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Abstract
Spatially resolved omics technologies are transforming our understanding of biological tissues.
However, handling uni- and multi-modal spatial omics datasets remains a challenge owing to
large volumes of data, heterogeneous data types and the lack of unified spatially-aware data
structures. Here, we introduce SpatialData, a framework that establishes a unified and extensible
multi-platform file-format, lazy representation of larger-than-memory data, transformations, and
alignment to common coordinate systems. SpatialData facilitates spatial annotations and
cross-modal aggregation and analysis, the utility of which is illustrated via multiple vignettes,
including integrative analysis on a multi-modal Xenium and Visium breast cancer study.
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Introduction
The function of biological tissues is strongly linked to their composition and organization.
Advances in imaging and spatial molecular profiling technologies enable addressing these
questions by interrogating tissue architectures with ever growing comprehensiveness,
resolution and sensitivity1,2. Existing spatial molecular profiling methods quantify DNA, RNA,
protein, and/or metabolite abundances in situ. Several of these technologies employ light
microscopy, providing spatial resolution of morphological features at length scales from
subcellular to entire organism. Critically, spatial omics technologies are rapidly evolving, and
each data modality features distinct advantages and limitations (e.g., spatial resolution,
molecular multiplexing, detection sensitivity). The ability to efficiently integrate and then
operate on data from different spatial omics modalities promises to be instrumental for
constructing holistic views of biological systems.

While progress has been made in analyzing individual spatial omics datasets, integrating
multimodal spatial omics data remains a practical challenge (Supplementary Note 1, Table
S1). Firstly, loading datasets into analysis pipelines in a coherent manner is hampered by
the diversity in data types (e.g., tabular data for sequencing and 10s-100s GB dense arrays
for images) and file formats (e.g., technology-specific vendor formats). Additionally,
individual spatial omics modalities often have different spatial resolutions and the data can
be acquired from different regions of the same tissue. Thus, in order to integrate such data,
they must be appropriately transformed to align them to a common coordinate system
(CCS). Aligning datasets to a CCS is a building block to establish a global common
coordinate framework (CCF)3. Finally, untangling the complexity of multimodal spatial omics
datasets requires expert domain knowledge, motivating approaches that enable large-scale
interactive data exploration and annotation. Thus, to unlock the full potential of emerging
spatial multiomics studies2,4, there is a need for computational infrastructures to store,
explore, analyze, and annotate diverse spatial omics data with a unified programmatic
interface.

Results

SpatialData concept and implementation

The SpatialData framework enables the FAIR5 integration of multimodal spatial omics data.
A language-independent storage format increases the interoperability of data sources,
post-alignment, while the Python library standardizes the access of and operation across
diverse data types. The SpatialData format supports all major spatial omics technologies and
derived quantities (Figure 1A, Figure 1C, Supplementary Note 2, Table S3). Briefly, spatial
datasets are represented using five primitive elements: Images (raster images), Labels (e.g.
raster segmentation masks), Points (e.g. molecular probes), Shapes (e.g., polygon regions
of interests, array capture locations etc.), and Tables (e.g., molecular quantifications and
annotations) (Table S2). The file format also keeps track of any coordinate transformation or
alignment steps applied to individual datasets. Collections of datasets from multiple assays
can be stored within a single SpatialData file and because the spatial relationship between
them is stored via coordinate transformations, they can be thus analyzed together. The
SpatialData format is built upon the OME-NGFF specifications and leverages the Zarr file
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format (Supplementary Figure 1), which provides performant, interoperable access for both
traditional filesystem-based as well as cloud-based storage6,7.

Figure 1 | Design overview and core functionality of SpatialData. (A) The SpatialData storage
format provides uniform storage for raw and derived data of diverse spatial omics technologies. The
format builds on five primitive elements (SpatialElements), stored to Zarr in an OME-NGFF compliant
manner. (B) The SpatialData Python library implements core operations for data access, alignment,
queries, and aggregation of spatial omics data. Transformations align multiple SpatialElements to a
common coordinate system (CCS). The CCS allows unified spatial queries and aggregation operators
to be deployed across datasets. (C) SpatialData provides access to various data formats, including
vendor-specific file formats. Multiple datasets can be stored in a single file and together are
represented as a SpatialData object. (D) Datasets stored in the SpatialData format can be annotated
interactively using the integrated napari-spatialdata plugin. SpatialData also provides functionality for
generating static plots. (E) Leveraging an implementation of the PyTorch Dataset class, deep learning
models can be trained directly from SpatialData objects. (F) Since SpatialData builds upon
established standards and software, it ties into the existing ecosystem for multimodal analysis
including Squidpy 8, Scanpy9, MONAI 10 and scvi-tools11, amongst others.

The SpatialData Python library represents this format as SpatialData objects in memory,
which supports lazy loading of larger-than-memory data (Figure 1B). The SpatialData Python
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library also provides reader functions for current spatial omics technologies (Figure 1C,
Table S2). The library provides versatile functionality for manipulating and accessing
SpatialData objects. A core feature is the efficient definition of common coordinate systems
(CCSs) of biological systems3. Briefly, datasets from individual data modalities are
associated with coordinate transformations (Figure 1B). SpatialData implements affine
coordinate transformations, which can be composed (link to tutorial). Once aligned, datasets
can be queried (Supplementary Note 3, Supplementary Figure 2, link to tutorial) and
aggregated (Supplementary Note 4, Supplementary Figure 3, link to tutorial) using spatial
annotations both within and across modalities. The query and aggregation interface also
allows for creating new datasets grouped by biologically-informed factors from large aligned
data, thereby facilitating exploration and data access.

