

1 **Title:**

2 Humanized nucleosomes reshape replication initiation and rDNA/nucleolar integrity in yeast.

3

4 **Authors:** Luciana Lazar-Stefanita^{1*}, Max A. B. Haase^{1,2}, Jef D. Boeke^{1,3*}

5

6 Lead Contact: Jef D. Boeke, jef.boeke@nyulangone.org

7

8 **Affiliations:**

9 ¹Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology,
10 NYU Langone Health, New York, NY 10016, USA

11 ²Vilcek Institute of Graduate Biomedical Sciences at NYU School of Medicine, NY 10016, USA

12 ³Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY
13 11201, USA

14 *Correspondence: L.L.-S., luciana.lazarstefanita@nyulangone.org, J.D.B.

15 jef.boeke@nyulangone.org

16

17 **Highlights:**

18 Humanized nucleosomes wrap 10 additional nucleotides, shortening free linker length

19 Histone-humanized nucleosomes have increased occupancy for DNA

20 Humanized nucleosomes potentially decrease chromatin accessibility by blocking-out free linker
21 DNA

22 Nucleosome humanization impedes DNA replication by affecting chromatin structure at origins

23 Humanized nucleosomes reversibly destabilize the ribosomal DNA array and leads to massive
24 intrachromosomal rDNA locus expansion

25 Histone humanization disrupts rDNA silencing and leads to nucleolar fragmentation

26 **Summary**

27 Eukaryotic DNA wraps around histone octamers forming nucleosomes, which modulate genome
28 function by defining chromatin environments with distinct accessibility. These well-conserved
29 properties allowed “humanization” of the nucleosome core particle (NCP) in *Saccharomyces*
30 *cerevisiae* at high fitness costs. Here we studied nucleosome-humanized yeast-genomes to
31 understand how species-specific chromatin affects nuclear organization and function. We found
32 a size increase in human-NCP, linked to shorter free linker DNA, supporting decreased
33 chromatin accessibility. 3-D humanized-genome maps showed increased chromatin compaction
34 and defective centromere clustering, correlated with high chromosomal aneuploidy rate. Site-
35 specific chromatin alterations were associated with lack of initiation of early origins of replication
36 and dysregulation of the ribosomal (rDNA and rRNA) metabolism. This latter led to nucleolar
37 fragmentation and rDNA-array instability, through a non-coding RNA dependent mechanism,
38 leading to its extraordinary, but entirely reversible, intra-chromosomal expansion. Overall, our
39 results reveal species-specific properties of the NCP that define epigenome function across vast
40 evolutionary distances.

41

42 **Keywords**

43 Nucleosome humanization, chromatin structure, genome instability, DNA replication, ribosomal
44 DNA array, nucleolus.

45 **Introduction**

46 In eukaryotes DNA molecules are packed in the nucleus in a hierarchical folding structure. The
47 first level of organization consists of ~1.7 superhelical turns of 147 bp DNA around an octamer
48 of two copies each of the four histone proteins: H2A, H2B, H3 and H4 (reviewed in McGhee and
49 Felsenfeld^{1, 2}). Altogether they form the nucleosome core particle (NCP) that constitutes the
50 basic structural unit of chromatin^{2,3}, conserved throughout eukaryotes (reviewed in Kornberg
51 and Lorch⁴, Malik and Henikoff⁵). Aside from the canonical core histones, the sequence-
52 specified centromere of *Saccharomyces cerevisiae* (~120 bp AT-rich region) is organized into a
53 specialized nucleosome containing Cse4, a centromere-specific variant of histone H3^{6–8}. A
54 single Cse4 nucleosome is thought to form the minimal unit of the point centromeric
55 chromatin^{7,9}, required for the recruitment of the kinetochore complex and proper chromosome
56 segregation (reviewed in Cleveland et al.¹⁰). Genome-wide footprinting showed that the
57 centromeric nucleosome contains a micrococcal nuclease-resistant unit of ~123–135 bp,
58 significantly shorter than the canonical nucleosome¹¹.

59

60 Nearly 80% of the yeast DNA is incorporated into stable nucleosomes¹². The “chromatinization”
61 process takes place primarily during S-phase and is coupled to the passage of the DNA
62 replication fork¹³, when parental and de novo synthesized histones are deposited onto the two
63 nascent DNA molecules^{14–17}. During this process, histone chaperones and nucleosome
64 remodelers closely interact with components of the replication machinery to deposit new and old
65 histone octamers onto the newly replicated duplexes¹⁸ (reviewed in Budhavarapu et al.¹⁹, Sauer
66 et al.²⁰). The DNA sequence interconnecting consecutive NCPs to form higher-order structures
67 is called the linker⁴. Its length varies among cell types and organisms (e.g., ~20 bp long in *S.*
68 *cerevisiae*²¹), and is thought to be inversely correlated with gene activity^{22–25}. In addition,
69 correctly stabilizing nucleosome positions on the DNA polymer - relative to *cis* regulatory
70 elements (e.g., replication origins and transcription start sites) - is a critical component of
71 genome function and regulation (reviewed in Rando and Chang²⁶, Lai and Pugh²⁷). Regions of
72 the genome that are devoid of nucleosomes, referred to as nucleosome-free regions (NFRs),
73 represent accessible parts of the chromatin where multiprotein complexes can assemble and
74 regulate/perform key DNA-templated processes e.g., replication and transcription²⁷. As these
75 processes occur in the context of the surrounding chromatin environment, nucleosome
76 occupancy and positioning can restrict access to particular DNA sequences and influence
77 genome-wide initiation/firing of origins of replication^{28,29} and transcription regulation (reviewed in
78 Bai and Morozov³⁰). Ergo post-translational modifications of nucleosomes, defining distinct local

79 chromatin environments, also affect these processes (reviewed in Bowman and Poirier^{31,32}).
80 Furthermore, it has been proposed that the epigenetic information is maintained during
81 transcription and replication³³, and can even be transmitted through generations (reviewed in
82 Kaufman and Rando³⁴, Campos et al.³⁵). On the other hand, yeast nucleosomes that lack
83 certain post-translational modifications (e.g., acetylation) are associated with silenced
84 chromatin. The hypoacetylated nucleosomes promote a compact chromatin structure (or
85 heterochromatin) and makes DNA inaccessible to processes such as transcription and
86 replication initiation (reviewed in Gartenberg and Smith³⁶). The Sir2 (Silent information regulator
87 2) protein is a conserved NAD⁺-dependent deacetylase that removes key acetyl groups from
88 histone H3 (H3K9 and H3K14) and H4 (H4K16)^{37,38}. This type of epigenetic silencing occurs at
89 diverse genomic sites including the silent *HM*-mating type loci, telomeres and the ribosomal
90 DNA (rDNA) tandem array. Hypoacetylated H3 and H4 histones³⁹ have been linked with
91 heterochromatin formation by establishing direct interactions with components of the silencing
92 complex (Sir3/4) and nucleosomes⁴⁰⁻⁴². These interactions not only participate in telomere and
93 *HM* loci silencing, but also in their nuclear envelope positioning⁴³. Finally, only Sir2 deacetylase
94 activity is required for rDNA silencing whereas Sir3/4 are dispensable^{44,45}.
95

96 Despite the vast evolutionary distance between yeast and human, large-scale systematic
97 studies have found that several hundred yeast genes can be individually replaced with their
98 human orthologs and sustain yeast growth (3%)^{46,47} (reviewed in Dunham and Flower⁴⁸). Multi-
99 gene interspecies swaps have also been reported⁴⁹, exemplified by the humanization of the
100 entire NCP (H2A, H2B, H3 and H4) of *Saccharomyces cerevisiae* (Truong and Boeke⁵⁰).
101 Although yeast and human histones are highly conserved (68% - 92% identity), isolation of
102 NCP-humanized yeasts required acquiring genetic mutations to survive and they display
103 dramatic phenotypic defects associated with a global RNA reduction. These findings presented
104 the opportunity to examine the effects of human histones in yeast to provide valuable insights
105 into the mechanisms that govern chromatin-related processes in distantly related organisms.
106 Here we used yeast strains that rely on human histones for packaging their DNA molecules, to
107 address how these species-specific units of chromatin structure alter yeast genome
108 organization - from nucleosome fibers up to the 3D structure of chromosomes - and how these
109 structural changes reflect upon biological processes (e.g., DNA replication, gene silencing and
110 genome stability).

111

112 **Results**

113 To ascribe our findings to the type of histone used for DNA packaging (yeast vs. human), we
114 compared results obtained from humanized strains carrying distinct “humanization-suppressing”
115 mutations. This terminology was coined to indicate a specific subset of genetic mutations
116 required for histone-humanized yeasts to survive and propagate⁵⁰. Notably, some of these
117 mutations were found to have distinct effects on genome stability, leading to isolation of two
118 classes of humanized strains with distinct levels of aneuploidy. Here we focused on two such
119 humanized yeast strains carrying each a single point mutation, in either *DAD1* (strain: yDT180,
120 *dad1*-E50D) or *SCC4* (strain: yDT92, *scc4*-D65Y) genes, which display either normal or
121 abnormal ploidy, respectively. These were isolated by Truong in 2017, and the mechanism of
122 ploidy stabilization was addressed by Haase et al.⁵¹ who documented that the mutation in *dad1*-
123 E50D (component of the outer kinetochore DASH/Dam1 complex) stabilized ploidy of the
124 histone-humanized yeasts by weakening the interaction between the outer kinetochore and the
125 microtubules.

126

127 *Visualization of histone-humanized chromatin fibers in yeast.*
128 Previously reported nucleosome occupancy maps have shown a high degree of structural
129 conservation of histone-humanized chromatin fibers in yeast^{50,51}, with notable exceptions
130 described later in this manuscript. Even if nucleosome positioning appears to be well conserved
131 overall, the details of the wrapping of yeast DNA on the human NCP remain unknown. To
132 address this question, we used transmission electron microscopy (TEM) to directly image
133 chromatin fibers extracted from yeast cells harboring either human or native yeast histones.
134 Representative images in [Figure 1A](#) show the expected “beads-on-a-string” array arrangement
135 of the nucleosomes in the wild-type, *Sc* (*Saccharomyces cerevisiae*), and in the histone-
136 humanized, *Hs* (*Homo sapiens*), cells. The schematic in [Figure 1B](#) shows an example of an
137 NCP used as a benchmark to calculate mononucleosome surface area. The latter was
138 measured using chromatin images acquired at various resolutions (representative images are
139 shown in [Figure S1](#) and [S2](#)) accounting for approximately 500 nucleosomes for each *Sc* and *Hs*
140 strain ([Table S1](#)). Bee swarm plots in [Figure 1C](#) point to a small but significant increase in the
141 surface of the mononucleosome in both histone-humanized strains (*Hs*: yDT92 and yDT180),
142 relative to the WT (*Sc*: BY4742) yeast strain. This change corresponds to a ~5% increase in the
143 circumference of the NCP (~1.8 nm) and suggests that more DNA in the nucleosome repeat
144 length is wrapped/protected by the histone-humanized octamer compared to the native yeast
145 one. Moreover, this result is quantitatively supported by an orthogonal method that directly
146 measured DNA fragment size (using capillary electrophoresis) from MNase digested chromatin

147 and showed that the *Hs*-NCP protects ~10 bp more DNA than the *Sc*-NCP ([Figure 1D](#) data from
148 Haase et al., co-submission). Importantly, this result excludes the possibility of imaging and
149 analyzing semi-complete NCPs from yeast due to the lower intrinsic stability of the histone
150 octamer in yeast compared to other metazoans^{52,53} (reviewed in McGinty and Tan⁵⁴). Since we
151 did not detect any change in nucleosome positioning nor in the repeat length itself, it suggests
152 that the extra 10 bp of protected sequence corresponds to a reduction in free linker DNA length
153 in yeast. This finding provides *in vivo* reinforcement to the idea that human histone octamers
154 associate more stably with DNA than the yeast ones and nucleosome packaging in higher-order
155 chromatin structures is fundamentally different between these two species^{52,55}. Finally, these
156 results provide a structural underpinning for the general decrease in chromatin accessibility in
157 the humanized yeast and provides a plausible explanation for their global downregulation of
158 RNA (previously reported in Truong and Boeke⁵⁰, Haase et al.⁵¹), presumably reflecting reduced
159 access of RNA polymerases and/or transcription factors to DNA.

160

161 *3-Dimensional organization of the histone-humanized yeast genome.*

162 Next, we investigated if the nanoscale effects of histone humanization are echoed at longer
163 genomic distances, affecting the overall spatial organization of chromosomes. Genome-wide
164 proximity maps of the *Hs* and *Sc* yeast strains were generated using the chromatin
165 conformation capture approach, Hi-C⁵⁶. At first glance, the 2D (2-Dimensional)
166 interaction/contact frequency maps of two representative chromosomes (chr I/V and chr V) in
167 [Figure 2A](#) show that the typical organization of *S. cerevisiae*'s genome is preserved overall in
168 both histone-humanized suppressor mutants (*Hs dad1-E50D* and *Hs scc4-D65Y*). The so-called
169 Rabl-like organization⁵⁷ of yeast chromosomes is characterized by the spatial clustering of all
170 peri-centromeric regions (indicated with black arrowheads in [Figure 2A](#)) and their relative
171 insulation from the chromosomal arm sequences ([Figure 3C, upper schematic](#))⁵⁸. Further
172 analysis of intra-chromosomal contacts, that computes the decay in contact probability (*p*) as a
173 function of the genomic distance (*s*), showed a small but reproducible increase of contacts at
174 mid-range (~20-50 kb) distances in the *Hs* chromosomes relative to *Sc* ([Figure 2B](#)). In addition,
175 the contact variation maps in [Figure 2C](#) not only confirmed an increase in mid-range intra-
176 chromosomal contacts in the *Hs* strains, as shown by the red signal running parallel to the
177 proximal diagonal, but they also revealed local contact variations surrounding the peri-
178 centromeres. Here, the black arrowheads point to peri-centromeric positions which appear to
179 favor interactions with the distal chromosomal arms, both in *cis* (within the same chromosome)
180 and in *trans* (on different chromosomes), in the *Hs* relative to *Sc* maps. These stand out as red

181 contact stripes on the comparison maps and support the hypothesis that the centromeres are
182 de-clustered in the *Hs* strains relative to the *Sc* strain. To test this hypothesis, we used the
183 normalized *Hs* and *Sc* contact maps (expanded versions of the insets shown in [Figure 2A](#)) to
184 quantify the frequency of contacts that each peri-centromeric region (50 kb sequence centered
185 on a given centromere) makes with the remaining 15 peri-centromeres, where higher contact
186 values correspond to robust centromere clustering. The left plot in [Figure 3A](#) reveals a
187 significant reduction to the inter-centromere contacts in *Hs* compared to *Sc* of approximately
188 30%. Notably this result was reproduced in both *Hs dad1-E50D* and *Hs scc4-D65Y* yeasts,
189 suggesting that centromere de-clustering occurs regardless of the humanization-suppressor
190 mutations in the histone-humanized strains ([Figure 3B](#), average 3-Dimensional representations
191 of the Hi-C maps with a viewpoint on the centromeres in yellow). Based on DNA content
192 analysis and chromosome coverage plots ([Figure S3A-B](#)), we confirmed that a specific subset
193 of chromosomes tended to be aneuploid in *Hs scc4-D65Y*, whereas the genome of *Hs dad1-*
194 *E50D* maintains normal ploidy (as previously reported in Truong and Boeke⁵⁰ and Haase et
195 al.⁵¹). Given that centromeres are the key elements responsible for chromosome stability during
196 cell division, we reasoned that peri-centromeres of aneuploid chromosomes may fail to achieve
197 this function due to a further aggravated defect in their clustering. To explore this hypothesis, we
198 first computed the inter-chromosome contact variations for both *Hs* strains with normal and
199 aneuploid chromosomes (ratio of the normalized Hi-C maps: humanized vs. WT yeast, [Figure](#)
200 [S3C](#)), which we used as a ploidy-correction to the inter-centromere contact variation between
201 humanized and WT strains. The plot on the right in [Figure 3A](#) shows a further reduction (up to
202 ~45%) in centromere clustering exclusive to the aneuploid (amber) chromosomes in *Hs scc4-*
203 *D65Y* relative to the euploid (gray) chromosomes. Overall, our results show that humanization
204 of the canonical histones in yeast destabilizes the structure of the peri-centromeric chromatin
205 and leads to centromere de-clustering ([Figure 3C, lower schematic](#)). This provides structural
206 support explaining the frequent chromosomal aneuploidies observed post-humanization.
207

208 *Histone humanization delays activation timing of DNA replication origins.*
209 Given the inseparable relationship between genome structure and function, we then asked
210 whether structural changes introduced by humanized nucleosomes would affect specific
211 biological processes. Our previous work has shown that the humanized yeasts have low
212 fitness⁵⁰, suffering from a prolonged cell cycle (~3-fold longer). One potential explanation for the
213 cell cycle delay might be a defect in DNA replication initiation of histone-humanized

214 chromosomes, since recognition of replication origins might be blocked by the increased
215 nucleosome stability/binding.

216 In *S. cerevisiae*, DNA replication start sites or origins (named Autonomously Replicating
217 Sequences⁵⁹) are marked by a degenerate T-rich motif, named ARS consensus sequence
218 (ACS)^{60,61} to which the heterohexameric origin recognition complex (ORC) binds^{62–64}. During G1,
219 ORC recruits the Mcm2–7 helicase to initiation sites (reviewed in Bell and Kaguni⁶⁵), leading to
220 the formation of the pre-replicative complex (pre-RC) that marks origin activation in S-phase
221 (reviewed in Remus and Diffley⁶⁶). Notably, among the >12000 high-quality ACS motifs, less
222 than 300 of these function as origins of replication⁶⁷, and only ~120 appear to fire early in S-
223 phase, independent of the checkpoint activation induced by dNTPs pool depletion⁶⁸. Although
224 the precise mechanism underlying origin selection and their single-cell temporal heterogeneity
225 (deterministic vs. probabilistic) remains a matter of debate, their activation is thought to be
226 modulated locally - by epigenetic modifications of the chromatin (i.e., nucleosome positioning
227 can restrict access to the ACS⁶⁹ and inhibit pre-RC assembly⁷⁰) - and spatially in the context of
228 the chromosome (i.e., proximity to a functional centromere^{71,72}).

229 Here we used a well described method to map early firing ARS regions genome-wide in yeast
230 cell populations^{68,72,73}. Three independent isolates of each *Hs* and *Sc* strain were synchronized
231 in G1 using a-Factor and released synchronously in S-phase in the presence of hydroxyurea
232 (HU), that blocks DNA elongation and causes an early S-phase arrest through dNTP starvation
233 (Figure S4A). Prior to genome-wide sequencing, the quality of G1 and S synchronizations were
234 evaluated by measuring DNA content using flow cytometry (Figure S4B). Mapping of the early
235 firing ARSs was done by computing chromosome sequence coverages in early-S normalized to
236 G1 (unreplicated control) and plotted along the reference genome at 1 kb resolution. We
237 observed that the prominent signal corresponding to early-firing origins (indicated by black
238 arrowheads in Figure 4A) was severely compromised and often entirely lost in *Hs* (orange plot)
239 compared to *Sc* (blue plot). This defective firing trend was particularly obvious on the longer
240 chromosome arms (Figure S5). Note that the reduced firing intensity of the early-S regions in
241 the *Hs* isolates is unlikely a result of incomplete synchronization, as we accounted for their
242 extended cell cycle and corrected with accordingly prolonged incubations (Figure S4A). The
243 firing defect was observed genome-wide (Figure S5 and Figure 4B, ratio of origin timing in *Hs*
244 vs. *Sc*), independent of chromosome size and ARS location (i.e., distance from the early
245 replicating centromere). Previous high-throughput nucleosome-positioning assays have shown
246 that well-positioned nucleosomes flanking ARS consensus sequences are conserved functional
247 features of replication origins^{29,74} and are maintained by ORC binding²⁸. We observed that the

248 positioning of the human nucleosomes forms the typical nucleosome-depleted region (NDR,
249 centered on the ARS consensus); however, it is accompanied by unexpectedly higher
250 nucleosome occupancy in the NDR-adjacent regions in both histone-humanized lineages
251 (Figure 4C, MNase-seq profiles showing nucleosome profiles at ARSs). These results suggest
252 that the innate increased stability of human nucleosomes^{52,53} in yeast may have a powerful
253 repressive effect that impinges not only the transcriptional program (shown by Truong and
254 Boeke⁵⁰), but also on origin firing during DNA replication. Collectively, these findings provide a
255 mechanism to explain the previously reported cell cycle defect in the histone-humanized strains,
256 imputed to a slow S-phase progression.

257

258 *Histone humanization causes instability of the ribosomal DNA array.*

259 Intriguingly, while analyzing the deep-sequencing data (Hi-C libraries and profiles of replication
260 timing, above), we observed a substantial enrichment in multi-mapping reads in the histone-
261 humanized yeast (from ~15% in *Sc* to ~35% in *Hs* strains). Closer examination of the multi-
262 mapped reads, using the built-in commands in SAMtools⁷⁵ to sort and index the alignments,
263 revealed that the vast majority of these originated from chromosome XII. In *S. cerevisiae*,
264 chromosome XII harbors the highly repeated ribosomal DNA locus (rDNA; ~150-200 copies of
265 rRNA genes)⁷⁶, accounting for ~10-17% (~1.5 Mb) of the entire yeast genome (reviewed in
266 Kobayashi and Sasaki⁷⁷). Given its repetitive nature and the high demand for ribosomal RNA
267 transcripts⁷⁸, the rDNA locus is arguably the most unstable genomic structure (reviewed in
268 Salim and Gerton⁷⁹). Recombination events between rDNA repeats can lead not only to
269 variability in the size of the locus (loci)⁸⁰ (reviewed in Kobayashi⁸¹), but also to the formation of
270 extra-chromosomal rDNA circles (ERCs) thought to occur predominantly during replicative
271 aging^{82,83}. We therefore hypothesized that histone humanization may lead to rDNA instability
272 and copy number amplification of the rRNA genes. To test whether rDNA amplification is extra-
273 or intra-chromosomal, we performed a Pulsed-Field Gel Electrophoresis-Southern blot assay
274 and found an extraordinary increase to the size of chromosome XII (expected size ~2.5 Mb in
275 *Sc*) linked to the internal expansion of the rDNA locus (Figure 5A, BamHI digested
276 chromosomes used to exclusively resolve the rDNA locus). The size of the rDNA expansion in
277 the euploid *Hs dad1-E50D* clones exceeds the maximum resolution potential of the PFGE (5-6
278 Mb) but forms a band, whereas, in the aneuploid *Hs scc4-D65Y* lineage the clones display a
279 smaller smear-like migration of the rDNA that is likely a reflection of a population of rDNAs of
280 different sizes on the aneuploid chromosome XII (Figure S6A). Intra-chromosomal expansion of
281 the rDNA is also supported by the Hi-C maps (Figure S6B, insets of ratio maps between *Sc* and

282 *Hs* genomes showing *cis* and *trans* contact variations between chromosomes *XII* and *XIII*) and
283 the corresponding 3D average representations of chromosomes (Figure 5B), in which the
284 expansion of the locus causes the distal part of chromosome *XII/R* arm to be insulated from the
285 remaining genome. Finally, we did not detect accumulation of ERCs in any of the *Hs* yeast
286 strains compared to *Sc* (Figure S7, exonuclease treatment shows only the band of 2-micron
287 plasmid), reinforcing the evidence of intra-chromosomal amplification of the rDNA array.
288 To better understand the kinetics of the rDNA expansion following nucleosome humanization,
289 we estimated the size of the locus in the euploid *Hs dad1-E50D* by computing the ratio between
290 reads mapped to rDNA and the remainder of chromosome *XII* ("n" = number of independent
291 genome-wide sequencing datasets, Table S2). We found that the expansion occurs very early
292 on during histone humanization ("non-evolved" indicates genomic libraries prepared
293 immediately after transforming the *Hs* histone plasmid and shuffling-out the *Sc* histones) and it
294 reaches a maximum of 5-6 Mb (accounting for ~600 repeats) after passaging them for ~100
295 generations (Figure 5C, *Hs* plots). Moreover, after "re-yeastification" – by re-introducing the *Sc*
296 histones in the already histone-humanized strains – the physiological size of the rDNA locus
297 was entirely rescued (Figure 5C, *Hs* + *Sc* plots). Therefore, we concluded that the expansion of
298 the rDNA locus is a reversible adaptation that is entirely dependent on human histones. Next,
299 we wanted to learn what epigenetic-dependent mechanism(s) allows for this switch in rDNA
300 stability.

