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15 Abstract

16 Protein engineering for increased thermostability through iterative mutagenesis and
17 high throughput screening is labor-intensive, expensive and inefficient. Here, we
18  developed a deep evolution (DeepEvo) strategy to engineer protein thermostability
19  through global sequence generation and selection using deep learning models. We
20 firstly constructed a thermostability selector based on a protein language model to
21  extract thermostability-related features in high-dimensional latent spaces of protein
22 sequences with high temperature tolerance. Subsequently, we constructed a variant
23  generator based on a generative adversarial network to create protein sequences
24 containing the desirable function with more than 50% accuracy. Finally, the generator
25 and selector were utilized to iteratively improve the performance of DeepEvo on the
26 model protein glyceraldehyde-3-phosphate dehydrogenase (G3PDH), whereby 8
27  highly thermostable variants were obtained from only 30 generated sequences,
28 demonstrating the high efficiency of DeepEvo for the engineering of protein
29  thermostability.
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31 Introduction

32 Engineering proteins for thermostability is crucial for broadening the application
33  of natural proteins in multiple fields such as food, feed, biocatalysis, biomedicine, and
34  biomanufacturing®. Directed evolution is the most powerful tool for improving the
35 thermostability of natural proteins, but it currently requires multiple rounds of random
36 mutagenesis and high throughput screening # *’. However, the space of possible
37  protein sequences is too large to search exhaustively in the laboratory or
38 computationally, and functional proteins within the total protein sequence space are
39 extremely scarce. As a consequence, it is very difficult to identify highly functional
40  sequences in the vast nonfunctional sequence space®™®. To overcome this, many
41 rational or semi-rational strategies**** have been developed to improve the possibility
42  of each mutant to have the desired function, as well as many high throughput
43 approaches® ’ to increase the rate of experimental screening, but there is still a lot of
44 room to improve the efficiency of these tools™ *°.

45 Recently, novel deep learning models have been developed to predict protein
46 structure’™®, EC number®, enzyme turnover®’, gene function®® %, and also the
47  thermostability of proteins®*. Studies of protein sequence design demonstrated that
48  deep learning models can learn the diversity of natural protein sequences and enables
49  the generation of functional protein variants?® %> % 2° |n addition, some general
50  protein language models, such as UniRep?’ and ESM?, can encode the enormous
51  protein sequence space into a high-dimensional representation space, in which it is
52  more feasible to establish connections between protein properties and sequence
53 variants®>®. These achievements provide us an opportunity to develop a method to
54  engineer proteins with improved thermostability by merging two deep learning
55  models from an iterative evolution perspective, whereby a generative model produces
56  abundant variants from a reasonable sequence space with the desired function, after
57  which a selective model is used to identify variants with improved thermostability.

58 In contrast to a typical directed evolution strategy based on highly labor-
59 intensive iterative mutagenesis, here we proposed a deep evolution (DeepEvo)
60 strategy to improve protein thermostability through global sequence generation and
61  selection (Figure 1). Firstly, we leveraged a successful protein language model (ESM)
62 to extract thermostability-related information from more than 190,000 protein
63  sequences across a wide range of organisms, and constructed a thermostability
64  selection model (Thermo-selector). Then, a modified generative model (Variant-
65 generator) based on ProteinGAN was constructed to generate functional sequences.
66  Finally, after iterative optimization of Variant-generator by the output of Thermo-
67 selector, we evaluated the efficiency of DeepEvo for protein thermostability
68  engineering on the model enzyme G3PDH, which is a key enzyme for glycolysis with
69  important applications in industry and medicine®* * (Figure S1).
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70 Results

