
CONNECTOME-WIDE STRUCTURE-FUNCTION COUPLING MODELS IMPLICATE 

POLYSYNAPTIC ALTERATIONS IN AUTISM 

Bo-yong Park1,2,3*, Oualid Benkarim1, Clara F. Weber1, Valeria Kebets1, Serena Fett1, Seulki Yoo4, 
Adriana Di Martino5, Michael P. Milham5, Bratislav Misic1, Seok-Jun Hong1,3,5,6, Boris C. 
Bernhardt1*  

1McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, 
Quebec, Canada 
2Department of Data Science, Inha University, Incheon, Republic of Korea 
3Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea 
4Artificial Intelligence Convergence Research Center, Inha University Incheon, Republic of Korea 
5 Center for the Developing Brain, Child Mind Institute, New York, United States 
6 Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea 

 

 

 

 

 

 

 

 

 

 

 

 

* Corresponding Authors: 

Bo-yong Park, PhD  
Department of Data Science 
Inha University 
Incheon, Republic of Korea 
Phone: +82-32-860-9427 
Email: boyong.park@inha.ac.kr  
 
Boris C. Bernhardt, PhD 
Multimodal Imaging and Connectome Analysis Lab 
McConnell Brain Imaging Centre 
Montreal Neurological Institute  
McGill University 
Montreal, Quebec, Canada  
Phone: +1-514-398-3579 
Email: boris.bernhardt@mcgill.ca 

   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.08.539817doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.08.539817
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Park et al. | Structure-function coupling in autism 

2 

ABSTRACT 

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. 
Although incompletely understood, structural and functional network alterations are increasingly 
recognized to be at the core of the condition. We utilized multimodal imaging and connectivity 
modeling to study structure-function coupling in ASD, and probed mono- and polysynaptic 
mechanisms on structurally-governed network function. We examined multimodal magnetic 
resonance imaging data in 47 ASD and 37 neurotypical controls from the Autism Brain Imaging 
Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural 
connectivity data in each participant using a Riemannian optimization procedure that varies the 
times that simulated signals can unfold along tractography-derived personalized connectomes. In 
both ASD and neurotypical controls, we observed improved structure-function prediction at longer 
diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms 
are accounted for. Prediction improvements were marked in transmodal association systems, such 
as the default mode network, in both controls and ASD. Improvements were, however, lower in 
ASD in a polysynaptic regime at higher simulated diffusion times. Regional differences followed a 
sensory-to-transmodal cortical hierarchy, with an increased gap between groups in transmodal 
compared to sensory/motor systems. Multivariate associative techniques revealed that structure-
function differences reflected inter-individual differences in autistic symptoms and verbal as well as 
non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function 
coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the 
condition and can help explain its wide range of associated symptoms. 
 
KEYWORDS: autism; structure-function coupling; diffusion time; synaptic communication 
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INTRODUCTION 

Autism spectrum disorder (ASD) is a common neurodevelopmental diagnosis encompassing 
atypical social and communication abilities, repetitive behaviors and interests, and sometimes 
altered sensory and perceptual processing as well as imbalances in verbal and non-verbal abilities 
(Christensen et al., 2018; Mottron et al., 2006). While biological underpinnings remain 
incompletely understood, convergent evidence supports a key role of atypical brain networks. 
Indeed, there is now an increasing catalog of ASD-related genes and pathways involved in synaptic 
and circuit organization (Geschwind, 2011; Quesnel-Vallières et al., 2019; Rylaarsdam and 
Guemez-Gamboa, 2019). Moreover, several histopathological studies suggest dendritic 
reorganization (Hutsler and Zhang, 2010; Martínez-Cerdeño, 2017), alterations in cortical 
lamination (Hutsler et al., 2007; Simms et al., 2009), and atypical columnar layout in individuals 
with ASD (Amaral et al., 2008; McKavanagh et al., 2015). Molecular and circuit findings are 
complemented by in vivo magnetic resonance imaging (MRI) studies, suggesting atypical structural 
and functional network organization, often pointing to a mosaic pattern of increased and decreased 
connectivity in ASD. Recent studies have represented structural and functional network 
organization in compact connectivity spaces, identified via unsupervised dimensionality reduction 
techniques, and tracked typical and atypical development (S.-J. Hong et al., 2019; Huntenburg et al., 
2018; Margulies et al., 2016; Park et al., 2022, 2021b; Tian et al., 2020). In neurotypical adults, 
these techniques have robustly identified main spatial axes corresponding to the functional cortical 
hierarchy, differentiating sensory and motor systems interacting with the outside world from 
transmodal networks, such as default-mode and limbic networks, implicated in higher-order and 
social cognition (Margulies et al., 2016). Translating this framework to ASD, increasing evidence 
suggests a reduced hierarchical differentiation between sensory/motor and transmodal systems both 
at the level of structural and functional connectivity, which have been shown to relate to autism risk 
gene expression patterns (Park et al., 2021b). Overall, findings suggest that ASD perturbs neural 
circuit organization across multiple, likely interacting spatial scales.  