301

302 *Histone humanization causes rRNA metabolic dysregulation and disrupts nucleolar structure.*
303 Each ribosomal DNA repeat unit (9.1 kb) not only encodes for the four ribosomal RNA genes
304 (25S, 18S, 5.8S and 5S), but also contains two non-transcribed intergenic spacers (*NTS1* and
305 *NTS2*) (reviewed in Nomura et al.⁸⁴) thought to be involved in the metabolic regulation of rDNA
306 array size⁸⁵⁻⁸⁷ (reviewed in Kobayashi⁸¹) (Figure 6A). The amplification of this locus relies on a
307 repeat-mediated homologous recombination mechanism that requires: (1) binding of Fob1
308 protein to the rDNA replication fork block (*RFB*) site^{85,86,88,89} and/or (2) lack of transcriptional
309 silencing (mediated by SIR and cohesin complexes) of the NTS sequences^{87,90,91}. We reasoned
310 that changes in chromatin occupancy at the rDNA locus in the *Hs* histone strains could hint
311 towards a potential mechanism responsible for the amplification of the array. MNase-
312 sequencing profiles showed that the *Hs* nucleosome occupancies at the rDNA locus remained
313 unexpectedly similar between the *RDN37* and the NTS regions compared to the *Sc* yeast
314 (where NTS silencing allows for higher nucleosome occupancy) (Figure S8A), suggesting
315 functional misregulation. Notably we detected increased occupancy at the ribosomal origin of

316 replication (*rARS*) in *NTS2* and at the RFB-Fob1 site in *NTS1* in the *Hs* histone strains vs. the
317 *Sc* (Figure S8A). To validate whether RFB-Fob1 is responsible for the locus instability⁸⁶ in *Hs*
318 histone yeasts, we deleted *FOB1* in *Sc* strain and found that after histone humanization, rDNA
319 arrays invariably expanded (Figure S8B). We thus conclude that rDNA amplification in the
320 histone-humanized yeasts does not rely on a replication-based mechanism, in agreement with
321 the absence of ERC (as previously shown in Figure S7).

322 Notably, the MNase profiles in *Hs* histone strains showed a region of nucleosome depletion
323 mapping to the rDNA bidirectional noncoding RNA polymerase II promoter (E-pro) (Figure S8A),
324 we thus wondered whether rRNA and/or ncRNA (at the NTSs) transcripts are dysregulated at
325 this locus. Triplicates of total RNA extractions from similar number of cells followed by gel
326 quantifications showed that the rRNA polymerase I transcripts (25S and 18S) were ~2.5-fold
327 reduced in the *Hs* strains (Figure 6B and S9B). This result suggests that histone-humanized
328 cells contain less ribosomes, in line with their substantially reduced rRNA levels. In addition to
329 the rRNA levels, we further investigated the transcriptional activity at the E-pro by measuring the
330 levels of NTS transcripts using RT-qPCR and RNA-seq. We detected an unprecedented
331 increase in ncRNA at both *NTS1* and *NTS2*, observing ~100-fold to ~1000-fold higher levels of
332 expression in the *Hs* strains compared to *Sc* (Figure 6C and S9C-D). The relative amounts of
333 *ETS* (external-transcribed spacer, part of the rRNA precursor) transcripts, internally normalized
334 to *ACT1* mRNA, remained constant between the *Hs* and the *Sc* strains, reflecting a correlation
335 between rRNA and mRNA levels. As Sir2-dependent transcription at the E-pro has been shown
336 to regulate rDNA copy number variation⁸⁷, we hypothesize that the human histones in yeast are
337 responsible for silencing defects in the NTS regions, leading to rDNA instability and locus
338 amplification. Notably, we found that in the “re-yeastified” strains, the size of the rDNA array was
339 reduced, and the levels of 18S and 25S rRNAs rebounded to their initial physiological states
340 (Figure S9E-G).

341 In wild-type yeast the entire rDNA array assembles into a single subnuclear compartment, the
342 nucleolus, forming a crescent shape structure apposed at the nuclear envelope⁹² (Figure 6D,
343 left schematic). Previous studies have found that nucleolar localization and morphology is
344 affected by the type of RNA polymerase (I or II) used for the rRNA synthesis^{93,94}. Moreover,
345 nucleolar fragmentation was observed in aged yeast cells⁹⁵, in which elevated ncRNA pol II
346 dependent transcription^{87,91} and variation of copy number at the rDNA locus⁸³ were also
347 detected. We thus examined whether NTS de-silencing in the histone-humanized yeasts could
348 correlate with changes in the organization of the nucleolus. Fluorescent imaging of nuclei, using
349 a Nop10-GFP nucleolar marker, displayed fragmentation of the nucleolus in ~70% of the *Hs*

350 cells compared to Sc (Figure 6D; see Methods for quantification). These data are consistent
351 with predictions based on previous studies and support the role of rDNA silencing in maintain
352 the structure of the nucleolus.

353

354 **Discussion**

355 Our electron microscopy data suggest that the size of the *Hs*-NCP in yeast is enlarged. Since
356 the mass of the protein/histone component of the human nucleosome is actually 0.54%
357 “smaller” than that of the yeast nucleosome (109.6 kDa vs. 110.2 kDa, respectively), we
358 conclude that the observed surface increase of the *Hs*-NCP must be due to additional
359 nucleosome-associated DNA (corresponding to an increase of ~10 bp in the length of the DNA
360 protected by the NCP, see also MNase-based experiments in Haase et al., co-submission).
361 Given that both the nucleosome positioning and NRL remain invariant⁵⁰, our current hypothesis
362 is that the *Hs*-NCP is able to protect ~10 bp more of the yeast linker DNA from MNase activity.
363 These results support, *in vivo*, the model where predicted stronger interactions between the two
364 human H2A-H2B dimers relative to yeast favor the binding stability of the human histone
365 octamer on DNA, underlying fundamental differences in nucleosome packaging between the
366 two species^{52,53,55}.

367

368 Moreover, the Hi-C chromosomal maps showed that the structural effects of histone
369 humanization go beyond single nucleosome fibers, and suggested that human nucleosomes
370 allow for more compacted chromatin fibers in yeast (mid-range distances: 20-50 kb). These
371 observations support a model in which higher nucleosome occupancy, accompanied by lower
372 DNA accessibility form the basis for the drop in both mRNA and rRNA transcription and to the
373 impairment of replication origin firing in histone-humanized yeasts. Conversely, lower
374 humanized-nucleosome occupancy at the tRNA genes was previously shown to increase their
375 expression⁵⁰.

376 Another intriguing finding is related to the centromeric chromatin. Although the centromeric
377 histone was not humanized (based on our investigations to date, Cse4, the yeast CenH3
378 specialized histone, remains unreplaceable by human CENP-A), the peri-centromeric regions
379 (~50 kb) appeared weakly clustered, suggesting reduced centromeric function - defined by their
380 ability to stably segregate chromosomes. Moreover, Haase et al.⁵¹ showed that a specific
381 subset of 8 centromeres (*CEN1-3*, *CEN5*, *CEN9*, *CEN11*, *CEN16*) is more frequently associated
382 with aneuploidy, and here we found that the same set of peri-centromeres displays a <70%

383 clustering efficiency. Therefore, it is not surprising that histone-humanized yeast lineages often
384 display chromosomal aneuploidies (see also Haase et al., co-submission).

385

386 *Defect in DNA replication timing.*

387 The absence of a strong early S-phase origin firing in histone-humanized yeast strains resulted
388 in a noisy temporal replication profile characterized by a multitude of small peaks, reminiscent of
389 the stochastic/probabilistic model of DNA replication, typical of many eukaryotes, including
390 humans⁹⁶ and some other yeast species^{97,98}. The latter model predicts that each origin of
391 replication follows a unique temporal program that varies stochastically from cell to cell, contrary
392 to the deterministic one where origins have pre-established timing and frequency of firing^{67,73}. In
393 *S. cerevisiae*, the two models can be reconciled when averaging the heterogeneous replication
394 kinetics in a large number of cells. This has led to the postulate that the control of replication
395 timing is deterministic at the level of large chromosomal regions but probabilistic at the level of
396 single origins⁹⁹. The local chromatin environment at origins was shown to affect origin activity
397 such as both the introduction of a nucleosome within an ARS⁶⁹ and the increased distance
398 between nucleosomes surrounding origins⁷⁰ led to a reduced firing. A more recent study that
399 performed high-resolution histone chromatin immunoprecipitation followed by deep sequencing
400 in hydroxyurea (HU) treated cells has found an inverse correlation between nucleosome
401 occupancy surrounding origins and their firing time, that was dependent on pre-RC formation¹⁰⁰.
402 This implies that early origins with a higher frequency of ORC binding display lower nucleosome
403 occupancy in their surroundings. These observations are particularly relevant to our work, as we
404 detected an increase in human nucleosome occupancy in the vicinity of the ORC-binding
405 replication origins (cumulative MNase profile at ARSs, [Figure 4C](#)), accompanied with a global
406 loss of early firing. These results suggest that the *Hs* nucleosomes may interfere with the
407 assembly and/or the stability of the pre-RC, which compromises the efficiency of origin firing (in
408 agreement with previous publications^{28,100,101}). On the other hand, we confirmed that DNA
409 sequences at replication origins are inherently nucleosome-disfavoring²⁹, and demonstrated that
410 this chromatin feature is independent of the NCP's species-specificity, as it was reproduced
411 ectopically among distantly related eukaryotes (i.e., yeast and human).

412 Intriguingly, humanized Orc4 subunit was shown to cause the loss of ORC's selectivity for
413 ARSs, leading to its promiscuous and stochastic binding to the constitutively open chromatin of
414 yeast¹⁰². Our work showed that the less accessible histone-humanized yeast chromatin loses its
415 characteristic deterministic replication program. Therefore, we cannot exclude the possibility
416 that the replication defect in the histone-humanized yeasts maybe due to the increased stability

417 of the *Hs*-NCP that may impinge on the activity of nucleosome/chromatin remodelers.
418 Alternatively, in light of the remarkable instability of the rDNA locus in the humanized yeasts,
419 DNA replication of the expanded rDNA locus may require the recruitment of an excess of
420 limiting replication initiation factors¹⁰³, causing their widespread depletion at replication origins
421 throughout the rest of the genome.

422

423 *Expansion of the ribosomal DNA locus.*

424 Notably, about half of the rDNA repeats are transcriptionally active at any one time^{104,105}. Work
425 from Ide et al.¹⁰⁶ in budding yeast, established the importance of the extra, untranscribed rDNA
426 repeats as “protective” against DNA damage in the highly transcribed array. The authors
427 concluded that while the extra copies of rDNA may not be essential to meet cellular rRNA
428 demands, rather, they may serve to reduce the transcriptional load on the rDNA to allow
429 replication-coupled repair and maintain the integrity of this essential locus, especially under
430 stress conditions. In our case, histone humanization may be seen as a source of endogenous
431 stress leading to drastic transcriptional dysregulation of the NTS sequences, accompanied by a
432 remarkable increase in rDNA gene copy number ([Figure 5-6](#)). rDNA expansion appeared
433 entirely intra-chromosomal (as we failed to detect enrichment in extra-chromosomal rDNA
434 circles, ERC, [Figure S7](#)), it is thus plausible that rDNA array expansion and concomitant
435 reduction in rRNA transcripts (RNA polymerase I) represent genomic adjustments necessary to
436 counterbalance exacerbated transcriptional activity caused by lack of silencing at the NTS (RNA
437 polymerase II). In other words, the rDNA expansion may serve as a reservoir of RNA pol I
438 inactive genes to release the overall transcriptional burden and maintain the integrity of this
439 essential locus (in agreement with Ide et al.¹⁰⁶). This hypothesis is supported (1) by the rapid
440 and consistent rDNA size adjustments, when histone genes are swapped from *Sc* to *Hs* and
441 vice versa [Table S2B-C](#), and (2) by higher nucleosome occupancy at the *rARS*, which may
442 lower its firing efficiency thus reducing transcription-replication fork collision that leads to DNA
443 damage response, recombination and ERC formation.

444 We have shown that the expansion of the rDNA locus is due to silencing defects. However, it
445 remains unclear how human histones interfere with this process given that the Sir2 deacetylated
446 lysine residues on the H3 and H4 are conserved and that none of the SIR factors (silencing:
447 Sir2, Sir3, Sir3) nor the RNA I/II/III pol genes were found to be differentially expressed in *Hs* vs.
448 *Sc* ([Table S4](#)). As often times chromatin modifying enzymes (e.g., SIR factors) require to
449 contact extensive patches on the surface of the nucleosomes¹⁰⁷, we cannot exclude that

450 cumulative changes introduced by the *Hs*-NCP may disrupt these interactions and affect their
451 downstream functions in yeast.

452

453 *A potential interplay between cell size and transcriptional changes.*

454 Biosynthesis of total RNA and proteins increases in proportion to cell size such that their
455 concentrations remain approximately constant as a cell grows (reviewed in Xie et al.¹⁰⁸). This
456 size-dependent transcriptional scaling is thought to ensure constant concentrations of total
457 mRNA, rRNA and tRNA, to regulate protein synthesis in proportion to cell size (reviewed in
458 Marguerat and Bahler¹⁰⁹). An intriguing model for rDNA copy number regulation has proposed
459 that Sir2 activity (the NTS silencing factor implicated in the stability of the rDNA array) may
460 decrease after cell enlargement, allowing the increased recombination at the rDNA and its
461 expansion¹¹⁰. Furthermore, recent works by Swaffer et al.¹¹¹ and Sun et al.¹¹² showed that the
462 increase of RNA polymerase II initiation rate is the major limiting factor for increasing
463 transcription with cell size in yeasts. Here we hypothesize that the cell size increase observed in
464 the histone-humanized yeasts⁵⁰ may be correlated with the extraordinarily high transcriptional
465 activity of the RNA pol II at the E-promoter in the NTS regions of the rDNA (Figure S9C-D). Our
466 current model predicts that the lack of silencing at the NTS will titrate more RNA pol II, causing
467 its depletion from the free inactive pool whose feedback may eventually translate into both a cell
468 size increase and rDNA expansion. Experiments to assess both the occupancy of the RNA pol II
469 and the molecular crowding in the histone-humanized yeast cells are required to validate this
470 model. We expect to observe that the increased RNA pol II occupancy at the rDNA is
471 anticorrelated with molecular crowding, given that transcriptional excess does not lead to
472 functional mRNAs nor rRNA involved in translation.

473

474 Finally, several studies have found that chromatin remodelers (SMC), such as cohesins and
475 condensins bind many locations in the yeast genome^{113,114}, where they play important roles in
476 the organization of the chromatin. Relevant examples are the origins of replication¹¹⁵, the peri-
477 centromeric regions and the nucleolus (reviewed in Lawrimore and Bloom¹¹⁶), where SMCs are
478 involved in preserving rDNA stability by presumably maintaining silencing at the *cis*-intergenic
479 sequences^{87,91}. As, our results showed an unprecedent increase in non-coding RNA
480 transcription at the *NTS2*, we cannot exclude the possibility that the human nucleosome in yeast
481 may affect centromere clustering, firing of replication origins and rDNA stability by altering the
482 higher-order SMC-dependent organization of the chromatin.

483

484 **Acknowledgments**

485 We thank Sarah French (UVA) for extensive guidance on chromatin preparation for TEM and
486 the microscopy facility at NYU Langone for electron microscopy training. We thank David
487 Truong (NYU Tandon), Ran Brosh (NYU Langone), Julien Mozziconacci (MNHN), Jeffrey Smith
488 (UVA) for helpful discussions and comments on the manuscript, and the entire Boeke lab for
489 their assistance. This work was supported in part by National Science Foundation grant MCB-
490 1921641 to J.D.B.

491

492 **Author Contributions**

493 L.L.-S. and J.D.B. designed the research; L.L.-S. and M.A.B.H. performed the experiments and
494 analyzed the data; L.L.-S., M.A.B.H. and J.D.B. wrote the manuscript.

495

496 **Declaration of Interests**

497 Jef Boeke is a Founder and Director of CDI Labs, Inc., a Founder of Neochromosome, Inc, a
498 Founder of and Consultant to ReOpen Diagnostics, and serves or served on the Scientific
499 Advisory Board of the following: Modern Meadow, Inc., Logomix, Inc., Rome Therapeutics, Inc.,
500 Sample6, Inc., Sangamo, Inc., Tessera Therapeutics, Inc., and the Wyss Institute.

501 The remaining authors declare no competing interests.

502

503

504 **Figure Titles and Legends**

505

506 **Figure 1. Visualizing histone-humanized nucleosome fibers in yeast.**

507 (A) Representative electron microscopy images showing 10 nm nucleosome fibers. Left, wild-
508 type yeast with native histones (*Saccharomyces cerevisiae*, *Sc*, strain: BY4742; see also [Figure S1](#)). Right, histone-humanized (*Homo sapiens*, *Hs*, strains: yDT92, yDT180 fibers; see also
509 [Figure S2](#)). (B) Schematic representation of the nucleosome core particle (NCP) with
510 dimensions in nm. (C) Bee swarm plots showing the average estimated NCP surface area (nm²)
511 in the wild-type (*Sc*) and histone-humanized strains (*Hs*). Median, S.D. and *P* values (**P
512 <0.0015; n.s. *P* > 0.05) were calculated using a two tailed t-test function ([Table S1](#)). (D)
513 Boxplots quantifying the difference of the nucleosome fragment length in *Hs* relative to *Sc* (DNA
514 fragment length analysis of MNase digested chromatin; data from 3 biological replicates:
515 comparisons of lengths from mono- up to penta-nucleosome fragments are shown by each dot
516 Haase et al., co-submission).

518

519 **Figure 2. 3D genome organization of histone-humanized chromatin.**

520 (A) Insets of Hi-C contact frequency maps showing chromosome I/V and V underlined by dotted
521 lines in yeast strains with *Sc* histones vs. *Hs* histones carrying distinct humanization-suppressor
522 mutations (yDT180 w. *dad1*-E50D and yDT92 w. *scc4*-D65Y). Blue (I/V) and red (V)
523 chromosomes are plotted on the x and y axis of the maps binned at 5 kb size resolution. Black
524 arrowheads point at centromere positions, i.e., *CEN4* and *CEN5*. Purple to white color scale
525 indicates increase in contact frequency (log10). (B) Contact probability (p) in function of the
526 genomic distance (kb) represents the average decay of the intra-chromosomal contact
527 frequency between loci with the increment in their genomic distances. Replicates of the strains
528 in A were plotted together. (C) Comparisons of contact maps in panel A. Log2-ratio maps of
529 each of the *Hs* strains vs. the *Sc* strain. Color bar indicates contact variation between samples
530 (log2 ratio 5 kb-binned).

