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ABSTRACT

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses.
Although incompletely understood, structural and functional network alterations are increasingly
recognized to be at the core of the condition. We utilized multimodal imaging and connectivity
modeling to study structure-function coupling in ASD, and probed mono- and polysynaptic
mechanisms on structurally-governed network function. We examined multimodal magnetic
resonance imaging data in 47 ASD and 37 neurotypical controls from the Autism Brain Imaging
Data Exchange (ABIDE) Il initiative. We predicted intrinsic functional connectivity from structural
connectivity data in each participant using a Riemannian optimization procedure that varies the
times that simulated signals can unfold along tractography-derived personalized connectomes. In
both ASD and neurotypical controls, we observed improved structure-function prediction at longer
diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms
are accounted for. Prediction improvements were marked in transmodal association systems, such
as the default mode network, in both controls and ASD. Improvements were, however, lower in
ASD in a polysynaptic regime at higher simulated diffusion times. Regional differences followed a
sensory-to-transmodal cortical hierarchy, with an increased gap between groups in transmodal
compared to sensory/motor systems. Multivariate associative techniques revealed that structure-
function differences reflected inter-individual differencesin autistic symptoms and verbal as well as
non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function
coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the
condition and can help explain its wide range of associated symptoms.
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INTRODUCTION

Autism spectrum disorder (ASD) is a common neurodevelopmental diagnosis encompassing
atypical social and communication abilities, repetitive behaviors and interests, and sometimes
atered sensory and perceptual processing as well as imbalances in verbal and non-verbal abilities
(Christensen et al., 2018; Mottron et a., 2006). While biological underpinnings remain
incompletely understood, convergent evidence supports a key role of atypical brain networks.
Indeed, there is now an increasing catalog of ASD-related genes and pathways involved in synaptic
and circuit organization (Geschwind, 2011; Quesnel-Vallieres et a., 2019; Rylaarsdam and
Guemez-Gamboa, 2019). Moreover, severa histopathological studies suggest dendritic
reorganization (Hutsler and Zhang, 2010; Martinez-Cerdefio, 2017), aterations in cortical
lamination (Hutsler et al., 2007; Simms et al., 2009), and atypical columnar layout in individuals
with ASD (Amara et a., 2008; McKavanagh et al., 2015). Molecular and circuit findings are
complemented by in vivo magnetic resonance imaging (MRI) studies, suggesting atypical structural
and functional network organization, often pointing to a maosaic pattern of increased and decreased
connectivity in ASD. Recent studies have represented structural and functional network
organization in compact connectivity spaces, identified via unsupervised dimensionality reduction
techniques, and tracked typical and atypical development (S.-J. Hong et al., 2019; Huntenburg et al.,
2018; Margulies et al., 2016; Park et a., 2022, 2021b; Tian et a., 2020). In neurotypical adults,
these techniques have robustly identified main spatial axes corresponding to the functional cortical
hierarchy, differentiating sensory and motor systems interacting with the outside world from
transmodal networks, such as default-mode and limbic networks, implicated in higher-order and
social cognition (Margulies et al., 2016). Translating this framework to ASD, increasing evidence
suggests a reduced hierarchical differentiation between sensory/motor and transmodal systems both
at the level of structural and functiona connectivity, which have been shown to relate to autism risk
gene expression patterns (Park et al., 2021b). Overall, findings suggest that ASD perturbs neural
circuit organization across multiple, likely interacting spatial scales.

A key assumption of neuroscience is that brain structure and function are intertwined. Expanding
from experimental explorations in non-human animals, imaging studies in neurotypical populations
have addressed structure-function coupling in the living human brain (Baum et a., 2020; Honey et
al., 2009; Misic et a., 2016; Park et al., 2021d; Snyder and Bauer, 2019; Suarez et a., 2020;
Véazquez-Rodriguez et al., 2019). Generally, such work seeks to identify a mapping from structural
connectivity (approximated via diffusion MRI tractography) to functional connectivity (estimated
via functional MRI signal correlations). Approaches include statistical associative techniques,
biophysical modeling, and graph communication models (Avena-Koenigsberger et al., 2019, 2018;
Bazinet et a., 2021; Becker et a., 2018; Breakspear, 2017; Deco et al., 2013; Gofii et a., 2014,
Honey et al., 2009; Misic et al., 2016; Rosenthal et al., 2018; Seguin et al., 2018; Wang et al., 2019).
This body of work emphasizes that functional interactions unfold both along direct monosynaptic
connections as well as indirect polysynaptic pathways (Damoiseaux and Greicius, 2009; Gofii et al.,
2014; Honey et al., 2009; Seguin et a., 2019; Suérez et al., 2020). In neurotypical adults, our team
recently proposed a novel approach to simulate functional interactions from structural connectivity
with high fidelity and at an individua -participant level (Benkarim et a., 2022). This work derived
low-dimensional eigenspaces from a structural connectome, on which virtual signal diffusion
models were then used to predict inter-regional functional interactions. These diffusion processes
unfold along existing connections and are governed by a free diffusion time parameter, with higher
diffusion times implicating an increasing contribution of indirect pathways to functional
interactions. In other words, this Riemannian manifold optimization framework can parameterize
the impact of polysynaptic communication on global structure-function coupling. At a regional
scale, comparing simulations with empirically measured data showed that while functional
interactions of sensory and motor systems can be adequately modeled with only a limited number of
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Synaptic steps, accurate simulations of interactions of transmodal systems require longer time scales,
and thus a more polysynaptic regime. As such, mono- and polysynaptic communication
mechanisms underpinning structure-function coupling in healthy individuals can be compactly
described along a unimodal to transmodal brain hierarchy.

