
1 

 

Endogenous fine-mapping of functional regulatory elements in complex 1 

genetic loci 2 

 3 

Ke Zhao1,#, Yao Zhou1,#, Chengyue Wu2, Jianhua Wang1, Hongcheng Yao3, Xin Cheng1, Lin 4 

Zhao1, Wei Wang4, Xinlei Chu4, Xianfu Yi1, Yupeng Chen2, Miaoxin Li5, Wange Lu6, Kexin 5 

Chen4, Pak Chung Sham3, Mulin Jun Li1,* 6 

 7 

1Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation 8 

Center for Medical Epigenetics, Key Laboratory of Prevention and Control of Human Major Diseases 9 

(Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical 10 

University, Tianjin, China.  11 

2Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical 12 

University, Tianjin, China. 13 

3Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, 14 

Hong Kong. 15 

4Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer 16 

Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute 17 

and Hospital, Tianjin Medical University, Tianjin, China. 18 

5Program in Bioinformatics, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China 19 

6Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 20 

China. 21 

  22 

#The authors contributed equally to this work  23 

*Correspondence: mulinli@connect.hku.hk (M.J.L.) 24 

 25 

Abstract 26 

The vast majority of genetic loci associated with polygenic complex traits are located in 27 

non-coding regions of the human genome. However, many of these regions exhibit high-28 

order gene regulatory relationships and complicated linkage disequilibrium (LD) 29 

configurations, which bring challenges to accurately identify causal variants and their 30 

target genes controlling specific molecular processes or traits. We employed multiplexed 31 

single-cell CRISPR interference and activation perturbations to explore the links between 32 

cis-regulatory element (CRE) and target gene expression within tight LD in the 33 

endogenous chromatin context. We validated the prevalence of multiple causality in 34 

perfect LD (pLD) for independent expression quantitative trait locus (eQTL), and revealed 35 

fine-grained genetic effects on gene expression within pLD. These effects are difficult to 36 

decipher using conventional eQTL fine-mapping or to predict via existing computational 37 

methods. We found that nearly half of the casual CREs lack classical epigenetic markers, 38 

potentially affecting gene expression through hidden regulatory mechanisms. Integrative 39 

analysis on different types of perturbation effects suggested a high regulatory plasticity of 40 

the human genome. These findings will propel further in-depth exploration of functional 41 

genomic elements, facilitating a more comprehensive understanding of gene expression 42 

regulatory patterns and the development of complex traits. 43 

 44 
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 45 

Introduction 46 

Identifying fine-grained regulatory elements and complex trait/disease causal regulatory 47 

variants on the human genome is a significant challenge in the current fields of functional 48 

genomics and genetics. Years of functional genomic profiling and expression quantitative 49 

trait locus (eQTL) studies have identified numerous cis-regulatory elements (CREs) and 50 

expression-associated alleles in nearly a hundred human tissues/cells (1-3). However, 51 

accurately pinpointing which CREs or even single allele(s) can modulate gene 52 

expression under specific biological conditions remains difficult. This is especially true for 53 

complex genetic loci, where complicated CRE-target gene relationships and linkage 54 

disequilibrium (LD) contamination make it computationally and experimentally 55 

challenging to precisely locate all causal elements and their target genes (4). 56 

Furthermore, genome-wide association studies (GWASs) have shown that the majority of 57 

genetic loci associated with complex traits and diseases are located in non-coding 58 

regions of the genome; however, colocalization analysis with eQTLs revealed only a 59 

limited (8%-25%) proportion of shared genetic loci (5-7). This has sparked debate within 60 

the field over whether a substantial portion of trait/disease-causal variants may not cause 61 

phenotypic development by affecting gene expression. 62 

  63 

A variety of large-scale, high-throughput experimental methods have been used to 64 

systematically evaluate the regulatory potential of human genomic sequences and allele-65 

specific effects. Firstly, exogenous and episomal massively parallel reporter assays 66 

(MPRAs) are highly efficient in identifying functional regulatory sites and alleles in various 67 

cells (8, 9). Consistent with computational simulations (4), a recent study employed 68 

MPRA to deeply assess high LD variants within independent eQTL signals, 69 

systematically validating the widespread presence of multiple allelic effects in tight LD 70 

(10). However, these experiments struggle to evaluate genetic effects and relationships 71 

with specific molecular phenotypes (e.g., target gene expression) in the endogenous 72 

chromatin environment of local genetic loci. Additionally, using CRISPR base editing 73 

technology, researchers have been able to study the links between variants and complex 74 

phenotypes in targeted genomic regions (11-14). However, due to the restrictions of 75 

editing preference and efficiency in mammalian cells, most of these strategies are not 76 

suitable for fine-mapping causal genetic loci affecting molecular phenotypes. Finally, 77 

some studies employ CRISPR-based chromatin perturbations to exhaustively 78 

characterize regulatory sites and their causal relationships with particular gene 79 

expression(s) through tiling screening (15-18), but these studies have focused solely on a 80 

small number of target genes. 81 

 82 

Multiplexed single-cell CRISPR perturbations provide technical support for systematically 83 

studying the regulatory relationships between genetic loci and fine-grained molecular 84 

phenotypes in an endogenous cellular environment (19-21). However, these studies 85 

heavily rely on prior knowledge (e.g., specific epigenetic markers) for the selection of 86 

genetic loci and employ solely a single type of CRISPR perturbation. Whether such 87 

technologies can accurately and unbiasedly pinpoint causal CREs that regulate gene 88 
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expression within complex genetic loci (e.g., ultra-high LD region) is a scientific question 89 

worth exploring. In this study, we leveraged multiplexed single-cell perturbations, through 90 

both CRISPR interference and activation, to validate the ubiquity of multiple causal CREs 91 

in perfect LD (pLD) within independent eQTL signal and to interrogate their regulatory 92 

relationships with target genes. We have demonstrated that endogenous perturbations 93 

can reveal intricate genetic effects and gene expression regulatory patterns, which are 94 

challenging to identify through conventional eQTL mapping approaches. Moreover, we 95 

found that current computational methods struggle to accurately predict the effects of 96 

many endogenous perturbations on gene expression, and further investigation suggested 97 

that nearly half of the casual CREs lack classical epigenetic markers, potentially 98 

influencing gene expression through unique regulatory mechanisms. Lastly, by 99 

comparing various types of CRISPRi/a perturbations, we have shed light on the 100 

regulatory plasticity of the human genome through a distinct perspective. 101 

 102 

Results 103 

Comprehensive discrimination of independent eQTL effect at perfect LD (pLD) 104 

using multiplexed single-cell CRISPR perturbations 105 

Given fine-mapping causal allele(s) among perfectly correlated variants is either 106 

computationally intractable or experimentally costly, we designed a series of extreme 107 

scenarios and applied a single-cell perturbation strategy to provide unbiased 108 

interrogation of expression-modulating causal effects at native genomic settings. 109 

Generally, we first leveraged statistical fine-mapping on GTEx V8 whole-genome 110 

sequencing (WGS)-based eQTLs (670 whole blood samples) to nominate independent 111 

signals. Additionally, we collected and fine-mapped six WGS-based blood-derived eQTL 112 

datasets from Geuvadis (445 lymphoblastoid cell samples), BLUEPRINT (190 monocyte 113 

samples, 196 neutrophil samples and 165 CD4+ T cell samples), and TwinsUK (523 114 

lymphoblastoid cell samples and 246 whole blood samples) (Table S1), and required that 115 

independent signal is reproducible in at least one additional dataset. Ultimately, we 116 

integrated all fine-mapped variants in seven eQTL datasets to retain independent signals 117 

which contain at least two undistinguishable lead eQTL variants (LEVs, with equal causal 118 

probability) in pLD (Fig. 1A and Fig. S1A, see details in Methods). As large-scale base 119 

editing screens, such as prime editing (13), coupled with transcriptome readouts are 120 

currently impractical, we performed multiplexed regional perturbations at the single-cell 121 

level to investigate the causal relationships and multiplicity underlying eQTL effects within 122 

these complex signals (Fig. 1A, see details in Methods). 123 

 124 

To achieve effective discrimination of single-cell expression perturbations via CRISPR, 125 

we focused on eQTL genes (eGenes) which are highly (top 20%) expressed in a human 126 

near-haploid leukemia cell line (HAP1), and excluded unqualified LEVs (e.g., proximal 127 

variants or protein-coding/splicing-altering variants) in each signal (Fig. S1A and Fig.S1B, 128 

see details in Methods). Thus, 81 independent eQTL signals (reproducible in 2 to 7 129 

additional datasets) were finally selected, and each contains more than a single qualified 130 

LEV within pLD (range of 2 to 6). Finally, the perturbation library incorporates 217 LEVs 131 

(Fig. 1B and Table S2). Two or three single guide RNAs (sgRNAs) were designed to 132 
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target each LEV-tagged region, and additional two sets of control sgRNAs were also 133 

used, including 39 non-targeting control (NTC) sgRNAs as negative control and 11 134 

previously validated sgRNAs as positive control (21). The sequence of 472 designed 135 

sgRNAs was cloned into a lentiviral CROP-seq-opti vector (Table S3) (22). The quality of 136 

the constructed sgRNA plasmid library was validated and was found to be of high quality, 137 

as evidenced by the coverage rate of greater than 99% (Fig. S1C) and a low degree of 138 

uniformity, with the top 90th to 10th sgRNA having a representation difference of less than 139 

10-fold (Fig. S1D). Consistency in sgRNA distribution within plasmid library was also 140 

observed upon viral transduction at varied multiplicity of infection (MOI) (Fig. S1E). 141 

