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26  Abstract

27  The vast majority of genetic loci associated with polygenic complex traits are located in
28 non-coding regions of the human genome. However, many of these regions exhibit high-
29 order gene regulatory relationships and complicated linkage disequilibrium (LD)
30  configurations, which bring challenges to accurately identify causal variants and their
31  target genes controlling specific molecular processes or traits. We employed multiplexed
32  single-cell CRISPR interference and activation perturbations to explore the links between
33 cis-regulatory element (CRE) and target gene expression within tight LD in the
34  endogenous chromatin context. We validated the prevalence of multiple causality in
35 perfect LD (pLD) for independent expression quantitative trait locus (eQTL), and revealed
36 fine-grained genetic effects on gene expression within pLD. These effects are difficult to
37  decipher using conventional eQTL fine-mapping or to predict via existing computational
38  methods. We found that nearly half of the casual CREs lack classical epigenetic markers,
39  potentially affecting gene expression through hidden regulatory mechanisms. Integrative
40 analysis on different types of perturbation effects suggested a high regulatory plasticity of
41 the human genome. These findings will propel further in-depth exploration of functional
42  genomic elements, facilitating a more comprehensive understanding of gene expression
43  regulatory patterns and the development of complex traits.
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45

46  Introduction

47  ldentifying fine-grained regulatory elements and complex trait/disease causal regulatory
48  variants on the human genome is a significant challenge in the current fields of functional
49  genomics and genetics. Years of functional genomic profiling and expression quantitative
50 trait locus (eQTL) studies have identified numerous cis-regulatory elements (CREs) and
51  expression-associated alleles in nearly a hundred human tissues/cells (1-3). However,
52  accurately pinpointing which CREs or even single allele(s) can modulate gene
53  expression under specific biological conditions remains difficult. This is especially true for
54  complex genetic loci, where complicated CRE-target gene relationships and linkage
55  disequilibrium (LD) contamination make it computationally and experimentally
56 challenging to precisely locate all causal elements and their target genes (4).
57  Furthermore, genome-wide association studies (GWASSs) have shown that the majority of
58 genetic loci associated with complex traits and diseases are located in non-coding
59 regions of the genome; however, colocalization analysis with eQTLs revealed only a
60 limited (8%-25%) proportion of shared genetic loci (5-7). This has sparked debate within
61  the field over whether a substantial portion of trait/disease-causal variants may not cause
62 phenotypic development by affecting gene expression.

63

64 A variety of large-scale, high-throughput experimental methods have been used to
65  systematically evaluate the regulatory potential of human genomic sequences and allele-
66  specific effects. Firstly, exogenous and episomal massively parallel reporter assays
67 (MPRASs) are highly efficient in identifying functional regulatory sites and alleles in various
68 cells (8, 9). Consistent with computational simulations (4), a recent study employed
69 MPRA to deeply assess high LD variants within independent eQTL signals,
70  systematically validating the widespread presence of multiple allelic effects in tight LD
71 (10). However, these experiments struggle to evaluate genetic effects and relationships
72  with specific molecular phenotypes (e.g., target gene expression) in the endogenous
73  chromatin environment of local genetic loci. Additionally, using CRISPR base editing
74  technology, researchers have been able to study the links between variants and complex
75  phenotypes in targeted genomic regions (11-14). However, due to the restrictions of
76  editing preference and efficiency in mammalian cells, most of these strategies are not
77  suitable for fine-mapping causal genetic loci affecting molecular phenotypes. Finally,
78 some studies employ CRISPR-based chromatin perturbations to exhaustively
79  characterize regulatory sites and their causal relationships with particular gene
80  expression(s) through tiling screening (15-18), but these studies have focused solely on a
81 small number of target genes.

82

83  Multiplexed single-cell CRISPR perturbations provide technical support for systematically
84  studying the regulatory relationships between genetic loci and fine-grained molecular
85 phenotypes in an endogenous cellular environment (19-21). However, these studies
86  heavily rely on prior knowledge (e.g., specific epigenetic markers) for the selection of
87  genetic loci and employ solely a single type of CRISPR perturbation. Whether such
88 technologies can accurately and unbiasedly pinpoint causal CREs that regulate gene
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89  expression within complex genetic loci (e.g., ultra-high LD region) is a scientific question
90  worth exploring. In this study, we leveraged multiplexed single-cell perturbations, through
9 both CRISPR interference and activation, to validate the ubiquity of multiple causal CREs
92 in perfect LD (pLD) within independent eQTL signal and to interrogate their regulatory
93 relationships with target genes. We have demonstrated that endogenous perturbations
94  can reveal intricate genetic effects and gene expression regulatory patterns, which are
95 challenging to identify through conventional eQTL mapping approaches. Moreover, we
96 found that current computational methods struggle to accurately predict the effects of
97  many endogenous perturbations on gene expression, and further investigation suggested
98 that nearly half of the casual CREs lack classical epigenetic markers, potentially
99 influencing gene expression through unique regulatory mechanisms. Lastly, by
100 comparing various types of CRISPRi/a perturbations, we have shed light on the
101 regulatory plasticity of the human genome through a distinct perspective.

102

103  Results

104 Comprehensive discrimination of independent eQTL effect at perfect LD (pLD)
105 using multiplexed single-cell CRISPR perturbations

106  Given fine-mapping causal allele(s) among perfectly correlated variants is either
107  computationally intractable or experimentally costly, we designed a series of extreme
108 scenarios and applied a single-cell perturbation strategy to provide unbiased
109 interrogation of expression-modulating causal effects at native genomic settings.
110  Generally, we first leveraged statistical fine-mapping on GTEx V8 whole-genome
111 sequencing (WGS)-based eQTLs (670 whole blood samples) to nominate independent
112  signals. Additionally, we collected and fine-mapped six WGS-based blood-derived eQTL
113  datasets from Geuvadis (445 lymphoblastoid cell samples), BLUEPRINT (190 monocyte
114  samples, 196 neutrophil samples and 165 CD4+ T cell samples), and TwinsUK (523
115  lymphoblastoid cell samples and 246 whole blood samples) (Table S1), and required that
116  independent signal is reproducible in at least one additional dataset. Ultimately, we
117  integrated all fine-mapped variants in seven eQTL datasets to retain independent signals
118  which contain at least two undistinguishable lead eQTL variants (LEVs, with equal causal
119  probability) in pLD (Fig. 1A and Fig. S1A, see details in Methods). As large-scale base
120  editing screens, such as prime editing (13), coupled with transcriptome readouts are
121 currently impractical, we performed multiplexed regional perturbations at the single-cell
122  level to investigate the causal relationships and multiplicity underlying eQTL effects within
123  these complex signals (Fig. 1A, see details in Methods).

124

125 To achieve effective discrimination of single-cell expression perturbations via CRISPR,
126  we focused on eQTL genes (eGenes) which are highly (top 20%) expressed in a human
127  near-haploid leukemia cell line (HAP1), and excluded unqualified LEVs (e.g., proximal
128  variants or protein-coding/splicing-altering variants) in each signal (Fig. S1A and Fig.S1B,
129  see details in Methods). Thus, 81 independent eQTL signals (reproducible in 2 to 7
130  additional datasets) were finally selected, and each contains more than a single qualified
131 LEV within pLD (range of 2 to 6). Finally, the perturbation library incorporates 217 LEVs
132  (Fig. 1B and Table S2). Two or three single guide RNAs (sgRNAs) were designed to

3


https://doi.org/10.1101/2023.05.06.539696
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.06.539696; this version posted May 8, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

133 target each LEV-tagged region, and additional two sets of control sgRNAs were also
134  used, including 39 non-targeting control (NTC) sgRNAs as negative control and 11
135  previously validated sgRNAs as positive control (21). The sequence of 472 designed
136 sgRNAs was cloned into a lentiviral CROP-seq-opti vector (Table S3) (22). The quality of
137  the constructed sgRNA plasmid library was validated and was found to be of high quality,
138 as evidenced by the coverage rate of greater than 99% (Fig. S1C) and a low degree of
139  uniformity, with the top 90" to 10" sgRNA having a representation difference of less than
140  10-fold (Fig. S1D). Consistency in sgRNA distribution within plasmid library was also
141  observed upon viral transduction at varied multiplicity of infection (MOI) (Fig. S1E).

