tk⁺EEs. *CG46339*, *chic*, *Shg*, and
1188 *His2Av* are included in the term “somatic stem cell population maintenance.”

1189 (F) Differential expression of *CG46339* and *chic* is detected in EE population in Day 1
1190 fed guts. Enhancer trap lines *CG46339-lacZ* and *chic-lacZ* were used.

1191 (G) Differential expression of *Shg* (Drosophila E-Cadherin) is detected in EE population
1192 in Day 1 fed guts. Protein trap line *Shg*:GFP was used. Note that *pros>mCherry*⁺ EEs
1193 exhibit a round shape, which is consistent with the observation by anti-Armadillo staining
1194 (Figure 3A). No obvious differences in *His2Av* expression were detected *in vivo*.

1195 (H) Quantification of Figure 4H. Intensity of CCHa2, but not of Tk or NPF, is
1196 significantly high in EE-derived (lineage⁺) esg⁺ cells compared to non-EE-derived
1197 (lineage⁻) esg⁺ cells in Day 1 anterior midgut. CCHa2: n=10 (lineage⁻esg⁺), 12
1198 (lineage⁺esg⁻CCHa2⁺), 7 (lineage⁺esg⁺) cells. Tk: n=12 (lineage⁻esg⁺), 8
1199 (lineage⁺esg⁻Tk⁺), 18 (lineage⁺esg⁺) cells. NPF: n=13 (lineage⁻esg⁺), 22
1200 (lineage⁺esg⁻NPF⁺), 18 (lineage⁺esg⁺) cells.

1201 (I) Subclustering of AstC⁺EE using the same approach for the initial cells clearly reflects
1202 the presence of two subpopulations with distinct features.

1203 (J, K) Integrated UMAP plot of our single cell dataset with that from Guo et al⁴⁶. All of

1204 our quality-filtered cells (J) and only EEs and ISC1 (K) are merged with FACS-sorted
1205 EEs⁴⁶ (Guo et al., 2019). Datasets were normalized by SCTransform before Louvain
1206 clustering. Clusters in our dataset are shown with bright colors while those in Guo et al.
1207 are shown in gray.

1208 (L) Validation of *Dl* probe set. *Dl* mRNA signal is detected in *Dl-Gal4>GFP*⁺ cells.
1209 (M) Expression levels of *CG46339*, *chic*, and *shg* in *AstC*⁺EE subpopulations, *Tk*⁺EE,
1210 and ISCs. Expression of *CG46339* gradually decreases along *AstC*⁺EE_1, *AstC*⁺EE_0,
1211 and ISCs compared with the acute down-regulation between ISCs and *Tk*⁺EE. *chic* and
1212 *shg* are upregulated in *AstC*⁺EE_0 and ISC1 over *AstC*⁺EE_1.

1213 (N) Expression levels of *dome*, *Stat92E*, and *socs36E* in *AstC*⁺EE subpopulations, *Tk*⁺EE,
1214 and ISCs. The dedifferentiating *AstC*⁺EE_0 highly expresses genes related to the JAK-
1215 STAT pathway compared to *Tk*⁺EE.

1216 N.S., not significant: P>0.05, *P≤0.05. One-way ANOVAs with post hoc Tukey tests.
1217 Scale bar: 5 μm.

1218

1219 **Figure S5. Validation of the ablation system and growth defect by mitotic inhibition**
1220 **in EE-derived ISCs.**

1221 (A) The newly established *esg-QF2* recapitulates its original *esg-Gal4* pattern. Arrows:
1222 *QF2*⁺*Gal4*⁻ cells, arrowhead: *QF2*⁻*Gal4*⁺ cell. n=11 (anterior), 12 (posterior) images.

1223 (B) EE-derived *esg*⁺ cells are detected in 4-day fed guts (upper and lower left panels) and
1224 are eliminated by *rpr* overexpression (middle and lower right panels). These GFP-marked
1225 cells are diploid, a characteristic of *esg*⁺ ISCs. Scale bars: 500 μm (upper and middle
1226 panels), 50 μm (lower panels).

1227 (C) *pros* is highly expressed in adult brain cells whereas *esg*⁺ cells are rare.

1228 (D) *esg-QF2>mCD8:GFP* signal is absent in most brain cells, except for a few cells in
1229 the subesophageal ganglion (upper panels). *pros*-derived *esg*⁺ cells are completely absent
1230 in the adult brain (lower panels).

1231 (E) Ablation effect on *Dl*⁺ cell ratio depends on nutrient intake after eclosion. *G*: *GFP*
1232 (control), *Gr*: *GFP+rpr* (ablation), n=22 (*G*), 22 (*Gr*) images analyzed.

1233 (F) Ablation effect on *Dl*⁺ cell ratio depends on the priming of *rpr* overexpression. n=28
1234 (*G*), 26 (*Gr*) images analyzed.

1235 (G) Ablation effect on midgut size depends on nutrient intake after eclosion. n=15 (*G*),
1236 13 (*Gr*) midguts.

1237 (H) Ablation effect on midgut size depends on the priming of *rpr* overexpression. n=15
1238 (G), 15 (Gr) midguts.

1239 (I, J) Ablation of EE-derived esg⁺ cells impaired the midgut growth in thickness, but not
1240 in length. n=15 (*GFP*, Day 1), 15 (*GFP*, Day 10), 12 (*GFP**rpr*, Day 1), 12(*GFP**rpr*, Day
1241 10) midguts.

1242 (K) Food intake in 2 hours was measured at Day 1, Day 4, and Day 10 after eclosion. *rpr*
1243 induction did not decrease the amount of blue dye ingestion. G: *GFP* (control), Gr:
1244 *GFP+rpr* (ablation). n=8 (Day 1), 9 (Day 4), 7 (Day 10) experiments. Eight flies were
1245 used for each sample.

1246 (L) Feeding assay detects decreases in food intake. Wild type adults consumed blue dye
1247 food for 20 minutes or 2 hours. Food intake in 20 minutes is significantly less than that
1248 in 2 hours. n=9 experiments. Eight flies were used for each sample.

1249 (M) Pros⁺esg⁺ EEs in the middle midgut do not exhibit PH3 signal (0/24 PH3⁺ cells from
1250 11 midguts). Arrows: Pros⁺esg⁺ EEs, arrowheads: PH3⁺ cells.

1251 (N) Mitotic inhibition using *esg-QF2*, *tub-QS* system and the newly established QUAS-
1252 RNAi lines targeting *cdk1*, *AurB*, and *polo*. Mitotic inhibition causes mis-differentiation
1253 of *esg-QF2>GFP*⁺ cells in the anterior midgut, but not in the middle midgut. Adult flies
1254 were fed with quinic acid for 7 days before experiments.

1255 (O) Quantification for (N). The mis-differentiation phenotype (e.g., abnormal
1256 endoreplication) is quantified by nuclear size. Anterior: n=140 (control), 144 (*cdk1 KD*),
1257 68 (*AurB KD*), 65 (*polo KD*) cells. Middle: n=94 (control), 95 (*cdk1 KD*), 205 (*AurB KD*),
1258 132 (*polo KD*) cells. Posterior: n=113 (control), 160 (*cdk1 KD*), 149 (*AurB KD*), 232
1259 (*polo KD*) cells.

1260 (P) Mitotic inhibition in EE-derived esg⁺ cells impairs growth of the anterior midgut. No
1261 significant effect is exhibited in the posterior midgut. n=18 (control, Day 1), 21 (control,
1262 Day 10), 17 (*cdk1 KD*, Day 1), 20 (*cdk1 KD*, Day 10), 16 (*AurB KD*, Day 1), 18 (*AurB*
1263 *KD*, Day 10), 19 (*polo KD*, Day 1), 24 (*polo KD*, Day 10) guts.

1264 N.S., not significant: P>0.05, **P≤0.01, ***P≤0.001. One-way ANOVAs with post hoc
1265 Tukey tests (E-H), two tailed *t* test (I-L). Scale bars: 50 μm (A, N), 200 μm (C-D), 20 μm
1266 (M).

1267

1268 **Figure S6. Mathematical model of cell population dynamics in the adult midgut.**

1269 (A) Pathways of cell differentiation and dedifferentiation in the mathematical model.

1270 (B) Cell division rate a , fitted with mitotic activity data (Figure 1C).
1271 (C) Symmetric division ratio p_S in the anterior region, based on measured data (Figure
1272 1E) and previously reported data^{3,31,32}. Other parameters denoted in the form of p_i are
1273 defined by similar piecewise linear functions.
1274 (D) Dedifferentiation rate q . Its maximum was assumed to be taken at exactly Day 1 and
1275 was estimated from 0-1-day data (Figure 2G).
1276 (E) EB to EC differentiation rate q_C and EB death rate d_B . The maximum
1277 differentiation rate $q_{C,\max}$ was assumed to be taken at exactly Day 1 and was estimated
1278 from data.

1279

1280 **Figure S7. Glucose incorporation and the JAK-STAT pathway underlie EE
1281 dedifferentiation.**

1282 (A and B) Anterior EEs incorporate more 2-NBDG than do posterior EEs, which is
1283 quantified in (B). 2-NBDG is orally treated between Day 0 to Day 1. n=68 (anterior), 44
1284 (posterior) *pros>mCherry*⁺ cells.
1285 (C) No leaky labeling is detected in T-trace midguts at Day 14. Experimental scheme
1286 indicated in Figure 7A is applied. Detailed genotype of *pros^{ts}>T-trace* is *pros-Gal4, tub-*
1287 *Gal80ts, UAS-Cre^{EBD}, Ubi-loxP-stop-loxP-GFP*. In “*pros^{ts}>T-trace, no estrogen, 29°C*”
1288 condition, estrogen was not administered during starvation (Day 8-10). n indicates the
1289 number of midgut.
1290 (D) *pros^{ts}>T-trace* initially marks *Pros⁺esg⁻* cells (arrows).
1291 (E) Quantification of the *Pros⁺esg⁻* ratio and *Pros⁻esg⁺* ratio in *pros*-lineage cells in T-
1292 trace midgut. n=9 (Day 2), 14 (Day 6) midguts.
1293 (F and G) Anterior EEs express more Pgi:GFP protein than do posterior EEs, which is
1294 quantified in (G). Day 1 midguts were analyzed. n=97 (Anterior), 109 (Posterior)
1295 *pros>mCherry*⁺ cells.
1296 (H-L) Candidate screening. *Stat92E, dome, Notch, Tor, Rheb, yki, arm, pan, hep, EGFR*,
1297 and *ras85D* were tested. Knockdown of *Stat92E, dome*, and *Notch* significantly increased
1298 the number of anti-*Pros⁺* cells at Day 3. n indicates the number of midguts.
1299 (M) Representative images of *upd3-Gal4>GFP*⁺ whole midguts at Day 0 and Day 4 (fed).
1300 (N) Quantification of (M). n=6 (Day 0), 8 (Day 4, fed) anterior midguts.
1301 (O) *upd3-Gal4>GFP* signal is high in non-*Pros⁺* cells.
1302 (P) The total cell number increases in the anterior midgut after refeeding. n=15 (Day 10),

1303 14 (Day 11), 14 (Day 12), and 12 (Day 13) guts. The experimental scheme indicated in
1304 Figure 7A was applied.

1305 (Q) Representative images of wildtype midgut before/after refeeding. Anti-Pros staining
1306 was performed to count the number of Pros⁺ cells (related to Figure 7C).

