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Abstract 
Protein structure determination is a critical aspect of biological research, enabling us to 
understand protein function and potential applications. Recent advances in deep learning 
and artificial intelligence have led to the development of several protein structure prediction 
tools, such as AlphaFold2 and ColabFold. However, their performance has primarily been 
evaluated on well-characterised proteins, and comparisons using proteins with poor 
reference templates are lacking. In this study, we evaluated three modelling tools on their 
prediction of over 1000 snake venom toxin structures with no reference templates. Our 
findings show that  AlphaFold2 (AF2) performed the best across all assessed parameters. 
We also observed that ColabFold (CF) only scored slightly worse than AF2, while being 
computationally less intensive. All tools struggled with regions of intrinsic disorder, such as 
loops and propeptide regions, and performed well in predicting the structure of functional 
domains. Overall, our study highlights the importance of exercising caution when working 
with proteins that have poor reference templates, are large, and contain flexible regions. 
Nonetheless, leveraging computational structure prediction tools can provide valuable 
insights into the modelling of protein interactions with different targets and reveal potential 
binding sites, active sites, and conformational changes, as well as into the design of 
potential molecular binders for reagent, diagnostic, or therapeutic purposes. 
 
Keywords: Protein structure prediction, structural modelling, alphafold, colabfold, modeller, 
toxins, challenging targets 
 
Statement: Recent advances in machine learning have led to the development of new 
protein structure prediction tools. However, these tools have mainly been tested on well-
known proteins and their performance on proteins without known templates is unclear. This 
study evaluated the performance of three tools on over 1000 snake venom toxins. We found 
that while caution is required when studying poorly characterised proteins, these tools offer 
valuable opportunities to understand protein function and applications. 
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Introduction 
Understanding 3-dimensional (3D) protein structures is key to many research questions, 
ranging from fundamental topics concerning how a given protein functions to translational 
hurdles involving using such information to manipulate protein function for industrial, 
therapeutic or other purposes. The most reliable approach towards resolving protein 
structures has been the use of experimental technologies, such as x-ray crystallography, 
and more recently, cryogenic electron microscopy. Yet, such approaches are time-
consuming, low-throughput, and sometimes impossible for difficult to crystallise targets such 
as membrane proteins (Kermani, 2021). In an attempt to increase throughput and allow for 
3D characterisation of large structural datasets and produce structures of proteins where 
conventional approaches fail, scientists have explored computational methods for the 
prediction of structures based on evolutionary history. Homology modelling aims to predict 
the 3D structure of a given protein (target) sequence based on its homology to solved 
structures (templates) (Bai et al., 2015; Thompson et al., 2020) and pairwise evolutionary 
correlations (Altschuh et al., 1987; Jones et al., 2012; Marks et al., 2011; Shindyalov et al., 
1994; Weigt et al., 2009). Homology modelling has been used to produce structure models 
for at least one domain in more than half of all known sequences and a total of over 38 
million models deposited on ModBase (Pieper et al., 2014). The majority of these deposited 
structures were generated using the software program MODELLER (MDLR), an established 
and excellent protein modelling structure tool (Bitencourt-Ferreira & de Azevedo, 2019; 
Webb & Sali, 2016). This approach has aided in our understanding of protein structures and 
has grown in accuracy with the increasing number of experimental structures deposited in 
the Protein Data Bank (PDB) (“Protein Data Bank: The Single Global Archive for 3D 
Macromolecular Structure Data,” 2019), the rise of genomic sequencing, and the availability 
of deep learning techniques allowing rapid interpretation of these data. Nevertheless, 
contemporary evolutionary-history-based approaches, more often than not, fall short of 
generating predictions comparable to experimental accuracy. Predictions are particularly 
poor for proteins without close and resolved homologues. This has limited the utility of 
homology protein structure modelling for many biological applications to date.  
 