142

143  To maximize the detection power of CRISPR-based perturbations for fine-mapped LEV-
144 tagged CRE (eCRE, + 50 bp region of LEVs) discovery, we used both CRISPR
145  interference (CRISPRI, a nuclease-deactivated Cas9 tethered to the KRAB repressor
146  domain, dCas9-KRAB) and CRISPR activation (CRISPRa, a dCas9 tethered to the
147  transcriptional activator VP64, dCas9-VP64) systems (Fig. S1F). Previous studies have
148 demonstrated that the introduction of multiple perturbations per cell can substantially
149  augment the statistical power to identify causal relationships between CREs and their
150 target genes in a cost-efficient manner (21, 23, 24). Thus, lentiviral vectors containing our
151  sgRNA library were then transduced into selected monoclonal cell lines at either
152  moderate or high MOI (Fig. S1F-S1l). This approach allowed us to comprehensively
153 investigate the causal eCREs and their target genes among multiple eQTL signals, while
154  minimizing genetic heterogeneity in our experimental system. After a 14-day cell culture
155  for effective CRISPRi/a perturbation, the transcriptomes of 14,481/15,296 (CRISPRI) and
156  17,303/17,709 (CRISPRa) single cells were profiled with four 10x single-cell RNA
157  sequencing (scRNA-seq) libraries. Targeted amplification of SgRNAs from cDNA in these
158  perturbation libraries (25) suggested that the number of sgRNAs per cell and the number
159  of cells per perturbation was increased as MOI increases in both CRISPRi and CRISPRa
160  perturbations (Fig. S1J and S1K). Joint analysis of data under different MOls revealed a
161 median of 13 sgRNAs per cell and a median of 850 cells bearing each perturbation with
162  CRISPRI, and a median of 6 sgRNAs per cell and a median of 245 cells bearing each
163  perturbation with CRISPRa, respectively (Fig. 1C).

164

165  We applied a unified normalization-association framework, Normalisr (26), to analyze the
166  relationship between each eCRE and nearby expressed genes (x 1 Mb) (see details in
167  Methods). Quantile-quantile plots indicated an excess of significant associations of
168  sgRNAs targeting eCRE compared with NTCs in all conditions (132 and 34 significant
169  pairs of eCRE and its perturbed gene (perturbGene) in merged CRISPRi (Table S4) and
170  CRISPRa (Table S5) screenings respectively, FDR < 0.2). The perturbation with high MOI
171 achieved higher power than moderate MOI (Fig. 1D), and the perturbation effects from
172  significant hits between moderate and high MOIs showed good agreement (Fig. S2A and
173  Fig. S2B). Besides, we observed significant consistency between the results of the
174  perturbation experiments under different MOI conditions (R = 0.23, P = 0.0034) (Fig.
175  S2C). To further explore the influence factors determining the statistical power of
176  multiplexed single-cell CRISPR perturbations, we simulated several scRNA-seq datasets
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177  with various perturbation conditions, including effective sgRNAs per cell and total
178  captured cells in each perturbation (see details in Methods). The results demonstrated
179  that, consistent with the real experiments, increasing the number of perturbations in each
180 cell led to better statistical power. However, simply increasing the number of captured
181 cells in scRNA-seq only slightly promoted statistical power (Fig. S2D). These findings
182  suggest that, for perturbation effects that are sparse in terms of their downstream
183  consequences, multiplexed sgRNAs will offer powerful and cost-efficient solution in
184  single-cell CRISPR perturbations.

185

186  To validate the screening results, we first confirmed the effects of all positive control
187  sgRNAs, which were highly concordant with the literature report (Fig. 1E). Additionally,
188 we randomly selected 20 groups of sgRNAs targeting causal eCRE and performed
189 individual CRISPRI or CRISPRa perturbations, followed by reverse-transcription gPCR
190 (RT-gPCR), to confirm the effect of sgRNAs on their pertubGenes, with no-targeting
191 sgRNAs as control. As expected, a positive correlation (R = 0.75, P = 5.70e-12, T-test)
192  between the RT-gPCR results and the effect size observed in multiplexed single-cell
193 CRISPR perturbations was found (Fig. 1F and Fig. S3). This results further demonstrate
194  the credibility of our single-cell perturbation screens in testing the effects of eCREs on
195 their potential target genes.

196

197  Multiple causal cis-effects and target gene configurations underlie complex
198 genetic associations on gene expression

199 Based on the significant hits in both CRISPRI/CRISPRa screens, we first inquired
200 whether the presence of multisite cis-regulation and multiplicity of target genes in pLD is
201 prevalent. Our results showed that, over 70% of the investigated pLD signals contained
202 at least one significant causal eCRE. Among these significant pLD signals, 49.1% of
203  them showed multiple (2 to 5) causal eCRE (44.2% in CRISPRi and 11% in CRISPRa,
204  respectively), suggesting a high proportion of multisite cis-regulation. Besides, over half
205 (52.6%) of these pLD signals had multiple target genes, with the maximum being greater
206 than four, while standalone CRISPRi and CRISPRa analyses revealed proportions of
207 51.9% and 14.8%, respectively. Additionally, we found that the perturbGenes from 39%
208 pLD signals were the closest to the associated causal eCRE, 53% were located distally,
209 and the remaining 9% could link to both closest and distal target genes (Fig. 2A and Fig.
210  S4A). These results emphasize the pervasive existence of multisite cis-regulation
211 affecting various target genes in pLD, which complicates the identification of true causal
212  variants in both eQTL and GWAS fine-mapping.

213

214 To investigate the target gene configurations underlying the complex genetic associations
215  on gene expression, we partitioned the pLD signals containing significant eCRE-
216  perturbGene pairs into two regulatory patterns (single causal and multiple causal) (Fig.
217 2B, Fig. S4B). For pLD signals with unique causal eCRE, some only associated with the
218 nearest gene (12.3% of the total significant pLD signals) (Fig. 2B). For example, two
219  highly linked LEVs, rs3782235 (GRCh37: chrl2:56915547-G-A) and rs4759247
220 (12:56918834-T-G) located more than 1 Kb apart from each other. Our CIRSPRa
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221 perturbation screens revealed that only rs3782235-tagged CRE significantly affected the
222  expression of the adjacent gene RBMS2, which was confirmed by RT-gPCR. Specifically,
223  the sgRNA targeting rs3782235 significantly up-regulated the expression of RBMS2 with
224  a greater effect size than sgRNAs targeting rs475924, consistent with the screening
225  results (Fig. 2C). Interestingly, a recent GWAS of blood traits (27) found rs3782235 was
226  significantly associated with hematocrit percentage, suggesting that rs3782235 could be
227  a causal variant modulating RBMS2 expression in haematocrit-related traits. Besides,
228 instead of the nearest gene, 29.8% significant pLD signals connected to a single distal
229 gene via corresponding causal eCRE (Fig. 2B). Moreover, casual eCREs in a small
230 fraction of pLD signals (8.8%) can regulate multiple target genes (Fig. 2B). For instance,
231 CRISPRa perturbations revealed that rs1049359-tagged CRE, rather than other highly
232  linked variant-marked eCRE in pLD, affected the expression of two distal target genes,
233  RNF181 and TMSB10, which were independently verified by RT-gPCR (Fig. 2C).

234

235  As for multiple causal patterns, 19.3% of the total significant pLD signals incorporated
236  more than one causal eCREs targeting the same target gene(s), indicating the common
237  phenomenon of multisite constraints on eQTL fine-mapping (4, 10). For example, we
238 identified two significant eCREs (tagged by rs4930698 (chr11:64085063-G-C) and
239  rs79423518 (chr11:64105454-G-A)) in a pLD signal that were both associated with two
240  target genes PRDX5 and TRMT112. Consistent with the CRISPRI screening results, the
241 effect of two eCREs was confirmed through RT-gPCR, which showed that the sgRNAs
242  targeting the corresponding eCRE significantly decreased the expression levels of both
243  PRDX5 and TRMT112 (Fig. 2C). The rs4930698-tagged CRE is located in the upstream
244  promoter region of PRDX5 and downstream promoter region of TRMT112, and overlays
245  several active chromatin marks including H3K4me3, H3K27ac and open chromatin,
246 indicating its high regulatory potential. Besides, rs79423518-tagged CRE lies at
247  intergenic region ~20 Kb downstream of PRDX5, and obtains weak enhancer marks such
248  as H3K4mel and H3K27ac (Fig. 2D). To investigate the regulatory function of these two
249 eCREs, we first performed chromosome conformation capture combined with high-
250 throughput sequencing (4C-seq) that anchored at rs79423518-tagged CRE, and
251 observed a strong interaction between the CRE and the promoter region of PRDX5 and
252  TRMT112. This suggests that a direct regulation between rs79423518-tagged CRE and
253 the promoter of two target genes. Then, luciferase reporter assay revealed that
254  rs4930698-tagged CRE exhibited both promoter and enhancer activities, and showed an
255  allele-specific effect, while rs79423518-tagged CRE was also found to have regulatory
256  functions (Fig. 2E). By contrast, more pLD signals (29.8%) received multiple causal
257 eCREs that regulated different target genes (Fig. 2B), highlighting the complexity of
258  genetic regulation in highly linked loci. In summary, our endogenous perturbation screen
259 in pLD serves as a valuable method to facilitate the identification of true causal variants
260 and their associated CREs in cases where statistical fine-mapping faces challenges,
261  while also nominating potential target genes regulated by functional CREs. Consistent
262  with recent exogenous research (10), our findings question the assumption that a single
263  variant typically accounts for the causality of an independent association locus. Overall,
264  this result underscores the importance of recognizing the complexity of genetic regulation
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265  when interpreting GWAS signals.