 142 

To maximize the detection power of CRISPR-based perturbations for fine-mapped LEV-143 

tagged CRE (eCRE, ± 50 bp region of LEVs) discovery, we used both CRISPR 144 

interference (CRISPRi, a nuclease-deactivated Cas9 tethered to the KRAB repressor 145 

domain, dCas9-KRAB) and CRISPR activation (CRISPRa, a dCas9 tethered to the 146 

transcriptional activator VP64, dCas9-VP64) systems (Fig. S1F). Previous studies have 147 

demonstrated that the introduction of multiple perturbations per cell can substantially 148 

augment the statistical power to identify causal relationships between CREs and their 149 

target genes in a cost-efficient manner (21, 23, 24). Thus, lentiviral vectors containing our 150 

sgRNA library were then transduced into selected monoclonal cell lines at either 151 

moderate or high MOI (Fig. S1F-S1I). This approach allowed us to comprehensively 152 

investigate the causal eCREs and their target genes among multiple eQTL signals, while 153 

minimizing genetic heterogeneity in our experimental system. After a 14-day cell culture 154 

for effective CRISPRi/a perturbation, the transcriptomes of 14,481/15,296 (CRISPRi) and 155 

17,303/17,709 (CRISPRa) single cells were profiled with four 10x single-cell RNA 156 

sequencing (scRNA-seq) libraries. Targeted amplification of sgRNAs from cDNA in these 157 

perturbation libraries (25) suggested that the number of sgRNAs per cell and the number 158 

of cells per perturbation was increased as MOI increases in both CRISPRi and CRISPRa 159 

perturbations (Fig. S1J and S1K). Joint analysis of data under different MOIs revealed a 160 

median of 13 sgRNAs per cell and a median of 850 cells bearing each perturbation with 161 

CRISPRi, and a median of 6 sgRNAs per cell and a median of 245 cells bearing each 162 

perturbation with CRISPRa, respectively (Fig. 1C). 163 

 164 

We applied a unified normalization-association framework, Normalisr (26), to analyze the 165 

relationship between each eCRE and nearby expressed genes (± 1 Mb) (see details in 166 

Methods). Quantile-quantile plots indicated an excess of significant associations of 167 

sgRNAs targeting eCRE compared with NTCs in all conditions (132 and 34 significant 168 

pairs of eCRE and its perturbed gene (perturbGene) in merged CRISPRi (Table S4) and 169 

CRISPRa (Table S5) screenings respectively, FDR < 0.2). The perturbation with high MOI 170 

achieved higher power than moderate MOI (Fig. 1D), and the perturbation effects from 171 

significant hits between moderate and high MOIs showed good agreement (Fig. S2A and 172 

Fig. S2B). Besides, we observed significant consistency between the results of the 173 

perturbation experiments under different MOI conditions (R = 0.23, P = 0.0034) (Fig. 174 

S2C). To further explore the influence factors determining the statistical power of 175 

multiplexed single-cell CRISPR perturbations, we simulated several scRNA-seq datasets 176 
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with various perturbation conditions, including effective sgRNAs per cell and total 177 

captured cells in each perturbation (see details in Methods). The results demonstrated 178 

that, consistent with the real experiments, increasing the number of perturbations in each 179 

cell led to better statistical power. However, simply increasing the number of captured 180 

cells in scRNA-seq only slightly promoted statistical power (Fig. S2D). These findings 181 

suggest that, for perturbation effects that are sparse in terms of their downstream 182 

consequences, multiplexed sgRNAs will offer powerful and cost-efficient solution in 183 

single-cell CRISPR perturbations. 184 

 185 

To validate the screening results, we first confirmed the effects of all positive control 186 

sgRNAs, which were highly concordant with the literature report (Fig. 1E). Additionally, 187 

we randomly selected 20 groups of sgRNAs targeting causal eCRE and performed 188 

individual CRISPRi or CRISPRa perturbations, followed by reverse-transcription qPCR 189 

(RT-qPCR), to confirm the effect of sgRNAs on their pertubGenes, with no-targeting 190 

sgRNAs as control. As expected, a positive correlation (R = 0.75, P = 5.70e-12, T-test) 191 

between the RT-qPCR results and the effect size observed in multiplexed single-cell 192 

CRISPR perturbations was found (Fig. 1F and Fig. S3). This results further demonstrate 193 

the credibility of our single-cell perturbation screens in testing the effects of eCREs on 194 

their potential target genes. 195 

 196 

Multiple causal cis-effects and target gene configurations underlie complex 197 

genetic associations on gene expression  198 

Based on the significant hits in both CRISPRi/CRISPRa screens, we first inquired 199 

whether the presence of multisite cis-regulation and multiplicity of target genes in pLD is 200 

prevalent. Our results showed that, over 70% of the investigated pLD signals contained 201 

at least one significant causal eCRE. Among these significant pLD signals, 49.1% of 202 

them showed multiple (2 to 5) causal eCRE (44.2% in CRISPRi and 11% in CRISPRa, 203 

respectively), suggesting a high proportion of multisite cis-regulation. Besides, over half 204 

(52.6%) of these pLD signals had multiple target genes, with the maximum being greater 205 

than four, while standalone CRISPRi and CRISPRa analyses revealed proportions of 206 

51.9% and 14.8%, respectively. Additionally, we found that the perturbGenes from 39% 207 

pLD signals were the closest to the associated causal eCRE, 53% were located distally, 208 

and the remaining 9% could link to both closest and distal target genes (Fig. 2A and Fig. 209 

S4A). These results emphasize the pervasive existence of multisite cis-regulation 210 

affecting various target genes in pLD, which complicates the identification of true causal 211 

variants in both eQTL and GWAS fine-mapping. 212 

 213 

To investigate the target gene configurations underlying the complex genetic associations 214 

on gene expression, we partitioned the pLD signals containing significant eCRE-215 

perturbGene pairs into two regulatory patterns (single causal and multiple causal) (Fig. 216 

2B, Fig. S4B). For pLD signals with unique causal eCRE, some only associated with the 217 

nearest gene (12.3% of the total significant pLD signals) (Fig. 2B). For example, two 218 

highly linked LEVs, rs3782235 (GRCh37: chr12:56915547-G-A) and rs4759247 219 

(12:56918834-T-G) located more than 1 Kb apart from each other. Our CIRSPRa 220 
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perturbation screens revealed that only rs3782235-tagged CRE significantly affected the 221 

expression of the adjacent gene RBMS2, which was confirmed by RT-qPCR. Specifically, 222 

the sgRNA targeting rs3782235 significantly up-regulated the expression of RBMS2 with 223 

a greater effect size than sgRNAs targeting rs475924, consistent with the screening 224 

results (Fig. 2C). Interestingly, a recent GWAS of blood traits (27) found rs3782235 was 225 

significantly associated with hematocrit percentage, suggesting that rs3782235 could be 226 

a causal variant modulating RBMS2 expression in haematocrit-related traits. Besides, 227 

instead of the nearest gene, 29.8% significant pLD signals connected to a single distal 228 

gene via corresponding causal eCRE (Fig. 2B). Moreover, casual eCREs in a small 229 

fraction of pLD signals (8.8%) can regulate multiple target genes (Fig. 2B). For instance, 230 

CRISPRa perturbations revealed that rs1049359-tagged CRE, rather than other highly 231 

linked variant-marked eCRE in pLD, affected the expression of two distal target genes, 232 

RNF181 and TMSB10, which were independently verified by RT-qPCR (Fig. 2C). 233 

 234 

As for multiple causal patterns, 19.3% of the total significant pLD signals incorporated 235 

more than one causal eCREs targeting the same target gene(s), indicating the common 236 

phenomenon of multisite constraints on eQTL fine-mapping (4, 10). For example, we 237 

identified two significant eCREs (tagged by rs4930698 (chr11:64085063-G-C) and 238 

rs79423518 (chr11:64105454-G-A)) in a pLD signal that were both associated with two 239 

target genes PRDX5 and TRMT112. Consistent with the CRISPRi screening results, the 240 

effect of two eCREs was confirmed through RT-qPCR, which showed that the sgRNAs 241 

targeting the corresponding eCRE significantly decreased the expression levels of both 242 

PRDX5 and TRMT112 (Fig. 2C). The rs4930698-tagged CRE is located in the upstream 243 

promoter region of PRDX5 and downstream promoter region of TRMT112, and overlays 244 

several active chromatin marks including H3K4me3, H3K27ac and open chromatin, 245 

indicating its high regulatory potential. Besides, rs79423518-tagged CRE lies at 246 

intergenic region ~20 Kb downstream of PRDX5, and obtains weak enhancer marks such 247 

as H3K4me1 and H3K27ac (Fig. 2D). To investigate the regulatory function of these two 248 

eCREs, we first performed chromosome conformation capture combined with high-249 

throughput sequencing (4C-seq) that anchored at rs79423518-tagged CRE, and 250 

observed a strong interaction between the CRE and the promoter region of PRDX5 and 251 

TRMT112. This suggests that a direct regulation between rs79423518-tagged CRE and 252 

the promoter of two target genes. Then, luciferase reporter assay revealed that 253 

rs4930698-tagged CRE exhibited both promoter and enhancer activities, and showed an 254 

allele-specific effect, while rs79423518-tagged CRE was also found to have regulatory 255 

functions (Fig. 2E). By contrast, more pLD signals (29.8%) received multiple causal 256 

eCREs that regulated different target genes (Fig. 2B), highlighting the complexity of 257 

genetic regulation in highly linked loci. In summary, our endogenous perturbation screen 258 

in pLD serves as a valuable method to facilitate the identification of true causal variants 259 

and their associated CREs in cases where statistical fine-mapping faces challenges, 260 

while also nominating potential target genes regulated by functional CREs. Consistent 261 

with recent exogenous research (10), our findings question the assumption that a single 262 

variant typically accounts for the causality of an independent association locus. Overall, 263 

this result underscores the importance of recognizing the complexity of genetic regulation 264 
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when interpreting GWAS signals. 265 