531

532 **Figure 3. Histone humanization leads to de-clustering of yeast centromeres.**

533 (A) Centromere clustering in histone-humanized vs. wild-type yeast using normalized Hi-C
534 genome maps. Left plots: quantifications of all inter-centromere contacts, plotted in 50 kb-
535 windows centered on a given centromere (each dot represents the sum of all *trans* contacts a
536 peri-centromeric region makes with the other 15 peri-centromeres) in the *Hs* (yDT180 *dad1*-
537 E50D and yDT92 *scc4*-D65Y) strains relative to the corresponding *Sc* from the same

538 experiment (indicated as exp. 1 and 2). Right plot: variations of inter-centromere contacts in *Hs*
539 vs. *Sc* plotted according to level of chromosome ploidy (aneuploid vs. euploid shown in [Figure](#)
540 [S3B](#)). **(B)** 3D average representations of the *Sc* and *Hs* corresponding to complete
541 chromosome-contact maps from [Figure 2A](#). Color code highlight a few chromosomes with either
542 short or long arms, as well as centromeres (CENs) and telomeres (TELs). **(C)** Schematic model
543 of Rabl-like organizations of wild-type yeast chromosomes (*Sc* top panel) compared to the
544 histone-humanized (*Hs* bottom panel) one, showing de-clustering of centromeres. Examples of
545 chromosome arms (gray lines) anchored at the nuclear membrane through CENs and TELs.
546

547 **Figure 4. Lack of temporal activation of replication origins on humanized chromosomes.**
548 **(A)** Each track in the replication timing plots is the average representation of three independent
549 replicates and shows the sequencing coverage ratio of early-S (HU arrested) synchronized cells
550 normalized to the G1 (a-factor arrested) non-replicating cells (1 kb-bin size) (see also [Figure](#)
551 [S4](#)). Replication timing profiles of the wild-type (*Sc*) are shown in blue, while those of the
552 histone-humanized strain (*Hs*, yDT180 *dad1-E50D*) are in orange. Representative profiles of
553 chromosome *III* (top left) and chromosome *XII* (bottom left) are shown; positions of all origins
554 (ARS) are indicated with black circles and arrowheads indicate the early ARS subset. **(B)**
555 Metaplots of ARS activation were computed on chromosome-by-chromosome ratios between
556 *Hs* and *Sc* profiles (see also [Figure S5](#)) and plotted in 30 kb ARS-centered windows. **(C)**
557 Metaplots showing nucleosome occupancy from MNase-sequencing profiles at ARSs in *Hs*
558 (yDT180 *dad1-E50D* and yDT92 *scc4-D65Y*) compared to *Sc* strains.
559

560 **Figure 5. Histone humanization leads to the intra-chromosomal expansion of the**
561 **repeated rDNA array.**

562 **(A)** Estimate rDNA locus sizes (turquoise region on chromosome *XII*) in *Sc* and *Hs* (yDT180
563 *dad1-E50D*) strains. PFGE of yeast chromosomes digested (+) or not (-) with BamHI and the
564 corresponding Southern blot with an rDNA specific probe (red). Each “C#” represents an
565 independent isolated clone of either *Sc* or *Hs* strain (see also [Figure S6A](#)). Left ladder: *H. wingei*
566 chromosomes. Right ladder: *S. pombe* chromosomes. (*) indicates chromosome *XII*. PFGE run
567 specifications: *S. pombe* program for multi-megabase chromosome separation. **(B)** 3D average
568 representations of the *Sc* and *Hs* Hi-C contact maps (as described in [Figure 3B](#)) where the
569 estimated position of the rDNA locus is indicated (see also [Figure S6B](#)). Color code highlight a
570 few short and long chromosomes, as well as centromeres (CENs) and telomeres (TELs). **(C)**
571 Violin plots showing the estimated rDNA size (Mb) calculated using rDNA-mapped reads (n = #

572 genome sequencing datasets) in *Sc*, histone-humanized (*Hs*: “non-evo.” = non-
573 evolved/passaged isolates; “40 gen.” and “>100 gen.” = passaged for # generations) and “re-
574 yeastified” (native *Sc* histones added back to the humanized yeast) strains (see also [Figure S9F](#), [Table S2](#)). *P* values were calculated using the K–S (Kolmogorov–Smirnov) test.
576

577 **Figure 6. Histone humanization disrupts rDNA silencing and nucleolar structure.**

578 **(A)** Schematic showing the organization of the *RDN1* array (rDNA locus on chromosome *XII*)
579 and an inset on an example repeat (~9.1 kb-long), showing rRNA genes and regulatory
580 sequences (*NTS1* and *NTS2* silenced by SIR complex, and Fob1 binding to the Replication
581 Fork Block, *RFB*). **(B)** Quantification of rRNA levels (18S and 25S) in triplicates of *Sc* and *Hs*
582 (yDT180 *dad1*-E50D) strains. Total RNA was extracted from equivalent amounts of cells then
583 quantified on agarose gel using ImageJ (see [Figure S9B](#)). **(C)** RT-qPCR bar plot used to
584 estimate changes in the transcription of the *NTS1/2* and the rRNA precursor (*ETS*) relative to
585 the housekeeping mRNA, *ACT1* (see [Figure S9C](#)). **(D)** Left, a simplified representation of
586 nuclear organization in yeast, where examples of chromosome arms (gray lines) are anchored
587 at the nuclear membrane through CENs and TELs, and the crescent-shaped nucleolus
588 (turquoise) are shown. Right, representative microscopy images of *Sc* (strain: yLS110) or *Hs*
589 (strain: yLS117) yeast nuclei. Nuclear envelope is shown in red (Nup49-RFP) and the nucleolus
590 in cyan (Nop10-GFP).
591

592 **Methods**

593 **Resource availability**

594

595 Lead Contact

596 Further information and requests for resources should be directed to Jef D. Boeke
597 (jef.boeke@nyulangone.org).

598

599 Materials availability

600 Yeast strains generated in this study can be requested directly by contacting the lead contact.
601 This study did not generate new unique reagents.

602

603 Data and code availability

604 Raw microscopy images were deposited on Mendeley DOI: 10.17632/2j5pzhfm2xm.1
605 FASTQ files of GWS (HiC datasets and RNA sequencing) in were deposited in the NCBI GEO
606 database.

607

608 BioProject: PRJNA951416

609 [https://urldefense.com/v3/_https://dataview.ncbi.nlm.nih.gov/object/PRJNA951416?reviewer=9gl1a491dj dustacitl4trn5qr_!!MXfaZl3!fXrF-4m-0vTACLrafzreljsCgl5nK8nx-v4DBByrn13QNAIgES-GpMkf7kLQEo5QQ_d05EHES8O_t-QRgCu1Cz5APaqcRSf9Z\\$](https://urldefense.com/v3/_https://dataview.ncbi.nlm.nih.gov/object/PRJNA951416?reviewer=9gl1a491dj dustacitl4trn5qr_!!MXfaZl3!fXrF-4m-0vTACLrafzreljsCgl5nK8nx-v4DBByrn13QNAIgES-GpMkf7kLQEo5QQ_d05EHES8O_t-QRgCu1Cz5APaqcRSf9Z$)

610 <https://dataview.ncbi.nlm.nih.gov/object/PRJNA951416?reviewer=9gl1a491dj dustacitl4trn5qr>

611

612 No new code was generated in this study.

613

614 **Method details**

615 Experimental models and subject details

616 Yeast strains used in this work are listed in the resource [Table S5](#). The deletion of the *FOB1*
617 coding sequence was achieved using CRISPR-Cas9 in the “shuffle strain” (yMAH666 in which
618 the encoding yeast histones are exclusively on a centromeric plasmid), and the oligonucleotide
619 sequences used as gRNA and repair donors are provided in the resource [Table S5](#).

620

621 Media and culture conditions

624 All strains listed were grown in rich medium (Yeast extract Peptone Dextrose (YPD): 1% bacto
625 peptone (Difco), 1% bacto yeast extract (Difco) and 2% dextrose) liquid or solid (2% agar) at
626 30°C unless otherwise specified in the methodology below.

627

628 Growth curve assay after “histone re-yeastification”

629 Yeast cultures from three independent isolates of the *Sc* histone strain (yDT67) and 3 of the re-
630 yeastified *Hs* stains (*Sc* yMAH753/4/5 and *Hs* + *Sc* yMAH756/7/8) were grown to saturation in
631 YPD liquid medium at 30°C. Yeast cultures in stationary phase were diluted in fresh YPD
632 medium to an optical density (OD) A600 = 0.07, 200 µl were transferred to 96 well plates and
633 every minute the BioTek Eon microplate spectrophotometer was programmed to shake the plate
634 and measure the OD600 every 15 min for a total of 24 h at 30°C. OD600 values were imported
635 in GraphPad Prism version 9 for Mac OS (GraphPad Software, San Diego, California USA,
636 www.graphpad.com) and used to calculate mean and standard deviation for each isolate of
637 each strain.

638

639 Transmission electron microscopy (TEM) for imaging chromatin fibers

640 For the preparation of chromatin spreads in yeast we followed the published protocol described
641 by Osheim et al.¹¹⁷. We extracted and spread chromatin from log phase yeast cultures (*Sc*
642 histones: BY4742; *Hs* histones: yDT92, yDT180) grown in YPD with 1M sorbitol at 30°C.
643 Approximately 10⁷ cells were enzymatically lysed using a 1mg/ml Zymolyase 20T (US
644 biological, Z1000) solution in YPD 1M sorbitol. Chromatin spreading was conducted in a 35 x 10
645 mm plastic petri dish containing a 0.025% Triton pH 9.1 solution that was incubated at room
646 temperature and in mild agitation for 45 min. Spreading chromatin was mildly crosslinked with
647 1/10 [v/v] sucrose-formalin solution (100 mM sucrose, 3.7% formaldehyde Tousimis Research
648 Corporation, 1008A, with the pH adjusted to 8.8) for an additional ~30 min. Chromatin was
649 deposited onto the EM carbon grids (Electron Microscopy Sciences, CF300-Cu) by
650 centrifugation at 7000 x g (Centrifuge: Sorvall LXTR with swinging bucket rotor) for 10 min.
651 Nucleic acid and protein staining were performed using 4% solutions of Uranyl Acetate (UA)
652 (Electron Microscopy Sciences cat. 22400-4) and Phosphotungstic acid hydrate (PTA) (Sigma-
653 Aldrich P4006-10G) in ethanol. Images were acquired using the electron transmission
654 microscope (FEI Talos 120C TEM) at various resolutions, ranging from 10-kX to 150-kX, at the
655 NYU Langone Microscopy Laboratory.

656

657 Estimating surface area of the nucleosome core particles (NCPs).

658 Mononucleosome size was measured using images acquired at 200 nm and 100 nm resolution
659 using ImageJ¹¹⁸. Prior measuring of each image was calibrated on the scale bar provide in the
660 electron microscope image. Raw values can be found in [Table S1](#).

661

662 Hi-C: library preparation

663 Hi-C experiments and data analysis were performed as described^{72,119} unless otherwise
664 indicated in the following method description. Briefly, independent yeast isolates were
665 inoculated into 5 ml YPD medium and grown overnight at 30°C. The following morning the
666 overnight cultures were subcultured into 150 ml fresh YPD for ~3 h at 30°C until reaching ~1.2 x
667 10⁹ cells total (~120 OD). Cells were crosslinked using 3% [v/v] formaldehyde for 20 min at
668 room temperature and then quenched with 350 mM glycine for 15 min at 4°C in mild agitation.
669 Crosslinked cells were harvested by centrifugation at 1500 x g for 5 min at 4°C, washed twice
670 with cold fresh medium, and resuspended in 5 ml spheroplast solution (1M sorbitol, 50 mM
671 potassium phosphate, 5 mM DTT, 250 U zymolyase 100T [US Biological, Z1004]) for 50 min
672 incubation at 30°C. Spheroplasts were harvested by centrifugation at 2500 x g for 10 min at 4°C,
673 washed with 10 ml of cold 1 M sorbitol and resuspended in 2 ml of 0.5% SDS, H₂O at 65°C for
674 20 min. The crosslinked chromatin was enzymatically fragmented using 125 U of MboI (NEB,
675 R0147) in a final reaction volume of 3 ml (1X Cutsmart NEBuffer, 0.33% SDS and 2% Triton)
676 and an incubation at 37°C overnight (up to 16 h). The digested product was centrifuged at
677 18000 x g for 20 min and the pellet was resuspended in 200 µL cold water. DNA sticky ends
678 were filled in (to blunt ends) using a biotin-labeled 30 µM dNTP mix (dATP, dGTP, dTTP and
679 Biotin-14-dCTP Thermo Fischer, 19518018) and Klenow enzyme (NEB, M0210L) at 37°C for 80
680 min. Biotinylated restriction fragments were re-ligated using 60 Weiss Units of T4 DNA ligase
681 (Thermo Fischer, EL0014) in 1.2 ml final volume at room temperature for 2 h in mild agitation.
682 Ligation product was reverse cross-linked by 0.5 mg/mL proteinase K (Thermo Scientific,
683 EO0492) in 0.5% SDS, 25 mM EDTA buffer at 65°C for 4 h. The un-crosslinked sample was
684 ethanol precipitated and purified using the large fragment DNA recovery kit (Zymo Research,
685 D4046). Religated-biotinylated restriction fragments were pulled down using Dynabeads MyOne
686 Streptavidin C1 magnetic beads (Invitrogen, 65001) according to the manufacture protocol. The
687 final cleaned-up Hi-C library was used as input material for Illumina sequencing library prep kit
688 (NEB, E7805) with 6-8 cycles of PCR amplification using KAPA-HiFi (Kapa Biosystems,
689 KK2602). DNA library was sequenced using an Illumina NextSeq 500 75-cycle high output kit.
690

691 Hi-C: data processing

692 To generate contact maps: paired-end reads were processed using the HiCLib algorithm¹²⁰
693 adapted for the *S. cerevisiae* genome. Read-pairs were independently mapped using Bowtie
694 2¹²¹ (mode: --very-sensitive --rdg 500,3 --rgf 500,3) on the corresponding reference sequence¹²²
695 (S288c available on SGD) indexed for *Mbo*I restriction site. In the contact frequency maps, the
696 unwanted restriction fragments (RFs) were filtered out (e.g., loops, non-digested fragments,
697 etc.; as described by Cournac et al.¹²³), whereas, the valid RFs were binned into units of fixed
698 size bins of 5 kb. Bins with a high variance in contact frequency (<1.5 S.D. or 1.5–2 S.D.) were
699 discarded to remove potential biases resulting from the uneven distribution of restriction sites
700 and variation in GC% and mappability. The filtered contact maps were normalized using the
701 sequential component normalization procedure (SCN)¹²³. Approximately 10-15 million valid
702 contacts were used to generate a genomic contact map for each triplicate.

703

704 Contact probability in function of the genomic distance, p(s)

705 The Hi-C contact probability (p) decreases as the genomic distance (s) between restriction
706 fragments increases¹¹⁹. p(s) plots were computed on intra-chromosomal read pairs from which
707 self-circularizing and uncut events were discarded¹²³. The retained reads were log-binned in
708 function of their distance along chromosome arms, such as the p(s) shows the distribution of the
709 sum of contacts weighted by both bin-size $1.1^{(1+bin)}$ and chromosome length (s). Comparison of
710 the degree of p(s) decay is indicative of a change in polymer state.

711 Log2 ratios of Hi-C contact maps are used to detect contact variation between genomes¹¹⁹.

712 Each pairwise comparison was computed on Hi-C normalized maps binned at 5 kb and the
713 log2-ratio map was Gaussian smoothed (window size of 50 kb).

714 For the 3D representations we used the “Shortest-path Reconstruction in 3D” (ShRec3d)¹²⁴
715 algorithm as previously described⁷². Finally, the average genome structures were visualized
716 using PyMol.

717

718 Pulsed-field gel electrophoresis (PFGE) and Southern blotting

719 Chromosomes from stationary yeast cultures (*Sc* histones: BY4741, BY4742, yDT67,
720 yMAH1242-12447; *Hs* histones: yDT92, yDT180, yLS118-123) were prepared in agar molds
721 using the Certified Megabase Agarose (Bio-Rad, 1613108), and PFGE was carried out with
722 running conditions recommended for *S. pombe* chromosomes (BioRad, 170-3633) to maximize
723 size resolution of the largest chromosomes, as described previously¹²⁵. In agar chromosome
724 digestion with BamHI (NEB, R0136L) was used to release the entire rDNA locus (~1.5 Mb to ~5
725 Mb) from chromosome XII. Agar molds treated or not with BamHI were then used for the PFGE

726 and Southern blot. These methods were reported in detail in our previous publication Lazar-
727 Stefanita et al.⁸⁰. In this specific experiment, we used oligos mapping in the *ETS* and *18S*
728 sequences of the *RDN37* repeat to generate by PCR a DNA probe (769-bp long), that was
729 labelled using Klenow Fragment exo- (NEB, M0212L) with Digoxigenin-11-dUTP alkali-stable
730 (Roche, 11093088910) at 37°C. The labeled and denatured probe was used for the Southern
731 blot hybridization on a nylon membrane (Pall® 60208 BiodyneTM B Membrane, 60208)
732 containing the transferred DNA from the PFGE. A primary rabbit anti-DIG antibody (working
733 concentration 1:4000 in Blocking buffer Odyssey; ABfinity™ Rabbit Monoclonal, 700772)
734 followed by a secondary antibody (working concentration 1:10000 in Blocking buffer Odyssey;
735 LIRDye® 680RD Goat anti-Rabbit IgG (H + L), 0.5 mg, 926-68071) were used to specifically
736 detect the rDNA locus using a LI-COR Odyssey® Imager.

737

738 Exonuclease treatment to detect Extra-chromosomal rDNA circles (ERC)

739 Genomic DNA was extracted from agar plugs (as described above for PFGE chromosome
740 preparation) using the Zymoclean gel DNA recovery kit (Zymo Research, D4001T) and
741 successively digested with Exonuclease V (RecBCD, NEB M0345) at 37°C for 3 h. Circular
742 plasmid (pUC19, NEB N3041S) and sheared (sonicated) genomic DNA were used as digestion
743 controls.

744

745 Cell cycle synchronization and DNA staining for flow cytometry

746 G1 arrested cells were obtained in triplicate by incubating log-phase growing *Sc* (yDT67) and
747 *Hs* (yDT180) strains (OD600= 0.3 - 0.5; ~10⁷ cells/ml) in YPD supplemented with 0.1 µg/ml a-
748 factor (Zymo Research, Y1004) for 3 h 30 min (yDT67) or 4 h 30 min (yDT180) at 30°C. Aliquots
749 of ~2 x 10⁷ G1 cells were fixed in 70% ethanol to asses synchronization efficiency; while, the
750 remainders were centrifuged, washed twice with fresh medium and finally resuspended in
751 medium containing 200 mM hydroxyurea (HU; Sigma-Aldrich, H8627-25G). These latter
752 cultures were incubated for 1 h 30 min (yDT67) or 3 h 30 min (yDt180) at 30°C and aliquots
753 were sampled to microscopically assess for early S-phase arrest.

754 All G1 and HU aliquots (~10⁷ cells/replicate, fixed in 70% ethanol) were stored at 4°C overnight
755 and successively processed for DNA content analysis using flow cytometry. Cells were pelleted
756 (at 3000 x g for 3 min) and washed three time with 2 ml of RNase solution (10 mM Tris pH 8.0,
757 15 mM NaCl) before being treated with 0.1 mg/ml RNase A for 3-4 h at 37°C. Cells were
758 washed once with 50 mM Tris pH 8 and resuspended in labeling solution (1 µM SYTOX Green
759 in 50 mM Tris pH 8; Thermo Fisher) for 1 h at 4°C protected from light. Before flow cytometry

760 data acquisition, cells were washed three times and resuspended in 50 mM Tris pH 8. Flow
761 cytometry was performed on a BD Accuri C6 Flow Cytometer (BD CSampler Software) and data
762 analyzed using FlowJo v10.0.7 software.

763

764 DNA replication timing

765 Each profile of replication timing was generated from three independent clones of *Sc* (yDT67)
766 and *Hs* (yDT180) strains (see: cell cycle synchronization and DNA staining for flow cytometry)
767 by deep-sequencing analysis as described previously⁷³. Briefly, fractions of replicating and non-
768 replicating cells were obtained by arresting cells with a-factor for 3 h 30 min (yDT67) or 4 h 30
769 min (yDT180), then they were washed and released in HU for 1 h 30 min (yDT67) or 3 h 30 min
770 (yDT180) at 30°C. Synchronization efficiencies were validated by flow cytometry. Pellets of ~6 x
771 10⁸ cells were used to extract genomic DNA using acid-washed beads (Sigma-Aldrich, G8772-
772 100G) and phenol-chloroform (Thermo Scientific). Library preparation was performed using the
773 NEBNext Ultra II FS kit (NEB, E7805L) according to the manufacturer's protocol. Resulting
774 libraries were paired-end deep-sequenced (2 x 36 bp cycles) on NextSeq500 Illumina platform.
775 Reads were mapped to the corresponding reference genome using Bowtie 2¹²¹ in its --very-
776 sensitive mode. Profiles of replication timing were generated by normalizing the replicating (S-
777 phase, HU) sample to the non-replicating (G1, a-factor) sample in 1 kb bins. The resulting ratios
778 were Gaussian-smoothed (window size of 10 kb) and plotted by genomic coordinate, measuring
779 variations in DNA copy number as a proxy of replication time.

780

781 Nucleosome maps at replication origins and ribosomal DNA locus

782 We used published MNase-seq datasets⁵⁰ to evaluate nucleosome occupancy in the proximity
783 of replication origins and at the rDNA locus. Genome-wide positions of replication origins,
784 defined as ORC-binding sites with ARS consensus sequence (total ARS = 251), were obtained
785 from Eaton et al.²⁹. Nucleosome maps were generated following the methods described in the
786 co-submitted work by Haase et al.

787

788 RNA extraction

789 Total RNA was extracted from 3 independent isolates of *Sc* (yDT67), *Hs* (yDT180, yDT92) and
790 re-yeastified *Hs* (*Sc* yMAH753/4/5 and *Hs* + *Sc* yMAH756/7/8) strains. Approximately 2 x 10⁸
791 cells were harvested from mid-log phase cultures (1.5-2 x 10⁷ cells/ml) grown in YPD medium at
792 30°C. Cell pellets were washed in RNase free water and resuspended in RNA lysis buffer (50
793 mM Tris-HCl pH 8, 100 mM NaCl). Cells were lysed mechanically using acid-washed glass

794 beads (Sigma-Aldrich, G8772-100G) at 4°C. The RNA was extracted by
795 phenol:chloroform:isoamylalcohol (ThermoFisherScientific, 15593) and ethanol precipitated.
796 Extractions were treated with DNasel (Agilent, 600031) for 1 h at 37°C and RNA quality was
797 verified by agarose gel in 1X TAE.

798

799 RNA-based assays

800 Reverse Transcriptase (RT) - quantitative PCR assay. Triplicates of total RNA extractions from
801 *Sc* (yDT67) and *Hs* (yDT180) strains were used for RT-qPCR reactions with gene specific oligos
802 (rRNA: *NTS1*, *NTS2*, *ETS1*; mRNA: *ACT1*)^{91,126}. The RT reaction was performed according to
803 the manufacturer protocol SuperScript™ IV Reverse Transcriptase (Invitrogen, 18090050).
804 Successively, quantitative PCR was performed using the LightCycler® 480 SYBR Green I
805 Master (Roche, 04887352001) following the standard amplification protocol with 45 cycles in a
806 multi-well PCR plate 384. Ct values for each replicate were imported in GraphPad Prism version
807 9 for Mac OS (GraphPad Software, San Diego, California USA, www.graphpad.com) and used
808 to calculate mean and standard deviation for each gene in each strain. Raw Ct values can be
809 found in [Table S3](#).

810 For RNA-seq data and analysis ([Figure S9D](#) and [Table S4](#)) refer to the co-submitted work by
811 Haase et al.

812

813 Protein tagging and Fluorescent microscopy

814 The organization of the nucleolus within the nucleus was monitored using fluorescently tagged
815 proteins at their endogenous C-terminus. Nuclear envelope was labeled with mScarlet
816 (*NUP49::mScarlet-S.p. HIS5*) and the nucleolus with GFP (*NOP10::EGFP-KanMX*) using
817 reagents that we previously described in Lazar-Stefanita et al.⁸⁰ (see strains in the resource
818 [Table S5](#)). Two independent isolates for each strain, containing either *Sc* or *Hs* histones, were
819 validated for dual tagging based on their positive emission wavelengths in the GFP (513 nm)
820 and RFP (605 nm) channels. The resulting strains (*Sc*: yLS110-C1 and yLS110-C3; *Hs*:
821 yLS117-C1 and yLS117-C2) were grown in SC–His medium to saturation (24 h for yLS110 and
822 48 h for yLS117) and live cells were imaged in agarose pads prepared in SC–His medium (to
823 prevent Brownian motion). Imaging was performed on the EVOS M7000 microscope using the
824 Olympus X-APO 100 Oil, 1.45NA/WD 0.13mm (Oil) objective. Images were acquired as Z-
825 stacks and visualized as max intensity projections using ImageJ¹¹⁸. Different fields of view were
826 used to count nearly 1000 nuclei (496 for yLS110 and 477 for yLS117) displaying either one
827 intact nucleolus or many fragmented nucleoli.

