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Abstract 15 

Protein engineering for increased thermostability through iterative mutagenesis and 16 

high throughput screening is labor-intensive, expensive and inefficient. Here, we 17 

developed a deep evolution (DeepEvo) strategy to engineer protein thermostability 18 

through global sequence generation and selection using deep learning models. We 19 

firstly constructed a thermostability selector based on a protein language model to 20 

extract thermostability-related features in high-dimensional latent spaces of protein 21 

sequences with high temperature tolerance. Subsequently, we constructed a variant 22 

generator based on a generative adversarial network to create protein sequences 23 

containing the desirable function with more than 50% accuracy. Finally, the generator 24 

and selector were utilized to iteratively improve the performance of DeepEvo on the 25 

model protein glyceraldehyde-3-phosphate dehydrogenase (G3PDH), whereby 8 26 

highly thermostable variants were obtained from only 30 generated sequences, 27 

demonstrating the high efficiency of DeepEvo for the engineering of protein 28 

thermostability.  29 
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Introduction 31 

Engineering proteins for thermostability is crucial for broadening the application 32 

of natural proteins in multiple fields such as food, feed, biocatalysis, biomedicine, and 33 

biomanufacturing1-3. Directed evolution is the most powerful tool for improving the 34 

thermostability of natural proteins, but it currently requires multiple rounds of random 35 

mutagenesis and high throughput screening 2, 4-7. However, the space of possible 36 

protein sequences is too large to search exhaustively in the laboratory or 37 

computationally, and functional proteins within the total protein sequence space are 38 

extremely scarce. As a consequence, it is very difficult to identify highly functional 39 

sequences in the vast nonfunctional sequence space8-10. To overcome this, many 40 

rational or semi-rational strategies11-14 have been developed to improve the possibility 41 

of each mutant to have the desired function, as well as many high throughput 42 

approaches6, 7 to increase the rate of experimental screening, but there is still a lot of 43 

room to improve the efficiency of these tools15, 16.  44 

Recently, novel deep learning models have been developed to predict protein 45 

structure17-19, EC number20, enzyme turnover21, gene function22, 23, and also the 46 

thermostability of proteins24. Studies of protein sequence design demonstrated that 47 

deep learning models can learn the diversity of natural protein sequences and enables 48 

the generation of functional protein variants22, 23, 25, 26. In addition, some general 49 

protein language models, such as UniRep27 and ESM28, can encode the enormous 50 

protein sequence space into a high-dimensional representation space, in which it is 51 

more feasible to establish connections between protein properties and sequence 52 

variants29-31. These achievements provide us an opportunity to develop a method to 53 

engineer proteins with improved thermostability by merging two deep learning 54 

models from an iterative evolution perspective, whereby a generative model produces 55 

abundant variants from a reasonable sequence space with the desired function, after 56 

which a selective model is used to identify variants with improved thermostability. 57 

In contrast to a typical directed evolution strategy based on highly labor-58 

intensive iterative mutagenesis, here we proposed a deep evolution (DeepEvo) 59 

strategy to improve protein thermostability through global sequence generation and 60 

selection (Figure 1). Firstly, we leveraged a successful protein language model (ESM) 61 

to extract thermostability-related information from more than 190,000 protein 62 

sequences across a wide range of organisms, and constructed a thermostability 63 

selection model (Thermo-selector). Then, a modified generative model (Variant-64 

generator) based on ProteinGAN was constructed to generate functional sequences. 65 

Finally, after iterative optimization of Variant-generator by the output of Thermo-66 

selector, we evaluated the efficiency of DeepEvo for protein thermostability 67 

engineering on the model enzyme G3PDH, which is a key enzyme for glycolysis with 68 

important applications in industry and medicine32, 33 (Figure S1). 69 
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Results 70 

Construction of the thermostability selection model: Thermo-selector 71 

Similar to natural selection, the DeepEvo approach utilized a thermostability 72 

selection model to identify protein sequences with potential for enhanced 73 

thermostability. A thermostability selection model was constructed to predict whether 74 

a protein is a high temperature tolerant protein (HTTP) or low temperature tolerant 75 

protein (LTTP). Considering that the total proteins of organisms that survive in high-76 

temperature environments should be HTTP, the optimal growth temperatures (OGT) 77 

of the organisms were used as a label to measure the thermostability of the natural 78 

protein. To obtain enough labeled data for supervised learning, the information of 79 