 266 

Comparison of regulatory effects between eCRE perturbation and conventional 267 

eQTL mapping 268 

To assess the physiological relevance of the eCRE-perturbGene pairs uncovered through 269 

our multiplexed single-cell CRISPR perturbations, we compared them with the whole 270 

blood eQTL mapping results from GTEx V8 and eQTLgen (28). Among all significant 271 

eCRE-perturbGene pairs identified in pLD regions, approximately 30% associated eQTL-272 

eGene pairs were found to exist in either GTEx or eQTLgen (Fig. 3A). Similar trends 273 

were also observed for perturbGenes (Fig. 3B), suggesting that a large proportion of 274 

significant hits from CRISPR perturbations were not captured by current eQTL mapping 275 

in whole blood. To explore this further, we compared our findings to a larger eQTL 276 

dataset from QTLbase (3), which integrates multiple eQTL studies from various 277 

tissues/cell types and conditions. We found that a large proportion of additional overlaps 278 

could be recovered (Fig. S5A-S5D), suggesting different types of CRISPR perturbation 279 

could capture some eCREs that are specific to the cell type or environmental condition 280 

not being well studied.  281 

 282 

Previous statistical methods for causal eQTL fine-mapping mostly assumed that 283 

functional regulatory variants are sparsely distributed and the tight linkage among them 284 

has limited the ability to accurately estimate the magnitude of genetic effects (4). Despite 285 

the positive overall effect correlation between eCRE-perturbGene pairs from CRISPR 286 

perturbations and corresponding eQTL-eGene pairs from GTEx whole blood tissue (R = 287 

0.14, P = 0.039), we observed many discrepancies at same pLD signal with multiple 288 

causal eCREs (Fig. 3C). For examples, independent CRISPR perturbations showed 289 

similar or varied effects for two causal eCREs in pLD respectively (Fig. 3D and Fig. 3E). 290 

However, at these multisite regulation pLD regions, the true effect sizes of individual 291 

causal loci were indistinguishable (e.g., overestimation or underestimation) using 292 

conventional eQTL mapping. These suggest that our multiplexed single-cell CRISPR 293 

perturbations offer a more comprehensive assessment of the magnitude of expression-294 

modulating causal effects at endogenous genomic environment.  295 

 296 

The high enrichment of functional eQTLs near the transcriptional start site (TSS) had 297 

been extensively documented (29, 30). By evaluating the target gene TSS distances of 298 

eQTL-associated LEVs from GTEx and causal eCRE-associated LEVs from CRISPR 299 

perturbation, we found that the LEVs from CRISPR screen hits lie at greater distances 300 

from the nearest TSS (median 26 Kb) compared to LEVs in conventional eQTL mapping 301 

(median 400 Kb) (P < 2.2e-16, T test, Fig. 3F and Fig. 3G, see details in Methods). For 302 

instance, rs59508494 (19:16211630-A-G) and rs143558304 (19:16213697-T-TA) are 303 

located close to each other (~2 Kb) within pLD region. The two LEVs are significantly 304 

associated with TPM4 gene expression in GTEx whole blood tissue. Interestingly, Both 305 

CRISPRi perturbation screen and RT-qPCR revealed that rs59508494 could regulate a 306 

distal gene EPS15L (390 Kb) and rs143558304 could regulate another distal gene ILVBL 307 

(900 Kb), respectively (Fig. 3I and 3J). The long-distance interactions between the two 308 
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LEVs and their previously unknown targets were validated by 4C-seq that anchored at a 309 

genomic fragment containing the two variants (Fig. 3H). Given the evidence that GWAS 310 

hits are further from TSSs than eQTLs and show limited overlaps with them (5-7), the 311 

multiplexed CRISPR perturbations would provide a comprehensive supplement to study 312 

the shared genetic effect between disease/trait-causal variants and functional regulatory 313 

sites.                                314 

 315 

Topologically associating domains (TAD) and LD are two measurements of chromosomal 316 

interaction and genome genetic structure respectively, by which the genome is divided 317 

into different segments. Boundaries and ranges of both measurements are important for 318 

exploring the relationship between genetic architecture and gene regulation. Previous 319 

findings revealed that genomic architectures of genetic and physical interactions are 320 

generally independent, and the regulation range of eQTL-eGene is irrelevant with LD (31). 321 

Here, using the eCRE-perturbGenes identified by CRISPR perturbation, we reassessed 322 

such relevance and found that the causal eCREs regulating their target genes within the 323 

same TAD are more likely to locate in a highly linked LD block (Odds ratio = 14.2, P = 324 

9.4e-11, Fisher's exact test, Fig. 3K, see details in Methods). This also suggests that 325 

artificial genetic perturbation would capture additional layers of gene regulation against 326 

the traditional eQTL mapping in homeostatic conditions.   327 

 328 

Endogenous perturbation effects are poorly predicted via computational 329 

predictions and functional annotations 330 

Given statistical fine-mapping faced the tremendous challenge to accurately identify true 331 

causal eQTL variants in pLD, we next sought to evaluate the performance of the existing 332 

computational methods and functional annotations in distinguishing the regulatory 333 

potential of eCREs through endogenous CRISPR perturbation. First, we leveraged 20 334 

functional/pathogenic variant scores to test their abilities of causal eCRE/LEV 335 

classification (Table S6 and Table S7, see details in Methods). Consistent with the 336 

previous benchmarks using massively parallel reporter assays (MPRAs) data (10, 32), 337 

existing prediction tools showed restricted performance in discriminating significant 338 

causal eCREs or corresponding LEVs from non-significant ones in our CRISPR 339 

perturbation screens (Fig. 4A, Fig. 4B, Fig. S6A and Fig. S6B). Specifically, the results 340 

showed that among the 20 methods for predicting functional eCRE/LEV, DVAR (33), 341 

RegBase_REG (34) and Eigen-PC (35) achieved a better performance (Area Under the 342 

ROC Curves (AUCs) are close to 0.6) than others in the majority of benchmarks. Notably, 343 

these top-performed tools were either learned from unsupervised algorithms (such as 344 

DVAR and Eigen-PC) or presented an ensemble score by integrating existing prediction 345 

methods (like RegBase), implying they could capture unknown features that explain the 346 

endogenous activity of regulatory sites. Second, we applied a recent deep learning model, 347 

Enformer (36), which predicts sequence effects on gene expressions and chromatin 348 

states, to investigate the agreement between predicted effects and perturbation effects at 349 

tested eCRE/LEV sites (Table S6 and Table S7, see details in Methods). We noted 350 

similar enrichment patterns of investigated eCREs and the associated LEVs on Enformer 351 

scores, in which significantly casual eCREs or tagging LEVs enriched at the top 352 
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percentiles of Enformer scores from the first two components, compared with non-353 

significant ones (Fig. 4C, Fig. 4D, Fig. S6C and Fig. S6D). Nevertheless, the differences 354 

between the eCRE groups remain small.   355 

 356 

Furthermore, we illustrated a case wherein computational predictions and functional 357 

annotations poorly worked. Specifically, we observed that rs75446625 and rs80159064 358 

were two perfectly linked variants located in the intronic region of NUDT7. While the 359 

rs75446625-tagged CRE harbored several active chromatin states (including open 360 

chromatin, H3K27ac and H3K4me3), the rs80159064-tagged CRE was completely 361 

depleted from classical markers. As expected, rs75446625 was highly scored by four top-362 

performed scores (including DVAR, CDTS (37), RegBase_REG and Eigen-PC) and two 363 

Enformer components. In contrast, rs80159064 showed very low scores for most of these 364 

tools (Fig. 4E). However, our CRISPRi perturbation screens identified that the CREs 365 

tagged by the two LEVs can modulate the expression of a common target gene NUDT7, 366 

which was also successfully validated through RT-qPCR (Fig. 4F). Luciferase reporter 367 

assays revealed that the two eCREs both had regulatory functions as an enhancer and 368 

showed allelic-specific effects (Fig. 4G and Fig. 4H). Particularly, compared to 369 

rs75446625-tagged CRE, rs80159064-tagged CRE exhibited larger effect in CIRSPR 370 

screen (Fig. 4E) and equivalent effects at in vitro reporter assays, respectively. Taken 371 

together, current computational methods for statistical fine-mapping and functional 372 

prediction are less actionable for the identification of true causal regulatory variants in 373 

high LD.    374 

 375 

Unbiased endogenous perturbation reveals many unmarked regulatory elements 376 

The majority of previous Perturb-seq studies targeting regulatory DNA sequences 377 

typically rely on prior knowledge of specific types of CREs, such as enhancers, open 378 

chromatin regions, and transcription factor binding sites (38). However, in our CRISPRi/a 379 

perturbation screen, we did not use any chromatin marks or sequence features to select 380 

LEVs and associated eCREs. This approach provided a unique opportunity to unbiasedly 381 

learn the regulatory potential of genomic sequences. By integrating seven well-382 

characterized epigenetic marks in HAP1 cells, we were able to classify the identified 383 

eCREs into two major groups: marked CREs and unmarked CREs (UREs) (see details in 384 

