

1 Specific Modulation of CRISPR

2 Transcriptional Activators through

3 RNA-Sensing Guide RNAs in

4 Mammalian Cells and Zebrafish

5 Embryos

6 **Oana Pelea^{1,‡, *}, Sarah Mayes¹, Quentin RV. Ferry^{1,§}, Tudor A. Fulga^{1,¶}, Tatjana**

7 **Sauka-Spengler^{1,2,*}**

***For correspondence:**

tatjana.sauka-spengler@imm.ox.ac.uk; TSauka-Spengler@stowers.org;
oana.pelea@uzh.ch

Present address: [‡]Department of Biochemistry, University of Zurich, 11 Winterthurerstr. 190, CH-8057 Zurich, Switzerland;

[§]Massachusetts Institute of Technology, Picower Institute for Learning and Memory, 43 Vassar St, Cambridge, MA 02139, United States; [¶]Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Mass. 02210, United States

Abstract Cellular transcripts encode important information regarding cell identity and disease status. The activation of CRISPR in response to RNA biomarkers holds the potential for controlling CRISPR activity with spatiotemporal precision. This would enable the restriction of CRISPR activity to specific cell types expressing RNA biomarkers of interest while preventing unwanted activity in other cells. Here, we present a simple and specific platform for modulating CRISPR activity in response to RNA detection through engineering *Streptococcus pyogenes* Cas9 single-guide RNAs (sgRNAs). sgRNAs are engineered to fold into complex secondary structures that, in the ground state, inhibit their activity. The engineered sgRNAs become activated upon recognising complementary RNAs, thus enabling Cas9 to perform its function. Our approach enables CRISPR activation in response to RNA detection in both HEK293T cells and zebrafish embryos. Iterative design optimisations allowed the development of computational tools for generating sgRNAs capable of detecting RNA sequences of choice. Mechanistic investigations reveal that engineered sgRNAs are cleaved during RNA detection, and we identify key positions that benefit from chemical modifications to improve the stability of engineered sgRNAs *in vivo*. Our sensors open up novel opportunities for developing new research and therapeutic applications using CRISPR activation in response to endogenous RNA biomarkers.

29 **Introduction**

30 Traditional methods for detecting RNA in live cells include hybridisation probes, fluorescent aptamers, and fluorescent RNA-binding proteins. Such methods enable the visualisation of RNA foci (Mannack *et al.* (2016)), but they cannot drive cellular reprogramming in response to RNA detection. 31 Recent progress has been made towards enabling the activation of therapeutically relevant payloads in response to RNA detection (Jiang *et al.* (2022)). Nevertheless, linking RNA detection 32 with gene editing or modulation of gene expression remains a challenge. Since cellular RNAs offer 33 crucial information about cell identity, differentiation, disease status, and environmental exposure 34 (Abdolhosseini *et al.* (2019); Kotliar *et al.* (2019)), modulating CRISPR activation in response to RNA 35 36 37 (Abdolhosseini *et al.* (2019); Kotliar *et al.* (2019)), modulating CRISPR activation in response to RNA

38 detection holds tremendous promise for future innovations.

39

40 The single-guide RNA (sgRNA) component of *Streptococcus pyogenes* CRISPR-Cas9 systems (*Jinek et al. (2012)*) tolerates extensive modifications and sgRNA engineering has been established as a 41 method for controlling CRISPR activity. This is achieved by designing complex sgRNA secondary 42 structures that can inactivate sgRNA function. Inactivated sgRNA structures serve as a starting 43 point for the development of technologies that aim to control CRISPR in response to different 44 molecular triggers (*Pelea et al. (2022)*). Inactivated sgRNAs can be successfully re-activated in re- 45 sponse to small molecules (*Tang et al. (2017)*), proteins (*Ferry et al. (2017)*), DNA antisense oligonu- 46 cleotides (*Ferry et al. (2017)*), as well as RNA (*Hanewich-Hollatz et al. (2019)*; *Hochrein et al. (2021)*; 47 *Jakimo et al. (2018)*; *Jiao et al. (2021)*; *Jin et al. (2019)*; *Li et al. (2019)*; *Liu et al. (2022)*; *Lin et al. (2020)*; *Siu and Chen (2019)*; *Galizi et al. (2020)*; *Hunt and Chen (2022b,a)*; *Ying et al. (2020)*; *Choi et al. (2023)*).

51

52 Due to the complexity of eukaryotic systems and cellular compartmentalisation, modulating CRISPR 53 activity in response to RNA detection remains a tantalising challenge (*Hunt and Chen (2022a,b)*). 54 While limited evidence is available for the modulation of CRISPR activity following RNA detection in 55 mammalian cells (*Hanewich-Hollatz et al. (2019)*; *Hochrein et al. (2021)*; *Hunt and Chen (2022b,a)*; 56 *Lin et al. (2020)*; *Ying et al. (2020)*), published technologies that rely on sgRNA engineering still re- 57 quire improvement to enhance the dynamic range of activation. There is no clear evidence that 58 existing engineering approaches can be generalised to detect a diverse panel of RNA sequences. 59 Additionally, functional validation of engineered sgRNAs *in vivo* remains unexplored. Furthermore, 60 the lack of computational tools to design engineered sgRNAs for RNA detection applications and 61 limited knowledge of the molecular mechanisms underlying RNA detection by engineered sgRNAs 62 further compound this challenge.

63

64 Our work presents a highly specific system for modulating CRISPR transcriptional activators in re- 65 sponse to RNA detection. Here, we show that engineered RNA-sensing iSBH-sgRNAs (inducible 66 spacer-blocking hairpin sgRNAs, *Ferry et al. (2017)*) enable modulation of CRISPR activity in eukary- 67 otic cells as well as in developing zebrafish embryos. Native sgRNAs have two components: the 68 spacer and scaffold sequences. The spacer sequence is complementary to the CRISPR-targeting 69 sequence (CTS) and determines sgRNA specificity, while the scaffold sequence stabilizes interac- 70 tions between the sgRNA and Cas9 proteins (Figure 1.A, *Jinek et al. (2012)*; *Gaj (2014)*). iSBH-sgRNA 71 designs are engineered sgRNAs that cannot drive CRISPR activity in their ground state due to their 72 complex secondary structures. They differ from native sgRNAs by having a 14-nucleotide loop and 73 a partially complementary spacer* sequence in addition to the spacer and scaffold sequences. The 74 complementarity between the spacer and spacer* sequences creates a complex secondary struc- 75 ture that inactivates the sgRNA function (Figure 1.A.). When iSBH-sgRNAs are introduced into cells 76 that do not express complementary RNA sequences, spacer sequences are blocked, and CRISPR 77 activity is turned OFF. However, when RNA sequences complementary to the loop and spacer* 78 sequences are present, the iSBH-sgRNA conformation changes, exposing spacer sequences and 79 turning ON CRISPR activity.

80

81 After we demonstrated that iSBH-sgRNAs can activate CRISPR in response to RNA detection, we im- 82 plemented a standard design-build-test Synthetic Biology cycle to select iSBH-sgRNA designs with 83 superior performance and dynamic ranges of activation. Additionally, we introduced the MODe- 84 sign algorithm, which allows users to create custom-engineered RNA-sensing iSBH-sgRNAs for their 85 CRISPR applications. We also investigated the mechanism of iSBH-sgRNA activation and showed 86 that RNA detection occurs through a double-stranded RNA cleavage mechanism. By studying this 87 mechanism further, we identified key residue positions that are prone to cleavage by cellular fac- 88 tors and used chemical modifications to protect and stabilize engineered iSBH-sgRNAs in develop-

89 ing zebrafish embryos. We anticipate that our ability to control iSBH-sgRNA activity in response
90 to RNA triggers *in vivo* will enable the development of novel therapeutic applications that harness
91 endogenous RNA biomarkers to control CRISPR activity.

92 **Results**

93 **iSBH-sgRNAs enable conditional CRISPR activation in response to RNA detection**

94 The first aim of this study was to test whether a first-generation of iSBH-sgRNA designs enabled
95 modulation of CRISPR transcriptional activators in response to RNA detection in mammalian cells.
96 To address this, five iSBH-sgRNAs were designed, each featuring a distinct sgRNA spacer sequence.
97 For each iSBH-sgRNA, RNA triggers complementary to the loop, and the spacer* sequences were
98 also designed (Figure 1.A). To prevent their degradation by cellular nucleases, RNA triggers were
99 flanked by 5' and 3' hairpins (a detailed description of hairpins can be found in the Supplementary
100 Materials).

101 Mammalian plasmids containing iSBH-sgRNA and corresponding RNA triggers were constructed
102 under the control of U6 promoters (Paul *et al.* (2002)). The plasmids were co-transfected into
103 HEK293T cells along with a CRISPR activator (CRISPRa) and a fluorescent reporter cassette to mon-
104 itor CRISPRa activity (Figure 1 - figure supplement 1.A). The CRISPRa enzymes used in this study
105 included dCas9-VPR (Chavez *et al.* (2015)) and dCas9-Vp64 (Maeder *et al.* (2013), Figure 1 - figure
106 supplement 1.B). To drive the expression of the ECFP reporter, CRISPRa reporters containing either
107 a single CRISPR-target sequence (1xCTS) or multiple (8xCTS) sequences were employed (Nissim
108 *et al.* (2014), Figure 1 - figure supplement 1.C).

109 Upon binding of RNA triggers to complementary iSBH-sgRNA sequences, the spacer sequences
110 become exposed inside the cells. As the RNA triggers are complementary to both the loop and the
111 spacer* sequence, this interaction is expected to be more energetically favorable than the interac-
112 tion between the spacer and spacer* components. When activated iSBH-sgRNAs bind to CRISPRa
113 enzymes, the resulting complex can recruit transcription activation factors to the ECFP synthetic
114 promoter, leading to the production of ECFP from the CRISPRa reporter (Figure 1.B).

115 The initial test performed using dCas9-VPR as well as 1xCTS-ECFP reporters showed that iSBH-
116 sgRNA could be activated by RNA triggers, and the observed ON-state activation was comparable
117 to the activation seen in cells transfected with native sgRNAs (spacer only, no iSBH fold, Figure 1
118 - figure supplement 1.D). In comparison, for all five iSBH-sgRNA sequences, a closed hairpin (OFF-
119 state, absence of RNA trigger) significantly reduced CRISPRa activity, as demonstrated by a highly
120 reduced reporter expression.

121 Although iSBH-sgRNAs reduced CRISPRa activity, background activation levels were still detectable
122 in the OFF-state. This could be due to a percentage of iSBH-sgRNAs molecules that might not adopt
123 desired secondary structures and stronger activators such as dCas9-VPR (Chavez *et al.* (2015)) may
124 then propagate this background noise. We reasoned that weaker activators such as dCas9-Vp64
125 (Maeder *et al.* (2013)), which require concomitant binding of several effectors at the promoter to
126 efficiently drive downstream gene expression, could mask this noise. Therefore, we tested our
127 system using dCas9-Vp64 (Maeder *et al.* (2013)) in combination with the 8xCTS-ECFP (Nissim *et al.*
128 (2014)) reporter cassette (Figure 1.C). Changing these components not only reduced the OFF-state
129 activation but also increased the intensity of the ECFP signal detected by Flow Cytometry in the ON-
130 state (Figure 1 - figure supplement 1.E). Unless specified otherwise, all following work and ensuing
131 figures were generated using dCas9-Vp64 and 8xCTS reporters.

132 To further verify whether iSBH-sgRNA activation is specific, we tested activation for all 25 iSBH-
133

138 sgRNAs/RNA trigger combinations (Figure 1.D). Data showed that iSBH-sgRNAs only become activated
139 in the presence of their corresponding triggers, suggesting the exquisite activation specificity
140 of our system. Furthermore, orthogonality between different iSBH-sgRNA and their triggers suggested
141 that multiple iSBH-sgRNA trigger pairs could be incorporated within genetic circuits and
142 used in parallel for performing different tasks.

143 **Design optimisations enable CRISPR activation in the presence of longer RNAs**

144 As most biologically relevant RNA sequences are longer than the 34 nt RNA triggers detected by
145 first-generation iSBH-sgRNAs (Figure 1), we next sought to detect specific RNA sequences embedded
146 within longer transcripts (Figure 2). Previous studies suggested that extending the length of
147 hybridisation probes improved RNA targeting (*Qu et al. (2019); Hasegawa et al. (2006)*). Starting
148 from this principle, second-generation iSBH-sgRNAs were designed by extending the length of the
149 iSBH-sgRNA backfold complementary with the RNA trigger. A 10 nucleotide (nt) extension was in-
150 troduced between the spacer and loop sequences, resulting in a 30nt backfold. Increasing the size
151 of iSBH-sgRNAs enabled increasing the size of complementary RNA triggers from 34 to 44nt (Figure
152 2 - figure supplement 1.A).

153
154 In an initial experiment, we tested if second-generation iSBH-sgRNA designs were silent in an OFF-
155 state and could still detect short RNA triggers. The performance of second-generation iSBH-sgRNA
156 designs was tested using six different combinations of CRISPRa reporter systems (Figure 2- figure
157 supplement 1). Similar to the assessment performed for first-generation designs, we used 1xCTS-
158 ECFP and 8xCTS-ECFP reporters. In terms of CRISPRa effectors, dCas9-Vp64 was included as a
159 weak activator and dCas9-VPR as a stronger activator. Furthermore, dCas9-Vp64 was also tested
160 in conjunction with the SAM (Synergistic Activation Mediator) amplification system (*Konermann
et al. (2015)*).