266

267 Comparison of regulatory effects between eCRE perturbation and conventional
268 eQTL mapping

269  To assess the physiological relevance of the eCRE-perturbGene pairs uncovered through
270  our multiplexed single-cell CRISPR perturbations, we compared them with the whole
271 blood eQTL mapping results from GTEx V8 and eQTLgen (28). Among all significant
272  eCRE-perturbGene pairs identified in pLD regions, approximately 30% associated eQTL-
273  eGene pairs were found to exist in either GTEx or eQTLgen (Fig. 3A). Similar trends
274  were also observed for perturbGenes (Fig. 3B), suggesting that a large proportion of
275  significant hits from CRISPR perturbations were not captured by current eQTL mapping
276 in whole blood. To explore this further, we compared our findings to a larger eQTL
277 dataset from QTLbase (3), which integrates multiple eQTL studies from various
278  tissues/cell types and conditions. We found that a large proportion of additional overlaps
279  could be recovered (Fig. S5A-S5D), suggesting different types of CRISPR perturbation
280 could capture some eCREs that are specific to the cell type or environmental condition
281 not being well studied.

282

283  Previous statistical methods for causal eQTL fine-mapping mostly assumed that
284  functional regulatory variants are sparsely distributed and the tight linkage among them
285 has limited the ability to accurately estimate the magnitude of genetic effects (4). Despite
286 the positive overall effect correlation between eCRE-perturbGene pairs from CRISPR
287  perturbations and corresponding eQTL-eGene pairs from GTEx whole blood tissue (R =
288 0.14, P = 0.039), we observed many discrepancies at same pLD signal with multiple
289 causal eCREs (Fig. 3C). For examples, independent CRISPR perturbations showed
290 similar or varied effects for two causal eCREs in pLD respectively (Fig. 3D and Fig. 3E).
291 However, at these multisite regulation pLD regions, the true effect sizes of individual
292  causal loci were indistinguishable (e.g., overestimation or underestimation) using
293  conventional eQTL mapping. These suggest that our multiplexed single-cell CRISPR
294  perturbations offer a more comprehensive assessment of the magnitude of expression-
295  modulating causal effects at endogenous genomic environment.

296

297  The high enrichment of functional eQTLs near the transcriptional start site (TSS) had
298  been extensively documented (29, 30). By evaluating the target gene TSS distances of
299 eQTL-associated LEVs from GTEx and causal eCRE-associated LEVs from CRISPR
300 perturbation, we found that the LEVs from CRISPR screen hits lie at greater distances
301 from the nearest TSS (median 26 Kb) compared to LEVs in conventional eQTL mapping
302 (median 400 Kb) (P < 2.2e-16, T test, Fig. 3F and Fig. 3G, see details in Methods). For
303 instance, rs59508494 (19:16211630-A-G) and rs143558304 (19:16213697-T-TA) are
304 located close to each other (=2 Kb) within pLD region. The two LEVs are significantly
305 associated with TPM4 gene expression in GTEx whole blood tissue. Interestingly, Both
306 CRISPRI perturbation screen and RT-gPCR revealed that rs59508494 could regulate a
307 distal gene EPS15L (390 Kb) and rs143558304 could regulate another distal gene ILVBL
308 (900 Kb), respectively (Fig. 31 and 3J). The long-distance interactions between the two
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309 LEVs and their previously unknown targets were validated by 4C-seq that anchored at a
310  genomic fragment containing the two variants (Fig. 3H). Given the evidence that GWAS
31 hits are further from TSSs than eQTLs and show limited overlaps with them (5-7), the
312  multiplexed CRISPR perturbations would provide a comprehensive supplement to study
313  the shared genetic effect between disease/trait-causal variants and functional regulatory
314  sites.

315

316  Topologically associating domains (TAD) and LD are two measurements of chromosomal
317 interaction and genome genetic structure respectively, by which the genome is divided
318 into different segments. Boundaries and ranges of both measurements are important for
319  exploring the relationship between genetic architecture and gene regulation. Previous
320 findings revealed that genomic architectures of genetic and physical interactions are
321 generally independent, and the regulation range of eQTL-eGene is irrelevant with LD (31).
322  Here, using the eCRE-perturbGenes identified by CRISPR perturbation, we reassessed
323  such relevance and found that the causal eCREs regulating their target genes within the
324  same TAD are more likely to locate in a highly linked LD block (Odds ratio = 14.2, P =
325 9.4e-11, Fisher's exact test, Fig. 3K, see details in Methods). This also suggests that
326 artificial genetic perturbation would capture additional layers of gene regulation against
327  the traditional eQTL mapping in homeostatic conditions.

328

329 Endogenous perturbation effects are poorly predicted via computational
330 predictions and functional annotations

331 Given statistical fine-mapping faced the tremendous challenge to accurately identify true
332  causal eQTL variants in pLD, we next sought to evaluate the performance of the existing
333  computational methods and functional annotations in distinguishing the regulatory
334  potential of eCREs through endogenous CRISPR perturbation. First, we leveraged 20
335 functional/pathogenic variant scores to test their abilities of causal eCRE/LEV
336 classification (Table S6 and Table S7, see details in Methods). Consistent with the
337  previous benchmarks using massively parallel reporter assays (MPRAs) data (10, 32),
338 existing prediction tools showed restricted performance in discriminating significant
339 causal eCREs or corresponding LEVs from non-significant ones in our CRISPR
340  perturbation screens (Fig. 4A, Fig. 4B, Fig. S6A and Fig. S6B). Specifically, the results
341 showed that among the 20 methods for predicting functional eCRE/LEV, DVAR (33),
342 RegBase_ REG (34) and Eigen-PC (35) achieved a better performance (Area Under the
343  ROC Curves (AUCs) are close to 0.6) than others in the majority of benchmarks. Notably,
344  these top-performed tools were either learned from unsupervised algorithms (such as
345 DVAR and Eigen-PC) or presented an ensemble score by integrating existing prediction
346  methods (like RegBase), implying they could capture unknown features that explain the
347  endogenous activity of regulatory sites. Second, we applied a recent deep learning model,
348 Enformer (36), which predicts sequence effects on gene expressions and chromatin
349  states, to investigate the agreement between predicted effects and perturbation effects at
350 tested eCRE/LEV sites (Table S6 and Table S7, see details in Methods). We noted
351 similar enrichment patterns of investigated eCREs and the associated LEVs on Enformer
352  scores, in which significantly casual eCREs or tagging LEVs enriched at the top
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353  percentiles of Enformer scores from the first two components, compared with non-
354  significant ones (Fig. 4C, Fig. 4D, Fig. S6C and Fig. S6D). Nevertheless, the differences
355  between the eCRE groups remain small.

356

357  Furthermore, we illustrated a case wherein computational predictions and functional
358  annotations poorly worked. Specifically, we observed that rs75446625 and rs80159064
359 were two perfectly linked variants located in the intronic region of NUDT7. While the
360 rs75446625-tagged CRE harbored several active chromatin states (including open
361  chromatin, H3K27ac and H3K4me3), the rs80159064-tagged CRE was completely
362  depleted from classical markers. As expected, rs75446625 was highly scored by four top-
363  performed scores (including DVAR, CDTS (37), RegBase_REG and Eigen-PC) and two
364  Enformer components. In contrast, rs80159064 showed very low scores for most of these
365 tools (Fig. 4E). However, our CRISPRI perturbation screens identified that the CREs
366 tagged by the two LEVs can modulate the expression of a common target gene NUDT?7,
367  which was also successfully validated through RT-gPCR (Fig. 4F). Luciferase reporter
368  assays revealed that the two eCREs both had regulatory functions as an enhancer and
369 showed allelic-specific effects (Fig. 4G and Fig. 4H). Particularly, compared to
370 rs75446625-tagged CRE, rs80159064-tagged CRE exhibited larger effect in CIRSPR
371 screen (Fig. 4E) and equivalent effects at in vitro reporter assays, respectively. Taken
372  together, current computational methods for statistical fine-mapping and functional
373  prediction are less actionable for the identification of true causal regulatory variants in
374  high LD.

375

376 Unbiased endogenous perturbation reveals many unmarked regulatory elements
377 The majority of previous Perturb-seq studies targeting regulatory DNA sequences
378  typically rely on prior knowledge of specific types of CREs, such as enhancers, open
379  chromatin regions, and transcription factor binding sites (38). However, in our CRISPRi/a
380  perturbation screen, we did not use any chromatin marks or sequence features to select
381 LEVs and associated eCREs. This approach provided a unique opportunity to unbiasedly
382 learn the regulatory potential of genomic sequences. By integrating seven well-
383  characterized epigenetic marks in HAP1 cells, we were able to classify the identified
384  eCREs into two major groups: marked CREs and unmarked CREs (URES) (see details in
385  Methods). Active but not repressive chromatin signals, such as open chromatin (ATAC-
386  seq), enhancer/promoter (H3K27ac, H3K4mel, and H3K4me3), and actively transcribed
387  genomic regions (H3K36me3), were prominent at marked CREs. Surprisingly, we found
388 that over 40% of significant eCREs and their associated LEVs lacked classical epigenetic
389 marks almost entirely (Fig. 5A). This suggests the pervasive existence of UREs across
390 the whole genome that may be driven by specific biological conditions.

