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Abstract

Alzheimer’s disease (AD) is the most common cause of dementia in older adults. Neuropathological and
imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates,
but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell
populations affected by disease remain coarsely understood. The current study harnesses single cell and
spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the
impact of disease progression on middle temporal gyrus cell types. We used image-based quantitative
neuropathology to place 84 donors spanning the spectrum of AD pathology along a continuous disease
pseudoprogression score and multiomic technologies to profile single nuclei from each donor, mapping
their transcriptomes, epigenomes, and spatial coordinates to a common cell type reference with
unprecedented resolution. Pseudo-progression analysis showed two major epochs corresponding with a
slow early increase in pathology and a later exponential increase that correlated with cognitive decline.
The early phase included inflammatory microglial and reactive astrocyte component, as well as a selective
loss of Sst+ inhibitory neuron types in superficial cortical layers, loss of myelinating oligodendrocytes, and
up-regulation of a re-myelination program by OPCs. The later phase involved loss of excitatory neurons
and Pvalb and Vip neuron subtypes also predominantly in superficial layers. These cell vulnerabilities were
also seen in prefrontal cortex and replicated by other independent studies when integrated with the
BRAIN Initiative reference. Study data and exploratory tools are freely available to accelerate progress in
AD research at SEA-AD.org.
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Introduction

Alzheimer’s Disease (AD) is a complex etiology disease characterized by deposition of hallmark
pathological peptides and neurodegeneration that progress across partially overlapping neuroanatomical
and temporal axes'2. This process is generally believed to follow a stereotyped progression with Amyloid
Beta (AB) plaques starting in the cerebral cortex? and hyperphosphorylated tau (pTau) aggregation
(neurofibrillary tangles) starting in the brainstem/limbic system?. Despite being important biomarkers of
AD’ and notwithstanding decades of efforts, treatment strategies aiming to reduce the burden of these
pathological peptides have resulted in, at best, a modest impact on pathology accompanied by significant
side effects®’. Single cell and spatial genomics technologies now offer a dramatically higher resolution
analysis of complex brain tissues in health and disease that build on decades of observations in the field?,
and the first studies applying them to AD have begun to identify cellular vulnerabilities and molecular

9-17,9,18

changes with disease . These include molecular characterization of long-noted changes to

101419 partly induced by AB plaques?®, identification of excitatory neurons that

microglia'? and astrocytes
bear neurofibrillary tangles?! and that are selectively vulnerable in diseasel?, a greater appreciation for
the role of endothelial and perivascular cells’®, and a potential role for the strongly disease-associated
APOE4 allele? in regulating oligodendrocyte cholesterol biosynthesis?. However, discoveries from each
of these studies have yet to be synthesized into a robust and complete understanding of the mechanistic
underpinnings of AD because they lack a framework to relate to one another and to understand when, in
the decades long course of AD, they occur. A comprehensive assessment of the key cellular events
requires integration of multiple data modalities capable of capturing and relating changes in pathology,
gene expression, epigenomic changes, and spatial alterations in the tissue at the single cell level with high-

resolution characterization of the affected cell types.

Recent work catalyzed by the BRAIN Initiative Cell Census Network (BICCN) and Cell Atlas Network (BICAN)
has established best practices in experimental and quantitative analyses of mouse, non-human primate
and human brain using single cell genomics, spatial transcriptomics, and Patch-seq methods to
characterize cellular properties and build a knowledge base of brain cell types*2°. Over 100 cell types can
be reliably identified using single nucleus RNA-seq in any cortical area, and alignment across species shows
strong conservation of cellular architecture3®3! that allows inference of human cellular properties from
studies in experimentally tractable mouse and non-human primate models. Systematic BICCN and BICAN

28,32,33 and human brain25_27'34'35,

efforts are now producing the first brain-wide cell atlases of the mouse
providing robust and highly curated genomically-based reference cell classifications, spatial maps of
cellular distributions, and characterization of cellular properties in normal brain. These reference
classifications provide an extremely powerful foundational reference, akin to the human genome, to
understand the cellular, molecular, and epigenomic underpinnings of Alzheimer’s disease. Furthermore,
mapping to this reference allows integration across data modalities and across independent studies to
validate findings and leverage a growing knowledge base on the properties and function of cell types that

are affected in disease.

The Seattle Alzheimer’s Disease Cell Atlas (SEA-AD) consortium aims to utilize the advanced technologies
and best practices for studying human brain from the BRAIN Initiative to produce the highest-resolution,
multimodal brain-wide cell atlas of AD mapped to the BICCN foundational references. Once completed,
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the SEA-AD Atlas will enable systematic characterization and interpretation of the cellular and molecular
correlates of AD neuropathology across brain regions. Keys to achieving this goal are 1) the selection of a
high quality donor cohort, spanning the full spectrum of AD pathology, chosen from prospective
longitudinal cohort studies with well-characterized participants; 2) the use of improved tissue preparation
methods that have been shown extensively to produce high quality single nucleus transcriptomics,
epigenomics and spatial transcriptomics data?*2739313435. 3) 3 deep donor characterization strategy with
all analytical methods applied to the same donors, including quantitative image-based neuropathology,
single nucleus multiome analysis with high coverage of nuclei and reads per sample, and targeted spatial
transcriptomics; 4) mapping profiled cells to the highly granular and curated BICCN cell type reference;
and 5) validating cellular phenotypes across cortical areas and independent studies by integrating and
mapping to the same cellular taxonomy reference. By combining temporal modeling of disease severity
or progression with single nucleus genomics and spatial analyses, this approach provides the most
comprehensive understanding to date on the specific, highly granular cell types affected over the course
of disease, where those affected cells are located in tissue microarchitecture, and when they are affected
as disease progresses.

The current study focused on the middle temporal gyrus (MTG), an area involved in language and semantic
memory processing®® and higher order visual processing®”. MTG is the human cortical region currently

25,30

with the best annotated BICCN cell classification®*°, including cellular phenotype data (morphological

and physiological properties) available through Patch-seq analysis of neurosurgical specimens?®3%3°,
Numerous studies, from the seminal histopathology of Braak and Braak® to modern longitudinal studies
of tau PET imaging “°*?, demonstrate that MTG is a transition zone between aging- or preclinical AD-
related medial temporal lobe pTau and more advanced stages of AD where neocortical pTau extends

across the brain and is strongly correlated with dementia***~>°

. Optimized tissue collection and
preparation methods produced high quality human brain tissues, and thereby high-quality single nucleus
and spatial genomics data, across the range of age and AD pathology. These data were effectively mapped
to the BICCN neurotypical reference classification and used to expand that classification to include disease
cell states. Machine learning (ML)-based methods were used to quantitate the local burden of
neuropathology in analyzed samples. These data were used for pseudo-trajectory analyses to model

disease severity or progression and identify cellular and molecular correlates of disease progression.

This integrative framework around the BICCN reference and temporal modeling demonstrated robust and
highly selective neuronal vulnerabilities and changes in non-neuronal disease states as a function of
disease progression, along with a wide range of temporal molecular changes. Spatial analyses
demonstrated the co-localization of vulnerable cell populations largely in supragranular cortical layers.
Data integration to the BICCN reference allowed replication of major cellular changes across data
modalities, cortical regions, and independent studies. Overall, these analyses suggest two major epochs
with different cellular and molecular events in AD progression. The early phase involves low and linearly
increasing levels of neuropathology and increasing inflammatory microglial and reactive astrocyte states,
with a notably selective loss of Sst inhibitory neurons, loss of myelinating oligodendrocytes, and sharp up-
regulation of an OPC differentiation and re-myelination program. Donors in this phase have no cognitive
deficits, suggesting this may represent a preclinical stage of AD. The later phase involves exponentially
increasing neuropathology, selective loss of both excitatory and inhibitory neuron types, and eventually a
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broad cellular pathology accompanying rapid cognitive decline in severely affected donors. This strategy
and ability to integrate data across studies to a common reference is highly extensible and provides a
unifying framework for the AD community.
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Results

SEA-AD: Multimodal profiling Alzheimer’s disease progression across wide pathological stages

As summarized in Figure 1, to construct an integrated multimodal cellular atlas of AD and comorbid
related disorders (AD/ADRD) we generated quantitative i) neuropathological measurements, ii) single
nucleus RNAseq (snRNA-seq), ATACseq (snATAC-seq), and Multiome (snMultiome) and iii) cellularly
resolved spatial transcriptomics (MERFISH) in the middle temporal gyrus (MTG) from a cohort of 84 aged
donors that spanned the spectrum of AD pathology (including donors with no pathology and those with
both AD pathology and common co-morbidities) (Fig. 1a, Extended Data Fig. 1a). We collectively profiled
3.4 million high quality nuclei across all modalities, mapping each to one of 139 molecular cell types from
an expanded BRAIN Initiative MTG cellular taxonomy?®*® that included disease-associated states. A
continuous pseudo-progression score (CPS) from the quantitative neuropathology measurements was
constructed, which ordered donors along a neuropathological continuum, and increased discovery power
to identify molecular and cellular changes. To validate and replicate these results, we generated a similar
1.2M nuclei snRNA-seq dataset from the dorsolateral prefrontal cortex (DLPFC) in the same 84 donors,
mapping to a matched BRAIN initiative DLPFC taxonomy. This DLPFC data also allowed the use of a range
of published DLPFC AD studies as replication cohorts. We uniformly re-processed 10 publicly available
datasets that applied snRNA-seq to 4.3M high quality nuclei from the DLPFC of 707 additional donors that
also spanned the spectrum of AD pathology to validate the principal experimental findings. These
multimodal datasets (including both raw and processed data), tools to explore them, and tools to map
new datasets to this new cellular taxonomy are all available at SEA-AD.org.

The SEA-AD cohort was derived from longitudinally characterized research brain donors (mean
postmortem interval=7.0 hrs, Extended Data Fig. 1b) from the community-based Adult Changes in
Thought (ACT) study and the University of Washington (UW) Alzheimer’s Disease Research Center
(ADRC)*Y™®, Donors were included in the study if their death occurred within the specific time period of
data collection (Supplementary Table 1). Brains were collected using highly optimized brain preparation
methods that enable exceptionally high-quality snRNA-seq, snATAC-seq, and MERFISH profiling?>=27343,
To assess donor neuropathology, AD has been classically staged by AB plaque distribution (Thal phase),
neurofibrillary tau tangle distribution (Braak stage), or neuritic plaque density (CERAD score). To account
for variability in the rate of plague and tangle formation across individuals, a composite AD
Neuropathological Change (ADNC) scale was developed by the National Institute on Aging — Alzheimer’s
Association (NIA-AA) that uses Thal, Braak, and CERAD to categorize donors as either not having AD or
having low, intermediate, or high levels of pathology. SEA-AD includes donors at each pathological level
(9 Not AD, 12 Low, 21 Intermediate, 42 High ADNC) that were all aged (min. age at death=65, mean=88,
Fig. 1b, top). The cohort contained more female donors (51 females, 33 males), particularly in those with
high ADNC (29 females, 13 males), consistent with known prevalence of AD in females®%® (Fig. 1b,
middle). Donors with an APOE4 allele made up nearly half (20 of 42) of High ADNC cases, nearly a quarter
(5 of 21) of Intermediate cases, and no Low ADNC or Not AD cases (Fig. 1b, bottom), consistent with it
being a primary risk factor for late onset AD?. Braak stage, Thal phase, and CERAD increased as expected
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with ADNC (Fig. 1c, left). Not everyone with AD progresses to develop dementia®°¢

, although the level
of pathology is correlated with cognitive decline. Consistent with this, nearly three-quarters (31 of 42) of
High ADNC cases had developed dementia prior to death, versus only a third in Intermediate (7 of 21) and
Low (4 of 12) ADNC cases, and none in Not AD cases (Fig. 1c, middle). Donors with any level of Lewy body
disease (LBD), vascular pathology, or limbic-predominant age related TDP-43 encephalopathy (LATE) were
included as these conditions are common co-morbidities in AD patients®*®’. Roughly half the cohort (42
of 84) had 1 or more co-pathology (Fig. 1c, right), enabling exploration of features common across the full

spectrum of AD pathology with and without co-pathology.

Nearly all (82 of 84) SEA-AD donors had high pre-sequencing quality control metrics (e.g., brain pH, RIN
scores, and sequencing library yield) across the whole range of disease severity (Extended Data Fig. 1b).
The 2 outlier samples exhibited low RIN values and brain pH and were therefore excluded from further
analysis. Basic post sequencing metrics, such as the number of genes and accessible chromatin regions
detected per cell, were also uniformly high across disease severity (Extended Data Fig. 1c), suggesting
there is no inherent tissue quality degradation related to advanced age and neuropathology in most
donors. Principal component analysis (PCA) on the detailed snRNA-seq and snATAC-seq library-level
metrics did, however, identify a subset of high pathology donors (11 of 42, 26.2%) that had lower quality
data in both modalities (Fig. 1d, Extended Data Fig. 2a). These donors had steeper decline in memory
function in their final years of life compared to other high pathology donors (slopes in memory decline =
—0.15in SA donors versus —0.11 in all other high ADNC donors, p-value with Not AD and Low ADNC donors
as base outcome = 0.01 versus 0.15, Fig. 1e). Longitudinal cognitive testing in our cohort spanned four
cognitive domains (memory, executive, language and visuospatial function®*®°). The remaining cognitive
domains showed a similar trajectory across groups (Extended Data Fig. 2b). As part of SEA-AD, we
measure a battery of quantitative neuropathological variables (described in the next section). When
comparing these quantitative measures, these 11 donors had a pronounced reduction in NeuN
immunoreactivity (NeuN-ir) in neurons that was not due entirely to cell loss (Fig. 1f, g). This is notable as
NeuN-ir has previously been shown to be anti-correlated with pTau pathology’™. Given the steeper
cognitive decline and effects on multiple data modalities, we flagged these donors as “Severely Affected”
(SA).

Despite having more reads per nucleus, snRNA-seq libraries from these 11 SA donors had fewer unique
molecular identifiers overall, genes detected, uniquely mapped reads (which mostly reflects increased
ribosomal RNA content) and reads with introns (which reflects mRNA versus pre-mRNA content)
(Extended Data Fig. 2a). This suggested that cells from the 11 SA donors had less nuclear-localized vs.
cytosolic-localized RNA content. Consistent with this, nuclei from the 11 SA donors had lower levels of
nuclear-localized RNA”! (e.g., MALAT1 and MEG3) and higher levels of cytosolic localized RNA (e.g., RNA
from mitochondrially encoded genes) when compared to other high ADNC donors (Fig. 1h). To disentangle
whether reduced nuclear representation was due to global transcriptional shutdown or degradation, we
studied the chromatin landscape in these donors. We computed peaks within each high pathology donor
and assessed their similarity by Jaccard distance. The chromatin landscape also segregated the 11 SA
donors from matching high pathology donors (Extended Data Fig. 2c). We computed consensus peaks
across the 11 donors and across matching High ADNC donors (Methods) and saw no significant difference
in peak-length distribution between groups (Extended Data Fig. 2d). However, the 11 SA donors showed
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many fewer peaks (Fig. 1i), which were almost entirely a subset of peaks seen in the high pathology
donors. Notably, there were a small number of peaks (n=1,574) unique to the SA donors that were
enriched for binding motifs for transcription factors associated with inflammation, de-differentiation and
AD pathology (Extended Data Fig. 2e). Taken together, these results suggest that SA donors, which
suffered from more rapid cognitive decline compared to other high pathology donors, possess nuclei that
underwent global chromatin repression which led to shutdown of transcription, consistent with previous
reports studying familial AD in which chromatin re-organization triggered neuronal identity repression
and de-differentiation’?. Since SA donors showed systematically lower data quality (Extended Data Fig
2f), we excluded these donors from analyses on gene expression changes (described below).

Quantifying the progression of AD severity

Neuropathological staging is the gold standard for diagnosing AD and relies on semi-quantitative multi-
regional assessments of select pathological proteins®*’>74. However, their semi-quantitative nature fails to
capture the heterogeneity and regional burden of pathology present among donors at each stage. Similar
to the concept of an aggregate score for AD staging (ADNC) established by the NIA-AA®*, we aimed to
create a quantitative metric of the local burden of pathology using neuropathological variables (QNP). By
modeling disease severity as a continuum that orders the donors from low to high burden of pathology,
we could identify earlier and later molecular and cellular events with respect to pathological burden. In
addition, a continuous scale of pathological progression yields higher discovery power in statistical
analyses, surpassing the effectiveness of traditional categorical staging metrics.

To quantitatively measure neuropathological features that accompany AD progression we used machine
learning (ML) approaches to create a mask for each immunohistochemical stain and quantify
neuropathological variables (Extended Data Fig. 3a). This included stains for well-established markers
used for conventional AD neuropathologic staging, including pTau (AT8) for neurofibrillary tangles and AB
(6e10) for amyloid plaques, as well as additional markers for associated comorbid pathologies and cellular
changes. These included pTDP-43 for limbic-predominant, age-related TDP-43 encephalopathy (LATE),
alpha synuclein (a-Syn) for Lewy body disease, IBA1 for microglia (including activated states), GFAP for
astrocytes (including reactive states), NeuN for neurons, and hematoxylin and eosin (H&E) to assess
cytopathology and white matter integrity (Fig. 2a, b, Supplementary Table 2). These latter cellular
markers capture aspects of pathology not typically used in AD neuropathologic staging.

The number of AP plagues and pTau+ neurofibrillary tangle bearing neurons in each donor were
consistent with traditional staging thresholds for Braak stage and Thal phases, respectively (Extended
Data Fig. 3b). However, at higher Braak stages and Thal phases we observed high variability in pathological
burden that underscored the limitation of classical staging (as has also been observed with biochemical
methods’®) (Extended Data Fig. 3c). pTDP-43 and a-Syn pathologies were detected in the relatively small
number of donors with high stage LATE-NC’® and neocortical LBD, respectively (Extended Data Fig. 3d).
Cross-correlation of the QNP variables followed by hierarchical clustering revealed 8 biologically coherent
clusters (Fig. 2c), with 2 anti-correlated clusters: cluster 3, which contained measurements of AD-related
pathological proteins (i.e. diameter of AB plaques, number of AR plaques or pTau-bearing cells) and cluster
7, which contained NeuN-ir in neurons related variables (i.e. number of NeuN-ir nuclei per area).
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We were inspired by biophysical studies’’ that suggested that pathology aggregates exponentially in AD
to construct a Bayesian model to infer AD pathological burden from the trajectory of each QNP variable.
The models assigned a continuous pseudo-progression score (CPS) to each donor that ranged from 0 to 1
(Extended Data Fig. 4a), accounting for measurement noise and inferring the posterior distribution of all
parameters with exponential dynamics. Along CPS, the number of pathological pTau-bearing neurons and
AB plaques increased exponentially across donors (Fig. 2d, Extended Data Fig. 4b), with only small
increases early in CPS and larger increases later. There was no clear relationship to pTDP-4378 and a-Syn
levels. Consistent with the anti-correlation across QNP variables mentioned before, the number of NeuN-
ir nuclei decreased along CPS, but had linear dynamics, suggesting some neuronal loss may precede large-
scale plaque deposition and neurofibrillary tangle formation. Later in CPS, in donors with the highest
pathological burden, we observed increased cellularity (i.e. the number of nuclei detected per area) and
increased number of GFAP-positive nuclei (Fig. 2e, Extended Data Fig. 4b), consistent with later-stage
astrogliosis. Importantly, CPS correlated with independent clinical data not included in the model,
comprising Braak stage, Thal phase, ADNC score, and cognitive scores (CASI), but not other covariates,
such as age (Fig. 2f, Extended Data Fig. 4c).

The CPS score allowed us to revisit the complex cross-correlation structure seen in QNP variables and
understand their dynamics (Fig. 2c). We divided CPS into 5 equal bins and determined whether significant
changes occurred in each with a generalized additive model (GAM). Cluster 3 encompassed several
variables related to plaque and tangle pathology that mostly had their first significant increases later in
CPS (Fig. 2g). Specifically, CPS=0.4 to 0.6 (bins 2 and 3) appeared to be a critical point when pTau-bearing
cells and AB plaques started accumulating more substantially. It was also the point in CPS when donors
started exhibiting increasing cognitive deficits. Within cluster 3, the diameter of AR plaques increased
much earlier than other variables (Fig. 2h), having a significant change starting at CPS=0.2 (bin 1). This
suggested that while plague number was still low in early CPS, other AB species such as peptides and
oligomers may be present. NeuN immunoreactivity decreased significantly along CPS in all cortical layers
(Fig. 2i). Further, we observed an interaction between clusters 1 and 3 (Fig. 2c, blue box, Extended Data
Fig. 4d) that captures the accumulation and colocalization of pTDP43- inclusions in pTau-bearing cells, as
previously described’®. Most remaining variables displayed significant increases after CPS bin 3 (Extended
Data Fig. 4e). These observations illustrate that CPS incorporates pathologic burdens and cytologic
changes to effectively capture AD severity in a continuous quantitative metric. Two epochs of AD emerge
along CPS: (1) one early epoch where donors have low levels of plague and tangle pathology and are
cognitive unaffected but do have some neuronal loss and evidence of early amyloid pathology and (2) one
late epoch where donors have markedly increased levels of AD pathology, neuronal loss, and cognitive
impairment.

Constructing an integrated, multi-modal AD atlas in MTG

Prior BICCN efforts identified 151 transcriptionally distinct cell types and states in the MTG from young,
neurotypical reference donors®, hierarchically organized into 24 highly separable subclasses (e.g., L2/3
intratelencephalic-projecting excitatory neurons or L2/3 IT) within 3 main classes (excitatory neurons,
inhibitory neurons, and non-neuronal cells). We used this BICCN reference as a base to construct a cellular
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taxonomy for SEA-AD. In order to map SEA-AD data to cell types consistently across all 84 donors, we first
defined robust transcriptional “supertypes” in the BICCN reference. These supertypes represent the cell
types that could be reliably re-identified in reference data sets (mean F1 score=0.91) using hierarchical
probabilistic Bayesian mapping methods®®3(Extended Data Fig. 5a, b). Cell types not re-identified in
reference data were unlikely to be consistently mapped in SEA-AD data. The cellular resolution of
supertypes surpasses the level of analysis traditionally conducted in AD research, which typically analyzes
cellular and molecular changes at our subclass level. We then mapped SEA-AD snRNAseq and snMultiome
nuclei to the 125 defined supertypes using the same mapping method above (Fig. 3a). After removing low
quality nuclei (Extended Data Fig. 5¢), we noted some non-neuronal nuclei that had systematically lower
mapping scores. This suggested cell types or states may be present in the SEA-AD dataset that were not
captured in the original BICCN reference. We used a clustering-based approach to identify and add 14
non-neuronal cell types or states to our final SEA-AD taxonomy, resulting in 139 supertypes (Fig. 3a,
Extended Data Fig. 5d,e; Methods). DLPFC snRNAseq data from the same SEA-AD donors was mapped to
a matched DLPFC BRAIN Initiative cellular taxonomy using identical methods. We then extended our
transcriptionally defined supertypes across snRNA-seq, snATAC-seq, and snMultiome datasets to
construct a joint multiomic representation®® from both neurotypical reference and diseased donors
(Extended Data Fig. 6a-e).

