

1 **Protein Engineering for Thermostability through Deep Evolution**

2 Huanyu Chu^{1,2,*}, Zhenyang Tian^{1,2,*}, Lingling Hu^{1,2,3}, Hejian Zhang^{1,2,3}, Hong
3 Chang^{1,2,3}, Jie Bai^{1,2,3}, Dingyu Liu^{1,2}, Jian Cheng^{1,2}, Huifeng Jiang^{1,2}

4
5 ¹*Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin
6 Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308,
7 P. R. China*

8 ²*National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, P.
9 R. China.*

10 ³*College of Biotechnology, Tianjin University of Science and Technology, Tianjin,
11 300457, China.*

12 *These authors contributed equally to this article.

13 Correspondence: Huifeng Jiang (jiang_hf@tib.cas.cn).

14

15 **Abstract**

16 Protein engineering for increased thermostability through iterative mutagenesis and
17 high throughput screening is labor-intensive, expensive and inefficient. Here, we
18 developed a deep evolution (DeepEvo) strategy to engineer protein thermostability
19 through global sequence generation and selection using deep learning models. We
20 firstly constructed a thermostability selector based on a protein language model to
21 extract thermostability-related features in high-dimensional latent spaces of protein
22 sequences with high temperature tolerance. Subsequently, we constructed a variant
23 generator based on a generative adversarial network to create protein sequences
24 containing the desirable function with more than 50% accuracy. Finally, the generator
25 and selector were utilized to iteratively improve the performance of DeepEvo on the
26 model protein glyceraldehyde-3-phosphate dehydrogenase (G3PDH), whereby 8
27 highly thermostable variants were obtained from only 30 generated sequences,
28 demonstrating the high efficiency of DeepEvo for the engineering of protein
29 thermostability.

30

31 Introduction

32 Engineering proteins for thermostability is crucial for broadening the application
33 of natural proteins in multiple fields such as food, feed, biocatalysis, biomedicine, and
34 biomanufacturing¹⁻³. Directed evolution is the most powerful tool for improving the
35 thermostability of natural proteins, but it currently requires multiple rounds of random
36 mutagenesis and high throughput screening^{2, 4-7}. However, the space of possible
37 protein sequences is too large to search exhaustively in the laboratory or
38 computationally, and functional proteins within the total protein sequence space are
39 extremely scarce. As a consequence, it is very difficult to identify highly functional
40 sequences in the vast nonfunctional sequence space⁸⁻¹⁰. To overcome this, many
41 rational or semi-rational strategies¹¹⁻¹⁴ have been developed to improve the possibility
42 of each mutant to have the desired function, as well as many high throughput
43 approaches^{6, 7} to increase the rate of experimental screening, but there is still a lot of
44 room to improve the efficiency of these tools^{15, 16}.

45 Recently, novel deep learning models have been developed to predict protein
46 structure¹⁷⁻¹⁹, EC number²⁰, enzyme turnover²¹, gene function^{22, 23}, and also the
47 thermostability of proteins²⁴. Studies of protein sequence design demonstrated that
48 deep learning models can learn the diversity of natural protein sequences and enables
49 the generation of functional protein variants^{22, 23, 25, 26}. In addition, some general
50 protein language models, such as UniRep²⁷ and ESM²⁸, can encode the enormous
51 protein sequence space into a high-dimensional representation space, in which it is
52 more feasible to establish connections between protein properties and sequence
53 variants²⁹⁻³¹. These achievements provide us an opportunity to develop a method to
54 engineer proteins with improved thermostability by merging two deep learning
55 models from an iterative evolution perspective, whereby a generative model produces
56 abundant variants from a reasonable sequence space with the desired function, after
57 which a selective model is used to identify variants with improved thermostability.

58 In contrast to a typical directed evolution strategy based on highly labor-
59 intensive iterative mutagenesis, here we proposed a deep evolution (DeepEvo)
60 strategy to improve protein thermostability through global sequence generation and
61 selection (Figure 1). Firstly, we leveraged a successful protein language model (ESM)
62 to extract thermostability-related information from more than 190,000 protein
63 sequences across a wide range of organisms, and constructed a thermostability
64 selection model (Thermo-selector). Then, a modified generative model (Variant-
65 generator) based on ProteinGAN was constructed to generate functional sequences.
66 Finally, after iterative optimization of Variant-generator by the output of Thermo-
67 selector, we evaluated the efficiency of DeepEvo for protein thermostability
68 engineering on the model enzyme G3PDH, which is a key enzyme for glycolysis with
69 important applications in industry and medicine^{32, 33} (Figure S1).

70 **Results**

71 **Construction of the thermostability selection model: Thermo-selector**

72 Similar to natural selection, the DeepEvo approach utilized a thermostability
73 selection model to identify protein sequences with potential for enhanced
74 thermostability. A thermostability selection model was constructed to predict whether
75 a protein is a high temperature tolerant protein (HTTP) or low temperature tolerant
76 protein (LTTP). Considering that the total proteins of organisms that survive in high-
77 temperature environments should be HTTP, the optimal growth temperatures (OGT)
78 of the organisms were used as a label to measure the thermostability of the natural
79 protein. To obtain enough labeled data for supervised learning, the information of
80 10,190 organisms with a wide range of OGT was collected from TEMPURA³⁴,
81 ExProtDB³⁵, NCBI, and BacDive³⁶. Then, more than 20 million corresponding genes
82 were retrieved from UniProt and UniRef gene sets. The corresponding protein
83 sequences from organisms with OGT > 50 °C or OGT < 30 °C were defined as HTTPs
84 or LTTPs, respectively (Figure 1, Methods). To reduce the impact of sequence
85 similarity on the thermostability-related traits, only sequences with pairwise identity
86 less than 50% were retained. In view of the length of most enzymes used in practical
87 applications, proteins with a length > 300 and < 800 amino acids were retained. After
88 filtering based on these criteria, a total of 30,968 HTTPs and 162,890 LTTPs were
89 collected to build the selection model (Figure 1, Table 1).