391

392  To demonstrate the regulatory potential of URE in gene regulation, we performed several
393 functional assays on rs73156934-tagged CRE which showed a significant effect in
394  CRISPRI screen. rs73156934 is an intronic variant at EXOC4 gene, and its surrounding
395 genomic region is not marked by any epigenetic signals in HAP1 (Fig. 5B) or rarely
396  occupied with H3K36me3 in other tissues/cell types (query from VannoPortal (39)),
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397  suggesting the regulatory activity of the rs73156934-tagged CRE is preserved in most
398  cellular contexts. Compared to the candidate CREs tagged by other highly linked LEVs
399  (e.g. rs10428917) in pLD region, our CRISPRIi perturbation screen and RT-gPCR
400 revealed that this URE could be manipulated to regulate a distal gene CALD1 (800 Kb)
401 instead of its associated eGene EXOC4 in GTEx (Fig. 5C and Fig. 5D). The long-
402 distance interactions between the eCRE and CALD1 were further confirmed by 4C-seq
403  anchored at rs73156934-containing region (Fig. 5B). In addition, luciferase reporter
404  assays indicated that the eCRE had significant regulatory functions and was affected by
405  different alleles of rs73156934 (Fig. 5E). Moreover, the regulatory relationship between
406  rs73156934 and its target gene CALD1 was supported by several blood single-cell eQTL
407  studies (Fig. 5B).

408

409

410 Combinatory analysis of CRISPRI/a effects suggests regulatory plasticity of the
411 human genome

412  Applying both CRISPRi and CRISPRa to the same sgRNA library in the multiplexed
413  single-cell screens enabled us to systematically compare the regulatory effects by
414  different types of perturbations. We found that a large number of perturbations
415  unexpectedly affected their target gene expression in proximity (= 1 Mb surrounding TSS),
416  and the casual eCREs received varied regulatory outcomes under the same perturbation
417  (Fig. 6A). Specifically, CRISPRi can up-regulate nearby target gene expression among
418  one-third of the significant eCRE-perturbGene pairs, and CRISPRa also could down-
419  regulate local gene expression occasionally, although we cannot figure out which hits are
420 from trans-effects of perturbation. Besides, over 35% of casual eCRE showed opposite
421  effects on different target genes through either CRISPRi or CRISPRa perturbations.
422  Interestingly, we also revealed 13 eCRE-perturbGene pairs were significant in both
423  CRISPRIi and CRISPRa screens (Fig. 6B).

424

425 By partition all significant eCRE-perturbGene pairs into four categories according to the
426  effect direction of perturbGenes in CRISPRi/a screens (Fig. 6A), we observed that, for
427 the pairs whose gene expression were unexpectedly up-regulated via CRISPRI
428  perturbations (group | and group 1V), the distances of casual eCRE from target gene TSS
429  displayed a polarized trend, and most of which were more than 100 Kb away from the
430 TSSs (Fig. 6C). Such phenomenon was also observed for those repressive effects from
431 CRISPRa perturbations (group 1) (Fig. 6C). While some effects could be attributed to
432  trans-gene regulation, these observations highlight the existence of several hidden but
433  unique mechanisms underlying the distal gene regulation in 3D genome (Fig. 6C).
434  However, the casual eCREs were almost located at the promoter region of their
435  perturbGenes for the 13 significant eCRE-perturbGene pairs identified by both CRISPRI
436 and CRISPRa (Fig. 6C). Besides, compared with casual eCREs detected in single type
437  of perturbation or insignificant ones, more active chromatin signals (including H3K27ac,
438 H3K4mel, H3K4me3 and open chromatin) were enriched at casual eCREs identified by
439  both perturbations. (Fig. 6D). Together, these results indicate that the human genome
440 and chromatin display high plasticity in response to various stimulations at different
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441  genomic positions, warranting further research to elucidate the role of sequence
442  variations and chromatin dynamics in shaping functional molecular phenotypes.

443

444

445  Discussion

446  Investigating the molecular phenotypes influenced by genetic loci that subsequently lead
447  to the development of complex traits and diseases is a crucial scientific question in the
448  current field of genetics research (3). Gene expression, as an essential molecular
449  process for transmitting genetic effects, has made the integrated analysis of eQTL a
450 standard approach to exploring the causal genetic mechanisms of complex traits and
451 diseases (40, 41). However, challenges persist in identifying the true causal regulatory
452  variants and their target genes in highly linked regions due to factors such as LD
453  contamination and the complexity of CRE-target gene regulation. In this study, we
454  innovatively employed multiplexed single-cell CRISPRi/a perturbations to investigate the
455  regulatory patterns of genetic loci on target genes in endogenous cellular environments
456  and under pLD conditions. We systematically demonstrated the widespread presence of
457  multiple causal regulatory loci within pLD regions and the intricate nature of their
458  regulatory interactions with target genes. Additionally, our findings revealed that
459  endogenous perturbations can unveil elusive genetic effects and gene expression
460 regulatory patterns not easily detected by traditional eQTL mapping, including evidence
461 for long-range regulatory relationships and high-resolution analysis of regulatory effects.
462  Furthermore, we identified that existing computational methods face difficulties in
463  precisely predicting the influences and consequences of numerous endogenous
464  perturbations on gene expression. We also discovered that approximately half of the
465 casual eCREs lack conventional epigenetic markers, potentially affecting gene
466  expression via distinct regulatory mechanisms. Lastly, through a comparative analysis of
467 CRISPRIi/a perturbation effects, we expounded upon the regulatory plasticity of the
468 human genome from a novel perspective. We propose that incorporating multiplexed
469  single-cell CRISPR perturbations into molecular trait QTL and genome-wide GWAS
470  causal variant fine-mapping could complement the limitations of traditional diverse MPRA
471  approaches in assessing the magnitude of genetic effects in endogenous chromatin
472  environments, and their target genes (8-10). Our novel findings and supporting evidence
473  will also promote the development of new technologies and theories in functional
474  genomics and related computational biology, ultimately leading to a more comprehensive
475  understanding of gene expression regulatory patterns.

476

477  The functional evaluation of the genetic effects for GWAS/eQTL causal regulatory
478  variants by in situ modulation of the genomic sequence under endogenous chromatin
479  environments remains challenging. First, unbiased high-throughput screening at single-
480 base resolution remains limited due to the characteristics of editing technologies. For
481 instance, while cytosine base editors (CBEs) and adenine base editors (ABEs) have
482  been widely employed for screening of allele effects under complex phenotypes or at the
483  single-cell level (11, 12, 42, 43), their base editing types and uncertain editing outcomes
484  within the editing window hinder their application in functional fine-mapping studies.
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485  Precise editing tools, such as prime editing (PE) and other retron-based systems (13, 44,
486  45), have been used for high-throughput screening of functional single-base variants, but
487  their relatively low editing efficiency in mammalian cells significantly restricts large-scale
488 genome-wide screening. Second, most of the current Perturb-seq-based functional
489 genomic effect assessments are based on diploid cells with heterozygous genetic
490 background (21, 46), such as K562 cells. However, in polyploid mammalian cells,
491 incomplete editing or interference of other non-homozygous alleles may mask the
492  expected genetic effects and phenotypes, potentially leading to reduced statistical power.
493 To balance the advantages and disadvantages of existing technologies, we combined
494  CRISPRi and CRISPRa to perform multiplexed single-cell perturbation screening on
495  diploid HAP1 cells, which have a relatively homozygous genetic background.

496

497  Previous high-density GWAS, WGS-based eQTL studies, and simulation analyses have
498 indicated that multiple causal effects within specific genomic loci are not uncommon, and
499  multi-target regulation, along with LD contamination, further complicates the fine-mapping
500 of true causal variants and estimation of true effect sizes (2, 4, 47). By merely interfering
501  with a large number of potentially independent eQTL regions harboring multiple causal
502 effects using CRISPRi/a, we discovered that 19.3% of these regions contain multiple
503 causal eCREs targeting the same target gene. Consistent with previous MPRA in high LD
504  (17.7% of eQTLs exhibit more than one major allelic effect) (10), our results confirm the
505 widespread presence of multisite regulation of gene expression under endogenous
506  genetic systems, emphasizing the serious need to consider such situations when fine-
507 mapping causal variants in different LD regions. Additionally, through CRISPRi/a
508  screening, we found that causal eCRE(s) within the majority of pLD signals (around 80%)
509 can distally impact the expression levels of multiple target genes and are not necessarily
510 always the nearest genes. Compared to traditional eQTL mapping, which more readily
511 detects signals near TSS (5, 6), single-cell CRISPR-based QTL mapping approach may
512  be better suited for interpreting missed signals in GWAS-eQTL colocalization studies.
513  Consequently, the systematic integration of large-scale single-cell CRISPR-based eQTLs
514  and traditional context-specific eQTLs will further unravel the 'missing regulation’
5156  phenomenon in non-coding regions of GWAS (7).

