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Post-trandational regulation of photosynthetic activity via the TOR kinasein plants.

One sentence summary:

The TOR kinase post-tranglationally controls guanosine tetraphosphate signaling to regulate plant
photosynthetic activity.
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Abstract

Chloroplasts are the powerhouse of the plant cell, yet they are resource-intensive and will cause
photooxidative damage if their activity overshoots the demands of growth. The adjustment of
chloroplast activity to match growth is therefore vital for stress acclimation. Here we identify a novel
post-transational mechanism linking the conserved eukaryotic TOR kinase that promotes growth and
the guanosine tetraphosphate (ppGpp) signaling pathway of prokaryotic origin that regulates
chloroplast activity, and photosynthesis in particular. We show that RelA SpoT Homologue 3 (RSH3),
a nuclear-encoded chloroplastic enzyme responsible for ppGpp biosynthesis, interacts directly with the
TOR complex via a plant-specific N-terminal region (NTR) which is hyper-phosphorylated in a TOR-
dependent manner. Downregulation of TOR activity reduces NTR phosphorylation, enhances ppGpp
synthesis by RSH3, and causes a ppGpp-dependent decrease in photosynthetic capacity. Altogether we
demonstrate that the TOR-RSH3 signaling axis is a novel and direct post-translational mechanism that
allows chloroplast activity to be matched with plant growth, setting a new precedent for the regulation
of organellar function by TOR.

Main text

The use of sunlight to fix carbon and produce chemical energy during photosynthesis is the basis of
amost al life on the planet. However, the photosynthetic machinery is also resource intensive and
chloroplasts must be tightly regulated to prevent photooxidative stress. Guanosine tetraphosphate
(ppGpp) is a signaling nucleotide that regulates growth and stress acclimation in the majority of
prokaryotes (Bange et al., 2021). In plants, ppGpp signaling negatively regulates photosynthesis, and is
required for normal growth and stress acclimation (Maekawa et a., 2015; Sugliani et a., 2016; Mehrez
et a., 2022). TARGET OF RAPAMYCIN (TOR) is a nucleocytosolic Ser/Thr kinase that plays an
evolutionary conserved role in eukaryotes by promoting growth in response to favorable environmental
cues (Burkart and Brandizzi, 2021; Pacheco et al., 2021). Nutrient limitation or environmental stress
lead to the inactivation of TOR, which slows growth and promotes nutrient recycling. TOR also
influences photosynthesis in plants and algae, a phenomenon that up to now was only explained by
transcriptional regulation of nuclear-encoded chloroplast genes (Dong et a., 2015; Sun et al., 2016;
Imamura et al., 2018; Upadhyaya and Rao, 2019; D’ Alessandro, 2022). Here we set out to determine
whether TOR isinvolved in the post-transcriptional regulation of photosynthesis.
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Using the TOR complex subunit SEC13 protein 8 (LST8) as bait in an untargeted yeast two hybrid
(Y 2H) screen, we identified the bifunctional ppGpp synthase / hydrolase enzymes RSH2 and RSH3 as
LST8 interactors (Fig. 1A). LST8 is nucleocytosolic (Fig. S1), while RSH3 is a nuclear-encoded
chloroplast enzyme expected to reside only transiently in the cytosol before chloroplast import and
processing. Therefore, we adopted a proximity labelling approach to determine whether LST8 interacts
with the RSH3 precursor protein in planta. LST8 fused to the promiscuous biotin ligase TurbolD
(Zhang et a., 2019) with atriple haemagglutinin (HA) tag (TID-LST8, LST8-TID) was co-expressed
with RSH3-GFP or CFP targeted to the chloroplast by the Rubisco Small Subunit 5A Chloroplast
Transit Peptide (CTP) (SSU-CFP). TID-LST8 and LST8-TID biotinylated proteins at the molecular
weight of RSH3-GFP only in the samples co-expressing RSH3-GFP and not in the SSU-CFP control
(Fig. 1B). SSU-CFP was not biotinylated (Fig. 1B, grey arrows), indicating that RSH3-GFP
biotinylation is specific. We further confirmed that biotinylation is specific by purifying biotinylated
proteins and showing that RSH3-GFP is biotinylated preferentially by TID-LST8 compared to a TID-
Y FP control (Fig. 1C).