10,190 organisms with a wide range of OGT was collected from TEMPURA34, 80 

ExProtDB35, NCBI, and BacDive36. Then, more than 20 million corresponding genes 81 

were retrieved from UniProt and UniRef gene sets. The corresponding protein 82 

sequences from organisms with OGT > 50 � or OGT < 30 � were defined as HTTPs 83 

or LTTPs, respectively (Figure1, Methods). To reduce the impact of sequence 84 

similarity on the thermostability-related traits, only sequences with pairwise identity 85 

less than 50% were retained. In view of the length of most enzymes used in practical 86 

applications, proteins with a length > 300 and < 800 amino acids were retained. After 87 

filtering based on these criteria, a total of 30,968 HTTPs and 162,890 LTTPs were 88 

collected to build the selection model (Figure1, Table 1).  89 

Inspired by natural language processing techniques, the ESM-1b pre-training 90 

model was used to encode the training data as a 1280-dimensional vector. Using the 91 

ESM embedding vectors as input, a three-layer fully connected neural network was 92 

built (Table 1).  Using 70% of the collected data as the training set, the model was 93 

optimized by cross-entropy loss. After 75 rounds of training, the loss function of the 94 

model became stable (Figure S2). After the training procedure, the overall accuracy of 95 

the model on the testing set comprising the remaining 30% of the data was 95.1% 96 

(Figure S3), indicating that most of proteins in the testing set were correctly classified 97 

into HTTPs or LTTPs. Considering the imbalance of our training set, with 84% of 98 

total sequences belonging to LTTPs, we calculated the precision and recall to further 99 

evaluate the performance of our model on the tested HTTPs (Supplementary 100 

Methods). These measurements showed that 86.0% (precision) of all labeled HTTPs 101 

were predicted as HTTPs by the model, and 78.0% (recall) of all sequences predicted 102 

as HTTPs by the model were actually the labeled HTTPs in the test set (Table 1). 103 

These results suggest that our model can be used as a viable filter for identifying 104 

HTTPs. This thermostability selection model was named Thermo-selector. 105 

 106 

Table 1 Summary of the thermo-selector model 107 

Parameters 
Batch size 100 

Rounds 75 
  Training Set Testing Set 

Data HTTPs 21,772 9,246 
LTTPs 113,978 48,912 
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Metrics accuracy 97.8% 95.1% 
precision 97.0% for HTTPs 86.0% for HTTPs 

recall 87.7% for HTTPs 78.0% for HTTPs 

 108 

 109 

Construction of a variant generation model for G3PDH: Variant-generator 110 

To more efficiently generate functional sequences in a confined sequence space 111 

by DeepEvo approach, a G3PDH Variant-generator was built by revising ProteinGAN 112 

with the multi-headed attention mechanism (Figure 1 and S4). This model structure 113 

includes a sequence generator and a discriminator. The generator attempts to generate 114 

functional sequences and the discriminator attempts to distinguish the generated 115 

sequences from the natural sequences. By searching with G3PDH functional domain 116 

and filtering with sequences length and identity, 15,454 natural G3PDH sequences 117 

were extracted from the NCBI, KEGG, and Pfam databases to train the model 118 

(Methods). At each training step, starting from a random vector, the generator 119 

produced 64 sequences, which were mixed with the same number of natural G3PDH 120 

sequence. The discriminator then compared the generated sequences with the natural 121 

sequences, which were used to adjust the parameters of both the generator and the 122 

discriminator. After 200,000 training rounds, the sequences produced by the generator 123 

could not be distinguished from the natural G3PDH sequences by the discriminator 124 

(Figure S5 and S6). 125 

To evaluate the quality of these generated sequences, we conducted t-distributed 126 

stochastic neighbor embedding (t-SNE) dimensionality reduction on the natural and 127 

generated G3PDH sequences (Figure 2A, left pane). The generated sequences covered 128 

a similar distribution to that of the natural sequences, and were grouped into smaller 129 

clusters and interpolated within the natural sequence clusters, indicating that the 130 