To define the spatial distribution of supertypes in the MTG across AD and to enable orthogonal validation
of cellular changes in matched SEA-AD donors, we generated a large-scale, cellularly resolved spatial
transcriptomic dataset that contained 69 sections from a subset of SEA-AD donors, sampled across levels
of AD pathology (n=28, Extended Data Fig. 7a). Tissue sections were profiled using a 140 gene panel
(Supplementary Table 3) designed to capture a published MTG reference taxonomy*° and using a highly
reproducible MERFISH-based data collection and analysis pipeline (Extended Data Fig. 7b). High quality
data was obtained across disease severity, solving challenges present in spatial transcriptomic platforms
profiling human tissue®, such as the removal of autofluorescence artifacts that are exacerbated with age
and disease. To QC our spatial data, we compared spatial transcript counts across sections to bulk RNA-
seq from brain samples from a subset of donors (mean correlation=0.62, Extended Data Fig. 7c), and
correlated transcript counts across whole tissue sections with those within segmented cells (mean
correlation=0.85, Extended Data Fig. 7d). This high correlation across quality control metrics was also
present when assessing within donor technical reproducibility (mean correlation=0.98, Extended Data
Fig. 7e). Next, we benchmarked supertype mapping ability using only the 140 gene panel in reference
snRNA-seq data. Subclasses were readily identified (with F1 scores uniformly near 1, Extended Data Fig.
7f) and supertype mapping accuracy decreased slightly (134 of 139 with an F1 score above 0.7). The
MERFISH gene panel failed to resolve 5 non-neuronal types absent in the original MTG reference. After
mapping each cell in the spatial transcriptomic dataset to subclasses and supertypes, we found
concordance between expected and mapped spatial distributions; for example, excitatory IT subclasses
were restricted to expected cortical layers, and matched proportions observed in previous studies of
neurotypical MTG tissue®®2® (Extended Data Fig. 7g, h). There was also high qualitative correspondence
in gene expression across subclasses between donor matched snRNA-seq and MERFISH data (Extended
Data Fig. 7i). The consistency seen across quality control and mapping metrics provided confidence in the
application of our MERFISH platform across SEA-AD donors, even in those with higher levels of pathology.
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Vulnerable and disease associated supertypes

Inspired by decades of observations in the field'87-%>, we first asked whether specific supertypes are
changed in their relative abundance through AD progression. We used scCODA, a Bayesian method®® that
accounts for the compositional nature of relative abundances (e.g. if one cell type increases all others
decrease in relative abundance), to test for changes across cognitive status, ADNC and CPS in the MTG
snRNA-seq, snATAC-seq, and snMultiome datasets. This analysis was conducted separately for neuronal
and non-neuronal cells as they are sorted at different ratios (70% neurons, 30% non-neurons). Using this
approach, we identified multiple neuronal and non-neuronal supertypes that decrease in relative
abundance as a function of disease severity, while a few highly specific non-neuronal supertypes increased
(Fig. 3b). Furthermore, a similar pattern of supertype abundance changes is seen for all three metrics of
disease, with 36 of 139 (26%) supertypes significantly affected (mean inclusion probability > 0.8) across
each disease-related covariate. While there was overlap in affected supertypes across disease-related
covariates, effect sizes across CPS were greater. The number and effect size of affected supertypes were
significantly less in other covariates and we observed consistent results with and without the SA donors
and in other single nucleus data modalities (Extended Data Fig. 8a,b, Supplementary Table 4).

The extensive annotation of the BICCN reference (which SEA-AD is built upon) enabled meaningful
interpretation of the types of cells affected in AD. We found that only a subset of supertypes were affected
from most subclasses, highlighting the necessity of analyzing transcriptomic datasets at greater cellular
resolution. The vulnerable neuronal supertypes (defined as those with statistically significant proportion
decreases) include a subset of excitatory intratelencephalic (IT) neuron types largely in layer 2/3 (L2/3 IT),
a subset of GABAergic interneuron types derived from the medial ganglionic eminence (MGE; Sst and
Pvalb) and caudal ganglionic eminence (CGE; Vip, Lamp5 and Sncg) (Fig. 3b, left). Among non-neuronal
affected populations, we observed increases in one microglial and one astrocytic supertype and decreases
in one oligodendrocyte and one OPC supertype (Fig. 3b, right). We related the loss of vulnerable neurons
and emergence of disease-associated non-neuronal states to the neuropathological changes (noted
above) using CPS. Somatostatin inhibitory (Sst) interneurons and oligodendrocytes supertypes decreased
early and continuously with CPS, with their changes occurring concurrent with the early increase in plaque
size but before the exponential ramp in the number of plaques and tangles, followed by microglial and
astrocyte supertypes increases (Fig. 3¢, left). Multiple affected neuronal subclasses decreased later in CPS,
concurrent with the exponential increment in plague and tangle pathology. L2/3 IT neurons and Pvalb
interneurons (which are common synaptic partners) decrease sharply together at high CPS.

To determine whether these cellular changes were replicated in other cortical areas, we tested for
abundance changes with CPS in our snRNA-seq dataset from DLPFC in identical donors. DLPFC has a lower
pathological burden than MTG at the same disease stage, so we expected both the number and effect
sizes of affected types to be lower. More than half the supertypes affected in MTG were also changed in
DLPFC (32/58), with these supertypes accounting for nearly all those undergoing changes in DLPFC (32/34)
(Fig. 3b). When we related the dynamics of each supertypes change in the DLPFC with CPS they showed
remarkable similarity across regions (Fig. 3¢, left). Finally, we used our spatial transcriptomics dataset,
collected from a subset of SEA-AD donors, to investigate changes in neuronal populations affected in AD,
corroborating the vulnerability of specific supertypes. The relative abundance of affected Sst neurons
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were highly correlated (correlation = 0.84) between snRNAseq and MERFISH datasets (using 28 donors for
which both modalities were profiled, Fig. 3d, left). Together, these analyses revealed a consistent, early,
and continuous decline in these Sst supertypes across modalities (Fig. 3d, right) and demonstrate that
there is a robust and consistent cellular signature of AD severity that involves selective cell populations
affected differentially over disease progression.

An integrated atlas of community AD data

Previous studies have described AD-associated molecular and cellular changes 11137189799 Kbyt diversity
in cohort selection, experimental design, and data processing techniques have made cross-study
comparisons challenging. To further replicate our results using multiple studies, we obtained snRNA-seq
data and associated donor metadata from DLPFC from 10 additional AD studies spanning 707 donors®™
1113-17.97.98 Harmonizing metadata across donors enabled direct cohort comparison, revealing that most
studies span the spectrum of plaque and tangle pathology (Fig. 4a, top and Extended Data Fig. 9a). SEA-
AD contained a similar distribution of donors with respect to neuritic plaques but a greater fraction of
donors with larger neurofibrillary tangle spread (Braak stages V and VI). Donors in these Braak stages have
neurofibrillary tangle pathology that extends to the DLPFC (as well as other cortical areas outside of the
temporal pole), making them critical to understanding AD progression in these regions. Also notable, with
rare exceptions!!, the fraction of donors in each cohort with an APOE4 allele, clinically diagnosed
dementia, and severe co-morbidities were similar (Fig. 4a, bottom and Extended Data Fig. 9a).

SEA-AD aimed to profile many nuclei per donor with deep sequencing of libraries to drive high gene
detection. Common re-processing of raw sequencing reads and quality control enabled direct comparison
of data quality in the combined 5.5 million cells/nuclei across studies. SEA-AD was successful in
simultaneously profiling a relatively large number of donors, number of overall nuclei, and number of
nuclei per donor, while also having high sequencing depth and gene detection per nucleus (Fig. 4b,
Extended Data Fig. 9b). To place these datasets into a single cellular nomenclature, we mapped them to
the DLPFC BRAIN Initiative cellular taxonomy using the same hierarchical approach as above and
computed marker-based signature scores for each supertype in each dataset (Extended Data Fig. 9¢c). In
all but 1 dataset (Olah et al), both model confidences and supertype signature scores were uniformly high
across types (Fig. 4c), indicating strong consistency in mapping across datasets. We qualitatively visualized
these results by constructing integrated representations across all cells and across cells in each cell type
neighborhood (Fig. 4d and Extended Data Fig. 9d).

Next, we tested for changes in supertype abundance along ADNC in two publicly available studies (Mathys
et al and Green et al) with enough donors to reveal statistically significant changes®. Of the 34 supertypes
that were significantly changed in the DLPFC in SEA-AD along CPS, 8 were also changed in these studies
(Fig. 4e, Extended Data Figs. 8a, 9e, Supplementary Table 4). This included 5 of the Sst interneuron
supertypes and the 1 Microglia supertype that were changed early in CPS, as well as Lamp5 interneuron
and L2/3 IT excitatory neuron supertypes that were decreased later. Only changes in oligodendrocytes
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had contradictory significant effect sizes (decreasing in both the MTG and DLPFC of SEA-AD and increasing
in both Mathys et al and Green et al), which will require deeper collaboration and investigation to resolve
and may be related to differences in tissue dissection. Effect sizes were consistently lower in these
datasets, more so than could be explained by using ADNC versus CPS alone (compared to Fig. 3b). The
difference may relate to both studies having a lower fraction of donors with DLPFC tangle pathology (i.e.
Braak stages V and VI), but also to sampling fewer nuclei per donor. The reduced nuclei per donor limited
capture of each supertype consistently across donors in both studies (roughly 30% of supertypes were
missing in at least a quarter of donors compared to only 4% in SEA-AD) (Fig. 4f). Significant changes were
only detected in supertypes present in at least 75% of donors across SEA-AD and both publicly available
datasets (Fig. 4g), suggesting this sparsity was particularly detrimental. Notably, some of the 34
supertypes that were not replicated had non-significant effect sizes that were directionally consistent with
SEA-AD, such as Sst_20.

Gene expression dynamics across supertypes and AD pseudo-progression

Numerous studies have implicated changes in specific molecular processes and pathways with AD,
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’

including mitochondrial function lipid biosynthesis , proteostasis , intracellular

10112 “inflammation?!3-11°

trafficking , and more. To study the dysregulation of these processes by disease
in a supertype-specific fashion, we tested for gene expression changes along CPS across each of the 139
supertypes (Extended Data Fig. 10a, Supplementary Tale 5). We found that the number of genes with
significantly altered expression per supertype ranged from roughly 6,000 (in highly abundant IT excitatory
neurons) to 180 (Endothelial and VLMC) (Fig. 5a), the latter being close to the expected false discovery
rate. Most of the changes called significant were decreases in expression and had relatively small effect
sizes, though a handful of genes had dramatically larger changes (Extended Data Fig. 10b, left). There was
modest correlation (Pearson=0.62) between the number of nuclei in a supertype and the number of genes
called significant (Extended Data Fig. 10b, right), suggesting the noise inherent in snRNA-seq from zero
inflation is the limiting power for less abundant supertypes. Next, to characterize the dynamic molecular
changes occurring with disease, we divided CPS into the two phases of AD noted above: an earlier phase
in which pathology accumulates slowly and linearly and corresponds with a preclinical stage of disease
(most donors exhibit unimpaired cognitive performance), and a later phase in which pathology
accumulates exponentially and cognitive performance starts its decline. Comparing the average effect
sizes for how each gene changed along CPS earlier and later revealed complex temporal dynamics (Fig.

5b).

To visualize the landscape of gene expression dynamics across cell types, including their “baseline”
expression patterns, we constructed a “gene-dynamic space” encompassing each gene mean expression
and earlier and later effect sizes across CPS in all supertypes (Fig. 5c, Extended Data Fig. 10c). The
organization of the gene-dynamic space suggested that many genes changed most strongly in the cell
types they were specifically expressed in, with multiple dynamics along CPS. We discuss these cell type-
specific changes further in the next three sections below. Other parts of the gene-dynamic space were
more broadly expressed across cell subclasses and had similar dynamics across them. To better
understand these regions, we curated 31 gene sets related to molecular processes implicated in AD
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(Supplementary Table 6) and determined if any were specifically enriched. One notable region contained
nearly every nuclear encoded gene of complexes | (NADPH reductase) and IV (cytochrome oxidase) in the
electron transport chain (ETC) as well as several ribosomal genes (Fig. 5¢, bottom). Remarkably, across
nearly every type of neuron these genes decreased in expression along CPS, particularly before the
buildup of plaque and tangle pathology (Fig. 5d). Such a broad response across neurons may represent a

100,116,117

protective mechanism in an environment where production of reactive oxygen species is

particularly detrimental.
Vulnerable Sst neurons in early AD

While L2/3 IT excitatory neurons are known to develop neurofibrillary tangles and are selectively lost in
AD7394118-120 1555 of other neuronal populations has been less studied until recently®®617:121 |t remains
unclear when in AD progression vulnerable interneuron populations are lost and characterization of their
molecular identities, morphologies, tissue locations, and electrophysiological properties are incomplete.
Here we focused specifically on vulnerable medial ganglionic eminence (MGE)-derived interneurons, as
they encompass the Sst interneuron supertypes that were the earliest and most consistently vulnerable
group of neurons across datasets. MGE interneurons form a transcriptional continuum that includes two
major subclasses: Sst-positive and Pvalb-positive interneurons (Fig. 6a, left). Within this continuum,
vulnerable Sst and Pvalb supertypes were as transcriptionally similar to each other as they were to other,
unaffected supertypes within their respective subclasses (Fig. 6a, right and Extended Data Fig. 11a). As
such, hundreds of genes were expressed in both vulnerable Sst and Pvalb supertypes but not unaffected
supertypes from these subclasses (Extended Data Fig. 11b, Supplementary Table 7). Further, while Sst
and Pvalb neurons are found throughout all layers of the cortex, vulnerable supertypes from both
subclasses localized primarily to supragranular layers 2 and 3 in our spatial transcriptomics dataset (Fig.
6b,c). All Caudal ganglionic eminence (CGE)-derived interneurons (e.g. Lamp5-, Vip-, Sncg-, and Pax6-
positive neurons) and L2/3 IT neurons are also only found in upper, supragranular layers (Fig. 6b, Extended
Data Fig. 11c,d) so nearly all of the vulnerable supertypes that we identified resided in upper cortical
layers (Fig. 6b, Extended Data Fig. 11c,d).

To describe the morpho-electrical properties of vulnerable MGE supertypes, we harnessed a recently
released large-scale Patch-seq dataset profiling MTG interneurons in non-AD human donors that

3839 and remapped its cells to the SEA-AD taxonomy. Vulnerable Sst

underwent surgical resection
supertypes had higher post-spike hyperpolarization (Sag) and lower membrane polarization time
constants (Tau) compared to unaffected Sst supertypes (Fig. 6d, Extended Data Fig. 11e, Supplementary
Table 8), differences not seen between vulnerable and unaffected Pvalb supertypes (Extended Data Fig.
11f,g). HCN channel activity is involved in setting sag level and, consistent with this difference, we
observed higher HCN1 expression in vulnerable Sst supertypes in both snRNA-seq and MERFISH (Fig.
6¢,e,f). Finally, the morphological reconstructions of vulnerable Sst and Pvalb interneurons qualitatively
confirmed their supragranular localization and demonstrated that, despite their molecular similarity, they
span a wide morphological range that includes non-Martinotti cells, Sparse, Basket, Basket-like, and the
Double Bouquet cells (Fig. 6g). This molecular, electrophysiological, anatomical, and morphological
characterization provided the deepest characterization to date of selectively vulnerable interneurons,

enabling their study across several different modalities in future studies. More importantly, this level of
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resolution now allows consideration of AD progression as selective circuit dysfunction, and the
consequences on cortical function that would ensue from perturbation of specific circuit elements (as
discussed below).

We compared the early molecular changes across vulnerable and unaffected Sst supertypes (Fig. 6h).
While the vast majority of genes changed similarly in both groups, specific gene families were significantly
differentially down-regulated. Most notably, the vulnerable Sst supertypes collectively down-regulated
specific kinases (from the TK!?? and CAMK'? families) (Fig 6h, green) and E3 ubiquitin ligases (from the
HECT family*?*) (Fig 6h, blue). They did not, however, down-regulated components of ETC (Fig 6h, red)
and ribosomal genes (Fig. 6h, purple) as every other neuronal supertype did (including unaffected Sst
supertypes). In contrast, vulnerable and unaffected Pvalb supertypes had no gene families affected
differentially between them early in CPS (Extended Data Fig. 11h). In addition to the differentially affected
gene families, still other notable genes were differentially changed early in CPS, including sharp down-
regulation of neuronal growth factor (NGF) and MME specifically in vulnerable Sst supertypes (Fig. 6i).
The cognate receptor for NGF, NGFR, is expressed specifically in Oligodendrocytes and OPCs, suggesting

partial disruption in communication with vulnerable Sst supertypes that may impact myelination!?>71%7,

128

MME encodes the protease Neprilysin that may break down AB peptides*®, suggesting vulnerable Sst

supertypes’ may lose a critical mechanism for preventing later AB plaque formation near them.

Microglia and Astrocyte activation in early AD

The discovery of disease associated microglia (DAMs®°7) has energized research to understand and

129y and detrimental (e.g. driving

ultimately modulate protective (e.g. clearing plaques
neuroinflammation!***3%) microglia function in AD3%32, Diverse direct and modulatory inflammatory
roles suggest that many molecular microglial subtypes may exist; several cellular taxonomies for myeloid
immune cells in the brain have been proposed using healthy and disease snRNA-seq data in
human?1617.97.133134 Thage taxonomies generally agree on three major types of monocyte-lineage cells in
brain: monocytes, CNS-associated macrophages (CAMs)/perivascular macrophages (PVM), and a
heterogenous group of microglia, which has proven difficult to reconcile across taxonomies. Comparing
SEA-AD microglia taxonomy (Fig. 7a) to the most comprehensive effort to identify microglia subtypes to
date'’, revealed strong agreement across studies (Fig. 7b, top). Most notably, both taxonomies contained
disease associated types (Micro-PVM_3 in SEA-AD and Mic.12 and Mic.13 in Green et al (2023)") that
were consistently increased in abundance with AD across datasets and have a common molecular
signature (Fig. 7c). Also, both studies identify homeostatic and proliferative types and two other subtypes
with no functional data or tissue localization information, which is necessary for properly assigning their
molecular functions. While SEA-AD’s taxonomy is more conservative in splitting subtypes (with many 1-
to-many relationships to those with Green et al (2023)), the same transcriptional continuum is captured
in both datasets. Other studies have been even more conservative, describing only homeostatic and
proliferative subtypes, despite their datasets containing other subtypes (Fig. 7b, bottom) such as a DAM
subtype. Further collaboration and integration between studies, and localizing/functionally testing each
proposed subtype will help resolve the true extent of molecular states. Broad agreement across studies
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on the AD transcriptional landscape and on certain consensus subtypes will greatly aid efforts to
understand the role of microglia in disease initiation and progression.

In addition to confirming DAM'’s existence in the SEA-AD dataset, broader molecular changes in microglia
along CPS were consistent with previous studies. Early changes included significant up-regulation of gene
sets involved in inflammatory processes (IL1B, CSFIR, STAB1, NINJ1, JAK3)**13 interferon response
(IRF1, IRF7, IFI16), Fc receptors (FCGR1A, FCGR1B, FCGR2A, FCGR3B), major histocompatibility complex Il
components (CD74, HLA-DRB5), and complement components (CIQA, C1QB) (Fig. 7d, top, red).
Surprisingly, we also observed early up-regulation of several homologs of genes induced by AB plaques in
AD (CSF1R, CTSC, C1QA, C1QB, LY86, FCGR3A)? (Fig. 7d, top, blue), suggesting Microglia in individuals with
low levels of AB plaques and tau tangles may be responding to AR peptides or oligomers®°, or another
pathological factor. Together, these changes indicate a highly stimulatory extracellular environment for
microglia, early in AD. Other plaque induced genes were up-regulated later in CPS in donors with higher
levels of pathology (Fig. 7d, bottom, blue), including more cathepsins (CTSD and CTSS) that may facilitate
AB clearance'®'*?, the gene encoding lysozyme (LYZ), and APOE, which is by far the most strongly
associated genetic risk factor for AD?2. To identify the transcription factors driving early up-regulation of
pro-inflammatory and plaque-induced genes, we leveraged SEA-AD’s snATAC-seq data to construct
microglial gene regulatory networks (GRNs). GRNs allowed us to identify relevant microglia transcription
factors (TFs). Next, we filtered these TFs by the specificity in their expression in microglia and their
dynamic changes (requiring early upregulation), and identified 4 (RUNX1*3, IKZF1, NFATC2, MAF) that are
specifically expressed in Microglia, and are upregulated early in CPS (Fig. 7e, left). These transcription
factors are predicted to co-regulate 201 genes, including genes noted above (Fig. 7e, right, f), and may be
critical targets for modulating microglia responses to pathology.