Recently, protein structure prediction has, however, undergone a renaissance with the 
application of sophisticated machine learning approaches. Whilst these algorithms are still 
reliant on template proteins and multiple sequence alignment (MSA), the shift from a rational 
decision tree to transformer-based neural networks has seen a substantial improvement in 
prediction accuracy (Jumper et al., 2021). Indeed, the first protein structure prediction tool 
using transformers, i.e. AlphaFold2 (AF2) (Jumper et al., 2021), achieved the highest 
accuracy prediction at the Critical Assessment of protein Structure Prediction (CASP) 
competition (CASP14) (Pereira et al., 2021, p. 14). Its accuracy was comparable to 
experimental protein structure determination with 36% of their submitted protein targets 
having a root-mean-square deviation (RMSD) under 2 Å (generally considered to be a 
solved structure), and 86% under 5 Å, with a total mean of 3.8 Å which presented an 
impressive performance comparable to experimental accuracies. Since then, AF2 predicted 
structures for the near-whole proteome of 48 species with over 200 million entries 
(https://alphafold.ebi.ac.uk/) have been made publicly available, and the transformer-based 
approach of AF2 has also been independently reproduced in another tool,RoseTTAFold 
(Baek et al., 2021).  
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Whilst the prediction precision of these tools is unprecedented, the computational power 
required to leverage them is substantial. Primarily, building the MSAs is computationally 
intensive (multiple hours and >2TB of storage per protein) and involves sensitive homology 
searches via HMMER (Eddy, 2011) and HHblits (Steinegger et al., 2019). Further, running 
the deep neural networks for the modelling itself also requires computational power and 
memory, albeit negligible compared to building the MSAs. With this need for substantial 
computation in mind, researchers developed ColabFold (CF) (Mirdita et al., 2021), which 
harnesses Google Colaboratory and thus provides free access to powerful graphics 
processing units (GPUs). CF also accelerates predictions (20-30 times faster than AF2) by 
using MMseqs2 search (Mirdita et al., 2019; Steinegger & Söding, 2017) instead of AF2’s 
native input feature generation. Further, CF also leverages optimisation strategies for 
predictions of multiple structures by avoiding recompilation and adding early stop criteria. 
Still, the question remains of what approach to rely on, if any, for protein structure prediction. 
The reliance of MDLR, AF2, and CF on homology alignments suggests that whilst all of 
these approaches excel in well-characterised areas of biology, they might struggle when few 
high quality templates exist. This is the case for snake venom toxins. Here, 19,000-25,000 
toxins are predicted to exist (Laustsen et al., 2016), but only around 2000 different proteins 
have been described, and an even smaller percentage (<10%) of their structures have been 
experimentally resolved. Yet, understanding venom toxin structures could carry many 
benefits in either harnessing their beneficial potential as therapeutics (Ferraz et al., 2019; Li 
et al., 2018; Mohamed Abd El-Aziz et al., 2019) or for developing better treatments for 
snakebite envenomings (Gutiérrez et al., 2017; Jenkins et al., 2019; Knudsen et al., 2018). 
 
Thus, to investigate the performance of three commonly used protein structure prediction 
tools, we predicted the structures of 1062 snake venom toxins using MDLR and CF and 
compared them to each other and to AF2 predicted structures. 
 
Results 
 
Generation, retrieval, and validation of toxin structures 
For this study, we retrieved 1062 snake venom toxin sequences from Uniprot, including 220 
C-type lectins (CTLs), 82 disintegrins (DISs), 145 kunitz-type serine protease inhibitors 
(KUNs), 190 phospholipase A2s (PLA2s), 135 snake venom metalloproteinases (SVMPs), 
147 snake venom serine proteases (SVSPs), and 274 three-finger toxins (3FTxs). Structures 
were generated for all of these sequences using MDLR, as well as CF. The respective AF2 
structures were retrieved from the database. For any structures that had a propeptide, it was 
trimmed to allow for an equal comparison across tools. Notably, all tools appeared to model 
these propeptides very poorly. The 3186 trimmed structures were evaluated via a series of 
parameters, including Clash scores, MolProbity scores, Ramachandran favoured percentage 
and Ramachandran outlier percentage. AF2 was significantly better than both MDLR and CF 
across all scores. MDLR performed the worst, though it was only slightly worse than CF in 
both Ramachandran evaluations (Fig. 1; Table S1). Notably, MDLR also performed worse on 
Clash and MolProbity scores, the more amino acid residues a given structure had (Fig. S2). 
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FIGURE 1. Quality evaluation of the toxin structures predicted by Modeller (MDLR), 
AlphaFold2 (AF2), and ColabFold (CF). A) Clash scores, i.e., the number of serious clashes 
per 1000 atoms, defined as all non–donor–acceptor atoms overlapping by more than 0.4 Å. 

B) MolProbity scores (scores measured in percentiles;  percentile ≥ 66 being the best); 

Ramachandran outliers (scores from 0 to 1; 1 being the best); Ramachandran favoured 
percentage (scores from 0 to 1; 1 being the best). Significant differences were established 
via Wilcoxon matched-pairs signed rank test and indicated by an asterisk (P<0.05). 
 