Variant-generator model expanded the sequence space of natural G3PDHs. To verify 131 

the evolutionary properties reflected in the statistics of amino acid variation, we 132 

computed Shannon entropies for each position in multiple sequence alignments of the 133 

generated and natural G3PDH sequences. The positional variability of the generated 134 

sequences was highly similar to that of the natural sequences (Figure S7). We also 135 

evaluated the highly conserved regions related to the function of G3PDH and found 136 

that the generated sequences captured these key positions faithfully (Figure 2B). 137 

To further evaluate the function of the generated sequences, we sorted them 138 

based on the score of the discriminator and filtered them based on the key functional 139 

conserved sequence motifs (Methods). Then, 10 sequences with different similarities 140 

to the natural sequences were selected as input for alphafold2 to build protein 141 

structure, and 6 sequences (G1-G6) with high plddts (>90%) were selected for further 142 

experimental validation. Among the 6 proteins, three (i.e., G1, G2, G3) not only 143 

folded correctly in E. coli expression systems (Figure S8A), but also displayed normal 144 

G3PDH activity in in vitro (Figure 2C). G2 and G3 even showed higher activities than 145 

the natural G3PDH from yeast and a commercial G3PDH from rabbits. These 146 

experiments proved that the Variant-generator could efficiently generate functional 147 

variants from the confined enzyme sequence space.  148 

 149 
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Development of the deep evolution process 150 

Based on the good performance of Thermo-selector and Variant-generator, we 151 

further implemented the DeepEvo strategy by iterating the two models to enhance 152 

sampling in the G3PDH functional sequence space for variants with enhanced thermal 153 

stability (Figures 1 and S4). First, 18,238 sequences were selected from the 100,000 154 

generated sequences of the initial Variant-generator based on the discriminator score 155 

and the functional conserved residues of G3PDH. Then, the selected sequences were 156 

input into the Thermo-selector, where only 1,354 (7.4%) variants were classified as 157 

HTTPs. Finally, 1,354 HTTPs were mixed with all natural HTTPs and added back to 158 

the training set of the Variant-generator to refine the model. When the Variant-159 

generator stabilized again, we obtained a refined Variant-generator, which displayed a 160 

better HTTP generation performance, as the proportion of HTTPs among the 161 

generated sequences increased to 14.9%. Additionally, using the discriminator score 162 

as metric, we observed that the sequences generated by the refined Variant-generator 163 

were largely consistent with those of the initial variant-generator (Figure S6). 164 

Interestingly, the t-SNE analysis of the new generated sequences yielded some bigger 165 

clusters, which suggested that the generated sequences were enriched in sequence 166 

spaces, similar to gene family evolution in nature, indicating that the iterative process 167 

of DeepEvo might recapitulate certain unsought mechanisms of the natural evolution 168 

process (Figure 2A, right pane). 169 

To further evaluate the thermal stability of the sequences generated by the 170 

refined Variant-generator, 30 sequences (G7-G36) were selected from 2760 newly 171 

generated HTTPs for experimental validation based on the discriminator score, 172 

conserved residues, similarity to the nearest natural sequences and plddts (Methods). 173 

These sequences exhibited an average 61% sequence identity among themself (Figure 174 

S9), and a range of identities (~70 to ~90%) to their nearest natural sequences in the 175 

training set (Supplementary Table 2). The 30 selected sequences were synthesized and 176 

then expressed in E. coli for protein purification. Among the 30 proteins 23 (77%) 177 

were soluble and could be purified (Figures S8B-D), 17 of which (57%) showed 178 

normal G3PDH catalytic activity at 30 � in the subsequent G3PDH activity assay 179 

(Figure 3A, Supplementary Table 2). We found that 11 out of the 17 proteins showed 180 

detectable activity at 65 �, with 8 of them (i.e., G7, G8, G10, G11, G12, G13, G14, 181 

G15) exhibiting relatively high thermostability (Figure 3A, Methods), even retaining 182 

activity at 70 and 75 � (Figure S10). Notably, the nearest natural homologs of 7 183 

among the 8 proteins showed low or even no detectable activity at 65 � (Figure 3B), 184 

even one of them(N12) was from a high temperature organism, indicating that 185 

DeepEvo indeed can effectively engineer natural LTTPs into HTTPs. 186 

 187 

Deciphering the design art of deep evolution 188 

In order to comprehensively understand the design art of DeepEvo, we compared 189 