We next sought to determine whether RSH339.221, the minimal RSH2/3 LST8 interaction zone identified
by Y 2H, was sufficient for interaction with LST8 in planta. RSH339.221-GFP was strongly biotinylated
by TID-LST8 (Fig. 1D). A modified control protein SSUsg 75-RSH3gs.221-GFP, where the region
corresponding to the predicted CTP was substituted with an equivalent region of the SSU CTP (Fig.
S2A), was not biotinylated despite accumulating to the same level in the cytosol. Biotinylation was also
not affected by inhibition of TOR with AZD-8055 (AZD), an ATP competitive inhibitor specific for
TOR (Montané and Menand, 2013). The RSH339.22; region is therefore sufficient for interaction with
LST8 in planta, and residues 39-64 are required.
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Figure 1. RSH enzymes interact with a subunit of the TOR complex and undergo TOR-dependent
phosphorylation. (A) Alignment of the Y2H LST8 interacting regions of RSH2/3, showing the minimal
interaction zone (magenta dashed line). TargetP predicted CTP cleavage site (CS) shown (Almagro Armenteros
et al., 2019). (B) Blots of protein extracts from N. benthamiana co-expressing TID LST8 fusions and RSH3-GFP
or SSU-CFP. (C) Liquid chromatography mass spectrometry (LC-MS) identification of RSH3-GFP peptides in
the biotinylated protein fraction from N. benthamiana co-expressing RSH3-GFP with TID-LST8 or TID-YFP. Blots
of protein extracts from (D) N. benthamiana co-expressing TID-LST8 and RSH335.221-GFP or SSUs7.79-RSH34s5.
221-GFP, (E) A. thaliana OXRSH3-GFP seedlings and (F) N. benthamiana expressing RSH33g.0,:-GFP or a
phosphodefective (P-) form and treated +AZD. (G) Map of RSH339.,2:-GFP phosphorylation sites identified by
LC-MS following immunoprecipitation from N. benthamiana. Arrows indicate phosphorylation in putative TOR-
dependent contexts (see also Fig. S5). (H) Blots of protein extracts from N. benthamiana expressing RSH33g.201
homologous regions from C. paradoxa, S. lycopersicum and O. sativa £AZD. NTR, N-terminal region; SYN,
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synthetase domain ; HYD, hydrolase domain; SDS, SDS-PAGE separation; Phos-tag, Phos-tag SDS-PAGE
separation.

We observed that RSH3-GFP accumulates to very low levels in planta (Fig. 1B, S3B), shows dual
bands by immunoblot (Fig. 1B, 1E, S3B), and only has sporadic chloroplast localization (Fig S3A). To
determine whether the RSH3 N-terminal region (NTR) regulates RSH3 localization and stability we
substituted the predicted CTP with the SSU CTP while either preserving the remaining NTR (SSU-
RSH3s5.enp-GFP) or eliminating the magjority of the NTR (SSU-RSH3* 195 enp-GFP) (Figure S2B).
Replacement of the predicted CTP aone did not cause a major change in protein localization (Fig.
S3B). However, elimination of the NTR resulted in strong accumulation of the mature form of RSH3 in
the chloroplast (Fig. S3A,B). Therefore, the full NTR is involved in controlling RSH3 accumulation

and localization.

We next found that the RSH3 CTP is much longer than predicted. We observed that the probable
mature forms of RSH3 were of a similar size whether the NTR was present or not (Fig. S3B). This
suggested the presence of additional downstream processing sites. Analysis of a series of N-terminal
GFP fusions (Figure S2C) showed that RSH3;.165-GFP was the first to show clear chloroplast
localization and processing (Fig. S4A, B). Indeed, the mature form was similar in size to GFP,
suggesting that the chloroplast cleavage site was close to position 165 (Fig. $4A). Accumulation of a
larger mature protein demonstrated that this cleavage site was also retained in RSH3;.175-GFP. These
observations are consistent with the increased probability of cleavage between 160-161 (Fig. $4C).
Interestingly, the dual chloroplast and nucleocytoplasmic localization of RSH3;.175.GFP strongly
resembled that of full length RSH3, and there was reduced accumulation compared to RSH3,.165-GFP.
Motifs important for destabilization may therefore lie between RSH3 positions 165 and 175. In
conclusion, the RSH3 NTR contains a remarkably long CTP, more than double the average (Bienvenut
et a., 2012), and is responsible for destabilizing RSH3 and conferring a dual nucleocytosolic and
chloroplastic localization.
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mCherry-LST8 SSU-CFP