90 Inspired by natural language processing techniques, the ESM-1b pre-training
91 model was used to encode the training data as a 1280-dimensional vector. Using the
92 ESM embedding vectors as input, a three-layer fully connected neural network was
93 built (Table 1). Using 70% of the collected data as the training set, the model was
94 optimized by cross-entropy loss. After 75 rounds of training, the loss function of the
95 model became stable (Figure S2). After the training procedure, the overall accuracy of
96 the model on the testing set comprising the remaining 30% of the data was 95.1%
97 (Figure S3), indicating that most of proteins in the testing set were correctly classified
98 into HTTPs or LTTPs. Considering the imbalance of our training set, with 84% of
99 total sequences belonging to LTTPs, we calculated the precision and recall to further
100 evaluate the performance of our model on the tested HTTPs (Supplementary
101 Methods). These measurements showed that 86.0% (precision) of all labeled HTTPs
102 were predicted as HTTPs by the model, and 78.0% (recall) of all sequences predicted
103 as HTTPs by the model were actually the labeled HTTPs in the test set (Table 1).
104 These results suggest that our model can be used as a viable filter for identifying
105 HTTPs. This thermostability selection model was named Thermo-selector.

106

107

Table 1 Summary of the thermo-selector model

Parameters			
Batch size	100		
Rounds	75		
Data		Training Set	Testing Set
	HTTPs	21,772	9,246
	LTTPs	113,978	48,912

Metrics	accuracy	97.8%	95.1%
	precision	97.0% for HTTPs	86.0% for HTTPs
	recall	87.7% for HTTPs	78.0% for HTTPs

108

109

110 **Construction of a variant generation model for G3PDH: Variant-generator**

111 To more efficiently generate functional sequences in a confined sequence space
112 by DeepEvo approach, a G3PDH Variant-generator was built by revising ProteinGAN
113 with the multi-headed attention mechanism (Figure 1 and S4). This model structure
114 includes a sequence generator and a discriminator. The generator attempts to generate
115 functional sequences and the discriminator attempts to distinguish the generated
116 sequences from the natural sequences. By searching with G3PDH functional domain
117 and filtering with sequences length and identity, 15,454 natural G3PDH sequences
118 were extracted from the NCBI, KEGG, and Pfam databases to train the model
119 (Methods). At each training step, starting from a random vector, the generator
120 produced 64 sequences, which were mixed with the same number of natural G3PDH
121 sequence. The discriminator then compared the generated sequences with the natural
122 sequences, which were used to adjust the parameters of both the generator and the
123 discriminator. After 200,000 training rounds, the sequences produced by the generator
124 could not be distinguished from the natural G3PDH sequences by the discriminator
125 (Figure S5 and S6).

126 To evaluate the quality of these generated sequences, we conducted t-distributed
127 stochastic neighbor embedding (t-SNE) dimensionality reduction on the natural and
128 generated G3PDH sequences (Figure 2A, left pane). The generated sequences covered
129 a similar distribution to that of the natural sequences, and were grouped into smaller
130 clusters and interpolated within the natural sequence clusters, indicating that the
131 Variant-generator model expanded the sequence space of natural G3PDHs. To verify
132 the evolutionary properties reflected in the statistics of amino acid variation, we
133 computed Shannon entropies for each position in multiple sequence alignments of the
134 generated and natural G3PDH sequences. The positional variability of the generated
135 sequences was highly similar to that of the natural sequences (Figure S7). We also
136 evaluated the highly conserved regions related to the function of G3PDH and found
137 that the generated sequences captured these key positions faithfully (Figure 2B).

138 To further evaluate the function of the generated sequences, we sorted them
139 based on the score of the discriminator and filtered them based on the key functional
140 conserved sequence motifs (Methods). Then, 10 sequences with different similarities
141 to the natural sequences were selected as input for alphafold2 to build protein
142 structure, and 6 sequences (G1-G6) with high plddts (>90%) were selected for further
143 experimental validation. Among the 6 proteins, three (i.e., G1, G2, G3) not only
144 folded correctly in *E. coli* expression systems (Figure S8A), but also displayed normal
145 G3PDH activity in *in vitro* (Figure 2C). G2 and G3 even showed higher activities than
146 the natural G3PDH from yeast and a commercial G3PDH from rabbits. These
147 experiments proved that the Variant-generator could efficiently generate functional
148 variants from the confined enzyme sequence space.

149

150 **Development of the deep evolution process**

151 Based on the good performance of Thermo-selector and Variant-generator, we
152 further implemented the DeepEvo strategy by iterating the two models to enhance
153 sampling in the G3PDH functional sequence space for variants with enhanced thermal
154 stability (Figures 1 and S4). First, 18,238 sequences were selected from the 100,000
155 generated sequences of the initial Variant-generator based on the discriminator score
156 and the functional conserved residues of G3PDH. Then, the selected sequences were
157 input into the Thermo-selector, where only 1,354 (7.4%) variants were classified as
158 HTTPs. Finally, 1,354 HTTPs were mixed with all natural HTTPs and added back to
159 the training set of the Variant-generator to refine the model. When the Variant-
160 generator stabilized again, we obtained a refined Variant-generator, which displayed a
161 better HTTP generation performance, as the proportion of HTTPs among the
162 generated sequences increased to 14.9%. Additionally, using the discriminator score
163 as metric, we observed that the sequences generated by the refined Variant-generator
164 were largely consistent with those of the initial variant-generator (Figure S6).
165 Interestingly, the t-SNE analysis of the new generated sequences yielded some bigger
166 clusters, which suggested that the generated sequences were enriched in sequence
167 spaces, similar to gene family evolution in nature, indicating that the iterative process
168 of DeepEvo might recapitulate certain unsought mechanisms of the natural evolution
169 process (Figure 2A, right pane).

170 To further evaluate the thermal stability of the sequences generated by the
171 refined Variant-generator, 30 sequences (G7-G36) were selected from 2760 newly
172 generated HTTPs for experimental validation based on the discriminator score,
173 conserved residues, similarity to the nearest natural sequences and plddt (Methods).
174 These sequences exhibited an average 61% sequence identity among themself (Figure
175 S9), and a range of identities (~70 to ~90%) to their nearest natural sequences in the
176 training set (Supplementary Table 2). The 30 selected sequences were synthesized and
177 then expressed in *E. coli* for protein purification. Among the 30 proteins 23 (77%)
178 were soluble and could be purified (Figures S8B-D), 17 of which (57%) showed
179 normal G3PDH catalytic activity at 30 °C in the subsequent G3PDH activity assay
180 (Figure 3A, Supplementary Table 2). We found that 11 out of the 17 proteins showed
181 detectable activity at 65 °C, with 8 of them (i.e., G7, G8, G10, G11, G12, G13, G14,
182 G15) exhibiting relatively high thermostability (Figure 3A, Methods), even retaining
183 activity at 70 and 75 °C (Figure S10). Notably, the nearest natural homologs of 7
184 among the 8 proteins showed low or even no detectable activity at 65 °C (Figure 3B),
185 even one of them (N12) was from a high temperature organism, indicating that
186 DeepEvo indeed can effectively engineer natural LTTPs into HTTPs.