162
163 In concordance with our observations for first-generation iSBH-sgRNA designs, dCas9-Vp64 and
164 8xCTS-ECFP had the cleanest OFF-state (Figure 2 - figure supplement 1.E). Nevertheless, combina-
165 tions between the 8xCTS-ECFP reporter and dCas9-VPR (Figure 2 - figure supplement 1.F) or dCas9-
166 Vp64 and the SAM system (Figure 2 - figure supplement 1.G) substantially improved the ON-state
167 activation, but compromised a clean OFF-state. These findings further support the hypothesis that
168 the noise resulting from a portion of iSBH-sgRNA molecules that may not adopt desired secondary
169 structures gets either amplified or masked by strong or weak CRISPRa activator/reporter combina-
170 tions, respectively.

171
172 Next, we compared the ability of the first- and second-generation iSBH-sgRNAs to detect longer
173 RNA triggers (Figure 2.A-B). First, we designed longer RNA triggers by appending a 100nt flank to
174 the 3' end of short RNA triggers (100nt 3' flanks). For first-generation designs, activation in the
175 presence of the trigger with 100nt 3' flank was efficient only for iSBH-sgRNA 1 (Figure 2.C). For sec-
176 ond-generation iSBH-sgRNA designs, notable activation was observed for all three iSBH-sgRNAs
177 tested, with ECFP production detected in 15 to 30% of the transfected cells. This result confirmed
178 that second-generation iSBH-sgRNA designs have superior abilities in detecting longer RNA trig-
179 gers. Next, we tested whether second-generation iSBH-sgRNAs could also detect other long RNA
180 trigger designs (Figure 2.B) and we appended 100nt flanks at the 5' end (100nt 5' flank) or at both
181 ends (100nt 5'+3' flanks) of the original 44nt trigger sequence. Second-generation iSBH-sgRNAs
182 successfully detected different RNA trigger configurations, including triggers with sizes exceeding
183 250nt (Figure 2.D).

184 **Computational pipeline for custom iSBH-sgRNA design**

185 In the second-generation iSBH-sgRNAs, the requirement for complementarity between RNA trig-
186 ger and the iSBH-sgRNA backfold resulted in the restriction of RNA trigger sequence choices by the

187 spacer sequences. As such, these designs do not allow users to detect any RNA triggers of choice
188 while targeting Cas9 to the desired CRISPR-targeting sequence (CTS). We reasoned that the detec-
189 tion of biologically relevant RNA sequences would be largely facilitated by developing a platform
190 for designing modular iSBH-sgRNAs where spacer and trigger-sensing components could be cho-
191 sen independently (Figure 3.A).

192 A way of achieving this involved reducing the extent of complementarity between the RNA trig-
193 ger and iSBH-sgRNAs (Figure 3- figure supplement 1.A), as well as between spacer sequences and
194 CTSs (Figure 3- figure supplement 1.B). We thus conceived a modular iSBH-sgRNA prototype in
195 which RNA triggers are only complementary to the loop and the first 15nt of the iSBH-sgRNA back-
196 fold, and iSBH-sgRNAs have only 17nt spacer sequences complementary with CTSs. To mitigate
197 the impact of truncating RNA trigger sequences on the affinity between iSBH-sgRNAs and RNA trig-
198 gers, we increased the size of iSBH-sgRNA loops (Figure 3.A).

199

200 Starting from the modular iSBH-sgRNA prototype, we developed the MODesign computational
201 pipeline for enabling iSBH-sgRNA design using input RNA triggers, sgRNA spacers, and desired
202 loop sizes (Figure 3.B). MODesign calculates the size of the iSBH-sgRNA trigger-sensing compo-
203 nent and creates a list of all potential trigger sub-sequences having that particular size. For each
204 sub-sequence, it determines the reverse complementary region and inserts it between extension
205 and spacer* sequences while filling in the extension sequence. Next, MODesign verifies whether
206 resulting modular iSBH-sgRNA sequences fold into desired RNA structures using NuPACK (*Allouche*
207 (2012)) and outputs all designs that adopt a correct fold.

208

209 MODesign simulations produce a list of multiple modular iSBH-sgRNA outputs depending on in-
210 put parameters. For proof-of-concept experiments, we decided to make educated guesses about
211 which iSBH-sgRNAs to select for experimental validation (Figure 3.B). The first criterion was to pri-
212 oritise sequences predicted by NuPACK to adopt desired structures with high probabilities. We rea-
213 soned that a higher probability of adopting desired secondary structures would reduce the number
214 of iSBH-sgRNAs that do not adopt perfect OFF switches within the cellular pool. Priority was also
215 given to sequences that hybridise to RNA trigger sub-sequences lacking complex secondary struc-
216 tures.

217

218 In the modular iSBH-sgRNA design, triggers were designed to base-pair only with the iSBH-sgRNA
219 loop and the first 15nt of the backfold, while iSBH-sgRNA spacers only had 17nt complementarity
220 with the CTS (Figure 3.A). Nevertheless, by random chance, depending on the trigger sensing se-
221 quence, modular iSBH-sgRNAs could have extra complementarity between RNA triggers and the
222 last 15 nucleotides of the backfold or more than 17nt complementarity with the CTS. As these fea-
223 tures are beneficial for iSBH-sgRNA activation and for detecting CRISPRa activity (Figure 3- figure
224 supplement 1.A,B), extra priority was also given to sequences displaying these features.

225

226 In a first validation experiment, 3 MODesign simulations were run for designing iSBH-sgRNAs capa-
227 ble of sensing a U6-driven RNA trigger whose sequence corresponded to a 146nt mouse α -globin
228 enhancer RNA (trigger D). Initial modular iSBH-sgRNAs had different sgRNA spacer sequences and
229 14nt loops. Outputs resulting from MODesign were cloned and co-transfected into HEK293T cells
230 with plasmids expressing trigger D from U6 promoters. Our results suggested that the modular
231 designs generated by the MODesign algorithm had good OFF-state activity and were activated by
232 RNA trigger D (Figure 3.C). These tests were carried out using a combination of a 'weaker' dCas9-
233 Vp64 activator and 8xCTS-ECFP reporters.

234

235

236 After recognising that modular iSBH-sgRNAs can be designed starting from different sgRNA spacer
237 sequences, a second test was performed to investigate whether these designs could detect differ-

238 ent input triggers. Trigger RNA A (146nt), trigger RNA B (267nt), trigger RNA C (268nt) and trigger
239 RNA D (146nt) were chosen for this purpose. Triggers A, B and C involved a mix of zebrafish en-
240 hancer RNAs and repetitive element sequences specifically upregulated in the neural crest (*Trinh*
241 *et al. (2017)*). For mammalian cell tests, these triggers were expressed under the control of U6
242 promoters. We ran 11 MODesign simulations for each trigger, incrementally extending the loop
243 size while keeping the sgRNA 2 spacer input constant. HEK293T validation experiments showed
244 that choosing modular iSBH-sgRNAs that detect the 4 U6-expressed triggers is possible (Figure
245 3.D, Figure 3- figure supplement 1.C). Despite not performing quite as well as second-generation
246 designs (Figure 2.A.,Figure 3.D), modular iSBH-sgRNA still enable efficient RNA detection, especially
247 for smaller RNAs such as triggers A and D. For highly efficient designs such as modular iSBH-sgRNA
248 (D), addition of the SAM effector system (*Konermann et al. (2015)*) boosted ON-state activation
249 with only a negligible increase in the the OFF-state non-specific activation. Orthogonality tests
250 suggested that activation of modular iSBH-sgRNA designs was specifically conditioned by comple-
251 mentary RNA triggers (Figure 3.E, Figure 3 - figure supplement 2), showing the exquisite specificity
252 of the system.

253 **iSBH-sgRNA activation occurs through RNA cleavage**

254 Next, we sought to investigate the mechanisms of iSBH-sgRNA activation to further benefit iSBH-
255 sgRNA technology development. It is known that in eukaryotic cells, double-stranded RNAs are
256 recognised and cleaved by endogenous RNA processing pathways such as RNA interference (RNAi,
257 *Meister and Tuschl (2004)*; *Pong and Gullerova (2018)*). Furthermore, the interaction between iSBH-
258 sgRNAs and RNA triggers leads to the formation of long double-stranded RNA structures and sim-
259 ilar structures were reported to act as a non-canonical substrate for Dicer (*Pong and Gullerova*
260 *(2018)*; *Burger et al. (2017)*). Therefore, we tested whether double-stranded RNA processing mech-
261 anisms occur during delivery and subsequent activation of iSBH-sgRNAs.

262 We proposed two scenarios for the iSBH-sgRNA activation (Figure 4.A). In the first scenario, acti-
263 vation would happen due to RNA strand displacement, and resulting RNA duplexes would not be
264 processed. If this mechanism were true, the sizes of the iSBH-sgRNA and RNA triggers would be
265 expected to remain constant after activation. A second scenario would involve double-stranded
266 RNA processing. As a consequence, iSBH-sgRNAs and RNA triggers would be truncated following
267 activation. To test these scenarios, we carried out RNA circularisation assays (*Knapp et al. (2019)*)
268 to measure the size of iSBH-sgRNAs (Figure 4.B) and RNA triggers (Figure 4.D) following activation.
269

270 In the first instance, we assessed the size of second-generation iSBH-sgRNA designs in the pres-
271 ence or absence of short, complementary RNA triggers and dCas9-Vp64 (Figure 4.C). In the ab-
272 sence of RNA triggers, recovered iSBH-sgRNA RT-PCR bands matched the expected 137bp size. In
273 the presence of dCas9-Vp64 and complementary RNA triggers, the band sizes decreased to 81 bp,
274 similar to bands recovered from non-engineered native sgRNA control. These results suggested
275 that engineered sgRNA components (extension, loop, backfold) were removed from iSBH-sgRNAs
276 during activation, and this hypothesis was confirmed by sequencing PCR products recovered from
277 truncated samples (Figure 4- figure supplement 1.A).

278 In the absence of dCas9-Vp64, out of 3 iSBH-sgRNAs tested, only iSBH-sgRNA 1 gets efficiently
279 truncated (Figure 4.B). Nevertheless, the truncated product's size is larger than that of the trun-
280 cated products recovered in the presence of dCas9. These results suggested that the formation of
281 sgRNAs with 20nt spacers may be dCas9-dependent. In the OFF-state, iSBH-sgRNAs were unable
282 to bind to dCas9. However, when RNA triggers were present, the conformational change enabled
283 iSBH-sgRNAs to bind to dCas9, leading to iSBH-sgRNA truncation. These results are also supported
284 by previous studies reporting that engineered sgRNAs with extended spacer sequences are pro-
285 cessed to original 20nt spacer lengths (*Perli et al. (2016)*; *Ran et al. (2013a)*).

288
289 We next explored the fate of RNA triggers during activation and measured the sizes of longer RNA
290 triggers with 100nt 3' flanks in various experimental conditions. The results demonstrated that RNA
291 triggers are truncated specifically in the presence of matching iSBH-sgRNAs. When co-transfected
292 together with iSBH-sgRNAs with incompatible hairpins, RNA triggers remained intact. Interestingly,
293 unlike iSBH-sgRNAs, truncation of RNA triggers was not dCas9-dependent (Figure 4.E). Sequencing
294 results confirmed deletions in the truncated RNA triggers that overlapped with the 44nt sequence
295 complementary with iSBH-sgRNAs (Figure 4- figure supplement 1.B).

296
297 To sum up, RNA circularisation assays suggested the involvement of double-stranded RNA pro-
298 cessing mechanisms when iSBH-sgRNAs are deployed. Interestingly, dCas9 also seems involved in
299 truncating iSBH-sgRNA sequences in the presence of complementary RNA triggers.

300 **iSBH-sgRNAs enable modulation of CRISPR activity *in vivo***

301 We next decided to test the ability of iSBH-sgRNAs to detect RNA triggers *in vivo*. Due to their rel-
302 ative ease of manipulation, transparency, small size, and key roles in developmental studies, we
303 opted to use zebrafish embryos. We generated two transgenic zebrafish lines encoding dCas9-
304 Vp64 and the 8xCTS-ECFP reporter recognised by one of our best-performing sgRNAs tested in
305 mammalian cells (Figure 5.A). An initial experiment involved testing if transgenic lines expressed
306 ECFP in the presence of non-engineered, native sgRNAs (Figure 5- figure supplement 1). Initial opti-
307 misations were required to ensure homogeneous sgRNA delivery across embryo tissues (Figure 5-
308 figure supplement 1.B-D). After multiple optimisation steps, injection of native sgRNAs with chem-
309 ical modifications resulted in optimal ECFP activation across tissues. Furthermore, ECFP activation
310 persisted several days post-injection (Figure 5- figure supplement 1.D).