SpatialData comes with a napari plugin for interactive annotation (napari-spatialdata) (Figure
1D, Supplementary Figure 4, Supplementary Note 5). The napari-spatialdata plugin allows
analysts to make spatial annotations such as drawing regions of interest (link to tutorial) or
landmarks for guiding multi-dataset registration (link to tutorial). Static figures and graphics
can be created using the spatialdata-plot library (Supplementary Figure 5, Supplementary
Note 6. Link to tutorial).

The SpatialData library seamlessly integrates with the existing Python ecosystem by building
upon standard scientific Python data types. We have implemented a PyTorch Dataset class
so that deep learning models can be easily trained directly from SpatialData objects (Figure
1E, Supplementary Note 7 Supplementary Figure 6). Further, the analysis packages in the
scverse ecosystem12 can be used to analyze SpatialData objects (Figure 1F, Supplementary
Note 8). Taken together, the SpatialData framework provides infrastructure for integrating
and analyzing spatial omics data.
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Figure 2 | Alignment and integrative analysis of three spatial datasets. (A) Registration of two
breast cancer Xenium replicate slides, one Visium slide, and their corresponding H&E images to a
common coordinate system (CCS) based on interactively selected landmarks. (B) Spatial annotations
can be transferred across datasets using the CCS. Top: spatial annotations derived from multiple
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datasets, including histological regions of interest (H&E image), tumor clones (Visium-derived copy
number aberrations) and cell types (Xenium and scRNA-seq). Spatial annotations are represented by
different spatial elements (polygons, circles, molecules) and can be transferred between datasets via
the CCS. The visualizations are presented in a larger format in Supplementary Note 11,
Supplementary Figure 10. (C) SpatialData queries facilitate cross-modality aggregation for data
integration, quality control and benchmarking. Left, middle: Cell-type fractions in Xenium computed at
circular regions that correspond to Visium quantification locations. Right: Cell-type fraction estimates
from deconvolution methods based on Visium data (using cell2location). (D) SpatialData queries allow
for arbitrary geometrical quantifications. Shown are cell-type fraction estimates obtained in Xenium or
Visium (via spot-level cell2location estimates) at annotated ROIs and clones as in B. (E) Comparison
of gene expression quantification in Xenium and Visium using SpatialData aggregations at Visium
capture locations. Left: Scatter plot of the correlation coefficient of aggregated gene expression
quantifications between Xenium replicates (x-axis) versus the correlation coefficient between Xenium
and Visium (y-axis). Shown are gene-expression quantifications for 313 genes present in both Xenium
and Visium. Point color denotes log expression in Xenium replicate 1. Lowly expressed genes are
associated with reduced correlation. Right: Visualization of aggregated expression levels at Visium
locations for FOXA1 (top) and UCP1 (bottom). Color bars denote raw counts.

Application of SpatialData to a multi-modal and multi-technology breast cancer
experiment

To illustrate SpatialData’s applicability to multi-modal integration and analysis, we applied the
framework to a breast cancer study that combines H&E images, 10x Genomics Visium and
Xenium assays13. The study comprises two in situ sequencing (Xenium) and one Spatial
Transcriptomics dataset (10x Visium CytAssist) from consecutive sections of a breast cancer
tumor. First, we used napari-spatialdata to define landmark points that are present in all
datasets. We then aligned all three datasets using affine transformations, thereby defining a
CCS for this dataset (Figure 2A). As a result of the alignment, SpatialData enabled us to
identify the common spatial area, which can be accessed using SpatialData queries across
all three datasets.

Next, we used the collective information from all three datasets to create a shared set of
spatial annotations. We selected four regions of interest (ROIs) based on histological
features present in the H&E image using napari-spatialdata. We then used genome-wide
transcriptome information in Visium to infer copy number variations (using CopyKat 14) and
select major genetic subclones. Finally, we annotated the Xenium replicates using a label
transfer method (ingest, implemented in scanpy9), using cell type labels of an independent
breast cancer scRNA-seq atlas15 (Figure 2B, Supplementary Figure 8B).

To exemplify how SpatialData can be used to transfer spatial annotations, we considered the
Visium capture locations and quantified cell type fractions in each location by aggregating
the cell type information from the overlapping Xenium cells. For comparison, we also
considered a deconvolution-based analysis of Visium using cell2location16 in conjunction
with the same scRNA-seq-derived cell types15 as reference. We observed high concordance
between Xenium replicates (median Pearson’s R=0.75 across Visium locations) and overall
good agreement between Xenium and deconvolution-based estimates (median Pearson’s
R=0.60).

Analogously to the aggregation at Visum locations, we considered ROIs defined from H&E
and the areas defined by the union of the subclone locations from Visium (Figure 2D,
Supplementary Figure 8A). Again, we quantified cell types within each region, either directly
using cell count fractions from Xenium or via deconvolution of the corresponding Visium
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data. Again, the two Xenium replicates showed high concordance of cell type fractions, and
the Xenium and Visium were consistent. Collectively, these examples illustrate how the
SpatialData aggregation functions can be used to integrate signals between samples, and
how the framework facilitates quality assessment between replicates, and benchmarking of
computational methods.