Methods). Active but not repressive chromatin signals, such as open chromatin (ATAC-385 

seq), enhancer/promoter (H3K27ac, H3K4me1, and H3K4me3), and actively transcribed 386 

genomic regions (H3K36me3), were prominent at marked CREs. Surprisingly, we found 387 

that over 40% of significant eCREs and their associated LEVs lacked classical epigenetic 388 

marks almost entirely (Fig. 5A). This suggests the pervasive existence of UREs across 389 

the whole genome that may be driven by specific biological conditions. 390 

 391 

To demonstrate the regulatory potential of URE in gene regulation, we performed several 392 

functional assays on rs73156934-tagged CRE which showed a significant effect in  393 

CRISPRi screen. rs73156934 is an intronic variant at EXOC4 gene, and its surrounding 394 

genomic region is not marked by any epigenetic signals in HAP1 (Fig. 5B) or rarely 395 

occupied with H3K36me3 in other tissues/cell types (query from VannoPortal (39)), 396 
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suggesting the regulatory activity of the rs73156934-tagged CRE is preserved in most 397 

cellular contexts. Compared to the candidate CREs tagged by other highly linked LEVs 398 

(e.g. rs10428917) in pLD region, our CRISPRi perturbation screen and RT-qPCR 399 

revealed that this URE could be manipulated to regulate a distal gene CALD1 (800 Kb) 400 

instead of its associated eGene EXOC4 in GTEx (Fig. 5C and Fig. 5D). The long-401 

distance interactions between the eCRE and CALD1 were further confirmed by 4C-seq 402 

anchored at rs73156934-containing region (Fig. 5B). In addition, luciferase reporter 403 

assays indicated that the eCRE had significant regulatory functions and was affected by 404 

different alleles of rs73156934 (Fig. 5E). Moreover, the regulatory relationship between 405 

rs73156934 and its target gene CALD1 was supported by several blood single-cell eQTL 406 

studies (Fig. 5B). 407 

 408 

 409 

Combinatory analysis of CRISPRi/a effects suggests regulatory plasticity of the 410 

human genome 411 

Applying both CRISPRi and CRISPRa to the same sgRNA library in the multiplexed 412 

single-cell screens enabled us to systematically compare the regulatory effects by 413 

different types of perturbations. We found that a large number of perturbations 414 

unexpectedly affected their target gene expression in proximity (± 1 Mb surrounding TSS), 415 

and the casual eCREs received varied regulatory outcomes under the same perturbation 416 

(Fig. 6A). Specifically, CRISPRi can up-regulate nearby target gene expression among 417 

one-third of the significant eCRE-perturbGene pairs, and CRISPRa also could down-418 

regulate local gene expression occasionally, although we cannot figure out which hits are 419 

from trans-effects of perturbation. Besides, over 35% of casual eCRE showed opposite 420 

effects on different target genes through either CRISPRi or CRISPRa perturbations. 421 

Interestingly, we also revealed 13 eCRE-perturbGene pairs were significant in both 422 

CRISPRi and CRISPRa screens (Fig. 6B). 423 

 424 

By partition all significant eCRE-perturbGene pairs into four categories according to the 425 

effect direction of perturbGenes in CRISPRi/a screens (Fig. 6A), we observed that, for 426 

the pairs whose gene expression were unexpectedly up-regulated via CRISPRi 427 

perturbations (group I and group IV), the distances of casual eCRE from target gene TSS 428 

displayed a polarized trend, and most of which were more than 100 Kb away from the 429 

TSSs (Fig. 6C). Such phenomenon was also observed for those repressive effects from 430 

CRISPRa perturbations (group III) (Fig. 6C). While some effects could be attributed to 431 

trans-gene regulation, these observations highlight the existence of several hidden but 432 

unique mechanisms underlying the distal gene regulation in 3D genome (Fig. 6C). 433 

However, the casual eCREs were almost located at the promoter region of their 434 

perturbGenes for the 13 significant eCRE-perturbGene pairs identified by both CRISPRi 435 

and CRISPRa (Fig. 6C). Besides, compared with casual eCREs detected in single type 436 

of perturbation or insignificant ones, more active chromatin signals (including H3K27ac, 437 

H3K4me1, H3K4me3 and open chromatin) were enriched at casual eCREs identified by 438 

both perturbations. (Fig. 6D). Together, these results indicate that the human genome 439 

and chromatin display high plasticity in response to various stimulations at different 440 
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genomic positions, warranting further research to elucidate the role of sequence 441 

variations and chromatin dynamics in shaping functional molecular phenotypes. 442 

 443 

 444 

Discussion 445 

Investigating the molecular phenotypes influenced by genetic loci that subsequently lead 446 

to the development of complex traits and diseases is a crucial scientific question in the 447 

current field of genetics research (3). Gene expression, as an essential molecular 448 

process for transmitting genetic effects, has made the integrated analysis of eQTL a 449 

standard approach to exploring the causal genetic mechanisms of complex traits and 450 

diseases (40, 41). However, challenges persist in identifying the true causal regulatory 451 

variants and their target genes in highly linked regions due to factors such as LD 452 

contamination and the complexity of CRE-target gene regulation. In this study, we 453 

innovatively employed multiplexed single-cell CRISPRi/a perturbations to investigate the 454 

regulatory patterns of genetic loci on target genes in endogenous cellular environments 455 

and under pLD conditions. We systematically demonstrated the widespread presence of 456 

multiple causal regulatory loci within pLD regions and the intricate nature of their 457 

regulatory interactions with target genes. Additionally, our findings revealed that 458 

endogenous perturbations can unveil elusive genetic effects and gene expression 459 

regulatory patterns not easily detected by traditional eQTL mapping, including evidence 460 

for long-range regulatory relationships and high-resolution analysis of regulatory effects. 461 

Furthermore, we identified that existing computational methods face difficulties in 462 

precisely predicting the influences and consequences of numerous endogenous 463 

perturbations on gene expression. We also discovered that approximately half of the 464 

casual eCREs lack conventional epigenetic markers, potentially affecting gene 465 

expression via distinct regulatory mechanisms. Lastly, through a comparative analysis of 466 

CRISPRi/a perturbation effects, we expounded upon the regulatory plasticity of the 467 

human genome from a novel perspective. We propose that incorporating multiplexed 468 

single-cell CRISPR perturbations into molecular trait QTL and genome-wide GWAS 469 

causal variant fine-mapping could complement the limitations of traditional diverse MPRA 470 

approaches in assessing the magnitude of genetic effects in endogenous chromatin 471 

environments, and their target genes (8-10). Our novel findings and supporting evidence 472 

will also promote the development of new technologies and theories in functional 473 

genomics and related computational biology, ultimately leading to a more comprehensive 474 

understanding of gene expression regulatory patterns. 475 

 476 

The functional evaluation of the genetic effects for GWAS/eQTL causal regulatory 477 

variants by in situ modulation of the genomic sequence under endogenous chromatin 478 

environments remains challenging. First, unbiased high-throughput screening at single-479 

base resolution remains limited due to the characteristics of editing technologies. For 480 

instance, while cytosine base editors (CBEs) and adenine base editors (ABEs) have 481 

been widely employed for screening of allele effects under complex phenotypes or at the 482 

single-cell level (11, 12, 42, 43), their base editing types and uncertain editing outcomes 483 

within the editing window hinder their application in functional fine-mapping studies. 484 
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Precise editing tools, such as prime editing (PE) and other retron-based systems (13, 44, 485 

45), have been used for high-throughput screening of functional single-base variants, but 486 

their relatively low editing efficiency in mammalian cells significantly restricts large-scale 487 

genome-wide screening. Second, most of the current Perturb-seq-based functional 488 

genomic effect assessments are based on diploid cells with heterozygous genetic 489 

background (21, 46), such as K562 cells. However, in polyploid mammalian cells, 490 

incomplete editing or interference of other non-homozygous alleles may mask the 491 

expected genetic effects and phenotypes, potentially leading to reduced statistical power. 492 

To balance the advantages and disadvantages of existing technologies, we combined 493 

CRISPRi and CRISPRa to perform multiplexed single-cell perturbation screening on 494 

diploid HAP1 cells, which have a relatively homozygous genetic background. 495 

 496 

Previous high-density GWAS, WGS-based eQTL studies, and simulation analyses have 497 

indicated that multiple causal effects within specific genomic loci are not uncommon, and 498 

multi-target regulation, along with LD contamination, further complicates the fine-mapping 499 

of true causal variants and estimation of true effect sizes (2, 4, 47). By merely interfering 500 

with a large number of potentially independent eQTL regions harboring multiple causal 501 

effects using CRISPRi/a, we discovered that 19.3% of these regions contain multiple 502 

causal eCREs targeting the same target gene. Consistent with previous MPRA in high LD 503 

(17.7% of eQTLs exhibit more than one major allelic effect) (10), our results confirm the 504 

widespread presence of multisite regulation of gene expression under endogenous 505 

genetic systems, emphasizing the serious need to consider such situations when fine-506 

mapping causal variants in different LD regions. Additionally, through CRISPRi/a 507 

screening, we found that causal eCRE(s) within the majority of pLD signals (around 80%) 508 

can distally impact the expression levels of multiple target genes and are not necessarily 509 

always the nearest genes. Compared to traditional eQTL mapping, which more readily 510 

detects signals near TSS (5, 6), single-cell CRISPR-based QTL mapping approach may 511 

be better suited for interpreting missed signals in GWAS-eQTL colocalization studies. 512 