311
312 Then, iSBH-sgRNAs were injected into transgenic embryos in the absence or presence of comple-
313 mentary RNA triggers. In the absence of RNA triggers, embryos are expected to be ECFP nega-
314 tive, while in the presence of complementary RNA triggers, embryos should express ECFP (Figure
315 5.B). Due to improved sgRNA activity in the presence of chemical modifications, we then tested
316 iSBH-sgRNAs with chemical modifications. A first iteration of chemically modified iSBH-sgRNAs
317 was designed to protect the 5'end of the iSBH-sgRNA and the sgRNA scaffold. However, when co-
318 injected with chemically synthesised RNA triggers, these modifications did not lead to activation of
319 the 8xCTS-ECFP reporter (Figure 5- figure supplement 2.A). Our mechanistic data suggested that
320 iSBH-sgRNAs get truncated during activation (Figure 4) and, in a first iteration of chemically modi-
321 fied iSBH-sgRNAs, such truncation would lead to a production of sgRNAs with unprotected spacer
322 sequences. In this scenario, 5'-3' sgRNA degradation was likely to occur. We thus reasoned that
323 additional chemical modifications in the spacer sequence would reduce degradation by cellular
324 nucleases and promote iSBH-sgRNA function *in vivo*. Therefore, we designed a second strategy for
325 protecting iSBH-sgRNA integrity through chemical modifications (Figure 5.C). This was achieved by
326 simultaneously protecting the 5' end of the iSBH-sgRNA, the 5' end of the spacer, and the scaffold
327 sequences.

328
329 iSBH-sgRNAs synthesised using our second chemical modification strategy (Figure 5.C) were in-
330 jected in the absence or presence of chemically synthesised RNA triggers (Figure 5.B), and stronger
331 ECFP signals were detected in the presence of matching RNA triggers (iSBH-sgRNA ON, Figure 5-
332 figure supplement 2.B). To quantify ECFP activation, we grouped fish into three categories, according
333 to their level of ECFP expression (no ECFP, low ECFP and high ECFP, Figure 5.D). Chi² tests (Fig-
334 ure 5.E) performed for three experimental replicates showed that the presence of RNA triggers
335 causes a statistically significant change in ECFP expression. We then plotted percentages of em-
336 bryos counted for each category (Figure 5.F). Data shows an increase in the number of embryos
337 with high ECFP levels in the presence of RNA triggers. In contrast with the iSBH-sgRNA (OFF) con-

338 dition, the iSBH-sgRNA (ON) condition presented an average of 3.2 fold increase in the number of
339 embryos with high ECFP signals. Furthermore, the average number of embryos with no ECFP sig-
340 nals recovered in the iSBH-sgRNA (ON) condition was lower than in the iSBH-sgRNA (OFF) condition.

341
342 Our results show that iSBH-sgRNAs are functional in developing zebrafish embryos. Furthermore,
343 gaining insight into the mechanism of the iSBH-sgRNA activation has allowed us to identify critical
344 positions for chemical modifications that stabilised our design.

345 Discussion

346 In this study, we provide evidence that iSBH-sgRNAs enable conditional CRISPR activation in re-
347 sponse to RNA detection in both HEK293T cells and zebrafish embryos. We adopted a Synthetic
348 Biology design-build-test cycle to develop iSBH-sgRNAs that can detect longer RNA triggers. We
349 also developed the MODesign algorithm, which allows users to design modular iSBH-sgRNAs that
350 detect desired RNA triggers while directing the CRISPR activator to a gene target of choice. We suc-
351 cessfully detected RNA trigger sequences of up to 300nt expressed from U6 promoters in HEK293T
352 cells using modular iSBH-sgRNA designs. Orthogonality tests suggest that modular iSBH-sgRNA
353 designs are highly specific to their trigger and can be custom-made for different RNA detection
354 applications. Our data show that the choice of CRISPR activators and reporters greatly influences
355 the dynamic ranges of iSBH-sgRNA activation. Furthermore, we also provide insights into the iSBH-
356 sgRNA activation mechanism. Our results suggest that dCas9 is involved in iSBH-sgRNA processing
357 and activation. iSBH-sgRNA truncation to sgRNA sequences that have 20 nt spacers is consistent
358 with previous observations reported in studies that attempt to extend spacer sequences (*Perli et al.*
359 *(2016); Ran et al. (2013a)*). Our data suggest that RNA triggers are cleaved by endogenous factors
360 and molecules from the RNA interference pathway (*Meister and Tuschi (2004); Pong and Gullerova*
361 *(2018)*) could be responsible for the cleavage.

362
363 To date, a variety of RNA-inducible gRNA designs have been developed (*Hanewich-Hollatz et al.*
364 *(2019); Hochrein et al. (2021); Jakimo et al. (2018); Jiao et al. (2021); Jin et al. (2019); Li et al. (2019);*
365 *Liu et al. (2022); Lin et al. (2020); Siu and Chen (2019); Galizi et al. (2020); Hunt and Chen (2022b,a);*
366 *Ying et al. (2020); Choi et al. (2023)*). Nevertheless, there is a lack of direct, head-to-head compar-
367 isons of these designs under standardised experimental conditions. Some designs were evaluated
368 *in vitro*, others in bacterial systems, and some in mammalian cells. Consequently, it is challenging
369 to conclusively determine which design exhibits superior properties (*Pelea et al. (2022)*). Notably,
370 to the best of our knowledge, the iSBH-sgRNA system is the first RNA-inducible gRNA design tested
371 *in vivo* and characterising the iSBH-sgRNA activation mechanism was essential for implementing
372 iSBH-sgRNA technology in zebrafish embryos. *In vivo*, chemical modifications in the spacer se-
373 quence were vital for iSBH-sgRNA stability and function.

374
375 In their current iteration, iSBH-sgRNAs show considerable promise for mammalian synthetic bi-
376 ology applications. Specifically, their ability to detect synthetic triggers could be pivotal in the de-
377 velopment of complex synthetic RNA circuits and logic gates, thereby advancing the field of cellular
378 reprogramming. However, further work is required to achieve better ON/OFF activation ratios *in*
379 *vivo* and more homogeneous activity across tissues in the presence of RNA triggers. Additional
380 chemical modifications could improve iSBH-sgRNA properties, and we believe that chemical modi-
381 fication strategies adopted for siRNA drugs or antisense oligos (*Khvorova and Watts (2017)*) could
382 also be essential for further iSBH-sgRNA technology development. As iSBH-sgRNAs might be tar-
383 geted by endogenous nucleases, leading to their degradation, a strategy for preventing this could
384 involve additional chemical modifications. When inserted at certain key positions, such modifica-
385 tions could prevent interaction between iSBH-sgRNAs and cellular enzymes by introducing steric
386 clashes or inhibiting RNA hydrolysis.

387

388 Once achieving superior dynamic ranges of iSBH-sgRNA activation *in vivo*, the next steps would
389 involve understanding the classes of endogenous RNAs that could act as triggers. The chances
390 that an iSBH-sgRNA encounters an endogenous RNA trigger inside a cell would depend on the rel-
391 ative concentrations of the two RNA species. Therefore, a first step towards determining potential
392 endogenous RNA triggers will involve identifying RNA species with comparable expression levels as
393 iSBH-sgRNAs. Then, iSBH-sgRNAs could be designed against these RNA species, followed by exper-
394 imental validation. It is important to note that eukaryotic cells express a wide range of transcripts
395 of varying sizes, expression levels, and subcellular localisations, all of which could greatly affect
396 iSBH-sgRNA activation levels. Based on the data presented here, we speculate that RNA species
397 up to 300nt that are also highly expressed might act as good triggers. Furthermore, as sgRNAs are
398 involved in targeting Cas9 to genomic DNA in the nucleus, attempting to detect transcripts that are
399 sequestered in the nucleus might also provide additional benefit.

400

401 After identifying RNA species that could act as triggers *in vivo*, iSBH-sgRNAs could pave the way for
402 the development of more effective gene editing approaches with greater specificity and efficiency.
403 In the field of therapeutics, safety concerns regarding the off-target effects of CRISPR-Cas9 per-
404 sist. CRISPR-Cas9 commonly results in off-target effects such as Cas9 deployment at unintended
405 genomic regions and the induction of unwanted DNA double-stranded breaks (DSBs, *Wu et al.*
406 (2014)). These DSBs can trigger chromosomal rearrangements and macro deletions (*Kosicki et al.*
407 (2018)) and activate a p53-mediated DNA damage response (*Haapaniemi et al. (2018)*). Thus, it is
408 crucial to restrict the activity of CRISPR components to the affected tissues to prevent off-target
409 effects in healthy tissues that are not impacted by the disease (*Doudna (2020)*). Recent develop-
410 ments in engineering lipid nanoparticles have demonstrated selective accumulation in different
411 target organs (*Cheng et al. (2020)*; *Rosenblum et al. (2020)*; *Wei et al. (2020)*). However, targeted
412 delivery strategies still rely heavily on the availability of cell-surface protein biomarkers (*Rosen-
413 blum et al. (2020)*; *Dilliard et al. (2021)*), such as membrane receptors, which act as a proxy for
414 cell identity. The RNA-sensing iSBH-sgRNA technology could provide a complementary approach
415 to achieve targeted delivery by sensing endogenous RNA biomarkers expressed specifically in the
416 affected tissues. In the pursuit of targeted gene editing, identifying cell surface biomarkers can be
417 a daunting task for certain cell types or diseases. However, a promising solution may lie in utilizing
418 endogenous RNA biomarkers to activate CRISPR activity (*Lee et al. (2019)*). Rather than relying
419 on targeted delivery methods, iSBH-sgRNAs can be delivered to cells in an inactive form, only to
420 be activated upon detection of specific RNA biomarkers within the target cells. This would ensure
421 that CRISPR-Cas9 systems remain inactive in non-target cells where these RNA biomarkers are not
422 expressed.

423 Methods and Materials

424 *In silico* design of iSBH-sgRNAs

425 First -generation iSBH-sgRNA designs were designed by inputting different spacer sequences into
426 a computational pipeline generated by Ferry *et al.*: <http://apps.molbiol.ox.ac.uk/iSBHfold/> (*Ferry*
427 *et al. (2017)*). Main features of iSBH-sgRNA designs include the spacer (20nt), loop (14nt), spacer*
428 (20nt) and scaffold sequences. Spacer* sequence is the reverse complement of the spacer se-
429 quence, and it was modified to contain mismatches at positions: 11-12 and 16-17. The NuPACK (*Al-
430 louche (2012)*) fold corresponding to these sequences (excluding scaffold and extra GC sequences*)
431 is: ((((((((((..(((..(((.....))))..)))))))))); where . represents an unpaired nucleotide, while (and) re-
432 present paired nucleotides.

433

434 Second -generation iSBH-sgRNA designs were generated by introducing 10nt extensions between
435 loop and spacer sequences of the first-generation design. The random 10nt extension sequences
436 had a GC content ranging between 40 and 60%. Extension* sequence is generated by determining

437 the reverse complement of the extension sequence, with mismatches integrated at positions 1-2
438 and 6-7. NuPACK (*Allouche (2012)*) fold corresponding to this design (excluding scaffold and extra
439 GC sequences) is: ((((((((((..((..(((..(((.....))))..))))..)))))))))))

440

441 Modular iSBH-sgRNA designs were generated using the MODesign computational pipeline. This
442 pipeline takes 3 input sequences: iSBH-sgRNA loop size, the RNA trigger to be sensed an input
443 sgRNA sequence that targets Cas9 to desired CTSs (CRISPR target sequences). MODesign calcu-
444 lates the size of the iSBH-sgRNA trigger-sensing component and creates a list of all potential trig-
445 ger sub-sequences having that particular size. For each sub-sequence, it determines the reverse
446 complementary region, and it inserts it between extension and spacer* sequences while filling in
447 the extension sequence. MODesign checks if resulting modular iSBH-sgRNA sequences fold into
448 desired RNA structures using NuPACK (*Allouche (2012)*) and outputs all designs that adopt a correct
449 fold. NuPACK fold corresponding to this design is (excluding scaffold and extra GC sequences*):
450 ((((((((((..((..(((..(((.....))))..))))..)))))))))))

451

452 A MODesign scoring algorithm was also implemented, based on the iSBH-sgRNA probability of
453 adopting desired secondary structures (N), percentage of nucleotides that are free-from secondary
454 structures in the trigger sub-sequence (M), percentage of trigger nucleotides complementary with
455 the iSBH-sgRNA backfold (P) and percentage of spacer nucleotides complementary with the CTS (Q).
456 The scoring formula used was $N^*N^*N^*M^*P^*Q$. For different simulations, modular iSBH-sgRNAs
457 with higher scores were selected for experimental validation.

458

459 For first-generation designs, RNA triggers complementary with the iSBH-sgRNA loop and spacer*
460 sequences were designed. For second-generation designs, RNA triggers are complementary with
461 the loop, extension* and spacer* sequences. CTSs were designed by adding PAM (protospacer
462 adjacent motifs) sites downstream from the spacer sequence. All sgRNA spacers, iSBH-sgRNAs,
463 triggers and CTS reporter sequences could be found in the Supplementary Material.

464

465 At the beginning of each iSBH-sgRNA, an extra GC sequence was added. The extra G was inserted
466 in order to promote transcription from the polymerase III U6 promoter (*Ran et al. (2013b)*). The
467 extra C was added in order to increase base-pairing complementary with the first G in the sgRNA
468 scaffold.

469 **Molecular cloning**

470 All mammalian plasmids expressing Cas9 and deadCas9-fused transcriptional activators were ac-
471 quired from Addgene: dCas9-Vp64 (#47107), dCas9-VPR (#63798) as well as Cas9_pX458 (#48138).