Our study examined structure-function relations in autism and explored the differential impact of
mono- vs polysynaptic communication. Core to our approach was a Riemannian optimization and
modeling framework (Benkarim et al., 2022), which has shown state-of-the-art performance in
predicting functional interactions from structural connectivity data in single neurotypical
individuals. We studied global and region-specific differences in prediction accuracy across
diffusion times in individuals with ASD and neurotypicals to evaluate the impact of mono- and
polysynaptic network communication. The topography of ASD-related aterations was spatially
associated with canonical features of macroscale functional organization, namely intrinsic
functional systems and sensory-transmodal cortical hierarchical gradients. Using partial |east
squares regression, we finally associated ASD-related alterations with autistic symptoms and
measures of verbal/non-verbal intelligence to explore how atypical structure-function coupling
reflects behavioral phenotypes.

RESULTS

Global imbalances in structure-function coupling in ASD

Based on connectome manifold models (Benkarim et al., 2022), we simulated resting-state
functional connectivity among 200 cortical regions (Schaefer et a., 2018) from tractography-
derived structural connectivity data (Benkarim et al., 2022). In brief, the technique (i) applies
nonlinear dimensionality reduction (i.e., diffusion map embedding) (Coifman and Lafon, 2006; Vos
de Wael et al., 2020) to a structural connectome, (ii) varies the diffusion time parameter t of the
embedding technique to simulate connectivity-guided random walks (Fig. 1A), and (iii) the kernels
derived from the corresponding diffusion times using a radial basis function are fused to minimize
the difference between the actual functional connectivity and diffusion maps applied. Before
generating the kernels, the algorithm uses a transformation matrix to rotate diffusion maps to find
optimal paths through which to propagate information between different brain regions at each
diffusion time. Structure-function coupling was quantified as the linear correlation between
empirical and ssimulated functional connectivity matrices across diffusion timest (fromt=1tot=
10, with higher t indicating an increased contribution of polysynaptic communication across
indirect paths; Fig. 1B). In both neurotypicals and ASD, coupling monotonically increased with
higher diffusion times. Notably, controls showed higher prediction performance between t = 24.
We quantitatively assessed between-group differences in coupling using 1,000 permutation tests by
shuffling subject indices, and confirmed higher performance in controls relative to ASD betweent =
2 and t = 4 (ppem = 0.020, 0.044, 0.038; Fig. 1C). The results indicate that both controls and ASD
displayed an influence of polysynaptic communication on structure-function coupling, and stronger
global coupling in controls than in ASD.
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Fig. 1 | Global imbalances in structure-function coupling in ASD. (A) Schema of the Riemannian manifold
optimization approach that was used to simulate functional connectivity (FC) along a structural connectome (SC) as a
function of diffusion time t. (B) Group-level SC matrices in controls and ASD (left). Correlation coefficients between
empirical and simulated FC in controls (dark gray) and ASD (light gray) as a function of t (right). Error bars represent
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the SD across individuals. Shown are empirical (left) and ssmulated FC (right) matrices across four representative
diffuson times (t = 1, 4, 7, and 10). (C) Between-group differences in prediction performance between controls and
ASD (upper pandl). A black line indicates real differences in prediction performance between groups, a solid gray line
indicates mean prediction accuracy differences across 1,000 permutation tests, and dotted gray lines indicate the 95%
confidence interval. Significant between-group differences are reported with asterisks. Shown are correlation
coefficients between an individual’s empirical and simulated FC for those diffusion times that showed significant
between-group differences (lower panels). Abbreviations: ASD, autism spectrum disorder; SD, standard deviation.

Regional structure-function imbalances

We assessed regional prediction performance gains across variable diffusion times t to explore the
contribution of polysynaptic communication on the prediction of brain function. For both controls
and ASD, sensory/motor areas showed higher prediction accuracy at low diffusion times compared
to transmodal systems (i.e., default-mode network and paralimbic cortices). With increasing
diffusion times, global prediction performance increased in both groups, with higher performance in
controls (Fig. 2A). To assess improvements in prediction accuracy across diffusion times, we
calculated prediction accuracy differences between t = 10 and t = 1 (Aprediction accuracy) in both
cohorts separately (Fig. 2B). We observed marked improvements (false discovery rate (FDR) <
0.05) in transmodal compared to sensory/motor systems, and improvements were larger in controls
than ASD.
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Fig. 2 | Regional structure-function imbalances. (A) Correlation coefficients between empirical and simulated FC
across different diffusion timest are shown on brain surfaces for control and ASD groups. The plot indicates correlation
coefficients between the empirical and ssmulated FC in controls (dark gray) and ASD (light gray) as a function of
diffuson time. Error bars represent the SD across brain regions. (B) Shown are differences in prediction accuracy
between the highest (t = 10) and lowest (t = 1) diffusion times (Aprediction accuracy) for both groups (upper panels).
We assessed between-group differences in Aprediction accuracy between controls and ASDs (lower panel).
Abbreviations: ASD, autism spectrum disorder; SD, standard deviation; FDR, false discovery rate.
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Topographic associations to structur e-function imbalances