As a second aggregation use case, we compared expression quantifications of individual
genes measured by the Xenium and Visium assays. To do so, we aggregated individual
molecule counts from the Xenium data at Visium capture locations. We compared
transcript-to-circles aggregations from the Xenium replicates to the original Visium transcript
counts (Figure 2E, Supplementary Figure 8B). As expected the aggregated counts were
highly concordant between the Xenium replicates (median Pearson’s R=0.62, Figure 2E,
Supplementary Figure 8C-E) and to a lesser extent between a Xenium and Visium counts
(median Pearson’s R=0.48, Supplementary Figure 8C-E). We also observed a direct
relationship between the overall transcript abundance and the agreement between different
tissue sections and technologies (Figure 2E).

In sum, these examples illustrate the flexibility of the aggregation functionality, which can be
applied between SpatialElements of different kinds (points, circular capture locations, cells,
larger anatomical ROIs) to transfer diverse types of spatial annotations (cell expression, cell
types fractions). Further examples and advanced use cases of SpatialData aggregation
operations are discussed in Supplementary Note 4.

Application to further datasets and illustration of additional use cases

SpatialData is useful for processing single modality datasets in addition to complex
multi-modality studies as shown above. The SpatialData framework comes with additional
vignettes that illustrate other use cases. We illustrate how SpatialData can serve as a
backend to facilitate the training of deep learning models (Supplemental Note 7, link to
tutorial) and popular spatial interpretation tools such as Squidpy (link to tutorial). As a
starting point for using SpatialData in conjunction with different technologies, we also provide
pre-formatted SpatialData objects from over 40 datasets across a total of 8 technologies
(Table S3). Interactive annotation can be performed on both single- and multi-modality
datasets (link to tutorial, link to tutorial). Finally, we demonstrate how SpatialData can be
used to align multiple fields of view to a global reference coordinate system, by mapping 12
Visium slides to a large prostate section (Supplemental Note 10, Supplementary Figure 9).
Further information, including comprehensive documentation of the SpatialData Python
library, tutorials, example datasets, and a contributor guide are available online
(spatialdata.scverse.org).

Discussion
Here, we have presented SpatialData, a flexible, community standards-based framework to
store, process and annotate data from virtually any spatial omics technology available to
date. The ability to easily create common coordinate systems to align datasets is a critical
cornerstone to establish common coordinate frameworks (CCFs). CCFs will unlock new
analysis approaches that facilitate robust comparison and reuse of samples across studies.
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In conclusion, the flexibility and easily accessible solutions provided by the SpatialData
framework enable new analysis possibilities and enhance the reproducibility of integrated
spatial analysis.

As the uptake of SpatialData continues to grow, its utility will increase further. In the future,
we aim to extend SpatialData interoperability to R/Bioconductor, provide support for
multiscale point and polygon representations, and support cloud-based data access both
programmatically and via the visualization tool Vitessce17. In summary, SpatialData fills the
important need for an open and universal data framework for spatial omics.
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Data and code availability
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specification and the SpatialData design directly on Github18. All scripts to reproduce the
analysis can be downloaded from:
https://github.com/scverse/spatialdata-notebooks/tree/main/notebooks/paper_reproducibility.
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Supplementary Information

Supplementary Note 1: Challenges in spatial multi-omics data
processing
Integration of spatial omics technologies for holistic views of tissue architecture
Spatial omics technologies are being applied to virtually all fields of biology, ranging from
basic biological questions in model systems19,20, the study of disease states in big cohorts of
human patients21,22, to the first clinical applications23. Current spatial omics technologies
differ by readout (e.g., transcriptome, proteome, morphology), resolution and
comprehensiveness24. For example, Visium profiling gives whole-transcriptome readouts at
the cost of supercellular resolution: each Visium circular capture location describes the
aggregated expression of up to dozens of cells25. On the other hand, single-molecule
hybridization and in-situ sequencing technologies are capable of resolving millions of
transcripts with diffraction-limited subcellular resolution, at the cost of a smaller panel of
targets (usually up to a few hundreds)26,27. Increasingly, multiple complementary
technologies and profiling approaches are applied to the same samples28. However, these
efforts are stymied by a lack of methods to integrate and jointly analyze different
modalities2,4.

Landscape of spatial omics analysis tools
There are several existing tools for analyzing spatial omics data, which provide
complementary functionality. While some functionalities offered by SpatialData are also
provided by existing solutions (Table S1), we identified 4 key outstanding challenges that are
exclusively addressed by SpatialData:

● Support for large image data
● Spatial alignment of multimodal spatial omics data
● Cross-modality aggregation
● Interactive annotation

Integration of large image data
Images provide important complementary information to molecular profiles. For example,
H&E images can provide critical histological and anatomical context for molecular
measurements. Multidimensional images are generally stored as dense arrays which can be
10s-100s GB in size. Owing to their size, images require special consideration for
performant processing and integration with molecular profiles. For example, lazy loading and
multiscale representations only load the required portions and detail level of an image
required for a given processing operation and thus allow images larger than the available
memory to be processed. As a result, image processing software has largely been siloed
from molecular profile analysis software. Thus, there is the need for a spatial omics analysis
framework that fully embraces image data so image features can be integrated with
molecular features.