828

829 **Quantification and statistical analysis**

830 Information on the number of biological replicates, statistical tests and *P* values are provided in
831 the Method details and Figure legends.

832

833 **Supplemental Figure Titles and Legends:**

834

835 **Figure S1, related to Main Figure 1.** Nucleosome fibers of wild-type yeast with native histones
836 (*Saccharomyces cerevisiae*, *Sc*, strain: BY4742). Representative panels showing the 10 nm
837 fibers at different resolution (scale bars: 100 nm and 200 nm).

838

839 **Figure S2, related to Main Figure 1.** Nucleosome fibers of histone-humanized yeasts (*Homo*
840 *sapiens*, *Hs*, strains: yDT92, yDT180). Representative panels showing the 10 nm fibers at
841 different resolution (scale bars: 100 nm and 200 nm).

842

843 **Figure S3, related to Main Figures 2 and 3. Ploidy varies among the histone-humanized**
844 **strains.**

845 (A) Flow cytometry histograms showing DNA content in histone-humanized yeast strains
846 stained with SYTOX Green. *Hs* euploid: yDT180 *dad1-E50D*; *Hs* aneuploid: yDT92 *scc4-D65Y*.
847 (B) Average of chromosome sequencing coverage normalized by the total number of reads.
848 Aneuploid chromosomes (increased copy number) are shaded in amber. (C) Inter-chromosome
849 contact variation in the histone-humanized genomes (*Hs*) relative to wild-type (*Sc*). Normalized
850 Hi-C contact maps (complete maps of the insets shown in [Figure 2A](#)) were used to compute the
851 ratios between *Hs* and *Sc* strains, which were then plotted according to the level of
852 chromosome ploidy (aneuploid vs. euploid). The increase of intra-chromosome contacts in the
853 *Hs* strains ([Figure 2B-C](#)) is likely responsible for the ratio < 1 observed in both the euploid
854 (yDT180) and in the non-aneuploid chromosomes of yDT92, as an effect of the normalization
855 process. *P* values were calculated using the K-S (Kolmogorov-Smirnov) test in MATLAB 2018.

856

857 **Figure S4, related to Main Figure 4. Method for mapping replication timing in wild-type**
858 **and histone-humanized yeasts.**

859 (A) Schematics of the experimental approach used to grow and synchronize yeast cells with
860 either native (*Sc*) or human (*Hs*, strain: yDT180 *dad1-E50D*) histones in G1 and early S phase.
861 Star-labeled steps indicate genome-wide sequenced samples used to generate replication
862 timing profiles. (B) Flow cytometry histograms measuring DNA content of the three
863 independently synchronized cell cultures in A, stained with SYTOX Green. As expected, no
864 obvious differences are observed between G1 and early-S phase synchronized cells.

865

866 **Figure S5, related to Main Figure 4. Genome-wide replication timing profiles in wild-type**
867 **and histone-humanized yeast strains.**

868 Each track in the replication timing plots is the average representation of three independent
869 replicates and shows the sequencing coverage ratio of early-S (HU) synchronized cells
870 normalized on the G1 (a-factor) non-replicating cells (1 kb-bin size). Chromosome-by-
871 chromosome replication timing profiles of the wild-type (*Sc*) are shown in blue, while those of
872 histone-humanized (*Hs*, yDT180 *dad1*-E50D) are in orange. Origin (ARS) positions are
873 indicated with gray vertical lines and centromere (CEN) positions are indicated below each plot.
874

875 **Figure S6, related to Main Figure 5. Histone humanization leads to the expansion of the**
876 **rDNA array.**

877 (A) Estimated rDNA locus sizes (turquoise region on chromosome *XII*) in independent isolates
878 of *Sc* (strains: BY4741, yDT67) and *Hs* (strains: yDT92, yDT180) yeasts. PFGE of
879 chromosomes digested (+) or not (–) with BamHI (left panel) and the corresponding Southern
880 blot (right panel) with an rDNA specific probe (red). PFGE ladders: *H. wingei* chromosomes
881 (left) and *S. pombe* chromosomes (right). PFGE run specifications: *S. pombe* program for multi-
882 megabase chromosome separation. (B) Contact map comparisons showing chromosomes *XII*
883 and *XIII*. Log2-ratio maps of *Hs* vs. *Sc* strains: yDT180 *dad1*-E50D (left) and yDT92 *scc4*-D65Y
884 (right). Arrowheads indicate the positions of the two centromeres and the rDNA locus. Color bar
885 indicates contact variation between samples (log2 ratios 5 kb-binned).
886

887 **Figure S7, related to Main Figure 5. Histone humanization does not lead to extra-**
888 **chromosomal rDNA circles.**

889 Agarose gels stained with ethidium bromide showing: (top panel) total genomic DNA extracted
890 from *Sc* (strains: BY4741, yDT67) and *Hs* (strains: yDT92, yDT180) yeasts and (bottom panel)
891 after RecBCD treatment. pUC19 circular plasmid and sheared DNA were used as controls. Note
892 that strains with the *FOB1* gene deleted were also tested and represent negative controls for
893 extra-chromosomal rDNA circles (ERCs) formation. Red (*) indicates 2-micron plasmid (~40-60
894 copies/cell¹²⁷).
895

896 **Figure S8, related to Main Figure 6. rDNA instability is independent of the replication fork**
897 **block.**

898 (A) MNase-sequencing coverage profiles at the rDNA locus in *Sc* and *Hs* strains (re-analyzed
899 data from Truong and Boeke⁵⁰). (B) PFGE of yeast chromosomes in *fob1* Δ strains (Fob1, rDNA

900 replication fork block-binding protein). *FOB1* was deleted in *Sc* (clones A to F; strains
901 yMAH1242-12447) followed by histone humanization *Hs* (clones: A# to F#; yLS118-123). Each
902 lane represents an independent isolated clone. PFGE ladders on the right: *H. wingei* and *S.*
903 *pombe* chromosomes. (*) indicates chromosome XII. PFGE run specifications: *S. pombe*
904 program for multi-megabase chromosome separation.

905

906 **Figure S9, related to Main Figure 6. The epigenetic instability of the rDNA depends on**
907 **human histones and is reversible.**

908 (A) Schematic showing the organization of a ribosomal DNA repeat unit with rRNA genes (25S,
909 18S, 5.8S and 5S) and regulatory sequences (*NTS1* and *NTS2* silenced by SIR complex). (B)
910 Diagram of RNA extractions from triplicates of *Sc* (yDT67) and *Hs* (yDT180 *dad1*-E50D) strains
911 and agarose gel used for rRNA quantifications in [Figure 6B](#). (C) RT-qPCR bar plot used to
912 estimate changes in the transcription of the *NTS1/2* ("+" and "-" DNA strands transcribed from
913 the bidirectional E-promoter located in *NTS1*) and the rRNA precursor (*ETS*) relative to the
914 control mRNA, *ACT1* (see [Table S3](#)). (D) Total RNA-sequencing coverage tracks at the rDNA
915 unit in *Sc* and *Hs* strains (see [Table S4](#)). y-axis normalized to read counts per million. (E)
916 Growth curves in rich media of the "re-yeastified" strains with *dad1*-E50D mutation (without *Hs*
917 histones, *Sc*: yMAH753-755; *Hs* histones-maintained, *Hs* + *Sc*: yMAH756-758). (F) rDNA read
918 count of the "re-yeastified" strains in [Figure 5C](#). (G) RNA gel of the "re-yeastified" strains, as
919 described in panel E (*Sc*: yMAH753-755; *Hs* + *Sc*: yMAH756-758), relative to the wild-type *Sc*
920 (yDT67) strain.

921

922 **Supplemental Excel Table Titles and Legends:**

923

924 **Table S1, related to Figure 1C. Mononucleosome surface area.** Summary of all measured
925 mononucleosomes on yeast DNA with *S. cerevisiae* histones (*Sc* strain: BY4742) and human
926 histones (*Hs* strains: yDT92 and yDT180).

927

928 **Table S2, related to Figure 5C. Estimating rDNA locus size.** (A) rDNA read counts in yeast
929 strains with either wild-type histones (*Sc*) or human histones (*Hs*). (B) rDNA size after "re-
930 yeastification" of the chromatin: swap *Hs* histones (pDT109) with the *Sc* histone plasmid
931 (pDT105 or pDT139). (C) Expansion of the rDNA in independent histone-humanized yeast
932 isolates carrying distinct humanization suppressor mutations.

933

934 **Table S3, related to Figure 6C and S9C. RT-qPCR measuring NTS transcription.** Raw Ct
935 values of *NTS1*, *NTS2*, *ETS1* and *ACT1* transcripts in triplicates of yeast strains with *Sc*
936 histones (strains: BY4741, yDT67) and *Hs* histones (yDT180).

937

938 **Table S4, related to Figure S9D. List of differentially expressed genes.** Combined RNA-
939 sequencing data analysis from triplicates of yeast strains with *Sc* histones (yDT67) and *Hs*
940 histones (yDT180). Re-analyzed data from Haase et al.⁵¹.

941

942

943 **References**

- 944 1. McGhee, J.D., and Felsenfeld, G. (1980). Nucleosome Structure. *Annual Review of*
945 *Biochemistry* 49, 1115–1156. 10.1146/annurev.bi.49.070180.005343.
- 946 2. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal
947 structure of the nucleosome core particle at 2.8 Å resolution. *Nature* 389, 251–260.
948 10.1038/38444.
- 949 3. Hewish, D.R., and Burgoyne, L.A. (1973). Chromatin sub-structure. The digestion of
950 chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. *Biochemical and*
951 *Biophysical Research Communications* 52, 504–510. 10.1016/0006-291X(73)90740-7.
- 952 4. Kornberg, R.D., and Lorch, Y. (1999). Twenty-Five Years of the Nucleosome, Fundamental
953 Particle of the Eukaryote Chromosome. *Cell* 98, 285–294. 10.1016/S0092-8674(00)81958-
954 3.
- 955 5. Malik, H.S., and Henikoff, S. (2003). Phylogenomics of the nucleosome. *Nat Struct Mol Biol*
956 10, 882–891. 10.1038/nsb996.
- 957 6. Meluh, P.B., Yang, P., Glowczewski, L., Koshland, D., and Smith, M.M. (1998). Cse4p Is a
958 Component of the Core Centromere of *Saccharomyces cerevisiae*. *Cell* 94, 607–613.
959 10.1016/S0092-8674(00)81602-5.
- 960 7. Furuyama, S., and Biggins, S. (2007). Centromere identity is specified by a single
961 centromeric nucleosome in budding yeast. *Proceedings of the National Academy of*
962 *Sciences* 104, 14706–14711. 10.1073/pnas.0706985104.
- 963 8. Lawrimore, J., Bloom, K.S., and Salmon, E.D. (2011). Point centromeres contain more than
964 a single centromere-specific Cse4 (CENP-A) nucleosome. *Journal of Cell Biology* 195, 573–
965 582. 10.1083/jcb.201106036.
- 966 9. Henikoff, S., Ramachandran, S., Krassovsky, K., Bryson, T.D., Codomo, C.A., Brogaard, K.,
967 Widom, J., Wang, J.-P., and Henikoff, J.G. (2014). The budding yeast Centromere DNA
968 Element II wraps a stable Cse4 hemisome in either orientation *in vivo*. *eLife* 3, e01861.
969 10.7554/eLife.01861.
- 970 10. Cleveland, D.W., Mao, Y., and Sullivan, K.F. (2003). Centromeres and Kinetochores: From
971 Epigenetics to Mitotic Checkpoint Signaling. *Cell* 112, 407–421. 10.1016/S0092-
972 8674(03)00115-6.
- 973 11. Cole, H.A., Howard, B.H., and Clark, D.J. (2011). The centromeric nucleosome of budding
974 yeast is perfectly positioned and covers the entire centromere. *Proceedings of the National*
975 *Academy of Sciences* 108, 12687–12692. 10.1073/pnas.1104978108.
- 976 12. Jiang, C., and Pugh, B.F. (2009). A compiled and systematic reference map of nucleosome
977 positions across the *Saccharomyces cerevisiae* genomes. *Genome Biology* 10, R109.
978 10.1186/gb-2009-10-10-r109.
- 979 13. Lucchini, R., and Sogo, J.M. (1995). Replication of transcriptionally active chromatin. *Nature*
980 374, 276–280. 10.1038/374276a0.

981 14. Almouzni, G., Clark, D.J., Méchali, M., and Wolffe, A.P. (1990). Chromatin assembly on
982 replicating DNA in vitro. *Nucleic Acids Res* 18, 5767–5774.

983 15. Xu, M., Long, C., Chen, X., Huang, C., Chen, S., and Zhu, B. (2010). Partitioning of histone
984 H3-H4 tetramers during DNA replication-dependent chromatin assembly. *Science* 328, 94–
985 98. 10.1126/science.1178994.

986 16. Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B. (1996). Nucleosome assembly
987 by a complex of CAF-1 and acetylated histones H3/H4. *Cell* 87, 95–104. 10.1016/s0092-
988 8674(00)81326-4.

989 17. Kaufman, P.D., Kobayashi, R., Kessler, N., and Stillman, B. (1995). The p150 and p60
990 subunits of chromatin assembly factor I: a molecular link between newly synthesized
991 histones and DNA replication. *Cell* 81, 1105–1114. 10.1016/s0092-8674(05)80015-7.

992 18. Hoek, M., and Stillman, B. (2003). Chromatin assembly factor 1 is essential and couples
993 chromatin assembly to DNA replication in vivo. *Proceedings of the National Academy of
994 Sciences* 100, 12183–12188. 10.1073/pnas.1635158100.

995 19. Budhavarapu, V.N., Chavez, M., and Tyler, J.K. (2013). How is epigenetic information
996 maintained through DNA replication? *Epigenetics & Chromatin* 6, 32. 10.1186/1756-8935-6-
997 32.

998 20. Sauer, P.V., Gu, Y., Liu, W.H., Mattioli, F., Panne, D., Luger, K., and Churchill, M.E. (2018).
999 Mechanistic insights into histone deposition and nucleosome assembly by the chromatin
1000 assembly factor-1. *Nucleic Acids Res* 46, 9907–9917. 10.1093/nar/gky823.

1001 21. Thomas, J.O., and Furber, V. (1976). Yeast chromatin structure. *FEBS Letters* 66, 274–280.
1002 10.1016/0014-5793(76)80521-2.

1003 22. Lohr, D.E. (1981). Detailed analysis of the nucleosomal organization of transcribed DNA in
1004 yeast chromatin. *Biochemistry* 20, 5966–5972. 10.1021/bi00524a007.

1005 23. Weintraub, H. (1978). The nucleosome repeat length increases during erythropoiesis in the
1006 chick. *Nucleic Acids Res* 5, 1179–1188. 10.1093/nar/5.4.1179.

1007 24. Perišić, O., Collepardo-Guevara, R., and Schlick, T. (2010). Modeling studies of chromatin
1008 fiber structure as a function of DNA linker length. *J Mol Biol* 403, 777–802.
1009 10.1016/j.jmb.2010.07.057.

1010 25. Valouev, A., Johnson, S.M., Boyd, S.D., Smith, C.L., Fire, A.Z., and Sidow, A. (2011).
1011 Determinants of nucleosome organization in primary human cells. *Nature* 474, 516–520.
1012 10.1038/nature10002.

1013 26. Rando, O.J., and Chang, H.Y. (2009). Genome-wide views of chromatin structure. *Annu
1014 Rev Biochem* 78, 245–271. 10.1146/annurev.biochem.78.071107.134639.

1015 27. Lai, W.K.M., and Pugh, B.F. (2017). Understanding nucleosome dynamics and their links to
1016 gene expression and DNA replication. *Nat Rev Mol Cell Biol* 18, 548–562.
1017 10.1038/nrm.2017.47.

1018 28. Belsky, J.A., MacAlpine, H.K., Lubelsky, Y., Hartemink, A.J., and MacAlpine, D.M. (2015).
1019 Genome-wide chromatin footprinting reveals changes in replication origin architecture
1020 induced by pre-RC assembly. *Genes Dev.* 29, 212–224. 10.1101/gad.247924.114.

1021 29. Eaton, M.L., Galani, K., Kang, S., Bell, S.P., and MacAlpine, D.M. (2010). Conserved
1022 nucleosome positioning defines replication origins. *Genes Dev.* 24, 748–753.
1023 10.1101/gad.1913210.

1024 30. Bai, L., and Morozov, A.V. (2010). Gene regulation by nucleosome positioning. *Trends in*
1025 *Genetics* 26, 476–483. 10.1016/j.tig.2010.08.003.

1026 31. Bowman, G.D., and Poirier, M.G. (2015). Post-Translational Modifications of Histones That
1027 Influence Nucleosome Dynamics. *Chem. Rev.* 115, 2274–2295. 10.1021/cr500350x.

1028 32. Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W.,
1029 Walker, K., Rolfe, P.A., Herbstsheimer, E., et al. (2005). Genome-wide Map of Nucleosome
1030 Acetylation and Methylation in Yeast. *Cell* 122, 517–527. 10.1016/j.cell.2005.06.026.

1031 33. Schlissel, G., and Rine, J. (2019). The nucleosome core particle remembers its position
1032 through DNA replication and RNA transcription. *Proceedings of the National Academy of*
1033 *Sciences* 116, 20605–20611. 10.1073/pnas.1911943116.

1034 34. Kaufman, P.D., and Rando, O.J. (2010). Chromatin as a potential carrier of heritable
1035 information. *Curr Opin Cell Biol* 22, 284–290. 10.1016/j.ceb.2010.02.002.

1036 35. Campos, E.I., Stafford, J.M., and Reinberg, D. (2014). Epigenetic inheritance: histone
1037 bookmarks across generations. *Trends in Cell Biology* 24, 664–674.
1038 10.1016/j.tcb.2014.08.004.

1039 36. Gartenberg, M.R., and Smith, J.S. (2016). The Nuts and Bolts of Transcriptionally Silent
1040 Chromatin in *Saccharomyces cerevisiae*. *Genetics* 203, 1563–1599.
1041 10.1534/genetics.112.145243.

1042 37. Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing
1043 and longevity protein Sir2 is an NAD-dependent histone deacetylase. *Nature* 403, 795–800.
1044 10.1038/35001622.

1045 38. Smith, J.S., Brachmann, C.B., Celic, I., Kenna, M.A., Muhammad, S., Starai, V.J., Avalos,
1046 J.L., Escalante-Semerena, J.C., Grubmeyer, C., Wolberger, C., et al. (2000). A
1047 phylogenetically conserved NAD⁺-dependent protein deacetylase activity in the Sir2 protein
1048 family. *Proceedings of the National Academy of Sciences* 97, 6658–6663.
1049 10.1073/pnas.97.12.6658.

1050 39. Braunstein, M., Rose, A.B., Holmes, S.G., Allis, C.D., and Broach, J.R. (1993).
1051 Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. *Genes*
1052 *Dev.* 7, 592–604. 10.1101/gad.7.4.592.

1053 40. Hoppe, G.J., Tanny, J.C., Rudner, A.D., Gerber, S.A., Danaie, S., Gygi, S.P., and Moazed,
1054 D. (2002). Steps in Assembly of Silent Chromatin in Yeast: Sir3-Independent Binding of a
1055 Sir2/Sir4 Complex to Silencers and Role for Sir2-Dependent Deacetylation. *Mol Cell Biol* 22,
1056 4167–4180. 10.1128/MCB.22.12.4167-4180.2002.

1057 41. Johnson, A., Wu, R., Peetz, M., Gygi, S.P., and Moazed, D. (2013). Heterochromatic Gene
1058 Silencing by Activator Interference and a Transcription Elongation Barrier*. *Journal of*
1059 *Biological Chemistry* 288, 28771–28782. 10.1074/jbc.M113.460071.

1060 42. Behrouzi, R., Lu, C., Currie, M.A., Jih, G., Iglesias, N., and Moazed, D. (2016).
1061 Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes.
1062 *eLife* 5, e17556. 10.7554/eLife.17556.

1063 43. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S.M., and Grunstein, M. (1995).
1064 Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for
1065 the formation of heterochromatin in yeast. *Cell* 80, 583–592. 10.1016/0092-8674(95)90512-
1066 X.

1067 44. Smith, J.S., and Boeke, J.D. (1997). An unusual form of transcriptional silencing in yeast
1068 ribosomal DNA. *Genes Dev.* 11, 241–254.

1069 45. Smith, J.S., Brachmann, C.B., Pillus, L., and Boeke, J.D. (1998). Distribution of a Limited
1070 Sir2 Protein Pool Regulates the Strength of Yeast rDNA Silencing and Is Modulated by
1071 Sir4p. *Genetics* 149, 1205–1219. 10.1093/genetics/149.3.1205.

1072 46. Kachroo, A.H., Laurent, J.M., Yellman, C.M., Meyer, A.G., Wilke, C.O., and Marcotte, E.M.
1073 (2015). Systematic humanization of yeast genes reveals conserved functions and genetic
1074 modularity. *Science* 348, 921–925. 10.1126/science.aaa0769.

1075 47. Hamza, A., Tamppere, E., Kofoed, M., Keong, C., Chiang, J., Giaever, G., Nislow, C., and
1076 Hieter, P. (2015). Complementation of Yeast Genes with Human Genes as an Experimental
1077 Platform for Functional Testing of Human Genetic Variants. *Genetics* 201, 1263–1274.
1078 10.1534/genetics.115.181099.

1079 48. Dunham, M.J., and Fowler, D.M. (2013). Contemporary, yeast-based approaches to
1080 understanding human genetic variation. *Current Opinion in Genetics & Development* 23,
1081 658–664. 10.1016/j.gde.2013.10.001.

1082 49. Laurent, J.M., Garge, R.K., Teufel, A.I., Wilke, C.O., Kachroo, A.H., and Marcotte, E.M.
1083 (2020). Humanization of yeast genes with multiple human orthologs reveals functional
1084 divergence between paralogs. *PLOS Biology* 18, e3000627. 10.1371/journal.pbio.3000627.

1085 50. Truong, D.M., and Boeke, J.D. (2017). Resetting the yeast epigenome with human
1086 nucleosomes. *Cell* 171, 1508–1519.e13. 10.1016/j.cell.2017.10.043.

1087 51. Haase, M.A.B., Ólafsson, G., Flores, R.L., Boakye-Ansah, E., Zelter, A., Dickinson, M.S.,
1088 Lazar-Stefanita, L., Truong, D.M., Asbury, C.L., Davis, T.N., et al. (2023). DASH/Dam1
1089 complex mutants stabilize ploidy in histone-humanized yeast by weakening kinetochore-
1090 microtubule attachments. *The EMBO Journal* n/a, e112600. 10.15252/embj.2022112600.

1091 52. White, C.L., Suto, R.K., and Luger, K. (2001). Structure of the yeast nucleosome core
1092 particle reveals fundamental changes in internucleosome interactions. *EMBO J* 20, 5207–
1093 5218. 10.1093/emboj/20.18.5207.