Like microglia, astrocytes have been ascribed diverse roles in AD pathophysiology!*°®92, which makes
understanding their molecular subtypes crucial. The SEA-AD taxonomy encompasses interlaminar,
protoplasmic, fibrous, and a yet to be described astrocyte supertype (Fig. 7g). In contrast (Fig. 7h, top),
Green et al (2023) split protoplasmic astrocytes into several subtypes, grouped interlaminar astrocytes
into one subtype, and has few fibrous astrocytes (Fig. 7i). In both our MTG and DLPFC datasets,
protoplasmic astrocytes (Astro_2) specifically increased early in CPS. While we could not replicate this
association in Green et al (2023) (or Mathys et al (2023)), their original manuscript noted an increase in
one protoplasmic subtype (Ast.10) with AD. This suggests agreement that at least a subset of astrocytes
is increased with disease. Mathys et al (2023) had the fewest types, with one subtype for protoplasmic
astrocytes, one subtype for fibrous and interlaminar astrocytes together, and one unknown subtype that
was also similar to a type we identified (Fig. 7h, bottom). While consensus around certain subtypes
provides a foundation to reconcile these taxonomies, the larger difference in the overall transcriptional
landscape suggests more work is needed to compare tissue sampling to ensure consistent capture of all
histologically established types.

Next, we sought to describe the molecular changes occurring in astrocyte supertypes, again dividing CPS
into early and late epochs. Early changes included upregulation of cellular adhesion molecules (CADM1,
CDRH3, PCDHGA1, PCDHB14, PCDHB16, CLSTN1, ITGA6, NEO1, ANOS1) and neuronal guidance cues
(NLGN3, NTRK3, SEMA4B, NTNG2), signaling receptors (PTCHD1, NRP1, BMPR2, UNC5C)**, and GFAP, a
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known hallmark of AD and astrogliosis'*® (Fig. 7j, top). Later in CPS, astrocytes continue to up-regulate
molecules involved in cellular adhesion, axonal guidance, and signaling receptors, including NCAM2 and
CERCAM, additional hedgehog signaling receptors (PTCHD4, PTCH2, SMO) and their downstream target
transcription factor GL/1, and both the EGF ligand and its receptor EGFR (Fig. 7j, bottom). Astrocytes also
down-regulated APOE (Fig. 7k) and several genes involved in other signaling pathways, such as the Wnt-
receptor FZD4 and the FGF ligand and receptor, FGF11 and FGFR3. Collectively, these molecular changes
suggest a highly stimulatory extracellular environment occurring in early in disease, even in donors with
relatively low levels of pathology.

Oligodendrocyte loss and remyelination by OPCs

Multiple studies have indicated that the dysfunction of oligodendrocytes and myelin breakdown may be

early events in AD67153 123

, possibly due to altered cholesterol localization and transport®®, making the
investigation of this cell type and their progenitor pool, OPCs, critical in understanding AD etiology. Among
oligodendrocytes, two supertypes (Oligo_2 and Oligo_4) were decreased early in both MTG and DLPFC
(Fig. 8a); both supertypes are found throughout the cortical column in the BRAIN Initiative reference
dataset?®. CNP was expressed in both (albeit higher in Oligo_4) (Fig. 8b), suggesting they are myelinating
oligodendrocytes. We also observed a late decrease in one OPC supertype (OPC_2), which is found across
cortical layers 2 through 6. When comparing against publicly available data sets, SEA-AD oligodendrocytes
and OPCs types largely agreed with the fine-grained types described in Green et al (2023), with most
supertypes having one-to-one or one-to-many relationships (Fig. 8c). There were a handful of many-to-
many relationships that may represent different boundaries in the same transcriptional landscape and

will require localization/functional data to resolve.

Oligodendrocytes were recently described as a critical promoter of AR synthesis based on gene expression
of beta (BACE1 and BACE2) and gamma secretase (PSEN1, PSEN2, PSENEN, APH1A, NCSTN) components?®.
The mean expression of these genes was replicated in SEA-AD data (Fig. 8d), with oligodendrocytes having
the highest levels of both APP and PSEN1. Therefore, the early loss of oligodendrocytes may be attributed
to these higher levels of AR molecules that have known cytotoxicity, even prior to formation of
extracellular plaques. Additionally, multiple gene expression programs are changing dynamically. There is
an early up-regulation of a gamma secretase component (NCSTN), the transcription factor MYRF that
regulates myelination™*, and a structural component of myelin itself (PLLP) (Fig. 8e, left, g). Also up-
regulated were lipid biosynthetic enzyme and transporter genes, including those that form secondary
messengers (PLPP4, PTPRN2, PRKAB1), participate in beta-oxidation and carnitine biosynthesis in the
mitochondria (CPT1B, HMGCL, ACADVL), ceramide/sphingolipid biosynthesis (HACD2, ELOVL1, CERS2),
and cholesterol transport (ABCA1, LDLRAPI1). Importantly, significant increases in expression of the
cholesterol biosynthetic gene family, a proposed key process in AD etiology 2% occurs later in CPS (DHCR24,
LBR, FDFT, HSD17B1, SC5D, CYP51A1, SQLE, and DHCR?7) (Fig. 8e, middle, g). Further, late in CPS there is a
down-regulation of MYRF and several components of myelin and myelination (MOBP, MOG, OMG, PLLP,
OPALIN). The late change in both gene sets suggests they may represent a reaction to pathology rather
than an early driver of dysfunction.
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In OPCs, there was early up-regulation of several transcription factors (OLIG1, OLIG2, SOX10, SOX8, PRRX1,
ASCL1) and Notch ligands (DLL1, DLL3) known to regulate differentiation'>! to oligodendrocytes
following loss of surrounding oligodendrocytes (Fig. 8e, right, g). Due to the overwhelming number of
transcription factors involved in differentiation that changed early, we queried our OPC-specific GRN and
identified 317 genes downstream of these factors (Fig. 8f, left). These genes were also upregulated early
(Fig. 8f, right), compared to all other genes, and were predominantly involved in OPC differentiation.
These data suggest a novel early event in AD may be damage and loss of oligodendrocytes that triggers a
robust differentiation and remyelination response from OPCs in early-stage individuals. To identify cell
types that may regulate the remyelination process, we examined expression of two signaling pathways
that are important for OPC differentiation to oligodendrocytes: insulin-like growth factor (IGF)!? and
platelet derived growth factor (PDGF)'314 While expression of PDGF genes spanned several cellular
subclasses, expression of IGF was restricted to inhibitory interneurons and a small subset of microglia (Fig.
8h). IGF1 expression decreases later in CPS in several inhibitory interneuron populations, suggesting that
these inhibitory populations may be the main source of IGF1 and the driver of myelination changes (Fig.
8i). These data suggest compensation of oligodendrocyte loss by OPCs may be limited later in AD, in part
a result of downregulation of necessary extracellular factors in inhibitory neurons; future functional
studies are necessary to validate and understand these findings.
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Discussion

The aggregated knowledge about cellular organization of the human brain from the BRAIN Initiative Cell
Census Network (BICCN)?*3%3! coupled with single cell and spatial transcriptomics methods now provide
the means to create a comprehensive understanding of the cellular and molecular phenotypes and
temporal progression of Alzheimer’s disease (AD). Here, we created an integrated atlas of AD in the middle

temporal gyrus (MTG), selected both as a transition area in AD pathology*”®

and the region with the
greatest aggregated knowledge in BICCN about cell type phenotypes?*2%3° The atlas illustrates the utility
of the BICCN reference as a unifying framework that can be used to map cell types at high resolution,
incorporate cell types and states not included in the reference, and replicate results. The core results
presented here replicated across data modalities, cortical regions and datasets from independent studies,
and have now been associated with fine-grain cell types and phases of AD progression. The results in turn
demonstrate the value of this integration in defining a robust and specific series of cellular and molecular
events that show what cells are affected, where they are (co)-localized, and when these events happen
as disease pathology increases. All data presented here are publicly accessible through a suite of data
resources available through SEA-AD.org, including viewers for donor metadata and image-based
guantitative neuropathology, high resolution single nucleus transcriptome data viewing and mining (also

165)
7’

at CZI's cellxgene), genome browser (through UCSC browser data download (through Sage
Bionetworks) and a novel tool (MapMyCells) for the community to map against the highly annotated SEA-

AD cell classification.

The major driving concepts for the modeling of disease severity or progression are that neuropathology
drives cellular and molecular changes, and that the local quantitative burden of neuropathology (QNP)
can be used to model disease severity and progression. Aggregate scores like Braak*’*, Thal®, CERAD®®
and ADNC® measure distribution of pTau, af, and neuritic plaques but rely on binary present/absent
scores that do not capture the level of pathology in any given brain region. Quantitative analyses of pTau
and af} demonstrated this very clearly, with enormous variation across donors within the same Braak
stage or Thal phase. The AD research field has recognized the need for additional biomarkers of disease
progression®. Quantitative neuropathology can capture the aggregate local burden of pathology,
including identification of various cell types including neurons and disease-associated glial types, and
other pathological proteins (pTDP-43, alpha-synuclein). Pseudotrajectory analysis using this information
produced an ordering of donors that is strongly correlated with traditional brain-wide staging metrics as
well as astrogliosis (the appearance of reactive astrocytes and increase glial number), and, surprisingly,
decreasing NeuN labeling. pTDP-43 and alpha-synuclein did not show relationships to the
pseudotrajectory, indicating that despite including AD/ADRD donors that the pseudotrajectory was largely
modeling Alzheimer’s disease phenotypes. This approach appears to have been justified, in that effect
sizes for cell proportion changes were substantially larger with disease progression modeled on QNP
compared to more qualitative brain-wide staging.

The core results indicate two major epochs in AD progression (Fig. 9), including an early phase with slowly
increasing neuropathology and a late phase with exponentially increasing neuropathology, culminating in
the terminal state observed for the severely affected donors. In the early epoch, donors have sparse AB
plagues (albeit increasing in size) and pTau-positive tangle bearing neurons, accompanied by early


http://sea-ad.org/
https://cellxgene.cziscience.com/collections/1ca90a2d-2943-483d-b678-b809bf464c30
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr2%3A25162989%2D25186704&hgsid=1615789503_9AzQVO0Q015Zm7GUTU8fLznJm65Q
https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage/StudyDetails?Study=syn26223298
https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage/StudyDetails?Study=syn26223298
https://portal.brain-map.org/atlases-and-data/bkp/mapmycells
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increases in inflammatory or reactive microglial®’ and astrocytic states and associated gene expression
changes in relevant inflammatory*® and plaque induced genes (Fig.9b). This epoch also features losses
of oligodendrocytes and a dramatic increase in OPC differentiation and re-myelination factors that may

167-170 Neuronal

represent a compensatory response similar to that seen in models of oligodendrocyte loss
cells exhibited loss of particular Sst interneuron types that down-regulate kinases and E3 ubiquitin ligases,
but not the electron transport chain and ribosomal pathways (which were down-regulated in other
neuronal populations) (Fig.9b). While these vulnerable Sst types were molecularly similar, they were
highly morphologically diverse and included double bouquet cells that are seen in primates but not
mice!’:. These vulnerable Sst supertypes localized to superficial cortical layers, whereas deeper layer Sst
supertypes were not affected (Fig. 9a), and exhibited distinctive electrophysiological properties, such as
higher Sag, compared to unaffected supertypes. Importantly, these neurons are lost well before the
exponential phase of accumulation of plagques and tangles. They are also not the neurons that bear the
greatest burden of intracellular neurofibrillary tangles in temporal cortex (the L2/3 IT excitatory types’®).
Therefore, they are likely be vulnerable to lower levels of pathology, and may represent the initial trigger
for circuit dysfunction in AD. Several prior reports have implicated Sst neurons in AD pathology as well**°®,
but not at the same level of molecular, morphological, and electrophysiological detail. Our main results
are consistent and replicated after integrating our data set across two cortical areas.

What might be the consequences of an early loss of Sst neurons? Loss of inhibitory neurons would
naturally be expected to disrupt excitatory/inhibitory balance, and impaired inhibition may therefore
increase AD patient’s susceptibility to epilepsy, a clinical symptom found in more than 10% of patients'’2
This is supported by previous observations highlighting an anti-epileptic role of Sst+ interneurons’3, and
our observation that susceptible inhibitory interneurons express a high level of the HCN1 channel,
dysfunction of which has been linked to several epileptogenesis pathways and the generation of
hyperexcitability!’4. From a circuit perspective, Sst interneurons are uniquely positioned to exert control
over both excitation and inhibition in the cortex, as they target excitatory and all other subclasses of
inhibitory cortical neurons, but not themselves’>’®, They also participate in a powerful disinhibitory loop
via reciprocal connections with the VIP subclass'’’. Furthermore, they are known to mediate effects of

177,178

arousal in cortical circuits under the effects of acetylcholine, which is also highly disrupted early in

Alzheimer’s disease through the loss of cholinergic neurons in the basal forebrain’®. SST neurons mediate

context integration®®® and exhibit responses to large-scale, high-intensity stimuli

, as well as contributing
to cortical gamma-band oscillations!®?, which are important for inter-areal communication!®3. Indeed,
functional properties of Sst neurons are consistent with a role in gating feedback between cortical
areas®®*18> Thus, reduction in numbers of Sst neurons is likely to have wide-ranging consequences beyond
reduced network stability, affecting cognitive processes that rely on proper interactions in distributed
brain areas, such as hierarchical integration of information, attention, or processing of novelty, all of which
may result in deficits of learning and memory. Finally, it is possible that Sst neuron loss could also disrupt
trophic support of connected neurons'®, ultimately leading to the loss of long-range corticocortical

connectivity that would be expected to affect cognitive function.

In the later epoch there is an exponential rise in AB and pTau pathology, continued increases in
inflammatory microglia and astrocyte states, and a decrease in expression of both the OPC differentiation
program and oligodendrocyte expression of myelin associated proteins (previously characterized by
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qPCR). There is also broader loss of excitatory (L2/3 IT) and inhibitory (Pvalb and Vip neurons (Fig.9b).
Vulnerable neuron types are specific too, including a subset of the supertypes within each broader
subclass and are largely localized to the upper layers of the cortex (Fig.9a). For example, there was a
selective loss of excitatory neurons in supragranular layers (L2/3 IT), as described previously based on cell
counting of non-phosphorylated heavy chain neurofilament protein (labeling with SMI-32 antibody)
positive neurons®, and more recent single cell analyses!®. SMI-32 predominantly labels long-range
ipsilateral-projecting corticocortical neurons in monkey*®®, and selectively labels human L2/3 IT types in
layer 3, including the largest neurons that do not appear to have mouse homologues?.

Putting these two epochs together, the overall progression suggests a sequence of events in which early
microglial activation at low levels of pathology triggers reactive astrocytes and potentially
oligodendrocyte loss!®. Further, the early loss of Sst neurons in upper cortical layers could lead to
excitatory/inhibitory circuit imbalance (Fig. 9b) that could in turn lead to loss of other co-localized (and
thus likely connected) excitatory and inhibitory neurons, including long range corticocortical (L2/3 IT)
neurons that contribute to cognitive decline. Donors with the steepest memory cognitive decline late in
life showed particularly broad cellular dysfunction, suggesting that this was not due to poor quality
samples but rather a biological outcome of AD pathology and subsequent cognitive decline. These
severely affected donors had lower transcription and reduced chromatin accessibility that may
correspond to senescent states!®?, or global epigenome dysregulation indicative of cell identity loss*.

The results presented here in MTG demonstrate that systematic application of single cell genomic and
spatial technologies coupled with quantitative neuropathology can effectively model disease progression
across the spectrum of AD severity. Importantly, the BICCN reference now allows integration and direct
comparison across many studies to use common annotation of the same cell types and states, and to
cross-validate results to demonstrate their robustness and consistency. The remarkably similar cell
vulnerabilities in MTG and DLPFC (and across studies) indicates there may be a common pattern of cellular
and circuit dysfunction in response to neuropathology progression across the brain as well. The
annotation of the BICCN reference now allows interpretation of AD cellular phenotypes at the finest level
of circuit neuroscience, and to consider AD as a circuit disorder that ultimately affects cognitive function.
These molecular phenotypes may help develop new biomarkers, while vulnerable cell populations may
present new targets for therapeutic intervention using tools that can now be reliably developed for
genetic targeting of specific cell populations!®*!%, This strategy can now be extended to understand
disease progression across more diverse cohorts and across brain regions within individuals, to identify
commonalities across brain regions and the earliest events in AD pathology when therapeutic
interventions may be most effective.
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Figure legends

Figure 1: SEA-AD Study of the Middle Temporal Gyrus and Cohort Description.

A) Schematic detailing experimental design for applying quantitative neuropathology, single nucleus
RNA sequencing (snRNAseq), single nucleus ATAC sequencing (snATACseq), single nucleus Multiome
(Multiome), and multiplexed error robust fluorescence in situ hybridization (MERFISH) to middle
temporal gyrus (MTG) of SEA-AD donors as well as the analysis plan for construction of a pseudo-
progression score from quantitative neuropathology, integration across -omics data modalities,
common cell type mapping to the BRAIN initiative reference, use of demographic and clinical metadata
to identify cellular and molecular changes in AD, and replication of results across 10 publicly available
snRNAseq datasets on the dorsolateral prefrontal cortex (DLPFC) of cohorts that include sporadic AD
donors and a snRNAseq dataset generated from the DLPFC of SEA-AD donors.

B) SEA-AD cohort demographics stratified by AD neuropathological change (ADNC) score on left. Age at
death is represented by box-and-whisker plots where the box represents the interquartile range (IQR)
and the whiskers represent 1.5 times the IQR. The median is indicated by the solid line within the box
and donor values are represented as points. The fraction of donors that have a biological sex of male or
female and that have an APOE4 allele are shown as bar charts per ADNC level, with the number of
donors in each group indicated.

C) SEA-AD cohort composition stratified by ADNC on the left versus Braak stage (measuring distribution
of neurofibrillary tangles across the brain), Thal Phase (measuring distribution of amyloid beta plaques
across the brain), and CERAD score (measuring the distribution of neuritic plaques across the brain) as
heatmaps. The number of donors in each box are indicated with the fraction in Braak, Thal, and CERAD
stages in parentheses. Darker colors represent a higher fraction of donors. The fraction of donors across
ADNC that have dementia (red) or not (grey) and any co-morbidities are shown as bar plots. Numbers
indicate the number of donors in each group.

D) First principal component (PC) with values shifted so the min is set to zero for snRNAseq quality
control metrics versus snATACseq quality control metrics for each library color-coded by ADNC category.
Dashed red lines indicate the point where values are above 1.5 times the interquartile range. Linear
regression is shown in grey, Pearson R=0.80)

E) LOESS regression on longitudinal cognitive scores in the memory domain across ADNC 0-2 (Not AD to
Intermediate) in grey, ADNC 3 donors that were not severely affected in gold, and ADNC 3 donors that
were in purple. Note significant decline in SA donor group. Uncertainty represents the standard error
from 1000 LOESS fits with 80% of the data randomly selected in each iteration.

F) Exemplar low power micrographs showing the entire cortical column and higher power micrographs
of cortical layers 3 and 5 from (left) an ADNC3 (high) donor with NeuN immunoreactive cells and (right)
an SA donor case that lacks NeuN-ir (right). Scale bars, 100 um. Thin lines represent cortical layer
boundaries.

G) Scatterplot showing the number of NeuN immunoreactive cells per area in cortical layer 3 for each
donor versus the quality control metrics PC from snRNAseq. SA donors (purple) localize at the end of this
trajectory and exhibit almost no immunoreactive cells. Logistic regression is shown in grey.
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H) Box and whisker plots showing the number of UMIs detected per cell for nuclear-localized RNA
species, MEG3 and MALAT1, and mitochondrially encoded (so cytosolically localized) RNA species, MT-
CO1 and MT-ND3, for ADNC 3 (high) donors or SA donors.

I) Barplot showing the number of chromatin accessible regions in 11 randomly selected ADNC 3 (high)
donors or SA donors. Shared Consensus (dark grey) accessible regions are regions shared across both
groups. Consensus (light grey) regions denote regions shared across members of each group and cohort-
specific (gold) depict peaks unique to some members of each cohort. Note the lack of consensus peaks
within SA donors, indicating their peak universe is almost entirely a subset of that found in other ADNC 3
donors.

Figure 2: MTG quantitative neuropathology orders donors according to pseudo-progression of disease.
A) Representative slide showing the whole cortical column with NeuN visualized with
immunohistochemistry (IHC). Cortical layers (L1 to L6) and white matter (WM) are annotated using
machine learning with adjustments made by expert neuropathologists. Layer 5 and 6 could not be
distinguished by the model so were segmented together. Scale bar, 200 um.

B) Higher powered representative micrographs showing IHC stains for protein aggregates (Ap (6e10),
pTau (AT8), a-Syn, and pTDP43) and cellular populations (neurons (NeuN), microglia (Ibal), and
astrocytes (GFAP)). Bottom, masks showing positive voxels generated by HALO n red for single stains
(NeuN, GFAP, and a-Syn) and both red (IBA1 and AT8) and green (6e10 and pTDP43) for duplex stains.
Scale bars, 100 um.

C) Heatmap showing hierarchically organized co-correlation matrix of quantitative neuropathology
variables. Black boxes on the diagonal, seven clusters that were identified. Red box, anti-correlation
between clusters 3 and 7, which represent AD protein pathologies and NeuN immunoreactivity (NeuN-
ir), respectively. Blue box, correlation between variables related to neurofibrillary tangles in cluster 3
and pTDP43 variables in cluster 1.

D) Heatmap showing the number of pathological protein objects detected per unit area across all
cortical layers in each donor, ordered along the continuous pseudo-progression score (CPS). 6e10, AB
objects; AT8, pTau bearing cells; a-Syn, a-synuclein bearing cells; and pTDP43, pTDP43 bearing cells. All
values were converted to z-scores and adjusted by a moving average.

E) Heatmap showing the number of cellular objects detected per unit area across all cortical layers in
each donor, ordered along the continuous pseudo-progression score (CPS). Hem, all hematoxylin
positive nuclei; GFAP, GFAP positive cells; IBA1, IBA1 positive cells; and NeuN, NeuN positive cells. All
values were converted to z-scores and adjusted by a moving average.

F) Heatmap showing cognitive scores at last visit (CASI) and brain-wide AD pathology stage (ADNC, Thal,
Braak) in each donor, ordered along the continuous pseudo-progression score (CPS). All values were
adjusted by a moving average. Note, none of these measurements were used to build CPS.

G, H, 1) Scatterplots showing how specific QNP variables within correlation clusters 3 and 7 of the co-
correlation matrix depicted in (C) relate to CPS. Dots represent values from each donor in the cortical
layer indicated, lines are LOESS regressions for measurements across donors within each layer. G, H)
Cluster 3 is comprised of variables increasing along pseudo-progression, such as the number of AT8
positive (pos) cells per unit area, 6e10 positive objects per unit area, or the average 6e10 positive object
diameter of the 6e10-ir AB plaques. (1) Cluster 7 comprised variables decreasing their value along CPS,
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such as the number of NeuN positive cells or percent NeuN-ir cell area. The heatmap on each QNP
variable across layers represents the p-value from a general additive model in which pseudo-progression
was binned into 5 equal intervals.