71 Construction of the thermostability selection model: Ther mo-selector

72 Similar to natural selection, the DeepEvo approach utilized a thermostability
73  selection model to identify protein sequences with potential for enhanced
74 thermostability. A thermostability selection model was constructed to predict whether
75 a protein is a high temperature tolerant protein (HTTP) or low temperature tolerant
76  protein (LTTP). Considering that the total proteins of organisms that survive in high-
77  temperature environments should be HTTP, the optimal growth temperatures (OGT)
78  of the organisms were used as a label to measure the thermostability of the natural
79  protein. To obtain enough labeled data for supervised learning, the information of
80 10,190 organisms with a wide range of OGT was collected from TEMPURA¥*,
81  ExProtDB*, NCBI, and BacDive®. Then, more than 20 million corresponding genes
82 were retrieved from UniProt and UniRef gene sets. The corresponding protein
83  sequences from organisms with OGT > 50 1 or OGT < 30 1 were defined as HTTPs
84 or LTTPs, respectively (Figurel, Methods). To reduce the impact of sequence
85  similarity on the thermostability-related traits, only sequences with pairwise identity
86 less than 50% were retained. In view of the length of most enzymes used in practical
87  applications, proteins with a length > 300 and < 800 amino acids were retained. After
88 filtering based on these criteria, a total of 30,968 HTTPs and 162,890 LTTPs were
89  collected to build the selection model (Figurel, Table 1).

90 Inspired by natural language processing techniques, the ESM-1b pre-training
91  model was used to encode the training data as a 1280-dimensional vector. Using the
92 ESM embedding vectors as input, a three-layer fully connected neural network was
93  Duilt (Table 1). Using 70% of the collected data as the training set, the model was
94  optimized by cross-entropy loss. After 75 rounds of training, the loss function of the
95  model became stable (Figure S2). After the training procedure, the overall accuracy of
96 the model on the testing set comprising the remaining 30% of the data was 95.1%
97  (Figure S3), indicating that most of proteins in the testing set were correctly classified
98 into HTTPs or LTTPs. Considering the imbalance of our training set, with 84% of
99 total sequences belonging to LTTPs, we calculated the precision and recall to further
100  evaluate the performance of our model on the tested HTTPs (Supplementary
101 Methods). These measurements showed that 86.0% (precision) of all labeled HTTPs
102  were predicted as HTTPs by the model, and 78.0% (recall) of all sequences predicted
103 as HTTPs by the model were actually the labeled HTTPs in the test set (Table 1).
104  These results suggest that our model can be used as a viable filter for identifying
105  HTTPs. This thermostability selection model was named Thermo-selector.

106
107 Table 1 Summary of the thermo-selector model
Parameters
Batch sze 100
Rounds 75
Training Set Testing Set
Data HTTPs 21,772 9,246
LTTPs 113,978 48,912
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Metrics | accuracy 97.8% 95.1%
precision 97.0% for HTTPs 86.0% for HTTPs
recall 87.7% for HTTPs 78.0% for HTTPs
108
109
110  Construction of a variant generation model for G3PDH: Variant-generator
111 To more efficiently generate functional sequences in a confined sequence space

112 by DeepEvo approach, a G3PDH Variant-generator was built by revising ProteinGAN
113 with the multi-headed attention mechanism (Figure 1 and S4). This model structure
114 includes a sequence generator and a discriminator. The generator attempts to generate
115  functional sequences and the discriminator attempts to distinguish the generated
116 sequences from the natural sequences. By searching with G3PDH functional domain
117 and filtering with sequences length and identity, 15,454 natural G3PDH sequences
118  were extracted from the NCBI, KEGG, and Pfam databases to train the model
119  (Methods). At each training step, starting from a random vector, the generator
120  produced 64 sequences, which were mixed with the same number of natural G3PDH
121 sequence. The discriminator then compared the generated sequences with the natural
122 sequences, which were used to adjust the parameters of both the generator and the
123  discriminator. After 200,000 training rounds, the sequences produced by the generator
124  could not be distinguished from the natural G3PDH sequences by the discriminator
125  (Figure S5 and S6).

126 To evaluate the quality of these generated sequences, we conducted t-distributed
127  stochastic neighbor embedding (t-SNE) dimensionality reduction on the natural and
128  generated G3PDH sequences (Figure 2A, left pane). The generated sequences covered
129  a similar distribution to that of the natural sequences, and were grouped into smaller
130 clusters and interpolated within the natural sequence clusters, indicating that the
131 Variant-generator model expanded the sequence space of natural G3PDHs. To verify
132  the evolutionary properties reflected in the statistics of amino acid variation, we
133  computed Shannon entropies for each position in multiple sequence alignments of the
134  generated and natural G3PDH sequences. The positional variability of the generated
135  sequences was highly similar to that of the natural sequences (Figure S7). We also
136  evaluated the highly conserved regions related to the function of G3PDH and found
137  that the generated sequences captured these key positions faithfully (Figure 2B).