187

188 **Deciphering the design art of deep evolution**

189 In order to comprehensively understand the design art of DeepEvo, we compared
190 7 generated HTTPs with their nearest natural LTTPs, finding that the natural LTTPs
191 require the mutation of approximately 20-50 residues to become our generated HTTPs
192 (Supplementary Table 2). We observed many alanine to serine mutations, which may
193 increase the coordination of local hydrogen bonding networks. In addition, we found

194 that a high proportion of mutations introduced charged residues, resulting in a
195 significant increase in the number of salt bridges³⁷ in most of the verified HTTPs
196 (Figure 3D), which could strengthen the local residual interactions and may be a
197 major reason for the stability of the generated HTTPs³⁸. The remaining mutations
198 mainly introduced the same type of amino acid (Figure S12), and generally did not
199 have particularly strong effects on the local side-chain arrangements. Structural
200 analysis showed that the mutated amino acid resides were mainly distributed on the
201 protein surface, with only a few occurring near the catalytic pocket (Figure S11).
202 Interestingly, we found that 2/3 of the point mutations formed spatial clusters or
203 mutation networks, in which mutants with at least one backbone alpha carbon atom
204 (CA) are within 8Å of the CA of other mutants. Conversely, only 1/3 of the point
205 mutations were single changes (Figure 3C and Supplementary Table 3). These results
206 suggest that DeepEvo can enhance local structural interactions and compensate for the
207 deleterious effects of single point mutations through the interaction of multiple
208 mutation sites.

209 In order to scrutinize the interaction of spatial clusters, we compared the protein
210 G8 with its nearest natural sequence N8, since it showed a great increase of both
211 enzyme activity and thermal stability (Figures 3A and B). We observed a total of 34
212 residue changes and 25% more electrostatic interaction pairs in G8 than in N8 (Figure
213 3D), which may contribute the overall improved stability of G8 at high temperature
214 according to MD simulations (Figure S13). Among these mutations, approximately 65%
215 (22/34) were located in 7 spatial clusters (Figure 3E). For example, the A278E
216 mutation in cluster 1 added a new salt bridge, which could change the local position
217 of the adjacent K280. In order to keep the original salt bridge with K280, DeepEvo
218 made the additional mutation E298D (Figure 3E top). Similar to cluster 1, the
219 mutation Q291R in cluster 2 would add a pair of salt bridges, but two extra mutations
220 (E289D and V294I) occurred nearby, compensating for the effect of changed residue
221 volume (Figure 3E middle). Different from clusters 1 and 2, an enhancement in local
222 hydrophobic stacking was observed in cluster 3, in which a π-π interaction was added
223 to strengthen the interaction between the helix bundle through N25F and a nearby
224 residues, while a V23Q mutation might compensate for the increased solvent
225 exposure in the opposite direction (Figure 3E, bottom). These results indicate that the
226 algorithm did not simply increase local interactions, but also changed the surrounding
227 residues in clusters to achieve a more reasonable local structure, which is often a
228 challenge for conventional enzyme engineering^{39, 40}. Thus, the DeepEvo strategy,
229 using the Variant-generator to consider the context of residues, may enable much
230 deeper sampling in the confined functional sequence space. This new design art,
231 which relies on the synergistic action of multiple mutant sites, may be useful in
232 overcoming local optima.

233 Discussion

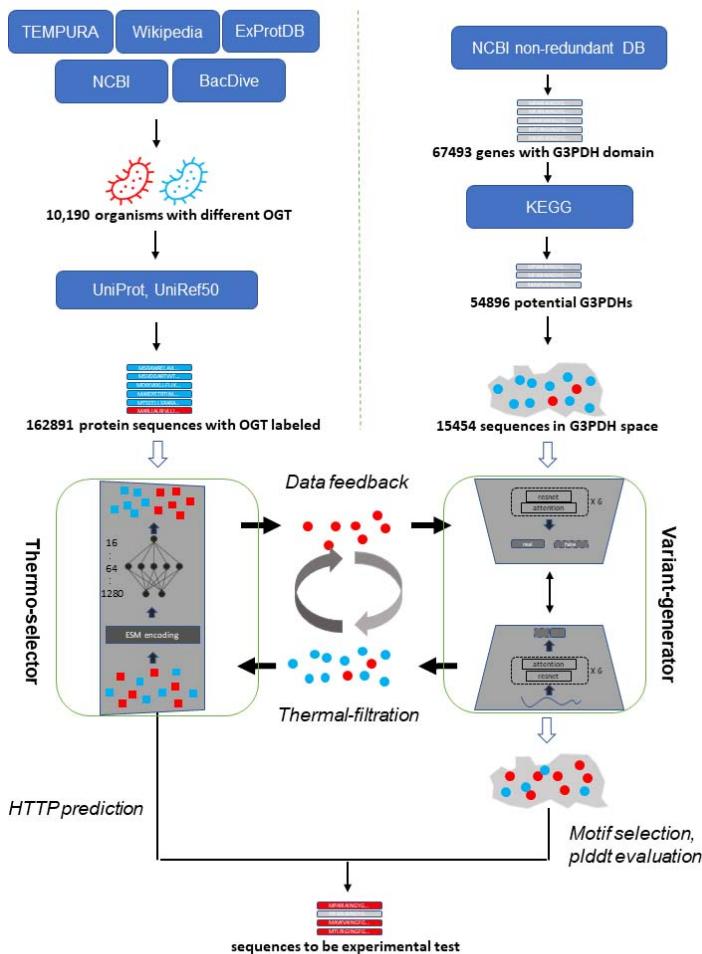
234 Here we present the novel protein engineering strategy DeepEvo based on deep
235 learning models (Figure 4). Similar to directed evolution, the iteration process is key
236 to the efficiency of the DeepEvo strategy^{5, 41, 42}. When we tested the performance of
237 Thermo-selector on generated sequences without an iteration procedure, only 4 out of
238 30 generated G3PDHs exhibited activity at 65 °C (Figure S14). The iteration
239 procedure, which uses the generated HTTPs screened by the Thermo-selector to refine
240 Variant-generator, accumulates thermostable traits in a process similar to natural
241 evolution⁴³. Our results indicated that feedback and regeneration improved the
242 proportion of experimentally tested HTTPs among the generated sequences and
243 compensated for the data limitation. Overall, 11 out of 30 G3PDHs generated by the
244 algorithm (Supplementary Table 1, G7-G36) showed activity at 65 °C. In addition to
245 G3PDH, we also successfully obtained highly thermotolerant variants of malate
246 dehydrogenase (MDH) (Figure S15), which has been used for the evaluation of
247 multiple protein language models^{22, 23}. With the development of next-generation
248 methods^{44, 45}, more rounds of iteration and more valuable thermotolerance-related data
249 can be applied to optimize the whole DeepEvo process.