Figure 3: Vulnerable Populations in MTG concentrate around superficial supragranular layers.

A) Schematic showing the hierarchical mapping procedure utilized to create SEA-AD taxonomy and
annotate all SEA-AD cells. Reference MTG cells were used to define neuronal supertypes (see Methods).
Then, reference and SEA-AD data sets were integrated, and cells were assigned to subclasses by using
deep generative models (DGMs) of gene expression. Neuronal supertypes were annotated by subsetting
the data to each neuronal subclass and using a new subclass-specific DGM for label transfer. Non-
neuronal subclasses were annotated with the same procedure, but also underwent robust Leiden
clustering (see Methods) to identify transcriptionally distinct populations not present in the reference
taxonomy. Each scatterplot shows the UMAP coordinates computed from the nearest neighbor graph
based on the latent representations from the DGMs for either all reference and SEA-AD nuclei or only
those in the subclasses indicated from the middle temporal gyrus (MTG). In the plots focused on
integration SEA-AD nuclei are colored light grey. Cell subclasses and supertypes are indicated.

B) Barplots showing effect sizes for how each supertype changed in its relative abundance in the MTG
across (Top) cognitive status, (Middle) ADNC, or (Bottom) continuous pseudo-progression (CPS) from the
compositional model that also controlled for sex, age, single-cell technology, and APOE4 status.
Negative/positive values indicate that populations are decreasing/increasing across each covariate
under analysis. Note, highly consistent changes across disease covariates with the greatest effect size
along CPS. Below is an identical plot showing effect sizes for how each supertype changed in the DLPFC
across CPS, controlling for sex, age at death, and race. Supertypes are indicated below all plots. Red,
significantly changed in both cortical regions (MTG and DLPFC); dark grey significantly in one cortical
region; light grey, not significantly changed in either brain region. Note, 26 of the 28 supertypes that
significantly changed in only one brain region were specific to the earlier affected MTG. Subclasses are
indicated in the top and bottom plots, with light grey dashed lines separating subclasses in the same
cellular neighborhood and darker grey lines separating cellular neighborhoods. Supertypes are ordered
by the dendrogram at top that shows how transcriptionally similar they are to one another.

C) LOESS regression relating the log-normalized relative abundance (within all neuronal or all non-
neuronal nuclei) of supertypes that were significantly changed in the MTG (left two plots) or DLPFC
(right two plots) to the continuous pseudo-progression score (CPS). Supertypes were grouped by their
subclasses to facilitate visualization of how each set of supertypes changed. Note, Sst supertypes
decrease in their relative abundance early in CPS, before an exponential increase in the number of
plaques and tangles present (indicated on each plot with a dashed light grey line). In contrast, L2/3 IT
and Pvalb supertypes decrease as AD pathology increases. Uncertainty in each line represents the
standard error from 1000 LOESS fits with 80% of the data randomly selected in each iteration.

D) Left, scatterplot showing the correlation of vulnerable Sst supertype’s relative abundance in snRNA-
seq and MERFISH data from matched donors (R=0.84). Right, scatterplot relating the relative abundance
of vulnerable Sst supertypes to CPS in the snRNA-seq (orange) and MERFISH (blue) datasets from the
same donors. Linear regressions with similar slopes are shown for both modalities.
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Figure 4: DLPFC single nucleus data integration replicates MTG vulnerable populations with AD.

A) Barplots showing the fraction of donors in each of the publicly available snRNA-seq datasets that we
harmonized metadata for and integrated classified in neuropathological stages (Top) or possessing
APOE4 alleles, dementia or a severe co-morbidity (Bottom). Grey boxes, metadata that was unavailable.
Neuropathological staging included CERAD score for the distribution of neuritic plaques (ranging from
Absent (Abs) to Sparse (Spa) to Moderate (Mod) to Frequent (Freq), Braak stage for the distribution of
neurofibrillary tangles (ranging from Braak 0 to Braak VI), and the NIA-AA composite score AD
Neuropathological Change (ADNC) (ranging from Not AD (Not) to Low to Intermediate (Int) to High).
SEA-AD in indicated at bottom, in orange for variables that had only one category. All datasets applied
snRNA-seq to the dorsolateral prefrontal cortex (or immediately adjacent region) in human donors that
contained sporadic AD cases.

B) Scatterplots showing the relative study size, dataset depth, and quality control metrics across publicly
available snRNA-seq datasets (shown as blue dots) and SEA-AD (shown as a larger orange dot). The
worst value for each metric is indicated on the left and the best value indicated on the right. Note, SEA-
AD is the only study to perform consistently well (3™ or better of the 11 datasets) across all metrics.

C) Left, box and whisker plot showing the mapping confidence across datasets for each supertype from
the deep generative model (DGM) that was used to annotate the publicly available snRNA-seq datasets
to the SEA-AD cellular taxonomy. Right, box and whisker plot showing the spearman correlation of each
supertype’s signature score across all nuclei in each dataset compared to SEA-AD (e.g. highly similar
Sst_20, Sst_22, Sst_25, Sst_23 and Sst_11 supertypes would all have a high Sst_25 signature score, but
the order from highest to lowest should be retained across datasets if they were mapped consistently).
By definition SEA-AD supertypes all have a correlation score of 1. Note, consistently high model
confidence and spearman correlations across datasets, except for Olah et al.

D) Scatterplot showing the UMAP coordinates computed from the integrated latent representation of
cells and nuclei from SEA-AD’s snRNAseq dataset on the DLPFC and each publicly available dataset color-
coded by data set of origin (left) or subclass (right).

E) Heatmap comparing the effect size of the relative abundance change of each supertype in the DLPFC
across CPS (for SEA-AD) or ADNC (for Mathys_2023 and Green_2023) from a compositional model that
also controlled for sex, age at death, and race in SEA-AD or sex, age, and APOE4 status in Mathys_2023
and Green_2023 studies. Red text and arrows, supertypes that were significantly changed in abundance
across all 3 studies. Note, some supertypes that were not significant in Mathys_2023 or Green_2023 had
trend level changes similar to SEA-AD (e.g. Sst_20). Subclasses are indicated at the top of the heatmap,
with light grey dashed lines separating subclasses in the same cellular neighborhood and darker grey
lines separating cellular neighborhoods.

F) Box and whisker plots showing the fraction of donors that each supertype was captured in across all
11 integrated datasets. Note, SEA-AD was the most deeply profiled dataset in the field with nearly every
supertype being captured across all donors. No neuronal supertypes were identified in the Olah_2020 or
Yang 2022 datasets due to their study design.

G) Scatterplots relating the effect size for each supertype was changed in AD to the fraction of donors
for which the supertype was captured in across the indicated datasets. Note, no populations captured in
less than 70% of profiled donors (dashed grey line) were detected as significant across all studies. This
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represented extremely few supertypes for SEA-AD, but nearly a third of supertypes in Mathys 2023 and
Green_2023 (including many that were significantly changed in SEA-AD).

Figure 5: Gene expression changes along pseudo-progression exhibit complex cell type-specific
dynamical patterns.

A) Swarmplot showing the number of genes significantly changed with the continuous pseudo-
progression score (CPS) in each supertype, organized by subclass. Grey dashed line, expected false
discovery rate based on the average number of genes tested and the alpha threshold.

B) Scatterplot relating the mean effect size across supertypes of each gene estimated using donors from
the early versus late disease epochs along CPS. Genes were categorized into 8 bins given their early and
late effect sizes: DU, down up. DE, down early. DC, down consistently. DL, down late. UD, up down. UE,
up early. UC, up consistently. UL, up late. Right, LOESS regression relating the mean expression of all
genes in each category to CPS. Note, the expected dynamics are observed in each gene set. Grey dashed
line separates disease epochs (CPS=0.5)

C) Framework to explore gene expression changes in an unsupervised manner. For each gene, early and
late effect sizes and z-scored mean expression values were collected across supertypes. Next, an
unsupervised low dimensional representation is built for all genes. Left, genes in the low dimensional
representation are color coded by their mean expression values and early and late effect sizes in
excitatory neurons as an example. Right, low dimensional representation of all genes qualitatively
annotated to show areas of genes with cell type specific expression (black labels) and gene expression
dynamics with CPS (blue to red labels and dashed lines). Right and bottom, region of the gene dynamic
representation where electron transport chain (ETC) and ribosomal (Ribo) genes are clustered together.
D) Left, LOESS regression relating the mean expression of electron transport chain (ETC) and ribosomal
(Ribo)genes to CPS, color coded by inhibitory (top), excitatory (middle), and non-neuronal (bottom)
subclasses. Dashed grey line, point in CPS when plaque and tangle pathology is definitively increasing
(CPS=0.6). Note, nearly every neuronal type exhibited down-regulation of these gene families in the
early disease epoch. Right, heatmap displaying mean effect sizes across cell class for genes within the
ATP synthase complex (blue) and complexes 1 (black) and 4 (red) from the electron transport chain.

Figure 6: Superficial vulnerable MGE-derived inhibitory interneurons exhibit similar transcriptional
profiles and common electrophysiological feature)

A) Scatterplot showing the UMAP coordinates of MGE-derived neurons (Sst, Pvalb) from the middle
temporal gyrus (MTG) color coded by supertype (left), or effect size of relative abundance changes in
each supertype along CPS from scCODA (right). Note, the most strongly affected supertypes in both Sst
and Pvalb subclasses are close together.

B) Scatterplots relating the effect size of relative abundance changes of each supertype in the MTG from
scCODA (colored by subclass) to their cortical depth from MERFISH experiments organized into CGE-,
MGE-derived inhibitory neurons or excitatory neurons. Note, larger effect sizes are found for supertypes
in superficial cortical layers (indicated and separated by horizontal grey lines) of MTG regardless of
developmental origin. Each point represents the mean depth of the supertype in the MERFISH dataset,
with error bars representing the standard deviation.
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C) Left, MERFISH-profiled brain slice in early CPS donor (CPS=0.23) showing each cells location and
boundaries defined by the cell segmentation, with cortical layers indicated (L1-L6) and separated by
dashed grey lines. Vulnerable and unaffected Sst neurons are color-coded with pink-purple (vulnerable)
and green-blue (unaffected), respectively. Note, Sst cells that decline significantly during AD progression
tend to localize in cortical layers 2 and 3 (L2/3), whereas Sst cells located in deep layers do not decline in
abundance with disease progression. Insets: i) Detail of Layer 2 Sst interneuron supertypes. Most Sst
types in this layer are affected. Orange box indicates cell shown in detail on the right, bounded by
orange border. ii) Detail of Layer 3 Sst interneuron supertypes. Most Sst types in this layer are affected.
lii) Both affected and unaffected Sst supertypes are localized to L4 in roughly even proportions. iv) Layer
5 detail indicates that most Sst supertypes in this layer are unaffected. V) Layer 6 detail indicates that
most Sst Ssupertypes in this layer are unaffected. Green box indicates unaffected Sst cell shown in detail
in M-R, bounded by green border. Right, Example expression pattern of key genes (shown as grey or
colored dots) in a vulnerable (orange box) and unaffected (green box) Sst neuron. Sst neurons should be
positive for GAD2 (orange) and LHX6 (red), but negative for Pvalb (purple). Neurons in L2/3 have
enriched expression for CUX2 (blue) and HCN1 (green).

D) Left, electrophysiological traces showing post-spike hyperpolarization of membrane potential (y-axis)
over time in all vulnerable Sst neurons but not the vast majority of unaffected Sst neurons recorded
from tissue of non-AD human donors that underwent surgical resection. Right, bar and swarmplot
showing sag distributions in individual vulnerable (Vul) and unaffected (Unaff) Sst neurons. P-values for
all differential electrophysiological features are in Supplementary Table 8.

E) Violin plots showing HCN1 expression in vulnerable (Vul) and unaffected Sst neurons in both snRNA-
seq (left) and MERFISH (right) datasets. Note, HCN1 expression is significantly higher in vulnerable Sst
neurons in both datasets (p-values from NEBULA are near 0). Mean expression in each group and each
dataset are noted by colored dashed lines. In(UP10K+1), natural log of UMIs per 10,000 plus 1.
log2(CPM+1), log base 2 of counts per million plus 1.

F) Exemplar scatterplot showing the positions of all cells (as dot) in the cortical column an early CPS
donor (CPS=0.23). Sst cells are colored by their HCN1 expression, with superficial supertypes having
higher expression on average. All other cells are colored light grey, cortical layers are indicated (L1-L6)
G) Exemplar morphological reconstructions of vulnerable MGE-derived interneurons from PatchSeq data
obtained from non-AD donors. Cell dendrites are colored by their supertype annotation (indicated
above, cell somas are indicated with black dots, and cell axons are darkened versions of the supertype
colors. Cortical layers are indicated (L1-L6). Scale bar, 200 um.

H) Left, scatterplot relating the mean early effect size of each gene (dots) in vulnerable versus
unaffected Sst supertypes. Gene families that decrease preferentially in vulnerable Sst supertypes are
color-coded blue (ubiquitin ligases, p-value=0.036) and green (kinases, p-value=8.92e-11). Gene families
that decrease preferentially in unaffected Sst supertypes are color-coded red (electron transport chain,
p-value near 0) and purple (ribosomal proteins, p-value near 0). The vast majority of genes fall within
dashed grey lines bounding the space where effect sizes are within 1 unit of each other. Exemplar genes
from each family are indicated in the plot. Right, LOESS regression plots relating the mean expression of
indicated genes from these families to CPS across vulnerable (dark orange) and unaffected (light orange)
Sst and and vulnerable (dark red) and unaffected (light red) Pvalb supertypes. Uncertainty in each line
represents the standard error from 1000 LOESS fits with 80% of the data randomly selected in each
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iteration. In(UP10K+1), natural log UMIs per 10,000 plus 1. Dashed grey line, point in CPS when plaque
and tangle pathology is definitively increasing (CPS=0.6).

I) Same LOESS regression plots as in (H) for notable single gene examples (NGF and MME) that decrease
preferentially in vulnerable Sst supertypes but which do not belong to the gene families indicated.

Figure 7: Early microglia and astrocyte activation and relationship of supertypes across publicly
available data sets.

A) Scatterplot showing UMAP coordinates for Micro-PVM and other immune supertypes from the
middle temporal gyrus (MTG) SEA-AD dataset colored by supertype identity. Red text, disease
associated microglia state. Other common states are indicated for supertypes (e.g. proliferating
microglia).

B) Heatmaps showing the confusion matrices comparing the annotations of microglia cells in the studies
conducted by Mathys et al and Green et al 2023 with the annotations of the same cells labeled using the
SEA-AD cellular taxonomy. Red text, SEA-AD supertypes that were significantly increased in AD in these
datasets using scCODA. Also shows cell types that were associated with disease in the original studies.
Note, Mathys 2023 did not associate a specific microglia cell type with disease, but we identified
disease associated microglia in their dataset. The types called as disease associated in Green_2023
correspond to the disease associated SEA-AD supertype (dashed red lines). Also note, while some
confusion exists, for the most part the taxonomies between Mathys 2023, Green_2023 and SEA-AD
cover the same transcriptional landscape and more or less conservatively divide it.

C) Heatmap showing the mean z-scored expression across microglia supertypes of marker genes
identified by NEBULA. 3 marker genes are shown for all supertypes except for the disease associated
Micro-PVM _3 (red text), which has 30 marker genes shown to establish correspondence with disease
associated types in other datasets.

D) Scatterplot relating the mean effect size of each gene across microglia supertypes in the early (x-axis)
versus late (y-axis) epochs along CPS. Significant genes in the early phase (top) or late phase (bottom)
that are interferon stimulated genes (p=0.040 early), class Il major histocompatibility complex
compnents (MHC) and Fc receptors (p=4.32e-6 early, p=9.86e-7 late), or pro-inflammatory genes are
color-coded red, human plaque induced genes (p=1.22e-4 early) are color coded blue, and other top
genes not in these families are color coded grey. The gene families indicated were significantly enriched
among the up-regulated genes in the early and late disease epoch along. Grey dashed lines, denote
effect sizes of 1 and -1 in the early (top) and late (bottom) AD epochs.

E) Left, scatterplot relating the mean z-scored gene expression of transcription factors identified by the
gene regulatory networks (GRNs) across non-neuronal cells in microglial supertypes versus their effect
size in the early disease epoch along CPS. Comparing gene expression versus statistically significant
effect size enabled the identification of candidate transcription factors (MAF, IKZF1, NFATC2, and
RUNX1) that may be upstream of the microglia-specific early transcriptional response to AD pathology.
Right, cumulative density plot depicting the effect sizes in the early disease epoch along CPS of genes
downstream the transcription factors identified in (left) based on the GRNs (in blue) versus effect sizes
all other genes (in yellow). Note, significant difference in mean effect size (p-value=1.36e-12 early)

F) LOESS regression plots relating the mean expression of indicated genes from families noted in (D) to
CPS across non-neuronal supertypes organized and colored by subclass. In(UP10K+1), natural log UMls
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per 10,000 plus 1. Dashed grey line, point in CPS when plaque and tangle pathology is definitively
increasing (CPS=0.6)

G) Scatterplot showing UMAP coordinates for Astrocyte supertypes from the middle temporal gyrus
(MTG) SEA-AD dataset colored by supertype identity. Red text, disease associated protoplasmic
astrocyte supertype. Other astrocyte supertypes are associated with their canonical morphological type
(e.g. intralaminar in cortical layers 1 and 2 and fibrous in deeper cortical layers).

H) Heatmaps showing the confusion matrices comparing the annotations of astrocyte cells in the studies
conducted by Mathys et al and Green et al 2023 with the annotations of the same cells annotated with
the SEA-AD cellular taxonomy. Note, Green et al associated Ast.10 with disease, which maps to the
protoplasmic Astro_2 supertype in SEA-AD. We associated this type with disease in our MTG and DLPFC
datasets, but not Green_2023. Mathys_ 2023 did not associate a specific astrocyte cell type with disease.
Also note, most cell types in Mathys 2023 and Green_2023 correspond to protoplasmic and
intralaminar astrocytes. The marker genes they use in their studies indicate they may not have captured
a significant number of fibrous astrocytes, so are missing this cell type in their taxonomies.

I) Heatmap showing the mean z-scored expression across astrocyte supertypes of marker genes
identified by NEBULA. 3 marker genes are shown for all supertypes except for the disease associated
Astro_2 (red text), which has 30 marker genes shown.

J) Scatterplot relating the mean effect size of each gene across astrocyte supertypes in the early (x-axis)
versus late (y-axis) epochs along CPS. Significant genes in the early phase (top) or late phase (bottom)
that are cellular adhesion and neuronal guidance cues are color-coded red and other top genes not in
these families are color coded grey. Grey dashed lines, denote effect sizes of 1 and -1 in the early (top)
and late (bottom) AD epochs.

K) Same LOESS regression plots as in (F) for the strongly disease-associated APOE gene, which decreases
in expression in Astrocytes and increases in expression in Microglia in the late disease epoch along CPS.

Figure 8: Early loss of oligodendrocytes with a re-myelination program in OPCs and relationship of
supertypes across publicly available data sets.

A) Scatterplots showing UMAP coordinates for Oligodendrocyte (left) and OPC (right) supertypes from
the middle temporal gyrus (MTG) SEA-AD dataset colored by supertype identity. Blue text, vulnerable
myelinating oligodendrocyte and OPC supertypes. An immature (non-myelinating) oligodendrocyte state
is also indicated.

B) Heatmap showing the mean z-scored expression across oligodendrocyte (left) and OPC (right)
supertypes of marker genes identified by NEBULA. 3 marker genes are shown for all supertypes except
for the vulnerable Oligo_2, Oligo_4, and OPC_2 supertypes (blue text), which all have 30 marker genes
shown.

C) Heatmaps showing the confusion matrices comparing the annotations of oligodendrocyte and OPC
cells in the studies conducted by Mathys et al and Green et al 2023 with the annotations of the same
cells labeled using the SEA-AD cellular taxonomy. Red text, SEA-AD supertypes that were significantly
increased in AD in these datasets using scCODA (in contrast to the decrease seen in the SEA-AD data for
these supertypes). Red and blue text also notes cell types that were associated or vulnerable,
respectively, with disease in the original studies. Note, Mathys 2023 did not associate a specific
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microglia cell type with disease. Also note, while some confusion exists, for the most part the
taxonomies between Mathys 2023, Green_2023 and SEA-AD cover the same transcriptional landscape
and more or less conservatively divide it.

D) Box and whisker plot showing the mean expression (natural log UMlIs per 10,000 plus 1) of beta
(BACE1 and BACE2) and gamma (PSEN1, PSEN2, APH1A, NCSTN, and PSENEN) secretase components and
the APP gene organized by subclass.

E) Scatterplot relating the mean effect size of each gene across oligodendrocyte (left and middle) and
OPC (right) supertypes in the early (x-axis) versus late (y-axis) epochs along CPS. Significant genes in the
early phase (left) or late phase (middle) in oligodendrocytes that are involved in fatty acid biosynthesis
(left) of cholesterol biosynthesis (middle, p=0.0040 late) are color-coded red and that are myelin
components (p=0.006 late) are color coded blue. Significant genes in the early phase (right) in OPCs that
are part of the re-myelination program (p=9.62e-5 early) are color coded blue. Other strongly changed
genes not in these families are color coded grey across panels. These gene families indicated were
significantly enriched among the up-regulated or down-regulated genes in the early or late disease
epoch along Grey dashed lines, denote effect sizes of 1 and -1.