472

473 Native sgRNAs, iSBH-sgRNAs, RNA triggers and 1xCTS repeats were cloned in mammalian-expression
474 vectors by inserting annealed single-stranded DNA oligos (IDT) into appropriate plasmid backbones.
475 iSBH sequences, as well as sgRNA spacer sequences were cloned between BbsI restriction sites in
476 the pcDNA3.1-U6_sgRNA_6xT-SV40_iBue_PA plasmid, generated by Ferry *et al.*, 2017. 1xCTS se-
477 quences were cloned in p035_pause-HBG-CFP-pA (XbaI, Ascl restriction sites; plasmid received as
478 a gift from Dr. David Knapp). Short trigger sequences were cloned within U6-TM2Emp-6T_iBlue
479 plasmid (gift from Dr. Quentin Ferry) between BbsI restriction sites. U6-TM2Emp-6T_iBlue plasmid
480 also encoded for two hairpin structures aiming to protect 34 and 44nt short triggers from degra-
481 dation.

482

483 Forward and reverse oligos were treated with polynucleotide kinase (PNK) and incubated at 37°C
484 for 30 minutes. Oligos were denatured and re-annealed by heating up samples to 95°C and de-
485 creasing the temperature to 25°C (at a rate of 2°C/minute). Backbone plasmids were digested
486 according to the NEB protocols, followed by gel extraction. Ligation was carried out using 100ng

487 backbone and $0.5\mu\text{l}$ annealed oligos in a total volume of $10\mu\text{l}$. $3\mu\text{l}$ ligation product was transformed
488 into DH5 α *E. coli* (Invitrogen, 18265017) cells.

489

490 8xCTS sequences were cloned in the P2-ECFP-pA (Addgene #26280) plasmid generated by Nissim
491 et al (*Nissim et al. (2014)*). The original 8xCTS sequence was removed (NheI restriction sites) and
492 replaced with a cloning landing pad containing numerous restriction sites. Resulting vector was
493 named Landing_Pad_8xCTS-ECFP-pA. ssDNA oligos encoding for 2xCTS repeats were ordered from
494 IDT and amplified by PCR. PCR products were separated into two restriction reactions- SacI/Esp3I
495 and Esp3I/Spel respectively. The two digestion products were cloned into the Landing_Pad_8xCTS-
496 ECFP-pA, leading to a 4xCTS-ECFP reporter. In a subsequent round of cloning, 4xCTSs were ampli-
497 fied by PCR, digested with NheI/Apal and cloned back into the 4xCTS-ECFP reporter, leading to the
498 final 8xCTS-ECFP constructs. Primer sequences and IDT oligos used for cloning 8xCTS reporters
499 could be found in the Supplementary Material.

500

501 100nt flank U6 triggers were cloned in the U6-TM2Emp-6T_iBlue_ModFlanks plasmid. In the first
502 round of cloning, the backbone was digested using BbsI and short trigger sequences were cloned
503 by annealing and ligation. Further rounds of cloning involved the amplification of 100nt flanks by
504 PCR and standard restriction-ligation cloning. 100nt 5' flanks were digested with BsmBI and 100nt
505 3' flanks were digested with NotI/NheI. The final size of triggers with 100nt 3' flank extension was
506 191nt for first-generation iSBH-sgRNA designs and 200nt for second-generation iSBH-sgRNA de-
507 signs. The size of triggers with 100nt 5' flanks was 175nt, while the size of triggers with 100nt 5'+3'
508 flanks was 270nt. Sizes exclude two hairpin sequences that protect 5' and 3' trigger ends from
509 degradation.

510

511 Repetitive RNA trigger sequences for testing modular iSBH-sgRNA designs were cloned in the U6-
512 TM2Emp-6T_iBlue plasmid between BbsI restriction sites using type II S restriction-cloning. Trig-
513 ger sequences were split into smaller sub-sequences and ordered from IDT as single-stranded
514 oligos. Primers annealed to oligo sequences and contained long flaps including extra trigger sub-
515 sequences and BbsI restriction sites. Flaps enabled the assembly of longer trigger sub-sequences
516 by PCR. PCR products were loaded in a 1% agarose gel, followed by gel extraction, BbsI digestion
517 and PCR clean-up. Depending on the trigger size, 2 or 3 digested PCR products were ligated to
518 100ng backbone using a 3:1 molar ratio for inserts to the backbone. Examples of IDT oligos and
519 ordered primers for cloning triggers A and B are available in the Supplementary Material.

520

521 Tol2(B-act:dCas9-Vp64-T2A-Citrine) vector was generated by Gibson Assembly. Vector backbone
522 was amplified by PCR from pMTB2-NLS-Cas9-2a-Citrine plasmid (gift from Dr. Vanessa Chong-
523 Morrison), while the dCas9-Vp64 cassette was amplified from the Sox10:BAC_Cas9m4-Vp64-2a-
524 Citrine bacterial artificial chromosome (gift from Dr. Vanessa Chong-Morrison). Tol2(8xCTS-ECFP)
525 reporter was generated by standard restriction-digestion cloning. pMTB2-NLS-Cas9-2a-Citrine was
526 digested using MfeI and XbaI restriction enzymes (NEB). Insert was amplified by PCR and digested
527 with BbsI (NEB) to produce sticky ends compatible with plasmid ligation.

528

529 iSBH-sgRNAs and triggers for zebrafish expression were cloned in AcDs_MiniVector_U6a-sgRNA-
530 MS2 (gift from Dr. Vanessa Chong-Morrison). SAM effector plasmids for zebrafish expression
531 were also modified from AcDs_MiniVector_ubb-MCP-p65-HSF1-2a-Cerulean (gift from Dr. Vanessa
532 Chong-Morrison) by replacing Cerulean with Citrine using standard restriction-digestion cloning.
533 AcDs vectors containing ubb-MCP-p65-HSF1-2a-Cerulean, iSBH-sgRNAs and RNA triggers were cloned
534 using Gibson Assembly.

535

536 All PCRs were carried out using Phusion High-Fidelity PCR Master Mix with GC Buffer (NEB), gel
537 extractions using the QIAquick Gel Extraction Kit (QIAGEN) and PCR clean-up reactions using the

538 MinElute PCR Purification Kit (QIAGEN). DNA concentrations were estimated by NanoDrop, stan-
539 dard ligations were performed using T4 DNA ligase (NEB), while Gibson assembly reactions used
540 the NEBuilder(R) HiFi DNA Assembly Cloning Kit (NEB). Transformed bacteria were grown for 24h at
541 32°C, while single-colonies were grown for 20h at 37°C in ampicillin-containing LB media. Plasmid
542 DNA was extracted using the QIAprep Spin Miniprep Kit (QIAGEN) and constructs were validated by
543 Sanger sequencing (Eurofins Genomics) prior to being transfected into HEK293T cells or injected
544 into zebrafish embryos.

545 **Maintaining HEK293T cell lines**

546 HEK293T cells were grown in full media (Thermo-Fisher Dulbecco's modified Eagle's medium sup-
547 plemented with 10% foetal-bovine serum). Cells were grown at 37°C and 5% CO₂ and passaged
548 every 2 days. Cells have been *Mycoplasma* tested using the Eurofins Genomics Mycoplasmacheck
549 services.

550 **Transfecting HEK293T cell lines**

551 Transfection was performed using Sigma-Aldrich polyethyleneimine (PEI). For each well, transfec-
552 tion DNA cocktails were mixed with 50 μ l GIBKO Opti-MEM. 1.5 μ l PEI/ μ g DNA ratio was maintained
553 for all experiments. To each well, 250ng Cas9 effector was transfected with 250ng sgRNA-backbone
554 plasmid (pcDNA3.1_SV40-iBlue-pA), 250ng trigger-encoding plasmids and 125ng 1xCTS or 8xCTS-
555 ECFP reporter plasmids. For transfections involving SAM effector components, an extra 250ng
556 MCP-p65-HSF1-iBlue plasmid was co-transfected.

557 **Flow Cytometry sample preparation**

558 48h after transfection, cells were washed with PBS and incubated for 10min with 50 μ l trypsin-EDTA.
559 Trypsin was inactivated using 250 μ l FACS buffer (PBS with 10% foetal bovine serum), followed by
560 cell filtration (Falcon 70 μ m White Cell Strainer) and transfer to Flow Cytometry tubes. Cells were
561 stored on ice prior to analysis using the BD LSR Fortessa Analyzer (BD Biosciences).

562 **Flow Cytometry data analysis**

563 For each condition, 100,000 events were acquired, and data analysis was performed using a Python
564 script developed starting from the FlowCal package (*Castillo-Hair et al. (2016)*). HEK293T cells were
565 identified by plotting SSC-A (side-scattering area) and FSC-A (forward scattering area) values. Single-
566 cells were identified by plotting SSC-H (side-scattering height) against SSC-A values. Then, the script
567 plots the iBlue (640-670nm) transfection control reporter against ECFP (405-450nm) reporter for
568 monitoring CRISPR activity.

569 Gates for iBlue level were set up in the untransfected control, so that only 0.1% of untransfected
570 cells are iBlue+. Gates for the ECFP control were set up in the reporter control, where the sgRNA
571 transfected is not complementary with the nxCTS-ECFP reporter. ECFP gate was set up in such a
572 way that around 0.1% of the cells in the reporter condition were ECFP positive. The displayed per-
573 centage of activated transfected cells was calculated using the following formula: count(ECFP+/iBlue+
574 cells)/ [count(ECFP+/iBlue+ cells)+ count(ECFP-/iBlue+ cells)].

576
577 All bar graphs present the percentage of activated transfected cells measured for 3 different trans-
578 fections carried out on 3 different days. The error bars represent the +/- standard deviations for
579 these 3 biological replicates. Displayed *p*-values were calculated using a non-paired t-test.

580 **RNA circularisation assays**

581 RNA circularisation protocol was adapted from (*Knapp et al. (2019)*). 48h after transfection, cells
582 were washed with PBS, followed by incubation with 50 μ l trypsin. Trypsin was inactivated using
583 500 μ l FACS buffer. Cells were transferred to a 1.5ml Eppendorf tube, followed by centrifugation

584 at 300xg for 5 min. Supernatant was removed and cells were resuspended in 500ml PBS followed
585 by another centrifugation step at 300xg for 5 min. Supernatant was removed followed by snap-
586 freezing of cellular pellets. Cells were stored at -80°C prior to RNA extraction using the Charge
587 Switch Total RNA cell Kit (ThermoFisher). All indications specified in the kit were followed, except
588 from using 1/5 of suggested volume of buffers. The optional DNase treatment step was also in-
589 cluded, and the RNA was eluted in 20 μ l elution buffer.

590

591 The ligation reaction was set up by mixing 10 μ l RNA, 2 μ l T4 RNA ligase buffer (NEB), 1.9 μ l H2O, 4 μ l
592 50% PEG 8000 (NEB), 0.1 μ l 10mM ATP, 1 μ l T4 RNA ligase (NEB), 1 μ l SUPERase in RNAase inhibitor
593 (ThermoFisher). Reaction was incubated for 4h at room temperature, followed by another round
594 of RNA extraction using Charge Switch Total RNA cell Kit. In this second round of RNA extraction,
595 1/10 off specified buffer volumes were used, the optional DNase treatment was not performed,
596 and RNA was eluted in 12.5 μ l elution buffer.

597

598 10 μ l circular RNAs were subjected to reverse transcription (RT) using the QuantiTect Rev. Transcrip-
599 tion Kit (QIAGEN). Manual specifications were followed, but, provided RT primers were replaced
600 with custom made primers that specifically bind to regions of interest. According to user specifica-
601 tions, primers were diluted to 0.7 μ M and RT reactions were incubated for 30min at 42°C.

602

603 Desired sequences were amplified using two subsequent PCR reactions using the Phusion High-
604 Fidelity PCR Master Mix with GC Buffer (NEB). All extension steps were carried out in a 15s time-
605 frame and the first PCR round consisted of 10 cycles. 2 μ l RT product was used as a template in
606 the first reaction. The product of the first reaction was diluted 1/10 and 1 μ l of this dilution served
607 as a template in the second round of PCR (25 cycles). Second PCR products were mixed with Gel
608 Loading Dye, purple (NEB) followed by loading of 2 μ l mixture into a 2% agarose gel. For optimal
609 results, gels were run for approximately 90min. Second PCR primers contained NotI/NheI restric-
610 tion sites that enabled fragment cloning into the pcDNA3.1 plasmid followed by Sanger sequencing.

611

612 Circularisation assay primer sequences could be found in the Supplementary Material.

613 **Zebrafish husbandry**

614 Zebrafish experiments were carried out according to regulated procedures authorised by the UK
615 Home Office within the framework of the Animals (Scientific Procedures) Act 1986. Embryos used
616 were derived from AB zebrafish strains.

617 **Synthesis of mRNA for embryonic injections**

618 Templates for *in vitro* transcription were linearised by either restriction digestion or PCR, followed
619 by purification using the QIAquick PCR Purification Kit (QIAGEN). mRNA was synthesised using the
620 mMESSAGE mMACHINETM SP6 Transcription Kit (ThermoFisher) according to the manufacturer's
621 specifications. Following treatment with TURBO DNase, RNA was purified using the Monarch^R
622 RNA Cleanup Kit (NEB). The integrity of the purified RNA was determined by running RNA in a 1%
623 agarose gel, while RNA concentration was measured using the QubitTM RNA Broad Range assay
624 (ThermoFisher).