Alignment of multimodal spatial omics data
Each spatial omics modality measures specific features of molecular architecture (e.g., RNA
expression, morphology, chromatin accessibility). To build a holistic understanding of tissue
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architecture, it is beneficial to be able to combine complementary modalities and transfer
quantifications and annotations between them. For example, if two regions of interest are
identified by histological features in an H&E image, we may want to aggregate and compare
the molecular profiles of protein abundance and RNA expression in those ROIs to study the
signaling that gives rise to the distinct histological features. In order to achieve such an
integration, disparate datasets need to be aligned into a common coordinate system (CCS).
Computationally, this requires functionality to spatially transform all data types, which is
non-trivial, as there are many types of data in spatial omics datasets (e.g., multidimensional
arrays, polygons, points). Further, multiple aligned coordinate spaces may be required to
represent the multiscale nature of biological architecture (e.g., an organ-specific coordinate
system, and a tissue-specific coordinate system). Thus, to achieve practical multimodal
spatial alignment, a rich transformation system with support for multiple coordinate systems
is required.

Cross-modality integration
In addition to aligning multiple datasets, it is necessary to transfer spatial annotations
between datasets in order to efficiently use complementary insights that are provided by
each modality. In the context of the example above, transferring the spatial annotations of
ROIs derived from the H&E image to the molecular profiles enables stratification and
comparison of the signaling in distinct biological compartments. Such a comparison would
not have been possible without transferring the annotations from the H&E image to the
molecular profiles. While conceptually straight-forward, transferring spatial annotations
across modalities is non-trivial to achieve in practice, as the corresponding aggregation
operations must be applied to different data types (e.g., multidimensional arrays, polygons,
points). Thus, to achieve cross-modality integration, a uniform interface for aggregating all
data types present in spatial omics datasets is indispensable.

Interactive annotation
Interpreting spatial omics datasets requires input from domain experts. For example, it is
often desirable to annotate regions of interest based on histological or anatomical features.
Such annotations are necessary to compare distinct anatomical compartments and provide
ground truth for training and validating analysis algorithms. Owing to the size and
heterogeneity of spatial omics data types, interactive analysis of spatial omics datasets
requires a performant viewer that can represent diverse data types.

Comparisons of storage and objects for spatial omics data handling
We evaluated the libraries in Table S1 on the basis described below.

Data types
Data types include the type of representations that constitute a building block of the spatial
omics experiment:

- Raster images: multiplexed microscopy images.
- Raster labels: segmentation masks.
- Multiscale raster: pyramid-like representation of large microscopy images or labels.
- Polygons: list of polygons representing regions of interest (e.g. pathology annotation,

tissue regions)
- Regular shapes: similar to polygons, used to represent capture locations of

array-based technologies (e.g. circles for Visium, squares for DBiT-seq etc.)
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- Points: list of dimensionless points, used to represent e.g. transcripts locations.
- Features matrix: gene or protein expression matrix.
- Annotation matrix: experiment metadata, cluster annotation etc.
- Graphs: neighbors graphs between regions (cells, spots, shapes) or features (genes,

proteins).

Operations
These include operations to process spatial omics experiments, such as obtaining crops or
slices of the data, summary statistics and data type conversion.

- Points aggregation: compute summary statistics between points and regions (labels,
polygons or shapes) such as counting the number of transcripts across segmented
cells.

- Geometry intersection: set operations between polygons, labels or shapes.
- Transforms: transform elements (images, regions and points) between coordinate

systems
- Coordinate systems: support for specifying different coordinate systems for each

element (e.g. pixel-based coordinate systems versus global physical coordinate
systems).

Plotting
Plotting can be static or interactive.

Table S1: Existing spatial omics analysis lacks support for large images, aligning multiple
datasets to a common coordinate framework, and interactive annotations.
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Supplementary Note 2: Universal representation of spatial
omics data
Spatial omics datasets are challenging to load and integrate as they comprise different data
types. The SpatialData storage format and in-memory representation supports 5 primitive
SpatialElements to represent different datasets and data types: Images, Labels, Points,
Shapes, and Tables (explained below in detail). These SpatialElements allow for
representing the raw and derived data from a wide range of spatial omics assays, and we
provide convenient reader functions for most common spatial omics data formats (Table S2).
Multiple SpatialElements can be grouped together in a SpatialData object. SpatialData
objects can represent a single dataset or multiple datasets. SpatialData objects are stored
on disk in the SpatialData format, which is built upon the Zarr implementation of the
OME-NGFF 6,7 specification (Figure S1). OME-NGFF is a community-driven data standard
with readers in Python, Java, and JavaScript, enhancing the interoperability of the
SpatialData storage format. Using the standardized metadata from OME-NGFF also
improves the accessibility and reproducibility of SpatialData.

- Images: images are raster data that store high-resolution microscopy images. They
are stored as Zarr arrays and are represented in-memory as a (multiscale)
SpatialImage class29. SpatialImage inherits from xarray30 and xarray-datatree31 for
representing and manipulating high-dimensional arrays with named coordinates.