F) Left, scatterplot relating the mean z-scored gene expression of transcription factors identified by the
gene regulatory networks (GRNs) across non-neuronal cells in OPC supertypes versus their effect size in
the early disease epoch along CPS. Comparing gene expression versus statistically significant effect size
enabled the identification of candidate transcription factors (OLIG1, OLIG2, SOX10, SOX8, PRRX1, and
ASCL1) that may be upstream of the OPC-specific early transcriptional response to AD pathology. Right,
cumulative density plot depicting the effect sizes in the early disease epoch along CPS of genes
downstream the transcription factors identified in (left) based on the GRNs (in blue) versus effect sizes
all other genes (in yellow). Note, significant difference in mean effect size (p-value=3.14e-23 early)

G) LOESS regression plots relating the mean expression of indicated genes from families noted in (E) to
CPS across non-neuronal supertypes organized and colored by subclass. In(UP10K+1), natural log UMls
per 10,000 plus 1. Dashed grey line, point in CPS when plaque and tangle pathology is definitively
increasing (CPS=0.6)

H) Dotplot depicting mean gene expression and fraction of cells in each group with non-zero expression
in the SEA-AD MTG dataset organized by subclasses for the genes indicated. Expression is natural log
UMIs per 10,000 plus 1.

I) LOESS regression relating the mean expression of IGF1 to CPS, color coded by inhibitory (left),
excitatory (middle), and non-neuronal (right) subclasses. Dashed grey line, point in CPS when plaque and
tangle pathology is definitively increasing (CPS=0.6).

Figure 9: MTG cells impacted by AD, predominantly localizing to superficial layers, can be organized in
two epochs: an early and a late phase.

A) Diagram illustrating cortical columns with actual neuronal reconstruction from vulnerable populations
(from non-AD donors) organized by the early (Top) and late (Bottom) disease epochs. During the early
epoch, superficial Sst, Sncg and Lamp5 interneurons were lost. In the late epoch, most lost neurons
localized superficially, (L2/3 IT, Pvalb and Vip), with the addition of deep cortical and striatum projecting
LS IT neurons.
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B) (first box) The dynamic changes associated with AD progression can be organized into an early and
late epoch. In the early epoch, the first neuropathological event occurring is an increase in the size of
sparse AP plaques, subsequently followed by an exponential aggregation of both pTau and plaque
burden. A decrease in NeuN positive cells occurs throughout. (second box) Supragranular interneurons
(Sst, Sncg, Lampb5) are lost early on. During this period, gene encoding the electron transport chain
complex and ribosomal proteins are down-regulated broadly across neurons, except in the vulnerable
Sst interneurons. In the latter cells, there is a strong downregulation of ubiquitin ligases and kinases.
Later on, not only inhibitory cells (Pvalb and Vip) are lost but also long-range projecting pyramidal
neurons (L2/3 IT and L5 IT). (third and fourth boxes) Nonneuronal cells accompany these changes with
the early emergence of disease-associated microglia (DAM) and an increase protoplasmic astrocyte,
while myelinating oligodendrocytes decrease their abundance. Concurrently, DAM upregulate
inflammatory and plaque induced genes, while OPCs appear to attempt to compensate for
oligodendrocyte loss by upregulating their OPC differentiating genes. Later, OPC cells are impacted and
lost while myelination genes in oligodendrocytes are down-regulated.
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Extended Data Figure Legends

Extended Data Figure 1: SEA-AD Brain Cell Atlas study design.

A) Schematic detailing experimental design for applying quantitative neuropathology, single nucleus
RNA sequencing (snRNAseq), single nucleus ATAC sequencing (snATAC-seq), single nucleus Multiome
(Multiome), and multiplexed error robust fluorescence in situ hybridization (MERFISH) to middle
temporal gyrus (MTG) of SEA-AD donors as well as the analysis plan for construction of a pseudo-
progression score from quantitative neuropathology, integration across -omics data modalities,
common cell type mapping to the BRAIN initiative reference, and use of demographic and clinical
metadata to identify cellular and molecular changes in AD.

B) Top, boxplots showing pre-sequencing quality control metrics for donor tissue (e.g. PMI, RIN, brain pH
and mass) and single nucleus preparations (e.g. fraction of NeuN positive nuclei and library
concentration) organized by AD Neuropathological Change (ADNC). Bottom, A donor by metric matrix
was constructed for the values indicated, using a simple average for variables that had multiple values
per donor (e.g. multiple sequencing library concentrations). Principle component analysis (PCA) was
then run on the matrix. Bottom and left, Violin plot showing the eigenvalues for each donor along the
first principle component organized by ADNC. Bottom and right, heatmap showing z-scores of the pre-
sequencing quality control metrics (rows) in each donor (columns). Donors and metrics are ordered
based on the first principle component eigenvalues and eigenvectors. Red dashed box, two outlier
values along first principle component for two donors that were driven by low RIN and brain pH.

C) Violin plots showing cellular-level post-sequencing quality control metrics for single nucleus
transcriptomics, chromatin accessibility and multiome data organized by ADNC. Significant p-values:
NeuN Fraction Not AD versus High=0.05.

D) Violin plots comparing library-level post-sequencing quality control metrics of snRNA-seq to
snMultiome (left) and snATAC-seq to snMultiome (right).

Extended Data Figure 2. Altered multimodal metrics within severely affected donors.

A) Donor by metric matrices were constructed for the library-level post-sequencing quality control
values indicated, using a simple average when multiple libraries were sequenced per donor. Principle
component analysis (PCA) was then run on each matrix. Heatmaps showing z-scores of snATAC-seq (top)
and snRNA-seq (bottom) metrics (rows) in each donor (columns). Donors and metrics are ordered based
on the first principle component eigenvalues and eigenvectors. Red dashed boxes, donors with outlier
eigenvalues along each PC.

B) LOESS regression on longitudinal cognitive scores in the executive, visuospatial, and language domain
across ADNC 0-2 (Not AD to Intermediate) in grey, ADNC 3 donors that were not severely affected in
gold, and ADNC 3 donors that were in purple. Uncertainty represents the standard error from 1000
LOESS fits with 80% of the data randomly selected in each iteration. Significant p-values for cognitive
decline: SA donors versus ADNC 0-2=0.009, Other ADNC 3 versus ADNC 0-2=0.021.

C) Heatmap showing the pairwise jaccard distances based on the peak universes from 11 randomly
selected ADNC 3 donors (yellow) and all 11 severely affected donors (purple) hierarchically ordered. Red
boxes, two clusters within the hierarchy that largely correspond to the separation between ADNC3 and
SA donors.
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D) Histogram showing the distribution of peak lengths of accessible regions in ADNC 3 (yellow) and
severely affected donors (purple).

E) Transcription factors binding sites enriched in chromatin accessible regions uniquely found in severely
affected donors organized by their gene ontology category. Transcription factors that bind to them are
indicated.

F) Stripplot showing the fraction of cells removed from each library for having too many mitochondrial
reads during quality control organized by subclass and by severely affected donors (purple) and ADNC 0-
3 donors (yellow).

Extended Data Figure 3: Human MTG neuropathological stains track brain-wide pathological states.

A) Schematic depicting neuropathological data acquisition pipeline (ordered 1 to 6)

B) Scatterplots showing the percent of 6e10 (AB)-positive (top) and percent of AT8 (pTau)-positive
voxels (bottom) across donors, stratified by layer and color-coded/organized by ADNC. Within a
particular ADNC group, donors are randomized. Red solid line, mean value across donors. Red dashed
line, mean plus 1 standard deviation

C) Boxplots showing the number of pTau-bearing cells per unit area organized by Braak stage (left) and
number of AB plaques per unit area organized by Thal phase (right) across donors. Note, in later stages
there is considerable variability in plaque and tangle number, underscoring limitations in classical
staging.

D) Boxplots showing the percent of pTDP-43-positive voxels (left) and percent of a-Syn-positive (a-
Synuclein) voxels across donors organized by to LATE-NC stage (left) and Lewy Body Disease stage (right).
Lewy Body Disease is coded numerically (0 = Not or Incompletely Assessed, 1=Not Identified, 2=Amygdala-
predominant, 3=Brainstem-predominant, 4=Limbic (Transitional), 5=Olfactory bulb only, 6=Neocortical).
Note, only donors in later stages have large accumulation of co-pathology.

Extended Data Figure 4: MTG pseudo-progression scores orders quantitative neuropathological
variables following increasing disease severity.

A) Graphical model used to infer the continuous pseudo-progression score (CPS).

B, C) LOESS regression plots relating mean quantitative neuropathological (QNP) variables across layers
(B) and demographic/clinical metadata (C) indicated to CPS. Dots represent individual donor values.
Uncertainty in each line represents the standard error from 1000 LOESS fits with 80% of the data
randomly selected in each iteration. Note, variables from (C) were not used to construct the model.
CASI, Cognitive Abilities Screening Instrument; ADNC, AD Neuropathological Change; PRS, Polygenic Risk
Score.

D) Left, Subset of heatmap from Figure 2c showing co-correlation of QNP variables in cluster 1. Right,
Scatterplot showing how the QNP variable number of pTDP-43 positive cells per unit area, which is
within correlation cluster 1, relates to CPS. Dots represent values from each donor in the cortical layer
indicated, lines are LOESS regressions for measurements across donors within each layer.

E) Same plots as in (D) but for clusters 2, 6, 5, and 8.

Extended Data Figure 5: Pipeline for the creation of the SEA-AD MTG taxonomy.
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A) Schematic showing steps involved in supertype creation from snRNA-seq data in neurotypical
reference donors, mapping and quality control on SEA-AD snRNA-seq and snMultiome data, and
expansion of the BRAIN Initiative taxonomy to include novel types and states found in SEA-AD.

B) Hierarchical procedure for the creation of robustly mappable cell types, termed “supertypes”. Labels
from 1 of 5 reference donors was systematically held out and predicted using a deep generative model
(DGM) trained on the remaining 4 donors. Steps 1 to 3 represent mapping cells to one of three classes,
splitting each class and mapping to one of 24 subclasses, splitting each subclass and mapping to one of
151 clusters from the original BRAIN initiative taxonomy. In each step, we include scatterplots with
UMAP coordinates for exemplar populations from references donors along with heatmaps showing
confusion matrices. Note, near perfect mapping is achieved to the subclass level and clusters are
occasionally missed a the cluster level. In step 4, we identified these hard-to-map clusters (example L5
IT_4 cluster shown in red) and removed labels for these cells in the training data. 26 of 151 clusters were
pruned, mostly representing cell types that were intermediates of others. Finally, in step 5 we repeat
mapping with the 125 highly mappable supertypes and show consistently high F1 scores across them
(box and whisker plot).

C) After hierarchically mapping SEA-AD nuclei to supertypes using the same approach as above, we
filtered low quality nuclei within subclasses (The microglia subclass is shown as an example). Left,
scatterplots showing the UMAP coordinates of all SEA-AD and reference nuclei within the microglia
subclass. In the first plot, reference nuclei are labeled and colored and SEA-AD nuclei are in light grey. In
the second and third plots, we show the supertype predictions for each nucleus from the DGM as well as
the uncertainty in the prediction (darker nuclei are more uncertain). In the fourth plot we show robust,
high resolution Leiden clusters and color them by their quality control metrics (i.e. donor entropy, mean
fraction of mitochondrial reads, mean doublet score, and mean number of genes detected). Clusters
were flagged and removed based on these metrics. The far right box and whisker lot shows the fraction
of nuclei removed per library organized by AD Neuropathological Change (ADNC).

D) Scatterplots showing scANVI probabilities (top) and supertype signature scores (bottom) organized by
cell classes. Lines represent linear regressions. Note, decreasing probabilities and signature scores for
non-neuronal supertypes, but not others.

E) After removing low quality nuclei new latent representations were learned with DGMs, which were
then underwent robust Leiden clustering. Clusters with low fractions of nuclei from neurotypical
reference donors (<10%) were added to the taxonomy. The first scatterplot shows the UMAP
coordinates of nuclei that passed quality control filtering in (C) from the same latent representation. The
next three scatterplots show the UMAP coordinates of the same cells based on the new latent
representation colored by reference versus SEA-AD nuclei (light grey), scANVI predictions, and robust
Leiden clusters. The next two scatterplots show the fraction of all reference nuclei per cluster (top) and
the max fraction of any supertype per cluster (bottom). The final scatterplot is colored by the final SEA-
AD taxonomy with the new clusters that had poor reference support added.

Extended Data Figure 6: Pipeline for the annotation of chromatin accessibility data sets.

A) Schematic showing steps involved in processing the SEA-AD snATAC-seq data, which include global
peak calling and modality integration, quality control filtering and subclass mapping, and within subclass
peak calling and supertype mapping.
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B) Scatterplot showing the UMAP coordinates of all nuclei profiled in the middle temporal gyrus (MTG)
color coded by indicated data modalities.

C) Top and left, Same scatterplot as in (B) but color coded by low quality cell score (left) and (right) by
Leiden clusters with mean low quality cell scores greater than 0.5. Violin plot to the right of the first plot
shows the binary distribution of the low quality cell scores (RNA QC score). Bottom, violin plots showing
the distribution of the low quality cell score per Leiden cluster, with the number of those that were
flagged indicated. Top and right, box and whisker plot showing the fraction of cells in each snATAC-seq
library that were filtered during quality control.

D) Scatterplots showing the UMAP coordinates from (B) of only the high quality nuclei colored by
neurotypical reference subclasses versus SEA-AD in light grey (left) and by predicted subclass (right).

E) Scatterplots showing UMAP coordinates of nuclei from 1 example subclass (Sst) based on integrated
space constructed with subclass-specific peaks. Plots are color coded by modality (left), by reference
supertypes versus SEA-AD in light grey (middle) and by predicted supertype (right).

Extended Data Figure 7: Pipeline for the acquisition of high quality spatial transcriptomic data in the
human MTG

A) Top, SEA-AD MERFISH cohort demographics stratified by AD neuropathological change (ADNC) score.
Age at death is represented by box-and-whisker plots. The median is indicated by the solid line within
the box and donor values are represented as points. The fraction of donors that have a biological sex of
male or female, that have an APOE4 allele, and that have a co-morbidity are shown as bar charts per
ADNC level, with the number of donors in each group indicated. Bottom, SEA-AD MERFISH cohort
composition stratified by ADNC on the left versus Braak stage (measuring distribution of neurofibrillary
tangles across the brain), Thal Phase (measuring distribution of amyloid beta plaques across the brain),
and CERAD score (measuring the distribution of neuritic plaques across the brain) as heatmaps. The
number of donors in each box are indicated with the fraction in Braak, Thal, and CERAD stages in
parentheses. Darker colors represent a higher fraction of donors. The fraction of donors across ADNC
that have dementia (red) or not (grey) are shown as bar plots. Numbers indicate the number of donors
in each group.

B) Schematic showing the Spatial Transcriptomics workflow. Tissue blocks for profiling are cut from a
frozen donor slab and cryosectioned. Sections are photobleached to reduce autofluorescence,
hybridized with the probe panel, digested to clear light scattering elements, then processed through
multi-round imaging on the MERSCOPE. Stitched and processed images are segmented to provide cell
boundaries and a cell x gene table with cell locations is created. Cells are mapped to their transcriptomic
type and assigned to their location within the tissue to create cell maps.

C) Histograms showing the correlation between total slide transcripts (left) or transcripts within cells
(right) and bulk RNAseq across sections.

D) Histogram showing the correlation between total slide transcripts and transcripts in cells.

E) Left, histogram showing the correlation in total slide transcripts across sections from the same donor.
Right, Histogram showing the slope from a linear regression comparing total slide transcripts across
sections from the same donor.
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F) Box and whisker plot showing F1 scores for subclasses (left) and supertypes (right) from the
procedure where 1 donor was systematically held out at a time in neurotypical reference snRNA-seq
data where the model could use all genes (Full) or only the 140 genes in the MERFISH panel (MERFISH).
Note, when the mapping is limited to the 140 genes in the MERFISH panel, F1 scores decreased in both
taxonomic levels but were still above 0.7 for the vast majority of supertypes.

G) Scatterplots showing the positions of excitatory intratelencephalic (IT) neurons as dots from example
sections from donors with an early (0.17), middle (0.52) and late (0.84) continuous pseudo-progression
score (CPS) color coded by their subclass. The spatial positions of these cells is consistent with their
mapped identity across CPS.

H) Barplot showing the relative abundance of excitatory IT neurons across data collection efforts in
neurotypical specimens from previous studies compared to SEA-AD data.

I) Heatmaps showing the average gene expression levels of genes included in the 140 gene MERFISH
panel at the subclass level in snRNA-seq (top) and MERFISH (bottom) data from the middle temporal
gyrus (MTG). Note, highly similar expression patterns across modalities.

Extended Data Figure 8: scCODA model covariates

A) Heatmaps showing the effect sizes of relative abundance changes along each covariate from neuronal
(left) and non-neuronal (right) scCODA models in the SEA-AD snRNA-seq and snMultiome MTG dataset
(first), the SEA-AD snRNA-seq DLPFC dataset (second), Green et al_2023 snRNA-seq dataset (third), and
Mathys et al_2023 snRNA-seq dataset (fourth).

B) Scatterplots relating the effect sizes of each supertype along CPS from the scCODA model on the SEA-
AD snRNA-seq and snMultiome MTG dataset to a similar model run on the SEA-AD snATAC-seq MTG
dataset (first), to a model run without the severely affected donors (second), to a model that included
post mortem interval (PMI) and RIN as covariates (third), and to a model that grouped data by donor
instead of by library (fourth). Linear regressions and their R values are shown. Note strong agreement
across all tests.

Extended Data Figure 9: Integration of publicly available snRNA-seq datasets

A) Barplots showing the fraction of donors in each of the publicly available snRNA-seq datasets that we
harmonized metadata for and integrated classified in co-pathology neuropathological stages (LBD, Lewy
Body Disease; LATE-NC, limbic-predominant age-related TDP-43 encephalopathy neuropathologic
changes; CAA, Cerebral amyloid angiopathy; Ath, Atherosclerosis; Art, Arteriosclerosis), that were
female, or were in defined age groups. Grey boxes, metadata that was unavailable.

B) Box and whisker or barplots showing quality control metrics across each of the publicly available
datasets. Metrics for the SEA-AD DLPFC snRNA-seq dataset are shown at bottom in orange for
comparison.

C) Scatterplot showing UMAP coordinates for MGE-derived inhibitory interneuron supertypes across all
publicly available and the SEA-AD DLPFC dataset. Nuclei or cells are colored based on the signature score
for Sst_25, which are indicated with the black dashed circle.

D) Scatterplots showing UMAP coordinates of all supertypes within their cellular neighborhoods (i.e.
MGE-derived inhibitory neurons, CGE-derived inhibitory neurons, Intratelencephalic excitatory neurons,
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Deep-projecting excitatory neurons, glial cells, and vascular and immune cells. In each neighborhood on
left are nuclei and cells colored by supertype and on right cells are colored by dataset.

E) Scatterplots relating the effect size for the change in relative abundance across supertypes in the SEA-
AD DLPFC dataset to those observed in the Green_2023 (top) and Mathys_2023 (bottom) datasets. Each
point is a supertype colored by their subclass and supertypes that are significant in both datasets have
bigger circles. Dashed grey lines are at 0. Note, several Sst, 1 L2/3 IT and 1 Lamp5 supertypes that have
significant negative effect sizes in both datasets.

Extended Data Figure 10: Construction of the “gene-dynamic space”

A) Schematic for identifying differentially expressed genes in each disease epoch along CPS using a
generalized linear mixed model.

B) Left, histogram showing the effect sizes across all supertypes of significantly changed along CPS. Note,
many significant changes had relatively small effect sizes. Right, Scatterplot showing a weak (but
present, R=0.62) correlation between the number of nuclei and number of genes called as significantly
changed along CPS. This suggests SEA-AD may lack the statistical power necessary to identify all of the
genes changed in supertypes that are less abundant in our dataset, such as endothelial and VLMC
supertypes.

C) Scatterplots of the “gene-dynamic space” in Figure 5 colored by the mean z-scored expression, effect
size in the early epoch of CPS and effect size in the late epoch of CPS across the supertypes in the
cellular neighborhoods indicated. These plots provide context for the qualitative annotation in Figure 5.

Extended Data Figure 11: Characteristics of vulnerable neuronal supertypes

A) Heatmap showing the pairwise correlations of the mean expression of all genes across the MGE-
derived supertypes indicated. Red labels are vulnerable supertypes; Red dashed box shows high co-
correlation among vulnerable Sst and Pvalb supertypes despite them coming from distinct subclasses.
B) Scatterplot relating the mean enrichment (defined as the effect size divided by its standard error (SE)
from NEBULA) of each gene in vulnerable (vuln) Sst and Pvalb supertypes compared to unaffected types
in their respective subclasses. Note many common marker genes in top right corner, but also several
subclass specific genes (top left and bottom right corners).

C) MERFISH-profiled brain slice in early CPS donor (CPS=0.23) showing each cells location and
boundaries defined by the cell segmentation, with cortical layers indicated (L1-L6) and separated by
dashed grey lines. Vulnerable L2/3 intratelencephalic (IT) neurons are color-coded. Insets: i) L2/3 IT
supertypes have characteristic depths within layers 2 and 3. Supertypes that are known to be in layer 2
are found here, as expected. ii) Supertypes that are known to be found in layer 3 are found here, also as
expected.

D) Scatterplots showing the spatial locations of individual cells of the inhibitory neuron subclasses
indicated from representative MERFISH sections in donors at increasing CPS stages. Vulnerable
supertypes (aff) are shown in darker colors and unaffected supertypes (unaff) in lighter ones. Cortical
layers (L1-L6) are indicated and separated by solid grey lines. Note, superficial localization of all
vulnerable inhibitory neurons.

E) Bar and swarm plot showing the Sag values for Sst supertypes from PatchSeq data on non-AD donors.
Vulnerable supertypes are colored in red.
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F) Left, electrophysiological traces showing post-spike hyperpolarization of membrane potential (y-axis)
over time in almost all Pvalb neurons from tissue of non-AD human donors that underwent surgical
resection. Middle, bar and swarm plot showing sag distributions in individual vulnerable (Vul) and
unaffected (Unaff) Pvalb neurons. They are not significantly different. Right, Bar and swarm plot
showing the Sag values for Pvalb supertypes from PatchSeq data on non-AD donors. Vulnerable
supertypes are colored in red.

G) Left top and bottom, Bar and swarm plot showing the Tau apparent membrane time constant values
for Sst (top) and Pvalb (bottom) supertypes from PatchSeq data on non-AD donors. Vulnerable
supertypes are colored in red. Middle top and bottom, Bar and swarm plots for data on left grouped by
vulnerable (vul) and unaffected (un-aff) Sst (top) and Pvalb (bottom) supertypes. P-values for all
differential electrophysiological features are in Supplementary Table 8.