1094 53. Tsunaka, Y., Kajimura, N., Tate, S., and Morikawa, K. (2005). Alteration of the nucleosomal
1095 DNA path in the crystal structure of a human nucleosome core particle. *Nucleic Acids Res*
1096 33, 3424–3434. 10.1093/nar/gki663.

1097 54. McGinty, R.K., and Tan, S. (2015). Nucleosome Structure and Function. *Chem Rev* 115,
1098 2255–2273. 10.1021/cr500373h.

1099 55. Mozziconacci, J., and Victor, J.-M. (2003). Nucleosome gaping supports a functional
1100 structure for the 30nm chromatin fiber. *Journal of Structural Biology* 143, 72–76.
1101 10.1016/S1047-8477(03)00102-3.

1102 56. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A.,
1103 Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of
1104 long-range interactions reveals folding principles of the human genome. *Science* 326, 289–
1105 293. 10.1126/science.1181369.

1106 57. RABL, C. (1885). Über Zellteilung. *Morphologisches Jahrbuch* 10, 214–330.

1107 58. Taddei, A., Schober, H., and Gasser, S.M. (2010). The Budding Yeast Nucleus. *Cold Spring
1108 Harb Perspect Biol* 2, a000612. 10.1101/cshperspect.a000612.

1109 59. Stinchcomb, D.T., Struhl, K., and Davis, R.W. (1979). Isolation and characterisation of a
1110 yeast chromosomal replicator. *Nature* 282, 39–43. 10.1038/282039a0.

1111 60. Beach, D., Piper, M., and Shall, S. (1980). Isolation of chromosomal origins of replication in
1112 yeast. *Nature* 284, 185–187. 10.1038/284185a0.

1113 61. Kearsey, S. (1983). Analysis of sequences conferring autonomous replication in baker's
1114 yeast. *The EMBO Journal* 2, 1571–1575. 10.1002/j.1460-2075.1983.tb01626.x.

1115 62. Bell, S.P., and Stillman, B. (1992). ATP-dependent recognition of eukaryotic origins of DNA
1116 replication by a multiprotein complex. *Nature* 357, 128–134. 10.1038/357128a0.

1117 63. Wyrick, J.J., Aparicio, J.G., Chen, T., Barnett, J.D., Jennings, E.G., Young, R.A., Bell, S.P.,
1118 and Aparicio, O.M. (2001). Genome-Wide Distribution of ORC and MCM Proteins in *S.*
1119 *cerevisiae*: High-Resolution Mapping of Replication Origins. *Science* 294, 2357–2360.
1120 10.1126/science.1066101.

1121 64. Li, N., Lam, W.H., Zhai, Y., Cheng, J., Cheng, E., Zhao, Y., Gao, N., and Tye, B.-K. (2018).
1122 Structure of the origin recognition complex bound to DNA replication origin. *Nature* 559,
1123 217–222. 10.1038/s41586-018-0293-x.

1124 65. Bell, S.P., and Kaguni, J.M. (2013). Helicase Loading at Chromosomal Origins of
1125 Replication. *Cold Spring Harb Perspect Biol* 5, a010124. 10.1101/cshperspect.a010124.

1126 66. Remus, D., and Diffley, J.F. (2009). Eukaryotic DNA replication control: Lock and load, then
1127 fire. *Current Opinion in Cell Biology* 21, 771–777. 10.1016/j.ceb.2009.08.002.

1128 67. Raghuraman, M.K., Winzeler, E.A., Collingwood, D., Hunt, S., Wodicka, L., Conway, A.,
1129 Lockhart, D.J., Davis, R.W., Brewer, B.J., and Fangman, W.L. (2001). Replication dynamics
1130 of the yeast genome. *Science* 294, 115–121. 10.1126/science.294.5540.115.

1131 68. Yabuki, N., Terashima, H., and Kitada, K. (2002). Mapping of early firing origins on a
1132 replication profile of budding yeast. *Genes Cells* 7, 781–789. 10.1046/j.1365-
1133 2443.2002.00559.x.

1134 69. Simpson, R.T. (1990). Nucleosome positioning can affect the function of a cis-acting DNA
1135 element in vivo. *Nature* 343, 387–389. 10.1038/343387a0.

1136 70. Lipford, J.R., and Bell, S.P. (2001). Nucleosomes Positioned by ORC Facilitate the Initiation
1137 of DNA Replication. *Molecular Cell* 7, 21–30. 10.1016/S1097-2765(01)00151-4.

1138 71. Pohl, T.J., Brewer, B.J., and Raghuraman, M.K. (2012). Functional Centromeres Determine
1139 the Activation Time of Pericentric Origins of DNA Replication in *Saccharomyces cerevisiae*.
1140 *PLOS Genetics* 8, e1002677. 10.1371/journal.pgen.1002677.

1141 72. Lazar-Stefanita, L., Luo, J., Montagne, R., Thierry, A., Sun, X., Mercy, G., Mozziconacci, J.,
1142 Koszul, R., and Boeke, J.D. (2022). Karyotype engineering reveals spatio-temporal control
1143 of replication firing and gene contacts. *Cell Genomics* 2, 100163.
1144 10.1016/j.xgen.2022.100163.

1145 73. Müller, C.A., Hawkins, M., Retkute, R., Malla, S., Wilson, R., Blythe, M.J., Nakato, R.,
1146 Komata, M., Shirahige, K., de Moura, A.P.S., et al. (2014). The dynamics of genome
1147 replication using deep sequencing. *Nucleic Acids Res* 42, e3. 10.1093/nar/gkt878.

1148 74. Berbenetz, N.M., Nislow, C., and Brown, G.W. (2010). Diversity of Eukaryotic DNA
1149 Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure. *PLOS*
1150 *Genetics* 6, e1001092. 10.1371/journal.pgen.1001092.

1151 75. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
1152 G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The
1153 Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079.
1154 10.1093/bioinformatics/btp352.

1155 76. Petes, T.D. (1979). Yeast ribosomal DNA genes are located on chromosome XII. *Proc Natl*
1156 *Acad Sci U S A* 76, 410–414. 10.1073/pnas.76.1.410.

1157 77. Kobayashi, T., and Sasaki, M. (2017). Ribosomal DNA stability is supported by many ‘buffer
1158 genes’—introduction to the Yeast rDNA Stability Database. *FEMS Yeast Research* 17,
1159 fox001. 10.1093/femsyr/fox001.

1160 78. Warner, J.R. (1999). The economics of ribosome biosynthesis in yeast. *Trends in*
1161 *Biochemical Sciences* 24, 437–440. 10.1016/S0968-0004(99)01460-7.

1162 79. Salim, D., and Gerton, J.L. (2019). Ribosomal DNA instability and genome adaptability.
1163 *Chromosome Res* 27, 73–87. 10.1007/s10577-018-9599-7.

1164 80. Lazar-Stefanita, L., Luo, J., Haase, M.A.B., Zhang, W., and Boeke, J.D. (2023). Two
1165 differentially stable rDNA loci coexist on the same chromosome and form a single nucleolus.
1166 *Proceedings of the National Academy of Sciences* 120, e2219126120.
1167 10.1073/pnas.2219126120.

1168 81. KOBAYASHI, T. (2014). Ribosomal RNA gene repeats, their stability and cellular
1169 senescence. *Proc Jpn Acad Ser B Phys Biol Sci* 90, 119–129. 10.2183/pjab.90.119.

1170 82. Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA Circles— A Cause of
1171 Aging in Yeast. *Cell* 91, 1033–1042. 10.1016/S0092-8674(00)80493-6.

1172 83. Hotz, M., Thayer, N.H., Hendrickson, D.G., Schinski, E.L., Xu, J., and Gottschling, D.E.
1173 (2022). rDNA array length is a major determinant of replicative lifespan in budding yeast.
1174 *Proceedings of the National Academy of Sciences* 119, e2119593119.
1175 10.1073/pnas.2119593119.

1176 84. Nomura, M., Nogi, Y., and Oakes, M. (2013). Transcription of rDNA in the Yeast
1177 *Saccharomyces cerevisiae* (Landes Bioscience).

1178 85. Kobayashi, T., Nomura, M., and Horiuchi, T. (2001). Identification of DNA cis elements
1179 essential for expansion of ribosomal DNA repeats in *Saccharomyces cerevisiae*. *Mol Cell*
1180 *Biol* 21, 136–147. 10.1128/MCB.21.1.136-147.2001.

1181 86. Kobayashi, T., Heck, D.J., Nomura, M., and Horiuchi, T. (1998). Expansion and contraction
1182 of ribosomal DNA repeats in *Saccharomyces cerevisiae*: requirement of replication fork
1183 blocking (Fob1) protein and the role of RNA polymerase I. *Genes Dev.* 12, 3821–3830.
1184 10.1101/gad.12.24.3821.

1185 87. Kobayashi, T., and Ganley, A.R.D. (2005). Recombination Regulation by Transcription-
1186 Induced Cohesin Dissociation in rDNA Repeats. *Science* 309, 1581–1584.
1187 10.1126/science.1116102.

1188 88. Kobayashi, T. (2003). The replication fork barrier site forms a unique structure with Fob1p
1189 and inhibits the replication fork. *Mol Cell Biol* 23, 9178–9188. 10.1128/MCB.23.24.9178-
1190 9188.2003.

1191 89. Ide, S., Saka, K., and Kobayashi, T. (2013). Rtt109 Prevents Hyper-Amplification of
1192 Ribosomal RNA Genes through Histone Modification in Budding Yeast. *PLOS Genetics* 9,
1193 e1003410. 10.1371/journal.pgen.1003410.

1194 90. Kobayashi, T., Horiuchi, T., Tongaonkar, P., Vu, L., and Nomura, M. (2004). SIR2 regulates
1195 recombination between different rDNA repeats, but not recombination within individual rRNA
1196 genes in yeast. *Cell* 117, 441–453. 10.1016/s0092-8674(04)00414-3.

1197 91. Pal, S., Postnikoff, S.D., Chavez, M., and Tyler, J.K. (2018). Impaired cohesion and
1198 homologous recombination during replicative aging in budding yeast. *Sci Adv* 4.
1199 10.1126/sciadv.aaq0236.

1200 92. Dvorkin, N., Clark, M.W., and Hamkalo, B.A. (1991). Ultrastructural localization of nucleic
1201 acid sequences in *Saccharomyces cerevisiae* nucleoli. *Chromosoma* 100, 519–523.
1202 10.1007/BF00352202.

1203 93. Oakes, M., Aris, J.P., Brockenbrough, J.S., Wai, H., Vu, L., and Nomura, M. (1998).
1204 Mutational Analysis of the Structure and Localization of the Nucleolus in the Yeast
1205 *Saccharomyces cerevisiae*. *Journal of Cell Biology* 143, 23–34. 10.1083/jcb.143.1.23.

1206 94. Oakes, M., Nogi, Y., Clark, M.W., and Nomura, M. (1993). Structural alterations of the
1207 nucleolus in mutants of *Saccharomyces cerevisiae* defective in RNA polymerase I.
1208 *Molecular and Cellular Biology* 13, 2441–2455. 10.1128/mcb.13.4.2441-2455.1993.

1209 95. Sinclair, D.A., Mills, K., and Guarente, L. (1997). Accelerated Aging and Nucleolar
1210 Fragmentation in Yeast *sgs1* Mutants. *Science* 277, 1313–1316.
1211 10.1126/science.277.5330.1313.

1212 96. Wang, W., Klein, K.N., Proesmans, K., Yang, H., Marchal, C., Zhu, X., Borrman, T., Hastie,
1213 A., Weng, Z., Bechhoefer, J., et al. (2021). Genome-wide mapping of human DNA
1214 replication by optical replication mapping supports a stochastic model of eukaryotic
1215 replication. *Molecular Cell* 81, 2975-2988.e6. 10.1016/j.molcel.2021.05.024.

1216 97. Patel, P.K., Arcangioli, B., Baker, S.P., Bensimon, A., and Rhind, N. (2006). DNA replication
1217 origins fire stochastically in fission yeast. *Mol. Biol. Cell* 17, 308–316. 10.1091/mbc.E05-07-
1218 0657.

1219 98. Czajkowsky, D.M., Liu, J., Hamlin, J.L., and Shao, Z. (2008). DNA Combing Reveals
1220 Intrinsic Temporal Disorder in the Replication of Yeast Chromosome VI. *Journal of
1221 Molecular Biology* 375, 12–19. 10.1016/j.jmb.2007.10.046.

1222 99. Tuduri, S., Tourrière, H., and Pasero, P. (2010). Defining replication origin efficiency using
1223 DNA fiber assays. *Chromosome Res* 18, 91–102. 10.1007/s10577-009-9098-y.

1224 100. Rodriguez, J., Lee, L., Lynch, B., and Tsukiyama, T. (2017). Nucleosome occupancy as
1225 a novel chromatin parameter for replication origin functions. *Genome Res* 27, 269–277.
1226 10.1101/gr.209940.116.

1227 101. Semple, J.W., Da-Silva, L.F., Jervis, E.J., Ah-Kee, J., Al-Attar, H., Kummer, L., Heikkila,
1228 J.J., Pasero, P., and Duncker, B.P. (2006). An essential role for Orc6 in DNA replication
1229 through maintenance of pre-replicative complexes. *The EMBO Journal* 25, 5150–5158.
1230 10.1038/sj.emboj.7601391.

1231 102. Lee, C.S.K., Cheung, M.F., Li, J., Zhao, Y., Lam, W.H., Ho, V., Rohs, R., Zhai, Y.,
1232 Leung, D., and Tye, B.-K. (2021). Humanizing the yeast origin recognition complex. *Nat
1233 Commun* 12, 33. 10.1038/s41467-020-20277-y.

1234 103. Mantiero, D., Mackenzie, A., Donaldson, A., and Zegerman, P. (2011). Limiting
1235 replication initiation factors execute the temporal programme of origin firing in budding
1236 yeast. *The EMBO Journal* 30, 4805–4814. 10.1038/emboj.2011.404.

1237 104. Conconi, A., Widmer, R.M., Koller, T., and Sogo, J.M. (1989). Two different chromatin
1238 structures coexist in ribosomal RNA genes throughout the cell cycle. *Cell* 57, 753–761.

1239 105. French, S.L., Osheim, Y.N., Cioci, F., Nomura, M., and Beyer, A.L. (2003). In
1240 Exponentially Growing *Saccharomyces cerevisiae* Cells, rRNA Synthesis Is Determined by
1241 the Summed RNA Polymerase I Loading Rate Rather than by the Number of Active Genes.
1242 *Molecular and Cellular Biology* 23, 1558–1568. 10.1128/MCB.23.5.1558-1568.2003.

1243 106. Ide, S., Miyazaki, T., Maki, H., and Kobayashi, T. (2010). Abundance of Ribosomal RNA
1244 Gene Copies Maintains Genome Integrity. *Science* 327, 693–696.
1245 10.1126/science.1179044.

1246 107. Armache, K.-J., Garlick, J.D., Canzio, D., Narlikar, G.J., and Kingston, R.E. (2011).
1247 Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å
1248 resolution. *Science* 334, 977–982. 10.1126/science.1210915.

1249 108. Xie, S., Swaffer, M., and Skotheim, J.M. (2022). Eukaryotic Cell Size Control and Its
1250 Relation to Biosynthesis and Senescence. *Annual Review of Cell and Developmental
1251 Biology* 38, 291–319. 10.1146/annurev-cellbio-120219-040142.

1252 109. Marguerat, S., and Bähler, J. (2012). Coordinating genome expression with cell size.
1253 *Trends in Genetics* 28, 560–565. 10.1016/j.tig.2012.07.003.

1254 110. Pérez-Ortín, J.E., Mena, A., Barba-Aliaga, M., Singh, A., Chávez, S., and García-
1255 Martínez, J. (2021). Cell volume homeostatically controls the rDNA repeat copy number and
1256 rRNA synthesis rate in yeast. *PLoS Genet* 17, e1009520. 10.1371/journal.pgen.1009520.

1257 111. Swaffer, M.P., Marinov, G.K., Zheng, H., Tsui, C.Y., Jones, A.W., Greenwood, J.,
1258 Kundaje, A., Greenleaf, W.J., Reyes-Lamothe, R., and Skotheim, J.M. (2022). RNA
1259 polymerase II dynamics and mRNA stability feedback scale mRNA in proportion to cell size.
1260 2021.09.20.461005. 10.1101/2021.09.20.461005.

1261 112. Sun, X.-M., Bowman, A., Priestman, M., Bertaux, F., Martinez-Segura, A., Tang, W.,
1262 Whilding, C., Dormann, D., Shahrezaei, V., and Marguerat, S. (2020). Size-Dependent
1263 Increase in RNA Polymerase II Initiation Rates Mediates Gene Expression Scaling with Cell
1264 Size. *Current Biology* 30, 1217–1230.e7. 10.1016/j.cub.2020.01.053.

1265 113. Glynn, E.F., Megee, P.C., Yu, H.-G., Mistrot, C., Unal, E., Koshland, D.E., DeRisi, J.L.,
1266 and Gerton, J.L. (2004). Genome-Wide Mapping of the Cohesin Complex in the Yeast
1267 *Saccharomyces cerevisiae*. *PLOS Biol* 2, e259. 10.1371/journal.pbio.0020259.

1268 114. Wang, B.-D., Eyre, D., Basrai, M., Lichten, M., and Strunnikov, A. (2005). Condensin
1269 Binding at Distinct and Specific Chromosomal Sites in the *Saccharomyces cerevisiae*
1270 Genome. *Mol. Cell. Biol.* 25, 7216–7225. 10.1128/MCB.25.16.7216-7225.2005.

1271 115. Guillou, E., Ibarra, A., Coulon, V., Casado-Vela, J., Rico, D., Casal, I., Schwob, E.,
1272 Losada, A., and Méndez, J. (2010). Cohesin organizes chromatin loops at DNA replication
1273 factories. *Genes Dev* 24, 2812–2822. 10.1101/gad.608210.

1274 116. Lawrimore, C.J., and Bloom, K. (2019). Common Features of the Pericentromere and
1275 Nucleolus. *Genes (Basel)* 10, 1029. 10.3390/genes10121029.

1276 117. Osheim, Y.N., French, S.L., Sikes, M.L., and Beyer, A.L. (2008). Electron Microscope
1277 Visualization of RNA Transcription and Processing in *Saccharomyces cerevisiae* by Miller
1278 Chromatin Spreading. In *The Nucleus: Volume 2: Chromatin, Transcription, Envelope,
1279 Proteins, Dynamics, and Imaging Methods in Molecular Biology*, R. Hancock, ed. (Humana
1280 Press), pp. 55–69. 10.1007/978-1-60327-461-6_4.

1281 118. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25
1282 years of image analysis. *Nat Methods* 9, 671–675. 10.1038/nmeth.2089.

1283 119. Lazar-Stefanita, L., Scolari, V.F., Mercy, G., Muller, H., Guérin, T.M., Thierry, A.,
1284 Mozziconacci, J., and Koszul, R. (2017). Cohesins and condensins orchestrate the 4D
1285 dynamics of yeast chromosomes during the cell cycle. *EMBO J* 36, 2684–2697.
1286 10.15252/embj.201797342.

1287 120. Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R.,
1288 Dekker, J., and Mirny, L.A. (2012). Iterative correction of Hi-C data reveals hallmarks of
1289 chromosome organization. *Nat Methods* 9, 999–1003. 10.1038/nmeth.2148.

1290 121. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2.
1291 *Nat. Methods* 9, 357–359. 10.1038/nmeth.1923.

1292 122. Engel, S.R., Dietrich, F.S., Fisk, D.G., Binkley, G., Balakrishnan, R., Costanzo, M.C.,
1293 Dwight, S.S., Hitz, B.C., Karra, K., Nash, R.S., et al. (2014). The reference genome
1294 sequence of *Saccharomyces cerevisiae*: then and now. *G3 (Bethesda)* 4, 389–398.
1295 10.1534/g3.113.008995.

1296 123. Cournac, A., Marie-Nelly, H., Marbouty, M., Koszul, R., and Mozziconacci, J. (2012).
1297 Normalization of a chromosomal contact map. *BMC Genomics* 13, 436. 10.1186/1471-2164-
1298 13-436.

1299 124. Lesne, A., Riposo, J., Roger, P., Cournac, A., and Mozziconacci, J. (2014). 3D genome
1300 reconstruction from chromosomal contacts. *Nat Methods* 11, 1141–1143.
1301 10.1038/nmeth.3104.

1302 125. Luo, J., Sun, X., Cormack, B.P., and Boeke, J.D. (2018). Karyotype engineering by
1303 chromosome fusion leads to reproductive isolation in yeast. *Nature* 560, 392–396.
1304 10.1038/s41586-018-0374-x.

1305 126. Wei, T., Najmi, S.M., Liu, H., Peltonen, K., Kucerova, A., Schneider, D.A., and Laiho, M.
1306 (2018). Small-Molecule Targeting of RNA Polymerase I Activates a Conserved Transcription
1307 Elongation Checkpoint. *Cell Reports* 23, 404–414. 10.1016/j.celrep.2018.03.066.

1308 127. Broach, J.R. (1982). The yeast plasmid 2μ circle. *Cell* 28, 203–204. 10.1016/0092-
1309 8674(82)90337-3.