Comparing all Modeller, ColabFold, and AlphaFold 2 structures 
To understand the differences in the structure prediction of the three modelling tools, all of 
the toxin structures underwent a three-way comparison. The largest variation in RMSD 
between models was observed in SVMPs, whereas the smallest was found to be for KUNs 
(Fig. 2; Table S3). RMSD was significantly different across all toxin families between 
AF2/MDLR and CF/MDLR, when compared to AF2/CF. Meanwhile, differences between 
AF2/MDLR and CF/MDLR were insignificant for all toxin families besides CTLs and 3FTxs. 
This indicated that AF2 and CF models were much more similar to each other than to MDLR 
generated structures. The largest differences between AF2 and CF models were found 
within the CTL and SVMP families. 
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FIGURE 2. Differences in root-mean-square deviation (RMSD) between the toxin structures 
predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF) and across the 
following toxin families: C-type lectins (CTLs), disintegrins (DISs), kunitz-type serine 
protease inhibitors (KUNs), phospholipase A2s (PLA2s), snake venom metalloproteinases 
(SVMPs), snake venom serine proteases (SVSPs), and three-finger toxins (3FTxs). A) This 
resulted in three comparisons, i.e., AF2/CF, AF2/MDLR, and CF/MDLR. Significant 
differences were established via Wilcoxon matched-pairs signed rank test and indicated by 
an asterisk (P<0.05). B) Differences between AF2 and CF only. 
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Across all tools, it was found that the mean difference in RMSD was 14.80 Å with a standard 
deviation of 30.94 Å between MDLR and CF, 14.44 ± 30.97 Å between MDLR and AF2, and 
2.77 ± 0.08 Å between AF2 and CF (Table S3). The highest similarity across all three was 
observed between models of toxins sharing the classic three-finger toxin fold, such as in 
P60774 from Naja samarensis, with an RMSD of 0.4 Å between MDLR and AF2 and no 
appreciable differences (Fig. 2A). On the other hand, the largest difference observed by 
RMSD (145 Å) was between the metalloproteinase Q10749 model generated by MDLR and 
either model generated by CF or AF2 (Naja mossambica). Modeller and AlphaFold agree 
only on the core of the peptidase domain, with AF2/CF identifying additional N- and C-
terminal domains, which remain unstructured in the MDLR model (RMSD 145 Å between 
MDLR and both AF2 and CF; 3 Å between AF2 and CF). Restricting the alignment to the 
peptidase domain leads to a much better fit between models  (RMSD 0.4/0.42 Å between 
MDLR and both AF2 and CF; 0.29 Å between AF2 and CF; Fig. 2B). 
 
 

 

FIGURE 3. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold 
(CF), with the (A) most (P60774) and (B) least (Q10749) overlap across the entire dataset. 
Peptidase domain used for alignment used in (B) highlighted (red). 
 
 
Toxin family specific patterns 
Snake venom toxins comprise a plethora of protein families substantially varying in size and 
structural complexity (Tasoulis & Isbister, 2017). Therefore, we also explored the predictions 
across all represented protein families. 
 
C-type lectin (CTLs) 
Snake venom CTLs are 10-30 kDa glycoproteins that contain conserved carbohydrate 
recognition domains and can bind to specific sugar residues, resulting in various biological 
effects (Oliveira et al., 2022). Overall, we observed a mean RMSD difference of 5.2 ± 2.6 Å 
between all CTL models. The highest similarity was found to be between D8VNS6 from 
Cerberus rynchops (RMSD 0.4 Å between AF2 and CF, 0.9/08 Å between Modeller and 
AF2/CF) (Fig. 4A). The largest difference was between Q6X5S5 from Echis ocellatus (8.2 Å 
between AF2 and CF, as well as 15.7 Å and 13.6 Å differences between Modeller and 
AF2/CF, respectively; Fig. 4B). The largest difference between AF2 and CF predictions was 
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found to be for A7X3W1 from Pseudoferania polylepis (12.6 Å; Fig. 4C). RMSD was 
significantly different between all three comparisons, with AF2/MDLR having the lowest 
average RMSD (3.3 Å) and CF/MDLR the highest (6.9 Å; Fig. 4D). 
 

 
 
FIGURE 4. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold 
(CF), with the (A) most (D8VNS6) and (B) least (Q6X5S5) overlap across C-type lectins. (C) 
The largest difference between AF2 and CF predictions (A7X3W1). D) Differences in root-
mean-square deviation (RMSD) between the toxin structures predicted by MDLR, AF2, and 
CF. Significant differences were established via Wilcoxon matched-pairs signed rank test 
and indicated by an asterisk (P<0.05). 
 
 
Disintegrins (DISs) 
Snake venom disintegrins are non-enzymatic proteins that originated from SVMPs (Oliveira 
et al., 2022). Overall, we observed a mean RMSD difference of 7.0 ± 6.3 Å between MDLR 
and AF2 models. For example, the disintegrin fold of EC3B from Echis carinatus is predicted 
under good agreement (RMSD 4.9 Å between AF2 and CF, as well as 1.1/1.0 Å between 
MDLR and AF2/CF Fig 5A), with all solutions showing the same conserved four disulfide 
bonds expected from the heterodimeric disintegrin fold family. Here, most of the differences 
arise from the terminal peptidic regions that are not part of the disulfide-linked core. The 
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largest differences were found between P0DJ43 models (RMSD 38/37 Å between MDLR 
and AF2/CF, 20 Å between AF2 and CF) from Micropechis ikaheka (Fig. 5B). There is very 
little agreement across the three different models. Notably, the only section scored by 
AlphaFold to have “very high confidence” (pLDDT > 90) is a < 20 amino acid residue 
segment within the disintegrin domain. All three tools were able to model the predicted 
disulfide bonding pattern. The largest difference between AF2 and CF predictions was found 
to be for P0DJ43 (19.7 Å; Fig. 5C). RMSD was significantly different between AF2/CF and 
both AF2/MDLR and CF/MDLR, with AF2/CF having the lowest average RMSD (3.6 Å) and 
AF2/MDLR the highest (7 Å; Fig. 5D). 