We stratified findings with respect to established taxonomies of intrinsic functional organization.
First, we related our findings to a prior atlas that decomposes the cortex into seven intrinsic systems
(Yeo et a., 2011) and to a foundational taxonomy that subdivides the cortex into four hierarchical
levels (Mesulam, 1998) (Fig. 3A). In particular, we assessed across-diffusion time improvements in
structure-function prediction performance (Aprediction accuracy) as a function of the intrinsic
system and or hierarchical level, and noted smaller improvement in default-mode and frontoparietal
networks in ASD relative to controls, while sensory and attention networks showed increased
improvement. Second, we explored associations with the principal functional gradient, which
discriminates sensory/visual from transmodal systems in a continuous manner based on data-driven
connectome analysis. The first principal functional gradient was estimated from resting-state
functional connectivity obtained from the Human Connectome Project database (Van Essen et d.,
2013), using the BrainSpace toolbox version 0.1.10 (https://github.com/MICA-MNI/BrainSpace)
(Coifman and Lafon, 2006; Vos de Wadl et al., 2020) (Fig. 3B). We observed significant
correlations with the functional gradient, even after accounting for spatial autocorrelation, in both
groups (control: r = 0.597 + 0.103, pgin < 0.001; ASD: r = 0.441 + 0.200, psin = 0.021; Fig. 3B).
Associations were significantly different between groups, and stronger in controls (two-sample t-
tests with 1,000 permutations p < 0.001; Fig. 3B).
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Fig. 3 | Topographic associations. (A) We stratified the prediction accuracy difference between diffusion timet = 10
and t = 1 (Aprediction accuracy) according to functional communities (left) (Yeo et al., 2011) and cortical hierarchies
(right) (Mesulam, 1998). Spider plots show normalized Aprediction accuracy, where the values of ASD are normalized
relative to controls. (B) The principal functional gradient is visualized on brain surfaces (left). We calculated linear
correlations between the gradient and Aprediction accuracy for both controls and ASD individuals, where the gray lines
indicate SD across individuals (center). In the right panel, one can see the correlation coefficients of each individual in
both groups, where the asterisk indicates a significant difference. Abbreviations: ASD, autism spectrum disorder; SD,
standard deviation.
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Associations with behavioral phenotypes

We studied associations between prediction accuracy difference across diffusion times (Aprediction
accuracy) and behavioral phenotypes of ADOS scores (social cognition, communication, and
repetitive behavior) as well as verbal and non-verba intelligence quotient (1Q) and their ratio
(verbal/non-verbal 1Q) (Hong et a., 2022) using partial least squares (PLS) anayses (Krishnan et
a., 2011; Mcintosh and MiSi¢, 2013) (see Methods). We performed the PLS analysis with 1,000
bootstraps, and the first latent variable explained 33.4 % of covariance between Aprediction
accuracy and behavioral phenotypes (Fig. 4A). The estimated PLS scores showed significant
correlations across bootstraps (r = 0.426 + 0.093, ppem = 0.010; Fig. 4B). We assessed the
contribution of these features using bootstrap ratio calculated based on the loadings (Zeighami et al.,
2019) (see Methods). We found that improvement of prediction accuracy in sensory and
frontoparietal regions was associated with lower social cognition and communication-related
autistic symptoms and 1Q ratio, indicating less autistic characteristics (Fig. 4C). On the other hand,
prediction accuracy improvement in temporal and limbic regions was associated with higher autistic
symptom, particularly, repetitive behaviors (Supplementary Fig. 1).
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Fig. 4 | Multivariate associations between structur e-function coupling imbalances and behavioral phenotypes of
ASD. (A) The scree plot shows the percent variance explained by each latent variable, where the error bars indicate SD
across bootstraps. (B) We calculated linear correlations between PLS scores of Aprediction accuracy and behavioral
phenotypes of the first latent variable in ASD, which explained almost 33.4% of the variance. (C) Shown are PLS
loading-based bootstrap ratios of Aprediction accuracy (left) and behavioral phenotypes (right). Brain regions and
behavioral phenotypes that showed significance are shown and marked with asterisks. Abbreviations: SD, standard
deviation; PLS, partial least squares, ADOS-S, Autism Diagnostic Observation Schedule — social cognition; ADOS-C,
Autism Diagnostic Observation Schedule — communication; ADOS-R, Autism Diagnostic Observation Schedule —
repeated behavior; 1Q, intelligence quotient.


https://doi.org/10.1101/2023.05.08.539817
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.08.539817; this version posted May 8, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

10
Park et a. | Structure-function coupling in autism
Sensitivity analyses

a) Parcellation schemes. In addition to the 200 cortical regions, we found consistent results when
dividing the cortex into 100 and 300 regions (Supplementary Figs. 2-3).

b) Only male participants. We additionally performed the same anayses using only male
participants and found comparable results (Supplementary Fig. 4).

c) Site effects. We performed the analyses for each site separately. We found overall similar patterns
but decreased effects, which may be due to the small sample size (Supplementary Fig. 5).