516

517  Fine-mapping computational methods based on functional annotation have been widely
518 used to explore GWAS/QTL causal variants and their potential functions (48). However,
519  both our work and several current studies have observed that existing computational
520 methods and bioinformatics tools struggle to accurately predict the functional
521  consequences (e.g., expression effects) of a given DNA sequence or variant allele (10,
522  32), and the reasons for these inconsistencies remain unexplained. The most plausible
523  explanation might be that the non-coding regulatory features used in current prediction
524  models are largely similar, lacking a novel perspective on how regulatory sequences
525  exert their functions; moreover, the functional genomic features used for computational
526  modeling are predominantly measured in normal tissue or cellular environments, with
527 insufficient data under diverse biological conditions. By integrating epigenetic information,
528  we have revealed that approximately half of the significant causal eCRE genomic regions
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529  are severely lacking traditional epigenetic markers (referred to as UREs), and some loci
530 even lack epigenetic markers across all known biological conditions. UREs have been
531 considered functional in previous GWAS and functional genomic studies (9, 15, 16, 49,
532  50), which drives researchers to further investigate universal regulatory mechanisms to
533  explain their regulatory potential, and provides a direction for improving the performance
534  of prediction methods.

535

536 In various types of perturbations, we found that CRISPRi has better effects than
537 CRISPRa in driving changes in gene expression. Recent research has discovered that
538 the efficacy of CRISPRa depends on basal expression and chromatin state, and bivalent
539 genes are more sensitive to this perturbation (51). However, CRISPRi may be more
540 capable of modifying and altering chromatin structure, inducing heterochromatin
541 formation in any genomic region where transcription occurs, thereby causing changes in
542  the expression of multiple genes in close chromosomal proximity. Therefore, introducing
543 a combination of dCas9 fused to different activation domains, such as enCRISPRa
544  technology (50), may enhance the power of functional eCRE detection. On the other
545  hand, we found that a portion of CRISPRi/a perturbations exhibited opposite trends to the
546  expected gene expression disruption effects. Presumably, the effects of CRISPRi and
547 CRISPRa on gene expression can depend on the specific regulatory elements and
548  factors present within the targeted genomic region, such as the location and orientation
549  of the targeted site relative to regulatory elements, the activity and accessibility of
550 chromatin and epigenetic modifiers, the availability and activity of other transcriptional
551 regulators, as well as the competition among different CREs (18, 52, 53). For example, a
552  genomic region containing both an enhancer and a silencer element might exhibit
553  different responses to CRISPRi and CRISPRa depending on which element is targeted.
554  Additionally, some regions may contain a composite enhancer/silencer element that is
555  responsive to both positive and negative regulatory signals, or they may incorporate
556  multiple distinct CREs that are differentially responsive to transcriptional activators and
557  repressors.

558

559  Our study has the following limitations and unresolved issues. First, in order to select
560 reproducible independent eQTL signals, we systematically integrated seven blood-
561 derived WGS-based eQTL datasets and used LD data from 1000 Genomes Project
562  European population to screen for associated pLD LEVs. Although most of the used
563 eQTL samples have European ancestry and were derived from blood tissues, factors
564  such as heterogeneity of WGS variant calling, discrepancies in LD structure among
565  subpopulations, and differences in blood cell-specific gene expression levels may lead to
566  incomplete selection of pLD LEVs in each independent eQTL signal. Second, as
567 emphasized before, we still have difficulty in screening the genetic effects of causal
568 variants on specific phenotypes at the single-base level in a high-throughput and
569 unbiased manner. CRISPRi/a-based genomic perturbation cannot accurately assess the
570 genetic effects at the variant and allelic levels, nor can it distinguish between closely
571 located genetic variations (e.g., less than 1kb). Additionally, some potential functional
572  CREs cannot be driven by CRISPRI/a. Therefore, we need to develop efficient single-cell
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573  single-base perturbation technologies to accurately measure the true effects of genetic
574  variations on gene expression. Finally, this experiment only evaluates the effects of
575  genetic loci using limited gene expression as the readout due to genomic distance and
576  expression level constraints. However, many functional regulatory variations may affect
577 gene expression levels through moderate or trans-effects or directly influence other
578 transcriptional-level molecular phenotypes without changing gene expression conditions.
579 Despite these limitations, our study reveals several unique patterns for the complexity of
580  gene expression regulation.

581

582
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583 Methods

584

585  Plasmids

586 The dCas9-VP64-blast (Addgene, #61425) and dCas9-KRAB-blast (Addgene, #89567)
587  plasmids were separately used to perform CRISPRi and CRISPRa experiments. The
588 sgRNA oligos were annealed and cloned into the CROP-seqg-opti plasmid (Addgene,
589  #106280) after BsmBI (NEB, R0580L) digestion. The sgRNA library was synthesized by
590  Synbio Technologies. The psPAX2 (Addgene, #12260) and pMD2.G (Addgene, #12259)
591  were used to pack lentiviruses. The plasmids were used for dual-luciferase reporter
592  assay, including the pRL-TK Renilla luciferase control vector (Promega, E2241), pGL3-
593  Promoter (Promega, E1761), and pGL3-basic (Promega, E1741).

594

595  Cell lines and cell culture

596  293FT (ThermoFisher, R70007) cells were cultured in Dulbecco’s Modified Eagle’s
597 Medium (DMEM; ThermoFisher, 11965092) containing 10% FBS. HAP1 (Horizon
598 Discovery) cells were cultured in Iscove’s Modified Eagle’'s Medium (IMDM;
599  ThermoFisher, 31980030). Both cells were supplemented with 10% fetal bovine serum in
600 5% CO,at 37°C. Diploid HAP1 cells were isolated from Hoechst (MCE, Y-15559)-stained
601 HAP1 cells by flow sorting.

602

603 WGS-based blood eQTL fine-mapping

604  Seven WGS-based blood-derived eQTL datasets were used to identify independent
605 eQTL signals and fine-mapped LEVs based on CaVEMaN method (54). Specifically, the
606 fine-mapped eQTL variants for GTEx V8 whole blood eQTLs (670 whole blood samples)
607  were obtained from GTEXx portal (2), and the fine-mapped eQTL variants for several other
608 cohorts with blood-derived samples, including Geuvadis (445 lymphoblastoid cell
609 samples), and TwinsUK (523 lymphoblastoid cell samples and 246 whole blood samples),
610  were obtained from the original CaVEMaN publication (54). Additionally, for BLUEPRINT
611 samples (190 monocyte samples, 196 neutrophil samples and 165 CD4+ T cell samples),
612 we conducted eQTL mapping using FastQTL (55) based on the individual WGS
613  genotypes and normalized RNA-seq quantifications. Permutation test was applied to
614  estimate the nominal P thresholds required for the conditional analysis, Then, we used
615 CaVEMaN to perform eQTL fine-mapping for each significant eQTL signal, and extracted
616  the best eQTL that was most likely to be causal.

617

618 Nomination of reproducible pLD signals with multiple LEVs

619 Based on eQTL fine-mapping results from GTEx V8 whole blood samples, we sought to
620 identify independent eQTL signals that are reproducible in at least one additional blood-
621  derived eQTL dataset. Generally, we measured LD using genotypes of European
622  samples from 1000 Genomes Project phase3 (56) and searched perfectly correlated
623 LEVs (R® = 1) with each GTEx LEV among fine-mapped eQTL signals of other blood-
624  derived datasets. Ultimately, we integrated all fine-mapped variants in seven eQTL
625  datasets to retain independent signals which contains at least two undistinguishable
626 LEVs in pLD. To ensure that the genes being tested were measurable in 10x scRNA-seq,
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627  we only included top 20% expressed genes in HAP1 cells. Then, LEVs located in protein-
628  coding/splicing-altering region of the human genome or in the chrl5 diploid region of
629 HAP1 cell line were excluded. Due to the limitations of CRISPRi/a in the scope of
630 genomic targeting, we only retained signals with a distance greater than 1 kb between
631 each pairwise LEVs. Thus, pLD signals that were distant from these highly expressed
632 genes (> 1 Mb) in HAP1 cells were also excluded. All of these analyses, including the
633  following, were based on the human genome assembly GRCh37/hg19.

634

635 sgRNAlibrary design

636 We used FlashFry 1.9.3 (57) to design sgRNAs targeting each eCRE. We excluded
637  sgRNAs whose splicing sites located more than 50 bp away from the eCRE-associated
638 LEVs and with IN_GENOME>= 2. Then we ranked the remaining sgRNAs based on
639 Doench20140nTarget, Hsu2013, and Doench2016CDFScore, as well as otCount. We
640  selected the top two sgRNAs targeting each eCRE (except for cases where only 1 or no
641  sgRNA met the criteria). To include appropriate controls, we incorporated 39 non-
642  targeting control gRNAs from the Human CRISPR Knockout Pooled Library (GeCKO V2)
643  (58) as negative controls and nine sgRNAs targeting promoters of 4 genes (EZH2 (59),
644  CANX (60), NEAT1 (61), PARK7 (20), among which EZH2 was targeted by three sgRNAS)
645 and two sgRNAs targeting an enhancer of NMU (60) from different studies as positive
646  controls. The oligos of the sgRNA library were synthesized and cloned to the CROP-seg-
647  opti vector after BsmBI digestion by Synbio Technologies, according to the GeCKO V2
648  (58). Additionally, sgRNAs targeting the same eCRE or positive control site are referred
649 to as a "sgRNA group". In the following bioinformatics analysis, all sgRNA groups that
650 target eCRE are referred to as "perturbative sgRNA groups”, whereas all other sgRNA
651 groups are referred to as "control sgRNA groups".