 
 
FIGURE 5. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold 
(CF), with the (A) most (P81631) and (B) least (P0DJ43) overlap across disintegrins. (C) The 
largest difference between AF2 and CF predictions (P0DJ43). D) Differences in root-mean-
square deviation (RMSD) between the toxin structures predicted by MDLR, AF2, and CF. 
Significant differences were established via Wilcoxon matched-pairs signed rank test and 
indicated by an asterisk (P<0.05). 
 
 
Kunitz-type serine protease inhibitors (KUNs) 
KUNs are 6-7 kDa small proteins containing three unique disulfide bonds that can inhibit the 
proteolytic activities of serine proteases (Oliveira et al., 2022). Overall, we observed a mean 
RMSD difference of 2.8 ± 3.3 Å between all KUN MDLR and AF2 models. The highest 
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similarity is between C1IC51 from Walterinnesia aegyptia (RMSD 0.2 Å between AF2 and 
CF, 0.6 Å between Modeller and AF2/CF) (Fig. 4A). The largest difference driven by the 
terminal loop regions is between H6VC05 from Daboia russelii (2.0 Å between AF2 and CF, 
as well as 6.0 Å and 6.4 Å differences between Modeller and AF2/CF, respectively; (Fig. 
4B). The largest difference between AF2 and CF predictions was found to be for P0CAR0 
(2.5 Å; Fig. 4C). RMSD was significantly different between AF2/CF and both AF2/MDLR and 
CF/MDLR, with AF2/CF having the lowest average RMSD (0.7 Å) and AF2/MDLR as well as 
CF/MDLR shared highest (1.6 Å; Fig. 6D). 
 

 
FIGURE 6. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold 
(CF), with the (A) most (C1IC51) and (B) least (H6VC05) overlap across kunitz-type serine 
protease inhibitors. (C) The largest difference between AF2 and CF predictions (P0CAR0). 
D) Differences in root-mean-square deviation (RMSD) between the toxin structures predicted 
by MDLR, AF2, and CF. Significant differences were established via Wilcoxon matched-pairs 
signed rank test and indicated by an asterisk (P<0.05). 

 

 
Phospholipase A2s (PLA2s) 
Snake venom PLA2s are 13–19 kDa proteins and one of the main components of animal 
venoms (Oliveira et al., 2022). Overall, we observed a mean RMSD difference of 3.2 ± 3.4 Å 
between MDLR and AF2 models (Table 4). The highest similarity is detected for P04417 
from Gloydius blomhoffii (with an RMSD of 0.9 Å between AF2 and CF, 0.4/0.9 Å between 
MDLR and AF2/CF) (Fig. 5A). The PLA2 domain itself is modelled to great agreement in all 
cases. The largest difference across predictions was found between P14411 from Bungarus 
fasciatus (5.2 Å between AF2 and CF, 5.8 Å between MDLR and AF2/CF), with differences 
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mainly arising in positioning of the terminal loop regions (Fig. 5B). The largest difference 
between AF2 and CF predictions was found to be for Q8AY47 (15.6 Å; Fig. 5C). RMSD was 
significantly different between AF2/CF and both AF2/MDLR and CF/MDLR, with AF2/CF 
having the lowest average RMSD (1.4 Å) and CF/MDLR the highest (3.3 Å; Fig. 7D). 
 
 

 
 

 
 
FIGURE 7. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold 
(CF), with the (A) most (P04417) and (B) least (P14411) overlap across phospholipase A2s. 
(C) The largest difference between AF2 and CF predictions (Q8AY47). D) Differences in 
root-mean-square deviation (RMSD) between the toxin structures predicted by MDLR, AF2, 
and CF. Significant differences were established via Wilcoxon matched-pairs signed rank 
test and indicated by an asterisk (P<0.05). 