1307 N.S., not significant: $P>0.05$, $*P\leq0.05$, $**P\leq0.01$, $***P\leq0.001$. Two tailed *t* tests (B, E,
1308 G, N) and one-way ANOVAs with post hoc Tukey tests (H-L). Scale bars: 20 μm (A),
1309 500 μm (C, M, Q), 50 μm (D, O), 10 μm (F).

1310

1311

1312 **Table S1. Marker genes utilized for cell type annotation**

Gene symbol	Cell type
Dl	ISC
esg	ISC/EB
Su(H)	EB
pros	EE
Tk	Tk ⁺ EE
NPF	Tk ⁺ EE
DH31	Tk ⁺ EE
AstC	AstC ⁺ EE
AstA	AstC ⁺ EE
CCHa1	AstC ⁺ EE
Orcokinin	AstC ⁺ EE
alphaTry	Anterior EC (aEC)
betaTry	Anterior EC (aEC)
LambdaTry	Posterior EC (pEC)
iotaTry	Posterior EC (pEC)
Vha100-4	Middle EC (mEC)
Hml	Hemocyte
zfh1	Hemocyte
vkg	Visceral muscle
Mhc	Visceral muscle
Mlc2	Visceral muscle

1313

1314 **Table S2. List of parameters used in the simulation**

Symbol	Value	Description	Reference
t_0	0.84 (day)	Time at which the cell division rate reaches its maximum.	Assumed based on mitotic activity (Figure 1C)
a_0	$\frac{\ln 2}{3} \sim 0.231 \text{ day}^{-1}$	Steady state cell division rate: 1 cell division per 3 days	Assumed
a_1	(anterior) 1.81853359	Related to maximum cell division rate.	Estimated from measured mitotic activity (Figure 1C).
	(posterior) 5.4430933		
b	(anterior) 1.04974	Rate of decay of cell division rate (transition to steady state).	Estimated from measured mitotic activity (Figure 1C).
	(posterior) 1.4405		
t_1	0.5 day	Early stage start time	Assumed based on data (Figure 1E).
$p_{S,\text{initial}}$	0.86	Initial symmetric division ratio	Assumed based on data (Figure 1E) and Refs ^{3,31,32} .
$p_{S,\text{early}}$	0.45	Symmetric division ratio at early stage	Assumed based on data (Figure 1E).
$p_{S,\text{late}}$	0.12	Symmetric division ratio at late stage	Ref ¹⁰⁶
$p_{A,\text{initial}}$	$1 - p_{S,\text{initial}} = 0.14$	Initial asymmetric division ratio	-
$p_{A,\text{early}}$	$1 - p_{S,\text{early}}$	Asymmetric division ratio at early stage	Assumed based on data (Figure 1E).
$p_{A,\text{late}}$	0.79	Asymmetric division ratio at late stage	Ref ¹⁰⁶
$p_{B,\text{initial}}$	$0.9 p_{A,\text{initial}}$	Initial asymmetric division (ISC-EB) ratio	Assumed ^{107,108}
$p_{B,\text{early}}$	$0.9 p_{A,\text{early}}$	Asymmetric division (ISC-EB) ratio at early stage	Assumed ^{107,108}
$p_{B,\text{late}}$	$0.9 p_{A,\text{late}}$	Asymmetric division (ISC-EB) ratio at late stage	Assumed ^{107,108}

$p_{E_p,initial}$	$0.1 p_{A,initial}$	Initial asymmetric division (ISC-EEP) ratio	Assumed ^{107,108}
$p_{E_p,early}$	$0.1 p_{A,early}$	Asymmetric division (ISC-EEP) ratio at early stage	Assumed ^{107,108}
$p_{E_p,late}$	$0.1 p_{A,late}$	Asymmetric division (ISC-EEP) ratio at late stage	Assumed ^{107,108}
$p_{2B,initial}$	0	Initial symmetric differentiation (2EBs) ratio	This study and Ref ⁸¹ .
$p_{2B,early}$	0	Symmetric differentiation (2EBs) ratio at early stage	This study and Ref ⁸¹ .
$p_{2B,late}$	0.09	Symmetric differentiation (2EBs) ratio at late stage	Ref ¹⁰⁶
q_{max}	(anterior) 0.244335	Maximum dedifferentiation rate	Estimated from measured data (Figure 2F).
	(posterior) 0.142992		
$q_{C,max}$	(anterior) 0.205395	Maximum differentiation (EBs to ECs) rate	Estimated from measured data.
	(posterior) 0.34055		
K_1	5.0	Half-speed constant for q_C	Assumed
m_1	3.3	Hill coefficient for q_C	Assumed
K_2	5.0	Half-speed constant for d_B	Assumed
m_2	10.0	Hill coefficient for d_B	Assumed
a_E	0.78247	EEP differentiation rate	Estimated from Ref ⁸⁹
p_{1E}	0.29	Differentiation (EEP to EE) ratio	Assumed ³⁸
p_{2E}	$1 - p_{1E} = 0.71$	Differentiation (EEP to 2EEs) ratio	-
q_{1E}	$p_{1E} = a_E p_{1E}$	Differentiation (EEP to EE) rate	-
q_{2E}	$p_{2E} = a_E p_{2E}$	Differentiation (EEP to 2EEs) rate	-

1315

1316

1317 **Table S3. Detailed genotypes in each experiment**

Fig.	Panel	Genotype
1	A-C	<i>w; esg-Gal4, UAS-eYFP / +; tub-Gal80ts, Su(H)GBE-Gal80 / +</i>
	D-E	<i>hsFLP[22], w / yw; UAS-mCD8.GFP, UAS-rCD2 RNAi, FRT40A / UAS-rCD2:RFP, UAS-GFP RNAi, FRT40A; tub-Gal4 / +</i>
	F	<i>w; esg-Gal4, UAS-eYFP / +; tub-Gal80ts, Su(H)GBE-Gal80 / + (control)</i> <i>w; esg-Gal4, UAS-eYFP / UAS-InR[K1409A]; tub-Gal80ts, Su(H)GBE-Gal80 / + (InR^{DN})</i>
2	A-B	<i>w; UAS-GFP / +; pros[v1]-Gal4 / +</i>
	D-E	<i>w; esg-GFP / +</i>
	F-G	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / esg-lacZ; pros[v1]-Gal4, tub-Gal80ts / +</i>
3	A-B	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / esg-lacZ; pros[v1]-Gal4, tub-Gal80ts / +</i>
	C-E	<i>w; esg-GFP / +; pros[v1]-Gal4, tub-Gal80ts / UAS-FLP, Act-FRT-stop-FRT-lacZ</i>
	F-J	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / esg-lacZ; pros[v1]-Gal4, tub-Gal80ts / + (pros lineage)</i> <i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / esg-lacZ; Dl-Gal4, tub-Gal80ts / + (Dl lineage)</i>
	K	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger, esg-lacZ / AstC-T2A-Gal4; tub-Gal80ts / +</i>
4	A-D	<i>Canton S</i>
	E	<i>w; AstC-T2A-Gal4 / UAS-GFP</i>
		<i>w; UAS-GFP / +; Tk-T2A-Gal4 / +</i>
	F-G	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger, esg-lacZ / AstC-T2A-Gal4; tub-Gal80ts</i> <i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger, esg-lacZ / +; Tk-T2A-Gal4 / tub-Gal80ts</i>
	H	<i>w; esg-GFP / +; pros[v1]-Gal4, tub-Gal80ts / UAS-FLP, Act-FRT-stop-FRT-lacZ</i>
	I-J	<i>Canton S</i>
	K-L	<i>w; AstC-T2A-Gal4 / +; UAS-RedStinger / +</i>
5	C-G	<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / +</i> <i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / QUAS-rpr</i>
	A-B	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / esg-lacZ; pros[v1]-Gal4, tub-Gal80ts / +</i>

	E-H	<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / +</i> (no RNAi)
		<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / UAS-sut1 RNAi; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / +</i> (sut1 RNAi)
		<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / UAS-Glut1 RNAi; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / +</i> (Glut1 RNAi)
		<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / UAS-Pgi RNAi^{HMC03362}; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / +</i> (Pgi RNAi, HMC03362)
		<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / UAS-Pgi RNAi^{8251R-1}</i> (Pgi RNAi, 8251R-1)
		<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / UAS-N RNAi^{JF02959}</i> (N RNAi, JF02959)
		<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / UAS-N RNAi^{GD14477}</i> (N RNAi, GD14477)
		<i>w, UAS-Stat92E RNAi; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / +</i> (Stat92E RNAi, BL26899)
	I-J	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger, esg-lacZ / +; pros[v1]-Gal4, tub-Gal80ts / +</i>
		<i>w, upd2-3Δ; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger, esg-lacZ / +; pros[v1]-Gal4, tub-Gal80ts / +</i>
	K	<i>Canton S</i>
	L-M	<i>w;; 10×Stat92E-GFP / +</i>
	N-O	<i>w; AstC-T2A-Gal4 / +; 10×Stat92E-GFP / UAS-RedStinger</i>
	B	<i>w; UAS-GFP / +; pros[v1]-Gal4 / +</i>
7	C	<i>Canton S</i>
	D-E	<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4 / UAS-Cre[EBD304], tub-Gal80ts</i>
		<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; AstC-T2A-Gal4 / UAS-Cre[EBD304], tub-Gal80ts</i>
		<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; Tk-T2A-Gal4 / UAS-Cre[EBD304], tub-Gal80ts</i>

	F-I	<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4 / UAS-Cre[EBD304], tub-Gal80ts</i>
	J	<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; AstC-T2A-Gal4 / UAS-Cre[EBD304], tub-Gal80ts</i>
	K-L	<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / + (no RNAi)</i>
		<i>w, UAS-Stat92E RNAi; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4, UAS-Cre[EBD304], tub-Gal80ts / + (Stat92E RNAi)</i>
	M-N	<i>w; AstC-T2A-Gal4 / +; 10×Stat92E-GFP / UAS-RedStinger</i>
S1	A	<i>Canary S</i>
	B	<i>w; esg-Gal4, UAS-eYFP / +; tub-Gal80ts, Su(H)GBE-Gal80 / +</i>
	C	<i>w; UAS-GFP / +; Dl-Gal4 / +</i>
	D-F	<i>w; esg-GFP / +</i>
	G	<i>w; Su(H)GBE-Gal4 / UAS-GFP</i>
	H	<i>hsFLP[22], w / yw; UAS-mCD8.GFP, UAS-rCD2 RNAi, FRT40A / UAS-rCD2:RFP, UAS-GFP RNAi, FRT40A; tub-Gal4 / +</i>
S2	A-B	<i>Canary S</i>
	C-F	<i>w; UAS-GFP / +; pros[v1]-Gal4 / +</i>
	G	<i>w; UAS-p35 / +; pros[v1]-Gal4, UAS-GFP / tub-Gal80ts</i>
	H	<i>UAS-myc::DIAP1;; pros[v1]-Gal4, UAS-GFP / tub-Gal80ts</i>
S3	A-B	<i>w; piezo-KI-Gal4 / +; UAS-RedStinger / +</i>
	C-D	<i>w; UAS-mCD8:GFP / +; pros[v1]-Gal4 / +</i>
		<i>w; esg-Gal4 / UAS-mCD8:GFP</i>
		<i>w; piezo-KI-Gal4 / UAS-mCD8:GFP</i>
		<i>w; UAS-mCD8:GFP / +; Dl-Gal4 / +</i>
	E	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / esg-lacZ; pros[v1]-Gal4, tub-Gal80ts / +</i>
	F-G	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / +; pros[v1]-Gal4, tub-Gal80ts / Dl-lacZ</i>
	H	<i>Su(H)GBE-lacZ / w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / +; pros[v1]-Gal4, tub-Gal80ts / +</i>
	I	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / esg-lacZ; pros[v1]-Gal4, tub-Gal80ts / +</i>
	J	<i>w; esg-GFP / +; pros[v1]-Gal4, tub-Gal80ts / UAS-FLP, Act-FRT-stop-FRT-lacZ</i>