1310

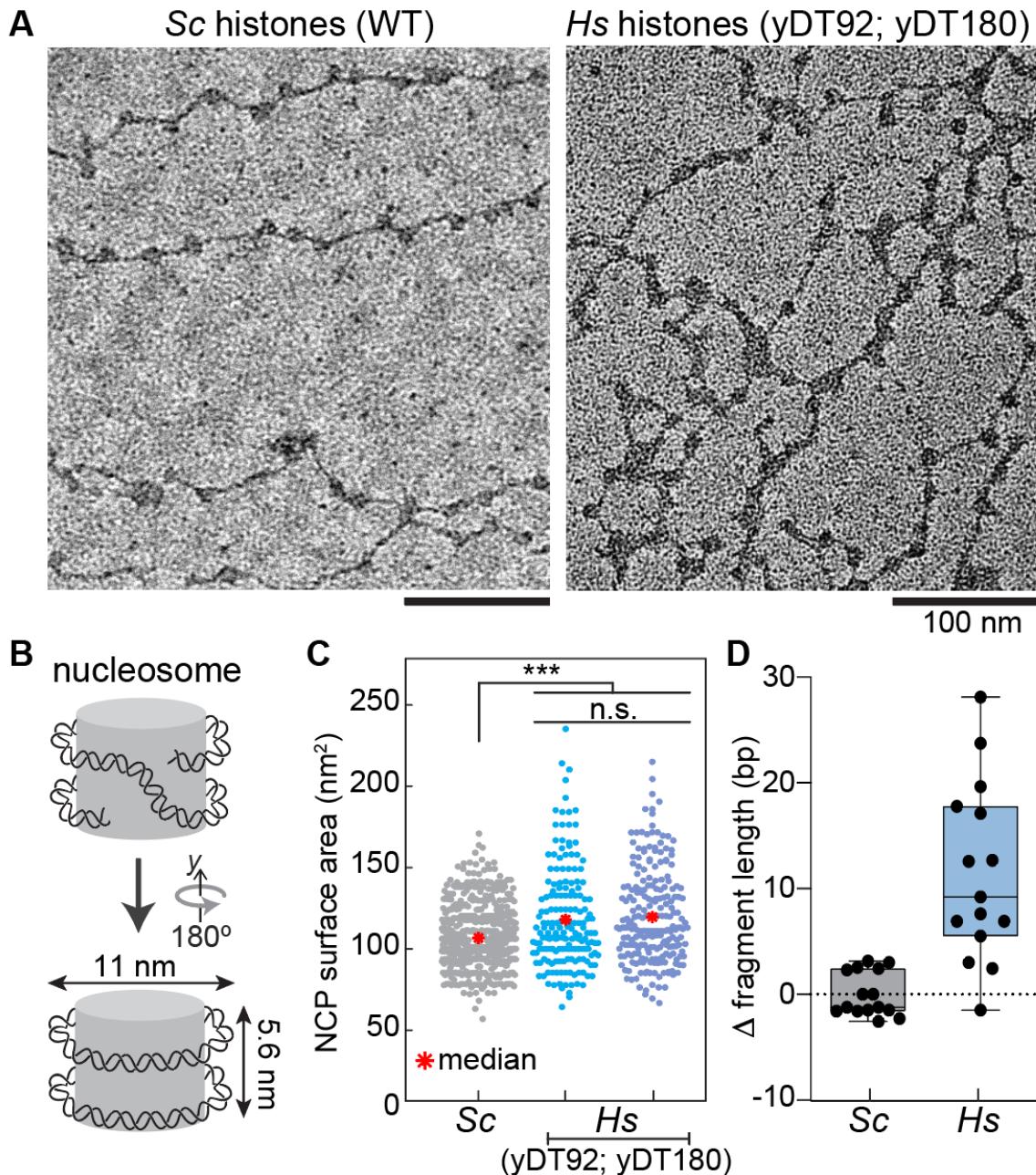
Combined Figures and Legends for Manuscript:

Title:

Humanized nucleosomes reshape replication initiation and rDNA/nucleolar integrity in yeast.

Authors: Luciana Lazar-Stefanita^{1*}, Max A. B. Haase^{1,2}, Jef D. Boeke^{1,3*}

Lead Contact: Jef D. Boeke, jef.boeke@nyulangone.org


Affiliations:

¹Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA

²Vilcek Institute of Graduate Biomedical Sciences at NYU School of Medicine, NY 10016, USA

³Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA

*Correspondence: L.L.-S., luciana.lazarstefanita@nyulangone.org, J.D.B. jef.boeke@nyulangone.org

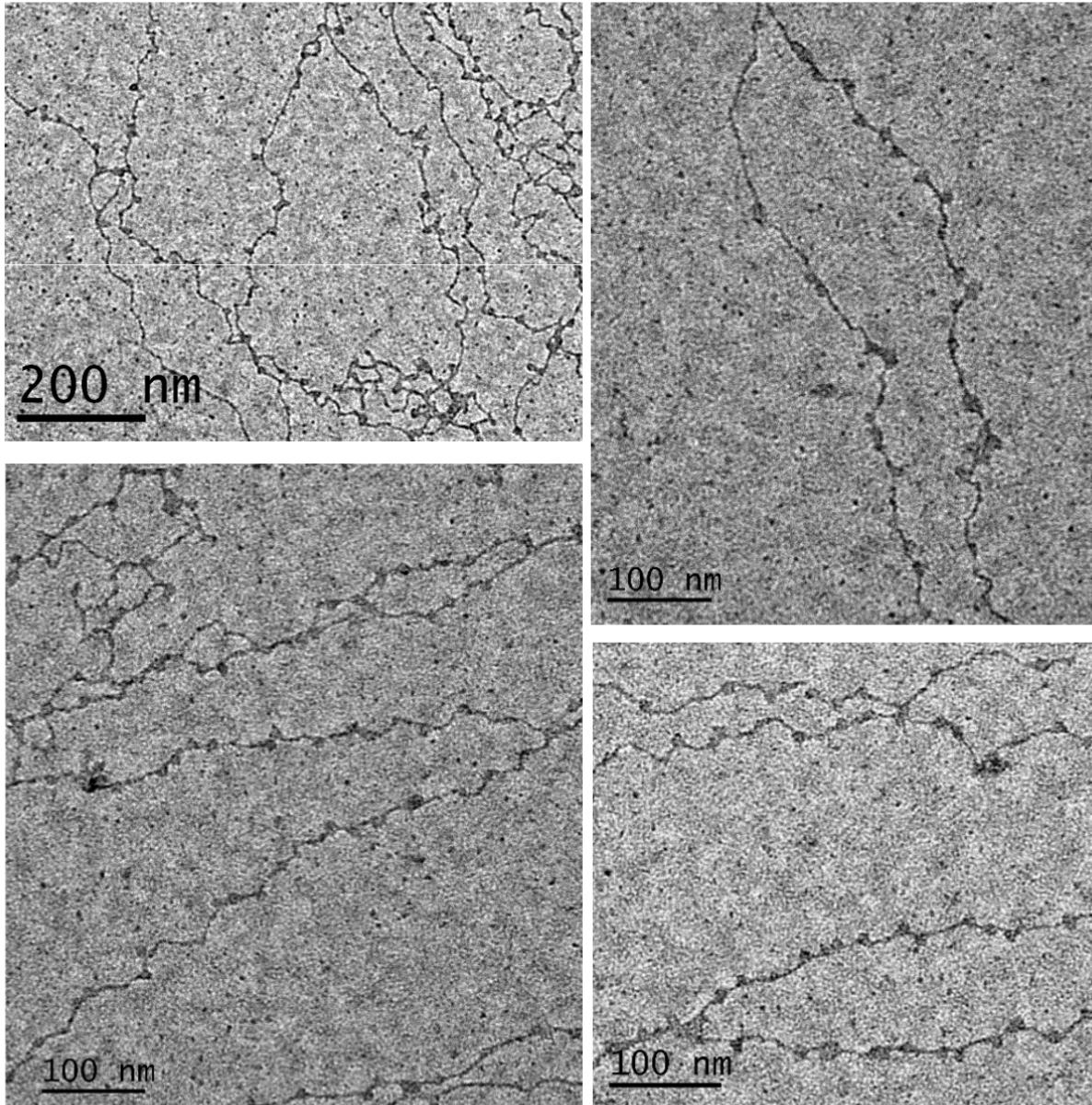
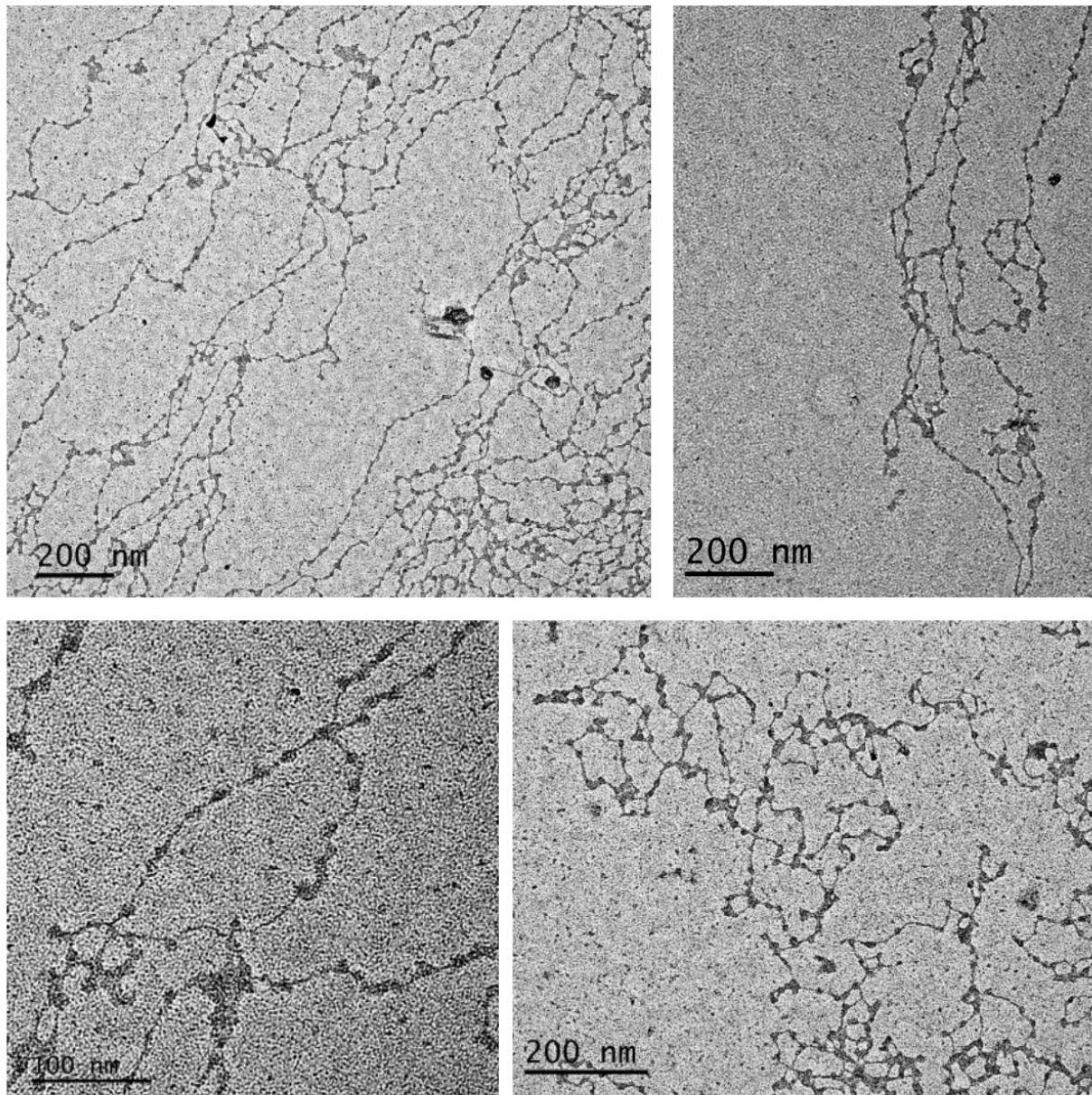


Figure 1. Visualizing histone-humanized nucleosome fibers in yeast.

(A) Representative electron microscopy images showing 10 nm nucleosome fibers. Left, wild-type yeast with native histones (*Saccharomyces cerevisiae*, *Sc*, strain: BY4742; see also Figure S1). Right, histone-humanized (*Homo sapiens*, *Hs*, strains: yDT92, yDT180 fibers; see also Figure S2). (B) Schematic representation of the nucleosome core particle (NCP) with dimensions in nm. (C) Bee swarm plots showing the average estimated NCP surface area (nm^2) in the wild-type (*Sc*) and histone-humanized strains (*Hs*). Median, S.D. and P values (** P < 0.001, n.s. = not significant). (D) Box plot of Δ fragment length (bp) for *Sc* and *Hs*. Δ fragment length is calculated as the difference between the average estimated NCP surface area in *Hs* and *Sc*.


<0.0015; n.s. $P > 0.05$) were calculated using a two tailed t-test function (Table S1). (D) Boxplots quantifying the difference of the nucleosome fragment length in *Hs* relative to *Sc* (DNA fragment length analysis of MNase digested chromatin; data from 3 biological replicates: comparisons of lengths from mono- up to penta-nucleosome fragments are shown by each dot Haase et al., co-submission).

Sc histones (WT; BY4742)

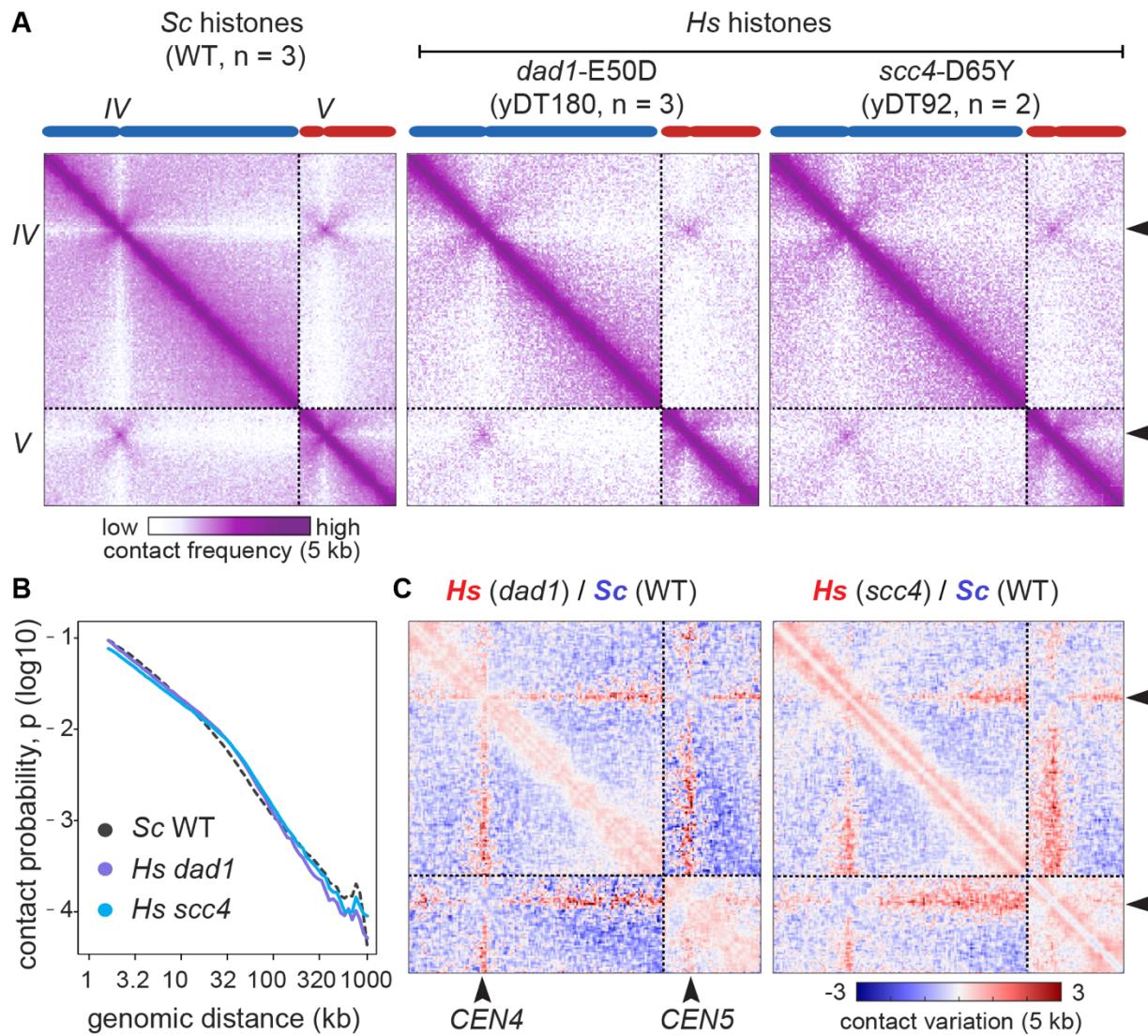


Figure S1, related to Main Figure 1. Nucleosome fibers of wild-type yeast with native histones (*Saccharomyces cerevisiae*, Sc, strain: BY4742). Representative panels showing the 10 nm fibers at different resolution (scale bars: 100 nm and 200 nm).

Hs histones (yDT92; yDT180)

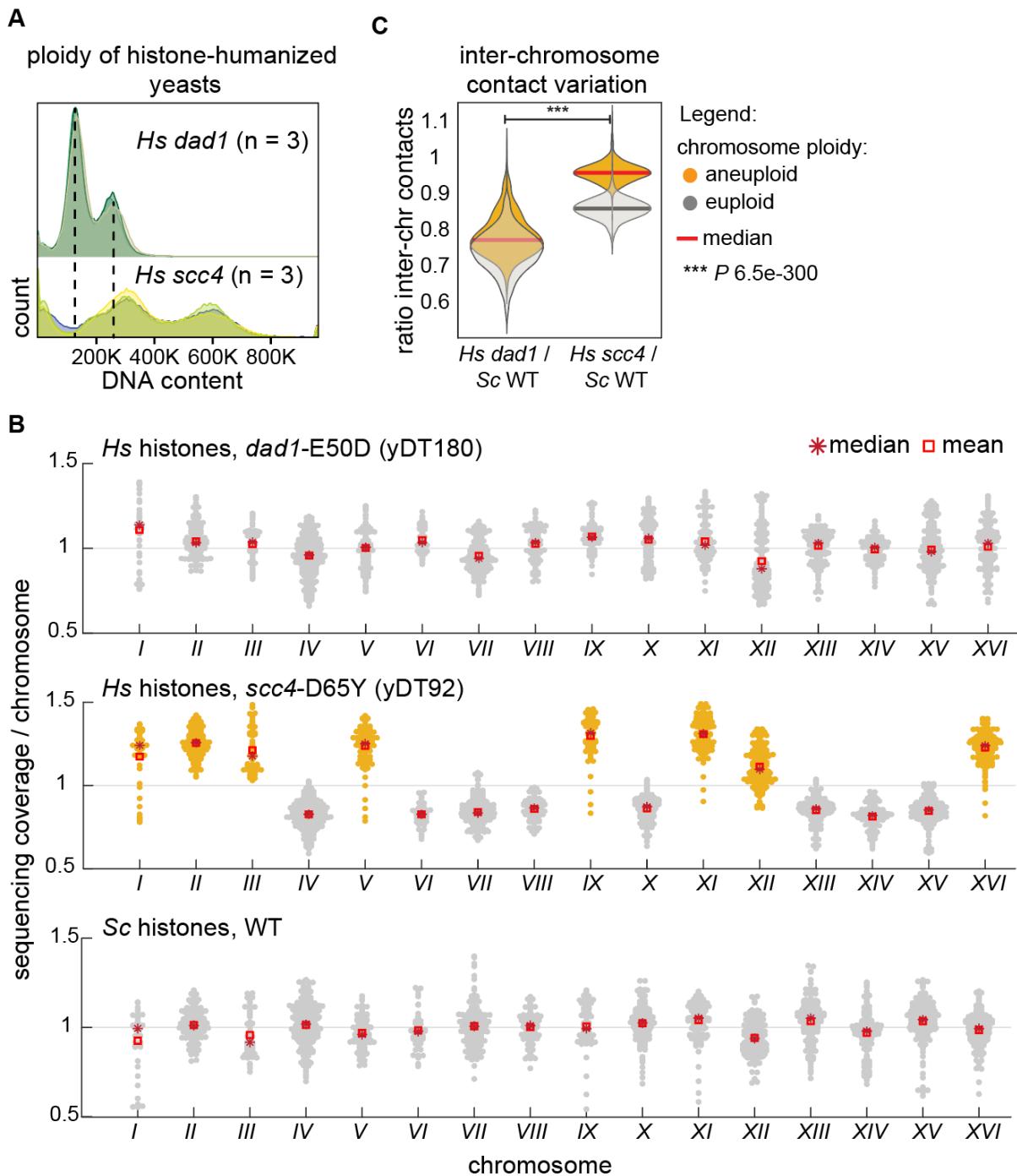

Figure S2, related to Main Figure 1. Nucleosome fibers of histone-humanized yeasts (*Homo sapiens*, *Hs*, strains: yDT92, yDT180). Representative panels showing the 10 nm fibers at different resolution (scale bars: 100 nm and 200 nm).

Figure 2. 3D genome organization of histone-humanized chromatin.

(A) Insets of Hi-C contact frequency maps showing chromosome /IV and V underlined by dotted lines in yeast strains with *Sc* histones vs. *Hs* histones carrying distinct humanization-suppressor mutations (yDT180 w. *dad1*-E50D and yDT92 w. *scc4*-D65Y). Blue (/IV) and red (V) chromosomes are plotted on the x and y axis of the maps binned at 5 kb size resolution. Black arrowheads point at centromere positions, i.e., *CEN4* and *CEN5*. Purple to white color scale indicates increase in contact frequency (log10). **(B)** Contact probability (p) in function of the genomic distance (kb) represents the average decay of the intra-chromosomal contact frequency between loci with the increment in their genomic distances. Replicates of the strains in A were plotted together. **(C)** Comparisons of contact maps in panel A. Log2-ratio maps of

each of the *Hs* strains vs. the *Sc* strain. Color bar indicates contact variation between samples (log2 ratio 5 kb-binned).

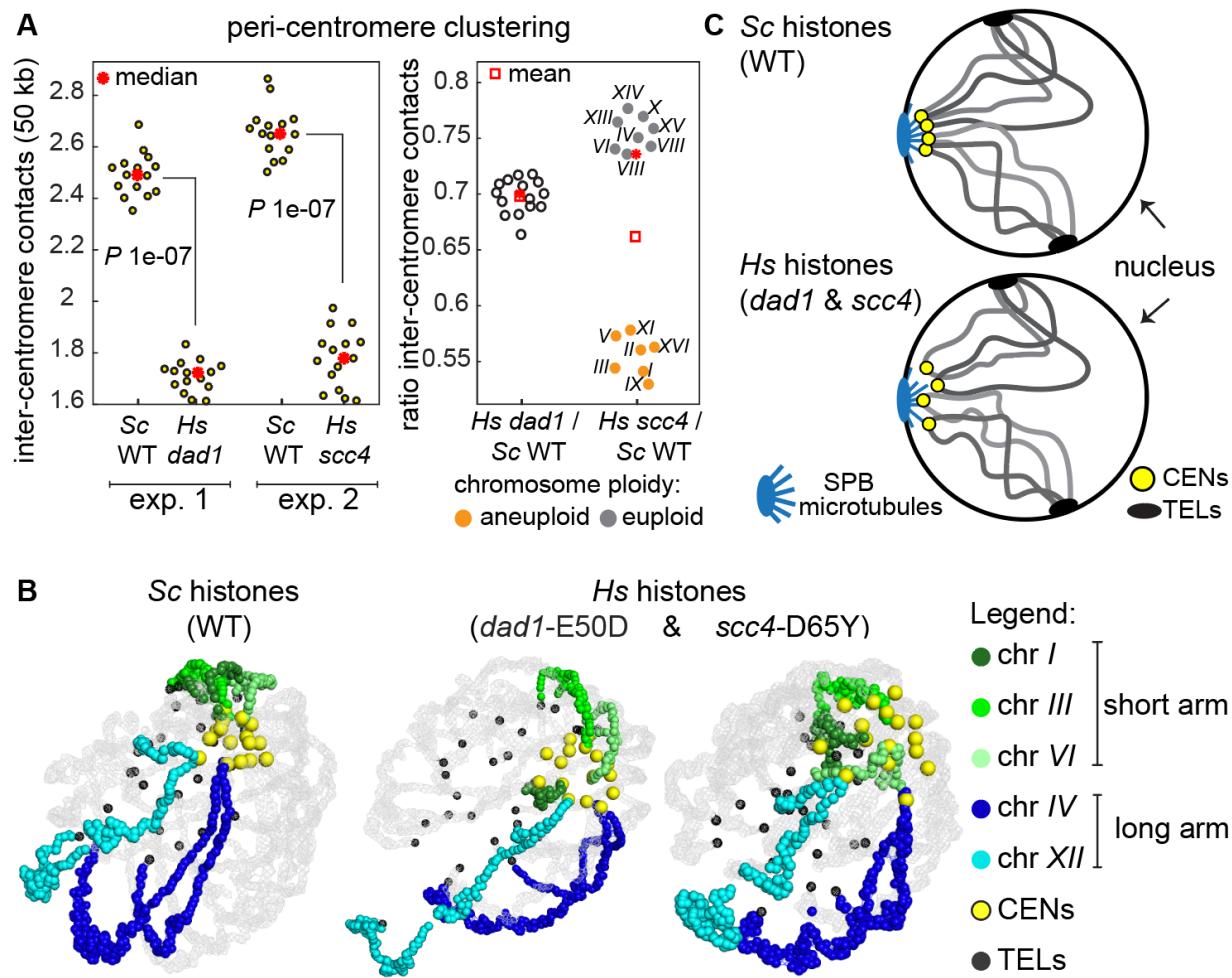


Figure S3, related to Main Figures 2 and 3. Ploidy varies among the histone-humanized strains.