652

653  Quality control of synthetic sgRNA library

654  To assess the quality and potential bias of the sgRNA library, the sgRNA sequences were
655  amplified using PCR from either the plasmid library or genomic DNA extracted from
656 HAP1 cells 4 days post-transduction, using qsgRNA-F and gqsgRNA-R primers and 2x
657 Phanta Max Master Mix (Vazyme, P515-01). The resulting PCR products were purified
658  using the QIAquick PCR Purification Kit (Qiagen, 28106) and then used to generate a
659  next-generation library using the VAHTS Universal DNA Library Prep Kit for lllumina V3
660 (Vazyme, N607-01). The library was purified using AMPure XP beads (Beckman Coulter,
661 A63880) and sequenced on an lllumina NovaSeq PE150. The sgRNAs were identified by
662 matching the sequence to "CACCG[sgRNA]JGTTT" and compared to the designed
663 sgRNAs to determine the correct rate of the sgRNA plasmid library. The potential bias
664  was evaluated by calculating the ratio of oo™ percentile to 10" percentile sgRNAs that
665 had at least one sequencing read.

666

667  Production of lentivirus

668  293FT cells were seeded 24h prior to lentivirus packaging. The lentivirus was produced
669 by co-transfecting the backbone plasmid with viral packaging plasmid (psPAX2) and viral
670  envelope plasmid (pMD2.G) at a ratio of 4:3:1 into 293FT cells using LipoFiter (Hanbio,
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671 HB-LF-1000) according to the manufacturer's instructions. The cell culture supernatant
672  was collected 48h post-transfection and filtered using a 0.45 um filter.

673

674  Construction of dCas9-KRAB and dCas9-VP64 stably expressed HAP1 cells

675  Lentivirus containing dCas9-KRAB-blast and dCas9-VP64-blast were separately used to
676  construct stably-expressing HAP1 cells. Diploid HAP1 cells were seeded into a six-hole
677  plate supplemented with 8 ug/mL polybrene (Beyotime, ST1380) 24h prior to lentivirus
678 infection. The lentivirus was added to the cells and 24 hours post-infection, blasticidin
679  (ThermoFisher, 461120) was added to the culture supernatant to a final concentration of
680 10 pg/mL. Selection was maintained for 3 days to obtain stably-expressing cell lines. The
681 Anti-CAS9 Antibody (BOSTER, BM5120) and Anti-B-Actin antibody (ABclonal, AC02)
682  were used to verify the expression of the dCas9-KRAB and dCas9-VP64 by Western blot.
683  The stably-expressing cell lines were then plated in a 96-well plate by limiting dilution and
684  cultured for 2 weeks to obtain single clones. The activation and inhibition efficiency of
685  single clones were verified by infection with lentivirus containing sgRNA targeting the
686 TSS of EZH2. The two most efficient clones of each cell line were selected for
687  perturbation.

688

689 Infection of lentivirus with different MOls

690 The lentivirus supernatant of the sgRNA library was concentrated using the ViraTrap™
691 Lentivirus Concentration Reagent (Biomiga, BW-V2001-01) and titrated using the Lenti-
692 Pac™ HIV gRT-PCR Titration Kit (GeneCopoeia, LT005). The dCas9-KRAB and dCas9-
693 VP64 stably expressed HAP1 cell lines were seeded into a 24-well plate and transfected
694  with the concentrated sgRNA library at MOI=500 (moderate MOI). To increase the
695 infection efficiency, 8 pg/mL polybrene was added to the cell culture. After 24 hours, the
696  cells were treated with 0.3 pyg/mL puromycin (Sigma-Aldrich, P7255) for three days. For
697  high MOl infections, a second round of infection was performed to achieve a higher MOI.

698

699 scRNA-seq and sgRNA-transcript enrichment

700 To prepare multiplexed CROP-seq libraries, adherent cells were digested with 0.25%
701  trypsin and collected in a 15mL tube containing serum-containing medium, followed by
702  centrifugation and washing of the cell pellet with serum-free basal medium to obtain a
703  single-cell suspension. The cell density was adjusted with a cell counter and the 10x
704  Genomics Chromium Single Cell 3’ Library reagents V3 were used according the
705  manufacturer’s instructions. To enrich for sgRNA-transcripts, PCR was performed on 15
706  ng of cDNA from the 3’ single-cell RNA libraries using SI-PCR primer and 10x-sgRNA i7-
707  N720 primer in each 50 pL reaction with an annealing temperature of 60°C and 2 x
708 Phanta Max Master Mix. The enriched sgRNA libraries were sequenced on lllumina
709  NovaSeq6000 PE150 with the same configuration as the standard 10x libraries.

710

711 scRNA-seq data processing

712  The sequencing data from 10x Genomics Chromium 3’ scRNA-seq underwent initial
713  processing with Cell Ranger v5.0.1, which involved sequence alignment, filtering,
714  barcode counting, and UMI counting. The resulting data were further analyzed using
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715  Seurat v4.0.3 (62), where a series of quality control measures were applied. Specifically,
716  cells with mitochondrial percentage exceeding 10% or having less than 200 gene UMIs
717  were removed. Additionally, genes that were expressed in less than 0.525% of cells were
718 filtered out. Droplets were also identified and removed using scDblFinder (63).

719

720 sgRNA and single cells assignment

721  With the fore-mentioned amplification protocol (25), we enriched sgRNAs and then
722  calculated the distribution of sgRNAs in different perturbation. Firstly, we aligned the
723  enrichment reads to reference genome (GRCh37/hgl19) using Cell Ranger v5.0.1,
724  following the same procedure as for scRNA-seq data processing. We then extracted the
725  reads that failed to align to the reference genome using Samtools (64). Next, we mapped
726  each unmapped read to the sequences of the sgRNA library and its reverse complement.
727  To limit the sequence before and after the sgRNA sequence, we used ACCG as the left
728  anchor (which is at the end of the U6 promoter) and GTTT as the right anchor. During the
729  sgRNA detection process, we also extracted the cell barcode and sgRNA UMI count for
730  each perturbed cell. The number of sgRNAs per cell and the number of cells bearing
731  each perturbation was calculated based on data from multiplexed single-cell CRISPRI
732  and CRISPRa perturbations with different MOls.

733

734  eCRE-gene association analysis

735  For each targeted eCRE, we divided cells into two groups based on whether they contain
736  specific sgRNAs targeting observed eCRE, and evaluated the differential expression of
737  candidate genes within 1 Mb of the eCRE between perturbative sgRNA group and control
738  sgRNA group using Normalisr (26). Normalisr is a unified normalization-association
739 framework for statistical inference of gene regulation. It uses an ingenious normalization
740  strategy followed by a regular linear regression model. The normalization step estimates
741 the pre-measurement mRNA frequencies from the scRNA-seq UMI counts and regresses
742  out the nonlinear effect of library size on expression variance. And then a linear
743  regression model tests the associations between eCRE and perturbGene, where two-
744  sided P were computed from Beta distribution, and log fold change was estimated using
745  maximum likelihood. We also included additional covariates including mitochondrial
746  percentage, unique gene count, and sgRNA count in the association testing to improve
747  the accuracy of the results. To avoid false positive results, we estimated the P of the
748  associations between genes and NTC sgRNAs and considered them background P. An
749  empirical P was calculated based on the background P and raw P, which was then
750 adjusted by FDR (g-value) for multiple testing corrections. Finally, we defined a 0.2
751 threshold of g-value based on the NTC tests as they are subject to the same sources of
752  error as the eCRE-targeting sgRNAs.

753

754  Simulation for power estimation

755 Based on Splatter (65), we simulated synthetic scRNA-seq datasets with various
756  group.prob parameters to mimic CROP-seq cells under different perturbation conditions.
757 The Splatter simulation process consisted of two steps. First, we estimated the
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758  necessary parameters for simulation using splatEstimate from the CROP-seq dataset.
759  Subsequently, we utilized the estimated parameters to simulate synthetic sScCRNA-seq
760 datasets with splatSimulate, where the average expression of each gene was randomly
761  sampled from a gamma distribution and the cell's experimentally measured count was
762  sampled from a Poisson distribution. To simulate perturbation under different MOls, we
763  used the group.prob parameter, which is a vector containing two values. The first value
764  was obtained by dividing the number of perturbations per cell (ranging from 200 to 3,800)
765 by the total number of cells, and the second value was obtained by subtracting the first
766  value from 1. We used nCells parameter to simulate perturbation under different cells
767  (ranging from 5,000 to 20,000). Finally, we assessed the power of each simulation by
768  computing the ratio of recovered CROP-seq results to all CROP-seq results.