 
Snake venom metalloproteinases (SVMPs) 
SVMPs are a class of enzymes found in the venom of snakes, with sizes ranging from 20-
100 kDa (Oliveira et al., 2022). Out of 137 SVMPs (average RMSD 80 ± 46 Å between 
MDLR and AF2 models), the highest similarity between models can be found in P20897 from 
Crotalus ruber (3.2 Å between AF2 and CF, 145 Å between Modeller and AF2/CF; Fig.6A). 
Meanwhile, the largest difference was observed between models of Q10749 from Naja 
mossambica (6.8 Å between AF2 and CF, 8.7 Å/ 7.8 Å between Modeller and AF2/CF; Fig. 
6B) mentioned earlier. The largest difference between AF2 and CF predictions was found to 
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be for Q3HTN1 (27.8 Å; Fig. 6C). RMSD was significantly different between AF2/CF and 
both AF2/MDLR and CF/MDLR, with AF2/CF having the lowest average RMSD (6.6 Å) and 
CF/MDLR the highest (81 Å; Fig. 8D). 
 

 

 
FIGURE 8. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold 
(CF), with the (A) most (P20897) and (B) least (Q10749) overlap across snake venom 
metalloproteinases. (C) The largest difference between AF2 and CF predictions (Q3HTN1). 
D) Differences in root-mean-square deviation (RMSD) between the toxin structures predicted 
by MDLR, AF2, and CF. Significant differences were established via Wilcoxon matched-pairs 
signed rank test and indicated by an asterisk (P<0.05). 

 
 
Snake venom serine proteases (SVSPs) 
SVSPs are another class of enzymes found in snake venom, with sizes ranging from 26-
67kDa (Oliveira et al., 2022). Out of the 147 serine proteases (average RMSD 8 ± 13 Å 
between MDLR and AF2 models), the largest similarity between models can be found for 
Q7SZE2, from Gloydius ussuriensis (0.7 Å between AF2 and CF, 0.5 Å  and 0.9 Å between 
MDLR and AF2/CF respectively; Fig. 7A). The largest disagreement between tools can be 
found for Q58L94 from Notechis scutatus (10 Å between AF2 and CF, 78/75 Å between 
Modeller and AF2/CF respectively; Fig. 7B). Overall, the spread of RMSD between highest 
and lowest similarity models between MDLR and AF2 is 8.3 ± 14 Å. The biggest difference 
between AF2 and CF in RMSD for a given SVSP was found to be 16 Å (A6MFK8; Fig. 7C). 
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RMSD was significantly different between AF2/CF and both AF2/MDLR and CF/MDLR, with 
AF2/CF having the lowest average RMSD (2.2 Å) and AF2/MDLR as well as CF/MDLR with 
the shared highest (8.3 Å; Fig. 9D). 
 
 

 
 
FIGURE 9. The snake venom serine protease structures predicted by Modeller (MDLR), 
AlphaFold2 (AF2), and ColabFold (CF), with the (A) most (Q7SZE2) and (B) least (Q58L94) 
overlap across snake venom serine proteases. (C) The largest difference between AF2 and 
CF predictions (A6MFK8). D) Differences in root-mean-square deviation (RMSD) between 
the toxin structures predicted by MDLR, AF2, and CF. Significant differences were 
established via Wilcoxon matched-pairs signed rank test and indicated by an asterisk 
(P<0.05). 

 
 

Three-finger toxins (3FTxs) 
3FTxs comprise three major subfamilies of toxins, i.e., cytotoxins, long-chain neurotoxins, 
and short-chain neurotoxins (Casewell et al., 2013). Out of the 275 3FTxs (average RMSD 3 
± 3 Å between MDLR and AF2 models), the greatest overlap between models was found to 
be for P60774 (0.37/0.92 Å between MDLR and AF2/CF, as well as 0.97 Å  between AF2 
and CF respectively; Fig. 8A). The largest difference in model RMSD was found to be for 
Q9W7K1 (12.8/12.7 Å between MDLR and AF2/CF, as well as 0.95 Å  between AF2 and CF 
respectively; Fig. 8B). The protein found to have the largest differences in RMSD between 
AF2 and CF was P34074 (14.4 Å; Fig. 8C). RMSD was significantly different between all 
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three comparisons, with AF2/MDLR having the lowest average RMSD (1.4 Å) and CF/MDLR 
the highest (3.5 Å; Fig. 10D). 
 
 

 
 
FIGURE 10. The three-finger toxin structures predicted by Modeller (MDLR), AlphaFold2 
(AF2), and ColabFold (CF), with the (A) most (P60774) and (B) least (Q9W7K1) overlap. (C) 
The largest difference between AF2 and CF predictions (P34074). D) Differences in root-
mean-square deviation (RMSD) between the toxin structures predicted by MDLR, AF2, and 
CF. Significant differences were established via Wilcoxon matched-pairs signed rank test 
and indicated by an asterisk (P<0.05). 
 