- Labels: labels are raster data that contain regions of interest such as segmentation
masks. They are stored similarly to images as Zarr arrays on disk and represented
in-memory as (multiscale) SpatialImage.

- Shapes: shapes are polygon data that contain regions of interest such as cell
segmentations, capture locations of array-based spatial transcriptomics data or other
types of ROIs. They are stored as a series of arrays that contain coordinates and
offsets of the polygons as Zarr arrays on disk and represented in-memory as
Shapely32 objects in GeoPandas33 dataframes.

- Points: points contain large collections (typically order of millions or billion) of
coordinates and annotations such as transcripts locations and their associated
metadata. They are stored as a parquet file on disk and represented in-memory as a
lazy object with a DaskDataFrame34.

- Tables: tables store molecular profile information (gene expression, protein
expression etc.) and associated metadata for observations and variables. It also
stores the adjacency matrix of spatial graphs as well as any relevant additional
metadata. It is stored on disk and represented in memory as AnnData35.

To illustrate how the SpatialData format works for standard spatial omics assays, we have
converted 42 fields of view from 7 different technologies in the SpatialData format and made
them available online (Table S3). We anticipate these standardized datasets will help
analysis methods developers benchmark their methods across different spatial omics
modalities.
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Supplementary Figure 1 | Schematic of the SpatialData storage layout in OME-Zarr. (A)
The SpatialData storage format builds on the OME-NGFF specification by prototyping new
data types required to store spatial omics information. Coordinate systems and transforms
as well as tables are currently in review by the community. Points and shapes will be
submitted to the community for review in a next phase to ensure interoperability. (B) Storage
format of SpatialData: it consists of one Zarr container with nested folder structure, one for
each SpatialData element. Each of the elements is saved as Zarr arrays, except for the
Points, which are stored as an Apache Parquet file. We want to highlight that the Parquet file
storage for points might change in the near future when a Zarr alternative will be
implemented.
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Table S2 | The SpatialData library provides reader functions for canonical spatial omics
technologies and vendor-specific file formats. Shown are technologies, associated reader
function in the SpatialData library and the set of SpatialData elements used to represent the
data.

Vendor/Technology Reader function Data SpatialData elements

NanoString CosMx cosmx

Transcripts locations Points

Raster Images Images

Segmentation masks Labels

Gene expression Table

Fluorescent marker intensity Table

Metadata Table

10x Genomics Xenium xenium

Transcripts locations Points

Raster Images Images

Cell segmentation Shapes

Nuclei Segmentation Shapes

Gene expression Table

Metadata Table

10x Genomics Visium visium

Raster Images Images

Circular regions Shapes

Gene expression Table

Metadata Table

CyCIF (MCMICRO
output) mcmicro

Raster Images Images

Segmentation masks Labels

Protein expression Table

Metadata Table

Imagine Mass
Cytometry (Steinbock
output)

steinbock

Raster Images Images

Segmentation masks Labels

Protein expression Table

Metadata Table
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Table S3 | SpatialData provides a growing collection of sample datasets in the
SpatialData storage format.We are continuing to add more datasets as they become
available. For an up to date list, please see the online documentation:
https://spatialdata.scverse.org/en/latest/tutorials/notebooks/datasets/README.html

Tissue Type Number of
samples/sections

File size

NanoString CosMx Non-small cell lung
cancer (NSCLC)36

30 adjacent slides
from the same
sample

~4.2 GB

10x Genomics
Xenium

Breast cancer13 2 samples with
overlapping area

~14.5 GB

10x Genomics
Visium

Breast cancer13 1 sample ~1.8 GB

CyCIF (MCMICRO
output)

Breast cancer37 1 sample ~250 MB

MERFISH (Allen
Institute prototype
pipeline)

Mouse brain38 1 sample ~50 MB

MIBI-TOF Colorectal cancer
(CRC)39

3 slides ~25 MB

Imaging Mass
Cytometry
(Steinbock output)

Patient 1: SCCHN
(head and neck
cancer)
Patient 2: BCC
(breast cancer)
Patient 3: NSCLC
Patient 4: CRC40,41

4 patients, 14
images

~820 MB
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Supplementary Note 3: Spatial query interface
When operating on large data, it is helpful to be able to subdivide the dataset into multiple
regions. This can be to extract specific anatomical regions or to divide the dataset for parallel
processing. Via the spatial query interface, users can request the data contained in a
bounding box in a specific coordinate system. The result of this subset operation is returned
as a SpatialData object. In future work, we will extend the coordinate system for more
advanced queries such as compound queries on both spatial coordinates and feature values
(e.g., all cells within region X and belonging to cluster Y). To help analysts learn how to use
the spatial query functionality, we have created a tutorial that can be downloaded as a
Jupyter notebook available online via the SpatialData online documentation (Figure S2).

Supplementary Figure 2 | Illustration of the SpatialData query function. Shown is a
screenshot for the spatial query tutorial from the online SpatialData documentation. The
tutorial illustrates the selection of data by spatial bounding boxes defined in the common
coordinate system. The full example can be found here in the “spatial query” notebook in the
online documentation (link to tutorial).
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Supplementary Note 4: Aggregation operations operate
interchangeably between data representation
Aggregation operations form the foundation for transferring quantifications and annotations
across modalities in multimodal analyses. The SpatialData framework enables the
aggregation (also referred to as accumulation in image processing) of data stored in any
SpatialElement into any set of target geometries or masks (Figure S3). For instance, it is
possible to count the number of single molecules for a specific gene within polygon
geometries representing cells. Similarly, those same molecules could be counted within
image masks representing the cytoplasm of the cells. Another example is averaging cell
gene expression within a given anatomical region.