7 generated HTTPs with their nearest natural LTTPs, finding that the natural LTTPs 190 

require the mutation of approximately 20-50 residues to become our generated HTTPs 191 

(Supplementary Table 2). We observed many alanine to serine mutations, which may 192 

increase the coordination of local hydrogen bonding networks. In addition, we found 193 
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that a high proportion of mutations introduced charged residues, resulting in a 194 

significant increase in the number of salt bridges37 in most of the verified HTTPs 195 

(Figure 3D), which could strengthen the local residual interactions and may be a 196 

major reason for the stability of the generated HTTPs38. The remaining mutations 197 

mainly introduced the same type of amino acid (Figure S12), and generally did not 198 

have particularly strong effects on the local side-chain arrangements. Structural 199 

analysis showed that the mutated amino acid resides were mainly distributed on the 200 

protein surface, with only a few occurring near the catalytic pocket (Figure S11). 201 

Interestingly, we found that 2/3 of the point mutations formed spatial clusters or 202 

mutation networks, in which mutants with at least one backbone alpha carbon atom 203 

(CA) are within 8Å of the CA of other mutants. Conversely, only 1/3 of the point 204 

mutations were single changes (Figure 3C and Supplementary Table 3). These results 205 

suggest that DeepEvo can enhance local structural interactions and compensate for the 206 

deleterious effects of single point mutations through the interaction of multiple 207 

mutation sites. 208 

In order to scrutinize the interaction of spatial clusters, we compared the protein 209 

G8 with its nearest natural sequence N8, since it showed a great increase of both 210 

enzyme activity and thermal stability (Figures 3A and B). We observed a total of 34 211 

residue changes and 25% more electrostatic interaction pairs in G8 than in N8 (Figure 212 

3D), which may contribute the overall improved stability of G8 at high temperature 213 

according to MD simulations (Figure S13). Among these mutations, approximately 65% 214 

(22/34) were located in 7 spatial clusters (Figure 3E). For example, the A278E 215 

mutation in cluster 1 added a new salt bridge, which could change the local position 216 

of the adjacent K280. In order to keep the original salt bridge with K280, DeepEvo 217 

made the additional mutation E298D (Figure 3E top). Similar to cluster 1, the 218 

mutation Q291R in cluster 2 would add a pair of salt bridges, but two extra mutations 219 

(E289D and V294I) occurred nearby, compensating for the effect of changed residue 220 

volume (Figure 3E middle). Different from clusters 1 and 2, an enhancement in local 221 

hydrophobic stacking was observed in cluster 3, in which a π-π interaction was added 222 

to strengthen the interaction between the helix bundle through N25F and a nearby 223 

residues, while a V23Q mutation might compensate for the increased solvent 224 

exposure in the opposite direction (Figure 3E, bottom). These results indicate that the 225 

algorithm did not simply increase local interactions, but also changed the surrounding 226 

residues in clusters to achieve a more reasonable local structure, which is often a 227 

challenge for conventional enzyme engineering 39, 40. Thus, the DeepEvo strategy, 228 

using the Variant-generator to consider the context of residues, may enable much 229 

deeper sampling in the confined functional sequence space. This new design art, 230 

which relies on the synergistic action of multiple mutant sites, may be useful in 231 

overcoming local optima. 232 
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Discussion 233 

Here we present the novel protein engineering strategy DeepEvo based on deep 234 

learning models (Figure 4). Similar to directed evolution, the iteration process is key 235 

to the efficiency of the DeepEvo strategy5, 41, 42. When we tested the performance of 236 

Thermo-selector on generated sequences without an iteration procedure, only 4 out of 237 

30 generated G3PDHs exhibited activity at 65 � (Figure S14). The iteration 238 

procedure, which uses the generated HTTPs screened by the Thermo-selector to refine 239 