A key assumption of neuroscience is that brain structure and function are intertwined. Expanding 
from experimental explorations in non-human animals, imaging studies in neurotypical populations 
have addressed structure-function coupling in the living human brain (Baum et al., 2020; Honey et 
al., 2009; Miŝic et al., 2016; Park et al., 2021d; Snyder and Bauer, 2019; Suárez et al., 2020; 
Vázquez-Rodríguez et al., 2019). Generally, such work seeks to identify a mapping from structural 
connectivity (approximated via diffusion MRI tractography) to functional connectivity (estimated 
via functional MRI signal correlations). Approaches include statistical associative techniques, 
biophysical modeling, and graph communication models (Avena-Koenigsberger et al., 2019, 2018; 
Bazinet et al., 2021; Becker et al., 2018; Breakspear, 2017; Deco et al., 2013; Goñi et al., 2014; 
Honey et al., 2009; Miŝic et al., 2016; Rosenthal et al., 2018; Seguin et al., 2018; Wang et al., 2019). 
This body of work emphasizes that functional interactions unfold both along direct monosynaptic 
connections as well as indirect polysynaptic pathways (Damoiseaux and Greicius, 2009; Goñi et al., 
2014; Honey et al., 2009; Seguin et al., 2019; Suárez et al., 2020). In neurotypical adults, our team 
recently proposed a novel approach to simulate functional interactions from structural connectivity 
with high fidelity and at an individual-participant level (Benkarim et al., 2022). This work derived 
low-dimensional eigenspaces from a structural connectome, on which virtual signal diffusion 
models were then used to predict inter-regional functional interactions. These diffusion processes 
unfold along existing connections and are governed by a free diffusion time parameter, with higher 
diffusion times implicating an increasing contribution of indirect pathways to functional 
interactions. In other words, this Riemannian manifold optimization framework can parameterize 
the impact of polysynaptic communication on global structure-function coupling. At a regional 
scale, comparing simulations with empirically measured data showed that while functional 
interactions of sensory and motor systems can be adequately modeled with only a limited number of 
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synaptic steps, accurate simulations of interactions of transmodal systems require longer time scales, 
and thus a more polysynaptic regime. As such, mono- and polysynaptic communication 
mechanisms underpinning structure-function coupling in healthy individuals can be compactly 
described along a unimodal to transmodal brain hierarchy.  

Our study examined structure-function relations in autism and explored the differential impact of 
mono- vs polysynaptic communication. Core to our approach was a Riemannian optimization and 
modeling framework (Benkarim et al., 2022), which has shown state-of-the-art performance in 
predicting functional interactions from structural connectivity data in single neurotypical 
individuals. We studied global and region-specific differences in prediction accuracy across 
diffusion times in individuals with ASD and neurotypicals to evaluate the impact of mono- and 
polysynaptic network communication. The topography of ASD-related alterations was spatially 
associated with canonical features of macroscale functional organization, namely intrinsic 
functional systems and sensory-transmodal cortical hierarchical gradients. Using partial least 
squares regression, we finally associated ASD-related alterations with autistic symptoms and 
measures of verbal/non-verbal intelligence to explore how atypical structure-function coupling 
reflects behavioral phenotypes. 

 

 

RESULTS 

Global imbalances in structure-function coupling in ASD 
Based on connectome manifold models (Benkarim et al., 2022), we simulated resting-state 
functional connectivity among 200 cortical regions (Schaefer et al., 2018) from tractography-
derived structural connectivity data (Benkarim et al., 2022). In brief, the technique (i) applies 
nonlinear dimensionality reduction (i.e., diffusion map embedding) (Coifman and Lafon, 2006; Vos 
de Wael et al., 2020) to a structural connectome, (ii) varies the diffusion time parameter t of the 
embedding technique to simulate connectivity-guided random walks (Fig. 1A), and (iii) the kernels 
derived from the corresponding diffusion times using a radial basis function are fused to minimize 
the difference between the actual functional connectivity and diffusion maps applied. Before 
generating the kernels, the algorithm uses a transformation matrix to rotate diffusion maps to find 
optimal paths through which to propagate information between different brain regions at each 
diffusion time. Structure-function coupling was quantified as the linear correlation between 
empirical and simulated functional connectivity matrices across diffusion times t (from t = 1 to t = 
10, with higher t indicating an increased contribution of polysynaptic communication across 
indirect paths; Fig. 1B). In both neurotypicals and ASD, coupling monotonically increased with 
higher diffusion times. Notably, controls showed higher prediction performance between t = 2–4. 
We quantitatively assessed between-group differences in coupling using 1,000 permutation tests by 
shuffling subject indices, and confirmed higher performance in controls relative to ASD between t = 
2 and t = 4 (pperm = 0.020, 0.044, 0.038; Fig. 1C). The results indicate that both controls and ASD 
displayed an influence of polysynaptic communication on structure-function coupling, and stronger 
global coupling in controls than in ASD.  
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Fig. 1 | Global imbalances in structure-function coupling in ASD. (A) Schema of the Riemannian manifold 
optimization approach that was used to simulate functional connectivity (FC) along a structural connectome (SC) as a 
function of diffusion time t. (B) Group-level SC matrices in controls and ASD (left). Correlation coefficients between 
empirical and simulated FC in controls (dark gray) and ASD (light gray) as a function of t (right). Error bars represent 
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the SD across individuals. Shown are empirical (left) and simulated FC (right) matrices across four representative 
diffusion times (t = 1, 4, 7, and 10). (C) Between-group differences in prediction performance between controls and 
ASD (upper panel). A black line indicates real differences in prediction performance between groups, a solid gray line 
indicates mean prediction accuracy differences across 1,000 permutation tests, and dotted gray lines indicate the 95% 
confidence interval. Significant between-group differences are reported with asterisks. Shown are correlation 
coefficients between an individual’s empirical and simulated FC for those diffusion times that showed significant 
between-group differences (lower panels). Abbreviations: ASD, autism spectrum disorder; SD, standard deviation. 