250 Billions of years of natural evolution have produced an immeasurable wealth of
251 functional proteins, which nevertheless occupy only a tiny fraction of the practically
252 endless potential protein sequence space^{8, 46}. Directed evolution, similar a boat
253 cruising around an island in a vast unexplored sea, only locally searches for beneficial
254 mutants around natural proteins by iterative mutagenesis and high throughput
255 screening⁴⁷. However, the complete landscape of functional proteins contains “cliffs”
256 and “holes” where small changes in sequence might result in complete loss of
257 function⁴⁸. By enabling us to obtain a better understanding of the whole landscape of
258 protein diversity, DeepEvo is accessible to acquire previously unexplored sections of
259 the potential sequence space. This strategy reduces the likelihood of generating non-
260 functional sequences, thereby improving the screening efficiency (Figure 4). By
261 concentrating on the relatively small functional sequence space and employing a
262 thermostable selector for feature enrichment, our method significantly boosts the
263 screening efficiency. Most of the HTTPs we generated had more than 20 mutations
264 when compared to their closest natural sequences, which would result in theoretically
265 trillion-level combinatorial libraries that make experimental or computational
266 screening challenging⁴⁹. However, our method generates variants in the reduced
267 functional space constrained by a specific desirable property that circumvents the
268 issue of effectively combining single-point mutations, making it highly applicable in
269 the field of protein engineering.

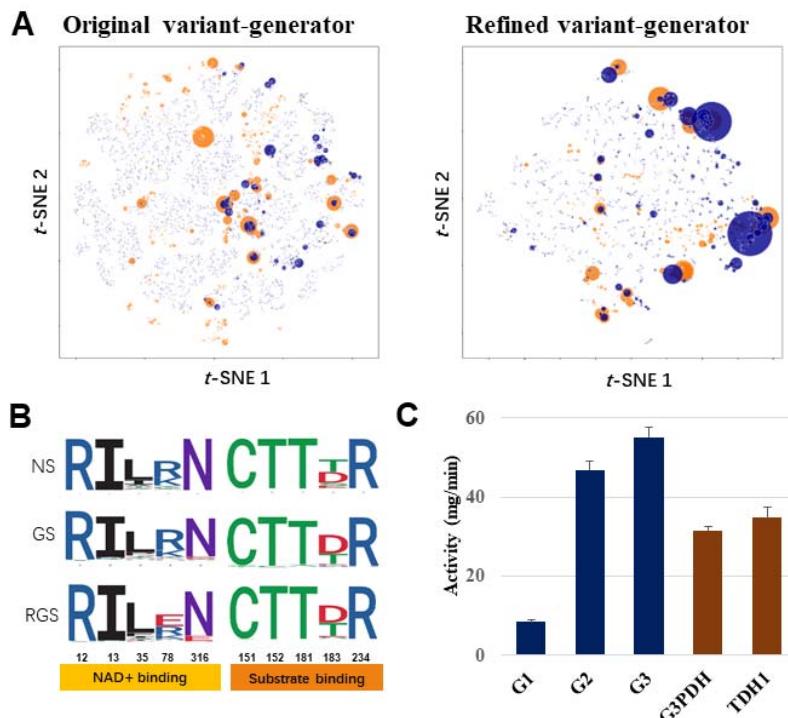
270 In summary, DeepEvo employs an iteration process consisting of generation and
271 selection to effectively produce protein sequences that possess strong foldability and
272 high-temperature tolerance. In the future, it is possible to apply DeepEvo for
273 engineering other protein properties such as acid-base tolerance and antigen affinity¹⁶,
274 allowing for the generation of new proteins with diverse desired properties.
275 Furthermore, we aim to explore the integration of generative frameworks from the

276 fields of natural language processing and image processing to enhance the sequence
277 generation results. This will further expand the potential of protein engineering
278 through our DeepEvo approach.

279 **Figures**

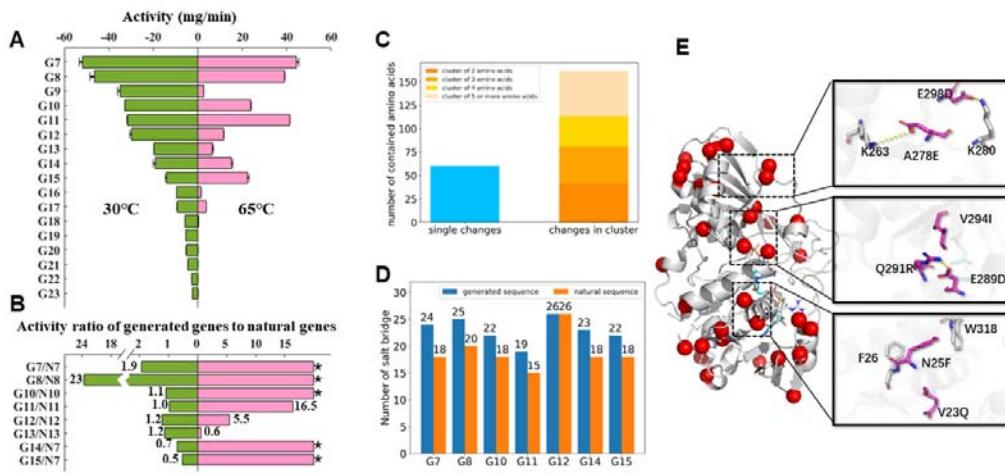


296 predictions to perform experimental verification.