(A) Flow cytometry histograms showing DNA content in histone-humanized yeast strains stained with SYTOX Green. *Hs* euploid: yDT180 *dad1-E50D*; *Hs* aneuploid: yDT92 *scc4-D65Y*.

(B) Average of chromosome sequencing coverage normalized by the total number of reads. Aneuploid chromosomes (increased copy number) are shaded in amber. **(C)** Inter-chromosome

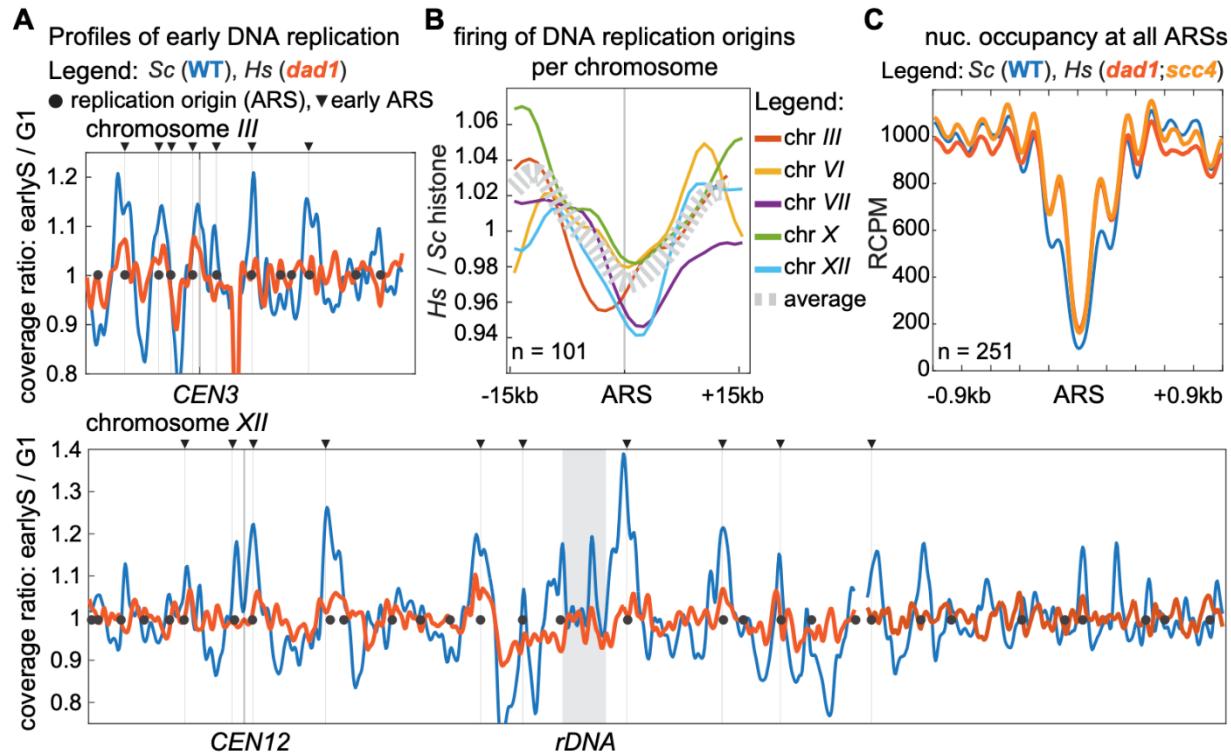
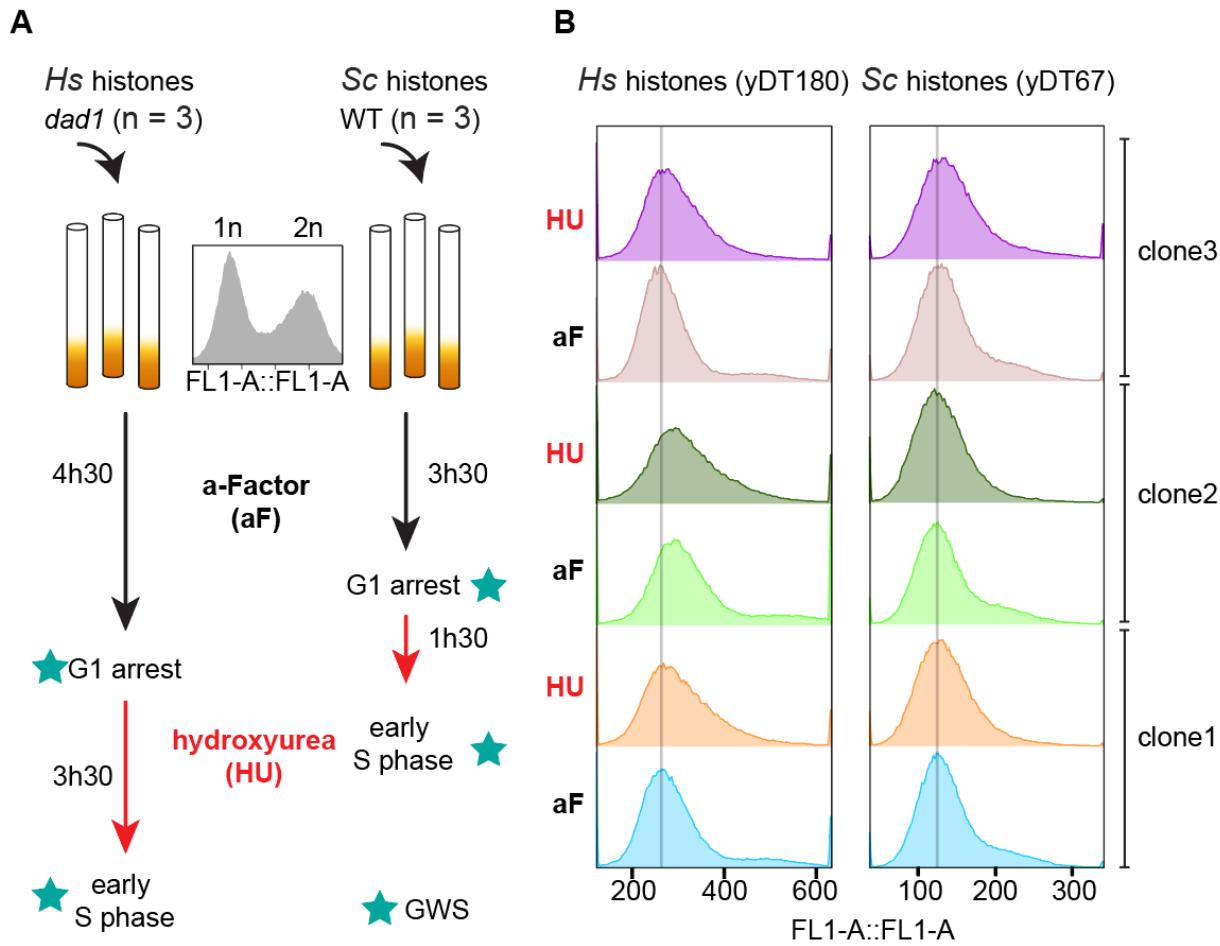
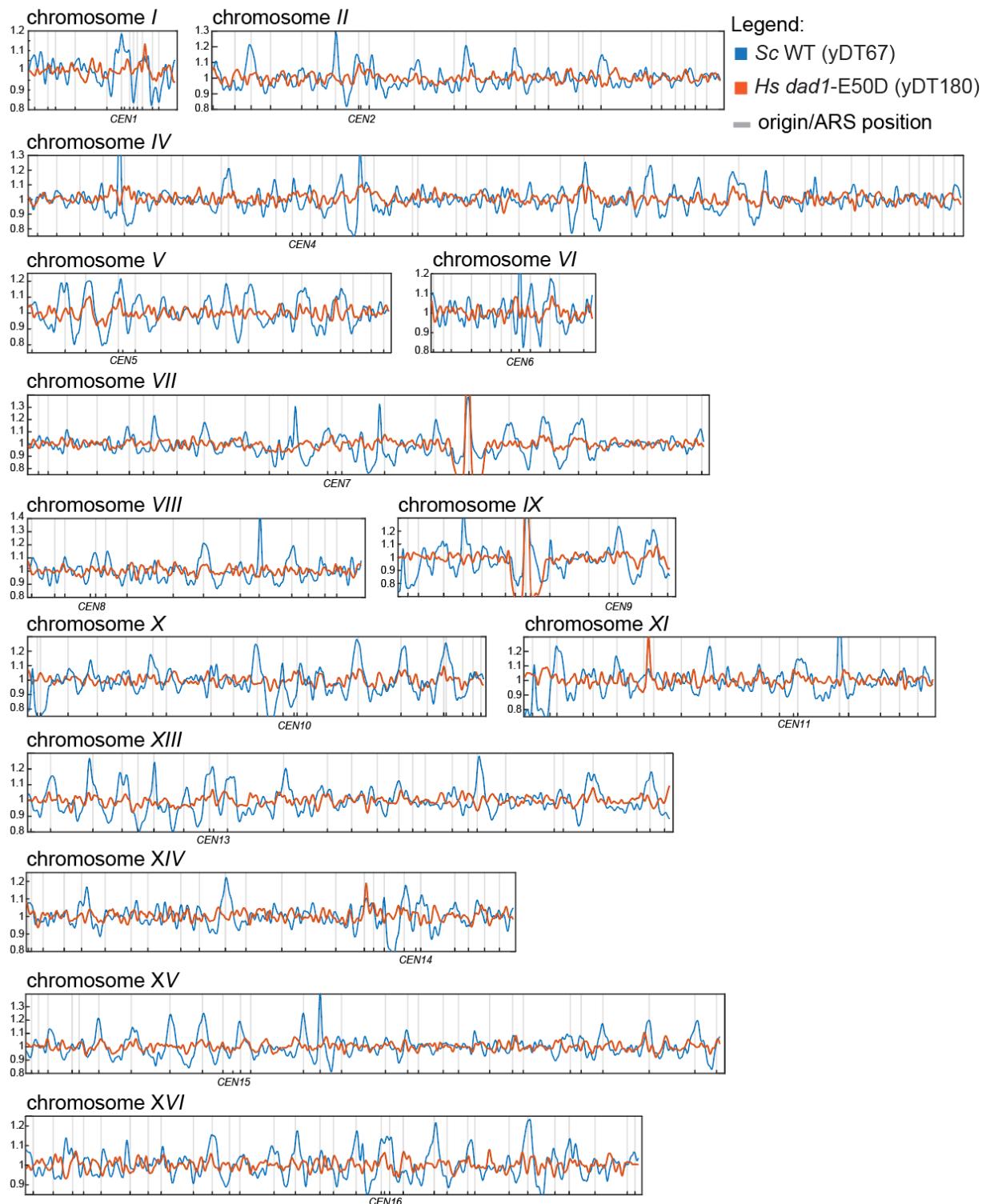

contact variation in the histone-humanized genomes (*Hs*) relative to wild-type (*Sc*). Normalized Hi-C contact maps (complete maps of the insets shown in [Figure 2A](#)) were used to compute the ratios between *Hs* and *Sc* strains, which were then plotted according to the level of chromosome ploidy (aneuploid vs. euploid). The increase of intra-chromosome contacts in the *Hs* strains ([Figure 2B-C](#)) is likely responsible for the ratio < 1 observed in both the euploid (yDT180) and in the non-aneuploid chromosomes of yDT92, as an effect of the normalization process. *P* values were calculated using the K-S (Kolmogorov–Smirnov) test in MATLAB 2018.

Figure 3. Histone humanization leads to de-clustering of yeast centromeres.


(A) Centromere clustering in histone-humanized vs. wild-type yeast using normalized Hi-C genome maps. Left plots: quantifications of all inter-centromere contacts, plotted in 50 kb-windows centered on a given centromere (each dot represents the sum of all *trans* contacts a peri-centromeric region makes with the other 15 peri-centromeres) in the *Hs* (*yDT180 dad1-E50D* and *yDT92 scc4-D65Y*) strains relative to the corresponding *Sc* from the same experiment (indicated as exp. 1 and 2). Right plot: variations of inter-centromere contacts in *Hs* vs. *Sc* plotted according to level of chromosome ploidy (aneuploid vs. euploid shown in Figure S3B). **(B)** 3D average representations of the *Sc* and *Hs* corresponding to complete chromosome-contact maps from Figure 2A. Color code highlight a few chromosomes with either short or long arms, as well as centromeres (CENs) and telomeres (TELs). **(C)** Schematic model of Rabl-like organizations of wild-type yeast chromosomes (*Sc* top panel) compared to the

histone-humanized (*Hs* bottom panel) one, showing de-clustering of centromeres. Examples of chromosome arms (gray lines) anchored at the nuclear membrane through CENs and TELs.


Figure 4. Lack of temporal activation of replication origins on humanized chromosomes.

(A) Each track in the replication timing plots is the average representation of three independent replicates and shows the sequencing coverage ratio of early-S (HU arrested) synchronized cells normalized to the G1 (a-factor arrested) non-replicating cells (1 kb-bin size) (see also Figure S4). Replication timing profiles of the wild-type (Sc) are shown in blue, while those of the histone-humanized strain (Hs, yDT180 *dad1*-E50D) are in orange. Representative profiles of chromosome III (top left) and chromosome XII (bottom left) are shown; positions of all origins (ARS) are indicated with black circles and arrowheads indicate the early ARS subset. **(B)** Metaplots of ARS activation were computed on chromosome-by-chromosome ratios between Hs and Sc profiles (see also Figure S5) and plotted in 30 kb ARS-centered windows. **(C)** Metaplots showing nucleosome occupancy from MNase-sequencing profiles at ARSs in Hs (yDT180 *dad1*-E50D and yDT92 *scc4*-D65Y) compared to Sc strains.

Figure S4, related to Main Figure 4. Method for mapping replication timing in wild-type and histone-humanized yeasts.

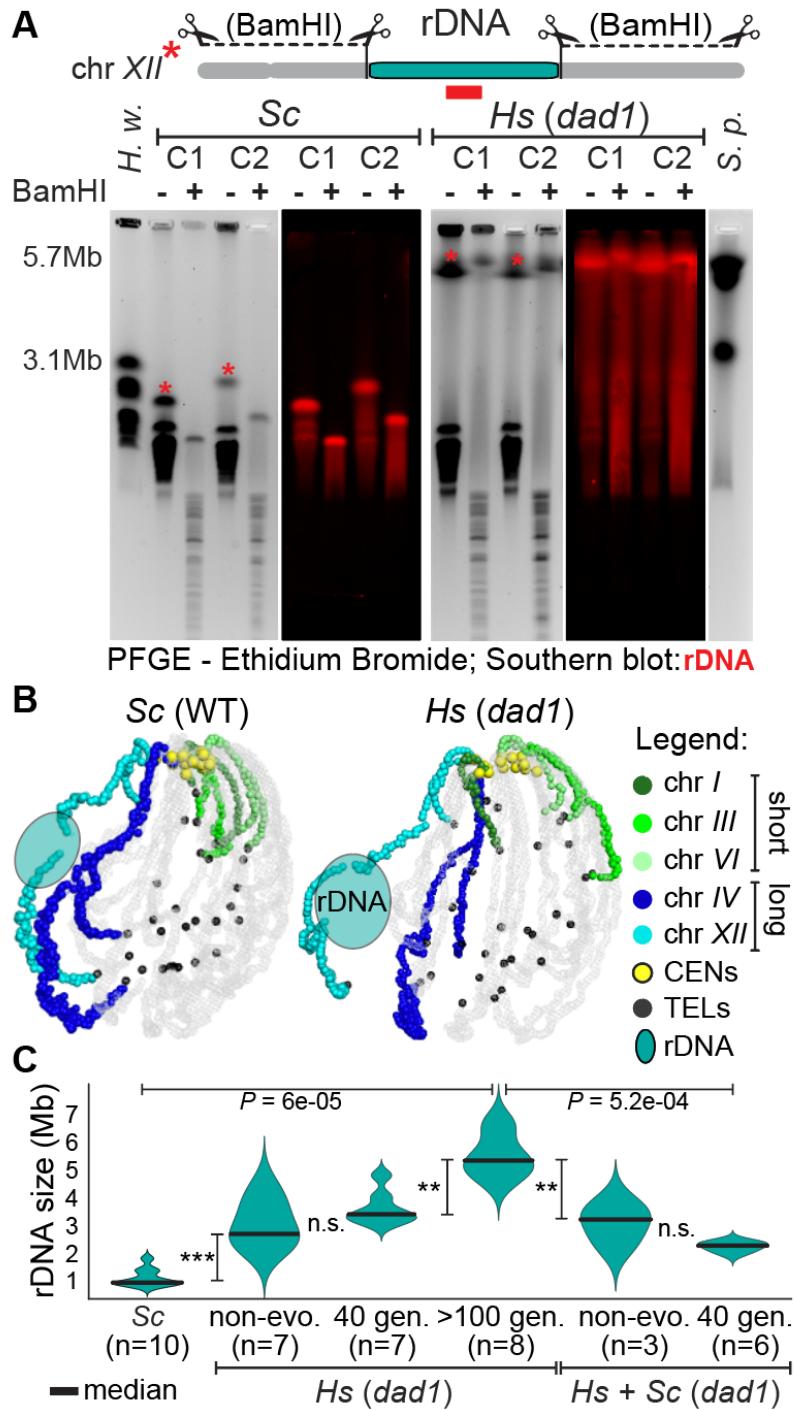

(A) Schematics of the experimental approach used to grow and synchronize yeast cells with either native (*Sc*) or human (*Hs*, strain: yDT180 *dad1*-E50D) histones in G1 and early S phase. Star-labeled steps indicate genome-wide sequenced samples used to generate replication timing profiles. **(B)** Flow cytometry histograms measuring DNA content of the three independently synchronized cell cultures in A, stained with SYTOX Green. As expected, no obvious differences are observed between G1 and early-S phase synchronized cells.

Figure S5, related to Main Figure 4. Genome-wide replication timing profiles in wild-type and histone-humanized yeast strains.

Each track in the replication timing plots is the average representation of three independent replicates and shows the sequencing coverage ratio of early-S (HU) synchronized cells

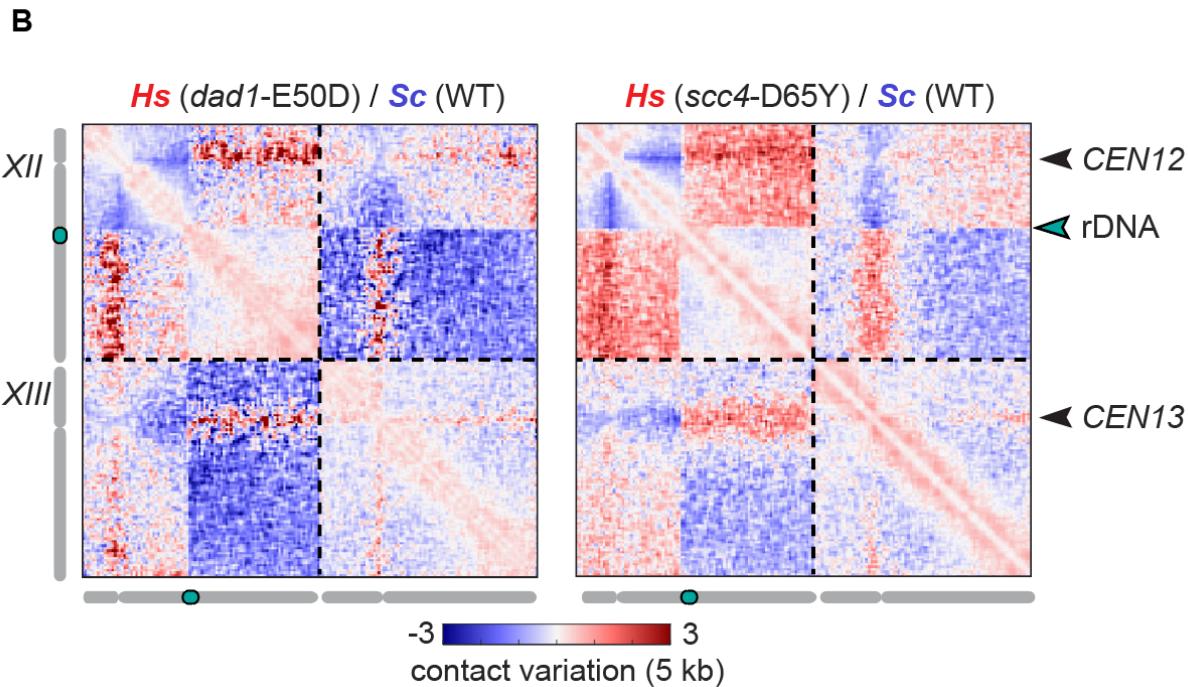
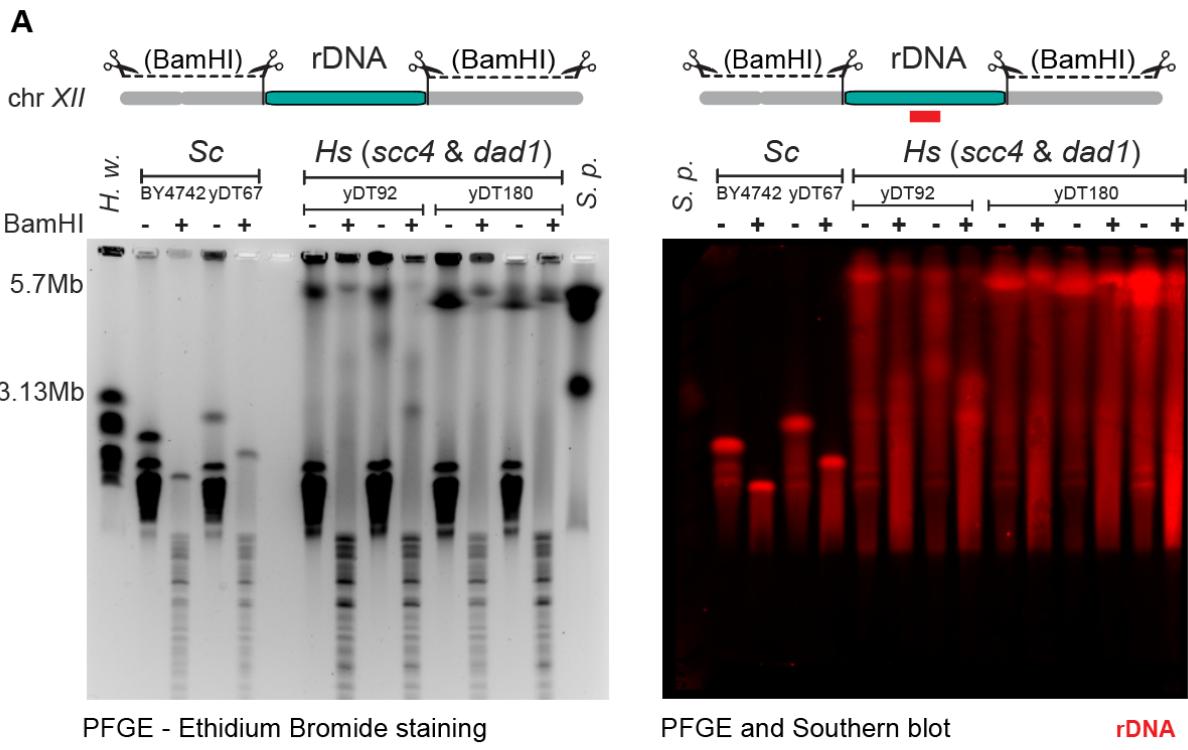


normalized on the G1 (a-factor) non-replicating cells (1 kb-bin size). Chromosome-by-chromosome replication timing profiles of the wild-type (*Sc*) are shown in blue, while those of histone-humanized (*Hs*, yDT180 *dad1-E50D*) are in orange. Origin (ARS) positions are indicated with gray vertical lines and centromere (CEN) positions are indicated below each plot.