Variant-generator, accumulates thermostable traits in a process similar to natural 240 

evolution43. Our results indicated that feedback and regeneration improved the 241 

proportion of experimentally tested HTTPs among the generated sequences and 242 

compensated for the data limitation. Overall, 11 out of 30 G3PDHs generated by the 243 

algorithm (Supplementary Table 1, G7-G36) showed activity at 65 �. In addition to 244 

G3PDH, we also successfully obtained highly thermotolerant variants of malate 245 

dehydrogenase (MDH) (Figure S15), which has been used for the evaluation of 246 

multiple protein language models22, 23. With the development of next-generation 247 

methods44, 45, more rounds of iteration and more valuable thermotolerance-related data 248 

can be applied to optimize the whole DeepEvo process. 249 

Billions of years of natural evolution have produced an immeasurable wealth of 250 

functional proteins, which nevertheless occupy only a tiny fraction of the practically 251 

endless potential protein sequence space8, 46. Directed evolution, similar a boat 252 

cruising around an island in a vast unexplored sea, only locally searches for beneficial 253 

mutants around natural proteins by iterative mutagenesis and high throughput 254 

screening47. However, the complete landscape of functional proteins contains “cliffs” 255 

and “holes” where small changes in sequence might result in complete loss of 256 

function48. By enabling us to obtain a better understanding of the whole landscape of 257 

protein diversity, DeepEvo is accessible to acquire previously unexplored sections of 258 

the potential sequence space. This strategy reduces the likelihood of generating non-259 

functional sequences, thereby improving the screening efficiency (Figure 4). By 260 

concentrating on the relatively small functional sequence space and employing a 261 

thermostable selector for feature enrichment, our method significantly boosts the 262 

screening efficiency. Most of the HTTPs we generated had more than 20 mutations 263 

when compared to their closest natural sequences, which would result in theoretically 264 

trillion-level combinatorial libraries that make experimental or computational 265 

screening challenging49. However, our method generates variants in the reduced 266 

functional space constrained by a specific desirable property that circumvents the 267 

issue of effectively combining single-point mutations, making it highly applicable in 268 

the field of protein engineering. 269 

In summary, DeepEvo employs an iteration process consisting of generation and 270 

selection to effectively produce protein sequences that possess strong foldability and 271 

high-temperature tolerance. In the future, it is possible to apply DeepEvo for 272 

engineering other protein properties such as acid-base tolerance and antigen affinity16, 273 

allowing for the generation of new proteins with diverse desired properties. 274 

Furthermore, we aim to explore the integration of generative frameworks from the 275 
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fields of natural language processing and image processing to enhance the sequence 276 

generation results. This will further expand the potential of protein engineering 277 

through our DeepEvo approach. 278 
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Figures 279 

 280 

Figure 1. Framework and data flow of Deep Evolution. Firstly, two data collection 281 

procedures were constructed to collect natural sequences with desired function 282 

(G3PDH as example) and sequences from different optimal growth temperatures 283 

(OTG) organisms. These sequences were then used to train the Variant-generator and 284 

Thermo-selector respectively; Secondly, the Thermo-selector model was trained and 285 

used as a thermostable sequence filter to classify HTTP sequences (denoted as red 286 

squares) and LTTP sequences (denoted as blue squares), and the Variant-generator 287 

was trained to generate reasonable sequences (denoted as circles) in the confined 288 

functional protein sequence space; Thirdly, the generated sequences by Variant-289 

generator were passed to the Thermo-selector, and the sequences predicted as HTTP 290 

(denoted as red circles) were used to refine the Variant-generator by a data feedback 291 

procedure. The generation, thermal traits filtration, feedback and regeneration 292 

constructed an iteration procedure to generate suitable sequences with high 293 

temperature tolerance directly; At last, we selected the generated sequences that 294 

predicted as HTTP and had suitable functional conservation motif and good structural 295 
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predictions to perform experimental verification. 296 

 297 

Figure 2. Evaluation of the sequences generated by Variant-generator. (A) t-SNE 298 

maps of generated sequences by original Variant-generator and refined Variant-299 

generator. Sequences were classed in the 2-dimentional t-SNE space. The natural 300 

sequences clusters are shown as orange circles and the generated sequences clusters 301 

are shown as blue circles. The area of the circles indicates the size of the clusters. (B) 302 