	K-N	<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / esg-lacZ; pros[v1]-Gal4, tub-Gal80ts / + (pros lineage)</i>
		<i>w; UAS-FLP, Ubi-p63E(FRT.STOP)Stinger / esg-lacZ; Dl-Gal4, tub-Gal80ts / + (Dl lineage)</i>
	O	<i>w; esg-GFP / Myo31DF-Venus; pros[v1]-Gal4, tub-Gal80ts / UAS-FLP, Act-FRT-stop-FRT-lacZ</i>
S4	F	<i>w;; pros[v1]-Gal4, UAS-GFP / CG46339-lacZ</i>
		<i>w; chic-lacZ / +; pros[v1]-Gal4, UAS-GFP / +</i>
	G	<i>w; shg:GFP / +; pros[v1]-Gal4, UAS-mCherry / +</i>
	H	<i>w; esg-GFP / +; pros[v1]-Gal4, tub-Gal80ts / UAS-FLP, Act-FRT-stop-FRT-lacZ</i>
	L	<i>w; UAS-GFP / +; Dl-Gal4 / +</i>
S5	A	<i>w; esg-Gal4, UAS-rCD2 / esg-QF2, QUAS-mCD8:GFP</i>
	B	<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / +</i>
		<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / QUAS-rpr</i>
	C	<i>w; esg-GFP / +; pros[v1]-Gal4, UAS-mCherry / +</i>
	D	<i>w; esg-QF2, QUAS-mCD8:GFP / +</i>
		<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / +</i>
	E-K	<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / +</i>
		<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / QUAS-rpr</i>
	L	<i>Canton S</i>
	M	<i>w; esg-GFP / +</i>
	N-O	<i>w; esg-QF2, QUAS-mCD8:GFP / +; tub-QS[9B] / +</i>
		<i>w; esg-QF2, QUAS-mCD8:GFP / +; QUAS-cdk1 RNAi / tub-QS[9B]</i>
		<i>w; esg-QF2, QUAS-mCD8:GFP / +; QUAS-AurB RNAi / tub-QS[9B]</i>
		<i>w; esg-QF2, QUAS-mCD8:GFP / +; QUAS-polo RNAi / tub-QS[9B]</i>
	P	<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / +</i>

		<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / QUAS-cdk1 RNAi</i>
		<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / QUAS-AurB RNAi</i>
		<i>yw, tub-FRT-QS-FRT / w; esg-QF2, QUAS-mCD8:GFP / UAS-FLP; pros[v1]-Gal4, tub-Gal80ts / QUAS-polo RNAi</i>
S7	A-B	<i>w;; pros[v1]-Gal4, UAS-mCherry / +</i>
	C	<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4 / UAS-Cre[EBD304], tub-Gal80ts</i>
		<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; + / UAS-Cre[EBD304], tub-Gal80ts</i>
	D-E	<i>w; Ubi-loxP-stop-loxP-GFP, esg-lacZ / +; pros[v1]-Gal4 / UAS-Cre[EBD304], tub-Gal80ts</i>
	F-G	<i>w; Pgi:GFP / +; pros[v1]-Gal4, UAS-mCherry / +</i>
	H-L	<i>w;; pros-Gal4 / + (no RNAi)</i>
		<i>w, UAS-Stat92E RNAi^{BL26899}; pros-Gal4 / + (Stat92E RNAi, BL26899)</i>
		<i>w;; pros-Gal4 / UAS-Stat92E RNAi^{JF01293} (Stat92E RNAi, JF01293)</i>
		<i>w; UAS-Stat92E RNAi^{GL00437} / +; pros-Gal4 / + (Stat92E RNAi, GL00437)</i>
		<i>w;; pros-Gal4 / UAS-dome RNAi^{HMS01293} (dome RNAi, HMS01293)</i>
		<i>w;; pros-Gal4 / UAS-N RNAi^{JF02959} (N RNAi, JF02959)</i>
		<i>w;; pros-Gal4 / UAS-N RNAi^{GD14477} (N RNAi, GD14477)</i>
		<i>w;; pros-Gal4 / UAS-Tor^{TED} (Tor^{TED})</i>
		<i>w;; pros-Gal4 / UAS-Rheb RNAi^{HMS00923} (Rheb RNAi, HMS00923)</i>
		<i>w;; pros-Gal4 / UAS-yki RNAi^{HMS00041} (yki RNAi, HMS00041)</i>
		<i>w;; pros-Gal4 / UAS-arm RNAi^{JF01252} (arm RNAi, JF01252)</i>
		<i>w; UAS-pan RNAi^{17964R-3} / +; pros-Gal4 / + (pan RNAi, 17964R-3)</i>
		<i>w;; pros-Gal4 / UAS-hep RNAi^{4353R-3} (hep RNAi, 4353R-3)</i>
		<i>w; UAS-EGFR^{DN} / +; pros-Gal4 / UAS-EGFR^{DN} (EGFR^{DN})</i>
		<i>w;; pros-Gal4 / UAS-ras85D RNAi^{HMS012943} (ras85D RNAi, HMS012943)</i>
	M-O	<i>w; upd3-Gal4, UAS-GFP / +</i>
	P-Q	<i>Canton S</i>

1318

1319

1320 References

1. Chappell, V.L., Thompson, M.D., Jeschke, M.G., Chung, D.H., Thompson, J.C., and Wolf, S.E. (2003). Effects of Incremental Starvation on Gut Mucosa. *Dig. Dis. Sci.* *48*, 5.
2. Dunel-Erb, S., Chevalier, C., Laurent, P., Bach, A., Decrock, F., and Le Maho, Y. (2001). Restoration of the jejunal mucosa in rats refed after prolonged fasting. *Comp. Biochem. Physiol. A. Mol. Integr. Physiol.* *129*, 933–947. 10.1016/S1095-6433(01)00360-9.
3. O'Brien, L.E., Soliman, S.S., Li, X., and Bilder, D. (2011). Altered Modes of Stem Cell Division Drive Adaptive Intestinal Growth. *Cell* *147*, 603–614. 10.1016/j.cell.2011.08.048.
4. Richmond, C.A., Shah, M.S., Deary, L.T., Trotier, D.C., Thomas, H., Ambruzs, D.M., Jiang, L., Whiles, B.B., Rickner, H.D., Montgomery, R.K., et al. (2015). Dormant Intestinal Stem Cells Are Regulated by PTEN and Nutritional Status. *Cell Rep.* *13*, 2403–2411. 10.1016/j.celrep.2015.11.035.
5. Secor, S.M., Stein, E.D., and Diamond, J. (1994). Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. *Am. J. Physiol.-Gastrointest. Liver Physiol.* *266*, G695–G705. 10.1152/ajpgi.1994.266.4.G695.
6. Shaw, D. (2012). Intestinal mucosal atrophy and adaptation. *World J. Gastroenterol.* *18*, 6357. 10.3748/wjg.v18.i44.6357.
7. Drozdowski, L. (2006). Intestinal mucosal adaptation. *World J. Gastroenterol.* *12*, 4614. 10.3748/wjg.v12.i29.4614.
8. Basil, M.C., Katzen, J., Engler, A.E., Guo, M., Herriges, M.J., Kathiriya, J.J., Windmueller, R., Ysasi, A.B., Zacharias, W.J., Chapman, H.A., et al. (2020). The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. *Cell Stem Cell* *26*, 482–502. 10.1016/j.stem.2020.03.009.
9. Buchon, N., Osman, D., David, F.P.A., Yu Fang, H., Boquete, J.-P., Deplancke, B., and Lemaitre, B. (2013). Morphological and Molecular Characterization of Adult Midgut Compartmentalization in Drosophila. *Cell Rep.* *3*, 1725–1738. 10.1016/j.celrep.2013.04.001.
10. Gebert, N., Cheng, C.-W., Kirkpatrick, J.M., Di Fraia, D., Yun, J., Schädel, P., Pace, S., Garside, G.B., Werz, O., Rudolph, K.L., et al. (2020). Region-Specific

1352 Proteome Changes of the Intestinal Epithelium during Aging and Dietary Restriction.
1353 *Cell Rep.* **31**, 107565. 10.1016/j.celrep.2020.107565.

1354 11. Marianes, A., and Spradling, A.C. (2013). Physiological and stem cell
1355 compartmentalization within the *Drosophila* midgut. *eLife* **2**, e00886.
1356 10.7554/eLife.00886.

1357 12. Plikus, M.V., Wang, X., Sinha, S., Forte, E., Thompson, S.M., Herzog, E.L.,
1358 Driskell, R.R., Rosenthal, N., Biernaskie, J., and Horsley, V. (2021). Fibroblasts:
1359 Origins, definitions, and functions in health and disease. *Cell* **184**, 3852–3872.
1360 10.1016/j.cell.2021.06.024.

1361 13. Wei, Y., Wang, Y.G., Jia, Y., Li, L., Yoon, J., Zhang, S., Wang, Z., Zhang,
1362 Y., Zhu, M., Sharma, T., et al. (2021). Liver homeostasis is maintained by midlobular
1363 zone 2 hepatocytes. *Science* **371**, eabb1625. 10.1126/science.abb1625.

1364 14. Nagai, H., Miura, M., and Nakajima, Y. (2022). Cellular mechanisms
1365 underlying adult tissue plasticity in *Drosophila*. *Fly (Austin)* **16**, 190–206.
1366 10.1080/19336934.2022.2066952.

1367 15. Penzo-Méndez, A.I., and Stanger, B.Z. (2015). Organ-Size Regulation in
1368 Mammals. *Cold Spring Harb. Perspect. Biol.* **7**, a019240. 10.1101/cshperspect.a019240.

1369 16. Merrell, A.J., and Stanger, B.Z. (2016). Adult cell plasticity *in vivo*: de-
1370 differentiaton and transdifferentiation are back in style. *Nat. Rev. Mol. Cell Biol.* **17**,
1371 413–425. 10.1038/nrm.2016.24.

1372 17. Shivdasani, R.A., Clevers, H., and de Sauvage, F.J. (2021). Tissue
1373 regeneration: Reserve or reverse? *Science* **371**, 784–786. 10.1126/science.abb6848.

1374 18. de Sousa e Melo, F., and de Sauvage, F.J. (2019). Cellular Plasticity in
1375 Intestinal Homeostasis and Disease. *Cell Stem Cell* **24**, 54–64.
1376 10.1016/j.stem.2018.11.019.

1377 19. van Es, J.H., Sato, T., van de Wetering, M., Lyubimova, A., Yee Nee, A.N.,
1378 Gregorieff, A., Sasaki, N., Zeinstra, L., van den Born, M., Korving, J., et al. (2012).
1379 *Dll1*+ secretory progenitor cells revert to stem cells upon crypt damage. *Nat. Cell Biol.*
1380 **14**, 1099–1104. 10.1038/ncb2581.