625 **Generation of zebrafish transgenics**

626 The transgenic lines *Tg(B-act:dCas9-Vp64-T2A-Citrine)*^{ox176} (dCas9-Vp64) and *Tg(8xCTS:ECFP)*^{ox178} (8xCTS-
627 ECFP) were generated in the background of our existing *TgBAC(Sox10:cytoBirA-2a-mCherry)*^{ox168} trans-
628 genic created in *Trinh et al. (2017)*. Single-cell embryos obtained by incrossing *TgBAC(Sox10:cytoBirA-*
629 *2a-mCherry)*^{ox168} fish were injected with DNA constructs containing Tol2 recombination arms as
630 well as Tol2 mRNA (*Urasaki et al. (2008)*). The DNA expression and reported constructs (Tol2(B-
631 act:dCas9-Vp64-T2A-Citrine) and Tol2(8xCTS-ECFP), respectively) were built as described in the Molec-

632 ular cloning subsection. Injection mixtures contained 2 μ l of plasmid DNA (200ng/ μ l), 1.5 μ l Tol2
633 mRNA (160 ng/ μ l) as well as 0.5 μ l Phenol Red. 2nL mixture was injected using a PICOSPRITZER III
634 injector. Following injections, embryos were kept in a 28°C incubator. 6h post-injection, fertilised
635 embryos were selected and transferred to E3 media. At 1 day post-fertilisation, dead embryos
636 were removed. Surviving embryos were grown for 4 months and subsequently genotyped.

637
638 A strategy consisting of two rounds of crosses was employed for identifying founders. In a first
639 round, potential male and female founders were incrossed for identifying founder pairs. Once a
640 founder pair was identified, the next step was determining whether the male or the female from
641 that cross contains the transgene. This was achieved by outcrossing males and females with wild-
642 type fish. For each cross, DNA was extracted from a pool of embryos at 1 day post-fertilisation.
643 Extraction was carried out using the PureLink Genomic DNA Mini kit (ThermoFischer), while opting
644 for a 1h lysis step. Extracted DNA was measured by NanoDrop and 100ng DNA was added to a
645 first nested PCR reaction (10 cycles). Products of the first PCR reaction were diluted 1:10 and 2 μ l
646 products were transferred to a second PCR reaction (29 cycles). PCRs were carried out using the
647 Phusion High-Fidelity PCR Master Mix with GC Buffer (NEB) in a total volume of 20ul, while opting
648 for an extension time on 1min/kb. Results were assessed by running PCR products in a 2% agarose
649 gel.

650
651 After founder identification, the next steps involved generation of the first generation of fish (F1)
652 encoding the transgene in all cells of their body. Founders were outcrossed with TgBAC(Sox10:BirA-
653 Cherry) adult fish. At 1-3 days post-fertilisation, embryos expressing the Sox10:BirA-mCherry trans-
654 gene were selected by assessing the mCherry expression using an Olympus MVX microscope. At
655 3 days post-fertilisation, embryos were tail clipped. Clipped tissue was transferred to 50 μ l lysis
656 buffer (25mM NaOH, 0.2mM EDTA). Samples were boiled at 95°C for 45min, following by cooling
657 at 4°C for 5min. 50 μ l neutralisation buffer (40mM Tris-HCl) was added to each sample and nested
658 PCR was carried out for determining transgene presence. PCR reactions were set up in a similar
659 way as for founder identification, except that 5 μ l DNA was added to the first PCR reaction. F1 em-
660 bryos were subsequently grown for another 4 months. Subsequent experiments were carried out
661 in embryos resulting from incrosses of F1 adult fish.

662
663 All genotyping primer sequences could be found in the Supplementary Material.

664 **Microinjection of zebrafish embryos using the Ac/Ds system**

665 First generation (F1) fish encoding dCas9-Vp64 and 8xCTS-ECFP CRISPR reporter were incrossed.
666 Resulting embryos were injected with Ac mRNA as well as plasmid DNA containing Ds transposase-
667 recognition sequences (*Chong-Morrison et al. (2018)*). Reaction mixtures contained 3 μ l plasmid
668 DNA (266ng/ μ l), 0.5 μ l Ac mRNA (150ng/ μ l) and 0.5 μ l Phenol Red. 2nL mixture was injected into
669 single-cell embryos.

670
671 Following injections, embryos were kept in a 28°C incubator. 6h post-injection, fertilised embryos
672 were selected and transferred to E3 media. At 1-day post-fertilisation, dead embryos were re-
673 moved and surviving embryos were screened for the expression of construct DNA. This was achieved
674 by assessing Citrine expression under the Olympus MVX microscope.

675 **Microinjection of zebrafish embryos with chemically modified sgRNAs**

676 F1 fish encoding dCas9-Vp64 and 8xCTS-ECFP CRISPR reporter were incrossed. Resulting embryos
677 were injected with chemically modified sgRNAs designed and synthesised by IDT. Reaction mix-
678 tures contained 1 μ l sgRNA (1 μ g/ μ l), 2.5 μ l H2O and 0.5 μ l Phenol Red. 2nL mixture was injected into
679 single-cell embryos.

680

681 Following injections, embryos were kept in a 28°C incubator. 6h post-injection, fertilised embryos
682 were selected and transferred to E3 media. At 1-day post-fertilisation, dead embryos were re-
683 moved. Surviving embryos were screened for ECFP production using an MVX microscope. Repre-
684 sentative embryos were also imaged by confocal microscopy.

685 **Microinjection of zebrafish embryos with chemically modified iSBH-sgRNAs**

686 F1 fish encoding dCas9-Vp64 and 8xCTS-ECFP CRISPR reporter were incrossed. Resulting embryos
687 were injected with chemically modified iSBH-sgRNAs as well as chemically synthesised RNA triggers.
688 iSBH-sgRNAs were co-injected together with complementary and non-complementary triggers. Re-
689 action mixtures contained 1 μ l iSBH-sgRNA (1.5 μ g/ μ l), 1 μ l RNA trigger (3 μ g/ μ l), 1.5 μ l H2O and 0.5 μ l
690 Phenol Red. 2nL mixture were injected into single-cell embryos. 6h post-injection, fertilised em-
691 bryos were selected and transferred to E3 media. At 1-day post-fertilisation, dead embryos were re-
692 moved. Surviving embryos were screened for ECFP production using an MVX microscope. For
693 each experiment, fish were separated into 3 classes according to the intensity of ECFP expression:
694 high, low and no ECFP. Chi² tests were performed for testing if results are statistically significant.

695 **Confocal microscopy**

696 Embryos were anaesthetised in MS222 and mounted in 1% low-melting point agarose (Invitrogen)
697 dissolved in E3 media. Embryos were imaged on a Zeiss780 LSM upright confocal microscope using
698 a 10x objective. For DNA-based injections, Citrine expression labelled tissues where construct was
699 expressed, while ECFP expression labelled tissues where CRISPR systems were active. The same
700 microscope settings were maintained in between imaging different samples injected with DNA con-
701 structs. Embryos injected with iSBH-sgRNAs without triggers were genotyped following injection
702 to confirm the presence of dCas9-Vp64 and the 8xCTS-ECFP reporters. Due to the strength of the
703 signal, laser power had to be decreased for samples injected with chemically modified sgRNAs.

704 **Data availability**

705 Computational pipelines for iSBH-sgRNA designs are hosted on GitHub (<https://github.com/OanaPelea/>
706 [Design_tools_iSBH-sgRNAs](#)). All plasmids necessary for replicating this study have been deposited
707 to AddGene:
708 pcDNA3.1_SV40-iBlue-pA (#200234)
709 U6-TM2Emp-6T_iBlue (#200235)
710 U6-TM2Emp-6T_iBlue-ModFlanks (#200236)
711 sgRNA1_1xCTS-ECFP-pA (#200237)
712 sgRNA2_1xCTS-ECFP-pA (#200238)
713 sgRNA3_1xCTS-ECFP-pA (#200239)
714 sgRNA4_1xCTS-ECFP-pA (#200240)
715 sgRNA5_1xCTS-ECFP-pA (#200241)
716 Landing_Pad_8xCTS-ECFP-pA (#200242)
717 sgRNA1_8xCTS-ECFP-pA (#200243)
718 sgRNA2_8xCTS-ECFP-pA (#200244)
719 sgRNA3_8xCTS-ECFP-pA (#200245)
720 gRNA4_8xCTS-ECFP-pA (#200246)
721 sgRNA5_8xCTS-ECFP-pA (#200247)
722 Tol2_B-act_dCas9-Vp64-T2A-Citrine (#200248)
723 Tol2_8xCTS-ECFP (#200249)

724 **Acknowledgements**

725 We would like to acknowledge Dr Martyna Lucoseviciute and Dr Filipa Simoes for performing em-
726 bryonic microinjections necessary for the generation of zebrafish transgenic lines and for men-
727 torship with the zebrafish experiments. We would also like to thank Dr Vanessa Chong-Morrison

728 and Prof Martin Jinek for providing suggestions that improved this manuscript. Dr Vanessa Chong-
729 Morrison also helped with designing zebrafish expression plasmids and provided guidance on how
730 to perform embryonic microinjections. Dr David Knapp also provided advice for this project and
731 was a tremendous support in performing RNA circularisation assays. We would also like to acknowl-
732 edge Jennifer Stott and Sasha Thomas from Integrated DNA Technologies for technical advice on
733 chemically modified sgRNAs. We would also like to thank all present and past members of the TAF
734 and TSS labs.

735 **Funding**

736 O.P. was funded by the EPSRC & BBSRC Centre for Doctoral Training in Synthetic Biology, University
737 of Oxford (grant EP/L016494/1), EvOX Therapeutics, and Wadham College. T.S.S., S.M. and O.P.
738 were funded by the Wellcome Trust (215615/Z/19/Z), and T.S.S. also received institutional support
739 from the Stowers Institute for Medical Research.

740 **Author contributions**

741 O.P., Q.F., T.A.F. and T.S.S. conceived the study and designed the experiments; O.P. performed
742 experiments with help from S.M. with the fish experiments. O.P. analysed results and wrote the
743 manuscript. O.P., S.M., Q.F., and T.S.S. edited the manuscript.

744 **Conflict of interests**

745 None declared.

746 **References**

747 **Abdolhosseini F, Azarkhalili B, Maazallahi A, Kamal A, Motahari SA, Sharifi-Zarchi A, Chitsaz H.** Cell Identity
748 Codes: Understanding Cell Identity from Gene Expression Profiles using Deep Neural Networks. *Scientific
749 Reports.* 2019; 9(1):1-14. <http://dx.doi.org/10.1038/s41598-019-38798-y>. doi: 10.1038/s41598-019-38798-y.

750 **Allouche Ar.** Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry
751 Softwares. *Journal of computational chemistry.* 2012; 32:174–182. doi: 10.1002/jcc.

752 **Burger K, Schlackow M, Potts M, Hester S, Mohammed S, Gullerova M.** Nuclear phosphorylated Dicer processes
753 doublestranded RNA in response to DNA damage. *Journal of Cell Biology.* 2017; 216(8):2373–2389. doi:
754 [10.1083/jcb.201612131](https://doi.org/10.1083/jcb.201612131).

755 **Castillo-Hair SM, Sexton JT, Landry BP, Olson EJ, Igoshin OA, Tabor JJ.** FlowCal: A User-Friendly, Open Source
756 Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units. *ACS
757 Synthetic Biology.* 2016; 5(7):774–780. doi: [10.1021/acssynbio.5b00284](https://doi.org/10.1021/acssynbio.5b00284).

758 **Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-
759 Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM.** Highly efficient Cas9-mediated transcriptional programming. *Nature Methods.* 2015; 12(4):326–328. doi:
760 [10.1038/nmeth.3312](https://doi.org/10.1038/nmeth.3312).

762 **Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ.** Selective organ targeting (SORT) nanoparticles
763 for tissue-specific mRNA delivery and CRISPR-Cas gene editing. *Nature Nanotechnology.* 2020; 15(4):313–
764 320. <http://dx.doi.org/10.1038/s41565-020-0669-6>. doi: 10.1038/s41565-020-0669-6.

765 **Choi J, Chen W, Liao H, Li X, Shendure J.** A molecular proximity sensor based on an engineered, dual-component
766 guide RNA. *bioRxiv.* 2023; doi: [2023.08.14.553235](https://doi.org/10.1101/2023.08.14.553235).

767 **Chong-Morrison V, Simões FC, Senanayake U, Carroll DS, Riley PR, Sauka-Spengler T.** Re-purposing Ac/Ds
768 transgenic system for CRISPR/dCas9 modulation of enhancers and non-coding RNAs in zebrafish. *bioRxiv.*
769 2018; p. 1–33.

770 **Dilliard SA, Cheng Q, Siegwart DJ.** On the mechanism of tissue-specific mRNA delivery by selective organ
771 targeting nanoparticles. *Proceedings of the National Academy of Sciences of the United States of America.*
772 2021; 118(52). doi: [10.1073/pnas.2109256118](https://doi.org/10.1073/pnas.2109256118).

773 **Doudna JA.** The promise and challenge of therapeutic genome editing. *Nature*. 2020; 578:229–236. <http://dx.doi.org/10.1038/s41586-020-1978-5>, doi: 10.2139/ssrn.2298310.

775 **Ferry QRV**, Lyutova R, Fulga TA. Rational design of inducible CRISPR guide RNAs for de novo assembly of
776 transcriptional programs. *Nature Communications*. 2017; 8:1–10. <http://dx.doi.org/10.1038/ncomms14633>,
777 doi: 10.1038/ncomms14633.