Consequently, the systematic integration of large-scale single-cell CRISPR-based eQTLs 513 

and traditional context-specific eQTLs will further unravel the 'missing regulation' 514 

phenomenon in non-coding regions of GWAS (7). 515 

 516 

Fine-mapping computational methods based on functional annotation have been widely 517 

used to explore GWAS/QTL causal variants and their potential functions (48). However, 518 

both our work and several current studies have observed that existing computational 519 

methods and bioinformatics tools struggle to accurately predict the functional 520 

consequences (e.g., expression effects) of a given DNA sequence or variant allele (10, 521 

32), and the reasons for these inconsistencies remain unexplained. The most plausible 522 

explanation might be that the non-coding regulatory features used in current prediction 523 

models are largely similar, lacking a novel perspective on how regulatory sequences 524 

exert their functions; moreover, the functional genomic features used for computational 525 

modeling are predominantly measured in normal tissue or cellular environments, with 526 

insufficient data under diverse biological conditions. By integrating epigenetic information, 527 

we have revealed that approximately half of the significant causal eCRE genomic regions 528 
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are severely lacking traditional epigenetic markers (referred to as UREs), and some loci 529 

even lack epigenetic markers across all known biological conditions. UREs have been 530 

considered functional in previous GWAS and functional genomic studies (9, 15, 16, 49, 531 

50), which drives researchers to further investigate universal regulatory mechanisms to 532 

explain their regulatory potential, and provides a direction for improving the performance 533 

of prediction methods. 534 

 535 

In various types of perturbations, we found that CRISPRi has better effects than 536 

CRISPRa in driving changes in gene expression. Recent research has discovered that 537 

the efficacy of CRISPRa depends on basal expression and chromatin state, and bivalent 538 

genes are more sensitive to this perturbation (51). However, CRISPRi may be more 539 

capable of modifying and altering chromatin structure, inducing heterochromatin 540 

formation in any genomic region where transcription occurs, thereby causing changes in 541 

the expression of multiple genes in close chromosomal proximity. Therefore, introducing 542 

a combination of dCas9 fused to different activation domains, such as enCRISPRa 543 

technology (50), may enhance the power of functional eCRE detection. On the other 544 

hand, we found that a portion of CRISPRi/a perturbations exhibited opposite trends to the 545 

expected gene expression disruption effects. Presumably, the effects of CRISPRi and 546 

CRISPRa on gene expression can depend on the specific regulatory elements and 547 

factors present within the targeted genomic region, such as the location and orientation 548 

of the targeted site relative to regulatory elements, the activity and accessibility of 549 

chromatin and epigenetic modifiers, the availability and activity of other transcriptional 550 

regulators, as well as the competition among different CREs (18, 52, 53). For example, a 551 

genomic region containing both an enhancer and a silencer element might exhibit 552 

different responses to CRISPRi and CRISPRa depending on which element is targeted. 553 

Additionally, some regions may contain a composite enhancer/silencer element that is 554 

responsive to both positive and negative regulatory signals, or they may incorporate 555 

multiple distinct CREs that are differentially responsive to transcriptional activators and 556 

repressors. 557 

 558 

Our study has the following limitations and unresolved issues. First, in order to select 559 

reproducible independent eQTL signals, we systematically integrated seven blood-560 

derived WGS-based eQTL datasets and used LD data from 1000 Genomes Project 561 

European population to screen for associated pLD LEVs. Although most of the used 562 

eQTL samples have European ancestry and were derived from blood tissues, factors 563 

such as heterogeneity of WGS variant calling, discrepancies in LD structure among 564 

subpopulations, and differences in blood cell-specific gene expression levels may lead to 565 

incomplete selection of pLD LEVs in each independent eQTL signal. Second, as 566 

emphasized before, we still have difficulty in screening the genetic effects of causal 567 

variants on specific phenotypes at the single-base level in a high-throughput and 568 

unbiased manner. CRISPRi/a-based genomic perturbation cannot accurately assess the 569 

genetic effects at the variant and allelic levels, nor can it distinguish between closely 570 

located genetic variations (e.g., less than 1kb). Additionally, some potential functional 571 

CREs cannot be driven by CRISPRi/a. Therefore, we need to develop efficient single-cell 572 
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single-base perturbation technologies to accurately measure the true effects of genetic 573 

variations on gene expression. Finally, this experiment only evaluates the effects of 574 

genetic loci using limited gene expression as the readout due to genomic distance and 575 

expression level constraints. However, many functional regulatory variations may affect 576 

gene expression levels through moderate or trans-effects or directly influence other 577 

transcriptional-level molecular phenotypes without changing gene expression conditions. 578 

Despite these limitations, our study reveals several unique patterns for the complexity of 579 

gene expression regulation. 580 

 581 

582 
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Methods 583 

 584 

Plasmids 585 

The dCas9-VP64-blast (Addgene, #61425) and dCas9-KRAB-blast (Addgene, #89567) 586 

plasmids were separately used to perform CRISPRi and CRISPRa experiments. The 587 

sgRNA oligos were annealed and cloned into the CROP-seq-opti plasmid (Addgene, 588 

#106280) after BsmBI (NEB, R0580L) digestion. The sgRNA library was synthesized by 589 

Synbio Technologies. The psPAX2 (Addgene, #12260) and pMD2.G (Addgene, #12259) 590 

were used to pack lentiviruses. The plasmids were used for dual-luciferase reporter 591 

assay, including the pRL-TK Renilla luciferase control vector (Promega, E2241), pGL3-592 

Promoter (Promega, E1761), and pGL3-basic (Promega, E1741).  593 

 594 

Cell lines and cell culture 595 

293FT (ThermoFisher, R70007) cells were cultured in Dulbecco’s Modified Eagle’s 596 

Medium (DMEM; ThermoFisher, 11965092) containing 10% FBS. HAP1 (Horizon 597 

Discovery) cells were cultured in Iscove’s Modified Eagle’s Medium (IMDM; 598 

ThermoFisher, 31980030). Both cells were supplemented with 10% fetal bovine serum in 599 

5% CO2 at 37°C. Diploid HAP1 cells were isolated from Hoechst (MCE, Y-15559)-stained 600 

HAP1 cells by flow sorting. 601 

 602 

WGS-based blood eQTL fine-mapping 603 

Seven WGS-based blood-derived eQTL datasets were used to identify independent 604 

eQTL signals and fine-mapped LEVs based on CaVEMaN method (54). Specifically, the 605 

fine-mapped eQTL variants for GTEx V8 whole blood eQTLs (670 whole blood samples) 606 

were obtained from GTEx portal (2), and the fine-mapped eQTL variants for several other 607 

cohorts with blood-derived samples, including Geuvadis (445 lymphoblastoid cell 608 

samples), and TwinsUK (523 lymphoblastoid cell samples and 246 whole blood samples), 609 

were obtained from the original CaVEMaN publication (54). Additionally, for BLUEPRINT 610 

samples (190 monocyte samples, 196 neutrophil samples and 165 CD4+ T cell samples), 611 

we conducted eQTL mapping using FastQTL (55) based on the individual WGS 612 

genotypes and normalized RNA-seq quantifications. Permutation test was applied to 613 

estimate the nominal P thresholds required for the conditional analysis, Then, we used 614 

CaVEMaN to perform eQTL fine-mapping for each significant eQTL signal, and extracted 615 

the best eQTL that was most likely to be causal.  616 

 617 

Nomination of reproducible pLD signals with multiple LEVs 618 

Based on eQTL fine-mapping results from GTEx V8 whole blood samples, we sought to 619 

identify independent eQTL signals that are reproducible in at least one additional blood-620 

derived eQTL dataset. Generally, we measured LD using genotypes of European 621 

samples from 1000 Genomes Project phase3 (56) and searched perfectly correlated 622 

LEVs (R2 = 1) with each GTEx LEV among fine-mapped eQTL signals of other blood-623 

derived datasets. Ultimately, we integrated all fine-mapped variants in seven eQTL 624 

datasets to retain independent signals which contains at least two undistinguishable 625 

LEVs in pLD. To ensure that the genes being tested were measurable in 10x scRNA-seq, 626 
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we only included top 20% expressed genes in HAP1 cells. Then, LEVs located in protein-627 

coding/splicing-altering region of the human genome or in the chr15 diploid region of 628 

HAP1 cell line were excluded. Due to the limitations of CRISPRi/a in the scope of 629 

genomic targeting, we only retained signals with a distance greater than 1 kb between 630 

each pairwise LEVs. Thus, pLD signals that were distant from these highly expressed 631 

genes (> 1 Mb) in HAP1 cells were also excluded. All of these analyses, including the 632 

following, were based on the human genome assembly GRCh37/hg19. 633 

 634 

sgRNA library design  635 

We used FlashFry 1.9.3 (57) to design sgRNAs targeting each eCRE. We excluded 636 

sgRNAs whose splicing sites located more than 50 bp away from the eCRE-associated 637 

LEVs and with IN_GENOME>= 2. Then we ranked the remaining sgRNAs based on 638 

Doench2014OnTarget, Hsu2013, and Doench2016CDFScore, as well as otCount. We 639 

selected the top two sgRNAs targeting each eCRE (except for cases where only 1 or no 640 

sgRNA met the criteria). To include appropriate controls, we incorporated 39 non-641 

targeting control gRNAs from the Human CRISPR Knockout Pooled Library (GeCKO V2) 642 

(58) as negative controls and nine sgRNAs targeting promoters of 4 genes (EZH2 (59), 643 