769  Validation of individual hits
770 For validation of positive eCRE-perturbGene pairs identified by multiplexed CRISPRi/a
7 perturbations, the expression of perturbGenes was measured by RT-gPCR following

772 jndividual perturbation with sgRNAs targeting the eCREs. Briefly, oligonucleotides of
773 SgRNAs targeting causal eCREs and random sgNTC were synthesized and annealed,
774 and then cloned into CROP-seg-opti plasmids that were digested by BsmBIl. The
775 resulting plasmids containing sgRNAs targeting the same eCRE were mixed in equal
776 amounts and packaged into lentiviruses. The dCas9-KRAB and dCas9-VP64 stably
77; expressed HAP1 cell lines were infected with the lentiviruses and selected with
77

puromycin. RNA was extracted from cells, and cDNA was generated using HiScript Il Q
779 select RT SuperMix for qPCR (+gDNA wiper) (Vazyme, R223-01). The cDNA was
780 amplified with 2x SYBR Green qPCR Master Mix (Bimake, B21202) using ACTB as a

781 positive control. Data were analyzed using the 222% method, with sgNTC as the control.
782 The effect on gene expression of sgRNAs targeting eCREs was calculated after
783 normalization.

784

785  Luciferase reporter assay

786  Genomic sequences containing causal eCREs with different alleles of LEVs were
787  amplified from HAP1 cell genomic DNA using overlapping PCR. The resulting fragments
788  were integrated upstream of the luciferase gene in pGL3-Basic and pGL3-Promoter
789  plasmids, and the concentration of the recombinant plasmids was determined using the
790  Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851). 293FT cells were transfected with 1
791 pg of recombinant plasmids or blank vectors with 40 ng of pRL-TK Renilla luciferase
792  control vector using Lipofiter. After 24 h, cells were lysed with 200 pL lysis buffer and
793  shaken slowly on ice for 10 min. Relative luminescence signals were measured using the
794  Dual-Luciferase Reporter Assay System (Promega, E1960) and GloMax® 20/20
795  Luminometer by normalizing firefly luciferase signal with renilla luciferase signal.

796

797  Circularized chromosome conformation capture (4C) assay

798  We used the 4C-seq method as described previously (66) to validate eCREs tagged by
799  specific LEVs. To prepare the 4C-seq samples, approximately 1x10’ HAP1 cells was
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800 collected to crosslink by formaldehyde for 10min, and quenched with glycine at a final
801 concentration of 125 mM. Cell pellets was washed twice with cold PBS and lysis on ice
802  for 15 min with 5 mL lysis buffer. The nuclei were digested with the first enzyme (CviQI
803 (NEB, R0639L) or Nlalll (NEB, R0125S)) and ligated with T4 ligase (NEB, M0202)
804  overnight at 16°C. Proteinase K (Transgene, 20 mg/ml) was added to the sample, which
805 was then placed in a 65°C water bath overnight to reverse the cross-links. After de-
806  crosslinking, DNA was extracted using phenol-chloroform-isoamylalcohol (Invitrogen,
807  25:24:1) and finally dissolved in 150 pyL of 10 mM Tris-HCI (pH 7.5). The sample was
808  digested with the second enzyme (EcoRI (NEB, R0101S) or Dpnll (NEB, R0543L)) and
809 ligated with T4 ligase (NEB, M0202) overnight at 16°C. DNA precipitation was obtained
810 by ethanol precipitation, and the DNA was dissolved in 150 pL of 10 mM Tris-HCI (pH
811 7.5). The 4C template was obtained by adding 750 uL of Buffer PB solution (QIAGEN,
812  #28106) to the sample and dividing it into three spin columns for centrifugation and
813  washing. Each spin column was washed with 50 pyL of 10 mM Tris—HCI (pH 7.5). The
814  eluates from the three tubes were collected as 4C template. Viewpoint-specific
815  amplification was performed with 8 x 200 ng 4C template using 2 x Phanta Max Master
816  Mix. The next-generation library was constructed using the VAHTS Universal DNA Library
817  Prep Kit for lllumina V3 and purified by AMPure XP beads following the manufacturer's
818 instructions. The 4C-seq library were sequenced on the lllumina NovaSeq 6000 platform,
819  producing pair-end reads of 150 bp. Processing and visualization of 4C-seq data was
820  done using pipe4C and peakC pipeline as previously described (66, 67).

821

822  Measurement of eCRE regulatory range across LD block and TAD

823  We defined the LD blocks as multiple variants in strong LD across a region. Specifically,
824  we measured LD between variants surrounding each fine-mapped signals (500 Kb)
825 based on genotypes of Europeans from 1000 Genomes Project phase3 (56), using the
826  LDproxy module of LDlink (68). We then merged all genomic positions for variants in
827  strong LD with the fine-mapped eQTL LEVs (R? >= 0.8) to form the LD blocks. To define
828 a gene-regulating region, we considered the region from the CRE (+1 Kb of LEVs) to 5
829 Kb upstream and 3 Kb downstream of the gene body of the target gene. We obtained
830 TADs from in situ Hi-C of the HAP1 cell line (69). By constructing a 2 x| 2 contingency
831 table, we performed a Fisher's exact test to evaluate the nonrandom association between
832 the number of gene-regulating regions that lie in Hi-C TADs and those that lie in LD
833  blocks.

834

835 Benchmarks with computational prediction scores

836 We conducted an evaluation on perturbation effect of causal eCREs against various
837 computational methodologies for predicting base-wise regulatory potentials of DNA
838 sequence. Multiplexed single-cell CRISPRi/a perturbation results were used as the
839 golden standard to measure prediction performance. Positive samples were significant
840 casual eCRE-associated LEVs, while negative samples were non-significant ones. To
841  conduct a comprehensive evaluation of the performance of these algorithms, we used
842  the AUC metric of the ROC to distinguish positive and negative samples at both LEV-
843 level and eCRE-level. First, we obtained pre-computed base-wise scores of 20 existingg
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844  computational methods from regBase V1.1.1 (34). Due to the class imbalance of positive
845 and negative samples, we randomly under sampled negative eCREs to match the
846  number of positive eCREs. We repeated each sampling ten times. Second, Enformer
847  (36), a deep neural network to predict gene expression levels given genomic sequence,
848 was employed in our comparisons. Two Enformer principal components (PCs),
849  representing a summary of the most important features that contribute to the prediction of
850 gene expression levels, were calculated and used to generate empirical cumulative
851 probability distributions of the first and second PC scores. By comparing these
852  distributions, we determined if the PCs for significant and non-significant eCRE-
853  associated LEVs differed. For eCRE-level benchmarks, we estimated median, mean, and
854  max scores for £1 Kb of each eCRE-associated LEVSs.

855

856 Epigenomics analysis

857 The raw sequencing reads of HAP1 ChlIP-seq (H3K27ac, H3K27me3, H3K36me3,
858  H3K4mel, H3K4me3, H3K9me3) and ATAC-seq were analyzed by the nf-core pipeline
859  (70). Meta-profiles of LEV-centered regions (+ 2.5 Kb) were generated from the bigWig
860 files by deepTools (71). Heatmaps were generated using EnrichedHeatmap (72), and
861 narrow peaks were called using MACS2 (73). The causal eCREs that intersected with
862  peak(s) for at least one of fore-mentioned marks were classified as marked eCREs, In
863  contrast, the causal eCREs that do not intersect with peak(s) for any marks are referred
864 toas URE.

865

866  Statistical analyses

867  Statistical analyses were carried out with GraphPad Prism 8.0 (GraphPad Software). All
868 experiments were performed at least three replicates, unless otherwise noted.
869 Differences in means were compared using an unpaired two-tailed Student’s t-test, and
870 graphed as the means * standard deviations (SD). Statistical significance denoted as
871 follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001; *** P < 0.0001; ns, no significant.
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888  All sequencing data, including scRNA-seq and 4C-seq, generated in this study have
889 been deposited in the Gene Expression Omnibus (GEQO) database under accession
890 GSEXXXX. All public data sources and primer sequences used in this study are listed in
891 Supplementary Tables. The average expression of each gene in HAPL1 cells in this study
892  was calculated from several bulk RNA-seq data from GEO database under accession
893  number GSE75515, GSE110142, and GSE111272. TAD information of in situ Hi-C for
894  HAP1 cells was obtained from GEO under accession number GSE74072. The raw
895  sequencing reads of HAP1 ChIP-seq (H3K27ac, H3K27me3, H3K36me3, H3K4mel,
896  H3K4me3, H3K9me3) were downloaded from ENCODE repositories. Raw data of HAP1
897  ATAC-seq was downloaded from GEO under accession number GSE111047.