297

298 **Figure 2. Evaluation of the sequences generated by Variant-generator.** (A) t-SNE
299 maps of generated sequences by original Variant-generator and refined Variant-
300 generator. Sequences were classed in the 2-dimentional t-SNE space. The natural
301 sequences clusters are shown as orange circles and the generated sequences clusters
302 are shown as blue circles. The area of the circles indicates the size of the clusters. (B)
303 Sequence logos of binding pockets of natural sequences (NS), original generated
304 sequences (GS) and refined generated sequences (RGS). The conserved positions are
305 grouped in NAD⁺ and substrate binding. (C) The activity of G3PDHs generated by
306 the original Variant-generator at 30°C. G1, G2 and G3 represent the three generated
307 sequences, a commercial G3PDH from *rabbit* and the G3PDH from *yeast* (TDH1)
308 were used as control.



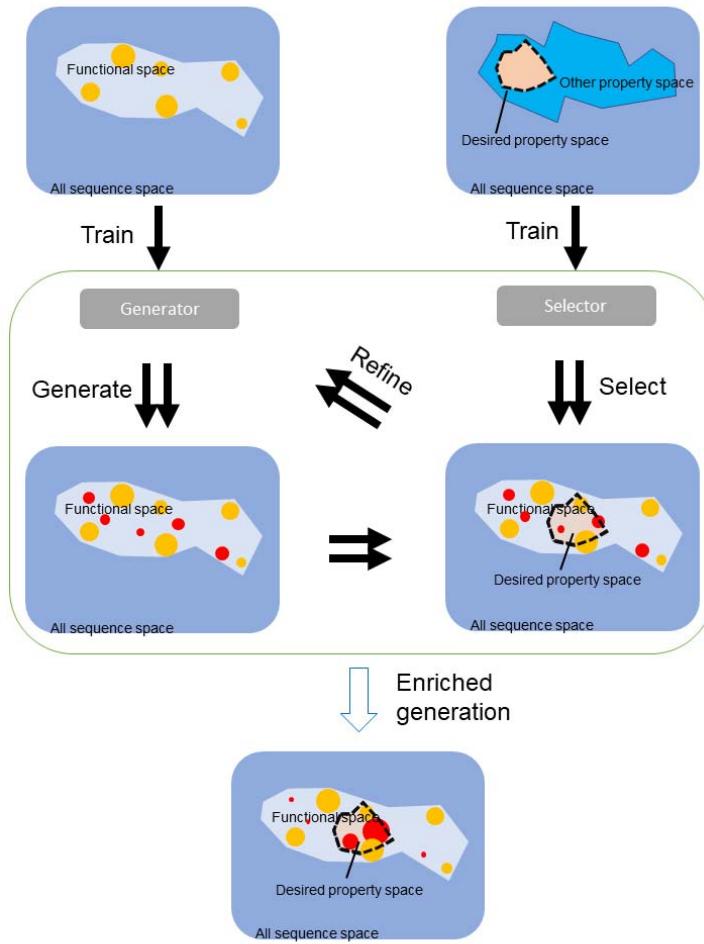
309

310 **Figure 3. Evaluation of the thermostable G3PDH generated through DeepEvo.**

311 (A) Catalytic activities of 17 generated G3PDHs at 30°C and 65°C respectively. (B) Activity ratio of eight verified HTTPs to their individual nearest natural sequence. '*'
312 refers to no activity was detected in natural sequence, and the denominator is 0 in
313 ratio value calculation. (C) Histogram of mutations in 7 high temperature activity significantly improved variants. Clusters
314 contains different number of amino acids are shown in different color. (D) Salt bridge
315 numbers of verified HTTPs compared with the number of their corresponding natural
316 proteins. The numbers are calculated by ESBRI³⁷. (E) Structure model of G8 and the
317 single point mutations (red dot) compared to N8. Substrate and coenzyme are shown
318 as blue sticks. Three clusters of mutations are shown in right black boxes.
319

320

321



322

323 **Figure 4. DeepEvo in the perspective of sequence space.** In the vast full sequence
324 space of proteins, the functional sequence space occupies only a small fraction.
325 Natural sequences cluster like islands in the functional space (orange circles). The
326 DeepEvo strategy can sample much deeper into the functional space using a trainable
327 generator that fills in the gaps between natural sequence islands (red circles). For
328 particular desired properties, we can train special selectors to filter the generated
329 sequence into the desired property space and refine the generator. After iterations, the
330 sequences sampled by DeepEvo can be enriched in the desired property space,
331 improving the efficiency of obtaining proteins with desired properties.
332
333

334 **Methods**

335 **Collection of thermophile organisms**

336 We collected thermophile organisms (mainly microorganism) from five sources. The
337 first source is TEMPURA which is a database of growth temperatures of usual and
338 rare prokaryotes (<http://togodb.org/db/tempura>). In the database, we obtained about
339 8000 organisms and their optimal growth temperatures (OGT); The second source is
340 ExProtDB, which is a database collecting extremophilic proteins and their host
341 organisms, about 300 thermophiles were collected from this database; The third
342 source was Wikipedia web search. We fetched the names of all genome sequenced
343 microorganisms from NCBI, and then searched the name in the web. If the web
344 contains some key words like 'extremophile', 'thermophilc', 'thermophile',
345 'thermophilic', 'high temperatures', 'thermoacidophilic' or 'polyextremophile', we
346 check the microorganism in the web whether is a thermophile organism, and about
347 500 thermophiles were collected by this way; The last source is BacDive which
348 represents a collection of organism-linked information covering the multifarious
349 aspects of bacterial and archaeal biodiversity. We collected about 5,000
350 microorganisms in the database which includes the information of growth
351 temperatures. In totally, we collected 10,190 organisms, some of which without the
352 information of OGT were individually searched in website. Among them, we define
353 805 organisms (with OGT $\geq 50^{\circ}\text{C}$), 5122 organisms (with OGT $\geq 30^{\circ}\text{C}$, $< 50^{\circ}\text{C}$) and
354 4262 organisms (with OGT $< 30^{\circ}\text{C}$) as high temperature organisms (HTO), middle
355 temperature organisms (MTO) and low temperature organisms (LTO), respectively.