DiscussiON

The correspondence of brain structure and function is a tenet of neuroscience (Baum et al., 2020;
Honey et a., 2009; Misic et a., 2016; Park et a., 2021d; Snyder and Bauer, 2019; Suarez et al.,
2020; Vézgquez-Rodriguez et al., 2019), and the advent of multimodal imaging and connectomics
methods has culminated in multiple efforts to predict large-scale brain function and inter-regional
functional interactions from descriptions of brain wiring in the healthy human brain (Benkarim et
a., 2022; Damoiseaux and Greicius, 2009; Gofii et al., 2014; Honey et a., 2009; Seguin et al., 2019;
Suérez et al., 2020). Here, we utilized unsupervised connectivity manifold learning and alignment
techniques to index structure-function coupling in ASD and to explore the role of polysynaptic
communication mechanisms. Studying individuals with ASD and neurotypical controls, we
observed structure-function coupling in both groups to be overall high and generally increasing
when additionally incorporating polysynaptic communication, particularly in transmodal systems.
On the other hand, ASD showed reduced structure-function coupling compared to controls, in
particular in polysynaptic regimes and transmodal regions. Structure-function coupling imbalances
in ASD were aligned with prototypical descriptions of the primate cortical hierarchy, indicating a
sensory-to-transmodal gradient of alterations in structure-function coupling in ASD. Findings
reflected autism symptoms and imbaances in verbal/non-verbal intelligence dimensions.
Coallectively, our findings show hierarchy-dependent imbalances in structurally-governed network
communication in ASD, and may offer a novel and behavioraly relevant perspective of autism
connectopathy.

Our work investigated connectome-level structure-function coupling using a Riemannian manifold
optimization procedure (Benkarim et a., 2022). In a recent study in neurotypical adults, this
approach provided a faithful individual participant-level prediction of intrinsic functional
interactions based on structural connectomes. It can be tuned across diffusion time parameters,
interpretable as an increasing influence of polysynaptic structure-function coupling mechanisms.
Comparing prediction accuracy between neurotypicals and ASD, our findings revealed globally
reduced coupling in the latter. Coupling was particularly reduced towards higher diffusion times,
and ASD-related reductions were most marked in transmodal systems such as the default mode and
frontoparietal networks. Such findings indicate a hierarchy-dependent alteration in structure-
function coupling in ASD, particularly in polysynaptic subnetworks. These findings suggest that
links between brain structure and function are not as straightforward in ASD compared to controls,
which may relate to several previously identified factors. Neuroimaging studies have shown
atypical cortical morphology and microstructure, aberrant white matter fiber architecture, and
reorganized structural network topology in ASD (Cai et al., 2022; Hong et a., 2018; S. J. Hong et
a., 2019). Despite only a little work assessing links between structural alterations and atypical
function in ASD, studies have indicated atypical functional connectivity between different brain
areas (Di Martino et al., 2014; Hull et a., 2017; Miller et a., 2011). Moreover, severa reports
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emphasized increased spatial shifting of functional network layout in ASD, a finding also referred
to as idiosyncrasy (Benkarim et al., 2021), alongside findings suggesting increased signal variation
in this cohort (Takahashi et al., 2016). These factors may collectively result in lower predictability
of functional signaling and interactions from structural connectivity information, and hence
contribute to the observed findings in this study.

Brain hierarchy along the sensory/motor-association axis underpins primate cortical organization,
initialy inferred from invasive post-mortem findings in non-human animals (Mesulam, 1998).
Recently, our understanding of the cortical hierarchical organization has been solidified with human
neuroimaging, notably functional connectivity research (Bethlehem et al., 2020; Margulies et al.,
2016; Mckeown et al., 2020; Murphy et al., 2019; Park et a., 2021c), microstructura profiling
(Burt et a., 2018; Paguola et al., 2019), and tractography-derived structural connectomics
(Kharabian Masouleh et a., 2020; Park et al., 2021a, 2021b). In our study, inter-regional variations
in structure-function prediction performance followed dimensiona and clustering-based
approximations of the cortical functional hierarchy. In particular, we observed lower coupling
towards transmodal systems when incorporating monosynaptic mechanisms, which, however,
increased with larger diffusion times and hence polysynaptic communication. Overall reduced
structure-function coupling in transmodal systems compared to sensory/motor and unimodal
networks echoes prior findings (Valk et al., 2022; Vazquez-Rodriguez et al., 2019), in particular
when bare diffusion MRI tractography measures without explicit incorporation of polysynaptic
communication inform the modeling strategy. Transmodal regions are known to increasingly
engage in long-range and more centralized communication, underpinning integrative cognitive
functions (Park et al., 2021d). In our work, performance reductionsin ASD relative to neurotypicals
related mainly to reduced hierarchy-specific gains in predicting functions that would have otherwise
resulted from the incorporation of polysynaptic communication in ASD. Previous work from our
group and others based on functional and structural neuroimaging has suggested atypical
connectome hierarchy, and suggested that densely integrated rich core nodes may assume a major
role in this process (S.-J. Hong et al., 2019; Park et a., 2021b), possibly in lieu of their implication
in multiple, polysynaptic communication pathways.