H) Scatterplot relating the mean early effect size of each gene (dots) in vulnerable versus unaffected
Pvalb supertypes. The vast majority of genes fall within dashed grey lines bounding the space where
effect sizes are within 1 unit of each other. No gene sets were significantly enriched outside of this area
(in contrast to Sst supertypes).
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Methods
SEA-AD cohort selection and brain tissue collection

Brain specimens were donated for research to the University of Washington (UW) BioRepository and
Integrated Neuropathology (BRalN) laboratory from participants in the Adult Changes in Thought (ACT)
Study and the University of Washington Alzheimer’s Disease Research Center (ADRC). The study cohort
was selected based solely on donor brains undergoing precision rapid procedure (optimized tissue
collection, slicing, and freezing) during an inclusion time period at the start of the SEA-AD study, with
exclusion of those with a diagnosis of frontotemporal lobar degeneration (FTLD), Down's syndrome,
amyotrophic lateral sclerosis (ALS) or other confounding degenerative disorder (not including Lewy body
disease, limbic-predominant TDP-43 encephalopathy, or microvascular brain injury). The cohort was
chosen in this manner to represent the full spectrum of Alzheimer’s disease neuropathology, with or
without common comorbid age-related pathologies.

The ACT study is a community cohort study of older adults from Kaiser Permanente Washington (KPW),
formerly Group Health, in partnership with the UW. The ACT study seeks to understand the various
conditions and life-long medical history that can contribute to neurodegeneration and dementia and has
been continuously running since 1994, making it the longest running study of its kind. In 2004, ACT began
continuous enrollment with the same methods to replace attrition from dementia, dropout, and death,
ensuring a consistent cohort of 22,000 at risk for dementia. Total enrollment is nearing 6,000, with over
1,000 incident dementia cases; more than 900 have had autopsies to date with an average rate of
approximately 45-55 per year. The study completeness of the follow up index is between 95 to 97%.
Subjects aged 65 or older without dementia are invited to enroll by random selection from the greater
Seattle area patient population of KPW Seattle and undergo bi-annual study visits for physical and mental
examinations. In addition to this study data, the full medical record is available for research through KPW.
Approximately 25% of ACT autopsies are from people with no MCI or dementia at their last evaluation;
roughly 30% meet criteria for MCl, and roughly 45% meet criteria for dementia. Thus, the ACT study
provides an outstanding cohort of well-characterized subjects with a range of mixed pathologies including
many controls appropriate for this study. Approximately 30% of the ACT cohort consents to research brain
donation upon death, and tissue collection is coordinated by the UW BRalN lab, which preserves brain
tissue for fixed, frozen, and fresh preparations (described below), as well as performing a full post-mortem
neuropathological examination and diagnosis by Board-certified neuropathologists using the NIA-AA and
other relevant, current guidelines.

The UW Alzheimer’s Disease Research Center (ADRC) has been continuously funded by NIH since 1984. It
is part of a nationwide network of ADRCs funded through the NIA and contributes uniquely to this premier
program through its vision of precision medicine for AD: comprehensive investigation of an individual’s
risk, surveillance with accurate and early detection of pathophysiologic processes while still preclinical,
and interventions tailored to an individual’s molecular drivers of disease. Participants enrolled in the UW
ADRC Clinical Core undergo annual study visits, including mental and physical exams, donations of
biospecimens including blood and serum, and family interviews. The UW ADRC is advancing
understanding of clinical and mechanistic heterogeneity of Alzheimer’s disease, developing pre-clinical
biomarkers, and, in close collaboration with the ACT study, contributing to the state of the art in
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neuropathological description of the disease. For participants who consent to brain donation, tissue is
also collected by the UW BRalN lab, and is preserved and treated with the same full post-mortem
diagnosis and neuropathological work up as described above.

Human brain tissue was collected at rapid autopsy (postmortem interval <12 hours, mean close to 7
hours, Extended Data Fig. 1a). One hemisphere (randomly selected) was embedded in alginate for
uniform coronal slicing (4mm), with alternating slabs fixed in 10% neutral buffered formalin or frozen in
a dry ice isopentane slurry on Teflon-coated plates3®3!. Superior and Middle Temporal Gyrus (STG-MTG)
for quantitative neuropathology was sampled from fixed slabs and subjected to standard processing,
embedding in paraffin (Extended Data Fig. 1b).

Single and duplex-IHC for quantitative neuropathology

The STG-MTG tissue blocks were sectioned (cut at 5 um), deparaffinized by immersion in xylene for 3
minutes, 3 times. Then, rehydrated in graded ethanol (100%, 3x, 96%, 70% and 50% for 3 minutes each)
and washed with TBST (Tris Buffered Saline with 0.25% Tween) twice for 3 minutes. The slides were
immersed in Diva Decloaker 1x solution (Biocare Medical, DV2004) for heat-induced epitope retrieval
(HIER) using the Decloaking Chamber at 110C for 15 minutes for most of the antibodies. For the alpha-
Synuclein protein detection, enzymatic antigen retrieval with protein kinase is used. After the HIER is
completed, the slides are cooled for 20 minutes at RT. Afterward, the slides are washed with TBST for 5
minutes, twice.

Chromogenic staining was performed using the fully automated BioCare Medical intelliPATH®. Blocking
with 3% hydrogen peroxide, Bloxall (Vector Labs), Background punisher (BioCare Medical), and levamisole
(Vector labs) is performed to avoid any cross-reactivity and background. The following primary antibodies
are used for the first target protein at the dilutions indicated: NeuN (1:500, A60, Mouse, Millipore
MAB5374), pTDP43 (1:1000, Ser409/Ser410, ID3, Rat, Biolegend, 829901), Beta Amyloid (1:1000, 6e10,
Mouse, Biolegend 80303), Alpha-Synuclein (1:200, LB509, Mouse, Invitrogen 180215) and GFAP (1:1000,
Rabbit, DAKO, Z033401-2). Following primary antibody incubation sections were washed 4x2 minutes with
TBST and stained with species-appropriate secondary antibody conjugated to a Horseradish Peroxidase
(HRP, MACH3- Mouse (M3530), and MACH-Rabbit (M3R531), BioCare Medical). Sections were washed
2x2 minutes with TBST and the antibody complex is then visualized by HRP-mediated oxidation of 3,3’-
diaminobenzidine (DAB) by HRP (brown precipitate). Counterstaining is done with hematoxylin after the
DAB reaction.

In the case of a duplex IHC (6e10 and pTDP43), the slides were washed 18x2 minutes in TBST and then
incubated with primary antibodies at the dilutions indicated after the DAB reaction: IBA1 (1:1000, Rabbit,
Wako, 019-19741) and PHF-TAU (1:1000, AT8, Mouse, Thermofisher, MN1020), washed as above and
stained with species-appropriate secondary antibodies conjugated to an Alkaline Phosphatase (AP,
MACH3-Mouse (M3R532) MACH3-Rabbit (M3R533), Biocare Medical). The complex was then visualized
with the intelliPATH® Ferangi Blue reaction kit (IPK5027, Biocare Medical) (blue precipitate). Once staining
is completed, the slides were removed from the automated stainer and immersed in TBST, 3 minutes,
then dehydrated in graded ethanol (70%, 96%, 100%, 2x) for 3 minutes and xylene (or xylene substitute
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in the case of double IHC), 3 times each for 3 minutes. Finally, coverslipping is carried out with a Tissue-
Tek automated cover slipper (Sakura).

Image acquisition of whole slide images

To analyze the different slides obtained from the MTG tissue samples processed for IHC, the slides were
scanned on the Aperio AT2 digital scanner (Leica), which captures sequential images of a 20x field of view,
using slide settings optimized for our IHC protocols which are subsequently assembled or stitched into
whole slide images (WSls) to be exact replicas of the glass slides. All images are scanned at 20x
magnification and using the same gain, brightness and exposure times to avoid image to image variations
(Extended Data Fig. 2a)

Quantification of whole slide images

The quantitative pathological assessment for the WSIs obtained from the MTG region were analyzed using
the HALO® v.3.4.2986 (Indica labs, Albuquerque, New Mexico, USA).

First, DenseNet'®*, a deep learning convolutional neural network was trained to segment MTG cortical
ribbon into cortical layers. The DenseNet network is a minimally pretrained classifier developed to
recognize patterns in the tissue structure provided by Halo. Training data was created by manually
annotating cortical layers labelled with NeuN in 10 cases. Based on the cellular architecture and the
relative position withing the cortical ribbon the following layers were annotated: Layer1 (molecular layer),
layer 2 (external granular layer), layer 3 (external pyramidal layer), layer 4 (Internal granular layer) and
layers 5-6 (internal pyramidal and multiform layers) (Figure 1). Then the trained classifier was applied to
the NeuN-labelled sides from all donors. All results of the automatic segmentation were examined by a
scientist trained in cortical neuroanatomy and adjusted when necessary. Manual adjustment of the
annotations also included removal of staining artifacts and non-parenchymal structures, such as large
blood vessels by drawing exclusion areas around them.

Second, using the Serial Section registration tool, all 5 WSIs belonging to the same case (labelled with
NeuN, GFAP, a-Syn, AB combined with Ibal, and pTau combined with pTDP-43) were registered to each
other in order to establish anatomical correspondence between all 5 tissue sections, and the cortical
annotations from the NeuN-labelled slide were copied to the other 4 IHC stained slides (noted above). We
then applied different algorithms and approaches to obtain stain-specific metrics from all the slides for
each cortical layer. Area quantification algorithm (Area Quantification module) was used for determining
the area of positive staining for all proteins of interest (NeuN, GFAP, Ibal, AB, pTau, a-Syn, and pTDP-43).
Multiplex IHC module for used to determine the number of cells displaying positive labelling for NeuN,
pTau, a-Syn, and pTDP-43). For the double labelled slides, Multiplex IHC module was used to estimate the
area of co-localization of pTau with pTDP-43, and AB with Ibal. Microglia Activation module was used to
determine the number of cells positive for Ibal, measure the cell process area and length, as well as to
classify the cells according to the activation state (activated vs not, based on the process thickness). The
same module was adapted to estimate the process length and process area for cells positive for GFAP. In
the slides double-labelled for AB and Ibal the Object Colocalization module was used to determine the
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number of abet AB-positive objects (amyloid plagues), the average object area, median object diameter,
and the number of objects that were double-positive for AR and Iba1.

Development, optimization, and testing of all analysis algorithms was done by a scientist trained in
neuropathology. The final quantitative neuropathology dataset includes raw measurements (absolute
values) and metrics normalized to the unit area. (Supplementary Table 2).

Creation of Pseudo-progression Score

Our quantitative neuropathological data, Xfin‘l, is measured ind =1 ... D = number of donors, inI=1 ... L
cortical layers and m=1 ... M distinct neuropathological measurements. To estimate a continuous
pseudoprogression score (CPS) of pathological severity in MTG for each brain donor, we created a latent
Bayesian statistical model. We assign to each donor a latent variable, termed t; € [0,1], representing
CPS. In addition, we propose to infer the most likely donor permutation 7, to facilitate latent space
exploration. As described in the main text, the observation model has a mean value dictated by the
exponential biophysical dynamics u = ekin td”‘%n, where ki, and al, are per layer and per QNP
measurement dynamic parameters representing rise time and initial condition respectively. We assume
that our data is corrupted with observational noise described with a Poisson distribution. We impose
Bayesian priors on this model and obtain the following hierarchical Bayesian generative statistical model:

n~Uniform(rm)
t~Uniform(Partition Simplex)
Am, ky~Normal(0,1)
al,~Normal(a,,, 1)

ki ~Normal(k,,, 1)

L l
X ~Poisson (ekm tr@+am )

in which the symbol “~” represents that we are taking draws from a distribution. The hierarchical nature
of this model enables the ‘borrowing of information’ across layers and manifests in the fact that, for each
measurement, layer specific parameters k', and a', are sampled from their population parameters
Kk and a,,.

We perform approximate Bayesian inference in this model to obtain draws from an approximate posterior
distribution given the model and the underlying priors for a, k, m and t. Our inferential strategy is based
on a Gibbs block coordinate sampler where we iteratively sample from each block of variables (t, m or
(a,k)) conditioned on the others being fixed. To sample an element t of the simplex that we unequivocally
associate with an increasing sequence of times fixed we use the sampler described in'*>. To sample
permutations m we resorted to the parametric Gumbel-Sinkhorn family of distributions over
permutations!®® to approximate the otherwise intractable conditional distribution (and hence, our
method is approximate). Finally, to sample model parameters (a, k) we used Stan (version 2.34) with 1000
burn out iterations and collect samples from multiple chains *’. After initial burned out samples, we
iterate through this procedure.
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Tissue processing for single nucleus isolations

Cortical areas of interest were identified on tissue slab photographs taken at the time of autopsy and at
the time of dissection using the Allen Human Reference Atlas as a guide for region localization. MTG was
sampled at the level of first appearance of the lateral geniculate nucleus corresponding to the
intermediate subdivision of area (A) 21. DLPFC was sampled in tissue slabs anterior to the first appearance
of the corpus callosum within the superior frontal gyrus corresponding to the rostrodorsal portion of
DLPFC (A9'%). Tissue blocks encompassed the full height of the cortex from pia to white matter (~5mm)
and were ~2-3 mm wide and 4mm thick. To dissect regions of interest, tissue slabs were removed from
storage at —80C, briefly transferred to a —20C freezer to prevent tissue shattering during dissection, and
then handled on a custom cold table maintained —20C during dissection. Dissections were performed
using dry ice cooled razor blades or scalpels to prevent warming of tissues. Photographs were taken before
and after each dissection to document the precise location of each resected tissue block. Dissected tissue
samples were then transferred to vacuum seal bags, sealed, and stored at -80C until the time of use. Single
nucleus suspensions were generated using a previously described standard procedure
(https://www.protocols.io/view/isolation-of-nuclei-from-adult-human-brain-tissue-ewov149p7vr2/v2).

Briefly, after tissue homogenization, isolated nuclei were stained with a primary antibody against NeuN
(FCMAB317PE, Millipore-Sigma) to label neuronal nuclei. Nuclei samples were analyzed using a BD FACS
Aria flow cytometer and nuclei were sorted using a standard gating strategy to exclude multiplets®. A
defined mixture of neuronal (70% from the NeuN positive gate) and non-neuronal (30% from the NeuN
negative) nuclei was sorted for each sample. Nuclei isolated for 10x Genomics v3.1 snRNA-seq were
concentrated by centrifugation after FANS and were frozen and stored at —80C until later chip loading.
Nuclei isolated for 10x Genomics Multiome and 10x Genomics Single Cell ATAC v1.1 were concentrated
by centrifugation after FANS and were immediately processed for chip loading.

Isolation of RNA and determination of RNA Integrity Number (RIN) from frozen human brain tissue

To assess RNA quality, three tissue samples (roughly 50mg each) were collected from the tissue slab
corresponding to the frontal pole of each donor brain. Tissue samples were collected from three different
regions of the tissue slab to assess within-slab variability in RNA quality. Dissected tissues were stored in
1.5 mL microcentrifuge tubes on dry ice or in the -80C until the time of RNA isolation. Tissue samples were
homogenized using a sterile Takara BioMasher (Takara, 9791A). RNA isolation was performed using either
a Qiagen RNeasy Plus Mini Kit (Qiagen, 74134) or a Takara NucleoSpin RNA Plus kit (Takara, 740984)
following the manufacturer’s protocol. RNA integrity (RIN) values for each sample were determined using
the Agilent RNA 6000 Nano chip kit (Agilent, 5067-1511) and an Agilent Bioanalyzer 2100 instrument
following the manufacturer’s protocol.

10x genomics sample processing

10x Genomics chip loading and post-processing of the emulsions to sequencing libraries were done with
the Chromium Next GEM Single Cell 3' Gene Expression v3.1, Chromium Next GEM Single Cell ATACv1.1,
and Chromium Next GEM Single Cell Multiome ATAC+Gene Expression kits according to the
manufacturer’s guidelines. Nuclei concentration was calculated either manually using a disposable
hemocytometer (InCyto, DHC-NO1) or using the NC3000 NucleoCounter.
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10x sequencing and pre-processing

All 10x libraries were sequenced per manufacturer’s specifications on a NovaSeq 6000 using either a
NovaSeq-X or S4 flow cell. Reads were demultiplexed to fastq files using BCL Convert (version 4.2.7) for
libraries run on NovaSeg-X flow cells and bcl2fastq (version 2-20-0) for libraries run on S4 flow cells. Reads
from snRNA-seq libraries were mapped to 10x Genomics’ official human reference (“Human reference
(GRCh38) — 2020-A”) and unique molecular identifiers (UMIs) counted per gene using the cellranger
(version 6.1.1) pipeline with the “—include—introns” parameter included. Reads from snATAC-seq and
snMultiome libraries were mapped to the same reference using cellranger-atac (version 2.0.0) and
cellranger-arc (version 2.0.0) pipelines with default parameters, respectively.

Identification of donors with low quality tissue

To identify donors with correlated poor tissue-level and pre-sequencing metrics (brain pH, brain weight,
postmortem interval, RIN, cDNA amplification concentration, and snRNA-seq library insert size) we
constructed an AnnData object using the scanpy!® python package (version 1.9.1). Each donor was
treated as an “observation” and each quality control metric above as a “variable” instead of the typical
cell by gene construction. We then centered and scaled each metric with the scanpy.pp.scale function
with default parameters and performed principal component analysis on the matrix with the
scanpy.pp.pca function also with default parameters. Two donors were outliers on the first principal
component (e.g. had values beyond 1.5 times the interquartile range centered at the median), which were
driven by severely low RIN scores and brain pH. These donors were excluded from downstream analyses.

Identification of severely affected donors

To identify donors with systematically lower data quality by post-sequencing metrics, we repeated the
above procedure with library-level snRNA-seq and snATAC-seq metrics from the cellranger and cellranger-
atac pipelines. The metrics included mean raw reads per cell, median UMlIs per cell, median genes
detected per cell, fraction of reads mapped to the genome, fraction of reads mapped uniquely to the
genome, fraction of reads mapped to intronic regions, fraction of reads mapped to exonic regions, fraction
of reads mapped to intergenic regions, fraction of reads mapped antisense, fraction of reads mapped to
the transcriptome, fraction of transcriptomic reads in cells, and total genes detected across the library for
snRNA-seq and mean raw reads per cell, median fragments detected per cell, fraction of uniquely mapped
reads, fraction of the genome in peaks, fraction of fragments overlapping peaks, fraction of fragments
overlapping transcription start site (TSS), TSS enrichment, and fraction of transposition events in peaks in
cells for snATAC-seq. The first principle component for the snRNA-seq and snATAC-seq metrics explained
71.4% and 65.5% of the variance, respectively, so were taken as composite scores of these highly
correlated library level metrics. 11 donors were outliers along the first principle component from both
modalities (again defined as values beyond 1.5 times the interquartile range centered at the median), so
were flagged as having systematically lower data quality. We classified these donors as “severely affected”
based on differences in the steepness of their memory decline in life compared to other donors with
similar pathology (see methods section “Testing for differential cognitive slopes in severely affected
donors” below and Results section “SEA-AD: Multimodal profiling Alzheimer’s disease progression across
wide pathological stages” above). There were no severely affected donors in the snMultiome dataset.
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Testing for differential cognitive slopes in severely affected donors

Cognitive testing was previously co-calibrated and harmonized into cognitive composites for memory,
executive functioning, visuospatial recognition, and language for all ACT and UW ADRC study participants
using confirmatory factor analyses 2°. To test for differences in the decline of these domains between
severely affected and other high pathology donors, each of the composite scores was standardized to a
normal distribution (i.e. N(0, 1)) across the broader cohort they came from at baseline. We calculated
slopes of memory decline over time using a mixed-effects models using the mixed function from Stata
(version 18), where time was parameterized as years before death. We also created a multinomial
outcome variable with a reference level consisting of lower pathology donors (i.e. donors with ADNC score
Not AD, Low, or Intermediate) and two distinct test groups. The first included donors who were ADNC
high, but were not outliers based on library level metrics and the second included donors who were
outliers. We then ran a multinomial logistic regression for our outcome variable using the mlogit function
from Stata on the slope of each cognitive domain separately, adjusting for age at death and sex and study
site (i.e. ACT or UW ADRC). P-values from the models were Bonferroni corrected with the number of
cognitive domains tested and called as significant with an alpha value of 0.05.

Testing for differential quantitative neuropathological features in severely affected donors

We tested for differences in each quantitative neuropathology variable (described above in
“Quantification of whole slide images”) using a similar model implemented in the python scikit-learn
package (version 1.1.1) using the sklearn.linear_model.LogisticRegression function with default
parameters. The multinomial outcome variable was identical to that above and all models adjusted for
age at death and sex. Covariates were adjusted with either the minmax_scale (for age at death) or the
OneHotEncoder (for sex) functions in sklearn.preprocessing. We then fit the model using the
sklearn.linear_model.LogisticRegression.fit function. P-values from the models were Bonferroni corrected
with the number of quantitative neuropathology features tested and called as significant with an alpha
value of 0.05.

Comparing peak universes of severely affected donors to other high pathology donors

We used the ChromA 2% python package (https://github.com/marianogabitto/ChromA, version 2.1.2)
with default parameters on fragment files from each donor individually to call a set of donor specific

peaks. As part of this procedure, peaks are filtered by whitelisted regions existing in 10x Cellranger ATAC.

All peak sets were then combined by concatenation. They were then subjected to a fusion condition,
namely if 2 peaks shared a 10% overlap their coordinates would be merged using the default bedtools**?
merge mode. ChromA was used to then compute counts by peaks matrices for each donors using the peak

set defined above using fragment and peak files as inputs.
Transcription factor motif enrichment in peaks specific to severely affected donors

To explore the relationship between Transcription factors (TF) and regions of accessible chromatin specific
to severely affected donors, we used the human TF motif list from HOCOMOCO?® as an input to FIMO?%,
We collected the list of peaks unique to severely affected donors (cf. Testing for differential peaks in
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severely affected donors) and retrieved fasta sequences using BED2FASTA. Finally, we run fimo with the
following paramters: fimo --oc seq.fa --verbosity 1 --bgfile --nrdb-- --thresh 1.0E-4
H12CORE_meme_format.meme seq. The results were then filtered on g-value <=.05 and sum aggregated
to identify the TF with top represented motifs.