356

357 **Collection of thermophile genes**

358 For the collected about 10,000 microorganisms with the information of growth
359 temperatures, we respectively fetched the corresponding genes from three
360 downloaded gene sets (i.e., UniProt reference proteomes, UniRef90 and UniRef50).
361 The fetched genes were further divided into HTO, MTO, and LTO genes. In UniProt
362 reference proteomes, we totally obtained 25,724,264 genes which include 1,393,345
363 HTO, 12,317,734 MTO and 12,013,185 LTO genes, respectively. In UniRef90, we
364 totally obtained 15,901,817 genes which include 973,655 HTO, 7,941,331 MTO and
365 6,986,831 LTO genes, respectively. In UniRef50, we totally obtained 2,199,998 genes
366 which include 165,625 HTO, 1,120,580 MTO and 913,793 LTO genes, respectively.
367 These genes were considered as training set for the construction of high temperature
368 discrimination model.

369

370 **Collection of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) genes**

371 To construct gene generative model, we screened and analyzed all potential G3PDHs
372 in the NCBI database. First, we predicted all potential G3PDHs by search against the
373 non-redundant database with the Pfam domain ID PF02800 (hmmscan --cpu 10 --
374 domtblout output.txt -E 1e-4 PF02800.hmm NR.fasta), 67,493 genes with the domain
375 were obtained. Second, we retrieved all G3PDHs from KEGG database
376 (https://www.genome.jp/dbget-bin/get_linkdb?-t+genes+pf:PF02800). Third, we

377 made a local blastp search using G3PDHs from NCBI as the query sequences, and
378 G3PDHs from KEGG as the BLAST database. After blastp search, 54,896 potential
379 G3PDHs were screened with three standards: the best hit is a glyceraldehyde 3-
380 phosphate dehydrogenase (EC:1.2.1.12, KO: K00134), the identity is more than 40,
381 and the align length is more than 200. After filtering too long and too short genes,
382 40,000 potential G3PDHs were selected to construct generative model.

383

384 **Building and training the Thermo-selector**

385 To identify sequences of high temperature resistant proteins, a two-part dataset was
386 compiled, consisting of 30,968 high temperature sequences (OMT \geq 50) and
387 162,890 low temperature sequences (OMT $<$ 30). These sequences are range from 300
388 to 800 amino acids length and the sequence identity between each other are no more
389 than 50%. 70% of the sequences were chosen as training set and others remained as
390 testing set. The training data was first preprocessed by encoding each sequence into a
391 1280-dimensional vector using the pre-trained ESM-1b model. These encoded vectors
392 were then used to train a three-layer multilayer perceptron with dimensions
393 1280:64:16 and a binary cross-entropy loss function. An Adam optimizer was used to
394 train the model with a learning rate 1×10^{-3} . 75 epochs of training were performed to
395 make the loss stable. The model was evaluated using standard metrics such as
396 precision, recall, and F1 score (Supplementary Methods). The pytorch framework was
397 used for building this model.

398

399 **Building and training the Variant-generator**

400 To build the Variant-generator, we filtered the collected G3PDH sequences with the
401 length $>$ 300 and $<$ 800 amino acids. A total of 15,454 sequences were used for
402 training and testing. We randomly split these sequences in the ratio of 9:1 as the
403 training set and test set respectively. The GAN architecture to generate G3PDH
404 sequences was based on the ProteinGAN model. The discriminator and generator
405 networks were built by ResNet blocks which contained three convolution layers with
406 rectified linear unit activations and a transformer block with muti-head attention
407 mechanism. A random vector of 128 values was used as the input to the generator, and
408 the output matrix dimensions were 512×21 , which was correspond to the one-hot
409 encoded sequence of length 512 with a 21 words vocabulary (20 amino acids and a
410 sign for gaps at the beginning or ending of the sequence). The matrix with the same
411 dimensions as the output of the generator is used as input to the discriminator. In the
412 training process, the generator generated 64 sequences as a batch, and these generated
413 sequences were mixed with 64 natural G3PDH sequences sampled in the training set
414 based on the sampling weights described above, and then they were passed to the
415 discriminator for discrimination. A non-saturating loss with R1 regularization was
416 used as loss function in this model, and we selected the Adam algorithm for
417 optimizing the networks. The learning rate was gradually decreased from 1×10^{-3} to 5
418 $\times 10^{-5}$. The model was trained for 200,000 steps, which took about 12 hours on a
419 Nvidia GTX2080Ti system.

420

421 **Analysis of generated sequences**

422 A distance matrix of cluster representatives was used as the t-SNE input. To obtain
423 cluster representatives, the numbers of sequences in both datasets were first equalized
424 by taking 10000 sequences from natural and generated datasets. These sequences
425 were independently clustered using MMseqs2 with 80% minimal sequence identity.
426 Representative sequences of these clusters were chosen based on the MMseqs2 output.
427 From the representative sequences, a distance matrix was generated using Clustal
428 Omega. The distance matrix was used with the scikit-learn t-SNE module with default
429 settings, except that the embedding generation perplexity was set to 7. Coordinates
430 given by t-SNE were used for plotting and the size of a given dot was visualized
431 based on the cluster size it represents.

432

433 **Select generated sequences for experimental test**

434 To filter out representative sequences for experimental testing, we first used the
435 discriminator of the GAN-based Variant-generator. After ranking the generated
436 sequences by this score, the top 20% that were strongly discriminated as natural-like
437 sequences were kept. We then used a crystallized G3PDH (PDBID: 3KV3) as a
438 template, extracted the NAD and G3P binding positions (residue numbers 12, 13, 35,
439 78, 316 for NAD binding, 151, 152, 181, 183, 234 for G3P binding), and constructed
440 a functional motif. We then aligned the generated sequences to the template, and if
441 there was no gap in the functional motif region, the sequences were retained. We then
442 calculated the identities of the generated sequences and the natural sequences with
443 blastp. Tens of sequences were selected with different levels of variation (60%-90%
444 for the original Variant-generator and 80%-90% for the refined Variant-generator).
445 The selected sequences were then structurally modeled with AlphaFold2, keeping
446 those with plddt >90%.