Multivariate associative techniques revealed that altered structure-function relations in ASD
reflected behavioral symptoms and cognitive phenotypes, here indexed by the ADOS scale and
verbal and non-verbal intelligence dimensions (Di Martino et al., 2011; Hong et a., 2022; S.-J.
Hong et al., 2019; Park et al., 2021b). It should be noted that our results were derived from small
samples and assessed using four-fold cross-validation only, requiring validations in larger samples
with multimodal imaging data to assess generalizability. Findings, nevertheless, suggested a broad
implication of different brain systems, notably transmodal systems, such as the default-mode
network. These systems have been shown to contribute to both typical and atypical social
interaction and communication, and higher cognitive processes more generally (Assaf et al., 2010;
Mars et al., 2012; Padmanabhan et al., 2017; Paquola et al., 2022; Raichle, 2015; Smallwood et al.,
2021). Moreover, systems at the apex of the putative cortical hierarchy undergo ongoing
maturational processes in typical childhood and adolescence, which shift networks towards a more
clustered layout and progressively differentiate these from other macroscale networks, possibly due
to the strengthening of long-range connections (Baum et a., 2020; Fan et al., 2021; Park et al.,
2022). Our findings suggest that atypical polysynaptic communication in higher-order transmodal
areas, in part, reflects those symptoms, and could serve as a potential diagnostic marker of affected
individuals.

11


https://doi.org/10.1101/2023.05.08.539817
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.08.539817; this version posted May 8, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12

Park et a. | Structure-function coupling in autism
METHODS

Study participants

We studied 84 participants (47 ASD, 37 neurotypicals) obtained from two independent sites of (1)
New York University Langone Medical Center (NYU) and (2) Trinity College Dublin (TCD) from
the Autism Brain Imaging Data Exchange initiative (ABIDE-II;
https://fcon_1000.projects.nitrc.org/indi/abide) (Di Martino et al., 2017). Inclusion criteria were: (i)
sites included children and adults with autism and controls with >10 individuals per group, (ii)
multimodal MRI data (i.e., T1-weighted, rs-fMRI, and diffusion MRI) available, (iii) acceptable
cortical surface extraction on T1-weighted MRI, (iv) low head motion in the rs-fMRI time series
(i.e., >0.3 mm framewise displacement). Individuals with ASD were diagnosed by an in-person
interview with clinical experts and gold standard instruments from the Autism Diagnostic
Observation Schedule (ADOS) (Lord et al., 2000) and/or Autism Diagnostic Interview-Revised
(ADI-R) (Lord et al., 1994). Neurotypical controls did not have any history of mental disorders. For
all groups, participants who had genetic disorders associated with autism (i.e., Fragile X),
contraindications to MRI scanning, and who were pregnant were excluded. Detailed demographic
information of the participants is reported in Supplementary Table 1. ABIDE data collections
were performed in accordance with local Institutional Review Board guidelines. In accordance with
HIPAA guidelines and 1000 Functional Connectomes Project/INDI protocols, al ABIDE datasets
have been fully anonymized, with no protected health information included.

MRI acquisition
We obtained the data from two independent sites.

(i) NYU: Imaging data were acquired using a 3T Siemens Allegra scanner. The T1-weighted data
were obtained using a 3D magnetization prepared rapid acquisition gradient echo (MPRAGE)
sequence (repetition time (TR) = 2,530 ms; echo time (TE) = 3.25 ms; inversion time (T1) = 1,100
ms; flip angle = 7°; matrix = 256 x 192; and voxel sze=1.3 x 1.0 x 1.3 mm3). The rs-fMRI data
were acquired using a 2D echo planar imaging (EPI) sequence (TR = 2,000 ms; TE = 15 ms; flip
angle = 90°; matrix = 80 x 80; number of volumes = 180; and voxel size = 3.0 x 3.0 x 4.0 mm®).
The diffusion MRI data were obtained using a 2D spin echo EPI (SE-EPI) sequence (TR = 5,200
ms; TE = 78 ms; matrix = 64 x 64; voxel size = 3 mm? isotropic; 64 directions; b-value = 1,000
s/mm? and 1 b0 image).