138 To further evaluate the function of the generated sequences, we sorted them
139  based on the score of the discriminator and filtered them based on the key functional
140  conserved sequence motifs (Methods). Then, 10 sequences with different similarities
141 to the natural sequences were selected as input for alphafold2 to build protein
142  structure, and 6 sequences (G1-G6) with high plddts (>90%) were selected for further
143  experimental validation. Among the 6 proteins, three (i.e., G1, G2, G3) not only
144  folded correctly in E. coli expression systems (Figure S8A), but also displayed normal
145  G3PDH activity in in vitro (Figure 2C). G2 and G3 even showed higher activities than
146  the natural G3PDH from yeast and a commercial G3PDH from rabbits. These
147  experiments proved that the Variant-generator could efficiently generate functional
148  variants from the confined enzyme sequence space.

149
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150 Development of the deep evolution process

151 Based on the good performance of Thermo-selector and Variant-generator, we
152  further implemented the DeepEvo strategy by iterating the two models to enhance
153  sampling in the G3PDH functional sequence space for variants with enhanced thermal
154  stability (Figures 1 and S4). First, 18,238 sequences were selected from the 100,000
155  generated sequences of the initial Variant-generator based on the discriminator score
156  and the functional conserved residues of G3PDH. Then, the selected sequences were
157  input into the Thermo-selector, where only 1,354 (7.4%) variants were classified as
158  HTTPs. Finally, 1,354 HTTPs were mixed with all natural HTTPs and added back to
159  the training set of the Variant-generator to refine the model. When the Variant-
160  generator stabilized again, we obtained a refined Variant-generator, which displayed a
161  better HTTP generation performance, as the proportion of HTTPs among the
162  generated sequences increased to 14.9%. Additionally, using the discriminator score
163  as metric, we observed that the sequences generated by the refined Variant-generator
164  were largely consistent with those of the initial variant-generator (Figure S6).
165  Interestingly, the t-SNE analysis of the new generated sequences yielded some bigger
166  clusters, which suggested that the generated sequences were enriched in sequence
167  spaces, similar to gene family evolution in nature, indicating that the iterative process
168  of DeepEvo might recapitulate certain unsought mechanisms of the natural evolution
169  process (Figure 2A, right pane).

170 To further evaluate the thermal stability of the sequences generated by the
171 refined Variant-generator, 30 sequences (G7-G36) were selected from 2760 newly
172 generated HTTPs for experimental validation based on the discriminator score,
173 conserved residues, similarity to the nearest natural sequences and plddts (Methods).
174  These sequences exhibited an average 61% sequence identity among themself (Figure
175  S9), and a range of identities (~70 to ~90%) to their nearest natural sequences in the
176  training set (Supplementary Table 2). The 30 selected sequences were synthesized and
177  then expressed in E. coli for protein purification. Among the 30 proteins 23 (77%)
178  were soluble and could be purified (Figures S8B-D), 17 of which (57%) showed
179  normal G3PDH catalytic activity at 30 [J in the subsequent G3PDH activity assay
180  (Figure 3A, Supplementary Table 2). We found that 11 out of the 17 proteins showed
181  detectable activity at 65 71, with 8 of them (i.e., G7, G8, G10, G11, G12, G13, G14,
182  G15) exhibiting relatively high thermostability (Figure 3A, Methods), even retaining
183  activity at 70 and 75 1 (Figure S10). Notably, the nearest natural homologs of 7
184  among the 8 proteins showed low or even no detectable activity at 65 [ (Figure 3B),
185 even one of them(N12) was from a high temperature organism, indicating that
186  DeepEvo indeed can effectively engineer natural LTTPs into HTTPs.