Fig. S1. LST8 shows a nucleocytosolic localisation.
Fluorescence microscopy images of N. benthamiana leaves expressing mCherry-LST8 and the chloroplast
marker SSU-CFP. Scale bar, 50 um.
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Fig. S2. Outline of different RSH3 fusion proteins. (A) RSH3 fusions used for analyzing RSH3 control by TOR
in N. benthamiana. (B) RSH3 with long or truncated N-terminal region targeted to chloroplast using the Rubisco
small subunit CTP. Asterisk (*) indicates an inactivating mutation in the RSH3 synthetase domain (SYN D452G).
(C) Series of RSH3 NTR truncations fused to GFP for determining the minimal sequence required for chloroplast
targeting. Chloroplast targeting peptide (CTP), N'-terminal region (NTR, magenta), ppGpp hydrolase domain
(HYD, light blue), synthetase domain (SYN, blue). TargetP predicted chloroplast import cleavage site (CS)
indicated by grey arrows, and observed cleavage sites indicated by black arrows.
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Fig. S3. The RSH3 NTR restricts RSH3 accumulation.

(A) Fluorescence microscopy images of N. benthamiana leaves expressing RSH3-GFP, SSU-RSH345.enp-GFP
and SSU-RSH3*;g5 enp-GFP. Scale bar, 50 pm. (B) Immunoblots of protein extracts from N. benthamiana
expressing the same proteins.
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Fig. S4. The RSH3 NTR contains an unusually long chloroplast transit peptide.
A series of RSH3 N-terminal regions of increasing size were expressed in N. benthamiana and analyzed by (A)

immunoblotting protein extracts and (B) fluorescence microscopy. Scale bar, 50 um. (C) TargetP (Armenteros et
al., 2019) prediction of RSH3 chloroplast cleavage sites (bottom).


https://doi.org/10.1101/2023.05.05.539554
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.05.539554; this version posted May 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

We next tested whether the TOR complex is involved in phosphorylation of RSH3. We observed
phosphoforms of the RSH3-GFP precursor in Arabidopsis OX:RSH3-GFP plants (Fig. 1E). Strikingly,
the phosphoforms were lost rapidly upon TOR inhibition. Interestingly, we did not observe
phosphoforms for mature RSH3-GFP (Fig. 1E, lower band), suggesting that TOR-dependent
phosphorylation occurs only on the CTP which is subsequently cleaved and degraded after chloroplast

import.

We then analyzed RSH339.22; and found serine residues in TOR phosphorylation compatible contexts
(Hsu et a., 2011; Van Leene et a., 2019) (Fig. S5A). When expressed in N. benthamiana several
RSH339.221-GFP phosphoforms accumulated under control conditions and disappeared upon TOR
inhibition (Fig. 1F). Mutation of TOR compatible phosphosites in RSH339.221-GFP almost completely
abolished TOR-dependent phosphorylation. LC-MS analysis of immunoprecipitated RSH33g.02:-GFP
identified phosphorylation at 15 serine residues, including five putative TOR-dependent phosphosites
(Fig. 1G). TOR-inhibition caused a dramatic reduction in the proportion of phosphorylated peptides, as
expected. Together these results indicate that the RSH3 CTP is hyper-phosphorylated in a TOR-
dependent manner, and that hyper-phosphorylation requires serine residues in canonical TOR-

dependent contexts.

Theregion required for TOR interaction is found only in the NTR of RSH2/3 family membersin plants
and algae, and is absent from RSH1 and RSH4/CRSH enzymes, as well as from prokaryotic RSH
enzymes (Fig. S5). The glaucophyte algae Cyanophora paradoxa RSH2/3 enzyme has an NTR-like
region including predicted TOR dependent phosphosites, indicating possible origins prior to the
divergence of green algae and land plants from glaucophytes, almost 2 hillion years ago (Strassert et
a., 2021). The RSH2/3 NTRs from Arabidops's, tomato, and rice were all phosphorylated in a TOR-
dependent manner (Fig. 1H). The C. paradoxa RSH2/3 NTR was not phosphorylated, suggesting either
divergent TOR recognition or a later emergence of TOR-dependent regulation. Altogether, we show
that the RSH3 NTR has ancient evolutionary origins, and phosphorylation by TOR is conserved at |east

among flowering plants.
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Fig. S5. Features and evolution of the RSH NTR.