 

Regional structure-function imbalances  
We assessed regional prediction performance gains across variable diffusion times t to explore the 
contribution of polysynaptic communication on the prediction of brain function. For both controls 
and ASD, sensory/motor areas showed higher prediction accuracy at low diffusion times compared 
to transmodal systems (i.e., default-mode network and paralimbic cortices). With increasing 
diffusion times, global prediction performance increased in both groups, with higher performance in 
controls (Fig. 2A). To assess improvements in prediction accuracy across diffusion times, we 
calculated prediction accuracy differences between t = 10 and t = 1 (∆prediction accuracy) in both 
cohorts separately (Fig. 2B). We observed marked improvements (false discovery rate (FDR) < 
0.05) in transmodal compared to sensory/motor systems, and improvements were larger in controls 
than ASD.  
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Fig. 2 | Regional structure-function imbalances. (A) Correlation coefficients between empirical and simulated FC 
across different diffusion times t are shown on brain surfaces for control and ASD groups. The plot indicates correlation 
coefficients between the empirical and simulated FC in controls (dark gray) and ASD (light gray) as a function of 
diffusion time. Error bars represent the SD across brain regions. (B) Shown are differences in prediction accuracy 
between the highest (t = 10) and lowest (t = 1) diffusion times (∆prediction accuracy) for both groups (upper panels). 
We assessed between-group differences in ∆prediction accuracy between controls and ASDs (lower panel). 
Abbreviations: ASD, autism spectrum disorder; SD, standard deviation; FDR, false discovery rate. 
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Topographic associations to structure-function imbalances 
We stratified findings with respect to established taxonomies of intrinsic functional organization. 
First, we related our findings to a prior atlas that decomposes the cortex into seven intrinsic systems 
(Yeo et al., 2011) and to a foundational taxonomy that subdivides the cortex into four hierarchical 
levels (Mesulam, 1998) (Fig. 3A). In particular, we assessed across-diffusion time improvements in 
structure-function prediction performance (∆prediction accuracy) as a function of the intrinsic 
system and or hierarchical level, and noted smaller improvement in default-mode and frontoparietal 
networks in ASD relative to controls, while sensory and attention networks showed increased 
improvement. Second, we explored associations with the principal functional gradient, which 
discriminates sensory/visual from transmodal systems in a continuous manner based on data-driven 
connectome analysis. The first principal functional gradient was estimated from resting-state 
functional connectivity obtained from the Human Connectome Project database (Van Essen et al., 
2013), using the BrainSpace toolbox version 0.1.10 (https://github.com/MICA-MNI/BrainSpace) 
(Coifman and Lafon, 2006; Vos de Wael et al., 2020) (Fig. 3B). We observed significant 
correlations with the functional gradient, even after accounting for spatial autocorrelation, in both 
groups (control: r = 0.597 ± 0.103, pspin < 0.001; ASD: r = 0.441 ± 0.200, pspin = 0.021; Fig. 3B). 
Associations were significantly different between groups, and stronger in controls (two-sample t-
tests with 1,000 permutations p < 0.001; Fig. 3B).  

  

Fig. 3 | Topographic associations. (A) We stratified the prediction accuracy difference between diffusion time t = 10 
and t = 1 (∆prediction accuracy) according to functional communities (left) (Yeo et al., 2011) and cortical hierarchies 
(right) (Mesulam, 1998). Spider plots show normalized ∆prediction accuracy, where the values of ASD are normalized 
relative to controls. (B) The principal functional gradient is visualized on brain surfaces (left). We calculated linear 
correlations between the gradient and ∆prediction accuracy for both controls and ASD individuals, where the gray lines 
indicate SD across individuals (center). In the right panel, one can see the correlation coefficients of each individual in 
both groups, where the asterisk indicates a significant difference. Abbreviations: ASD, autism spectrum disorder; SD, 
standard deviation. 
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Associations with behavioral phenotypes 

We studied associations between prediction accuracy difference across diffusion times (∆prediction 
accuracy) and behavioral phenotypes of ADOS scores (social cognition, communication, and 
repetitive behavior) as well as verbal and non-verbal intelligence quotient (IQ) and their ratio 
(verbal/non-verbal IQ) (Hong et al., 2022) using partial least squares (PLS) analyses (Krishnan et 
al., 2011; McIntosh and Mišić, 2013) (see Methods). We performed the PLS analysis with 1,000 
bootstraps, and the first latent variable explained 33.4 % of covariance between ∆prediction 
accuracy and behavioral phenotypes (Fig. 4A). The estimated PLS scores showed significant 
correlations across bootstraps (r = 0.426 ± 0.093, pperm = 0.010; Fig. 4B). We assessed the 
contribution of these features using bootstrap ratio calculated based on the loadings (Zeighami et al., 
2019) (see Methods). We found that improvement of prediction accuracy in sensory and 
frontoparietal regions was associated with lower social cognition and communication-related 
autistic symptoms and IQ ratio, indicating less autistic characteristics (Fig. 4C). On the other hand, 
prediction accuracy improvement in temporal and limbic regions was associated with higher autistic 
symptom, particularly, repetitive behaviors (Supplementary Fig. 1). 