187
188  Deciphering the design art of deep evolution
189 In order to comprehensively understand the design art of DeepEvo, we compared

190 7 generated HTTPs with their nearest natural LTTPs, finding that the natural LTTPs
191  require the mutation of approximately 20-50 residues to become our generated HTTPs
192  (Supplementary Table 2). We observed many alanine to serine mutations, which may
193 increase the coordination of local hydrogen bonding networks. In addition, we found
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194  that a high proportion of mutations introduced charged residues, resulting in a
195  significant increase in the number of salt bridges®” in most of the verified HTTPs
196  (Figure 3D), which could strengthen the local residual interactions and may be a
197 major reason for the stability of the generated HTTPs*. The remaining mutations
198  mainly introduced the same type of amino acid (Figure S12), and generally did not
199  have particularly strong effects on the local side-chain arrangements. Structural
200  analysis showed that the mutated amino acid resides were mainly distributed on the
201  protein surface, with only a few occurring near the catalytic pocket (Figure S11).
202 Interestingly, we found that 2/3 of the point mutations formed spatial clusters or
203  mutation networks, in which mutants with at least one backbone alpha carbon atom
204  (CA) are within 8A of the CA of other mutants. Conversely, only 1/3 of the point
205 mutations were single changes (Figure 3C and Supplementary Table 3). These results
206  suggest that DeepEvo can enhance local structural interactions and compensate for the
207  deleterious effects of single point mutations through the interaction of multiple
208  mutation sites.

209 In order to scrutinize the interaction of spatial clusters, we compared the protein
210  G8 with its nearest natural sequence N8, since it showed a great increase of both
211 enzyme activity and thermal stability (Figures 3A and B). We observed a total of 34
212 residue changes and 25% more electrostatic interaction pairs in G8 than in N8 (Figure
213 3D), which may contribute the overall improved stability of G8 at high temperature
214 according to MD simulations (Figure S13). Among these mutations, approximately 65%
215 (22/34) were located in 7 spatial clusters (Figure 3E). For example, the A278E
216 mutation in cluster 1 added a new salt bridge, which could change the local position
217  of the adjacent K280. In order to keep the original salt bridge with K280, DeepEvo
218  made the additional mutation E298D (Figure 3E top). Similar to cluster 1, the
219  mutation Q291R in cluster 2 would add a pair of salt bridges, but two extra mutations
220  (E289D and V294l) occurred nearby, compensating for the effect of changed residue
221 volume (Figure 3E middle). Different from clusters 1 and 2, an enhancement in local
222 hydrophobic stacking was observed in cluster 3, in which a n-r interaction was added
223  to strengthen the interaction between the helix bundle through N25F and a nearby
224 residues, while a V23Q mutation might compensate for the increased solvent
225  exposure in the opposite direction (Figure 3E, bottom). These results indicate that the
226  algorithm did not simply increase local interactions, but also changed the surrounding
227  residues in clusters to achieve a more reasonable local structure, which is often a
228  challenge for conventional enzyme engineering ** “°. Thus, the DeepEvo strategy,
229 using the Variant-generator to consider the context of residues, may enable much
230  deeper sampling in the confined functional sequence space. This new design art,
231 which relies on the synergistic action of multiple mutant sites, may be useful in
232 overcoming local optima.
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233 Discussion

234 Here we present the novel protein engineering strategy DeepEvo based on deep
235 learning models (Figure 4). Similar to directed evolution, the iteration process is key
236 to the efficiency of the DeepEvo strategy” **'*2. When we tested the performance of
237  Thermo-selector on generated sequences without an iteration procedure, only 4 out of
238 30 generated G3PDHs exhibited activity at 65 71 (Figure S14). The iteration
239  procedure, which uses the generated HTTPs screened by the Thermo-selector to refine
240  Variant-generator, accumulates thermostable traits in a process similar to natural
241  evolution®. Our results indicated that feedback and regeneration improved the
242  proportion of experimentally tested HTTPs among the generated sequences and
243  compensated for the data limitation. Overall, 11 out of 30 G3PDHs generated by the
244 algorithm (Supplementary Table 1, G7-G36) showed activity at 65 1. In addition to
245  G3PDH, we also successfully obtained highly thermotolerant variants of malate
246  dehydrogenase (MDH) (Figure S15), which has been used for the evaluation of
247  multiple protein language models®® ?°. With the development of next-generation
248  methods* *°, more rounds of iteration and more valuable thermotolerance-related data
249  can be applied to optimize the whole DeepEvo process.