1381 20. Higa, T., Okita, Y., Matsumoto, A., Nakayama, S., Oka, T., Sugahara, O.,
1382 Koga, D., Takeishi, S., Nakatsumi, H., Hosen, N., et al. (2022). Spatiotemporal
1383 reprogramming of differentiated cells underlies regeneration and neoplasia in the
1384 intestinal epithelium. *Nat. Commun.* **13**, 1500. 10.1038/s41467-022-29165-z.

1385 21. Jadhav, U., Saxena, M., O'Neill, N.K., Saadatpour, A., Yuan, G.-C., Herbert,
1386 Z., Murata, K., and Shivdasani, R.A. (2017). Dynamic Reorganization of Chromatin
1387 Accessibility Signatures during Dedifferentiation of Secretory Precursors into Lgr5+
1388 Intestinal Stem Cells. *Cell Stem Cell* *21*, 65-77.e5. 10.1016/j.stem.2017.05.001.

1389 22. Murata, K., Jadhav, U., Madha, S., van Es, J., Dean, J., Cavazza, A.,
1390 Wucherpfennig, K., Michor, F., Clevers, H., and Shivdasani, R.A. (2020). Ascl2-
1391 Dependent Cell Dedifferentiation Drives Regeneration of Ablated Intestinal Stem Cells.
1392 *Cell Stem Cell* *26*, 377-390.e6. 10.1016/j.stem.2019.12.011.

1393 23. Schmitt, M., Schewe, M., Sacchetti, A., Feijtel, D., van de Geer, W.S.,
1394 Teeuwssen, M., Sleddens, H.F., Joosten, R., van Royen, M.E., van de Werken, H.J.G.,
1395 et al. (2018). Paneth Cells Respond to Inflammation and Contribute to Tissue
1396 Regeneration by Acquiring Stem-like Features through SCF/c-Kit Signaling. *Cell Rep.*
1397 *24*, 2312-2328.e7. 10.1016/j.celrep.2018.07.085.

1398 24. Schwitalla, S., Fingerle, A.A., Cammareri, P., Nebelsiek, T., Göktuna, S.I.,
1399 Ziegler, P.K., Canli, O., Heijmans, J., Huels, D.J., Moreaux, G., et al. (2013). Intestinal
1400 Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like
1401 Properties. *Cell* *152*, 25–38. 10.1016/j.cell.2012.12.012.

1402 25. Tetteh, P.W., Basak, O., Farin, H.F., Wiebrands, K., Kretzschmar, K.,
1403 Begthel, H., van den Born, M., Korving, J., de Sauvage, F., van Es, J.H., et al. (2016).
1404 Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-
1405 Lineage Daughters. *Cell Stem Cell* *18*, 203–213. 10.1016/j.stem.2016.01.001.

1406 26. Yan, K.S., Gevaert, O., Zheng, G.X.Y., Anchang, B., Probert, C.S., Larkin,
1407 K.A., Davies, P.S., Cheng, Z., Kaddis, J.S., Han, A., et al. (2017). Intestinal
1408 Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell
1409 Activity. *Cell Stem Cell* *21*, 78-90.e6. 10.1016/j.stem.2017.06.014.

1410 27. Hageman, J.H., Heinz, M.C., Kretzschmar, K., van der Vaart, J., Clevers, H.,
1411 and Snippert, H.J.G. (2020). Intestinal Regeneration: Regulation by the
1412 Microenvironment. *Dev. Cell* *54*, 435–446. 10.1016/j.devcel.2020.07.009.

1413 28. Jasper, H. (2020). Intestinal Stem Cell Aging: Origins and Interventions.
1414 *Annu. Rev. Physiol.* *82*, 203–226. 10.1146/annurev-physiol-021119-034359.

1415 29. Miguel-Aliaga, I., Jasper, H., and Lemaitre, B. (2018). Anatomy and
1416 Physiology of the Digestive Tract of *Drosophila melanogaster*. *Genetics* *210*, 357–396.
1417 10.1534/genetics.118.300224.

1418 30. Amcheslavsky, A., Song, W., Li, Q., Nie, Y., Bragatto, I., Ferrandon, D.,
1419 Perrimon, N., and Ip, Y.T. (2014). Enteroendocrine Cells Support Intestinal Stem-Cell-
1420 Mediated Homeostasis in Drosophila. *Cell Rep.* *9*, 32–39. 10.1016/j.celrep.2014.08.052.

1421 31. Chen, C.-H., Luhur, A., and Sokol, N. (2015). Lin-28 promotes symmetric
1422 stem cell division and drives adaptive growth in the adult *Drosophila* intestine.
1423 *Development* *142*, 3478–3487. 10.1242/dev.127951.

1424 32. Hu, D.J.-K., and Jasper, H. (2019). Control of Intestinal Cell Fate by Dynamic
1425 Mitotic Spindle Repositioning Influences Epithelial Homeostasis and Longevity. *Cell*
1426 *Rep.* *28*, 2807-2823.e5. 10.1016/j.celrep.2019.08.014.

1427 33. Yu, H.-H., Chen, C.-H., Shi, L., Huang, Y., and Lee, T. (2009). Twin-spot
1428 MARCM to reveal the developmental origin and identity of neurons. *Nat. Neurosci.* *12*,
1429 947–953. 10.1038/nn.2345.

1430 34. Kapuria, S., Karpac, J., Biteau, B., Hwangbo, D., and Jasper, H. (2012).
1431 Notch-Mediated Suppression of TSC2 Expression Regulates Cell Differentiation in the
1432 Drosophila Intestinal Stem Cell Lineage. *PLoS Genet.* *8*, e1003045.
1433 10.1371/journal.pgen.1003045.

1434 35. Mattila, J., Kokki, K., Hietakangas, V., and Boutros, M. (2018). Stem Cell
1435 Intrinsic Hexosamine Metabolism Regulates Intestinal Adaptation to Nutrient Content.
1436 *Dev. Cell* *47*, 112-121.e3. 10.1016/j.devcel.2018.08.011.

1437 36. Evans, C.J., Olson, J.M., Ngo, K.T., Kim, E., Lee, N.E., Kuoy, E., Patananan,
1438 A.N., Sitz, D., Tran, P., Do, M.-T., et al. (2009). G-TRACE: rapid Gal4-based cell
1439 lineage analysis in Drosophila. *Nat. Methods* *6*, 603–605. 10.1038/nmeth.1356.

1440 37. Struhl, G., and Basler, K. (1993). Organizing activity of wingless protein in
1441 Drosophila. *Cell* *72*, 527–540. 10.1016/0092-8674(93)90072-X.

1442 38. Chen, J., Xu, N., Wang, C., Huang, P., Huang, H., Jin, Z., Yu, Z., Cai, T.,
1443 Jiao, R., and Xi, R. (2018). Transient Scute activation via a self-stimulatory loop directs
1444 enteroendocrine cell pair specification from self-renewing intestinal stem cells. *Nat.*
1445 *Cell Biol.* *20*, 152–161. 10.1038/s41556-017-0020-0.

1446 39. Guo, Z., and Ohlstein, B. (2015). Bidirectional Notch signaling regulates
1447 *Drosophila* intestinal stem cell multipotency. *Science* *350*, aab0988.
1448 10.1126/science.aab0988.

1449 40. He, L., Si, G., Huang, J., Samuel, A.D.T., and Perrimon, N. (2018).
1450 Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo

1451 channel. *Nature* 555, 103–106. 10.1038/nature25744.

1452 41. Korzelius, J., Naumann, S.K., Loza-Coll, M.A., Chan, J.S., Dutta, D.,
1453 Oberheim, J., Gläßer, C., Southall, T.D., Brand, A.H., Jones, D.L., et al. (2014).
1454 *Escargot* maintains stemness and suppresses differentiation in *Drosophila* intestinal
1455 stem cells. *EMBO J.* 33, 2967–2982. 10.15252/embj.201489072.

1456 42. Biteau, B., Hochmuth, C.E., and Jasper, H. (2008). JNK Activity in Somatic
1457 Stem Cells Causes Loss of Tissue Homeostasis in the Aging *Drosophila* Gut. *Cell Stem
1458 Cell* 3, 442–455. 10.1016/j.stem.2008.07.024.

1459 43. Song, W., Veenstra, J.A., and Perrimon, N. (2014). Control of Lipid
1460 Metabolism by Tachykinin in *Drosophila*. *Cell Rep.* 9, 40–47.
1461 10.1016/j.celrep.2014.08.060.

1462 44. Zhai, Z., Boquete, J.-P., and Lemaitre, B. (2017). A genetic framework
1463 controlling the differentiation of intestinal stem cells during regeneration in *Drosophila*.
1464 *PLOS Genet.* 13, e1006854. 10.1371/journal.pgen.1006854.

1465 45. Chen, J., Sayadian, A.-C., Lowe, N., Lovegrove, H.E., and St Johnston, D.
1466 (2018). An alternative mode of epithelial polarity in the *Drosophila* midgut. *PLOS Biol.*
1467 16, e3000041. 10.1371/journal.pbio.3000041.

1468 46. Guo, X., Yin, C., Yang, F., Zhang, Y., Huang, H., Wang, J., Deng, B., Cai, T.,
1469 Rao, Y., and Xi, R. (2019). The Cellular Diversity and Transcription Factor Code of
1470 *Drosophila* Enteroendocrine Cells. *Cell Rep.* 29, 4172-4185.e5.
1471 10.1016/j.celrep.2019.11.048.

1472 47. Guo, X., Zhang, Y., Huang, H., and Xi, R. (2022). A hierarchical transcription
1473 factor cascade regulates enteroendocrine cell diversity and plasticity in *Drosophila*. *Nat.
1474 Commun.* 13, 6525. 10.1038/s41467-022-34270-0.

1475 48. Hung, R.-J., Hu, Y., Kirchner, R., Liu, Y., Xu, C., Comjean, A., Tattikota,
1476 S.G., Li, F., Song, W., Ho Sui, S., et al. (2020). A cell atlas of the adult *Drosophila*
1477 midgut. *Proc. Natl. Acad. Sci.* 117, 1514–1523. 10.1073/pnas.1916820117.

1478 49. Tauc, H.M., Rodriguez-Fernandez, I.A., Hackney, J.A., Pawlak, M., Ronnen
1479 Oron, T., Korzelius, J., Moussa, H.F., Chaudhuri, S., Modrusan, Z., Edgar, B.A., et al.
1480 (2021). Age-related changes in polycomb gene regulation disrupt lineage fidelity in
1481 intestinal stem cells. *eLife* 10, e62250. 10.7554/eLife.62250.

1482 50. Strunz, M., Simon, L.M., Ansari, M., Kathiriya, J.J., Angelidis, I., Mayr,
1483 C.H., Tsidiridis, G., Lange, M., Mattner, L.F., Yee, M., et al. (2020). Alveolar

1484 regeneration through a Krt8+ transitional stem cell state that persists in human lung
1485 fibrosis. *Nat. Commun.* *11*, 3559. 10.1038/s41467-020-17358-3.

1486 51. Lush, M.E., Diaz, D.C., Koenecke, N., Baek, S., Boldt, H., St Peter, M.K.,
1487 Gaitan-Escudero, T., Romero-Carvajal, A., Busch-Nentwich, E.M., Perera, A.G., et al.
1488 (2019). scRNA-Seq reveals distinct stem cell populations that drive hair cell
1489 regeneration after loss of Fgf and Notch signaling. *eLife* *8*, e44431.
1490 10.7554/eLife.44431.