  

Fig. 4 | Multivariate associations between structure-function coupling imbalances and behavioral phenotypes of 
ASD. (A) The scree plot shows the percent variance explained by each latent variable, where the error bars indicate SD 
across bootstraps. (B) We calculated linear correlations between PLS scores of ∆prediction accuracy and behavioral 
phenotypes of the first latent variable in ASD, which explained almost 33.4% of the variance. (C) Shown are PLS 
loading-based bootstrap ratios of ∆prediction accuracy (left) and behavioral phenotypes (right). Brain regions and 
behavioral phenotypes that showed significance are shown and marked with asterisks.  Abbreviations: SD, standard 
deviation; PLS, partial least squares; ADOS-S, Autism Diagnostic Observation Schedule – social cognition; ADOS-C, 
Autism Diagnostic Observation Schedule – communication; ADOS-R, Autism Diagnostic Observation Schedule – 
repeated behavior; IQ, intelligence quotient. 
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Sensitivity analyses 

a) Parcellation schemes. In addition to the 200 cortical regions, we found consistent results when 
dividing the cortex into 100 and 300 regions (Supplementary Figs. 2-3). 

b) Only male participants. We additionally performed the same analyses using only male 
participants and found comparable results (Supplementary Fig. 4). 

c) Site effects. We performed the analyses for each site separately. We found overall similar patterns 
but decreased effects, which may be due to the small sample size (Supplementary Fig. 5).  

 

 

DISCUSSION 

The correspondence of brain structure and function is a tenet of neuroscience (Baum et al., 2020; 
Honey et al., 2009; Miŝic et al., 2016; Park et al., 2021d; Snyder and Bauer, 2019; Suárez et al., 
2020; Vázquez-Rodríguez et al., 2019), and the advent of multimodal imaging and connectomics 
methods has culminated in multiple efforts to predict large-scale brain function and inter-regional 
functional interactions from descriptions of brain wiring in the healthy human brain (Benkarim et 
al., 2022; Damoiseaux and Greicius, 2009; Goñi et al., 2014; Honey et al., 2009; Seguin et al., 2019; 
Suárez et al., 2020). Here, we utilized unsupervised connectivity manifold learning and alignment 
techniques to index structure-function coupling in ASD and to explore the role of polysynaptic 
communication mechanisms. Studying individuals with ASD and neurotypical controls, we 
observed structure-function coupling in both groups to be overall high and generally increasing 
when additionally incorporating polysynaptic communication, particularly in transmodal systems. 
On the other hand, ASD showed reduced structure-function coupling compared to controls, in 
particular in polysynaptic regimes and transmodal regions. Structure-function coupling imbalances 
in ASD were aligned with prototypical descriptions of the primate cortical hierarchy, indicating a 
sensory-to-transmodal gradient of alterations in structure-function coupling in ASD. Findings 
reflected autism symptoms and imbalances in verbal/non-verbal intelligence dimensions. 
Collectively, our findings show hierarchy-dependent imbalances in structurally-governed network 
communication in ASD, and may offer a novel and behaviorally relevant perspective of autism 
connectopathy.  

Our work investigated connectome-level structure-function coupling using a Riemannian manifold 
optimization procedure (Benkarim et al., 2022). In a recent study in neurotypical adults, this 
approach provided a faithful individual participant-level prediction of intrinsic functional 
interactions based on structural connectomes. It can be tuned across diffusion time parameters, 
interpretable as an increasing influence of polysynaptic structure-function coupling mechanisms. 
Comparing prediction accuracy between neurotypicals and ASD, our findings revealed globally 
reduced coupling in the latter. Coupling was particularly reduced towards higher diffusion times, 
and ASD-related reductions were most marked in transmodal systems such as the default mode and 
frontoparietal networks. Such findings indicate a hierarchy-dependent alteration in structure-
function coupling in ASD, particularly in polysynaptic subnetworks. These findings suggest that 
links between brain structure and function are not as straightforward in ASD compared to controls, 
which may relate to several previously identified factors. Neuroimaging studies have shown 
atypical cortical morphology and microstructure, aberrant white matter fiber architecture, and 
reorganized structural network topology in ASD (Cai et al., 2022; Hong et al., 2018; S. J. Hong et 
al., 2019). Despite only a little work assessing links between structural alterations and atypical 
function in ASD, studies have indicated atypical functional connectivity between different brain 
areas (Di Martino et al., 2014; Hull et al., 2017; Müller et al., 2011).  Moreover, several reports 
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emphasized increased spatial shifting of functional network layout in ASD, a finding also referred 
to as idiosyncrasy (Benkarim et al., 2021), alongside findings suggesting increased signal variation 
in this cohort (Takahashi et al., 2016). These factors may collectively result in lower predictability 
of functional signaling and interactions from structural connectivity information, and hence 
contribute to the observed findings in this study.     