250 Billions of years of natural evolution have produced an immeasurable wealth of
251 functional proteins, which nevertheless occupy only a tiny fraction of the practically
252  endless potential protein sequence space® “°. Directed evolution, similar a boat
253  cruising around an island in a vast unexplored sea, only locally searches for beneficial
254  mutants around natural proteins by iterative mutagenesis and high throughput
255  screening®’. However, the complete landscape of functional proteins contains “cliffs”
256 and “holes” where small changes in sequence might result in complete loss of
257  function®®. By enabling us to obtain a better understanding of the whole landscape of
258  protein diversity, DeepEvo is accessible to acquire previously unexplored sections of
259  the potential sequence space. This strategy reduces the likelihood of generating non-
260 functional sequences, thereby improving the screening efficiency (Figure 4). By
261  concentrating on the relatively small functional sequence space and employing a
262  thermostable selector for feature enrichment, our method significantly boosts the
263  screening efficiency. Most of the HTTPs we generated had more than 20 mutations
264  when compared to their closest natural sequences, which would result in theoretically
265 trillion-level combinatorial libraries that make experimental or computational
266  screening challenging®. However, our method generates variants in the reduced
267  functional space constrained by a specific desirable property that circumvents the
268  issue of effectively combining single-point mutations, making it highly applicable in
269 the field of protein engineering.

270 In summary, DeepEvo employs an iteration process consisting of generation and
271 selection to effectively produce protein sequences that possess strong foldability and
272 high-temperature tolerance. In the future, it is possible to apply DeepEvo for
273 engineering other protein properties such as acid-base tolerance and antigen affinity™,
274  allowing for the generation of new proteins with diverse desired properties.
275  Furthermore, we aim to explore the integration of generative frameworks from the
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276  fields of natural language processing and image processing to enhance the sequence
277  generation results. This will further expand the potential of protein engineering
278  through our DeepEvo approach.
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281  Figure 1. Framework and data flow of Deep Evolution. Firstly, two data collection
282  procedures were constructed to collect natural sequences with desired function
283 (G3PDH as example) and sequences from different optimal growth temperatures
284  (OTG) organisms. These sequences were then used to train the Variant-generator and
285  Thermo-selector respectively; Secondly, the Thermo-selector model was trained and
286  used as a thermostable sequence filter to classify HTTP sequences (denoted as red
287  squares) and LTTP sequences (denoted as blue squares), and the Variant-generator
288 was trained to generate reasonable sequences (denoted as circles) in the confined
289  functional protein sequence space; Thirdly, the generated sequences by Variant-
290  generator were passed to the Thermo-selector, and the sequences predicted as HTTP
291  (denoted as red circles) were used to refine the Variant-generator by a data feedback
292  procedure. The generation, thermal traits filtration, feedback and regeneration
293  constructed an iteration procedure to generate suitable sequences with high
294  temperature tolerance directly; At last, we selected the generated sequences that
295  predicted as HTTP and had suitable functional conservation motif and good structural
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296  predictions to perform experimental verification.
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298  Figure 2. Evaluation of the sequences generated by Variant-generator. (A) t-SNE
299 maps of generated sequences by original Variant-generator and refined Variant-
300 generator. Sequences were classed in the 2-dimentional t-SNE space. The natural
301  sequences clusters are shown as orange circles and the generated sequences clusters
302 are shown as blue circles. The area of the circles indicates the size of the clusters. (B)
303  Sequence logos of binding pockets of natural sequences (NS), original generated
304  sequences (GS) and refined generated sequences (RGS). The conserved positions are
305 grouped in NAD+ and substrate binding. (C) The activity of G3PDHs generated by
306 the original Variant-generator at 30L.. G1, G2 and G3 represent the three generated
307  sequences, a commercial G3PDH from rabbit and the G3PDH from yeast (TDH1)
308  were used as control.
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310  Figure 3. Evaluation of the thermostable G3PDH generated through DeepEvo.
311 (A) Catalytic activities of 17 generated G3PDHSs at 30 and 6501 respectively. (B)
312 Activity ratio of eight verified HTTPs to their individual nearest natural sequence. “*’
313  refers to no activity was detected in natural sequence, and the denominator is 0 in
314  ratio value calculation. (C) Histogram of single changes and clustered changes of
315  mutations in 7 high temperature activity significantly improved variants. Clusters
316  contains different number of amino acids are shown in different color. (D) Salt bridge
317  numbers of verified HTTPs compared with the number of there corresponding natural
318  proteins. The numbers are calculated by ESBRI®'. (E) Structure model of G8 and the
319  single point mutations (red dot) compared to N8. Substrate and coenzyme are shown
320  as blue sticks. Three clusters of mutations are shown in right black boxes.
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323  Figure 4. DeepEvo in the perspective of sequence space. In the vast full sequence
324  space of proteins, the functional sequence space occupies only a small fraction.
325  Natural sequences cluster like islands in the functional space (orange circles). The
326  DeepEvo strategy can sample much deeper into the functional space using a trainable
327  generator that fills in the gaps between natural sequence islands (rad circles). For
328  particular desired properties, we can train special selectors to filter the generated
329  sequence into the desired property space and refine the generator. After iterations, the
330 sequences sampled by DeepEvo can be enriched in the desired property space,
331  improving the efficiency of obtaining proteins with desired properties.