1491 52. Morris, O., Deng, H., Tam, C., and Jasper, H. (2020). Warburg-like Metabolic
1492 Reprogramming in Aging Intestinal Stem Cells Contributes to Tissue Hyperplasia. *Cell*
1493 *Rep.* *33*, 108423. 10.1016/j.celrep.2020.108423.

1494 53. Simpson Ragdale, H., Clements, M., Tang, W., Deltcheva, E., Andreassi, C.,
1495 Lai, A.G., Chang, W.H., Pandrea, M., Andrew, I., Game, L., et al. (2023). Injury primes
1496 mutation-bearing astrocytes for dedifferentiation in later life. *Curr. Biol.* *33*, 1082-
1497 1098.e8. 10.1016/j.cub.2023.02.013.

1498 54. Bergen, V., Lange, M., Peidli, S., Wolf, F.A., and Theis, F.J. (2020).
1499 Generalizing RNA velocity to transient cell states through dynamical modeling. *Nat.*
1500 *Biotechnol.* *38*, 1408–1414. 10.1038/s41587-020-0591-3.

1501 55. La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov,
1502 V., Lidschreiber, K., Kastriti, M.E., Lönnerberg, P., Furlan, A., et al. (2018). RNA
1503 velocity of single cells. *Nature* *560*, 494–498. 10.1038/s41586-018-0414-6.

1504 56. Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., Lickert,
1505 H., Ansari, M., Schniering, J., Schiller, H.B., et al. (2022). CellRank for directed single-
1506 cell fate mapping. *Nat. Methods* *19*, 159–170. 10.1038/s41592-021-01346-6.

1507 57. Rotty, J.D. (2020). Actin Cytoskeleton: Profilin Gives Cells an Edge. *Curr.*
1508 *Biol.* *30*, R807–R809. 10.1016/j.cub.2020.05.041.

1509 58. Shields, A.R., Spence, A.C., Yamashita, Y.M., Davies, E.L., and Fuller, M.T.
1510 (2014). The actin-binding protein profilin is required for germline stem cell
1511 maintenance and germ cell enclosure by somatic cyst cells. *Development* *141*, 73–82.
1512 10.1242/dev.101931.

1513 59. Khaminets, A., Ronnen-Oron, T., Baldauf, M., Meier, E., and Jasper, H.
1514 (2020). Cohesin controls intestinal stem cell identity by maintaining association of
1515 Escargot with target promoters. *eLife* *9*, e48160. 10.7554/eLife.48160.

1516 60. Piper, M.D.W., Blanc, E., Leitão-Gonçalves, R., Yang, M., He, X., Linford,

1517 N.J., Hoddinott, M.P., Hopfen, C., Soultoukis, G.A., Niemeyer, C., et al. (2014). A
1518 holidic medium for *Drosophila melanogaster*. *Nat. Methods* *11*, 100–105.
1519 10.1038/nmeth.2731.

1520 61. Zeng, X., and Hou, S.X. (2015). Enteroendocrine cells are generated from
1521 stem cells through a distinct progenitor in the adult *Drosophila* posterior midgut.
1522 *Development* *142*, 644–653. 10.1242/dev.113357.

1523 62. Liu, X., Nagy, P., Bonfini, A., Houtz, P., Bing, X.-L., Yang, X., and Buchon,
1524 N. (2022). Microbes affect gut epithelial cell composition through immune-dependent
1525 regulation of intestinal stem cell differentiation. *Cell Rep.* *38*, 110572.
1526 10.1016/j.celrep.2022.110572.

1527 63. Scopelliti, A., Bauer, C., Yu, Y., Zhang, T., Kruspi, B., Murphy, D.J., Vidal,
1528 M., Maddocks, O.D.K., and Cordero, J.B. (2019). A Neuronal Relay Mediates a
1529 Nutrient Responsive Gut/Fat Body Axis Regulating Energy Homeostasis in Adult
1530 *Drosophila*. *Cell Metab.* *29*, 269-284.e10. 10.1016/j.cmet.2018.09.021.

1531 64. Yoshinari, Y., Kosakamoto, H., Kamiyama, T., Hoshino, R., Matsuoka, R.,
1532 Kondo, S., Tanimoto, H., Nakamura, A., Obata, F., and Niwa, R. (2021). The sugar-
1533 responsive enteroendocrine neuropeptide F regulates lipid metabolism through
1534 glucagon-like and insulin-like hormones in *Drosophila melanogaster*. *Nat. Commun.*
1535 *12*, 4818. 10.1038/s41467-021-25146-w.

1536 65. Hudry, B., de Goeij, E., Mineo, A., Gaspar, P., Hadjieconomou, D., Studd, C.,
1537 Mokochinski, J.B., Kramer, H.B., Plaçais, P.-Y., Preat, T., et al. (2019). Sex
1538 Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm
1539 Maturation. *Cell* *178*, 901-918.e16. 10.1016/j.cell.2019.07.029.

1540 66. Tian, A., Morejon, V., Kohoutek, S., Huang, Y., Deng, W., and Jiang, J.
1541 (2022). Damage-induced regeneration of the intestinal stem cell pool through
1542 enteroblast mitosis in the *Drosophila* midgut. *EMBO J.* *41*.
1543 10.15252/embj.2022110834.

1544 67. Obata, F., Tsuda-Sakurai, K., Yamazaki, T., Nishio, R., Nishimura, K.,
1545 Kimura, M., Funakoshi, M., and Miura, M. (2018). Nutritional Control of Stem Cell
1546 Division through S-Adenosylmethionine in *Drosophila* Intestine. *Dev. Cell* *44*, 741-
1547 751.e3. 10.1016/j.devcel.2018.02.017.

1548 68. Gribble, F.M., and Reimann, F. (2016). Enteroendocrine Cells: Chemosensors
1549 in the Intestinal Epithelium. *Annu. Rev. Physiol.* *78*, 277–299. 10.1146/annurev-

1550 physiol-021115-105439.

1551 69. Guo, X., Lv, J., and Xi, R. (2021). The specification and function of
1552 enteroendocrine cells in *Drosophila* and mammals: a comparative review. *FEBS J.*,
1553 febs.16067. 10.1111/febs.16067.

1554 70. Kubrak, O., Koyama, T., Ahrentløv, N., Jensen, L., Malita, A., Naseem, M.T.,
1555 Lassen, M., Nagy, S., Texada, M.J., Halberg, K.V., et al. (2022). The gut hormone
1556 Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under
1557 nutrient stress. *Nat. Commun.* *13*, 692. 10.1038/s41467-022-28268-x.

1558 71. Rutter, G.A. (2009). Regulating Glucagon Secretion: Somatostatin in the
1559 Spotlight. *Diabetes* *58*, 299–301. 10.2337/db08-1534.

1560 72. Luhur, A., Buddika, K., Ariyapala, I.S., Chen, S., and Sokol, N.S. (2017).
1561 Opposing Post-transcriptional Control of InR by FMRP and LIN-28 Adjusts Stem Cell-
1562 Based Tissue Growth. *Cell Rep.* *21*, 2671–2677. 10.1016/j.celrep.2017.11.039.

1563 73. Li, L., Cui, L., Lin, P., Liu, Z., Bao, S., Ma, X., Nan, H., Zhu, W., Cen, J.,
1564 Mao, Y., et al. (2023). Kupffer-cell-derived IL-6 is repurposed for hepatocyte
1565 dedifferentiation via activating progenitor genes from injury-specific enhancers. *Cell*
1566 *Stem Cell* *30*, 283-299.e9. 10.1016/j.stem.2023.01.009.

1567 74. Chevalier, C., Stojanović, O., Colin, D.J., Suarez-Zamorano, N., Tarallo, V.,
1568 Veyrat-Durebex, C., Rigo, D., Fabbiano, S., Stevanović, A., Hagemann, S., et al.
1569 (2015). Gut Microbiota Orchestrates Energy Homeostasis during Cold. *Cell* *163*, 1360–
1570 1374. 10.1016/j.cell.2015.11.004.

1571 75. Dailey, M.J. (2014). Nutrient-induced intestinal adaption and its effect in
1572 obesity. *Physiol. Behav.* *136*, 74–78. 10.1016/j.physbeh.2014.03.026.

1573 76. Reiff, T., Jacobson, J., Cognigni, P., Antonello, Z., Ballesta, E., Tan, K.J.,
1574 Yew, J.Y., Dominguez, M., and Miguel-Aliaga, I. (2015). Endocrine remodelling of the
1575 adult intestine sustains reproduction in *Drosophila*. *eLife* *4*, e06930.
1576 10.7554/eLife.06930.

1577 77. Ahmed, S.M.H., Maldera, J.A., Krunic, D., Paiva-Silva, G.O., Pénalva, C.,
1578 Teleman, A.A., and Edgar, B.A. (2020). Fitness trade-offs incurred by ovary-to-gut
1579 steroid signalling in *Drosophila*. *Nature* *584*, 415–419. 10.1038/s41586-020-2462-y.

1580 78. Zipper, L., Jassmann, D., Burgmer, S., Görlich, B., and Reiff, T. (2020).
1581 Ecdysone steroid hormone remote controls intestinal stem cell fate decisions via the
1582 PPAR γ -homolog Eip75B in *Drosophila*. *eLife* *9*, e55795. 10.7554/eLife.55795.

1583 79. Hadjieconomou, D., King, G., Gaspar, P., Mineo, A., Blackie, L., Ameku, T.,
1584 Studd, C., de Mendoza, A., Diao, F., White, B.H., et al. (2020). Enteric neurons increase
1585 maternal food intake during reproduction. *Nature* **587**, 455–459. 10.1038/s41586-020-
1586 2866-8.

1587 80. Buchon, N., Broderick, N.A., Kuraishi, T., and Lemaitre, B. (2010).
1588 *Drosophila* EGFR pathway coordinates stem cell proliferation and gut remodeling
1589 following infection. *BMC Biol.* **8**, 152. 10.1186/1741-7007-8-152.

1590 81. Jiang, H., Patel, P.H., Kohlmaier, A., Grenley, M.O., McEwen, D.G., and
1591 Edgar, B.A. (2009). Cytokine/Jak/Stat Signaling Mediates Regeneration and
1592 Homeostasis in the *Drosophila* Midgut. *Cell* **137**, 1343–1355.
1593 10.1016/j.cell.2009.05.014.

1594 82. Beehler-Evans, R., and Micchelli, C.A. (2015). Generation of enteroendocrine
1595 cell diversity in midgut stem cell lineages. *Development* **142**, 654–664.
1596 10.1242/dev.114959.

1597 83. Deng, H., Gerencser, A.A., and Jasper, H. (2015). Signal integration by Ca²⁺
1598 regulates intestinal stem-cell activity. *Nature* **528**, 212–217. 10.1038/nature16170.

1599 84. Zeng, X., Chauhan, C., and Hou, S.X. (2010). Characterization of midgut
1600 stem cell- and enteroblast-specific Gal4 lines in *drosophila*. *genesis* **48**, 607–611.
1601 10.1002/dvg.20661.

1602 85. Agaisse, H., Petersen, U.-M., Boutros, M., Mathey-Prevot, B., and Perrimon,
1603 N. (2003). Signaling Role of Hemocytes in *Drosophila* JAK/STAT-Dependent
1604 Response to Septic Injury. *Dev. Cell* **5**, 441–450. 10.1016/S1534-5807(03)00244-2.