Creation of “supertypes” in neurotypical reference data

We defined “supertypes” as a set of fine-grained cell type annotations for single nucleus expression data
that could be reliably predicted on held-out neurotypical reference data (where “ground truth” labels

8283 in the scvi-

were assigned as described above) using state-of-the-art machine learning approaches
tools python package (version 0.14.3). From 5 neurotypical donors in a related study with roughly 140K
nuclei captured with 10x snRNA-seq?® we systematically held out labels from 1 donor and used scVI to
compute joint latent space then scANVI to iteratively and probabilistically predict their class (3 labels),
subclass (24 labels), and then cluster (151 labels). When predicting each nucleus’ class, we selected the
top 2,000 highly variable genes (using the scanpy.pp.highly_variable_genes function implemented in the
scanpy'®® python package, version 1.9.1, with the flavor parameter set to “seurat_v3”, n_top_genes
parameter set to “2000”) along with the top 500 differentially expressed genes unique to each class
(calculated from the reference cells from donors that had their labels retained using a Wilcoxon rank sum
test implemented in scanpy.tl.rank _gene_groups with the method parameter set to “wilcoxon”,
tie_correct parameter set to “True”, pts parameter set to “True”) to use as features in training the model
and specified the donor’s ID and number of genes detected as categorical and continuous covariates,
respectively, in the setup_anndata function implemented in scvi.model.SCVI and scvi.model.SCANVI. 2
hidden layers were used for all models, specified by setting n_layer to “2” when initializing the model. The
scVI model was then trained using the scvi.model.SCVI.train function with max_epochs set to “200” and
passed to scANVI with the scvi.model.SCANVI.from_scvi_model function. The scANVI model was then
trained for an additional 20 epochs using the scvi.model.SCANVI.train function. We then obtained the
latent representation from the scANVI model with the scvi.model.SCANVI.get latent_representation
function and label predictions with the scvi.model.SCANVI.predict function where the soft parameter was
set to “True” to export probabilities. Nuclei were then separated by their predicted class and features
were re-selected with the same criteria to predict subclasses and again in predicting clusters. A differential
expression test (same Wilcoxon test and parameters as above) was run on clusters with an F1 score below
0.7, and those without 3 positive markers when compared against nuclei from their constituent subclass
(cutoff paramters: corrected p-value <0.05, fraction of in-group expression >0.7, fraction out of group
expression <0.3) were dropped from the taxonomy, with the remaining clusters representing supertypes.

Mapping transcriptomic SEA-AD nuclei to reference supertypes

SEA-AD nuclei with transcriptomic data (from either snRNA-seq or snMultiome) with fewer than 500 genes
detected were removed upstream of supertype mapping. After defining supertypes in neurotypical
donors, we iteratively and probabilistically predicted each SEA-AD nucleus’s class, subclass, and supertype

using scANVI®3

, as above. Briefly, each SEA-AD nucleus’ class was predicted after projecting them into a
shared latent space with reference nuclei using models trained with 2000 highly variable genes and 500
differentially expressed genes per class (from reference data, where donor name and number of genes

were passed as categorical and continuous covariates, respectively). Nuclei were then split by predicted
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class, projected into a new class-specific latent space where subclass was predicted, and again for
supertype. The subclass-specific latent spaces were then used to construct a nearest neighbor graph with
the scanpy.pp.neighbors function with default settings and represented with a two-dimensional uniform
manifold approximation and projection (UMAP) computed with scanpy.tl.umap with default settings.
Predictions from scANVI were evaluated by probabilities from the model and by known marker gene
expression (signature scores were computed by summing the absolute value of the t-statistic between
reference and SEA-AD nuclei for the top 50 differentially expressed genes for each supertype computed
from reference nuclei using the same Wilcoxon test as above). Areas of the nearest neighbor graph with
few reference nuclei could represent droplets with ambient RNA, multiplet nuclei, dying cells, or
transcriptional states missing from the reference, unique to a donor, or found only in aging or disease. To
assess these possibilities, we fractured the graph into tens to hundreds of clusters (called “metacells”)
using high resolution Leiden clustering implemented in the scanpy.tl.leiden function with the resolution
parameter set to 5 and then merged them based on differential gene expression using the merge_clusters
function in the transcriptomics_clustering python package from the Allen Institute
(https://github.com/AllenInstitute/transcriptomic_clustering [will be made public upon publication of this

manuscript]) with default merging thresholds for gene expression and cluster size. Clusters and metacells
were then flagged and removed if they had poor group doublet scores®, fraction of mitochondrial reads,
number of genes detected, or donor entropy (computed with scipy.stats.entropy with default parameters,
version 1.8.1), with cutoffs adjusted for each subclass based on their distributions (to account for
dramatically different RNA content found across cell types).

The NIH Brain initiative snRNA-seq dataset generated from the DLPFC of neurotypical reference donors?
was mapped to the MTG cellular taxonomy using the same iterative procedure. DLPFC snRNA-seq data
from SEA-AD donors were then mapped to the DLPFC neurotypical reference dataset with the predicted
MTG labels to ensure a common cellular taxonomy using the same procedure. All downstream quality
control steps were also performed identically to those done for the SEA-AD dataset.

Expanding the reference taxonomy for non-neuronal cells

After removing common technical axes of variation, we next identified nuclei that were transcriptionally
distinct from the reference and added them to our supertype taxonomy. To do so, we constructed a new
latent space for each subclass using scVI, where the model was passed the supertype predictions as cell
labels; gene dispersion was allowed to vary per supertype; sex, race and 10x technology (multiome versus
singlome) were included as categorical covariates; and the number of genes detected in each nucleus and
the donor age at death were passed as continuous covariates. We then d trained the scVI model and
obtained the latent representation using the same functions and parameters described above. Using the
neighborhood graph computed from this latent representation, we clustered the nuclei into tens to
hundreds of groups and merged them based on differential gene expression using the
transcriptomics_clustering package, as above. We defined merged clusters with fewer than 10% of all
reference cells or of any single supertype as having poor reference support and added them to the
taxonomy (systematically named Subclass_Number-SEAAD). In cases where more than 90% of SEA-AD
nuclei within these poorly supported groups were predicted to be one supertype, their new label reflected
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that assignment (e.g., Subclass_SupertypeNumber_Number-SEAAD). These cell type assighments are
used as baseline for the analyses, plots, and tools developed for the web product and this manuscript.

Mapping epigenomic SEA-AD nuclei to supertypes

To define the peak universe used across all nuclei with epigenomic data (from snATAC-seq and
snMulitome), we first separated the 84 donors by their AD neuropathological changes into 4 groups (Not
AD, Low, Intermediate, and High) and randomly selected 5 donors from each group (excluding severely
affected donors). In each group, we identified group-specific peaks using the atac function in the
ChromA?? python package (https://github.com/marianogabitto/ChromA, version 2.1.2) with default

parameters. We created a union peak set across the 4 groups using the version 2.3.11 bedtoolsmerge
function. We then used the count function in ChromA with default parameters to quantify the number of
UMIs within each peak to construct a nucleus by peak matrix. We next integrated the snRNA-seq, snATAC-
seq, and snMultiome datasets using MultiVI®* (from scvi-tools 0.14.3), with modality (e.g. snRNA-seq,
SnATAC-seq, or snMulitome) set as the batch_key, and donor ID and sex passed to the model as
categorical covariates in the scvi.model.MULTIVI.setup_anndata function. After training the model using
the scvi.model.MULTIVI.train function with default parameters, we obtained the joint latent
representation with the scvi.model. MULTIVI.get_latent_representation function and constructed the
nearest neighbor graph across modalities as above and clustered the nuclei using the leiden algorithm
implemented in scanpy.tl.leiden with default settings (not high-resolution clustering). We performed
quality control on snATAC-seq nuclei based on those from snRNA-seq and snMulitome data in this
integrated space. Briefly, we calculated a quality control score for each snATAC-seq nucleus by computing
the fraction of its neighbors that were flagged as low-quality snRNA-seq and snMultiome nuclei. snATAC-
seq nuclei in leiden clusters with scores greater than 0.5 were removed. We then transferred the subclass
labels to snATAC-seq nuclei by labeling them based on what the majority snRNA-seq and snMultiome
nearest neighbors. We separated the epigenomic nuclei based on each subclass and called peaks (as
above) within subclasses from 5 randomly selected non-SA donors using ChromA to optimize the feature
space. Finally, we integrated the multiple modalities data and transferred supertype labels with each
subclass using MultiVl, as above.

Common reprocessing, integration and mapping of publicly available datasets

We obtained raw sequencing reads from 10 publicly available datasets® "%

that performed single cell or
single nucleus RNA-seq on or near the DLPFC of human cohorts that included sporadic AD donors. These
included datasets from the AD Knowledge Portal hosted on Synapse: Mathys et al (2019)° (Accession
syn18485175, stated brain region “prefrontal cortex/Brodmann area 10”), Zhou et al (2020) (Accession
syn21670836, stated brain region “dorsolateral prefrontal cortex”), Olah et al (2020) (Accession
syn21438358, stated brain region “dorsolateral prefrontal cortex”), Cain et al (2022) (Accession
syn16780177, stated brain region “dorsolateral prefrontal cortex”), Green et al (2023) (Accession
syn31512863, stated brain region “dorsolateral prefrontal cortex/Brodmann area 9”), and Mathys et all
(2023) (Accession syn52293417, stated brain region dorsolateral prefrontal cortex”). It also included
datasets from the Sequencing Read Archive (SRA): Lau et al (2020) (Accession PRINA662923, stated brain
region “prefrontal cortex”), Leng et al (Accession PRINA615180, stated brain region “superior frontal

gyrus”), Morabito et al (2021) (Accession PRINA729525, stated brain region “prefrontal cortex”), and Yang
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et al (2022) (Accession PRINA686798, stated brain region “superior frontal cortex”). From each of these
repositories, personal communications with authors, and separate data use agreements with the Rush
Alzheimer’s Disease Research Center (for donors from the ROSMAP cohort) we also obtained clinical
metadata and harmonized it to a standardized schema included below. The harmonization was done
reproducibly, using python code to read in source files, make necessary alterations such as renaming
"Braak" 1 to “Braak 1”, and write out finalized files.

Reads from each snRNA-seq library were mapped to the same human reference noted above using the
same cellranger pipeline as was used for SEA-AD snRNA-seq data. Mapping of nuclei to the SEA-AD cellular
taxonomy was done separately from each dataset using the same iterative scVI and scANVI procedure
described above to map SEA-AD nuclei from the DLPFC to the neurotypical BRAIN initiative reference
dataset. Flagging of low quality nuclei, doublets, and donor-specific nuclei and identification of cell types
not in the SEA-AD cellular taxonomy was also done identically to above except neighborhood graphs,
leiden clustering, and UMAP visualizations were computed with the GPU-accelerated rapids_singlecell
python package (version 0.9.2) with the drop-in replacement functions rapids_singlecell.pp.neighbors,
rapids_singlecell.tl.leiden, and rapids_singlecell.tl.umap using default parameters. 3 cell types were
added (all perivascular cell types from VINE-seq in Yang et al (2022), as expected), which were found in
SEA-AD datasets but in levels too low to drive cluster separation. Mapping results were validated two
ways: (1) the probabilities from scANVI for each supertype across each dataset and (2) a signature score
computed for each supertype. The top 10 marker genes for each supertype within the SEA-AD dataset
compared to all other supertypes within its cellular neighborhood (see Extended Data Figure 9d) were
identified using the same Wilcoxon test described above. Next, we computed each supertypes’ signature
score for each nucleus by transforming the log-normalized expression values (i.e. natural log of UMIs per
10,000 plus 1, computed with the scanpy.pp.normalize_total and scanpy.pp.loglp functions with default
parameters) for each of these marker genes to z-scores using the scanpy.pp.scale function (with default
parameters) and then taking their mean (Extended Data Figure 9c). Closely related supertypes could have
similar signature scores, but would retain the same rank order across datasets, if correctly mapped (e.g.
Sst_20, Sst_22, Sst_25, Sst_23 and Sst_11 nuclei would all have a high Sst_25 signature score on average,
but the order from highest to lowest should be retained across datasets). To test this, we computed the
spearman correlation of each supertypes signature score across all supertypes within a cellular
neighborhood between the SEA-AD dataset and every other publicly available dataset using the
scipy.stats.spearmanr function (scipy version 1.8.1).

Common metadata format/specification for every library

e library prep - (Required) str

e Donor ID - (Required) str

e Brain Region - (Reguired) literal 'MTG' or 'DLPFC'

e Method - (Required) literal "3' 10x v2", "3' 10x v3", "3' 10x v3.1", "3' 10x Multiome", or "5' 10x
v1l"

e RIN - float

e barcode —str
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Common metadata format/specification for every donor

e Donor ID - (Required) str

e Publication - (Required) str

e Primary Study Name - (Required) str

e Age at Death (Required) - int, float or literal '90+'

e Sex - (Required) Male or Female

e Race (choice=White) - bool

e Race (choice=Black/ African American) - bool

e Race (choice=Asian) - bool

e Race (choice=American Indian/ Alaska Native) - bool

e Race (choice=Native Hawaiian or Pacific Islander) - bool

e Race (choice=Unknown or unreported) - bool

e Race (choice=0Other) - bool

e Hispanic/Latino - bool

e Years of education - int or float

e APOE4 Status - (Required) literal 'Yes' or 'No'

e PMI - (Required) float

e Fresh Brain Weight - float

e Brain pH - float

e Overall AD neuropathological Change - literal "Not AD", "Low", "Intermediate", or "High"

e Thal - literal "Thal 0", "Thal 1", "Thal 2", "Thal 3", "Thal 4", or "Thal 5"

e Braak-(Required) literal "Braak 0", "Braak 1", "Braak Il", "Braak Ill", "Braak IV", "Braak V", or "Braak
vI"

e CERAD score - literal 'Absent’, 'Sparse', 'Moderate', or 'Frequent'

e Cognitive Status - (Required) literal 'No dementia' or 'Dementia’

e Highest Lewy Body Disease - literal 'Not Identified (olfactory bulb not assessed)’, 'Not Identified
(olfactory bulb assessed)', 'Olfactory bulb only', 'Amygdala-predominant’, 'Brainstem-
predominant', 'Limbic (Transitional)', or 'Neocortical (Diffuse)’

e LATE - literal 'Unclassifiable’, 'Not Identified', 'LATE Stage 1', 'LATE Stage 2', 'LATE Stage 3'

e Overall CAA Score - literal 'Not identified', 'Mild', 'Moderate', 'Severe'

o Atherosclerosis - literal 'None', 'Mild', 'Moderate', 'Severe'

e Arteriolosclerosis - literal 'None', 'Mild', 'Moderate', 'Severe'

Spatial transcriptomics gene panel selection

The 140 gene human cortical panel was selected using a combination of manual and algorithmic based
strategies requiring a reference single cell/nucleus RNA-seq data set from the same tissue, in this case the
human MTG snRNA-seq dataset and resulting taxonomy?’. First, an initial set of 40 high-confidence marker
genes are selected through a combination of literature search and analysis of the reference data. These
genes are used as input for a greedy algorithm (detailed below). Second, the reference RNA-seq data set


https://doi.org/10.1101/2023.05.08.539485
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.08.539485; this version posted February 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

is filtered to only include genes compatible with mFISH. Retained genes need to be 1) long enough to
allow probe design (>960 base pairs); 2) expressed highly enough to be detected (FPKM >=10 in at least
one cell type cluster), but not so high as to overcrowd the signal of other genes in a cell (FPKM <500 across
all cell type clusters); 3) expressed with low expression in off-target cells (FPKM <50 in non-neuronal cells);
and 4) differentially expressed between cell types (top 500 remaining genes by marker score, see code
below). To sample each cell type more evenly, the reference data set is also filtered to include a maximum
of 50 cells per cluster.

The computational step of gene selection uses a greedy algorithm to iteratively add genes to the initial
set. To do this, each cell in the filtered reference data set is mapped to a cell type by taking the Pearson
correlation of its expression levels with each cluster median using the initial gene set of size n, and the
cluster corresponding to the maximum value is defined as the “mapped cluster”. The “mapping distance”
is then defined as the average cluster distance between the mapped cluster and the originally assigned
cluster for each cell. In this case a weighted cluster distance, defined as one minus the Pearson correlation
between cluster medians calculated across all filtered genes, is used to penalize cases where cells are
mapped to very different types, but an unweighted distance, defined as the fraction of cells that do not
map to their assigned cluster, could also be used. This mapping step is repeated for every possible n+1
gene set in the filtered reference data set, and the set with minimum cluster distance is retained as the
new gene set. These steps are repeated using the new get set (of size n+1) until a gene panel of the desired
size is attained. Code for reproducing this gene selection strategy is available as part of the mfishtools R
library (https://github.com/Alleninstitute/mfishtools).

Spatial transcriptomics data collection

Human postmortem frozen brain tissue was embedded in Optimum Cutting Temperature medium (VWR
25608-930) and sectioned on a Leica cryostat at -17C at 10 um onto Vizgen MERSCOPE coverslips. These
sections were then processed for MERSCOPE imaging according to the manufacturer’s instructions.
Briefly: sections were allowed to adhere to these coverslips at room temperature for 10 minutes prior to
a 1 minute wash in nuclease-free phosphate buffered saline (PBS) and fixation for 15 minutes in 4%
paraformaldehyde in PBS. Fixation was followed by 3x5 minute washes in PBS prior to a 1 minute wash in
70% ethanol. Fixed sections were then stored in 70% ethanol at 4C prior to use and for up to one month.
Human sections were photobleached using a 240W LED array for 72 hours at 4C (with temperature
monitoring to keep samples below 17C) prior to hybridization then washed in 5 mL Sample Prep Wash
Buffer (VIZGEN 20300001) in a 5 cm petri dish. Sections were then incubated in 5 mL Formamide Wash
Buffer (VIZGEN 20300002) at 37C for 30 min. Sections were hybridized by placing 50 pL of VIZGEN-supplied
Gene Panel Mix onto the section, covering with parafilm and incubating at 37 C for 36-48 hours in a
humidified hybridization oven. Following hybridization, sections were washed twice in 5 mL Formamide
Wash Buffer for 30 minutes at 47C. Sections were then embedded in acrylamide by polymerizing VIZGEN
Embedding Premix (VIZGEN 20300004) according to the manufacturer’s instructions. Sections were
embedded by inverting sections onto 110 pL of Embedding Premix and 10% Ammonium Persulfate (Sigma
A3678) and TEMED (BioRad 161-0800) solution applied to a Gel Slick (Lonza 50640) treated 2x3 inch glass
slide. The coverslips were pressed gently onto the acrylamide solution and allowed to polymerize for 1.5
hours. Following embedding, sections were cleared for 24-48 hours with a mixture of VIZGEN Clearing
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Solution (VIZGEN 20300003) and Proteinase K (New England Biolabs P8107S) according to the
manufacturer’s instructions. Following clearing, sections were washed 2x5 minutes in Sample Prep Wash
Buffer (PN 20300001). VIZGEN DAPI and PolyT Stain (PN 20300021) was applied to each section for 15
minutes followed by a 10 minutes wash in Formamide Wash Buffer. Formamide Wash Buffer was removed
and replaced with Sample Prep Wash Buffer during MERSCOPE set up. 100 pL of RNAse Inhibitor (New
England BiolLabs M0314L) was added to 250 plL of Imaging Buffer Activator (PN 203000015) and this
mixture was added via the cartridge activation port to a pre-thawed and mixed MERSCOPE Imaging
cartridge (VIZGEN PN1040004). 15 mL mineral oil (Millipore-Sigma m5904-6X500ML) was added to the
activation port and the MERSCOPE fluidics system was primed according to VIZGEN instructions. The flow
chamber was assembled with the hybridized and cleared section coverslip according to VIZGEN
specifications and the imaging session was initiated after collection of a 10X mosaic DAPI image and
selection of the imaging area. Specimens were imaged and automatically decoded into transcript location
data and a cell by gene table. All postprocessing and segmentation was completed using the vizgen-
postprocessing docker container version 0.0.5 (https://github.com/Vizgen/vizgen-postprocessing). For

each section, segmentation was run on a single z plane (z=z3). Segmentation was a combination of
cellpose-cyto2 2d segmentation (with clahe, Contrast Limited Adaptive Histogram Equalization,
normalized DAPI and PolyT images as inputs) and cellpose nuclei-only segmentation (using clahe
normalized DAPI images only). Results were then fused using the “harmonize” strategy and returned as
cell metadata summary files and parquet mosaic geometry files. If segmentation failed on the z=z3 image
plane, z=z4 image data was used instead.

Spatial transcriptomics data quality control and mapping

Resulting transcript location data and cell by gene tables were assessed for quality by comparing total
transcript counts across specimens. A rectangular region was selected in each section to encompass a
region spanning pia to white matter with uniform layer thickness and minimal in-plane cortical curvature.
Transcript counts within these regions were summed to create a spatial transcriptomics pseudo-bulk
profile. This pseudo-bulk profile was consistent with the bulk RNASeq measurements summed across 10
donors (Pearson correlation 0.69). Two sections with total transcript correlation less than 0.6 to the spatial
transcriptomic pseudo-bulk were eliminated, along with two sections that measured unusually high
counts of one gene (HS3ST2). Within the cortical selections, layers were annotated manually based on
excitatory subclass annotations and cellular density. After these steps, selected cells from 69 sections
from 27 donors formed our spatial dataset for subsequent analysis. Cells were eliminated from further
analysis if they fell outside the following criteria: >15 genes detected, 30-4000 total transcripts detected,
100-4000 um? total cell volume. Cells in this dataset had a mean of 210.9 detected transcripts, and mean
volume of 1292 um?.Cells in the spatial transcriptomics dataset were mapped to the integrated taxonomy
at the supertype level by finding the supertype whose mean gene expression within the supertype best
matched to each cell. Specifically, we used a bootstrapped Pearson correlation in the map_cells_knn_bs
function in the scrattch-mapping R package version 0.16.