(A) Domain structure of the four Arabidopsis RSH enzymes focused on the N-terminal and catalytic domains.
Domains with the same colour show strong sequence homology. Serines in TOR-dependent phosphorylation
contexts (SP, RXXS) are indicated above RSH3 (Van Leene et al., 2019). Prior experimental evidence existed
for S61 phosphorylation (PhosPhAt 4.0)(Xi et al.,, 2021). (B) Maximum likelihood inference of evolutionary
relationship between NTRs from RSH2/3 family enzymes found in plants, green algae and the glaucophyte
Cyanophora paradoxa. NTRs tested for TOR-dependent phosphorylation are in bold. Boostrap support shown at
branch nodes, and scale indicates substitutions per site. (C) Disorder prediction across RSH3, indicating higher
levels of disorder within the NTR. IUPred3 (Erdds et al., 2021).
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Fig. S6. TOR-inhibition by AZD-8055 leads to a dose dependent decrease in Fv/Fm.

Maximal efficiency of PSII (Fv/Fm) was measured in seedlings of wild type and TOR/tor-1 heterozygous plants
after 6 days growth on the indicated concentrations of AZD-8055. Graphs show mean (horizontal bar), median
(column height) and 95% CI (vertical line). Lower-case letters indicate statistical groups.

12


https://doi.org/10.1101/2023.05.05.539554
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.05.539554; this version posted May 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

We next sought to determine whether TOR regulates RSH-dependent ppGpp homeostasis by
monitoring photosynthesis, a conserved target of ppGpp (Mehrez et a., 2022). Treatment of
Arabidopsis seedlings with AZD caused a dose dependent drop in photosynthetic efficiency. TOR-
haploinsufficient seedlings were more sensitive to AZD, indicating that this effect is TOR dependent
(Fig. S6)(Montané and Menand, 2013). We then inhibited TOR in seedlings lacking the RSH1 ppGpp
hydrolase (rshl-1), or the main ppGpp synthetases RSH2 and RSH3 (rsh2-1, rsh3-1, rshy3)(Fig. 2A).
TOR inhibition caused a sharp drop in the maximal efficacity of photosystem Il (Fv/Fm) in the wild
type, and this drop was more pronounced in rshl-1 seedlings that lack ppGpp hydrolase activity. In
contrast, we observed progressive resistance to the effect of TOR inhibition in rsh2-1, rsh3-1, and
finally rshy 3, where the drop in Fv/Fm was strongly curtailed. We further confirmed the effect of TOR
inhibition on ppGpp homeostasis by testing plants overexpressing the RSH1 ppGpp hydrolase
(OX:RSH1) and OX:RSH3 plants that accumulate high ppGpp levels (Sugliani et a., 2016). OX:RSH3
seedlings were hypersensitive to TOR inhibition, while OX:RSH1 seedlings were resistant (Fig. 2B).
OX:RSH3 adult plants were also hypersensitive to TOR inhibition (Fig. S7A,B), and, importantly, this
was accompanied by a marked increase in ppGpp levels (Fig. 2C). The Fv/Fm of OX:RSH3 was also
hypersensitive to nitrogen deprivation (Fig. S7C), a physiologically-relevant stress known to inhibit
TOR activity (Liu et al., 2021). We therefore show that ppGpp accumulation mediated by the activities
of RSH2, RSH3 and RSH1 is the main driver of photosynthesis repression following the inhibition of
TOR.

Next, we investigated whether loss of LST8 in the Is(8-1 mutant affected the hypersensitivity of
OX:RSH3 plantsto AZD. Strikingly, 1st8-1 OX:RSH3 plants showed a severe growth and development
phenotype that was stronger than in the parental lines (Fig. 2D). Despite phenotypic differences, mature
wild type and 1s(8-1 plants showed similar Fv/Fm ratios with or without exposure to AZD for 2 days
(Fig. 2E). However, the Fv/Fm of untreated 1st8-1 OX:RSH3 dropped to the same level as in AZD-
treated OX:RSH3, strongly suggesting that the absence of LST8 leads to constitutive activation of
RSH3 via a reduction in either TOR activity or the quantity of interaction partner. (Fig. 2E). In
agreement, Ist8-1 OX:RSH3 appeared less sensitive to AZD treatment.
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Fig. 2. TOR activity regulates photosynthesis via RSH-dependent ppGpp synthesis.
Maximal efficiency of PSII (Fv/Fm) was measured in seedlings of the indicated Arabidopsis lines treated + 10 uM
AZD for (A) 6 days (n=17-35 plants), and (B) 48 hours (n=17-20 plants). (C) Nucleotide quantification in adult
plants treated + 10 uM AZD for 48 hours (n=3 biological replicates). (D) Images of 5-week-old Arabidopsis wild-
type and mutant plants. (E) Fv/Fm measurements of mature plants treated + 10 uM AZD for 48 hrs (n=4-20).
Graphs show mean (horizontal bar), median (column height) and 95% CI (vertical line). Lower-case letters