SpatialData offers the flexibility to apply standard aggregation operators to the data (count,
sum, mean, standard deviation) to any SpatialElement. Additionally, SpatialData provides an
interface for applying aggregation operators defined by the user. Leveraging the SpatialData
common coordinate system, aggregations can be performed between two SpatialElements
that have different spatial scale and/or do not fully overlap. To help analysts learn how to use
the aggregation system, we have made a tutorial available in the SpatialData online
documentation (link to tutorial).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.05.539647doi: bioRxiv preprint 

https://spatialdata.scverse.org/en/latest/tutorials/notebooks/notebooks/examples/aggregation.html
https://doi.org/10.1101/2023.05.05.539647
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 3 | Schematic representation of the SpatialData aggregation
operations. SpatialData provides a uniform programmatic interface for aggregating
observations of any spatial omics modality by spatial annotations. Aggregation operations
take values from a source SpatialElement and spatial annotations from a target
SpatialElement as inputs. The aggregation operation groups the input values by the target
geometries, applies an aggregation function (e.g., mean, sum, count) to the grouped input
values and returns the aggregated values. Owing to the storage interface of SpatialData,
aggregations can be applied in a uniform manner to all types of spatial omics data.
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Supplementary Note 5: napari-spatialdata for interactive
visualization and annotation of spatial omics data

Supplementary Figure 4 |Example of using napari-spatialdata to visualize and
annotate various datasets. Napari-spatialdata interactively visualizes any of the
SpatialElements (images, labels, points, shapes) with their associated annotations (such as
gene expression, cluster annotations etc.). Embeddings of molecular profiles (e.g., t-SNE,
UMAP) can be interactively explored via the scatter plot widget. Spatial annotations can be
made via drawing of regions in the napari viewer. The spatial annotations are exported in the
SpatialData object so that they can be used in downstream analysis. A. NanoString CosMx
dataset and interactive selection with a lasso from the UMAP plot computed from the cell
gene expression and colored by Leiden clusters. The lasso tool in the scatterplot windows is
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being used to annotate a set of cells. The annotation can be visualized in space and can be
exported for downstream usage. B. MERFISH mouse brain dataset (Allen Institute prototype
MERFISH pipeline38) featuring gene expression, polygonal ROIs annotating anatomical
regions and cell types assigned to single molecule points.
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Supplementary Note 6: Static plotting with spatialdata-plot

Supplementary Figure 5 | Illustration of functionality of the static plotting library
spatialdata-plot. The library spatialdata-plot enables the streamlined visualization of
complex multi-modality data. SpatialData’s plotting capabilities can be used to visualize
different modalities. The user can specify which elements should be rendered (images,
labels, points, shapes), and specify parameters for each plotted element. For example,
shapes representing cells can be colored by a gene’s expression. The plotting library
automatically accounts for transformations and alignments of the underlying common
coordinate system,
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Supplementary Note 7: Training of deep learning models
directly from SpatialData datasets.
Deep learning algorithms are promising for multimodal integration and prediction. However,
they require careful curation and preparation of training datasets. Dataset preparation is
especially time consuming for spatial omics data because of the heterogenous data types,
large dataset sizes, and the need for spatially-aligning multiple modalities. Leveraging the
spatial query API, SpatialData comes with data loaders that are derived from the PyTorch
Dataset class42, thereby facilitating data ingestion for deep learning applications (Figure 1D,
Figure S6). The Dataset implementation uses the spatial query functionality to generate tiles
from a SpatialData object. This implementation enables users to integrate SpatialData
datasets with the rich Python deep learning ecosystem including models and infrastructure
from MONAI.

A tutorial on how to use the PyTorch dataset loader is available as part of the online
documentation (link to tutorial), where we use the SpatialData PyTorch dataset interface to
train a MONAI DenseNet encoder on the breast cancer study discussed in the main text
(Figure 2B). The tutorial demonstrates how to generate image tiles from an H&E image that
is spatially aligned to one of the two Xenium datasets, by querying the image tiles around
each Xenium cell using the SpatialData PyTorch Dataset class. We then use these data to
train DenseNet to predict the cell type from each image tile.
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Supplementary Figure 6 | SpatialData facilitates the preparation of datasets for deep
learning applications and it integrates with existing deep learning ecosystems. (A)
SpatialData allows to generate PyTorch datasets that subset the original SpatialData object
around desired locations. The resulting dataset tiles are valid SpatialData objects
themselves. Here we construct image tiles around cells and we use them to predict the
corresponding cell types using a DenseNet encoder. The model is provided by the MONAI
framework, and this example shows how we can readily interface with existing deep learning
ecosystems. (B) The generation of deep learning datasets harness the use of common
coordinate systems to combine different spatially aligned elements, even in presence of
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diverse resolutions or affine transformations. Here are shown the H&E image and Xenium
replicate 1 aligned datasets precedently introduced in Figure 2A. (C) Enlarged view of a
portion of the two datasets, overlaying the cells from Xenium, colored by cell type, to the
H&E image from Xenium. SpatialData allows to extract image tiles of the desired resolution
(here 32x32 pixels) around the Xenium cells. (D) The tiling extraction process takes
advantage of the multiscale representation and the chunked Zarr storage for efficient
memory usage. The first allows the extraction of the tiles from the appropriate (downscaled)
resolution, the second ensures that only the data chunk(s) containing the information about
the tiles are loaded from disk. Note: the 500x and 1000x downscaling factors and the size of
the chunks have been chosen for graphical purposes. Usually the downscaling factors and
the chunk size are smaller. (E) Visualization of cell types predictions from the model. Note:
since our focus in this example is to demonstrate the infrastructure, the network has been
trained only for a few epochs and without optimizing the hyperparameters. This is reflected
in the suboptimal accuracy of the predictions.
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Supplementary Note 8: Integration with squidpy
SpatialData is compatible with the scverse ecosystem 12. For example, a spatialdata can be
integrated with squidpy functionalities, to compute various types of spatial summary
statistics. We showcase how such integration works in a notebook in the online
documentation (Figure S6).