447

448 **Expression and purification of Proteins**

449 Protein coding DNA sequences mentioned in this study were all synthesized, cloned
450 into pET28a expression vector between NdeI and XhoI then sequence-verified by
451 Zhong He Gene Co.Ltd (Tianjin). The constructs were transformed into BL21 (DE3)
452 or Arctic Express (DE3) *E. coli*. Cells were seeded in 2YT medium (kanamycin, 50
453 μ g/mL) at a ratio of 1:160 and grown at 37 °C, 220rpm. After OD₆₀₀ of cells were
454 reaching 0.4~0.6, IPTG was added to a final concentration of 0.5 mM IPTG to
455 induce expression. Strain cells were cultured at 16 °C, 220 rpm overnight then
456 harvested by centrifugation. Cells were resuspended in lysis buffer (50mM Tris-HCL,
457 pH6.8) and lysed by using a high-pressure homogenizer at 1200~1500 bar, for 2-3
458 times. Cell debris was discarded by centrifugation at 10,000 \times g for 40 min. The
459 Ni-NTA agarose column was balanced with ddH₂O and lysis buffer for 2 column
460 volume. The supernatant was applied to the column then proteins were eluted using a
461 gradient of elution buffer (50mM Tris-HCL with 10mM, 50mM 200mM imidazole).
462 The fractions were then collected and analyzed by SDS-PAGE. Purified proteins were
463 concentrated by centrifugation (4,000g, 30 min) in 10 kDa ultrafiltration tubes
464 (Centriplus YM series, Millipore) and flash frozen in liquid nitrogen then stored at -

465 80 °C.

466

467 **G3PDH activity and thermal stability assay**

468 The assay for G3PDH activity was carried out according to the method originally
469 described by Ferdinand⁵⁰ with minor modifications. Briefly, the activity can be
470 monitored by measuring the formation of NADH. Triplicate samples of purified
471 proteins were mixed with 10mM NAD in 993uL Reaction (40mM triethanolamine, 50
472 mM Na₂HPO₄, 5 mM EDTA, 0.1 mM DTT, pH8.6) separately. 7 μ l DL-G3PDH
473 solution(sigma) were added into systems, then determining the A₃₄₀ immediately. The
474 reaction systems were incubated at 30 °C for 10 min and determining the A₃₄₀ again.

475 The activity of G3PDHs were calculated with the formula Units/mg/min = $\Delta A_{340} \times$

476 VT(Volume of tube)/(6.22 x Concentration(mg) x Time(s)). For the thermal stability
477 assay, 100 μ l reaction systems were developed in 96 well plate. The plates were
478 incubated at designed temperature in a thermostable microplate reader with persistent
479 reading of A₃₄₀ for 30 min.

480

481

482 **Author contributions**

483 All authors listed have made a substantial, direct and intellectual contribution to the work, and
484 approved it for publication.

485 **Funding**

486 This Research Topic was supported by the National Key R&D Program of China
487 (2022YFC2106000), Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project
488 (TSBICIP-KJGG-009-02, TSBICIP-C□RC-015, TSBICIP-CXRC-003), the CAS Project for
489 Young Scientists in Basic Research (YSBR-072-4).

490 **Acknowledgements**

491 We thank all the contributing authors and reviewers for their support in this Research Topic.

492 **Conflict of interest**

493 The authors declare that the research was conducted in the absence of any commercial or financial
494 relationships that could be construed as a potential conflict of interest.

495 **References**

496

497 1. Bommarius, A.S. & Paye, M.F. Stabilizing biocatalysts. *Chem Soc Rev* **42**, 6534-6565

498 (2013).

499 2. Bell, E.L. et al. Directed evolution of an efficient and thermostable PET depolymerase.

500 *Nat Catal* **5**, 673-681 (2022).

501 3. Liu, Q., Xun, G. & Feng, Y. The state-of-the-art strategies of protein engineering for
502 enzyme stabilization. *Biotechnology advances* **37**, 530-537 (2019).

503 4. Sun, Z., Liu, Q., Qu, G., Feng, Y. & Reetz, M.T. Utility of B-Factors in Protein Science:
504 Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability.

505 *Chem Rev* **119**, 1626-1665 (2019).

506 5. Packer, M.S. & Liu, D.R. Methods for the directed evolution of proteins. *Nature
507 Reviews Genetics* **16**, 379-394 (2015).

508 6. Markel, U. et al. Advances in ultrahigh-throughput screening for directed enzyme
509 evolution. *Chem Soc Rev* **49**, 233-262 (2020).

510 7. Zeng, W.Z., Guo, L.K., Xu, S., Chen, J. & Zhou, J.W. High-Throughput Screening
511 Technology in Industrial Biotechnology. *Trends in Biotechnology* **38**, 888-906 (2020).

512 8. Hie, B.L. et al. Efficient evolution of human antibodies from general protein language
513 models. *Nat Biotechnol* (2023).

514 9. Yang, K.K., Wu, Z. & Arnold, F.H. Machine-learning-guided directed evolution for
515 protein engineering. *Nat Methods* **16**, 687-694 (2019).

516 10. Qu, G., Li, A., Acevedo-Rocha, C.G., Sun, Z. & Reetz, M.T. The Crucial Role of
517 Methodology Development in Directed Evolution of Selective Enzymes. *Angew Chem*

518 *Int Ed Engl* **59**, 13204-13231 (2020).

519 11. Sun, Z., Wikmark, Y., Backvall, J.E. & Reetz, M.T. New Concepts for Increasing the
520 Efficiency in Directed Evolution of Stereoselective Enzymes. *Chemistry* **22**, 5046-
521 5054 (2016).

522 12. Leman, J.K. et al. Macromolecular modeling and design in Rosetta: recent methods
523 and frameworks. *Nature methods* **17**, 665-680 (2020).

524 13. Delgado, J., Radusky, L.G., Cianferoni, D. & Serrano, L. FoldX 5.0: working with RNA,
525 small molecules and a new graphical interface. *Bioinformatics* **35**, 4168-4169 (2019).

526 14. Gumulya, Y. et al. Engineering highly functional thermostable proteins using ancestral
527 sequence reconstruction. *Nat Catal* **1**, 878-888 (2018).