Compositional analysis of supertypes

To model changes in the composition of cell types as a function of CPS and other covariates we used the
Bayesian method scCODA% (version 0.1.7). We tested compositional changes in neuronal and non-
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neuronal nuclei separately, as they were sorted to have a defined ratio (70% neuronal nuclei, 30% non-
neuronal nuclei in each donor). To do this, we created separate AnnData objects of neuronal and non-
neuronal nuclei with supertype annotations, sequencing library IDs and relevant donor-level covariate
information (noted below) for all snRNA-seq and snMultiome nuclei formatted per
https://sccoda.readthedocs.io/en/latest/data.html using the sccoda.util.cell_composition_data function

with cell_type_identifier set to supertype and sample_identifier set to the sequencing library ID. As we
did not know which supertypes would be affected by AD, we ran models with each supertype set as the
unchanged reference population, as recommended by scCODA’s authors. We setup an ensemble of
models to test whether supertypes were credibly affected across cognitive status (No dementia [0] versus
Dementia [1]), ADNC (Not AD [0], Low [1/3], Intermediate [2/3], High [1]), and CPS (Interval [0,1]) using
the scconda.util.comp_ana.CompositionalAnalysis function with formula set to "Sex + Age at death + Race
+ 10x Chemistry + APOE4 Status + [disease covariate]" with each supertype as the reference population
(yielding 417 models total) and obtained posterior estimates for each parameter with a Markov chain
Monte Carlo (MCMC) process implemented in the sample_hmc function with default parameters. The
sampling occasionally stayed at fixed points, so we re-ran models with fewer than 60% accepted epochs.
We defined credibly affected supertypes as those that had a mean inclusion probability across models
>0.8. The same approach was used for testing compositional changes across CPS in snRNA-seq data from
SEA-AD DLPFC dataset using the formula "Sex + Age at death + Race + [disease covariate]" and across
ADNC in snRNA-seq data from Green et al (2023)'” and Mathys et al (2023)°® using the formula formula
"Sex + Age at death + APOE4 Status + [disease covariate]", with the sample_identifier set to Donor ID as
there was not a one-to-one or one-to-many relationship between donors and libraries across these
datasets.

Gene expression changes along CPS

To model gene expression changes along CPS while adjusting for other covariates and pseudo-replication
within donors we used a general linear mixed effects model implemented in the NEBULA R package?®
(version 1.2.0) accessed in python via the rpy2 package (version 3.5.2). We used objects with all nuclei
and with nuclei divided into the first (<0.55, “early”) and second (>0.45, “late”) disease phase along CPS.
Briefly, we split CPS into two phases: (1) A period where donors had normal cognition and relatively low
levels of plague and tangle pathology (but changes in other quantitative neuropathology variables) and
(2) a period where donors had markedly increased levels of plague and tangle pathology and cognitive
decline. To delineate the cutoffs for these phases, we interrogated the general additive models used to
relate the number of amyloid plaques and tau tangles to CPS. Significant coefficients were first observed
for splines starting at 0.4 and 0.6, depending on the variable and layer. We chose CPS=0.5 as the
intermediary cut point but added a small amount of overlap to account for uncertainty precisely when
the transition occurs. For each supertype, we constructed a model matrix from relevant metadata with
the base model.matrix function in R with the formula "Sex + Age at death + Race + 10x Chemistry + CPS +
Number of genes detected" after standardizing numerical values to a [0,1] interval. We randomly added
single pseudocounts to 3 nuclei to features that had zero values across all nuclei within a supertype in the
metadata groupings, which would have prevented the model from properly fitting coefficients (e.g. the X-
chromosome gene XIST had zero counts across all nuclei from male donors, so 1 pseudocount for XIST
was added to 3 random male nuclei). We then grouped raw count and model matrices with the group_cell
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function in NEBULA, passing the counts matrix to count, the model matrix to pred, the number of UMIs
detected in each nucleus to offset, and the donor IDs as the random effect to id. To fit the model, we then
ran the nebula function using the output of group_cells. We filtered genes with fewer than 0.005 counts
per nucleus (as recommended) which resulted in coefficients for roughly 14,000 genes being fit in each
supertype. We further restricted the results to genes with convergences equal to 1. We determined the
number of significant genes from the resulting p-values in each supertype with the Benjamini-Hochberg
procedure with an alpha threshold of 0.01.

Construction of gene dynamic space

To identify patterns in gene expression dynamics, we constructed a matrix spanning all genes on one axis
and their corresponding normalized early and late beta coefficients (divided by their standard errors) from
NEBULA (see above) as well as z-scores of the mean expression (capped at a magnitude of 2) for each
supertype along the other axis. Genes that were not tested in a particular supertype because of low counts
per cell were assigned a beta coefficient of 0. We then computed a nearest neighbor graph across all
genes using Euclidian distances with the scanpy.pp.neighbors function with use rep set to “X” and
n_neighbors set to 15. To visualize the resulting graph, we computed a low dimensional UMAP
representation with the scanpy.ul.umap function with default parameters and computed mean
normalized beta coefficient and z-score values across classes and subclasses for visualization purposes.

Curation of gene sets

We constructed 31 gene sets that encompass molecular processes important for neurons or implicated in
AD from various databases and literature sources noted below. The gene lists are compiled in
Supplementary Table 6.

e Electron transport chain, based on Gene Ontology (GO) 0022900

e  Glycolysis, based on BIOCYC Pathway PWY66-400

e Cholesterol biosynthesis, BIOCYC Pathways PWY66-341, PWY66-3, PWY66-4

e Steroid metabolism, based on UniuProt Keyword KW-0753 (reviewed only)

e Fatty acid metabolism, based on UniProt Keyword KW-0276 (reviewed only)

e Phospholipid metabolism, based on UniProt Keyword KW-1208 (reviewed only)
e Sphingolipid metabolism, based on UniProt Keyword KW-0746 (reviewed only)

e Ribosomal proteins, based on GO 0006412

e Eukaryotic initiation, elongation and termination factors, based on GO 0006412
e Transcriptional machinery, based on GO 0006351

e Ubiquitin machinery (split by Category), based on Unibet 2.0%%

e Kinases (split by group), based on KinHub?®’

e Voltage gated ion channels, based on the Guide to Pharmacology (GtP)*4

e Ligand gated ion channels, based on the Guide to Pharmacology (GtP)

e Nuclear hormone receptors, based on the Guide to Pharmacology (GtP)

e Transcription factors (split by Family) based on the Guide to Pharmacology (GtP)
e Genes identified by Genome Wide Association Studies (GWAS)?%®
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e Cell adhesion, based on GO 0007155

e Actin-Spectrin-Spetin cytoskeleon, based on GO 0005200, 0003779, 0030507, and 0031105

e Microtubule cytoskeleton, based on GO 0005200, 0015630, 0008017

e Molecular motors used in vesicle trafficking, based on Hirokawa et al?®

e Cargo adaptors used in vesicle trafficking, based on Hirokawa et al*®® and GO 0030705 and
0016192

e Axonal guidance cues, based on GO 0097485

e Neuropeptides, based on Smith et al?*°

e Neuropeptide receptors, based on Smith et al?'°

e Myelin components, based on Morell et al?!!

e OPC differentiation and re-myleination program, based on Long et al*®!, Nakatani et al*>°, Wang
et al®> Genoud et al**%, Zhang et al**8, and Tomassy et al*®°

e Fcreceptors, based on Owen et al?*?

e Major histocompatibility complex class Il, based on Jones et al?*3

e Human plaque induced genes, based on Chen et al®

e Interferon stimulated genes, based on Schneider et al?**

Gene set enrichment analysis

We employed a bootstrapping procedure to test for significant enrichment of each gene set in the early
or late AD epoch along CPS, in specific cell types. Briefly, for each gene set we randomly selected the same
number of genes within it 1000 times with the numpy.random.choice (version 1.22.4) function with
replace set to “False”. For each iteration, we computed the mean early and late beta coefficients for the
randomly chosen set of genes to create a background distribution for each AD epoch. We then computed
a z-score for the actual gene set by computing the mean early and late beta coefficients for the genes
within the set, subtracting the mean from the null distributions from them and dividing them by the
standard deviation from the null distributions. We computed p-values for these z-scores using the
scipy.stats.norm.cdf python function. We applied a Bonferroni correction for the number of gene lists
tested and set an alpha threshold of 0.05.

Identification of marker genes in subclasses with vulnerable and disease associated supertypes

We used the same general linear mixed effects model (NEBULA*®) to test for supertype specific
expression within subclass. All parameters were the same for the test across CPS, except we constructed
a model matrix from relevant metadata with the base model.matrix function in R using the formula "Cell
type + Sex + Age at death + Race + 10x Chemistry + Number of genes detected" after standardizing
numerical values to a [0,1] interval. Cell type was encoded as 1 for the supertype being tested and 0 for
all other supertypes within the subclass.

Gene regulatory networks

To compute gene regulatory networks (GRNs) within non-neuronal subclasses, we used the SCENIC+%%°
python package (version 1.0.1.dev3+g3741a4b). Briefly, we first created a fragment file that contained
data from all SEA-AD nuclei within each non-neuronal subclass to call subclass-specific peaks using the
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MACS22% package, as recommended by SCENIC+. We constructed an ArchR?Y R object (version 1.0.1)
from the fragments file and called peaks within each subclass using MACS2 implemented in the
addGroupCoverages and addReproduciblePeakSet functions in ArchR with the groupBy parameter set to
the subclass labels. We then exported these cell by peak matrices and created pycisTopic objects (version
1.0.3.dev18+ge563fb6). We used the pycisTopic.cistopic_class.run_cgs_models function with n_topics set
to “[2,4,10,16,32,48]”, n_cpu set to “32”, and n_iter set to “500” to determine the appropriate number
of topics and settled on 16 based on results from the pycisTopic.lda_models.evaluate_models function
with select_model set to “16”, return_model set to “True” and the SCENIC+ usage guide. To select
candidate enhancer elements, we then binarized the topics using the
pycisTopic.topic_binarization.binarize_topics function once with method set to “otsu” and once with
method set to “ntop” and ntop set to “3000”. We also identified differential features with the
pycisTopic.diff features.find_highly variable features and pycisTopic.diff features.find_diff features
functions with default parameters after imputing and normalizing the cisTopic object with the
pycisTopic.diff features.impute_accessibility and pycisTopic.diff features.normalize_scores functions
with scale_factor set to “10**6” and “10**4”, respectively. These features were used to define region
sets that were associated with transcription factors with the scenicplus.wrappers.run_pycistarget
function with species set to “homo_sapiens”, ctx_db_path set to the
“hg38 screen_v10_clust.regions_vs_motifs.rankings.feather” file obtained from the SCENIC+ guide,
dem_db_path set to the “hg38 screen_v10_clust.regions_vs_motifs.scores.feather” file also obtained
from the SCENIC+ guide, path_to_motif annotations set to the
“hg38 screen_v10_clust.regions_vs_motifs.scores.feather” file also obtained from the SCENIC+ guide,
run_without_promoters set to “True”, n_cpu set to “32”, and the annotation_version set to
“v10nr_clust”. We then passed the final pycisTopic object along with the snRNA-seq data for the non-
neuronal subclasses to SCENIC+ with the scenicplus.scenicplus_class.create SCENICPLUS object function
with the key to_group_ by set to the nuclei subclasses and nr_cells_per_metacells set to “5”. We then
identified GRNs with the scenicplus.wrappers.run_scenicplus function with variable set to the subclass
labels, species set to “hsapiens”, assembly set to “hg38”, tf file set to the
“utoronto_human_tfs v_1.01.txt” file obtained from the University of Toronto Human Transcription
Factor database, upstream set to “[1000, 150000]”, downstream set to “[1000, 150000]",
calculate_TF_eGRN_correlation set to “True”, calculate_TF_eGRN_correlation set to “False”, and n_cpu
set to “32”. Finally, only gene regulatory networks with a rho value for “TF_cistrome_correlation” greater
than 0.7 or less than -0.7 were retained, per the SCENIC+ guidelines. We then identified transcription
factors within the GRNs that had both subclass-specific expression (z-score mean gene expression greater
than 2) and increased in the early AD epoch (mean NEBULA early beta coefficient greater than 1) and
identified predicted downstream target genes that were common across all of them.

Identifying differential electrophysiological features in vulnerable neurons from PatchSeq data

We obtained publicly available PatchSeq?*%3° data from 2,602 cells, originating from slices from 401
donors. These cells were recorded in healthy tissue extracted in surgical resection due to cancer pathology
or epilepsy (95% of cases) and hydrocephalus, encephalomyelitis, aneurism, and ventriculoperitoneal
shunt (5%). We subsetted the dataset to include only cells obtained from the MTG and mapped the
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snRNA-seq data from them to the SEA-AD MTG cellular taxonomy using the same iterative scVI and scANVI
approach described above for SEA-AD nuclei and the publicly available datasets.

We tested for differences in each electrophysiological feature between vulnerable and unaffected
neurons in the Sst and Pvalb using a logistic regression implemented in the python scikit-learn package
(version 1.1.1) using the sklearn.linear_model.LogisticRegression function with default parameters. The
outcome variable was 0 for unaffected supertypes and 1 for affected ones and all models adjusted for age
at death, sex, and whether the slices were cultured or not. Covariates were adjusted with either the
minmax_scale (for age at death) or the OneHotEncoder (for sex and culture status) functions in
sklearn.preprocessing. We then fit the model using the sklearn.linear_model.LogisticRegression.fit
function. P-values from the models were Bonferroni corrected with the number of quantitative
neuropathology features tested and called as significant with an alpha value of 0.05.
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Code availability

We will release the collection of scripts used to annotate SEA-AD and publicly available data and perform
analysis on the Allen Institute GitHub page.

Data availability

FASTQs containing sequencing data from snRNA-seq, snATAC-seq, and snMultiome assays are available
through controlled access at Sage Bionetworks (accession: syn26223298). Nuclei by gene matrices with
counts and normalized expression values from snRNA-seq and snMultiome assays are available through
the Open Data Registry in AWS bucket as AnnData objects (h5ad), and viewable on the cellxgene platform

and ABC Atlas. Nuclei by peak matrices for the snATAC-seq data (with peaks called across all nuclei) are in
the same bucket. Cell by gene matrices containing spatial coordinates from MERFISH data are in a
separate bucket. MERFISH data is also viewable on the ABC Atlas. Donor, library, and cell-level metadata
are available in these objects and also on SEA-AD.org. Raw images from the quantitative neuropathology
data are available on the Open Data Registry on AWS in yet another bucket and the variables derived from

HALO on SEA-AD.org. We are working to obtain approval to share the publicly available datasets under
the data use agreements that govern them. In the meantime, we have placed the cell type annotations
on AWS without gene expression data or donor metadata.
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Figure 1.

A Sampling and Analysis plan for the Seattle Alzheimer’s Disease Cell Atlas (SEA-AD)
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Figure 3.

a Hierarchichal ML-based mapping of SEA-AD nuclei to the BRAIN initative taxonomy with expansion for non-neuronal cell types
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Figure 5.

a Number genes per cell super-type changing significantly along CPS

b Average gene dynamics across supertypes
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Figure 6.
a Vulnerable Sst & Pvalb supertypes are molecularly similar b Localization of vulnerable supertypes from MERFISH
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Figure 8.
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Figure 9.
a b Early epoch of AD Late epoch of AD
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Extended Data Figure 1.
a Overall sampling and analysis plan
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Extended Data Figure 2.
a Quality control metrics loaded along RNAseq and ATACseq PCs

e Not AD I EEEEE & BN EEE

Z-score

zZ-score

Low
® Interm.

Hig

h

5

25
0.0
-2.5

H BN EREm — — 7

Frac. of fragments overlapping peaks
-Frac. of TE in peaks in cells
-Frac. of fragments overlapping TSS

} TSS enrichment score
i Frac. of uniquely mapped read pairs

|

|

| Frac. of genome in peaks
|

|

|

Med. fragments per cell
Mean raw reads per cell

L H A
. r—ma— — 1

Frac. of reads uniquely mapped (RUM)
Frac. of intronic RUM
Genes detected in the library
Frac. of transcriptomic reads in cells
Med. genes per cell
-Med. UMI counts per cell
Frac. of intergenic RUM

I 1 l I_ Mean raw reads per cell

b No difference in other cognitive domains between SA donors and others

Cognitive score in executive function

1

1

0.

0.

5

.0

5

0

m

2 -10 -8 -6 -4 -2 0
Visits until death

C Jaccard index on donor peaks

ADNC 3 [l sA

0 Jaccard 1
index

d similar peak sizes across groups

Counts

Cognitive score in visuospatial

ADNC 0-2
ADNC 3
SA

15 15
1.0 1.0
)
o
S
0.5 o~ 2 05
]
<
0.0 g 0.0
@
o
-0.5 2 -05
c
>
S
-1.0 -1.0
-15 -1.5
-12 -10 -8 -6 -4 -2 0 -12

10-3

8

500

1000

Visits until death

Previous
Association
with AD
Inflammation
ADNC 3
B SA
De-differentiation
1500 2000

Peak Length

-10 -8 -6 -4 -2 0
Visits until death

€ TF motifs in SA donor-specific peaks

TGCTGACISA

MafA

e As; ACAS

RATTACCICASE

RORa

SAAFTAGGICAS

RORg
SENCOAATSE ZRRATTCCAZ
TEAD TEAD3
TEAD1 TEAD4

SFECATTCCR  SSEGCAATES

f Large fraction of low-quality nuclei in sequencing libraries from SA donors across subclasses

Fraction of cells removed for the
fraction of mitochondrial reads

1.0

0.8

0.6

- . - ® SA
R ADNC 0-3
. ' p 3 “ &
£ . - P ] e [}
z .k . I :
. H N & ] M - . .
: ¢ ; . 3 : ‘
T I 1 ; : o
) ) - 3 i . H ¢ H y ; - ¢:
: : H : . ] < i S o H » - é
: tf 2 H N -~k Sl a: aa aa 3D VRS
© 0 © S5 71 Q & ~ ~ ~ ~ ~ ~ Qo ™ ) ) T
§ 2 F LS 3 I F LS s bS8 F 8 S S
3J & Q (%) S a < & I N © O o S S} s £ s &
0 ~ - IS - ~ I w9 o S S &
& 3 g c Y < § &8 5
kS S N S 4 I
- S RS
s


https://doi.org/10.1101/2023.05.08.539485
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.08.539485; this version posted February 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Extended Data Figure 3.

a Analysis workflow for the quantitative neuropathology
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Extended Data Figure 4.

a

Features with layer information
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Extended Data Figure 5.
a Transcriptomics analysis workflow

1: Supertype creation 2: Mapping and QC 3: Novel cluster identification
hierarchically map

SEA-AD cells to class construct controlled, subclass-level

latent spaces (scANVI)

k-fold self-projection subclass, and supertype
of reference data (scANVI)
v metacell creation and merging metacell creation and
prune low confidence labels within subclasses (leiden) merging (leiden)
(define supertypes) v
remove doublets and add clusters with poor reference
low quality clusters and cells support to taxonomy
b creation of supertypes from reference clusters using iterative prediction d Reduced confidence in non-neuronal
(1) Hold out labels for 1 donor at a time (2) Split cells by class, hold out 1 donor at a time, predict cell subclass 1.00 1
train on remaining donors, and predict cell class
L2/3 1T
1.0 L4 1T
Exc L5ET
© o _L5IT
2 NN > L5/6 NP
: 05 N 8
Inh . E E
L23IT | 6 \Fgars .- L6 IT Car3 =
o z < L6b =]
A Q
bz = &1 Pigne EELELSEEDS 8
Yy SR Tl eZ0g5 w9 a Inh
Pred 0.0 L8 Nﬁg_lgg_lo s
LSET @ﬁ" - w = Z  0.971 Exc
Reference labels Reference labels Pred bt § NN
3 Split by subclass, hold out 1 donor at a time, Identify cell types that are not predicted correctly
@) predict cell type “) or that have low probabilities 0.96 1
1.0 L51T_1
0.9 L51T_2
L5IT_3
4 0.8 SL5IT 4 0.95— : . .
L51T 3 07 E 51T 5 0.2 0.4 0.6 0.8
. . L51T_6 CPS
L5IT. 2 L5IT 1 0.6 L51T_7 |
e 0.5 = N 0 0 0
EEEEEEE .
! 04 00 WWWWLW E———2 2t »—fS5"
Reference clusters Held out clusters Model certainty A s . N
Pred -1001 /M//*/"
5 Prune difficult to predict labels with <3 differentially High (> 0.9) F1 scores of . 2 e ¢
®) expressed genes and re-run prediction for nearly all supertypes g 200 g . s &
g 20U S8 -
0 &5 0 °
008~ 2 ) I Inh
Sos[t " S -3001 Exc
[0 ®»
L04 NN
3 0.2
L5 |T_2 L51T_1 00l ~400
& ‘ s 8
> %
Held out supertypes Predicted supertypes 8989899933 5 5
Pred 2 ~5001 . . . .
0.2 0.4 0.6 0.8
. CPS
C Mapping SEA-AD cells to reference supertypes
Parts of the nearest neighbor graph contain few reference cells 2 Perform high resolution leiden clustering, merge clusters without
U] and have poor confidence from the model @ differentially expressed genes, calculcate per-cluster QC metrics Fraction of cells that
pass QC per library
0.4 0.05
Micro-PVM_1 04 - 0.04
: 0.03
0.2 0.02
0.3 0.01
0.0 0.00 -
0.2 Donor entropy Fraction mito o
20k Lo
0.1 0.4 1
03 & o 5
& 0.0 02 10k . !
Reference labels SCANVI predictions Model uncertainty 0.1 T 5k -
0.0 o 8 £ 5
Doublet score Genes detected = T
€ Expanding the reference taxonomy for non-neuronal cells
After removing flagged cells, there is still transcriptional heterogeneity within predicted supertypes, (4) Add clusters with poor reference support to the SEA-AD taxonomy

@ so we re-compute the latent representation/nearest neighbor graph and cluster as above

0.8
s, 06
Micro-PVM_2 104
0.2
0.0 .
SEA-AD Fraction of reference Lymphocyte
Monocytﬁ?c ro-PVM_2_3
% Micro-PVM_1 Micro-PVM_1
scANVI predictions Reference labels sCcANVI predictions Expanded taxonomy

Max supertype fraction


https://doi.org/10.1101/2023.05.08.539485
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.08.539485; this version posted February 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Extended Data Figure 6.
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Extended Data Figure 7.

Comorbidities
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Extended Data Figure 8

a Effect sizes for each supertype across all covariates in the models
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Extended Data Figure 9.
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Extended Data Figure 10.

ad Gene expression across pseudoprogression b small effect sizes expression changes limit power in less abundance supertypes
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Extended Data Figure 11.
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