Sequence logos of binding pockets of natural sequences (NS), original generated 303 

sequences (GS) and refined generated sequences (RGS). The conserved positions are 304 

grouped in NAD+ and substrate binding. (C) The activity of G3PDHs generated by 305 

the original Variant-generator at 30�. G1, G2 and G3 represent the three generated 306 

sequences, a commercial G3PDH from rabbit and the G3PDH from yeast (TDH1) 307 

were used as control. 308 
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 309 

Figure 3. Evaluation of the thermostable G3PDH generated through DeepEvo. 310 

(A) Catalytic activities of 17 generated G3PDHs at 30� and 65� respectively. (B) 311 

Activity ratio of eight verified HTTPs to their individual nearest natural sequence. ‘*’ 312 

refers to no activity was detected in natural sequence, and the denominator is 0 in 313 

ratio value calculation. (C) Histogram of single changes and clustered changes of 314 

mutations in 7 high temperature activity significantly improved variants. Clusters 315 

contains different number of amino acids are shown in different color. (D) Salt bridge 316 

numbers of verified HTTPs compared with the number of there corresponding natural 317 

proteins. The numbers are calculated by ESBRI37. (E) Structure model of G8 and the 318 

single point mutations (red dot) compared to N8. Substrate and coenzyme are shown 319 

as blue sticks. Three clusters of mutations are shown in right black boxes.  320 

  321 
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 322 

Figure 4. DeepEvo in the perspective of sequence space.  In the vast full sequence 323 

space of proteins, the functional sequence space occupies only a small fraction. 324 

Natural sequences cluster like islands in the functional space (orange circles). The 325 

DeepEvo strategy can sample much deeper into the functional space using a trainable 326 

generator that fills in the gaps between natural sequence islands (rad circles). For 327 

particular desired properties, we can train special selectors to filter the generated 328 

sequence into the desired property space and refine the generator. After iterations, the 329 

sequences sampled by DeepEvo can be enriched in the desired property space, 330 

improving the efficiency of obtaining proteins with desired properties. 331 

 332 

  333 
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Methods 334 

Collection of thermophile organisms 335 

We collected thermophile organisms (mainly microorganism) from five sources. The 336 

first source is TEMPURA which is a database of growth temperatures of usual and 337 

rare prokaryotes (http://togodb.org/db/tempura). In the database, we obtained about 338 

8000 organisms and their optimal growth temperatures (OGT); The second source is 339 

ExProtDB, which is a database collecting extremophilic proteins and their host 340 

organisms, about 300 thermophiles were collected from this database; The third 341 

source was Wikipedia web search. We fetched the names of all genome sequenced 342 

microorganisms from NCBI, and then searched the name in the web. If the web 343 

contains some key words like 'extremophile', 'thermophilc', 'thermophile', 344 

'thermophilic', 'high temperatures', 'thermoacidophilic' or 'polyextremophile', we 345 

check the microorganism in the web whether is a thermophile organism, and about 346 

500 thermophiles were collected by this way; The last source is BacDive which 347 

represents a collection of organism-linked information covering the multifarious 348 

aspects of bacterial and archaeal biodiversity. We collected about 5,000 349 

microorganisms in the database which includes the information of growth 350 

temperatures. In totally, we collected 10,190 organisms, some of which without the 351 

information of OGT were individually searched in website. Among them, we define 352 

805 organisms (with OGT >=50 �), 5122 organisms (with OGT >=30 �, <50 �) and 353 

4262 organisms (with OGT < 30 �) as high temperature organisms (HTO), middle 354 

temperature organisms (MTO) and low temperature organisms (LTO), respectively. 355 

 356 

Collection of thermophile genes 357 

For the collected about 10,000 microorganisms with the information of growth 358 

temperatures, we respectively fetched the corresponding genes from three 359 

downloaded gene sets (i.e., UniProt reference proteomes, UniRef90 and UniRef50). 360 

The fetched genes were further divided into HTO, MTO, and LTO genes. In UniProt 361 

reference proteomes, we totally obtained 25,724,264 genes which include 1,393,345 362 

HTO, 12,317,734 MTO and 12,013,185 LTO genes, respectively. In UniRef90, we 363 

totally obtained 15,901,817 genes which include 973,655 HTO, 7,941,331 MTO and 364 