Brain hierarchy along the sensory/motor-association axis underpins primate cortical organization, 
initially inferred from invasive post-mortem findings in non-human animals (Mesulam, 1998). 
Recently, our understanding of the cortical hierarchical organization has been solidified with human 
neuroimaging, notably functional connectivity research (Bethlehem et al., 2020; Margulies et al., 
2016; Mckeown et al., 2020; Murphy et al., 2019; Park et al., 2021c), microstructural profiling 
(Burt et al., 2018; Paquola et al., 2019), and tractography-derived structural connectomics 
(Kharabian Masouleh et al., 2020; Park et al., 2021a, 2021b). In our study, inter-regional variations 
in structure-function prediction performance followed dimensional and clustering-based 
approximations of the cortical functional hierarchy. In particular, we observed lower coupling 
towards transmodal systems when incorporating monosynaptic mechanisms, which, however, 
increased with larger diffusion times and hence polysynaptic communication. Overall reduced 
structure-function coupling in transmodal systems compared to sensory/motor and unimodal 
networks echoes prior findings (Valk et al., 2022; Vázquez-Rodríguez et al., 2019), in particular 
when bare diffusion MRI tractography measures without explicit incorporation of polysynaptic 
communication inform the modeling strategy. Transmodal regions are known to increasingly 
engage in long-range and more centralized communication, underpinning integrative cognitive 
functions (Park et al., 2021d). In our work, performance reductions in ASD relative to neurotypicals 
related mainly to reduced hierarchy-specific gains in predicting functions that would have otherwise 
resulted from the incorporation of polysynaptic communication in ASD. Previous work from our 
group and others based on functional and structural neuroimaging has suggested atypical 
connectome hierarchy, and suggested that densely integrated rich core nodes may assume a major 
role in this process (S.-J. Hong et al., 2019; Park et al., 2021b), possibly in lieu of their implication 
in multiple, polysynaptic communication pathways.    

Multivariate associative techniques revealed that altered structure-function relations in ASD 
reflected behavioral symptoms and cognitive phenotypes, here indexed by the ADOS scale and 
verbal and non-verbal intelligence dimensions (Di Martino et al., 2011; Hong et al., 2022; S.-J. 
Hong et al., 2019; Park et al., 2021b). It should be noted that our results were derived from small 
samples and assessed using four-fold cross-validation only, requiring validations in larger samples 
with multimodal imaging data to assess generalizability. Findings, nevertheless, suggested a broad 
implication of different brain systems, notably transmodal systems, such as the default-mode 
network.  These systems have been shown to contribute to both typical and atypical social 
interaction and communication, and higher cognitive processes more generally (Assaf et al., 2010; 
Mars et al., 2012; Padmanabhan et al., 2017; Paquola et al., 2022; Raichle, 2015; Smallwood et al., 
2021). Moreover, systems at the apex of the putative cortical hierarchy undergo ongoing 
maturational processes in typical childhood and adolescence,  which shift networks towards a more 
clustered layout and progressively differentiate these from other macroscale networks, possibly due 
to the strengthening of long-range connections (Baum et al., 2020; Fan et al., 2021; Park et al., 
2022).  Our findings suggest that atypical polysynaptic communication in higher-order transmodal 
areas, in part, reflects those symptoms, and could serve as a potential diagnostic marker of affected 
individuals.   
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METHODS 

Study participants 

We studied 84 participants (47 ASD, 37 neurotypicals) obtained from two independent sites of (1) 
New York University Langone Medical Center (NYU) and (2) Trinity College Dublin (TCD) from 
the Autism Brain Imaging Data Exchange initiative (ABIDE-II; 
https://fcon_1000.projects.nitrc.org/indi/abide) (Di Martino et al., 2017). Inclusion criteria were: (i) 
sites included children and adults with autism and controls with ≥10 individuals per group, (ii) 
multimodal MRI data (i.e., T1-weighted, rs-fMRI, and diffusion MRI) available, (iii) acceptable 
cortical surface extraction on T1-weighted MRI, (iv) low head motion in the rs-fMRI time series 
(i.e., >0.3 mm framewise displacement). Individuals with ASD were diagnosed by an in-person 
interview with clinical experts and gold standard instruments from the Autism Diagnostic 
Observation Schedule (ADOS) (Lord et al., 2000) and/or Autism Diagnostic Interview-Revised 
(ADI-R) (Lord et al., 1994). Neurotypical controls did not have any history of mental disorders. For 
all groups, participants who had genetic disorders associated with autism (i.e., Fragile X), 
contraindications to MRI scanning, and who were pregnant were excluded. Detailed demographic 
information of the participants is reported in Supplementary Table 1. ABIDE data collections 
were performed in accordance with local Institutional Review Board guidelines. In accordance with 
HIPAA guidelines and 1000 Functional Connectomes Project/INDI protocols, all ABIDE datasets 
have been fully anonymized, with no protected health information included. 

 

MRI acquisition 

We obtained the data from two independent sites.  

(i) NYU: Imaging data were acquired using a 3T Siemens Allegra scanner. The T1-weighted data 
were obtained using a 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) 
sequence (repetition time (TR) = 2,530 ms; echo time (TE) = 3.25 ms; inversion time (TI) = 1,100 
ms; flip angle = 7°; matrix = 256 × 192; and voxel size = 1.3 × 1.0 × 1.3 mm3). The rs-fMRI data 
were acquired using a 2D echo planar imaging (EPI) sequence (TR = 2,000 ms; TE = 15 ms; flip 
angle = 90°; matrix = 80 × 80; number of volumes = 180; and voxel size = 3.0 × 3.0 × 4.0 mm3). 
The diffusion MRI data were obtained using a 2D spin echo EPI (SE-EPI) sequence (TR = 5,200 
ms; TE = 78 ms; matrix = 64 × 64; voxel size = 3 mm3 isotropic; 64 directions; b-value = 1,000 
s/mm2; and 1 b0 image).  