(if) TCD: Imaging data were acquired using a 3T Philips Achieva scanner. The T1-weighted MRI
were acquired using a 3D MPRAGE (TR = 8,400 ms; TE = 3.90 ms; Tl = 1,150 ms; flip angle = 8°;
matrix = 256 x 256; voxel size = 0.9 mm?® isotropic). The rsfMRI data were acquired using a 2D
EPI (TR = 2,000 ms; TE = 27 ms; flip angle = 90°; matrix = 80 x 80; number of volumes = 210;
and voxel size = 3.0 x 3.0 x 3.2 mm®). The diffusion MRI data were acquired using a 2D SE-EPI
(TR = 20,244 ms; TE = 79 ms; matrix = 124 x 124; voxel size=1.94 x 1.94 x 2 mm?>; 61 directions;
b-value = 1,500 mm?; and 1 number b0 image).

Data preprocessing

We preprocessed the T1-weighted data using FreeSurfer version 6.0 (Dale et al., 1999; Fischl, 2012;
Fischl et al., 2001, 1999a, 1999b; Ségonne et a., 2007), which includes gradient nonuniformity
correction, skull stripping, intensity normalization, and tissue segmentation. White and pia surfaces
were generated through triangular surface tessellation, topology correction, inflation, and spherical
registration to the fsaverage template surface. The rs-fMRI data were previously processed using C-
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PAC (https://fcp-indi.github.io) (Craddock et a., 2013), and provided by the ABIDE database
(http://preprocessed-connectomes-project.org/abidel). The pipeline included slice timing and head
motion correction, skull stripping, and intensity normalization. Nuisance variables of head motion,
average white matter and cerebrospinal fluid signal, and linear/quadratic trends were removed using
CompCor (Behzadi et al., 2007). Band-pass filtering between 0.01 and 0.1 Hz was applied, and rs-
fMRI data were co-registered to T1-weighted data in MNI152 standard space with boundary-based
rigid-body and nonlinear transformations. The rs-fMRI data were mapped to subject-specific
midthickness surfaces and resampled to Conte69. Finally, surface-based spatial smoothing with a
full-width-at-half-maximum of 5 mm was applied. The diffuson MRI data were processed using
Mrtrix3 (Tournier et al., 2019), including correction for susceptibility distortions, head motion, and
eddy currents. Quality control involved visual inspection of T1-weighted data, and cases with faulty
cortical segmentation were excluded. Cases with an rs-fMRI data framewise displacement >0.3 mm
were also excluded (Power et al., 2014, 2012).

Structural and functional connectivity

Structural connectomes were generated from preprocessed diffusion MRI data using Mrtrix3
(Tournier et al., 2019). Anatomica constrained tractography was performed using different tissue
types derived from the T1-weighted image, including cortical and subcortical grey matter, white
matter, and cerebrospinal fluid (Smith et al., 2012). The T1-weighted was registered to the diffusion
MRI data with boundary-based registration, and the transformation was applied to different tissue
types to register them onto the native diffusion MRI space. Multi-shell and multi-tissue response
functions were estimated (Christiaens et al., 2015), and constrained spherical deconvolution and
intensity normalization were performed (Jeurissen et a., 2014). Seeding from all white matter
voxels, the tractogram was generated based on a probabilistic approach (Tournier et a., 2010, 2019,
2012) with 40 million streamlines, with a maximum tract length of 250 and a fractional anisotropy
cutoff of 0.06. Subsequently, spherical-deconvolution informed filtering of tractograms (SIFT2)
was applied to reconstruct whole-brain streamlines weighted by the cross-section multipliers, which
considers the fiber bundle’s total intra-axonal space across its full cross-sectional extent (Smith et
a., 2015). The structural connectome was built by mapping the reconstructed cross-section
streamlines onto the Schaefer atlas with 200 parcels (Schaefer et al., 2018), then log-transformed to
adjust for the scale (Fornito et al., 2016). Functional connectivity matrices were generated by
calculating Pearson’s correlations of time series between two different brain regions defined using
the Schaefer atlas with 200 parcels (Schaefer et a., 2018), and the correlation coefficients were
Fisher’s r-to-z transformation to render data more normally distributed (Thompson and Fransson,
2016).

Functional connectivity prediction using structural connectivity

To predict functional connectivity from structural connectivity, we opted for a recently introduced
Riemannian optimization approach (Benkarim et al., 2022). Core to this approach is the application
of diffusion map embedding, a nonlinear dimensionality technique, to the structural connectivity
matrix to generate low-dimensional eigenvectors (i.e., diffusion maps) (Coifman and Lafon, 2006).
The diffusion maps are controlled by diffusion time t, which controls the scale of eigenvalues. If the
diffusion time increases, the brain regions are located more closely on the low-dimensional
eigenspace (Fig. 1A). We, thus, can approximate the distances of eigenvectors between different
regions with varying diffusion times. To predict functional connectivity, this approach uses kernel
fusion to find a weighted combination of the kernels derived from the diffusion maps at each
diffusion time using a radial basis function. The approach further uses a transformation matrix to
rotate the diffusion maps before computing the kernels for each diffusion time, where the rotation
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matrix may help identify the optimal paths through which to propagate information between
different brain regions. Here, to solve the optimization problem, the Riemannian conjugate gradient
algorithm (Absil et al., 2008) implemented in the Pymanopt toolbox (Townsend et a., 2016) was
used. Details can be found elsewhere (Benkarim et al., 2022). We performed the prediction
procedure for the ASD and control groups separately with a five-fold cross-validation. The
prediction performance was assessed by calculating Pearson’s correlation of the upper triangular
elements between empirical and predicted functional connectivity matrices (Fig. 1B). We assessed
the prediction accuracy with varying diffusion times between t = 1 and t = 10. Differences in
prediction accuracy between ASD and control groups were assessed based on 1,000 permutation
tests (Fig. 1C). We randomly assigned subject indices and calculated differences in prediction
accuracy between the new groups (Ar) to construct a null distribution. If the real difference did not
belong to 95% of the null distribution, it was deemed significant.