898

899
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1070  Figure Legends

1071

1072  Fig. 1 | Identification of causal eQTL-tagged CREs in pLD regions using
1073  multiplexed single-cell CRISPRi/a perturbations. a, Schematic of the multiplexed
1074  single-cell CRISPRIi/a perturbations used to screen for causal eCREs tagged by eQTL
1075  variants in pLD signals and to systematically study the regulatory relationships between
1076  genetic loci and gene expression levels. LEV: lead eQTL variants with equal fine-mapped
1077  causal probability; eCRE: LEV-tagged CRE (+ 50 bp region of LEVS); pLD: perfect LD
1078  (R?=1); MOI: multiplicity of infection; Blueprint-Tcel, Blueprint-neut and Blueprint-mono:
1079  fine-mapped eQTL data of CD4+ T cell samples, neutrophil samples and monocyte
1080 samples from BLUEPRINT project; TwinsUK-LCL and TwinsUK-blood: fine-mapped
1081 eQTL data of lymphoblastoid cell samples and whole blood samples from UK10K
1082  TwinsUK project; Geuvadis-LCL: fine-mapped eQTL data of lymphoblastoid cell samples
1083  from Geuvadis project; GTEx V8-blood: fine-mapped eQTL data of whole blood samples
1084  from GTEXx V8 project. b, Summary information for the selected qualified LEVs and their
1085  corresponding pLD signals, including the number of independent eQTL datasets that
1086  support corresponding pLD signals, the number of fine-mapped LEVs within
1087  corresponding pLD signals, and the causal probability (mean score of different datasets,
1088  estimated via CaVEMaN) distribution of selected fine-mapped LEVs. ¢, The number of
1089  gRNAs per cell and the number of cells bearing each perturbation in CRISPRa/i screen,
1090  based on integration of data from both high or moderate MOIs. d, Quantile-quantile plot
1091 comparing observed versus expected P of eCRE-targeting sgRNAs (blue) and non-
1092  targeting control (NTC) sgRNAs (gray; down-sampled) associated with gene expression.
1093 e, Results of positive control sgRNAs in the CRISPRi and CRISPRa perturbations.
1094  sgRNAs targeting EZH2, CANX, NEAT1, PARKY are positive control targeting promoter
1095  of genes, and sgRNA effect on NMU is associated with an enhancer. f, Consistence
1096  analysis of perturbation results and RT-gPCR results for the 20 randomly selected causal
1097  eCREs-perturbGene pairs.

1098

1099 Fig. 2 | CRISPR perturbations identify diverse regulatory patterns between causal
1100 eCREs and their target genes in pLD signals. a, Distribution of the pLD signals
1101 containing different numbers of causal eCREs (top), regulating different numbers of
1102  perturbGenes (middle), and showing varied distances between eCREs and their
1103  perturbGenes (bottom). b, Patterns of causal eCREs targeting their perturbGenes in
1104  corresponding pLD signals. Genes are shown in dark blue or gray (possible nearest
1105  gene). The direction and position of TSS are indicated by arrows. pLD signals are labeled
1106  in light blue. Yellow dots represent eCREs. Arcs indicate regulatory relationships between
1107  causal eCREs and perturbGenes, while dashed lines indicate possible regulatory
1108 relationships. c, Validations of several representative eCRE-perturbGene pairs.
1109  Corresponding eCRE-perturbGene regulatory patterns (top), RT-gPCR analysis of
1110  perturbGene expression upon perturbation with sgRNAs targeting eCREs (middle) and
1111 differential perturbGene expressions in multiplexed CRISPR perturbations (bottom). d,
1112 4C assay and epigenomic evidence indicating chromatin interactions between
1113  rs79423518-located DNA fragment (yellow shaded region) and promoter of PRDX5 and
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1114  TMRT112 (blue shaded region). e, Luciferase assay results of rs4930698/rs79423518-
1115  tagged CREs and allele-specific effects of them. Error bars represent standard deviation
1116  of the mean. P are indicated by asterisks, with *P < 0.05, **P < 0.01, *P < 0.001, ****P
1117 < 0.0001, and ns indicating not significant.

1118

1119  Fig. 3 | lllustration and comparison of regulatory effects between eCRE
1120  perturbations and eQTL mapping. a, Venn diagram comparing eCRE-perturbGene
1121 pairs identified by the multiplexed single-cell perturbations with eQTL-eGene pairs
1122  identified in GTEx V8 and eQTLgen datasets. b, Gene-level comparison including
1123  perturbGene and eGene, similar with a. ¢, Consistency of the estimated effects between
1124  eCRE-perturbGene pairs identified by the multiplexed perturbations and eQTL-eGene
1125  pairs derived from the conventional eQTL datasets. The red and green dots represent
1126  eCRE-perturbGene pairs in CRISPRa and CRISPRI perturbations, respectively, and the
1127  lines between the dots indicate that the eCRESs are located within the same pLD signal. d
1128 and e, Examples of the varied regulatory effects on the target gene expression for the
1129  causal eCREs in two LD signals. f, Distribution of the distance between the LEVs and
1130  TSS of target genes in multiplexed perturbations (yellow) and GTEx V8 dataset (blue),
1131 with the median indicated by dashed lines. g, Comparison of the distance distribution
1132  between multiplexed perturbation results and GTEx V8 dataset in f, with statistical
1133  analysis by two-tailed t-test. h, 4C results showing the chromatin interaction frequency
1134  between the fragment containing rs143558304 and rs59508494 (top red arrow, 4C
1135  viewpoint) and the promoter regions (blue shaded region) of the two perturbGenes
1136  (bottom red arrows). i, RT-gPCR validation results for the sgRNAs targeting eCREs
1137  tagged by rs59508494 and rs143558304, with sgNTC as control. Error bars represent
1138  standard deviation of the mean. ***P < 0.0001. j, Differential perturbGene expressions in
1139  the multiplexed CRISPR perturbations for the causal eCREs tagged by rs59508494 and
1140  rs143558304. k, Schematic of patterns for causal eCREs regulating their target genes
1141 when considering the ranges of TAD and LD block. The symbols representing TAD, LD
1142  block, eCRE and pertubGene are shown in the figure.

1143

1144  Fig. 4 | Evaluation of the endogenous perturbation effects via computational
1145  predictions and functional annotations. a, Benchmarks of existing computational
1146  methods in predicting causal eCRE-associated LEVs, non-significant eCRE-associated
1147  LEVs were used as negative samples. b, Benchmarks of existing computational methods
1148 in predicting causal eCRE by taking median prediction scores of all possible + 1 Kb
1149  variants surrounding corresponding LEVs, non-significant eCREs were used as negative
1150  samples. ¢, Empirical cumulative probability distribution of the first and second Enformer
1151 principal component scores for significant and non-significant eCRE-associated LEVs. d,
1152  Empirical cumulative probability distribution of the first and second median Enformer
1153  principal component scores for significant and non-significant eCRE, by taking median
1154  prediction scores of all possible + 1 Kb variants surrounding corresponding LEVS. e,
1155  Epigenomic and computational evidence for two causal eCRE-associated LEVs,
1156  rs75446625 and rs80159064. f, RT-gPCR validation results for the sgRNAs targeting
1157  eCREs tagged by rs75446625 and rs80159064, with sgNTC as control. g, Differential
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1158  perturbGene expressions in the multiplexed CRISPR perturbations for the causal eCREs
1159 tagged by rs75446625 and rs80159064. h, Luciferase assay results of
1160  rs75446625/rs80159064-tagged CREs and allele-specific effects of them. *P < 0.05; ** P
1161 <0.01; **P < 0.001; ****P < 0.0001; ns, no significant.

1162

1163  Fig. 5 | Evaluation of unmarked regulatory elements revealed by endogenous
1164  perturbations and epigenomic marks. a, The epigenomic profile of HAP1 cells for
1165  seven classical marks, including ATAC-seq, H3K27ac, H3K36me3, H3K4mel, H3K4me3,
1166  H3K27me3 and H3K9me3, within a + 2.5 Kb range surrounding causal eCRE-associated
1167  LEVs. b, 4C results of the interaction frequency between the causal eCRE tagged by
1168  rs73156934 (viewpoint, red triangle and yellow shaded region) and the promoter region
1169  of CALD1 (blue shaded region). Epigenomic and computational evidence for two causal
1170  eCRE-associated LEVs, including rs73156934 and rs10428917, are shown below. ¢, RT-
1171 gPCR validation results for the sgRNAs targeting eCREs tagged by rs73156934 and
1172 rs10428917, with sgNTC as control. d, Differential perturbGene expressions in the
1173  multiplexed CRISPR perturbations for the causal eCREs tagged by rs73156934 and
1174  rs10428917. e, Luciferase assay results of rs73156934/rs10428917-tagged eCREs and
1175  allele-specific effects of them. *P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.0001; ns, no
1176  significant.

1177

1178 Fig. 6 | Genome-wide comparison of various CRISPRi and CRISPRa effects. a,
1179  Magnitude and direction of perturbation effects for all tested eCRE-gene pairs in
1180 CRISPRi and CRISPRa perturbations, with blue dots indicating significance only in
1181 CRISPRI, yellow dots indicating significance only in CRISPRa, red dots indicating
1182  significance in both CRISPRa and CRISPRI, gray dots indicating no significance in both
1183  perturbations. Significance threshold is g < 0.2. b, LocusZoom-like plot for all tested hits
1184  and epigenomic marks for the causal eCREs identified via both CRISPRi and CRISPRa
1185  perturbations, with blue indicating significance in CRISPRI, yellow indicating significance
1186 in CRISPRa, and the vertical purple line indicating causal eCRE-perturbGene pairs
1187 identified by both CRISPRa and CRISPRI perturbations. c, Distribution of the distances
1188  between causal eCRE-associated LEVs and TSS of perturbGenes in hits at four
1189  quadrants obtained from a. Left y-axis represents the type of quadrant, with colors
1190  consistent in a. d, Enrichment of epigenomic marks in the four perturbation effect groups,
1191 tested by Fisher’s exact test.
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