(ii) TCD: Imaging data were acquired using a 3T Philips Achieva scanner. The T1-weighted MRI 
were acquired using a 3D MPRAGE (TR = 8,400 ms; TE = 3.90 ms; TI = 1,150 ms; flip angle = 8°; 
matrix = 256 × 256; voxel size = 0.9 mm3 isotropic). The rs-fMRI data were acquired using a 2D 
EPI (TR = 2,000 ms; TE = 27 ms; flip angle = 90°; matrix = 80 × 80; number of volumes = 210; 
and voxel size = 3.0 × 3.0 × 3.2 mm3). The diffusion MRI data were acquired using a 2D SE-EPI 
(TR = 20,244 ms; TE = 79 ms; matrix = 124 × 124; voxel size = 1.94 × 1.94 × 2 mm3; 61 directions; 
b-value = 1,500 s/mm2; and 1 number b0 image). 

 

Data preprocessing 

We preprocessed the T1-weighted data using FreeSurfer version 6.0 (Dale et al., 1999; Fischl, 2012; 
Fischl et al., 2001, 1999a, 1999b; Ségonne et al., 2007), which includes gradient nonuniformity 
correction, skull stripping, intensity normalization, and tissue segmentation. White and pial surfaces 
were generated through triangular surface tessellation, topology correction, inflation, and spherical 
registration to the fsaverage template surface. The rs-fMRI data were previously processed using C-
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PAC (https://fcp-indi.github.io) (Craddock et al., 2013), and provided by the ABIDE database 
(http://preprocessed-connectomes-project.org/abide/). The pipeline included slice timing and head 
motion correction, skull stripping, and intensity normalization. Nuisance variables of head motion, 
average white matter and cerebrospinal fluid signal, and linear/quadratic trends were removed using 
CompCor (Behzadi et al., 2007). Band-pass filtering between 0.01 and 0.1 Hz was applied, and rs-
fMRI data were co-registered to T1-weighted data in MNI152 standard space with boundary-based 
rigid-body and nonlinear transformations. The rs-fMRI data were mapped to subject-specific 
midthickness surfaces and resampled to Conte69. Finally, surface-based spatial smoothing with a 
full-width-at-half-maximum of 5 mm was applied. The diffusion MRI data were processed using 
Mrtrix3 (Tournier et al., 2019), including correction for susceptibility distortions, head motion, and 
eddy currents. Quality control involved visual inspection of T1-weighted data, and cases with faulty 
cortical segmentation were excluded. Cases with an rs-fMRI data framewise displacement >0.3 mm 
were also excluded (Power et al., 2014, 2012). 

 

Structural and functional connectivity 

Structural connectomes were generated from preprocessed diffusion MRI data using Mrtrix3 
(Tournier et al., 2019). Anatomical constrained tractography was performed using different tissue 
types derived from the T1-weighted image, including cortical and subcortical grey matter, white 
matter, and cerebrospinal fluid (Smith et al., 2012). The T1-weighted was registered to the diffusion 
MRI data with boundary-based registration, and the transformation was applied to different tissue 
types to register them onto the native diffusion MRI space. Multi-shell and multi-tissue response 
functions were estimated (Christiaens et al., 2015), and constrained spherical deconvolution and 
intensity normalization were performed (Jeurissen et al., 2014). Seeding from all white matter 
voxels, the tractogram was generated based on a probabilistic approach (Tournier et al., 2010, 2019, 
2012) with 40 million streamlines, with a maximum tract length of 250 and a fractional anisotropy 
cutoff of 0.06. Subsequently, spherical-deconvolution informed filtering of tractograms (SIFT2) 
was applied to reconstruct whole-brain streamlines weighted by the cross-section multipliers, which 
considers the fiber bundle’s total intra-axonal space across its full cross-sectional extent (Smith et 
al., 2015). The structural connectome was built by mapping the reconstructed cross-section 
streamlines onto the Schaefer atlas with 200 parcels (Schaefer et al., 2018), then log-transformed to 
adjust for the scale (Fornito et al., 2016). Functional connectivity matrices were generated by 
calculating Pearson’s correlations of time series between two different brain regions defined using 
the Schaefer atlas with 200 parcels (Schaefer et al., 2018), and the correlation coefficients were 
Fisher’s r-to-z transformation to render data more normally distributed (Thompson and Fransson, 
2016). 

 

Functional connectivity prediction using structural connectivity 

To predict functional connectivity from structural connectivity, we opted for a recently introduced 
Riemannian optimization approach (Benkarim et al., 2022).  Core to this approach is the application 
of diffusion map embedding, a nonlinear dimensionality technique, to the structural connectivity 
matrix to generate low-dimensional eigenvectors (i.e., diffusion maps) (Coifman and Lafon, 2006). 
The diffusion maps are controlled by diffusion time t, which controls the scale of eigenvalues. If the 
diffusion time increases, the brain regions are located more closely on the low-dimensional 
eigenspace (Fig. 1A). We, thus, can approximate the distances of eigenvectors between different 
regions with varying diffusion times. To predict functional connectivity, this approach uses kernel 
fusion to find a weighted combination of the kernels derived from the diffusion maps at each 
diffusion time using a radial basis function. The approach further uses a transformation matrix to 
rotate the diffusion maps before computing the kernels for each diffusion time, where the rotation 
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matrix may help identify the optimal paths through which to propagate information between 
different brain regions. Here, to solve the optimization problem, the Riemannian conjugate gradient 
algorithm (Absil et al., 2008) implemented in the Pymanopt toolbox (Townsend et al., 2016) was 
used. Details can be found elsewhere (Benkarim et al., 2022). We performed the prediction 
procedure for the ASD and control groups separately with a five-fold cross-validation. The 
prediction performance was assessed by calculating Pearson’s correlation of the upper triangular 
elements between empirical and predicted functional connectivity matrices (Fig. 1B). We assessed 
the prediction accuracy with varying diffusion times between t = 1 and t = 10. Differences in 
prediction accuracy between ASD and control groups were assessed based on 1,000 permutation 
tests (Fig. 1C). We randomly assigned subject indices and calculated differences in prediction 
accuracy between the new groups (∆r) to construct a null distribution. If the real difference did not 
belong to 95% of the null distribution, it was deemed significant.  