1605 86. Hay, B.A., Wassarman, D.A., and Rubin, G.M. (1995). *Drosophila* homologs
1606 of baculovirus inhibitor of apoptosis proteins function to block cell death. *Cell* **83**,
1607 1253–1262. 10.1016/0092-8674(95)90150-7.

1608 87. Pérez-Garijo, A., Fuchs, Y., and Steller, H. (2013). Apoptotic cells can induce
1609 non-autonomous apoptosis through the TNF pathway. *eLife* **2**, e01004.
1610 10.7554/eLife.01004.

1611 88. Akiyama, T., and Gibson, M.C. (2015). Decapentaplegic and growth control
1612 in the developing *Drosophila* wing. *Nature* **527**, 375–378. 10.1038/nature15730.

1613 89. Le Bras, S., and Van Doren, M. (2006). Development of the male germline
1614 stem cell niche in *Drosophila*. *Dev. Biol.* **294**, 92–103. 10.1016/j.ydbio.2006.02.030.

1615 90. Furriols, M., and Bray, S. (2001). A model Notch response element detects

1616 Suppressor of Hairless-dependent molecular switch. *Curr. Biol.* *11*, 60–64.
1617 10.1016/S0960-9822(00)00044-0.

1618 91. Piper, M.D.W., Souloukis, G.A., Blanc, E., Mesaros, A., Herbert, S.L.,
1619 Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., et al. (2017). Matching
1620 Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and
1621 Reproduction without Cost to Lifespan. *Cell Metab.* *25*, 610–621.
1622 10.1016/j.cmet.2017.02.005.

1623 92. Lin, C.-C., and Potter, C.J. (2016). Editing Transgenic DNA Components by
1624 Inducible Gene Replacement in *Drosophila melanogaster*. *Genetics* *203*, 1613–1628.
1625 10.1534/genetics.116.191783.

1626 93. Veenstra, J.A., and Ida, T. (2014). More Drosophila enteroendocrine peptides:
1627 Orcokinin B and the CCHamides 1 and 2. *Cell Tissue Res.* *357*, 607–621.
1628 10.1007/s00441-014-1880-2.

1629 94. Lee, S.H., Cho, E., Yoon, S.-E., Kim, Y., and Kim, E.Y. (2021). Metabolic
1630 control of daily locomotor activity mediated by tachykinin in *Drosophila*. *Commun.*
1631 *Biol.* *4*, 693. 10.1038/s42003-021-02219-6.

1632 95. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson,
1633 R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017). Massively
1634 parallel digital transcriptional profiling of single cells. *Nat. Commun.* *8*, 14049.
1635 10.1038/ncomms14049.

1636 96. Yates, A.D., Allen, J., Amode, R.M., Azov, A.G., Barba, M., Becerra, A.,
1637 Bhai, J., Campbell, L.I., Carbajo Martinez, M., Chakiachvili, M., et al. (2022). Ensembl
1638 Genomes 2022: an expanding genome resource for non-vertebrates. *Nucleic Acids Res.*
1639 *50*, D996–D1003. 10.1093/nar/gkab1007.

1640 97. Hao, Y. (2021). Integrated analysis of multimodal single-cell data. *Cell* *184*,
1641 3573–3587.

1642 98. McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder:
1643 Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest
1644 Neighbors. *Cell Syst.* *8*, 329–337.e4. 10.1016/j.cels.2019.03.003.

1645 99. Hafemeister, C., and Satija, R. (2019). Normalization and variance
1646 stabilization of single-cell RNA-seq data using regularized negative binomial
1647 regression. *Genome Biol.* *20*, 296. 10.1186/s13059-019-1874-1.

1648 100. McInnes, L., Healy, J., Saul, N., and Großberger, L. (2018). UMAP: Uniform

1649 Manifold Approximation and Projection. *J. Open Source Softw.* *3*, 861.

1650 10.21105/joss.00861.

1651 101. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for

1652 interpreting omics data. *The Innovation* *2*, 100141. 10.1016/j.xinn.2021.100141.

1653

1654 102. Kishi, J.Y., Lapan, S.W., Beliveau, B.J., West, E.R., Zhu, A., Sasaki, H.M.,

1655 Saka, S.K., Wang, Y., Cepko, C.L., and Yin, P. (2019). SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. *Nat. Methods* *16*, 533–544. 10.1038/s41592-019-0404-0.

1656

1657

1658 103. Amamoto, R., Garcia, M.D., West, E.R., Choi, J., Lapan, S.W., Lane, E.A.,

1659 Perrimon, N., and Cepko, C.L. (2019). Probe-Seq enables transcriptional profiling of

1660 specific cell types from heterogeneous tissue by RNA-based isolation. *eLife* *8*, e51452.

1661 10.7554/eLife.51452.

1662

1663 104. Beliveau, B.J., Kishi, J.Y., Nir, G., Sasaki, H.M., Saka, S.K., Nguyen, S.C.,

1664 Wu, C., and Yin, P. (2018). OligoMiner provides a rapid, flexible environment for the

1665 design of genome-scale oligonucleotide *in situ* hybridization probes. *Proc. Natl. Acad. Sci.* *115*. 10.1073/pnas.1714530115.

1666

1667 105. Reiff, T., Antonello, Z.A., Ballesta-Illán, E., Mira, L., Sala, S., Navarro, M.,

1668 Martinez, L.M., and Dominguez, M. (2019). Notch and EGFR regulate apoptosis in

1669 progenitor cells to ensure gut homeostasis in *Drosophila*. *EMBO J.* *38*.

1670 10.15252/embj.2018101346.