Figure 5. Histone humanization leads to the intra-chromosomal expansion of the repeated rDNA array.

(A) Estimate rDNA locus sizes (turquoise region on chromosome XII) in *Sc* and *Hs* (yDT180 *dad1*-E50D) strains. PFGE of yeast chromosomes digested (+) or not (-) with BamHI and the corresponding Southern blot with an rDNA specific probe (red). Each “C#” represents an

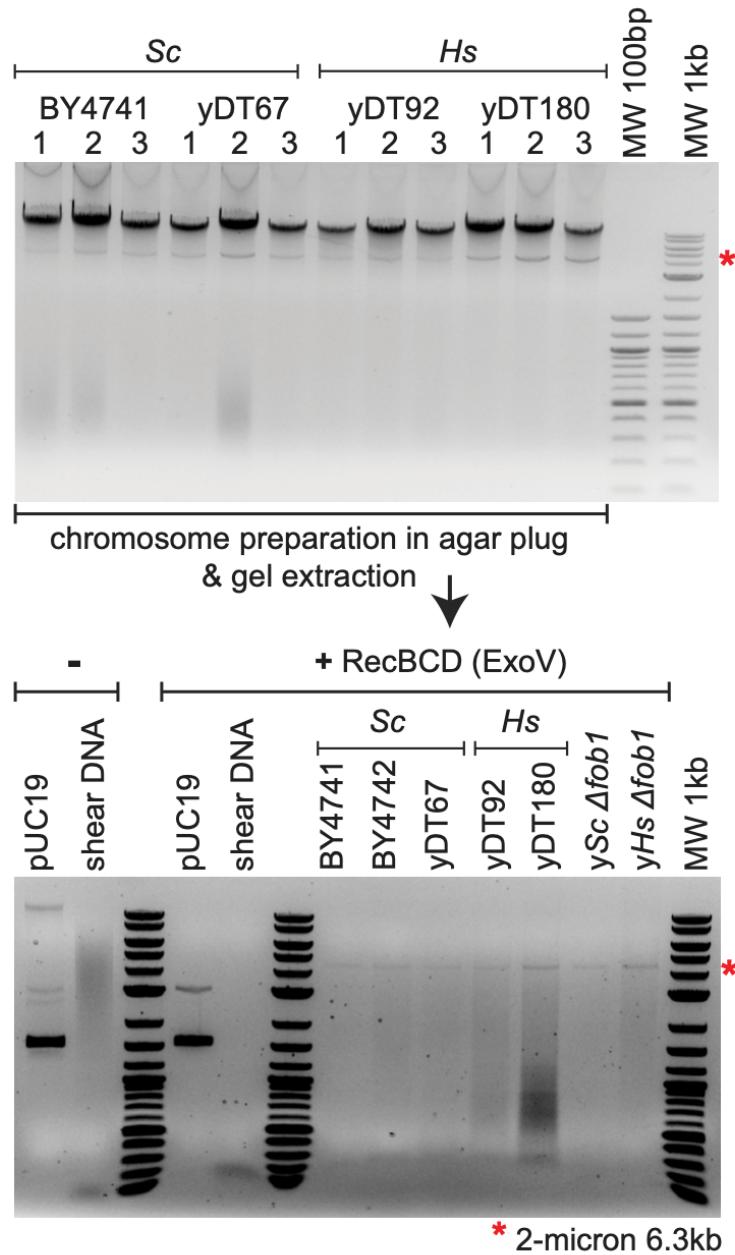
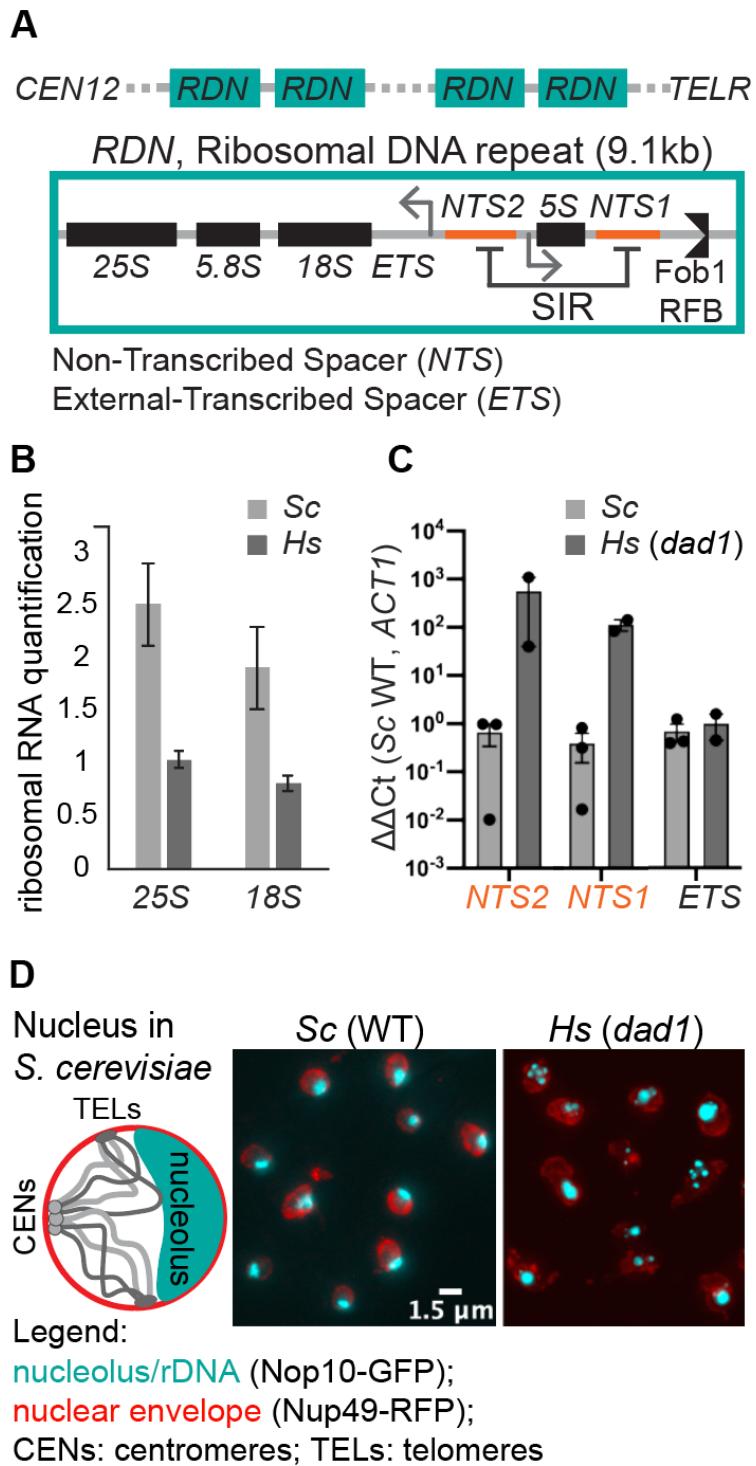

independent isolated clone of either *Sc* or *Hs* strain (see also [Figure S6A](#)). Left ladder: *H. wingei* chromosomes. Right ladder: *S. pombe* chromosomes. (*) indicates chromosome XII. PFGE run specifications: *S. pombe* program for multi-megabase chromosome separation. **(B)** 3D average representations of the *Sc* and *Hs* Hi-C contact maps (as described in [Figure 3B](#)) where the estimated position of the rDNA locus is indicated (see also [Figure S6B](#)). Color code highlight a few short and long chromosomes, as well as centromeres (CENs) and telomeres (TELs). **(C)** Violin plots showing the estimated rDNA size (Mb) calculated using rDNA-mapped reads ($n = \#$ genome sequencing datasets) in *Sc*, histone-humanized (*Hs*: “non-evo.” = non-evolved/passaged isolates; “40 gen.” and “>100 gen.” = passaged for # generations) and “re-yeastified” (native *Sc* histones added back to the humanized yeast) strains (see also [Figure S9F](#), [Table S2](#)). P values were calculated using the K–S (Kolmogorov–Smirnov) test.

Figure S6, related to Main Figure 5. Histone humanization leads to the expansion of the rDNA array.


(A) Estimated rDNA locus sizes (turquoise region on chromosome XII) in independent isolates of *Sc* (strains: BY4741, yDT67) and *Hs* (strains: yDT92, yDT180) yeasts. PFGE of chromosomes digested (+) or not (-) with BamHI (left panel) and the corresponding Southern

blot (right panel) with an rDNA specific probe (red). PFGE ladders: *H. wingei* chromosomes (left) and *S. pombe* chromosomes (right). PFGE run specifications: *S. pombe* program for multi-megabase chromosome separation. **(B)** Contact map comparisons showing chromosomes *XII* and *XIII*. Log2-ratio maps of *Hs* vs. *Sc* strains: yDT180 *dad1*-E50D (left) and yDT92 *scc4*-D65Y (right). Arrowheads indicate the positions of the two centromeres and the rDNA locus. Color bar indicates contact variation between samples (log2 ratios 5 kb-binned).

Figure S7, related to Main Figure 5. Histone humanization does not lead to extra-chromosomal rDNA circles.

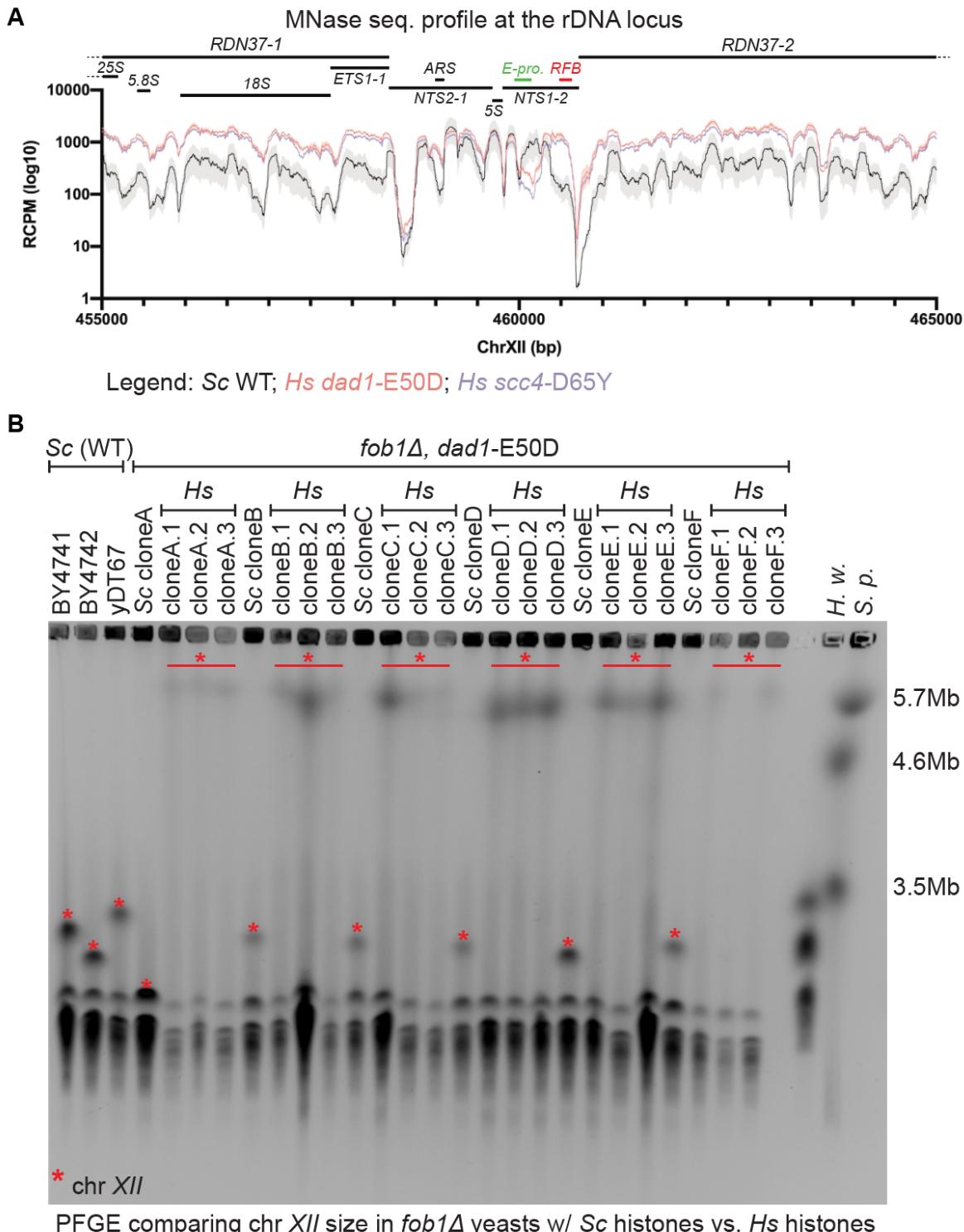

Agarose gels stained with ethidium bromide showing: (top panel) total genomic DNA extracted from *Sc* (strains: BY4741, yDT67) and *Hs* (strains: yDT92, yDT180) yeasts and (bottom panel) after RecBCD treatment. pUC19 circular plasmid and sheared DNA were used as controls. Note that strains with the *FOB1* gene deleted were also tested and represent negative controls for extra-chromosomal rDNA circles (ERCs) formation. Red (*) indicates 2-micron plasmid (~40-60 copies/cell Broach 1982).

Figure 6. Histone humanization disrupts rDNA silencing and nucleolar structure.

(A) Schematic showing the organization of the *RDN1* array (rDNA locus on chromosome XII) and an inset on an example repeat (~9.1 kb-long), showing rRNA genes and regulatory sequences (*NTS1* and *NTS2* silenced by SIR complex, and Fob1 binding to the Replication

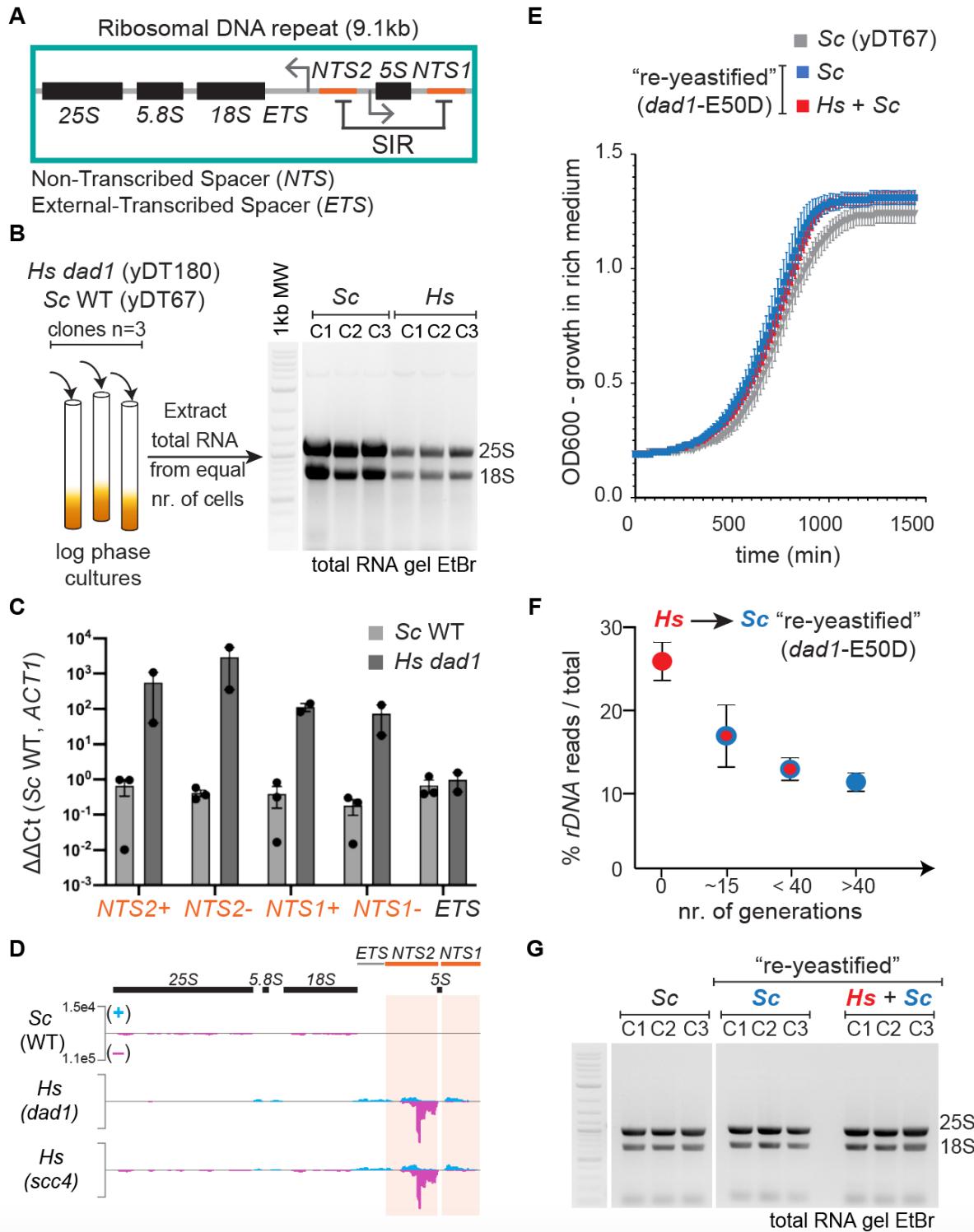

Fork Block, *RFB*). **(B)** Quantification of rRNA levels (18S and 25S) in triplicates of *Sc* and *Hs* (yDT180 *dad1*-E50D) strains. Total RNA was extracted from equivalent amounts of cells then quantified on agarose gel using ImageJ (see [Figure S9B](#)). **(C)** RT-qPCR bar plot used to estimate changes in the transcription of the *NTS1/2* and the rRNA precursor (*ETS*) relative to the housekeeping mRNA, *ACT1* (see [Figure S9C](#)). **(D)** Left, a simplified representation of nuclear organization in yeast, where examples of chromosome arms (gray lines) are anchored at the nuclear membrane through CENs and TELs, and the crescent-shaped nucleolus (turquoise) are shown. Right, representative microscopy images of *Sc* (strain: yLS110) or *Hs* (strain: yLS117) yeast nuclei. Nuclear envelope is shown in red (Nup49-RFP) and the nucleolus in cyan (Nop10-GFP).

Figure S8, related to Main Figure 6. rDNA instability is independent of the replication fork block.

(A) MNase-sequencing coverage profiles at the rDNA locus in *Sc* and *Hs* strains (re-analyzed data from Truong and Boeke, 2017). **(B)** PFGE of yeast chromosomes in *fob1Δ* strains (Fob1,

rDNA replication fork block-binding protein). *FOB1* was deleted in *Sc* (clones A to F; strains yMAH1242-12447) followed by histone humanization *Hs* (clones: A# to F#; yLS118-123). Each lane represents an independent isolated clone. PFGE ladders on the right: *H. wingei* and *S. pombe* chromosomes. (*) indicates chromosome XII. PFGE run specifications: *S. pombe* program for multi-megabase chromosome separation.

Figure S9, related to Main Figure 6. The epigenetic instability of the rDNA depends on human histones and is reversible.

(A) Schematic showing the organization of a ribosomal DNA repeat unit with rRNA genes (25S, 18S, 5.8S and 5S) and regulatory sequences (NTS1 and NTS2 silenced by SIR complex). **(B)**

Diagram of RNA extractions from triplicates of *Sc* (yDT67) and *Hs* (yDT180 *dad1*-E50D) strains and agarose gel used for rRNA quantifications in [Figure 6B](#). **(C)** RT-qPCR bar plot used to estimate changes in the transcription of the *NTS1/2* (“+” and “-“ DNA strands transcribed from the bidirectional E-promoter located in *NTS1*) and the rRNA precursor (*ETS*) relative to the control mRNA, *ACT1* (see [Table S3](#)). **(D)** Total RNA-sequencing coverage tracks at the rDNA unit in *Sc* and *Hs* strains (see [Table S4](#)). *y*-axis normalized to read counts per million. **(E)** Growth curves in rich media of the “re-yeastified” strains with *dad1*-E50D mutation (without *Hs* histones, *Sc*: yMAH753-755; *Hs* histones-maintained, *Hs* + *Sc*: yMAH756-758). **(F)** rDNA read count of the “re-yeastified” strains in [Figure 5C](#). **(G)** RNA gel of the “re-yeastified” strains, as described in panel E (*Sc*: yMAH753-755; *Hs* + *Sc*: yMAH756-758), relative to the wild-type *Sc* (yDT67) strain.