 

Between-group differences in regional prediction accuracy across diffusion times 

We also assessed regional prediction performances across varying diffusion times. For each 
diffusion time, we calculated Pearson’s correlations between the empirical and predicted functional 
connectivity matrix of each brain region (Fig. 2A). To assess the improvement of the prediction 
accuracy across diffusion times, we calculated the difference in prediction accuracy between the 
highest (t = 10) and lowest (t = 1) diffusion times (i.e., ∆prediction accuracy) (Fig. 2B). We then 
compared the ∆prediction accuracy between ASD and control groups with controlling for age, sex, 
and site using a general linear model implemented in SurfStat (Worsley et al., 2009), and multiple 
comparisons across brain regions were corrected using FDR (Benjamini and Hochberg, 1995).  

 

Topological and network organization of prediction accuracy difference across diffusion times 

We assessed underlying connectome profiles of the across-diffusion time prediction accuracy 
difference. First, after z-normalizing performance values of ASD individuals relative to 
neurotypical controls, we stratified the parcel-wise ∆prediction accuracy according to seven 
functional communities (visual, somatomotor, dorsal attention, ventral attention, limbic, 
frontoparietal, default mode) (Yeo et al., 2011) and four cortical hierarchical levels (idiotypic, 
unimodal association, heteromodal association, paralimbic) (Mesulam, 1998) (Fig. 3A). Next, we 
associated ∆prediction accuracy with a functional principal gradient, representing cortical hierarchy 
running from low-level sensory to higher-order transmodal system (Margulies et al., 2016). We 
obtained the functional gradient from the BrainSpace toolbox (Vos de Wael et al., 2020), which was 
generated using the Human Connectome Project database (Van Essen et al., 2013). Specifically, an 
affinity matrix was constructed with a normalized angle kernel with the top 10% entries for each 
parcel, and applied diffusion map embedding (Coifman and Lafon, 2006), which is robust to noise 
and computationally efficient compared to other nonlinear manifold learning techniques 
(Tenenbaum et al., 2000; von Luxburg, 2007). It is controlled by two parameters α and t, where α 
controls the influence of the density of sampling points on the manifold (α = 0, maximal influence; 
α = 1, no influence) and t scales the eigenvalues of the diffusion operator. The parameters were set 
as α = 0.5 and t = 0 to retain the global relations between data points in the embedded space, 
following prior applications (S.-J. Hong et al., 2019; Margulies et al., 2016; Paquola et al., 2019; 
Park et al., 2021d; Vos de Wael et al., 2020). In healthy adults, the gradient has previously been 
shown to follow established models of the primate cortical functional hierarchy and specifically 
differentiates sensory and motor networks from transmodal systems such as the default-mode 
network. We then associated the functional gradient with ∆prediction accuracy of each individual 
within each group (Fig. 3B). The significance of the correlation was determined using 1,000 non-
parametric spin-tests for accounting for spatial autocorrelation (Alexander-Bloch et al., 2018; 
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Larivière et al., 2021; Markello and Misic, 2021). Between-group differences in the associations 
between ASD and control groups were assessed using two-sample t-tests with 1,000 permutation 
tests.  

 

Associations with behavioral phenotypes 

As a final analysis, we investigated behavioral associations of the diffusion time-related structure-
function coupling (Fig. 4 and Supplementary Fig. 1). We performed multivariate analysis using 
PLS (Krishnan et al., 2011; McIntosh and Mišić, 2013) to associate ∆prediction accuracy across 
diffusion times with ADOS social cognition, communication, repetitive behavior scores (Lord et al., 
2000) as well as verbal and performance IQ and their ratio (verbal/performance IQ) (Hong et al., 
2022). PLS is an unsupervised multivariate statistical technique that decomposes two datasets into 
orthogonal sets of latent variables with maximum covariance (Krishnan et al., 2011; McIntosh and 
Mišić, 2013). We performed PLS analysis with 1,000 bootstraps by randomly selecting subjects, 
and estimated PLS scores as well as loadings of the latent variables. We calculated Pearson’s 
correlation between the PLS scores of ∆prediction accuracy and behavioral phenotypes to assess the 
strength of their associations. The contribution of the features which brain regions and/or behavioral 
phenotypes was quantified using PLS loadings. Specifically, we calculated a bootstrap ratio by 
dividing the mean loadings by standard errors (Zeighami et al., 2019). We thresholded the bootstrap 
ratio with 95% confidence interval (Zeighami et al., 2019). 