778 **Gaj T.** ZFN, TALEN and CRISPR/Cas based methods for genome engineering. *Trends Biotechnol*. 2014;
779 31(7):397–405. doi: 10.1016/j.tibtech.2013.04.004.ZFN.

780 **Galizi R**, Duncan JN, Rostain W, Quinn CM, Storch M, Kushwaha M, Jaramillo A. Engineered RNA-Interacting
781 CRISPR Guide RNAs for Genetic Sensing and Diagnostics. *CRISPR Journal*. 2020; 3(5):398–408. doi:
782 10.1089/crispr.2020.0029.

783 **Haapaniemi E**, Botla S, Persson J, Schmierer B, Taipale J. CRISPR – Cas9 genome editing induces a p53- mediated
784 DNA damage response. *Nature Medicine*. 2018; 24(July). <http://dx.doi.org/10.1038/s41591-018-0049-z>, doi:
785 10.1038/s41591-018-0049-z.

786 **Hanewich-Hollatz MH**, Chen Z, Hochrein LM, Huang J, Pierce NA. Conditional Guide RNAs: Programmable Con-
787 ditional Regulation of CRISPR/Cas Function in Bacterial and Mammalian Cells via Dynamic RNA Nanotechnol-
788 ogy. *ACS Central Science*. 2019; 5(7):1241–1249. doi: 10.1021/acscentsci.9b00340.

789 **Hasegawa S**, Gowrishankar G, Rao J. Detection of mRNA in mammalian cells with a split ribozyme reporter.
790 *ChemBioChem*. 2006; 7(6):925–928. doi: 10.1002/cbic.200600061.

791 **Hochrein LM**, Li H, Pierce NA. High-Performance Allosteric Conditional Guide RNAs for Mammalian Cell-
792 Selective Regulation of CRISPR/Cas. *ACS Synthetic Biology*. 2021; doi: 10.1021/acssynbio.1c00037.

793 **Hunt VM**, Chen W. A microRNA-gated thgRNA platform for multiplexed activation of gene expression in mam-
794 malian cells. *Chemical Communications*. 2022; 58(42):6215–6218. doi: 10.1039/d2cc01478e.

795 **Hunt VM**, Chen W. Deciphering the Design Rules of Toehold-Gated sgRNA for Conditional Activation of Gene
796 Expression and Protein Degradation in Mammalian Cells. *ACS Synthetic Biology*. 2022; 11(1):397–405. doi:
797 10.1021/acssynbio.1c00479.

798 **Jakimo N**, Chatterjee P, Jacobson JM. SsRNA/DNA-Sensors via Embedded Strand-Displacement Programs in
799 CRISPR/Cas9 Guides. *bioRxiv preprint*. 2018; p. 1–12. doi: 10.1101/264424.

800 **Jiang K**, Koob J, Chen XD, Krajewski RN, Zhang Y, Villiger L, Zhou W, Abudayyeh OO, Chen F, Gootenberg JS. Pro-
801 grammable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. *Nature Biotechnology*. 2022;
802 <https://doi.org/10.1038/s41587-022-01534-5>.

803 **Jiao C**, Sharma S, Dugar G, Peeck NL, Bischler T, Wimmer F, Yu Y, Barquist L, Schoen C, Kurzai O, Sharma CM,
804 Beisel CL. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9.
805 *Science*. 2021; 372(6545):941–948. doi: 10.1126/science.abe7106.

806 **Jin M**, Garreau De Loubresse N, Kim Y, Kim J, Yin P. Programmable CRISPR-Cas Repression, Activation, and
807 Computation with Sequence-Independent Targets and Triggers. *ACS Synthetic Biology*. 2019; 8(7):1583–1589.
808 doi: 10.1021/acssynbio.9b00141.

809 **Jinek M**, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA-Guided DNA
810 Endonuclease in Adaptative Bacterial Immunity. *Science*. 2012; 337:816–822.

811 **Khvorova A**, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. *Nature Biotech-
812 nology*. 2017; 35(3):238–248. doi: 10.1038/nbt.3765.

813 **Knapp DJHF**, Milne TA, Michaels YS, Fulga TA, Jamilly M, Ferry QRV, Barbosa H. Decoupling tRNA promoter
814 and processing activities enables specific Pol-II Cas9 guide RNA expression. *Nature Communications*. 2019;
815 <http://dx.doi.org/10.1038/s41467-019-09148-3>, doi: 10.1038/s41467-019-09148-3.

816 **Konermann S**, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS,
817 Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 com-
818 plex. *Nature*. 2015; 517(7536):583–588. <http://dx.doi.org/10.1038/nature14136>, doi: 10.1038/nature14136.

819 **Kosicki M**, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR – Cas9 leads to large
820 deletions and complex rearrangements. *Nature Biotechnology*. 2018; <http://dx.doi.org/10.1038/nbt.4192>,
821 doi: 10.1038/nbt.4192.

822 **Kotliar D**, Veres A, Nagy MA, Tabrizi S, Hodis E, Melton DA, Sabeti PC. Identifying gene expression programs of
823 cell-type identity and cellular activity with single-cell RNA-Seq. *eLife*. 2019; 8:1–26. doi: [10.7554/elife.43803](https://doi.org/10.7554/elife.43803).

824 **Lee J**, Mou H, Ibraheim R, Liang SQ, Xue W, Sontheimer E. Tissue-restricted genome editing in vivo specified by
825 microRNA-repressible anti-CRISPR proteins. *Rna*. 2019; p. Vol.25, No11. doi: [10.1101/631689](https://doi.org/10.1101/631689).

826 **Li Y**, Teng X, Zhang K, Deng R, Li J. RNA Strand Displacement Responsive CRISPR/Cas9 System for mRNA Sensing.
827 *Analytical Chemistry*. 2019; 91:3989–3996. doi: [10.1021/acs.analchem.8b05238](https://doi.org/10.1021/acs.analchem.8b05238).

828 **Lin J**, Liu Y, Lai P, Ye H, Xu L. Conditional guide RNA through two intermediate hairpins for programmable
829 CRISPR/Cas9 function: building regulatory connections between endogenous RNA expressions. *Nucleic Acids
830 Research*. 2020; 48(20):11773–11784. doi: [10.1093/nar/gkaa842](https://doi.org/10.1093/nar/gkaa842).

831 **Liu Y**, Pinto F, Wan X, Yang Z, Peng S, Li M, Cooper JM, Xie Z, French CE, Wang B. Reprogrammed tracrRNAs
832 enable repurposing RNAs as crRNAs and detecting RNAs. *Nature Communications*. 2022; p. 1–28. doi:
833 [10.1038/s41467-022-29604-x](https://doi.org/10.1038/s41467-022-29604-x).

834 **Maeder ML**, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endoge-
835 nous human genes. *Nature Methods*. 2013; 10(10):977–979. <http://dx.doi.org/10.1038/nmeth.2598>, doi:
836 [10.1038/nmeth.2598](https://doi.org/10.1038/nmeth.2598).

837 **Mannack LVJC**, Eising S, Rentmeister A. Current techniques for visualizing RNA in cells. *F1000Research*. 2016;
838 5(0):775. <http://f1000research.com/articles/5-775/v1>, doi: [10.12688/f1000research.8151.1](https://doi.org/10.12688/f1000research.8151.1).

839 **Meister G**, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. *Nature*. 2004; 431(7006):343–349.
840 doi: [10.1038/nature02873](https://doi.org/10.1038/nature02873).

841 **Nissim L**, Perli SD, Fridkin A, Perez-Pinera P, Lu TK. Multiplexed and Programmable Regulation of Gene Net-
842 works with an Integrated RNA and CRISPR/Cas Toolkit in Human Cells. *Molecular Cell*. 2014; 54(4):698–710.
843 <http://dx.doi.org/10.1016/j.molcel.2014.04.022>, doi: [10.1016/j.molcel.2014.04.022](https://doi.org/10.1016/j.molcel.2014.04.022).

844 **Paul CP**, Good PD, Winer I, Engelke DR. Effective expression of small interfering RNA in human cells. *Nature
845 Biotechnology*. 2002; 20(5):505–508. doi: [10.1038/nbt0502-505](https://doi.org/10.1038/nbt0502-505).

846 **Pelea O**, Fulga TA, Sauka-Spengler T. RNA-Responsive gRNAs for Controlling CRISPR Activity : Current
847 Advances , Future Directions , and Potential Applications. *The CRISPR Journal*. 2022; 5(5):1–18. doi:
848 [10.1089/crispr.2022.0052](https://doi.org/10.1089/crispr.2022.0052).

849 **Perli SD**, Cui CH, Lu TK. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. *Science*.
850 2016; 353(6304). doi: [10.1126/science.aag0511](https://doi.org/10.1126/science.aag0511).

851 **Pong SK**, Gullerova M. Noncanonical functions of microRNA pathway enzymes – Drosophila, DGCR8, Dicer and
852 Ago proteins. *FEBS Letters*. 2018; 592(17):2973–2986. doi: [10.1002/1873-3468.13196](https://doi.org/10.1002/1873-3468.13196).

853 **Qu L**, Yi Z, Zhu S, Wang C, Cao Z, Zhou Z, Yuan P, Yu Y, Tian F, Liu Z, Bao Y, Zhao Y, Wei W. Programmable RNA
854 editing by recruiting endogenous ADAR using engineered RNAs. *Nature Biotechnology*. 2019; 37(9):1059–
855 1069. <http://dx.doi.org/10.1038/s41587-019-0178-z>, doi: [10.1038/s41587-019-0178-z](https://doi.org/10.1038/s41587-019-0178-z).

856 **Ran FA**, Hsu PD, Lin Cy, Gootenberg JS. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced
857 Genome Editing Specificity. *CELL*. 2013; 154(6):1380–1389. <http://dx.doi.org/10.1016/j.cell.2013.08.021>, doi:
858 [10.1016/j.cell.2013.08.021](https://doi.org/10.1016/j.cell.2013.08.021).

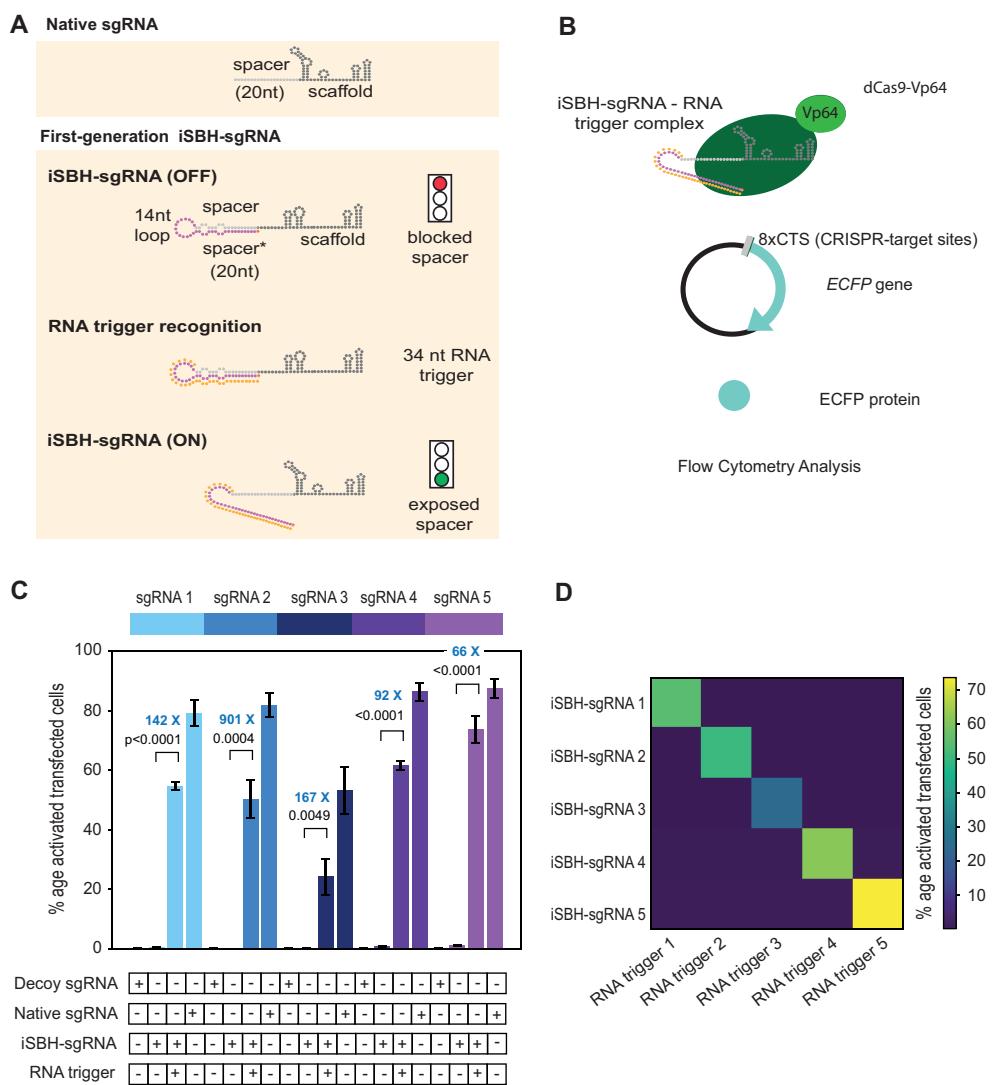
859 **Ran FA**, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system.
860 *Nature Protocols*. 2013; 8(11):2281–2308. doi: [10.1038/nprot.2013.143](https://doi.org/10.1038/nprot.2013.143).