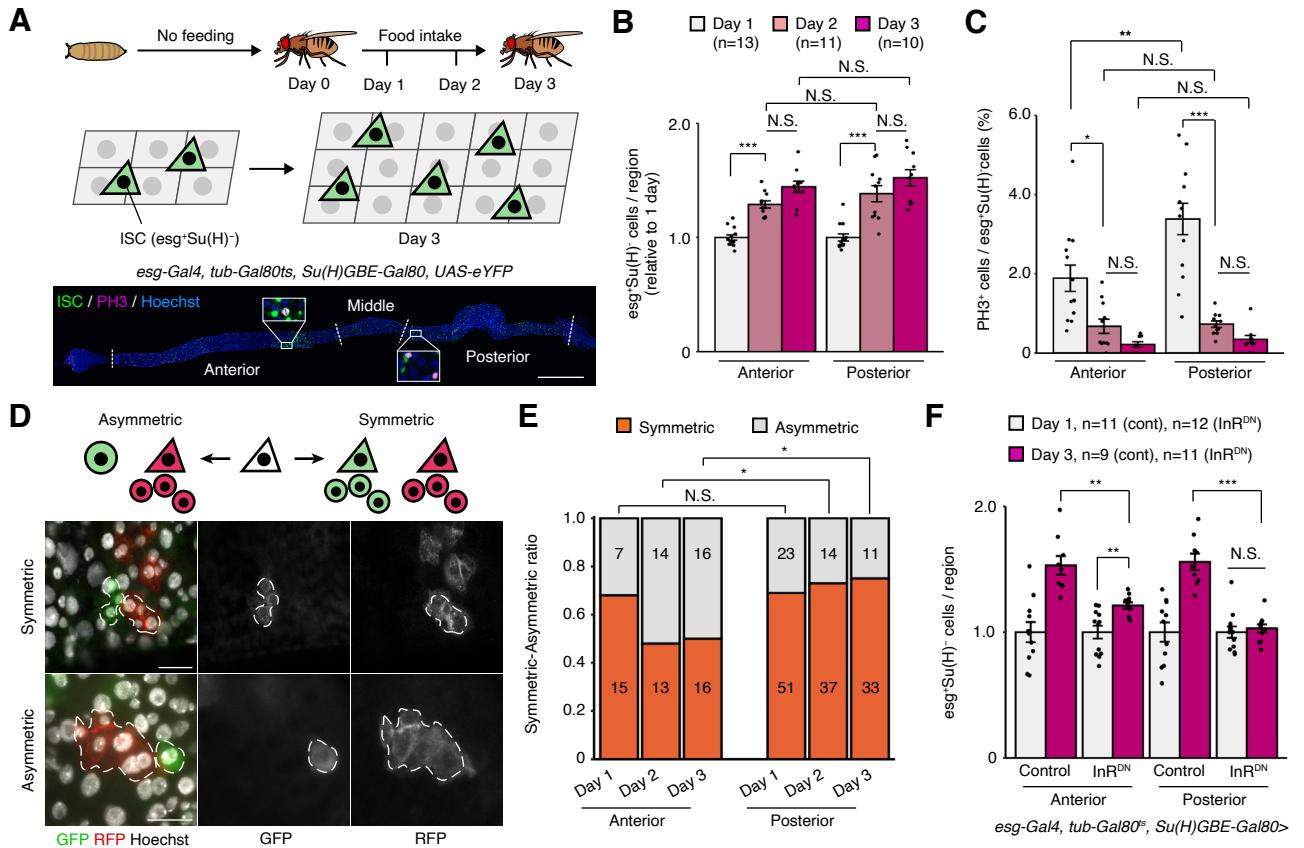
1671

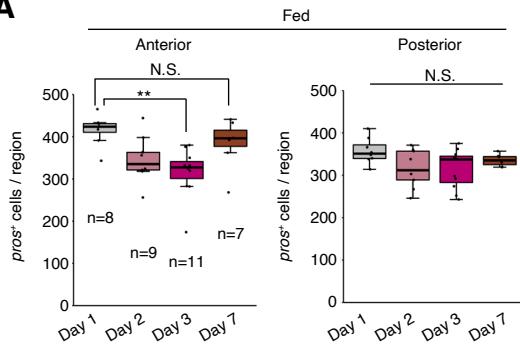
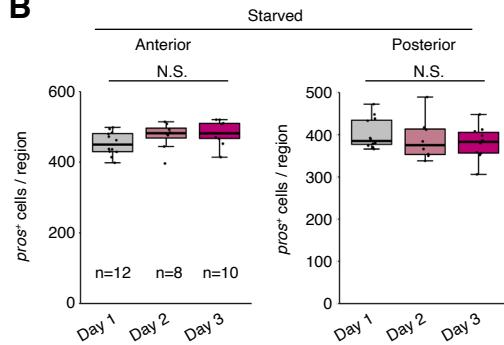
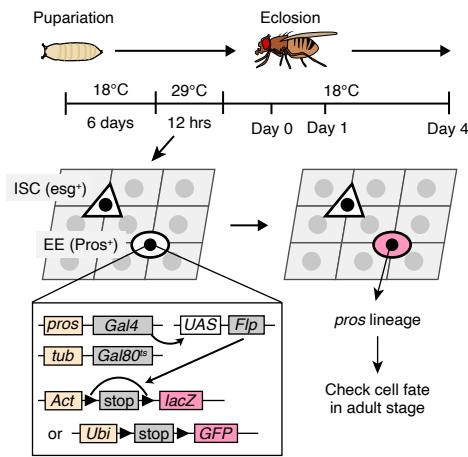
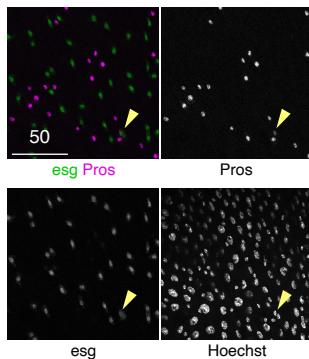
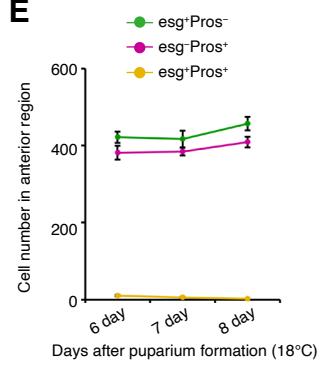
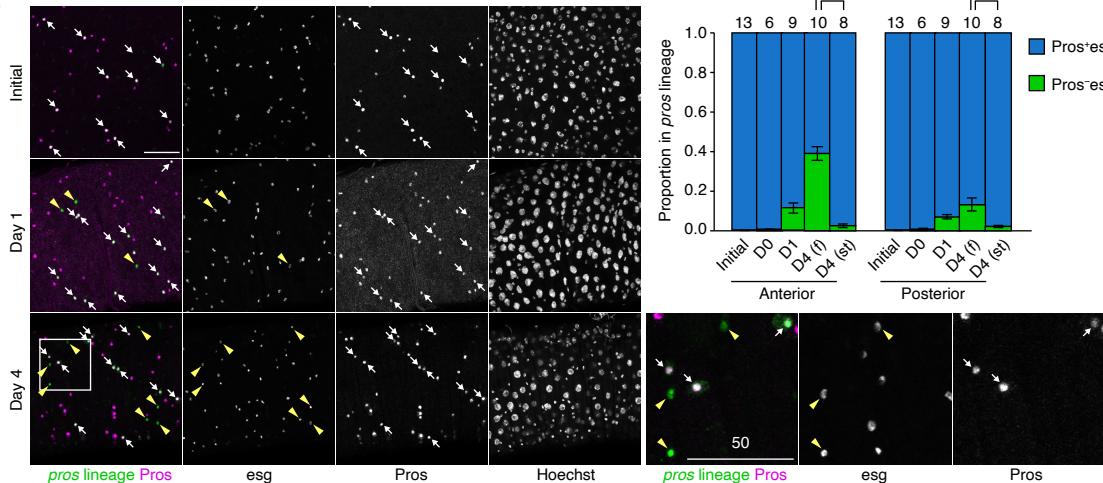
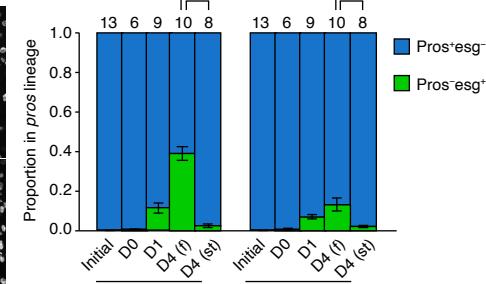
1672 106. Tian, A., Wang, B., and Jiang, J. (2017). Injury-stimulated and self-restrained

1673 BMP signaling dynamically regulates stem cell pool size during *Drosophila* midgut

1674 regeneration. *Proc. Natl. Acad. Sci.* *114*, E2699–E2708. 10.1073/pnas.1617790114.

1675


1676 107. Ohlstein, B., and Spradling, A. (2006). The adult *Drosophila* posterior midgut








1677 is maintained by pluripotent stem cells. *Nature* *439*, 470–474. 10.1038/nature04333.

1678 108. Sallé, J., Gervais, L., Boumard, B., Stefanutti, M., Siudeja, K., and Bardin, A.J. (2017). Intrinsic regulation of enteroendocrine fate by Numb. *EMBO J.* *36*, 1928–1945. 10.15252/embj.201695622.

Figure 1

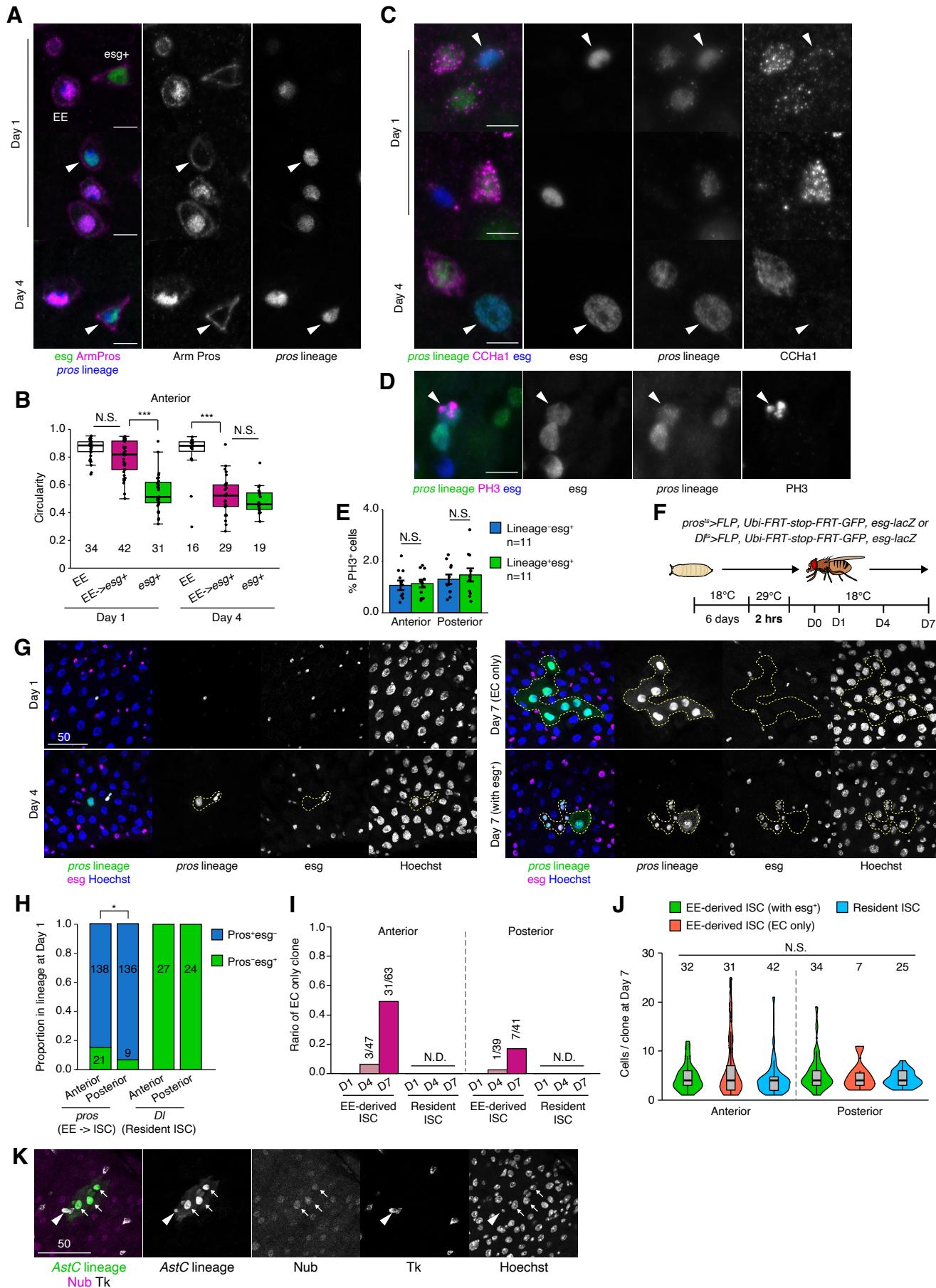
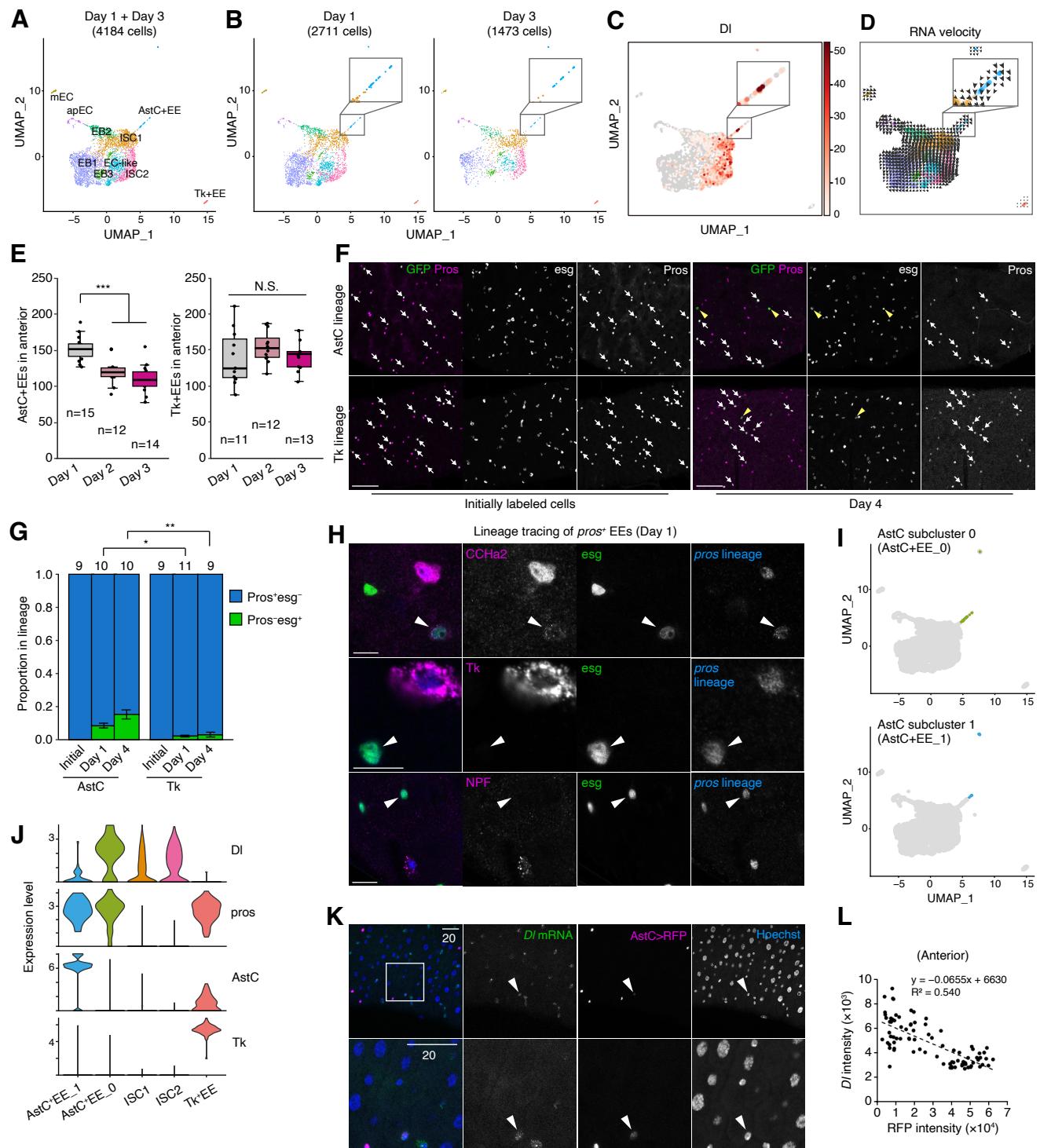

Nagai et al.

Figure 2**Nagai et al.****A****B****C****D****E****F****G**


Figure 3

Nagai et al.

Figure 4

Nagai et al.

Figure 5

Nagai et al.