6,986,831 LTO genes, respectively. In UniRef50, we totally obtained 2,199,998 genes 365 

which include 165,625 HTO, 1,120,580 MTO and 913,793 LTO genes, respectively. 366 

These genes were considered as training set for the construction of high temperature 367 

discrimination model. 368 

 369 

Collection of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) genes 370 

To construct gene generative model, we screened and analyzed all potential G3PDHs 371 

in the NCBI database. First, we predicted all potential G3PDHs by search against the 372 

non-redundant database with the Pfam domain ID PF02800 (hmmscan --cpu 10 --373 

domtblout output.txt -E 1e-4 PF02800.hmm NR.fasta), 67,493 genes with the domain 374 

were obtained. Second, we retrieved all G3PDHs from KEGG database 375 

(https://www.genome.jp/dbget-bin/get_linkdb?-t+genes+pf:PF02800). Third, we 376 
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made a local blastp search using G3PDHs from NCBI as the query sequences, and 377 

G3PDHs from KEGG as the BLAST database. After blastp search, 54,896 potential 378 

G3PDHs were screened with three standards: the best hit is a glyceraldehyde 3-379 

phosphate dehydrogenase (EC:1.2.1.12, KO: K00134), the identity is more than 40, 380 

and the align length is more than 200. After filtering too long and too short genes, 381 

40,000 potential G3PDHs were selected to construct generative model. 382 

 383 

Building and training the Thermo-selector 384 

To identify sequences of high temperature resistant proteins, a two-part dataset was 385 

compiled, consisting of 30,968 high temperature sequences (OMT >= 50) and 386 

162,890 low temperature sequences (OMT < 30). These sequences are range from 300 387 

to 800 amino acids length and the sequence identity between each other are no more 388 

than 50%. 70% of the sequences were chosen as training set and others remained as 389 

testing set. The training data was first preprocessed by encoding each sequence into a 390 

1280-dimensional vector using the pre-trained ESM-1b model. These encoded vectors 391 

were then used to train a three-layer multilayer perceptron with dimensions 392 

1280:64:16 and a binary cross-entropy loss function. An Adam optimizer was used to 393 

train the model with a learning rate 1 × 10−3. 75 epochs of training were performed to 394 

make the loss stable. The model was evaluated using standard metrics such as 395 

precision, recall, and F1 score (Supplementary Methods). The pytorch framework was 396 

used for building this model. 397 

 398 

Building and training the Variant-generator 399 

To build the Variant-generator, we filtered the collected G3PDH sequences with the 400 

length > 300 and < 800 amino acids. A total of 15,454 sequences were used for 401 

training and testing. We randomly split these sequences in the ratio of 9:1 as the 402 

training set and test set respectively. The GAN architecture to generate G3PDH 403 

sequences was based on the ProteinGAN model. The discriminator and generator 404 

networks were built by ResNet blocks which contained three convolution layers with 405 

rectified linear unit activations and a transformer block with muti-head attention 406 

mechanism. A random vector of 128 values was used as the input to the generator, and 407 

the output matrix dimensions were 512 × 21, which was correspond to the one-hot 408 

encoded sequence of length 512 with a 21 words vocabulary (20 amino acids and a 409 

sign for gaps at the beginning or ending of the sequence). The matrix with the same 410 

dimensions as the output of the generator is used as input to the discriminator. In the 411 

training process, the generator generated 64 sequences as a batch, and these generated 412 

sequences were mixed with 64 natural G3PDH sequences sampled in the training set 413 

based on the sampling weights described above, and then they were passed to the 414 

discriminator for discrimination. A non-saturating loss with R1 regularization was 415 

used as loss function in this model, and we selected the Adam algorithm for 416 

optimizing the networks. The learning rate was gradually decreased from 1 × 10−3 to 5 417 

× 10−5. The model was trained for 200,000 steps, which took about 12 hours on a 418 

Nvidia GTX2080Ti system. 419 

 420 
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Analysis of generated sequences 421 

A distance matrix of cluster representatives was used as the t-SNE input. To obtain 422 

cluster representatives, the numbers of sequences in both datasets were first equalized 423 

by taking 10000 sequences from natural and generated datasets. These sequences 424 

were independently clustered using MMseqs2 with 80% minimal sequence identity. 425 