 
Discussion 
Prediction of protein structures is a critical aspect of biological research, particularly in 
understanding the function and potential therapeutic applications of proteins or how protein-
based disease targets can be targeted with therapeutic agents. With the advent of deep 
learning and AI, several protein structure prediction tools have emerged, such as Modeller 
(MLDR), ColabFold (CF), and AlphaFold 2 (AF2). Each of these tools utilise different 
algorithms and approaches, resulting in different predictions of protein structures. Therefore, 
in this study we aimed to provide insight into the reliability and accuracy of these three 
modelling tools using snake venom toxins as model proteins. A total of 1062 snake venom 
toxin sequences, representing seven protein families, were retrieved, and structures were 
generated for each sequence using MDLR and CF. The respective AF2 structures were 
retrieved from the database, and all 3186 structures (1062 from each tool) were evaluated 
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using various parameters, including Clash score, MolProbity score, as well as 
Ramachandran favoured and outlier percentage to ensure no inherent quality bias was 
introduced by any of the tools. The results of the analysis revealed significant differences in 
performance across all three models, with the two non-homology-based approaches AF2 
and CF exhibiting superior performance in all four evaluated parameters compared to the 
template-based method Modeller. As an additional observation, AF2 performed better than 
ColabFold across all evaluated parameters and significantly so in both Clash and MolProbity 
scores, which is in line with prior findings (Mirdita et al., 2021). These results indicate that 
non-homology-based approaches perform better on a range of different protein families 
found in snake venoms. Given that Modeller utilises a template-based approach, it is 
conceivable that its poor performance may be attributed to the lack of reported snake toxin 
structures. 
  
To have a better understanding of the differences in structure prediction quality of the three 
modelling tools, a three-way comparison was conducted over all assessed 1062 snake 
toxins. RMSD analysis clearly indicated that a substantial spread existed in model overlap 
across the different toxins, ranging from 0.14–145 Å. The differences between tools were 
again greatest when MDLR was involved, whereas differences between AF2 and CF were 
rarely significant. Notably, when considering different snake toxin families, MDLR exhibited 
the smallest performance differences in short and highly conserved proteins, such as 3FTxs 
that share the classic three-finger toxin fold. MDLR is typically not suitable for domains that 
do not belong to a fold family because it is designed to work with targets where it can 
successfully assign a fold (Webb & Sali, 2016), and differences may arise in the twilight zone 
of short sequences with relatively low similarity (Khor et al., 2015). Consequently, the largest 
performance differences were observed for long and complex proteins, such as SVMPs. 
Nevertheless, MDLR was able to successfully model conserved functional cores in SVMPs, 
such as the peptidase domain. This is likely due to the high level of structural conservation of 
such sites due to the need to also conserve function (Alberts et al., 2002), but these 
observations also suggest that the performance of MDLR is heavily reliant on the quality and 
size of its template database. Another area where disagreement was observed between the 
generated protein structures was in loop regions. Whilst loop regions were typically identified 
across all three models we tested, their conformations often differed across MDLR, AF2, and 
CF. This was unsurprising and stems from proteins being dynamic molecules with a large 
conformational plasticity, allowing them to perform complex biological functions 
(Mukhopadhyay, 2022). Yet, these features are not uniformly distributed across the 
molecule, but are usually localised to parts with larger degrees of kinematic freedom 
(Papaleo et al., 2016). Thus, modelling conformations of loop regions remains challenging in 
computational biology and is usually inversely related to loop length (Barozet et al., 2021); 
these dynamics of flexibility, but also lack of reference structures, explains why we observed 
poor modelling of propeptides. It also highlights the need for a better structural 
understanding, due to propeptides’ key roles in chaperoning and to provide insights into how 
the interactions of the propeptide region inhibits enzymatic function for the design of inhibitor 
molecules. Finally, it is notable that the overall mean difference between AF2 and CF was 
close to 3 Å, which is large enough to have a substantial impact when used for generative 
ML approaches for protein design (Wang et al., 2021; Watson et al., 2022). For some 
SVMPs, these differences even exceed 27 Å, highlighting the current limitations of the 
explored protein structure prediction tools (Bryant et al., 2022). 
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Nevertheless, several of the toxin families assessed in this article have structural models 
that are of sufficiently high quality for further analysis, and thus a multitude of use cases; 
specifically the highly conserved 3FTxs, KUNs, and PLA2s can be used for computational 
simulations to model their interactions with different targets. This can help reveal the details 
of their binding sites, active sites, and conformational changes, as well as for the discovery 
and design of potential molecular binders for reagent, diagnostic, or therapeutic purposes 
(Norman et al., 2020). Notably, even toxin families with higher model variability and 
uncertainty (i.e. DISs, SVSPs, and SVMPs) could be used for similar purposes, as long as 
the focus falls on their conserved functional domains, such as their active sites. Importantly, 
these considerations regarding the limitations of computational structural modelling are not 
only relevant for toxin researchers, but can also be transferred to any other research area 
that is using computational predictions for protein structures and particularly ones with poor 
experimental coverage, such as rare diseases (Rossi Sebastiano et al., 2022). Overall, we 
hope the unravelled dynamics of computational structure prediction and the provision of all 
models and their comparisons constitute a key resource that can help de-risk future 
analyses. 
 