861 **Rosenblum D**, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen
862 ZR, Behlke MA, Lieberman J, Peer D. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for
863 cancer therapy. *Science Advances*. 2020; 6(47). doi: [10.1126/sciadv.abc9450](https://doi.org/10.1126/sciadv.abc9450).

864 **Siu Kh**, Chen W. Riboregulated toehold-gated gRNA for programmable CRISPR – Cas9 function. *Nature Chemical
865 Biology*. 2019; <http://dx.doi.org/10.1038/s41589-018-0186-1>, doi: [10.1038/s41589-018-0186-1](https://doi.org/10.1038/s41589-018-0186-1).

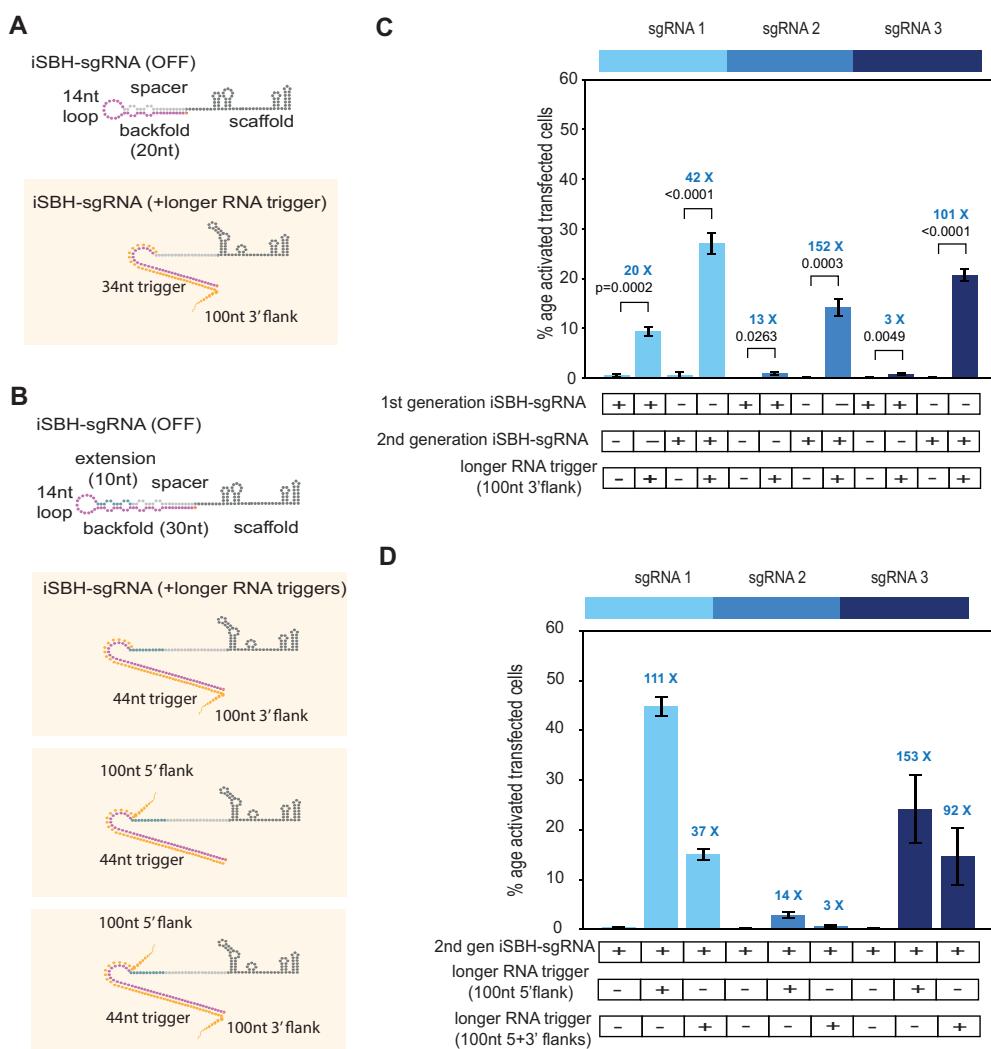
866 **Tang W**, Hu JH, Liu DR. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and tran-
867 scriptional activation. *Nature Communications*. 2017; 8:1–8. <http://dx.doi.org/10.1038/ncomms15939>, doi:
868 [10.1038/ncomms15939](https://doi.org/10.1038/ncomms15939).

869 **Trinh LA**, Chong-Morrison V, Gavriouchkina D, Hochgreb-Hägele T, Senanayake U, Fraser SE, Sauka-Spengler
870 T. Biotagging of Specific Cell Populations in Zebrafish Reveals Gene Regulatory Logic Encoded in the Nuclear
871 Transcriptome. *Cell Reports*. 2017; 19(2):425–440. doi: [10.1016/j.celrep.2017.03.045](https://doi.org/10.1016/j.celrep.2017.03.045).


872 **Urasaki A**, Asakawa K, Kawakami K. Efficient transposition of the Tol2 transposable element from a single-copy
873 donor in zebrafish. *Proceedings of the National Academy of Sciences of the United States of America*. 2008;
874 105(50):19827–19832. doi: [10.1073/pnas.0810380105](https://doi.org/10.1073/pnas.0810380105).

875 **Wei T**, Qiang C, Min YI, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins
876 for effective tissue specific genome editing. *Nature Communications*. 2020; p. 1–12. <http://dx.doi.org/10.1038/s41467-020-17029-3>, doi: 10.1038/s41467-020-17029-3.

877 **Wu X**, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch
878 R, Zhang F, Sharp PA. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. *Nature
879 Biotechnology*. 2014; 32(7):670–676. doi: [10.1038/nbt.2889](https://doi.org/10.1038/nbt.2889).


880 **Ying ZM**, Wang F, Chu X, Yu RQ, Jiang JH. Activatable CRISPR Transcriptional Circuits Generate Functional RNA
881 for mRNA Sensing and Silencing. *Angewandte Chemie - International Edition*. 2020; 59(42):18599–18604. doi:
882 [10.1002/anie.202004751](https://doi.org/10.1002/anie.202004751).

883

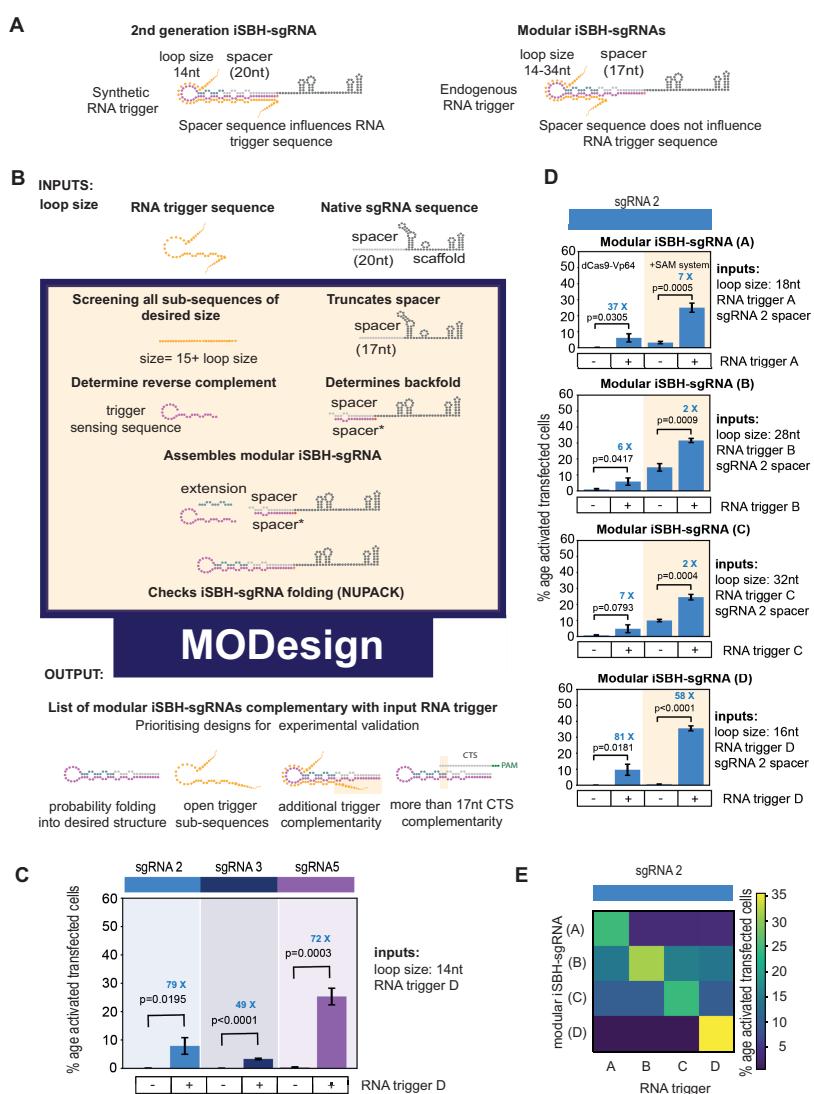

Figure 1. First generation iSBH-sgRNAs detect short RNA triggers in HEK293T cells. **A.** Native sgRNA sequences are composed of spacer and scaffold sequences (Jinek *et al.* (2012)). iSBH-sgRNAs fold into complex secondary structures that interfere with the Cas9 ability to recognise target DNA sequences (OFF-state, Ferry *et al.* (2017)). iSBH-sgRNAs were designed by extending the 5' end of the spacer sequence with a 14nt loop and a spacer* sequence partially complementary with the spacer. Bulges were also introduced within the iSBH-sgRNA sequence in order to ensure that the interaction between the spacer* and RNA trigger is more energetically favourable. In the ON-state, iSBH-sgRNAs recognise complementary RNA triggers and become activated, enabling Cas9 to perform its function. Short RNA triggers are complementary with the iSBH-sgRNA loop and spacer* sequence. **B.** Inside cells, RNA triggers are expected to bind to complementary iSBH-sgRNAs, inducing iSBH-sgRNA activation. Activated iSBH-sgRNAs are recognised by CRISPRa effectors and drive ECFP production from a fluorescent reporter. In this particular example, activated iSBH-sgRNAs interact with dCas9-Vp64 (Maeder *et al.* (2013)) and drive ECFP production from an 8xCTS-ECFP reporter (Nissim *et al.* (2014)). Following reporter induction, ECFP production could be monitored by Flow Cytometry. **C.** Starting from five different sgRNA spacer sequences, we designed 5 different iSBH-sgRNA sequences. For each iSBH-sgRNA, corresponding RNA triggers and 8xCTS-ECFP reporters were also designed. Ability of first-generation iSBH-sgRNA designs to drive expression of the ECFP reporter was assessed in the absence or presence of complementary RNA triggers. Experiments were carried out using dCas9-Vp64 and 8xCTS-ECFP reporters. **D.** An orthogonality test was performed, in which the 5 iSBH-sgRNA designs were tested against all 5 RNA triggers. Activation is only detected in the presence of matching iSBH-sgRNA and RNA trigger pairs. Figure shows mean +/- standard deviation values measured for 3 biological replicates. Values above bars represent fold turn-on values for iSBH-sgRNA activation (blue) and *p*-values (black) determined through unpaired t-tests.

Figure 1—figure supplement 1. First generation iSBH-sgRNAs detect short RNA triggers in HEK293T cells.

Figure 2. Second generation iSBH-sgRNAs detect longer RNA triggers in HEK293T cells. **A.** Longer RNA triggers complementary with first-generation iSBH-sgRNAs have a 34nt sequence complementary with the loop and spacer* iSBH-sgRNA sequences. Triggers also have a 100nt flanking sequence immediately downstream from the iSBH-sgRNA complementary region. **B.** Second-generation designs contain a longer hairpin structure. A 10nt extension region was inserted between the spacer and loop sequences. This enabled increasing the size of the backfold sequence to 30nt. Longer RNA triggers complementary with 2nd generation iSBH-sgRNAs were designed, including triggers with 100nt 3' flanks, 100nt 5' flanks as well as 100nt 5' and 3' flanks. All trigger designs contain 44nt sequences complementary with the loops and backfold of the second-generation iSBH-sgRNAs. **C.** Ability of first-generation and second-generation iSBH-sgRNAs to sense 100nt 3' flank triggers was assessed. **D.** Ability of second-generation iSBH-sgRNAs to detect different triggers with 100nt 5' flanks and 100nt 5' and 3' flanks was assessed. Figure shows mean +/- standard deviation values measured for 3 biological replicates. Values above bars represent fold turn-on values for iSBH-sgRNA activation (blue) and p-values (black) determined through unpaired t-tests.