 

Sensitivity analysis 

a) Parcellation schemes. We performed a structure-function coupling analysis using the Schaefer 
atlas with 200 parcels (Schaefer et al., 2018). To assess robustness across different spatial scales, 
we predicted functional connectivity from structural connectivity with the brain regions of 100 and 
300 parcels (Supplementary Figs. 2-3).  

b) Only male participants. Our dataset contains a larger proportion of male participants compared to 
female subjects. We performed the same analyses using only male participants (Supplementary 
Fig. 4). 

c) Site effects. We obtained the data from two different sites. To assess the consistency of the results 
across different sites, we performed the structure-function coupling analysis for each site 
(Supplementary Fig. 5). 
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Supplementary Information 

Table S1 | Demographic information of the study participants. Means and SDs are reported. 

Information NYU TCD P-value 
Number 

(Autism/Control) 
29/18 18/19 0.2316* 

Age 
Autism 9.61 (6.16) 

p = 0.8074 
14.46 (3.30) 

p = 0.2088 
0.0037 

Control 10.01 (3.95) 15.83 (3.21) <0.001 

Sex 
(male:female) 

Autism 24:5 
p = 0.2432* 

18:0 
p = 1* 

0.0624* 

Control 17:1 19:0 0.2976* 

ADOS – Total 10.00 (3.36) 8.72 (2.44) 0.1924 

ADOS – Social cognition 7.50 (2.09) 5.78 (2.37) 0.0226 

ADOS – Communication 2.5 (1.70) 2.94 (0.87) 0.3260 
ADOS – Repeated 
behavior/interest 

1.40 (1.27) 0.22 (0.55) <0.001 

Verbal IQ 
Autism 

102.55 
(17.07) 

p = 0.0018 

111.44 
(13.48) 

p = 0.0705 
0.0674 

Control 
118.22 
(13.14) 

119.79 
(13.72) 0.7251 

Performance 
IQ 

Autism 103.28 
(21.02) 

p = 0.1399 

109.33 
(14.20) 

p = 0.0610 
0.2870 

Control 
112.11 
(17.00) 

117.16 
(10.16) 

0.2775 

IQ ratio 
Autism 1.01 (0.15) 

p = 0.1980 
1.02 (0.13) 

p = 0.9955 
0.6871 

Control 1.07 (0.16) 1.03 (0.13) 0.3818 

*Chi-squared 

Abbreviations: SD, standard deviation; NYU, New York University Langone Medical Center; TCD, 
Trinity College Dublin; ADOS, Autism Diagnostic Observation Schedule; IQ, intelligence quotient. 
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Supplementary Fig. S1 | Multivariate associations between structure-function coupling 
imbalances and behavioral phenotypes of ASD using the second latent variable. (A) We 
calculated linear correlations between PLS scores of ∆prediction accuracy and behavioral 
phenotypes of the first latent variable in ASD, which explained almost 13.8% of the variance. (B) 
Shown are PLS loading-based bootstrap ratios of ∆prediction accuracy (left) and behavioral 
phenotypes (right). Brain regions and behavioral phenotypes that showed significance are shown 
and marked with asterisks. Abbreviations: PLS, partial least squares; ADOS-S, Autism Diagnostic 
Observation Schedule – social cognition; ADOS-C, Autism Diagnostic Observation Schedule – 
communication; ADOS-R, Autism Diagnostic Observation Schedule – repeated behavior; IQ, 
intelligence quotient. 
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Supplementary Fig. 2 | Functional connectivity prediction using structural connectivity across 
different diffusion times using Schaefer atlas with 100 parcels. (A) Group-level structural 
connectivity (SC) matrices in controls and ASD (left). Correlation coefficients between empirical 
and simulated functional connectivity (FC) in controls (dark gray) and ASD (light gray) as a 
function of diffusion time t (right). Error bars represent the SD across individuals. Shown are 
empirical (left) and simulated FC (right) matrices across four representative diffusion times (t = 1, 4, 
7, and 10). (B) Between-group differences in prediction performance between controls and ASD. A 
black line indicates real differences in prediction performance between groups, a solid gray line 
indicates mean prediction accuracy differences across 1,000 permutation tests, and dotted gray lines 
indicate the 95% confidence interval. Significant between-group differences are reported with 
asterisks. (C) Correlation coefficients between empirical and simulated FC across different 
diffusion times t are shown on brain surfaces for control and ASD groups. The plot indicates 
correlation coefficients between empirical and simulated FC in controls (dark gray) and ASD (light 
gray) as a function of diffusion time. Error bars represent the SD across brain regions. (D) Shown 
are differences in prediction accuracy between the highest (t = 10) and lowest (t = 1) diffusion times 
(∆prediction accuracy) for both groups (upper panels). We assessed between-group differences in 
∆prediction accuracy between controls and ASDs (lower panel). Abbreviation: ASD, autism 
spectrum disorder; SD, standard deviation; FDR, false discovery rate. 
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Supplementary Fig. 3 | Functional connectivity prediction using structural connectivity across 
different diffusion times using Schaefer atlas with 300 parcels. For details, see Supplementary 
Fig. 2. 
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Supplementary Fig. 4 | Functional connectivity prediction using structural connectivity across 
different diffusion times using only male participants. For details, see Supplementary Fig. 2. 
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Supplementary Fig. S5 | Functional connectivity prediction using structural connectivity 
across different diffusion times for each site separately. (A)~(D) show the results from Trinity 
College Dublin and (E)~(H) from New York University Langone Medical Center. For details, see 
Supplementary Fig. 2.  
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