Representative sequences of these clusters were chosen based on the MMseqs2 output. 426 

From the representative sequences, a distance matrix was generated using Clustal 427 

Omega. The distance matrix was used with the scikit-learn t-SNE module with default 428 

settings, except that the embedding generation perplexity was set to 7. Coordinates 429 

given by t-SNE were used for plotting and the size of a given dot was visualized 430 

based on the cluster size it represents. 431 

 432 

Select generated sequences for experimental test 433 

To filter out representative sequences for experimental testing, we first used the 434 

discriminator of the GAN-based Variant-generator. After ranking the generated 435 

sequences by this score, the top 20% that were strongly discriminated as natural-like 436 

sequences were kept. We then used a crystallized G3PDH (PDBID: 3KV3) as a 437 

template, extracted the NAD and G3P binding positions (residue numbers 12, 13, 35, 438 

78, 316 for NAD binding, 151, 152, 181, 183, 234 for G3P binding), and constructed 439 

a functional motif. We then aligned the generated sequences to the template, and if 440 

there was no gap in the functional motif region, the sequences were retained. We then 441 

calculated the identities of the generated sequences and the natural sequences with 442 

blastp. Tens of sequences were selected with different levels of variation (60%-90% 443 

for the original Variant-generator and 80%-90% for the refined Variant-generator). 444 

The selected sequences were then structurally modeled with Alphafold2, keeping 445 

those with plddt >90%. 446 

 447 

Expression and purification of Proteins 448 

Protein coding DNA sequences mentioned in this study were all synthesized, cloned 449 

into pET28a expression vector between NdeI and XhoI then sequence-verified by 450 

Zhong He Gene Co.Ltd (Tianjin). The constructs were transformed into BL21 (DE3) 451 

or Arctic Express (DE3) E. coli. Cells were seeded in 2YT medium (kanamycin, 50 452 

μg/mL) at a ratio of 1:160 and grown at 37 °C, 220rpm. After OD600 of cells were 453 

reaching 0.4~0.6, IPTG was added to a final concentration of 0.5�mM IPTG to 454 

induce expression. Strain cells were cultured at 16 °C, 220 rpm overnight then 455 

harvested by centrifugation. Cells were resuspended in lysis buffer (50mM Tris-HCL, 456 

pH6.8) and lysed by using a high-pressure homogenizer at 1200~1500 bar, for 2-3 457 

times. Cell debris was discarded by centrifugation at 10,000�× g for 40�min. The 458 

Ni-NTA agarose column was balanced with ddH2O and lysis buffer for 2 column 459 

volume. The supernatant was applied to the column then proteins were eluted using a 460 

gradient of elution buffer (50mM Tris-HCL with 10mM, 50mM 200mM imidazole). 461 

The fractions were then collected and analyzed by SDS-PAGE. Purified proteins were 462 

concentrated by centrifugation (4,000g, 30�min) in 10�kDa ultrafiltration tubes 463 

(Centriplus YM series, Millipore) and flash frozen in liquid nitrogen then stored at -464 
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80 °C. 465 

 466 

G3PDH activity and thermal stability assay 467 

The assay for G3PDH activity was carried out according to the method originally 468 

described by Ferdinand50 with minor modifications. Briefly, the activity can be 469 

monitored by measuring the formation of NADH. Triplicate samples of purified 470 

proteins were mixed with 10mM NAD in 993uL Reaction (40mM triethanolamine, 50 471 

mM Na2HPO4, 5 mM EDTA, 0.1 mM DTT, pH8.6) separately. 7 μl DL-G3PDH 472 

solution(sigma) were added into systems, then determining the A340 immediately. The 473 

reaction systems were incubated at 30 °C for 10 min and determining the A340 again. 474 

The activity of G3PDHs were calculated with the formula Units/mg/min = △A340 x 475 

VT(Volume of tube)/(6.22 x Concentration(mg) x Time(s)). For the thermal stability 476 

assay, 100 μl reaction systems were developed in 96 well plate. The plates were 477 

incubated at designed temperature in a thermostable microplate reader with persistent 478 

reading of A340 for 30 min.  479 

 480 

 481 
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