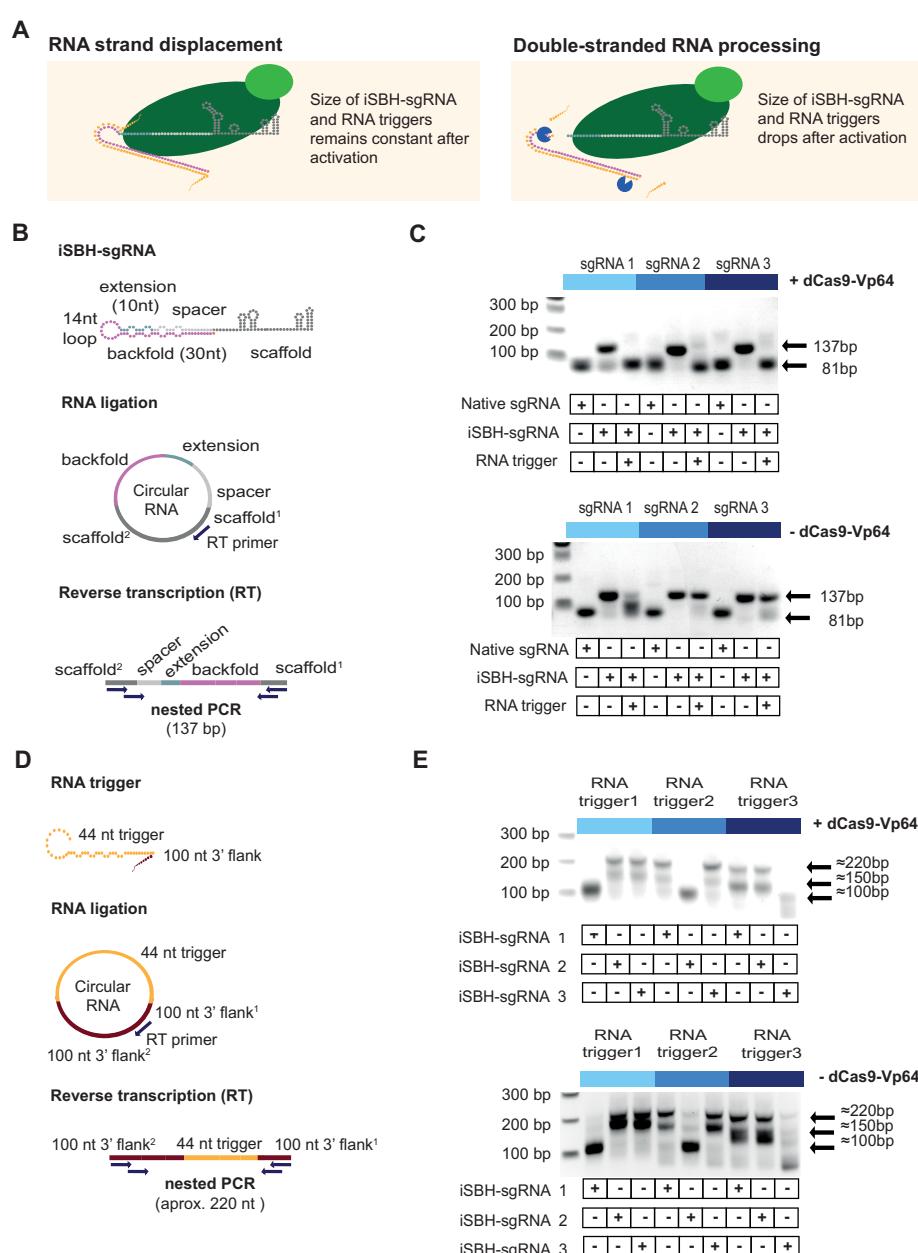

Figure 2—figure supplement 1. CRISPRa reporters of choice influence ON/OFF ratios of second generation iSBH-sgRNA designs while detecting short RNA triggers.

Figure 3. Modular iSBH-sgRNA designs enable spatial separation of spacer and trigger-sensing sequences. **A.** In second-generation iSBH-sgRNAs, RNA triggers are complementary with the iSBH-sgRNA backfolds, thus sgRNA spacers influence RNA trigger sequences. In modular iSBH-sgRNAs, design constraints were eliminated as triggers are only complementary with the iSBH-sgRNA loop and first 15nt of the backfold. To increase affinity between iSBH-sgRNAs and RNA triggers, we increased loop sizes. Separation between trigger-sensing and spacer sequences was also achieved by reducing the complementary between the spacer sequence and CTS from 20 to 17nt. **B.** MODesign enables users to design modular iSBH-sgRNAs starting from input RNA triggers, sgRNA spacers and loop sizes. MODesign calculates the size of trigger-sensing sequences and creates a list of trigger sub-sequences having that size. Script determines the reverse complement of these sequences that could act as trigger-sensing sequences. iSBH-sgRNAs are assembled through adding spacer*, trigger-sensing sequences, extension, spacer and scaffold sequences. Extension sequences are engineered to be partially complementary with trigger-sensing sequences. Before producing a list of output sequences, iSBH-sgRNA folding is checked using NuPACK (Allouche (2012)). Simulations could result in multiple modular iSBH-sgRNA designs. Designs chosen for experimental validation were selected based on the probability of folding into the iSBH-sgRNA structure and lack of trigger secondary structures in the iSBH-sgRNA complementary region. Priority was also given to iSBH-sgRNAs that, by chance, displayed extra complementarity between RNA triggers and the last 15nt of the backfold or more than 17nt complementarity with the CTS. **C.** MODesign simulations were carried out for designing iSBH-sgRNAs capable of sensing trigger RNA D (146nt eRNA sequence). In each simulation, a different sgRNA sequence was used and a desired loop size of 14nt was kept constant between simulations. Selected designs were transfected to HEK293T cells together with the RNA trigger D sequence (expressed from a U6 promoter). Tests were carried out using dCas9-Vp64 and 8xCTS-ECFP reporters. **D.** MODesign simulations were run for designing iSBH-sgRNAs capable of sensing trigger RNA A (146nt repetitive RNA sequence), trigger RNA B (267nt repetitive RNA sequence), trigger RNA C (268nt repetitive RNA sequence) and trigger RNA D (146nt eRNA sequence). Tests were performed using different CRISPRa effectors. **E.** 4 modular iSBH-sgRNAs (A,B,C and D) were co-transfected to HEK293T cells and all iSBH-sgRNA: RNA trigger combinations were tested. Figure shows mean +/- standard deviation values measured for 3 biological replicates. Values above bars represent fold turn-on values for iSBH-sgRNA activation (blue) and p-values (black) determined through unpaired t-tests.

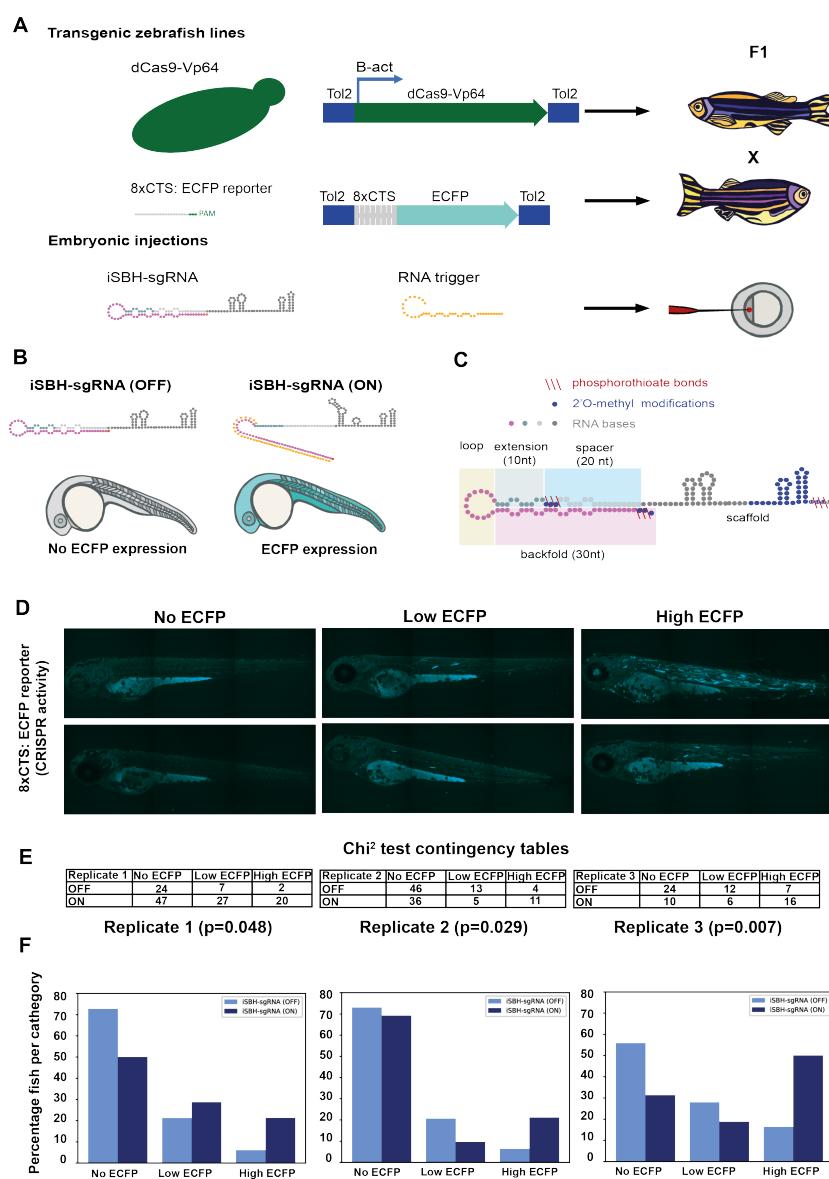

Figure 3—figure supplement 1. Modular iSBH-sgRNA designs enable spatial separation of spacer and trigger-sensing sequences.

Figure 3—figure supplement 2. Modular iSBH-sgRNAs are specifically activated by complementary RNA triggers.

Figure 4. Insights into the mechanism of iSBH-sgRNA activation. **A.** Interaction between iSBH-sgRNAs and RNA trigger leads to the formation of long double-stranded RNA structures. A potential activation mechanism might involve RNA strand displacement and formation of stable molecular complexes between the iSBH-sgRNA and the RNA trigger sequence. Supposing this scenario is correct, the size of the iSBH-sgRNA and RNA triggers are expected to remain constant after activation. A second scenario involves double-stranded RNA processing. If this is correct, iSBH-sgRNAs and RNA trigger sequences are expected to be truncated. **B.** iSBH-sgRNA circularisation assay. Cells were transfected with system components, followed by RNA extraction and ligation. Reverse transcription (RT) was performed on circular RNAs by using RT primers complementary with the sgRNA scaffold. The size of the RT products was determined by two sequential PCR reactions. PCR primers annealed with the scaffold² and scaffold¹ sequences, which are the scaffold sequences found downstream and upstream from the RT primer. For a full-length iSBH-sgRNA sequence, a second PCR product of 137bp is expected, while for a non-engineered native sgRNA, an 81nt product is expected. **C.** Determining the size of the iSBH-sgRNA after activation. Assays were performed in the presence or absence of complementary 44nt, short RNA triggers and dCas9-Vp64. Non-engineered, native sgRNA controls were also included. **D.** RNA trigger circularisation assay. After transfection, RNA extraction and RT, RNA trigger size was determined by nested PCR. PCR primers annealed with the 100nt 3' flank² and 100nt 3' flank¹ sequences, which are the flank sequences downstream and upstream from the RT primer. For full-length RNA triggers, 220bp PCR bands are expected. **E.** Determining the size of the RNA triggers after activation. Assays were performed in the presence or absence of a complementary iSBH-sgRNAs and dCas9-Vp64.

Figure 4—figure supplement 1. Sequencing results for iSBH-sgRNA circularisation assays.

Figure 5. Testing the ability of second generation iSBH-sgRNA designs to detect short RNA triggers *in vivo*. **A.** Transgenic lines encoding dCas9-Vp64 and 8xCTS-ECFP reporters were created. Embryos resulting from in crossing first generation (F1) transgenics were injected with second generation chemically synthesised iSBH-sgRNAs and RNA triggers. **B.** Second-generation iSBH-sgRNAs were injected into transgenic zebrafish embryos with or without corresponding short RNA triggers. In the absence of RNA triggers (iSBH-sgRNA OFF), embryos are expected to display no ECFP signals, while trigger presence (iSBH-sgRNA ON) should promote ECFP expression. **C.** Figure presents our second strategy for chemically modifying iSBH-sgRNAs. This strategy involved protecting the iSBH-sgRNA 5' end as well as the 5'end of the sgRNA spacer. These modifications were used together with sgRNA scaffold modifications. **D.** In order to quantify the impact of RNA triggers on iSBH-sgRNA activation, we grouped fish according to the intensity of ECFP signals. At 3 days post-fertilisation, embryos displaying no, low or high ECFP expression were counted. **E.** Embryos injected with iSBH-sgRNAs and non-complementary (iSBH-sgRNA OFF) or complementary RNA triggers (iSBH-sgRNA ON) were scored according to their ECFP intensity. Row number counts determined for 3 experimental replicates are displayed as part of Chi² contingency tables. P values displayed were determined using Chi² test. **F** Figure shows percentage of embryos recovered in each category for the 3 experimental replicates. Percentage of embryos with no ECFP expression varied between the 3 experimental replicates. This was due to the fact that both 8xCTS-ECFP and dCas9-VP64 transgenes are necessary for successfully expressing ECFP. These alleles segregate in a Mendelian fashion and our adult transgenic fish encode variable copy numbers of the transgene. For each individual replicate, we used embryos with identical genetic backgrounds for testing the iSBH-sgRNA (OFF) and iSBH-sgRNA (ON) conditions. Nevertheless, genetic backgrounds were different between the 3 experimental replicates.

Figure 5—figure supplement 1. Optimising sgRNA delivery to zebrafish embryos.

Figure 5—figure supplement 2. Testing different iSBH-sgRNA chemical modifications *in vivo*.