indicate statistical groups.
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The previous experiments lead us to ask whether the RSH3 NTR is required for the regulation of
ppGpp signaling by TOR. We therefore generated plants overexpressing RSH3-GFP (OX:RSH3-GFP),
or RSH3-GFP with a truncated NTR that is no longer able to interact with LST8 (OX:SSU-RSH3gs.
eno-GFP)(Fig. 1D, S2). These lines were created in the rsh, 3 background to prevent interference by the
upregulation of RSH2/3 transcription that can occur under stress conditions (Romand et al., 2022). As
expected, rshy 3 OX:RSH3-GFP was hypersensitive to TOR inhibition (Fig. 3A). Strikingly, however,
rshy s seedlings expressing SSU-RSH3ss.enp-GFP, which cannot interact with LST8 (Fig. 1D) were
completely insensitive to TOR inhibition. These results, together with the constitutive activation of
RSH3 in the OX:RSH3-GFP [st8 plants (Fig. 2E), demonstrate that the interaction between LST8 and
the NTR isrequired for repression of RSH3 activity in planta.

We reasoned that phosphorylation of the RSH3 CTP might affect RSH3 activity by reducing
accumulation in the chloroplast. Indeed, phosphorylation of chloroplast precursors is known to impede
import (Waegemann and Soll, 1996). We therefore analyzed the localization of phosphomimic and
phospho-null mutants of RSH3;.165-GFP. Phosphomimic RSH3;.165-GFP showed both chloroplastic
and nucleocytosolic localization, while the native and phospho-null form showed only chloroplastic
localization (Fig. 3C, $4B). Furthermore, a greater proportion of mature protein compared to precursor
was observed for phospho-null RSH3:.165-GFP, while the phosphomimic accumulated a lower
proportion of mature protein (Fig. 3D). Full-length phosphomimic RSH3-GFP also showed a reduced
chloroplast localization (Fig. S8A). Altogether, these results support a model whereby TOR-dependent
phosphorylation attenuates the chloroplast localization of RSH3. Inactivation of TOR, either artificialy
or via nitrogen darvation, leads to rapid RSH3 dephosphorylation and increased chloroplast
localization to allow more ppGpp synthesis, which in turn inhibits photosynthesis. The inherent
instability of RSH3 (Fig. S3B) somewhat masks the increased level of mature RSH3 in the chloroplast
(Fig. 1E). The small and transient pool of mature RSH3 might be highly sensitive to fluctuations in
import of the precursor protein.
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Fig. 3. TOR regulates RSH3 activity and cellular distribution via the RSH3 NTR.

(A) Maximal efficiency of PSII (Fv/Fm) was measured in Arabidopsis seedlings of the indicated lines treated + 10
MM AZD for 48 hours (n=18-36 plants). RSH3, RSH3-GFP; SSU-RSH3, SSU-RSH3¢s enp-GFP. (B) Fluorescence
microscopy images of N. benthamiana leaves expressing RSH3,.16s-GFP P+ and RSH3;.165-GFP P-. White
arrows indicate nuclei surrounded by chloroplasts. Scale bar, 50 um. (C) Quantification of GFP fluorescence in
nuclei against GFP fluorescence in nuclei-proximal chloroplasts, n=50 nuclei. (D) Immunoblots of protein
extracts from N. benthamiana expressing the indicated proteins or the non-inoculated control (NI). p, precursor
protein; m, mature protein after chloroplast import. Graphs show mean (horizontal bar), median (column height)
and 95% CI (vertical line). Lower-case letters indicate statistical groups.
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In conclusion, we reveal a conserved post-tranglational mechanism for the regulation of chloroplast
function by the TOR kinase in plants. This mechanism, which is independent and distinct from
transcriptional pathways of chloroplast (Dong et al., 2015; Sun et al., 2016; Imamura et al., 2018; Han
et a., 2022), may allow rapid co-ordination of the nucleocytosolic and chloroplast compartments. Such
co-ordination may be particularly important during episodes of stress where growth and photosynthesis
must be downregulated in lockstep to prevent photooxidative damage (Romand et al., 2022). Together
with a recent report that TOR promotes accumulation of the chloroplast f-AMYLASE1L in stomatal
chloroplasts (Han et al., 2022) our work sets a new precedent for the regulation of organellar function
by TOR, and provides a molecular mechanism for explaining the TOR-dependent regulation of
photosynthesis.
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