CANX (60), NEAT1 (61), PARK7 (20), among which EZH2 was targeted by three sgRNAs) 644 

and two sgRNAs targeting an enhancer of NMU (60) from different studies as positive 645 

controls. The oligos of the sgRNA library were synthesized and cloned to the CROP-seq-646 

opti vector after BsmBI digestion by Synbio Technologies, according to the GeCKO V2 647 

(58). Additionally, sgRNAs targeting the same eCRE or positive control site are referred 648 

to as a "sgRNA group". In the following bioinformatics analysis, all sgRNA groups that 649 

target eCRE are referred to as "perturbative sgRNA groups", whereas all other sgRNA 650 

groups are referred to as "control sgRNA groups".  651 

 652 

Quality control of synthetic sgRNA library  653 

To assess the quality and potential bias of the sgRNA library, the sgRNA sequences were 654 

amplified using PCR from either the plasmid library or genomic DNA extracted from 655 

HAP1 cells 4 days post-transduction, using qsgRNA-F and qsgRNA-R primers and 2x 656 

Phanta Max Master Mix (Vazyme, P515-01). The resulting PCR products were purified 657 

using the QIAquick PCR Purification Kit (Qiagen, 28106) and then used to generate a 658 

next-generation library using the VAHTS Universal DNA Library Prep Kit for Illumina V3 659 

(Vazyme, N607-01). The library was purified using AMPure XP beads (Beckman Coulter, 660 

A63880) and sequenced on an Illumina NovaSeq PE150. The sgRNAs were identified by 661 

matching the sequence to "CACCG[sgRNA]GTTT" and compared to the designed 662 

sgRNAs to determine the correct rate of the sgRNA plasmid library. The potential bias 663 

was evaluated by calculating the ratio of 90th percentile to 10th percentile sgRNAs that 664 

had at least one sequencing read. 665 

 666 

Production of lentivirus 667 

293FT cells were seeded 24h prior to lentivirus packaging. The lentivirus was produced 668 

by co-transfecting the backbone plasmid with viral packaging plasmid (psPAX2) and viral 669 

envelope plasmid (pMD2.G) at a ratio of 4:3:1 into 293FT cells using LipoFiter (Hanbio, 670 
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HB-LF-1000) according to the manufacturer's instructions. The cell culture supernatant 671 

was collected 48h post-transfection and filtered using a 0.45 μm filter. 672 

 673 

Construction of dCas9-KRAB and dCas9-VP64 stably expressed HAP1 cells  674 

Lentivirus containing dCas9-KRAB-blast and dCas9-VP64-blast were separately used to 675 

construct stably-expressing HAP1 cells. Diploid HAP1 cells were seeded into a six-hole 676 

plate supplemented with 8 μg/mL polybrene (Beyotime, ST1380) 24h prior to lentivirus 677 

infection. The lentivirus was added to the cells and 24 hours post-infection, blasticidin 678 

(ThermoFisher, 461120) was added to the culture supernatant to a final concentration of 679 

10 μg/mL. Selection was maintained for 3 days to obtain stably-expressing cell lines. The 680 

Anti-CAS9 Antibody (BOSTER, BM5120) and Anti-β-Actin antibody (ABclonal, AC02) 681 

were used to verify the expression of the dCas9-KRAB and dCas9-VP64 by Western blot. 682 

The stably-expressing cell lines were then plated in a 96-well plate by limiting dilution and 683 

cultured for 2 weeks to obtain single clones. The activation and inhibition efficiency of 684 

single clones were verified by infection with lentivirus containing sgRNA targeting the 685 

TSS of EZH2. The two most efficient clones of each cell line were selected for 686 

perturbation. 687 

 688 

Infection of lentivirus with different MOIs 689 

The lentivirus supernatant of the sgRNA library was concentrated using the ViraTrap™ 690 

Lentivirus Concentration Reagent (Biomiga, BW-V2001-01) and titrated using the Lenti-691 

Pac™ HIV qRT-PCR Titration Kit (GeneCopoeia, LT005). The dCas9-KRAB and dCas9-692 

VP64 stably expressed HAP1 cell lines were seeded into a 24-well plate and transfected 693 

with the concentrated sgRNA library at MOI=500 (moderate MOI). To increase the 694 

infection efficiency, 8 μg/mL polybrene was added to the cell culture. After 24 hours, the 695 

cells were treated with 0.3 μg/mL puromycin (Sigma-Aldrich, P7255) for three days. For 696 

high MOI infections, a second round of infection was performed to achieve a higher MOI. 697 

 698 

scRNA-seq and sgRNA-transcript enrichment  699 

To prepare multiplexed CROP-seq libraries, adherent cells were digested with 0.25% 700 

trypsin and collected in a 15mL tube containing serum-containing medium, followed by 701 

centrifugation and washing of the cell pellet with serum-free basal medium to obtain a 702 

single-cell suspension. The cell density was adjusted with a cell counter and the 10x 703 

Genomics Chromium Single Cell 3’ Library reagents V3 were used according the 704 

manufacturer’s instructions. To enrich for sgRNA-transcripts, PCR was performed on 15 705 

ng of cDNA from the 3’ single-cell RNA libraries using SI-PCR primer and 10x-sgRNA i7-706 

N720 primer in each 50 μL reaction with an annealing temperature of 60°C and 2 × 707 

Phanta Max Master Mix. The enriched sgRNA libraries were sequenced on Illumina 708 

NovaSeq6000 PE150 with the same configuration as the standard 10x libraries. 709 

 710 

scRNA-seq data processing 711 

The sequencing data from 10x Genomics Chromium 3’ scRNA-seq underwent initial 712 

processing with Cell Ranger v5.0.1, which involved sequence alignment, filtering, 713 

barcode counting, and UMI counting. The resulting data were further analyzed using 714 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.06.539696doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.06.539696
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

Seurat v4.0.3 (62), where a series of quality control measures were applied. Specifically, 715 

cells with mitochondrial percentage exceeding 10% or having less than 200 gene UMIs 716 

were removed. Additionally, genes that were expressed in less than 0.525% of cells were 717 

filtered out. Droplets were also identified and removed using scDblFinder (63). 718 

 719 

sgRNA and single cells assignment 720 

With the fore-mentioned amplification protocol (25), we enriched sgRNAs and then 721 

calculated the distribution of sgRNAs in different perturbation. Firstly, we aligned the 722 

enrichment reads to reference genome (GRCh37/hg19) using Cell Ranger v5.0.1, 723 

following the same procedure as for scRNA-seq data processing. We then extracted the 724 

reads that failed to align to the reference genome using Samtools (64). Next, we mapped 725 

each unmapped read to the sequences of the sgRNA library and its reverse complement. 726 

To limit the sequence before and after the sgRNA sequence, we used ACCG as the left 727 

anchor (which is at the end of the U6 promoter) and GTTT as the right anchor. During the 728 

sgRNA detection process, we also extracted the cell barcode and sgRNA UMI count for 729 

each perturbed cell. The number of sgRNAs per cell and the number of cells bearing 730 

each perturbation was calculated based on data from multiplexed single-cell CRISPRi 731 

and CRISPRa perturbations with different MOIs. 732 

 733 

eCRE-gene association analysis 734 

For each targeted eCRE, we divided cells into two groups based on whether they contain 735 

specific sgRNAs targeting observed eCRE, and evaluated the differential expression of 736 

candidate genes within 1 Mb of the eCRE between perturbative sgRNA group and control 737 

sgRNA group using Normalisr (26). Normalisr is a unified normalization-association 738 

framework for statistical inference of gene regulation. It uses an ingenious normalization 739 

strategy followed by a regular linear regression model. The normalization step estimates 740 

the pre-measurement mRNA frequencies from the scRNA-seq UMI counts and regresses 741 

out the nonlinear effect of library size on expression variance. And then a linear 742 

regression model tests the associations between eCRE and perturbGene, where two-743 

sided P were computed from Beta distribution, and log fold change was estimated using 744 

maximum likelihood. We also included additional covariates including mitochondrial 745 

percentage, unique gene count, and sgRNA count in the association testing to improve 746 

the accuracy of the results. To avoid false positive results, we estimated the P of the 747 

associations between genes and NTC sgRNAs and considered them background P. An 748 

empirical P was calculated based on the background P and raw P, which was then 749 

adjusted by FDR (q-value) for multiple testing corrections. Finally, we defined a 0.2 750 

threshold of q-value based on the NTC tests as they are subject to the same sources of 751 

error as the eCRE-targeting sgRNAs. 752 

 753 

Simulation for power estimation 754 

Based on Splatter (65), we simulated synthetic scRNA-seq datasets with various 755 

group.prob parameters to mimic CROP-seq cells under different perturbation conditions. 756 

The Splatter simulation process consisted of two steps. First, we estimated the 757 
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necessary parameters for simulation using splatEstimate from the CROP-seq dataset. 758 

Subsequently, we utilized the estimated parameters to simulate synthetic scRNA-seq 759 

datasets with splatSimulate, where the average expression of each gene was randomly 760 

sampled from a gamma distribution and the cell's experimentally measured count was 761 

sampled from a Poisson distribution. To simulate perturbation under different MOIs, we 762 

used the group.prob parameter, which is a vector containing two values. The first value 763 

was obtained by dividing the number of perturbations per cell (ranging from 200 to 3,800) 764 

by the total number of cells, and the second value was obtained by subtracting the first 765 

value from 1. We used nCells parameter to simulate perturbation under different cells 766 