Between-group differencesin regional prediction accuracy across diffusion times

We aso assessed regional prediction performances across varying diffusion times. For each
diffusion time, we calculated Pearson’s correlations between the empirical and predicted functional
connectivity matrix of each brain region (Fig. 2A). To assess the improvement of the prediction
accuracy across diffusion times, we calculated the difference in prediction accuracy between the
highest (t = 10) and lowest (t = 1) diffusion times (i.e., Aprediction accuracy) (Fig. 2B). We then
compared the Aprediction accuracy between ASD and control groups with controlling for age, sex,
and site using a general linear model implemented in SurfStat (Worsley et a., 2009), and multiple
comparisons across brain regions were corrected using FDR (Benjamini and Hochberg, 1995).

Topological and networ k or ganization of prediction accuracy difference across diffusion times

We assessed underlying connectome profiles of the across-diffusion time prediction accuracy
difference. First, after z-normalizing performance values of ASD individuals relative to
neurotypical controls, we stratified the parcel-wise Aprediction accuracy according to seven
functional communities (visual, somatomotor, dorsal attention, ventral attention, limbic,
frontoparietal, default mode) (Yeo et a., 2011) and four cortical hierarchical levels (idiotypic,
unimodal association, heteromodal association, paralimbic) (Mesulam, 1998) (Fig. 3A). Next, we
associated Aprediction accuracy with a functional principal gradient, representing cortical hierarchy
running from low-level sensory to higher-order transmodal system (Margulies et a., 2016). We
obtained the functional gradient from the BrainSpace toolbox (Vos de Wael et al., 2020), which was
generated using the Human Connectome Project database (Van Essen et al., 2013). Specifically, an
affinity matrix was constructed with a normalized angle kernel with the top 10% entries for each
parcel, and applied diffusion map embedding (Coifman and Lafon, 2006), which is robust to noise
and computationally efficient compared to other nonlinear manifold learning techniques
(Tenenbaum et al., 2000; von Luxburg, 2007). It is controlled by two parameters o and t, where a
controls the influence of the density of sampling points on the manifold (« = 0, maximal influence;
a =1, no influence) and t scales the eigenvalues of the diffusion operator. The parameters were set
asa=05andt = 0 to retain the global relations between data points in the embedded space,
following prior applications (S.-J. Hong et a., 2019; Margulies et a., 2016; Paquola et al., 2019;
Park et a., 2021d; Vos de Wael et d., 2020). In healthy adults, the gradient has previously been
shown to follow established models of the primate cortical functional hierarchy and specifically
differentiates sensory and motor networks from transmodal systems such as the default-mode
network. We then associated the functional gradient with Aprediction accuracy of each individual
within each group (Fig. 3B). The significance of the correlation was determined using 1,000 non-
parametric spin-tests for accounting for spatial autocorrelation (Alexander-Bloch et al., 2018;
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Lariviere et a., 2021; Markello and Misic, 2021). Between-group differences in the associations
between ASD and control groups were assessed using two-sample t-tests with 1,000 permutation
tests.

Associations with behavioral phenotypes

As afina analysis, we investigated behavioral associations of the diffusion time-related structure-
function coupling (Fig. 4 and Supplementary Fig. 1). We performed multivariate analysis using
PLS (Krishnan et a., 2011; McIntosh and Mi&i¢, 2013) to associate Aprediction accuracy across
diffusion times with ADOS social cognition, communication, repetitive behavior scores (Lord et al.,
2000) as well as verbal and performance 1Q and their ratio (verbal/performance 1Q) (Hong et al.,
2022). PLS is an unsupervised multivariate statistical technique that decomposes two datasets into
orthogonal sets of latent variables with maximum covariance (Krishnan et al., 2011; McIntosh and
Misi¢, 2013). We performed PLS analysis with 1,000 bootstraps by randomly selecting subjects,
and estimated PLS scores as well as loadings of the latent variables. We calculated Pearson’s
correlation between the PLS scores of Aprediction accuracy and behavioral phenotypes to assess the
strength of their associations. The contribution of the features which brain regions and/or behavioral
phenotypes was quantified using PLS loadings. Specifically, we calculated a bootstrap ratio by
dividing the mean loadings by standard errors (Zeighami et a., 2019). We thresholded the bootstrap
ratio with 95% confidence interval (Zeighami et al., 2019).