Supplementary Figure 7: By building upon standard scientific Python data types,
SpatialData can be readily integrated with existing packages such as squidpy. Shown is the
result from a spatial neighborhood enrichment analysis on a 10x Genomics Xenium dataset.
The rows and columns of the heatmap correspond to a cluster identified in the dataset, and
each entry in the heatmap represent the enrichment score: a high enrichment score means
that the two clusters are found to be enriched in spatial coordinates, i.e.,they are neighbors,
while a low enrichment score means that the two cluster are not found to be neighbors
across the tissue. See the “squidpy integration” example notebook in the online notebook for
details link to tutorial.
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Supplementary Note 9: SpatialData operations for aggregating
multi-modal datasets facilitates technological and
methodological benchmarking

Supplementary Figure 8 | Supplementary results for the analysis presented in main
text Figure 2. (A) Supplement of Figure 2D for the remaining ROIs and clones. Cell type
proportions are computed over annotated regions of interests (ROIs) as well as clones
across the Xenium replicates as well as the Visium dataset. For Visium the inferred cell type
proportions using cell2location is shown. ROIs are selected based on histological features
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via the napari-spatialdata plug-in on the Visium-associated H&E image. The clones are
inferred on the Visium data using CopyKat 14. (B) Supplement of Figure 2E for replicate 2.
Aggregated transcripts for FOXA1 and UCP1 for Xenium replicate 2 over the Visium
locations. (C) Supplement of Figure 2E. Overall density of Pearson’s correlation coefficient
via pairs of sections is computed for each gene. (D, E) The relationship between the
Pearson’s correlation coefficient between pairs of sections and overall gene expression is
shown. Each point represents a gene.
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Supplementary Note 10: Representation of dataset with
multiple overlapping field-of-views and different modalities

Supplementary Figure 9 | Example of using SpatialData to combine multiple datasets
from a prostate cancer study. Shown is a common coordinate system constructed using
data from Erikson et al. 43. The study comprises multiple Visium H&E and Spatial
Transcriptomics43 datasets from multiple tissue samples, with partially overlapping
fields-of-view distributed across the tissues. (A) Layout of the 15 fields-of-view for the Visium
experiments for one of the tissues. The coordinate transformations as shown were derived
using SpatialData (landmark-based alignment) mapping the data to global layout images
shown in the original publication. (B) Screenshot of the visualization of all Visium datasets
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for one of the tissue samples in the context of the whole tissue coordinate system using
napari-spatialdata. (C) Leveraging the SpatialData multiscale image representation and
napari-spatialdata, we can view and explore all of the large images (15 images, ≈ 580
megapixels each) aligned together with the spatial gene expression. We can also visualize
multiple modalities together, such as adding to the view also the Spatial Transcriptomics
data. The layout image used in the background in panels A and B has been made available
in the original publication43 under the Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
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Supplementary Note 11: Interactive visualization of a three
dataset breast cancer study
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Supplementary Figure 10 | Visualization with napari of the Visium and the two Xenium
datasets from the breast cancer study discussed in the main text (Figure 2B). A.
Showing the H&E image from the Visium dataset annotated with the ROIs for anatomically
relevant tissue compartments. B. Multimodal visualization overlaying the H&E image from
the Visium data, the two immunofluorescence images associated with the Xenium data, the
Visium array capture locations colored by gene expression (showed with transparency), the
Xenium cells showing cell types and the four manually annotated ROIs. C. Visualization of
the clones inferred from the Visium expression data.
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Methods

SpatialData framework
The SpatialData framework comprises a core package and associated satellite packages
napari-spatialdata, spatialdata-io and spatialdata-plot, compatible with Python 3.9 and
above. All code is available on GitHub as part of the scverse organization, and is licensed
under the permissive “BSD 3-Clause License''. The project structures inherit from the
scverse cookiecutter, and the napari plugin cookiecutter, thus implementing unit tests and
pre-commit checks in a continuous integration setting. The documentation is built using
Sphinx and hosted on Read the Docs. It includes API descriptions, example notebooks and
a table with links to downloadable spatial omics datasets. Each dataset can be both
downloaded in full (.zip), or even directly accessed from the cloud (public S3 storage).