(ranging from 5,000 to 20,000). Finally, we assessed the power of each simulation by 767 

computing the ratio of recovered CROP-seq results to all CROP-seq results. 768 

Validation of individual hits  769 

For validation of positive eCRE-perturbGene pairs identified by multiplexed CRISPRi/a 770 

perturbations, the expression of perturbGenes was measured by RT-qPCR following 771 

individual perturbation with sgRNAs targeting the eCREs. Briefly, oligonucleotides of 772 

sgRNAs targeting causal eCREs and random sgNTC were synthesized and annealed, 773 

and then cloned into CROP-seq-opti plasmids that were digested by BsmBI. The 774 

resulting plasmids containing sgRNAs targeting the same eCRE were mixed in equal 775 

amounts and packaged into lentiviruses. The dCas9-KRAB and dCas9-VP64 stably 776 

expressed HAP1 cell lines were infected with the lentiviruses and selected with 777 

puromycin. RNA was extracted from cells, and cDNA was generated using HiScript II Q 778 

Select RT SuperMix for qPCR (+gDNA wiper) (Vazyme, R223-01). The cDNA was 779 

amplified with 2x SYBR Green qPCR Master Mix (Bimake, B21202) using ACTB as a 780 

positive control. Data were analyzed using the 2-ΔΔCt method, with sgNTC as the control. 781 

The effect on gene expression of sgRNAs targeting eCREs was calculated after 782 

normalization. 783 

 784 

Luciferase reporter assay 785 

Genomic sequences containing causal eCREs with different alleles of LEVs were 786 

amplified from HAP1 cell genomic DNA using overlapping PCR. The resulting fragments 787 

were integrated upstream of the luciferase gene in pGL3-Basic and pGL3-Promoter 788 

plasmids, and the concentration of the recombinant plasmids was determined using the 789 

Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851). 293FT cells were transfected with 1 790 

µg of recombinant plasmids or blank vectors with 40 ng of pRL-TK Renilla luciferase 791 

control vector using Lipofiter. After 24 h, cells were lysed with 200 µL lysis buffer and 792 

shaken slowly on ice for 10 min. Relative luminescence signals were measured using the 793 

Dual-Luciferase Reporter Assay System (Promega, E1960) and GloMax® 20/20 794 

Luminometer by normalizing firefly luciferase signal with renilla luciferase signal. 795 

 796 

Circularized chromosome conformation capture (4C) assay 797 

We used the 4C-seq method as described previously (66) to validate eCREs tagged by 798 

specific LEVs. To prepare the 4C-seq samples, approximately 1×107 HAP1 cells was 799 
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collected to crosslink by formaldehyde for 10min, and quenched with glycine at a final 800 

concentration of 125 mM. Cell pellets was washed twice with cold PBS and lysis on ice 801 

for 15 min with 5 mL lysis buffer. The nuclei were digested with the first enzyme (CviQI 802 

(NEB, R0639L) or NlaIII (NEB, R0125S)) and ligated with T4 ligase (NEB, M0202) 803 

overnight at 16°C. Proteinase K (Transgene, 20 mg/ml) was added to the sample, which 804 

was then placed in a 65°C water bath overnight to reverse the cross-links. After de-805 

crosslinking, DNA was extracted using phenol-chloroform-isoamylalcohol (Invitrogen, 806 

25:24:1) and finally dissolved in 150 μL of 10 mM Tris-HCl (pH 7.5). The sample was 807 

digested with the second enzyme (EcoRI (NEB, R0101S) or DpnII (NEB, R0543L)) and 808 

ligated with T4 ligase (NEB, M0202) overnight at 16°C. DNA precipitation was obtained 809 

by ethanol precipitation, and the DNA was dissolved in 150 μL of 10 mM Tris-HCl (pH 810 

7.5). The 4C template was obtained by adding 750 μL of Buffer PB solution (QIAGEN, 811 

#28106) to the sample and dividing it into three spin columns for centrifugation and 812 

washing. Each spin column was washed with 50 μL of 10 mM Tris–HCl (pH 7.5). The 813 

eluates from the three tubes were collected as 4C template. Viewpoint-specific 814 

amplification was performed with 8 × 200 ng 4C template using 2 × Phanta Max Master 815 

Mix. The next-generation library was constructed using the VAHTS Universal DNA Library 816 

Prep Kit for Illumina V3 and purified by AMPure XP beads following the manufacturer's 817 

instructions. The 4C-seq library were sequenced on the Illumina NovaSeq 6000 platform, 818 

producing pair-end reads of 150 bp. Processing and visualization of 4C-seq data was 819 

done using pipe4C and peakC pipeline as previously described (66, 67). 820 

 821 

Measurement of eCRE regulatory range across LD block and TAD 822 

We defined the LD blocks as multiple variants in strong LD across a region. Specifically, 823 

we measured LD between variants surrounding each fine-mapped signals (500 Kb) 824 

based on genotypes of Europeans from 1000 Genomes Project phase3 (56), using the 825 

LDproxy module of LDlink (68). We then merged all genomic positions for variants in 826 

strong LD with the fine-mapped eQTL LEVs (R2 >= 0.8) to form the LD blocks. To define 827 

a gene-regulating region, we considered the region from the CRE (±1 Kb of LEVs) to 5 828 

Kb upstream and 3 Kb downstream of the gene body of the target gene. We obtained 829 

TADs from in situ Hi-C of the HAP1 cell line (69). By constructing a 2 ×�2 contingency 830 

table, we performed a Fisher's exact test to evaluate the nonrandom association between 831 

the number of gene-regulating regions that lie in Hi-C TADs and those that lie in LD 832 

blocks. 833 

 834 

Benchmarks with computational prediction scores 835 

We conducted an evaluation on perturbation effect of causal eCREs against various 836 

computational methodologies for predicting base-wise regulatory potentials of DNA 837 

sequence. Multiplexed single-cell CRISPRi/a perturbation results were used as the 838 

golden standard to measure prediction performance. Positive samples were significant 839 

casual eCRE-associated LEVs, while negative samples were non-significant ones. To 840 

conduct a comprehensive evaluation of the performance of these algorithms, we used 841 

the AUC metric of the ROC to distinguish positive and negative samples at both LEV-842 

level and eCRE-level. First, we obtained pre-computed base-wise scores of 20 existingg 843 
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computational methods from regBase V1.1.1 (34). Due to the class imbalance of positive 844 

and negative samples, we randomly under sampled negative eCREs to match the 845 

number of positive eCREs. We repeated each sampling ten times. Second, Enformer 846 

(36), a deep neural network to predict gene expression levels given genomic sequence, 847 

was employed in our comparisons. Two Enformer principal components (PCs), 848 

representing a summary of the most important features that contribute to the prediction of 849 

gene expression levels, were calculated and used to generate empirical cumulative 850 

probability distributions of the first and second PC scores. By comparing these 851 

distributions, we determined if the PCs for significant and non-significant eCRE-852 

associated LEVs differed. For eCRE-level benchmarks, we estimated median, mean, and 853 

max scores for ±1 Kb of each eCRE-associated LEVs.  854 

 855 

Epigenomics analysis 856 

The raw sequencing reads of HAP1 ChIP-seq (H3K27ac, H3K27me3, H3K36me3, 857 

H3K4me1, H3K4me3, H3K9me3) and ATAC-seq were analyzed by the nf-core pipeline 858 

(70). Meta-profiles of LEV-centered regions (± 2.5 Kb) were generated from the bigWig 859 

files by deepTools (71). Heatmaps were generated using EnrichedHeatmap (72), and 860 

narrow peaks were called using MACS2 (73). The causal eCREs that intersected with 861 

peak(s) for at least one of fore-mentioned marks were classified as marked eCREs, In 862 

contrast, the causal eCREs that do not intersect with peak(s) for any marks are referred 863 

to as URE. 864 

 865 

Statistical analyses 866 

Statistical analyses were carried out with GraphPad Prism 8.0 (GraphPad Software). All 867 

experiments were performed at least three replicates, unless otherwise noted. 868 

Differences in means were compared using an unpaired two-tailed Student’s t-test, and 869 

graphed as the means ± standard deviations (SD). Statistical significance denoted as 870 

follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, no significant. 871 
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All sequencing data, including scRNA-seq and 4C-seq, generated in this study have 888 

been deposited in the Gene Expression Omnibus (GEO) database under accession 889 

GSEXXXX. All public data sources and primer sequences used in this study are listed in 890 

Supplementary Tables. The average expression of each gene in HAP1 cells in this study 891 

was calculated from several bulk RNA-seq data from GEO database under accession 892 

number GSE75515, GSE110142, and GSE111272. TAD information of in situ Hi-C for 893 

HAP1 cells was obtained from GEO under accession number GSE74072. The raw 894 

sequencing reads of HAP1 ChIP-seq (H3K27ac, H3K27me3, H3K36me3, H3K4me1, 895 

H3K4me3, H3K9me3) were downloaded from ENCODE repositories. Raw data of HAP1 896 

ATAC-seq was downloaded from GEO under accession number GSE111047. 897 

 898 

  899 
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Figure Legends 1070 

 1071 

Fig. 1 | Identification of causal eQTL-tagged CREs in pLD regions using 1072 

multiplexed single-cell CRISPRi/a perturbations. a, Schematic of the multiplexed 1073 

single-cell CRISPRi/a perturbations used to screen for causal eCREs tagged by eQTL 1074 

variants in pLD signals and to systematically study the regulatory relationships between 1075 

genetic loci and gene expression levels. LEV: lead eQTL variants with equal fine-mapped 1076 

causal probability; eCRE: LEV-tagged CRE (± 50 bp region of LEVs); pLD: perfect LD 1077 