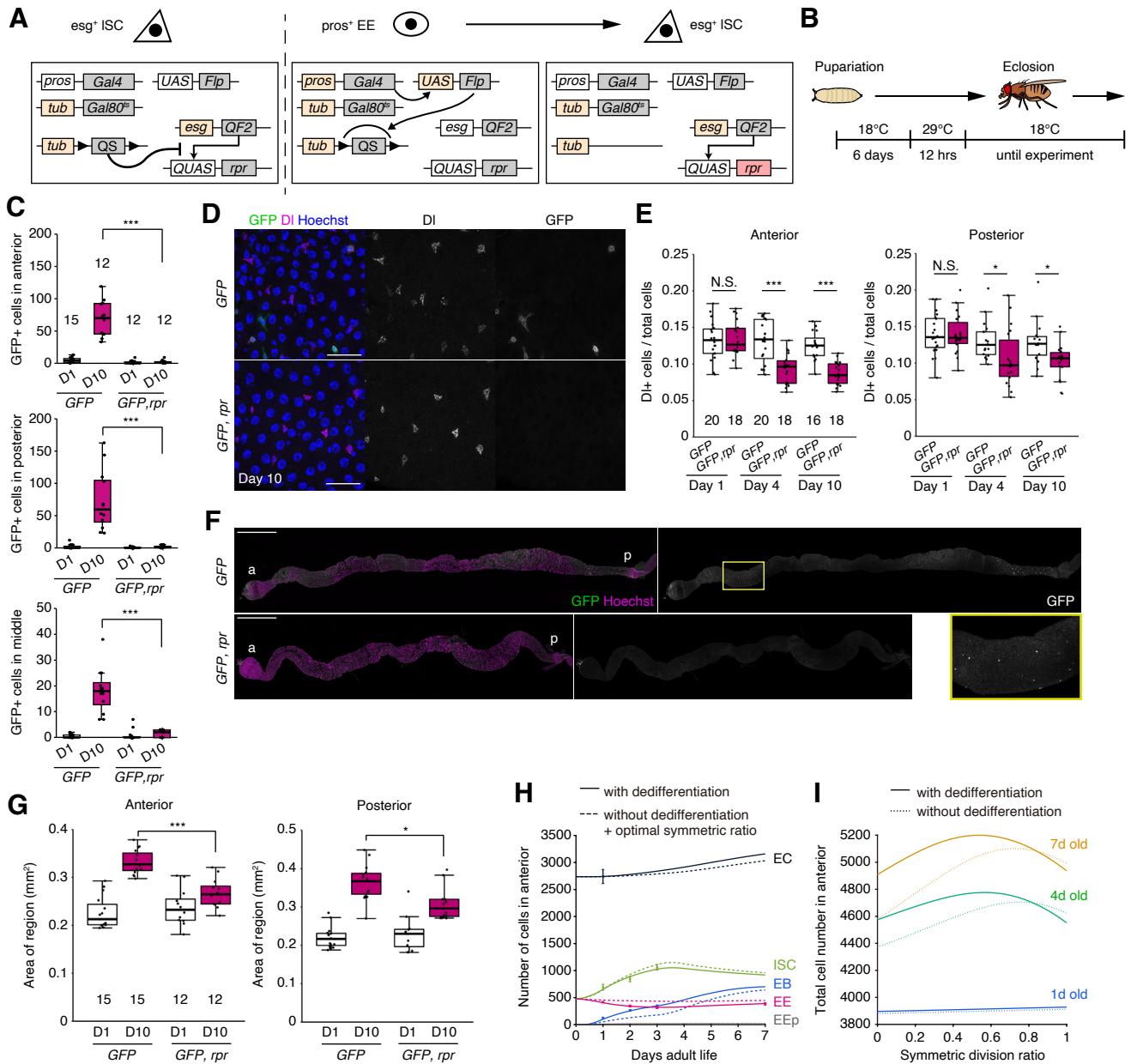
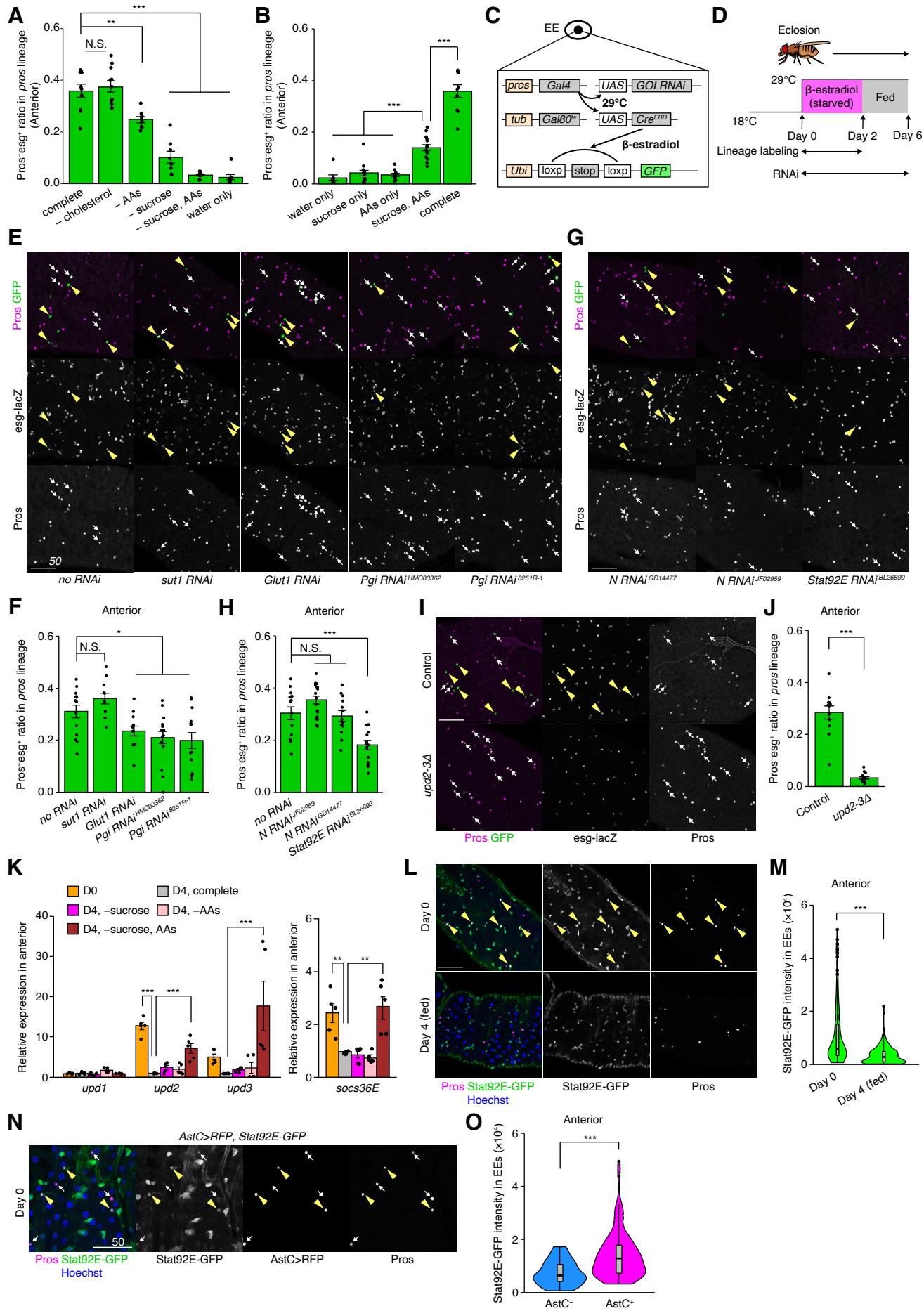
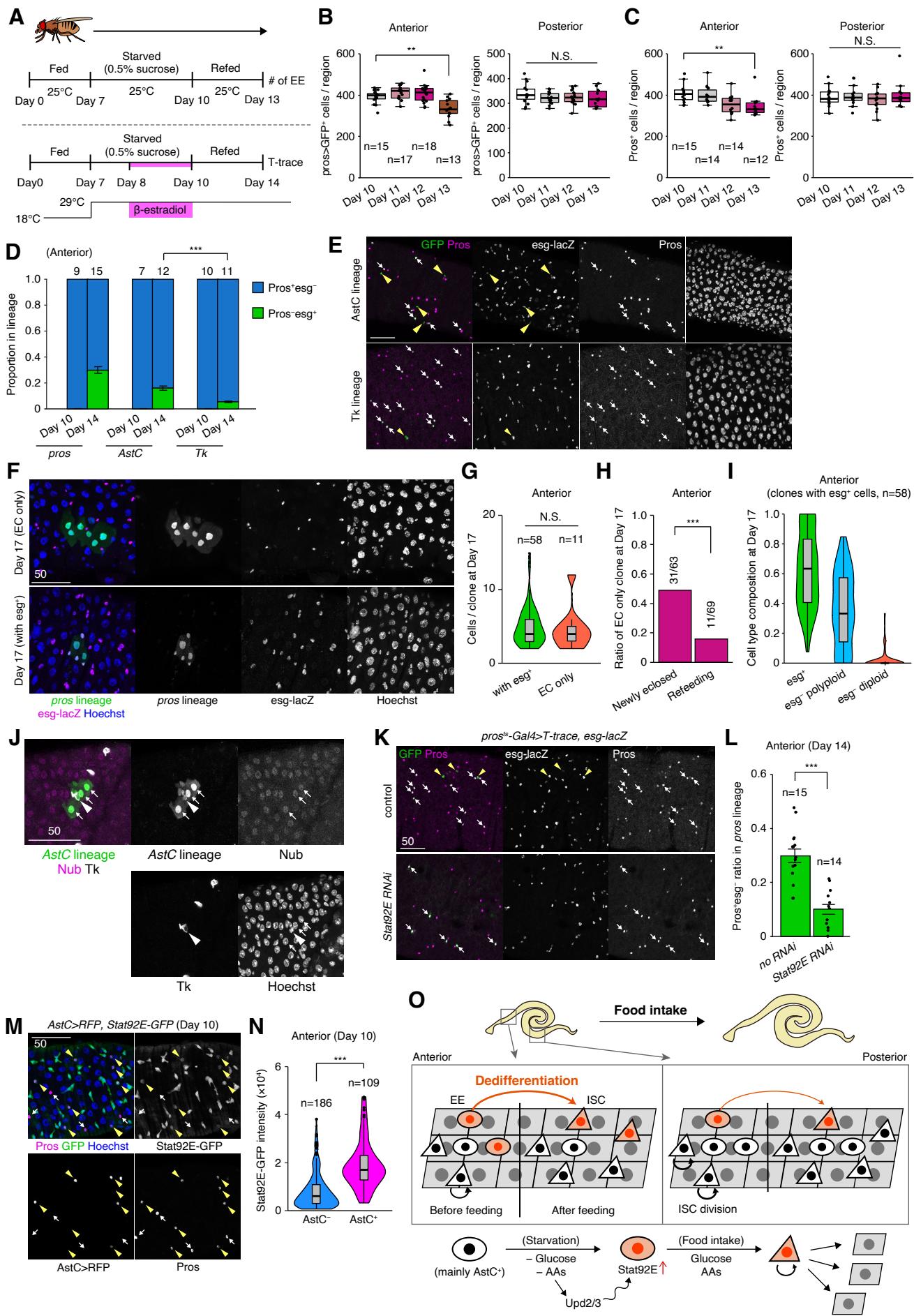




Figure 6

Nagai et al.

Figure 7**Nagai et al.**