 
Conclusion 
The availability and accessibility of a range of powerful computational models are a game 
changer for structural biology. Whilst extremely powerful, the plethora of available tools each 
come with their own set of advantages and disadvantages; these are often somewhat 
understood within their application in model organisms, but little data exists on their 
performance on poorly characterised protein targets. Here, we studied the performance of 
three different computational structural biology tools on their predictions of over 2000 snake 
toxin structures that have few experimental reference structures available. We generated 
these structures using Modeller and ColabFold and compared them to each other as well as 
AlphaFold2 designs. We found that predictions were often closely aligned between CF and 
AF2, whereas MDLR often offered differing predictions. Nevertheless, differences between 
AF and CF were common, highlighting the need for cross-model validation of predicted 
structures. Notably, all tools performed well in predicting functional domains, while struggling 
with elements that are intrinsically disordered, such as loop regions. We further identified 
toxin families and structural features within these, as well as specific toxins, that were 
associated with substantially differing predictions across models. We therefore conclude that 
it is important to consider the complexity of the modelling task and use orthogonal modelling 
methods, such as AF2 and CF in combination with each other, to improve the reliability of 
structural assumptions. This will not only help future research quickly identify potential 
discrepancies and de-risk their use of these models, but also highlights key protein families, 
such as SVMPs, SVSPs, and DISs that require further experimental validation.  
 
 
Materials and methods 
 
Retrieval of snake venom toxin sequences 
To retrieve the sequences of all published snake venom toxins (Nov 2020) belonging to 
potentially medically relevant toxin families, we used the utilities offered by VenomZone 
(VenomZone, n.d.). We selected C-type lectins (CTLs), disintegrins (DISs), kunitz-type 
serine protease inhibitors (KUNs), phospholipase A2s (PLA2s), snake venom 
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metalloproteinases (SVMPs), snake venom serine proteases (SVSPs), and three-finger 
toxins (3FTxs), and searched for entries on uniprot (e.g., taxonomy:serpentes 
family:"phospholipase a2 family" (annotation:(type:"tissue specificity" venom) OR 
locations:(location:nematocyst)) AND reviewed:yes). The toxin Uniprot entry information was 
retrieved with custom Python scripts using Biopython’s (Cock et al., 2009) ExPASy package 
(Gasteiger et al., 2003). 
 
Identification of experimentally resolved toxin structures 
The protein database (PDB) information on those entries was examined by cross-reference 
documentation in the obtained Uniprot files. Where there were multiple annotated PDB 
entries for a Uniprot accession, the entry with the highest resolution and chains 
corresponding to the toxin was used. This was achieved simply by parsing Uniprot files using 
custom scripts. Preference was given to X-ray structures. Thereafter, for a given toxin, the 
selected PDB file containing structural information for that entry was retrieved using PDB-
tools (Rodrigues et al., 2018). Using the same tool, files obtained were filtered, selecting for 
chains corresponding to the toxin, and removing ligands and hydrogens in the structure. This 
process was also automated via bash scripting. 
 
Generating Modeller structures 
For the remaining toxins that did not contain an annotated structure, the theoretical structure 
was predicted using homology modelling algorithms. To that purpose, we employed the 
Python MODELLER software (Webb & Sali, 2016). Toxins below the threshold of 30 amino 
acid length were discarded. Thereafter, the “multiple template modelling” approach and “loop 
refinement” was used with the PDB_95 database for template search. These methods 
significantly improve modelling quality, especially of complex regions, such as loops (Webb 
& Sali, 2016). Predictions were automated and run using multiple threading with 
subprocesses. For each toxin sequence, a total of 10 models were generated, and the best 
model, based on the lowest discrete optimised protein energy (DOPE) score, was selected 
as the representative model. The DOPE score (Shen & Sali, 2006) is based on an improved 
reference state that corresponds to non-interacting atoms in a homogeneous sphere with the 
radius dependent on a sample native structure; it thus accounts for the finite and spherical 
shape of the native structures. It is used to assess the energy of the protein model 
generated through many iterations by MODELLER. Finally, we evaluated the DOPE score of 
all of our toxin models to ensure the overall quality was sufficient to merit their usage for 
further research.  
 