Sensitivity analysis
a) Parcellation schemes. We performed a structure-function coupling analysis using the Schaefer
atlas with 200 parcels (Schaefer et al., 2018). To assess robustness across different spatial scales,

we predicted functional connectivity from structural connectivity with the brain regions of 100 and
300 parcels (Supplementary Figs. 2-3).

b) Only male participants. Our dataset contains alarger proportion of male participants compared to
female subjects. We performed the same analyses using only male participants (Supplementary
Fig. 4).

c) Site effects. We obtained the data from two different sites. To assess the consistency of the results
across different sites, we performed the structure-function coupling analysis for each site
(Supplementary Fig. 5).
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Table S1 | Demographic infor mation of the study par ticipants. Means and SDs are reported.

I nformation NYU TCD P-value
Number 5
AutiamControl 20/18 18/19 0.2316
e Autism | 061(616) | _ . [ 1446(330) [ _ .~ 00037
g Control | 1001395) | P~ 1583(321) | P~ <0.001
Sex Autism | 2455 18:0 0.0624*
= 0.2432* —1x o
(malefemale) [ Control | 171 | " 19:0 P 0.2976*
ADOS— Totdl 10.00 (3.36) 8.72 (2.44) 0.1924
ADOS — Social cognition 7.50 (2.09) 5.78 (2.37) 0.0226
ADOS — Communication 25(1.70) 2.94(0.87) 0.3260
ADOS — Repeated
oS Repeae 1.40 (1.27) 0.22 (0.55) <0.001
Autism (11072575) (11131243 0.0674
Verbal 1Q : p=00018 : 0= 0.0705
contro | 11822 119.79 07951
(13.14) (13.72) :
. 103.28 109.33
performance | AUUS™ | (21.09) _ (14.20) _ 0.2870
p=0.1399 b= 0.0610
10 contro | 11211 117.16 02775
(17.00) (10.16) '
. Autism | 1.01(0.15) 102 (0.13) 0.6871
1Q ratio p=0.1980 p=09955 o~
Control | 1.07 (0.16) 1.03(0.13) 0.3818
*Chi-squared

Abbreviations: SD, standard deviation; NY U, New Y ork University Langone Medical Center; TCD,
Trinity College Dublin; ADOS, Autism Diagnostic Observation Schedule; 1Q, intelligence quotient.
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Supplementary Fig. S1 | Multivariate associations between structure-function coupling
imbalances and behavioral phenotypes of ASD using the second latent variable. (A) We
calculated linear correlations between PLS scores of Aprediction accuracy and behavioral
phenotypes of the first latent variable in ASD, which explained almost 13.8% of the variance. (B)
Shown are PLS loading-based bootstrap ratios of Aprediction accuracy (left) and behavioral
phenotypes (right). Brain regions and behavioral phenotypes that showed significance are shown
and marked with asterisks. Abbreviations: PLS, partial least squares; ADOS-S, Autism Diagnostic
Observation Schedule — socia cognition; ADOS-C, Autism Diagnostic Observation Schedule —
communication; ADOS-R, Autism Diagnostic Observation Schedule — repeated behavior; 1Q,
intelligence quotient.
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Supplementary Fig. 2 | Functional connectivity prediction using structural connectivity acr oss
different diffuson times using Schaefer atlas with 100 parcels. (A) Group-level structural
connectivity (SC) matrices in controls and ASD (left). Correlation coefficients between empirical
and simulated functional connectivity (FC) in controls (dark gray) and ASD (light gray) as a
function of diffusion time t (right). Error bars represent the SD across individuals. Shown are
empirical (left) and simulated FC (right) matrices across four representative diffusion times (t = 1, 4,
7, and 10). (B) Between-group differences in prediction performance between controls and ASD. A
black line indicates real differences in prediction performance between groups, a solid gray line
indicates mean prediction accuracy differences across 1,000 permutation tests, and dotted gray lines
indicate the 95% confidence interval. Significant between-group differences are reported with
asterisks. (C) Correlation coefficients between empirical and simulated FC across different
diffusion times t are shown on brain surfaces for control and ASD groups. The plot indicates
correlation coefficients between empirical and simulated FC in controls (dark gray) and ASD (light
gray) as a function of diffusion time. Error bars represent the SD across brain regions. (D) Shown
are differences in prediction accuracy between the highest (t = 10) and lowest (t = 1) diffusion times
(Aprediction accuracy) for both groups (upper panels). We assessed between-group differences in
Aprediction accuracy between controls and ASDs (lower panel). Abbreviation: ASD, autism
spectrum disorder; SD, standard deviation; FDR, false discovery rate.
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Supplementary Fig. 3 | Functional connectivity prediction using structural connectivity acr oss
different diffusion times using Schaefer atlas with 300 parcels. For details, see Supplementary
Fig. 2.
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Supplementary Fig. 4 | Functional connectivity prediction using structural connectivity across
different diffusion times using only male participants. For details, see Supplementary Fig. 2.
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Supplementary Fig. S5 | Functional connectivity prediction using structural connectivity
across different diffusion times for each site separately. (A)~(D) show the results from Trinity
College Dublin and (E)~(H) from New Y ork University Langone Medical Center. For details, see
Supplementary Fig. 2.
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