We also provide a contribution guide and a technical design document to encourage
adoption. Users can reach out to the core development team via the GitHub Issues bug
tracking system. To encourage collaboration between the imaging and scverse communities,
we have created a public chat stream in the imagesc Zulip messaging platform:
https://imagesc.zulipchat.com/#narrow/stream/329057-scverse.

Raw human breast cancer Xenium and Visium data
We downloaded the raw data from:
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast.

Loading Xenium and Visium datasets into SpatialData
The 10x Xenium and Visium readers from spatialdata-io were used to read in the data into
SpatialData objects. For the Xenium datasets, the DAPI channel was stored as a multiscale
Image, cell and nuclei segmentation masks and boundaries were stored as Shapes
elements whereas the transcripts were stored as Points. The metadata and count matrices
were stored as a Table in the SpatialData object. For the Visium dataset, the H&E image
was stored as a multiscale Image, the array capture areas (circles) were stored as Shapes,
and the count matrix and annotations were stored in the Table.

Cell type annotation of the Xenium replicates
We annotated cells from the Xenium replicates using a publicly available scRNA-seq breast
cancer atlas 15, comprising 9 malignant and normal cell types and 29 subtypes. After
subsetting the atlas to the subset of 313 genes present in the Xenium panel, we applied the
ingest method for label transfer as implemented in the Scanpy package (v1.9) 9 to annotate
cells from the Xenium replicates. We transferred major cell type labels first (coarse-grained)
and then within each class we mapped the minor cell types (fine-grained). In the current
analysis only major cell types are shown. The 9 major cell types are B-cells, Cancer
Associated Fibroblasts (CAFs), Cancer Epithelial, Endothelial, Normal Epithelial,
Plasmablasts, and Pre-vasculature cells (PVL), and T-cells.
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Alignment to create common coordinate systems
We selected 3 landmark points from the images from the two Xenium replicates as well as
the Visium dataset. The landmark points are to be selected on each of the images in the
same order and there should be a 1-to-1 spatial correspondence between the sets of points.
Xenium replicate 1 was used as the reference to which Xenium replicate 2 and Visium were
aligned using the SpatialData function align_elements_using_landmarks. We used
napari-spatialdata to annotate the landmark points and to view the result of the alignments.
Internally, Dask’s lazy-loading and Zarr’s multiscale representation made it possible to
performantly explore and zoom the datasets even in a low memory device like a standard
laptop.

Cell type interpolation for Visium
After alignment, the shared area between each cell, from the Xenium replicates, and the
Visium locations, is computed. Then the cell type fractions are computed for each Visium
location based on the surface fractions of the locations covered by each cell type. This is
done for Xenium replicates 1 and 2 separately.

Cell type deconvolution using cell2location
We used cell2location (v0.1.3) 16 to estimate the cell type fractions at the Visium locations.
We used the aforementioned breast cancer atlas as the reference. For this task we operated
on the subset of 313 genes present in the Xenium replicates and subset the Visium dataset
and the breast cancer atlas to those genes. We set the default parameters as suggested in
the cell2location tutorial
https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html. The
analysis can be found at
https://github.com/scverse/spatialdata-notebooks/tree/main/notebooks/paper_reproducibility.
For visualization only cell types that contribute at least 5% per spot are taken into account.
Then, each spot is normalized to have a total sum of 1.

ROI selection with napari-spatialdata
After alignment four ROIs were selected based on the H&E image from the Visium dataset
using the napari-spatial data plugin. These ROIs were then added to the aligned Xenium
replicates as well. Each of the ROIs was selected based on their distinct micro-anatomical
characteristics and then was labeled manually based on the underlying cell-type composition
from the Xenium replicates.

Clone detection on Visium using CopyKat
We used CopyKat (v1.1.0) 4 with the default parameters to estimate copy number states
from the Visium count matrix. Then we performed hierarchical clustering, which identified 3
major clusters on the locations labeled as `aneuploid`. These three clusters were used as
genetic subclones. We also transferred the clone labels to the overlapping cells from Xenium
replicates. The clone labels were stored as a SpatialData table element. This analysis was
conducted in R separately (see
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https://github.com/scverse/spatialdata-notebooks/tree/main/notebooks/paper_reproducibility)
.
The Visium’s anndata table was saved in .h5ad format to be loaded and analyzed in R.
The clone labels were then transferred back to SpatialData via .h5ad. There are ongoing
efforts in the Bioconductor community to enable direct loading of anndata tables into R from
Zarr, which would obviate the need for exporting as .h5ad (HDF5 format) when completed.

ROI cell type fractions
We next computed, for each ROI and for each clone, the fractions of cell-types for the cells
contained within them. The SpatialData aggregation APIs offer a convenient interface to
compute these metrics, independently if what is being aggregated is a set of circles or
polygons, and if the target region is a polygonal ROI or a set of circles defining a particular
clone.

Transcript aggregations
For each Visium spot we aggregated the transcripts from the Xenium replicates falling into
each Visium spot. We performed this analysis for Xenium replicates 1 and 2 separately. This
yields two aggregated count matrices that were saved as separate layers in the Visium’s
SpatialData object’s table.
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