528 15. Huang, P. et al. Evaluating protein engineering thermostability prediction tools using
529 an independently generated dataset. *ACS omega* **5**, 6487-6493 (2020).

530 16. Chautard, H. et al. An activity-independent selection system of thermostable protein
531 variants. *Nature Methods* **4**, 919-921 (2007).

532 17. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. *Nature*
533 **596**, 583-589 (2021).

534 18. Lin, Z.M. et al. Evolutionary-scale prediction of atomic-level protein structure with a
535 language model. *Science* **379**, 1123-1130 (2023).

536 19. Baek, M. et al. Accurate prediction of protein structures and interactions using a
537 three-track neural network. *Science* **373**, 871-+ (2021).

538 20. Yu, T. et al. Enzyme function prediction using contrastive learning. *Science* **379**,
539 1358-1363 (2023).

540 21. Li, F.R. et al. Deep learning-based k_{cat} prediction enables improved enzyme-
541 constrained model reconstruction. *Nat Catal* **5**, 662-+ (2022).

542 22. Repecka, D. et al. Expanding functional protein sequence spaces using generative
543 adversarial networks. *Nature Machine Intelligence* **3**, 324-333 (2021).

544 23. Madani, A. et al. Large language models generate functional protein sequences
545 across diverse families. *Nat Biotechnol* (2023).

546 24. Pucci, F., Schwersensky, M. & Rooman, M. Artificial intelligence challenges for
547 predicting the impact of mutations on protein stability. *Current opinion in structural
548 biology* **72**, 161-168 (2022).

549 25. Liu, Y. et al. Rotamer-free protein sequence design based on deep learning and self-
550 consistency. *Nature Computational Science* **2**, 451-462 (2022).

551 26. Dauparas, J. et al. Robust deep learning-based protein sequence design using
552 ProteinMPNN. *Science* **378**, 49-56 (2022).

553 27. Alley, E.C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G.M. Unified rational
554 protein engineering with sequence-based deep representation learning. *Nature
555 methods* **16**, 1315-1322 (2019).

556 28. Rives, A. et al. Biological structure and function emerge from scaling unsupervised
557 learning to 250 million protein sequences. *Proceedings of the National Academy of
558 Sciences* **118** (2021).

559 29. Biswas, S., Khimulya, G., Alley, E.C., Esveld, K.M. & Church, G.M. Low-N protein
560 engineering with data-efficient deep learning. *Nature methods* **18**, 389-396 (2021).

561 30. Ofer, D., Brandes, N. & Linial, M. The language of proteins: NLP, machine learning &

562 protein sequences. *Computational and Structural Biotechnology Journal* **19**, 1750-
563 1758 (2021).

564 31. Shin, J.E. et al. Protein design and variant prediction using autoregressive generative
565 models. *Nat Commun* **12**, 2403 (2021).

566 32. Hara, M.R. et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear
567 translocation following Siah1 binding. *Nature cell biology* **7**, 665-674 (2005).

568 33. Tristan, C., Shahani, N., Sedlak, T.W. & Sawa, A. The diverse functions of GAPDH:
569 views from different subcellular compartments. *Cellular signalling* **23**, 317-323 (2011).

570 34. Sato, Y., Okano, K., Kimura, H. & Honda, K. TEMPURA: database of growth
571 TEMPeratures of Usual and RARe Prokaryotes. *Microbes and environments* **35**,
572 ME20074 (2020).

573 35. Patra, S. Extremophile Protein Database. <http://www.exprotmdb.com/> (2018).

574 36. Reimer, L.C. et al. Bac Dive in 2022: the knowledge base for standardized bacterial
575 and archaeal data. *Nucleic Acids Research* **50**, D741-D746 (2022).

576 37. Costantini, S., Colonna, G. & Facchiano, A.M. ESBRI: a web server for evaluating
577 salt bridges in proteins. *Bioinformation* **3**, 137 (2008).

578 38. Perl, D., Mueller, U., Heinemann, U. & Schmid, F.X. Two exposed amino acid
579 residues confer thermostability on a cold shock protein. *Nat Struct Biol* **7**, 380-383
580 (2000).

581 39. Pinney, M.M. et al. Parallel molecular mechanisms for enzyme temperature
582 adaptation. *Science* **371** (2021).

583 40. Heydenreich, F.M., Vuckovic, Z., Matkovic, M. & Veprintsev, D.B. Stabilization of G

584 protein-coupled receptors by point mutations. *Frontiers in pharmacology* **6**, 82 (2015).

585 41. Arnold, F.H. Directed Evolution: Bringing New Chemistry to Life. *Angew Chem Int Ed Engl* **57**, 4143-4148 (2018).

587 42. Giver, L., Gershenson, A., Freskgard, P.O. & Arnold, F.H. Directed evolution of a

588 thermostable esterase. *Proc Natl Acad Sci U S A* **95**, 12809-12813 (1998).

589 43. Gupta, A. & Zou, J. Feedback GAN for DNA optimizes protein functions. *Nature Machine Intelligence* **1**, 105-111 (2019).

591 44. Strokach, A. & Kim, P.M. Deep generative modeling for protein design. *Current opinion in structural biology* **72**, 226-236 (2022).

593 45. Croitoru, F.-A., Hondru, V., Ionescu, R.T. & Shah, M. Diffusion models in vision: A

594 survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2023).

595 46. Clifton, B.E., Kozome, D. & Laurino, P. Efficient exploration of sequence space by

596 sequence-guided protein engineering and design. *Biochemistry* **62**, 210-220 (2022).

597 47. Huang, P.S., Boyken, S.E. & Baker, D. The coming of age of de novo protein design.

598 *Nature* **537**, 320-327 (2016).

599 48. Wittmann, B.J., Johnston, K.E., Wu, Z. & Arnold, F.H. Advances in machine learning

600 for directed evolution. *Current opinion in structural biology* **69**, 11-18 (2021).

601 49. Dryden, D.T., Thomson, A.R. & White, J.H. How much of protein sequence space has

602 been explored by life on Earth? *Journal of The Royal Society Interface* **5**, 953-956

603 (2008).

604 50. Ferdinand, W. The isolation and specific activity of rabbit-muscle glyceraldehyde

605 phosphate dehydrogenase. *Biochemical Journal* **92**, 578 (1964).