Generating ColabFold structures 
A version of ColabFold / MMSeqs2 (Steinegger et al., 2019) was modified to allow batch 
generation of structures. The program, originally designed to process single proteins via an 
online interface, was restructured in order to process multiple sequences from file input. 
Functions were rewritten to eliminate use of global variables, in order to permit loop 
processing. A mechanism was added to allow processing to be interrupted and restarted 
without repeating previously generated structures. This was essential to allow use of cheap 
compute facilities such as Google Colab and Colab Pro, which reserve the right to interrupt 
long-running jobs. This mechanism also allowed processing to be shared across multiple 
compute instances. The feature dictionary and all other parameters for reproducing the 
structure generation of any particular structure (and generation errors, if any) were written to 
sequence specific files during batch processing. The number of CF models calculated for 
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each residue was set to the maximum, five; multi-sequence alignment was set; 
environmental processing was set; Amber relaxation was enabled; use of templates was 
enabled; and homooligomer processing was disabled. Query sequences of less than 20 
residues or more than 1400 residues were skipped. Amber relaxation does not work for 
incomplete sequences with undetermined residues, so, Changes to the program were made 
to recognise these cases automatically and to invoke ColabFold without relaxation. The 
FASTA file processing was based on code from brentp (github) and Minkyung Baek’s 
modification to allow Colabfold to process complexes, as used in MMSeqs2, was retained 
(Baek & Baker, 2022). 
 
Retrieving AlphaFold2 structures 
To retrieve relevant toxin structures predicted by AF2, we downloaded the latest database 
(https://alphafold.ebi.ac.uk/download) and selected the same list of UniProtIDs as were used 
in our MDLR and CF predictions.  
 
Trimming of propeptides 
To enhance the accuracy and efficiency of  our protein structure prediction we developed a 
code to detect and trim the signal peptides since these are not part of the mature protein or 
its function. The code is available via GitHub (https://github.com/nilshof01/signal_cleaver). 
Before starting the main script it is necessary to download the SignalP6 package. For the 
processing of the UniProtIDs and predicting potential signal peptides, we developed a 
Python 3.9 script to retrieve the sequences by giving a list of IDs as  input. Next, the protein 
sequences are analysed using SignalP6, a state-of-the-art software capable of predicting the 
presence and location of all five signal peptide cleavage sites in protein sequences. The 
software generates a GFF (General Feature Format) file for each ID in a separate folder, 
which contains the start-, end position and score of  the predicted signal peptide regions 
(Teufel et al., 2022). A further python script was developed to parse over the GFF files and 
extract this information for each ID in a pandas dataframe which was used to trim the 
sequences subsequently. Finally, the actual N-terminal trimming of the PDB file was 
performed using phenix.pdbtools (Liebschner et al., 2019). All structures have been 
deposited in Mendeley data (DOI: 10.17632/gjk47cjm26.1). 
 
Quality control and comparisons of structures 
To assess the quality and validate the toxin structures predicted by MDLR, AF2, and CF, we 
used several different approaches. We evaluated the Ramachandran scores (outliers and 
favoured percentage), which indicate the number of amino acid residues with poor or 
favoured φ/ψ (Phi/Psi) angles. Phi/Psi angles are the dihedral angles in the protein 
backbone. Only certain angles are typically found in proteins. Finally, we compared our 
models’ Molprobity scores (Davis et al., 2007). MolProbity is a structure-validation web 
service which uses a weighted function of clashes, Ramachandran favoured, and rotamer 
outliers, scaled and normalised so that its value approximates the resolution at which that 
score would be average. To assess global and local differences between models generated 
by each of the three tools, we performed pairwise structural alignment of each toxin model 
using the superimpose method (Shindyalov & Bourne, 1998) from the Bio.PDB module in the 
Biopython toolbox and ranked aligned pairs by RMSD, separated by toxin family. Cases 
where RMSD was highest/lowest for each toxin family were inspected manually to identify 
areas of structural disagreement. Statistical analysis was performed as outlined above. To 
establish statistical significance the dataset was analysed via Prism (v.9.5.1). Once a lack of 
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Gaussian distribution was established via both the Shapiro-Wilk and Kolmogorov-Smirnov 
test, the Wilcoxon matched-pairs signed rank test was selected as appropriate non-
parametric analysis to conduct pairwise comparisons of AF2, CF, and MDLR.   
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Supplementary files 
 
 
Table S1. Differences in root-mean-square deviation (RMSD) between the toxin structures 
predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF). 
 
Fig. S2. Quality evaluation of the toxin models predicted by Modeller (MDLR), AlphaFold2 
(AF2), and ColabFold (CF) by number of residues. A) Clash scores, i.e. the number of 

serious clashes per 1000 atoms, defined as all non–donor–acceptor atoms overlapping by 

more than 0.4 Å. B) MolProbity scores (scores measured in percentiles;  percentile ≥ 66 

being the best); Ramachandran outliers (scores from 0 to 1; 1 being the best); 
Ramachandran favoured percentage (scores from 0 to 1; 1 being the best). 
 
Table S3. Differences in root-mean-square deviation (RMSD) between the toxin structures 
predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF). 
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