(R2=1); MOI: multiplicity of infection; Blueprint-Tcel, Blueprint-neut and Blueprint-mono: 1078 

fine-mapped eQTL data of CD4+ T cell samples, neutrophil samples and monocyte 1079 

samples from BLUEPRINT project; TwinsUK-LCL and TwinsUK-blood: fine-mapped 1080 

eQTL data of lymphoblastoid cell samples and whole blood samples from UK10K 1081 

TwinsUK project; Geuvadis-LCL: fine-mapped eQTL data of lymphoblastoid cell samples 1082 

from Geuvadis project; GTEx V8-blood: fine-mapped eQTL data of whole blood samples 1083 

from GTEx V8 project. b, Summary information for the selected qualified LEVs and their 1084 

corresponding pLD signals, including the number of independent eQTL datasets that 1085 

support corresponding pLD signals, the number of fine-mapped LEVs within 1086 

corresponding pLD signals, and the causal probability (mean score of different datasets, 1087 

estimated via CaVEMaN) distribution of selected fine-mapped LEVs. c, The number of 1088 

gRNAs per cell and the number of cells bearing each perturbation in CRISPRa/i screen, 1089 

based on integration of data from both high or moderate MOIs. d, Quantile-quantile plot 1090 

comparing observed versus expected P of eCRE-targeting sgRNAs (blue) and non-1091 

targeting control (NTC) sgRNAs (gray; down-sampled) associated with gene expression. 1092 

e, Results of positive control sgRNAs in the CRISPRi and CRISPRa perturbations. 1093 

sgRNAs targeting EZH2, CANX, NEAT1, PARK7 are positive control targeting promoter 1094 

of genes, and sgRNA effect on NMU is associated with an enhancer. f, Consistence 1095 

analysis of perturbation results and RT-qPCR results for the 20 randomly selected causal 1096 

eCREs-perturbGene pairs.  1097 

 1098 

Fig. 2 | CRISPR perturbations identify diverse regulatory patterns between causal 1099 

eCREs and their target genes in pLD signals. a, Distribution of the pLD signals 1100 

containing different numbers of causal eCREs (top), regulating different numbers of 1101 

perturbGenes (middle), and showing varied distances between eCREs and their 1102 

perturbGenes (bottom). b, Patterns of causal eCREs targeting their perturbGenes in 1103 

corresponding pLD signals. Genes are shown in dark blue or gray (possible nearest 1104 

gene). The direction and position of TSS are indicated by arrows. pLD signals are labeled 1105 

in light blue. Yellow dots represent eCREs. Arcs indicate regulatory relationships between 1106 

causal eCREs and perturbGenes, while dashed lines indicate possible regulatory 1107 

relationships. c, Validations of several representative eCRE-perturbGene pairs. 1108 

Corresponding eCRE-perturbGene regulatory patterns (top), RT-qPCR analysis of 1109 

perturbGene expression upon perturbation with sgRNAs targeting eCREs (middle) and 1110 

differential perturbGene expressions in multiplexed CRISPR perturbations (bottom). d, 1111 

4C assay and epigenomic evidence indicating chromatin interactions between 1112 

rs79423518-located DNA fragment (yellow shaded region) and promoter of PRDX5 and 1113 
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TMRT112 (blue shaded region). e, Luciferase assay results of rs4930698/rs79423518-1114 

tagged CREs and allele-specific effects of them. Error bars represent standard deviation 1115 

of the mean. P are indicated by asterisks, with *P < 0.05, **P < 0.01, ***P < 0.001, ****P 1116 

< 0.0001, and ns indicating not significant. 1117 

 1118 

Fig. 3 | Illustration and comparison of regulatory effects between eCRE 1119 

perturbations and eQTL mapping. a, Venn diagram comparing eCRE-perturbGene 1120 

pairs identified by the multiplexed single-cell perturbations with eQTL-eGene pairs 1121 

identified in GTEx V8 and eQTLgen datasets. b, Gene-level comparison including 1122 

perturbGene and eGene, similar with a. c, Consistency of the estimated effects between 1123 

eCRE-perturbGene pairs identified by the multiplexed perturbations and eQTL-eGene 1124 

pairs derived from the conventional eQTL datasets. The red and green dots represent 1125 

eCRE-perturbGene pairs in CRISPRa and CRISPRi perturbations, respectively, and the 1126 

lines between the dots indicate that the eCREs are located within the same pLD signal. d 1127 

and e, Examples of the varied regulatory effects on the target gene expression for the 1128 

causal eCREs in two LD signals. f, Distribution of the distance between the LEVs and 1129 

TSS of target genes in multiplexed perturbations (yellow) and GTEx V8 dataset (blue), 1130 

with the median indicated by dashed lines. g, Comparison of the distance distribution 1131 

between multiplexed perturbation results and GTEx V8 dataset in f, with statistical 1132 

analysis by two-tailed t-test. h, 4C results showing the chromatin interaction frequency 1133 

between the fragment containing rs143558304 and rs59508494 (top red arrow, 4C 1134 

viewpoint) and the promoter regions (blue shaded region) of the two perturbGenes 1135 

(bottom red arrows). i, RT-qPCR validation results for the sgRNAs targeting eCREs 1136 

tagged by rs59508494 and rs143558304, with sgNTC as control. Error bars represent 1137 

standard deviation of the mean. ****P < 0.0001. j, Differential perturbGene expressions in 1138 

the multiplexed CRISPR perturbations for the causal eCREs tagged by rs59508494 and 1139 

rs143558304. k, Schematic of patterns for causal eCREs regulating their target genes 1140 

when considering the ranges of TAD and LD block. The symbols representing TAD, LD 1141 

block, eCRE and pertubGene are shown in the figure. 1142 

 1143 

Fig. 4 | Evaluation of the endogenous perturbation effects via computational 1144 

predictions and functional annotations. a, Benchmarks of existing computational 1145 

methods in predicting causal eCRE-associated LEVs, non-significant eCRE-associated 1146 

LEVs were used as negative samples. b, Benchmarks of existing computational methods 1147 

in predicting causal eCRE by taking median prediction scores of all possible ± 1 Kb 1148 

variants surrounding corresponding LEVs, non-significant eCREs were used as negative 1149 

samples. c, Empirical cumulative probability distribution of the first and second Enformer 1150 

principal component scores for significant and non-significant eCRE-associated LEVs. d, 1151 

Empirical cumulative probability distribution of the first and second median Enformer 1152 

principal component scores for significant and non-significant eCRE, by taking median 1153 

prediction scores of all possible ± 1 Kb variants surrounding corresponding LEVs. e, 1154 

Epigenomic and computational evidence for two causal eCRE-associated LEVs, 1155 

rs75446625 and rs80159064. f, RT-qPCR validation results for the sgRNAs targeting 1156 

eCREs tagged by rs75446625 and rs80159064, with sgNTC as control. g, Differential 1157 
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perturbGene expressions in the multiplexed CRISPR perturbations for the causal eCREs 1158 

tagged by rs75446625 and rs80159064. h, Luciferase assay results of 1159 

rs75446625/rs80159064-tagged CREs and allele-specific effects of them. *P < 0.05; ** P 1160 

< 0.01; ***P < 0.001; ****P < 0.0001; ns, no significant. 1161 

 1162 

Fig. 5 | Evaluation of unmarked regulatory elements revealed by endogenous 1163 

perturbations and epigenomic marks. a, The epigenomic profile of HAP1 cells for 1164 

seven classical marks, including ATAC-seq, H3K27ac, H3K36me3, H3K4me1, H3K4me3, 1165 

H3K27me3 and H3K9me3, within a ± 2.5 Kb range surrounding causal eCRE-associated 1166 

LEVs. b, 4C results of the interaction frequency between the causal eCRE tagged by 1167 

rs73156934 (viewpoint, red triangle and yellow shaded region) and the promoter region 1168 

of CALD1 (blue shaded region). Epigenomic and computational evidence for two causal 1169 

eCRE-associated LEVs, including rs73156934 and rs10428917, are shown below. c, RT-1170 

qPCR validation results for the sgRNAs targeting eCREs tagged by rs73156934 and 1171 

rs10428917, with sgNTC as control. d, Differential perturbGene expressions in the 1172 

multiplexed CRISPR perturbations for the causal eCREs tagged by rs73156934 and 1173 

rs10428917. e, Luciferase assay results of rs73156934/rs10428917-tagged eCREs and 1174 

allele-specific effects of them. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, no 1175 

significant. 1176 

 1177 

Fig. 6 | Genome-wide comparison of various CRISPRi and CRISPRa effects. a, 1178 

Magnitude and direction of perturbation effects for all tested eCRE-gene pairs in 1179 

CRISPRi and CRISPRa perturbations, with blue dots indicating significance only in 1180 

CRISPRi, yellow dots indicating significance only in CRISPRa, red dots indicating 1181 

significance in both CRISPRa and CRISPRi, gray dots indicating no significance in both 1182 

perturbations. Significance threshold is q < 0.2. b, LocusZoom-like plot for all tested hits 1183 

and epigenomic marks for the causal eCREs identified via both CRISPRi and CRISPRa 1184 

perturbations, with blue indicating significance in CRISPRi, yellow indicating significance 1185 

in CRISPRa, and the vertical purple line indicating causal eCRE-perturbGene pairs 1186 

identified by both CRISPRa and CRISPRi perturbations. c, Distribution of the distances 1187 

between causal eCRE-associated LEVs and TSS of perturbGenes in hits at four 1188 

quadrants obtained from a. Left y-axis represents the type of quadrant, with colors 1189 

consistent in a. d, Enrichment of epigenomic marks in the four perturbation effect groups, 1190 

tested by Fisher’s exact test. 1191 
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