332

333
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334 Methods

335  Collection of thermophile or ganisms

336  We collected thermophile organisms (mainly microorganism) from five sources. The
337  first source is TEMPURA which is a database of growth temperatures of usual and
338 rare prokaryotes (http://togodb.org/db/tempura). In the database, we obtained about
339 8000 organisms and their optimal growth temperatures (OGT); The second source is
340 ExProtDB, which is a database collecting extremophilic proteins and their host
341 organisms, about 300 thermophiles were collected from this database; The third
342  source was Wikipedia web search. We fetched the names of all genome sequenced
343  microorganisms from NCBI, and then searched the name in the web. If the web
344 contains some key words like ‘extremophile’, ‘thermophilc’, ‘thermophile’,
345  ‘thermophilic’, 'high temperatures', 'thermoacidophilic’ or 'polyextremophile’, we
346  check the microorganism in the web whether is a thermophile organism, and about
347 500 thermophiles were collected by this way; The last source is BacDive which
348  represents a collection of organism-linked information covering the multifarious
349 aspects of bacterial and archaeal biodiversity. We collected about 5,000
350 microorganisms in the database which includes the information of growth
351  temperatures. In totally, we collected 10,190 organisms, some of which without the
352 information of OGT were individually searched in website. Among them, we define
353 805 organisms (with OGT >=50 1), 5122 organisms (with OGT >=30 (1, <50 1) and
354 4262 organisms (with OGT < 30 L) as high temperature organisms (HTO), middle
355  temperature organisms (MTO) and low temperature organisms (LTO), respectively.
356

357  Coallection of thermophile genes

358 For the collected about 10,000 microorganisms with the information of growth
359  temperatures, we respectively fetched the corresponding genes from three
360 downloaded gene sets (i.e., UniProt reference proteomes, UniRef90 and UniRef50).
361  The fetched genes were further divided into HTO, MTO, and LTO genes. In UniProt
362  reference proteomes, we totally obtained 25,724,264 genes which include 1,393,345
363 HTO, 12,317,734 MTO and 12,013,185 LTO genes, respectively. In UniRef90, we
364  totally obtained 15,901,817 genes which include 973,655 HTO, 7,941,331 MTO and
365 6,986,831 LTO genes, respectively. In UniRef50, we totally obtained 2,199,998 genes
366  which include 165,625 HTO, 1,120,580 MTO and 913,793 LTO genes, respectively.
367  These genes were considered as training set for the construction of high temperature
368  discrimination model.

369

370  Collection of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) genes

371 To construct gene generative model, we screened and analyzed all potential G3PDHs
372  in the NCBI database. First, we predicted all potential G3PDHs by search against the
373  non-redundant database with the Pfam domain ID PF02800 (hmmscan --cpu 10 --
374  domtblout output.txt -E 1le-4 PF02800.hmm NR.fasta), 67,493 genes with the domain
375 were obtained. Second, we retrieved all G3PDHs from KEGG database
376  (https://www.genome.jp/dbget-bin/get_linkdb?-t+genes+pf:PF02800).  Third, we
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377 made a local blastp search using G3PDHs from NCBI as the query sequences, and
378 G3PDHs from KEGG as the BLAST database. After blastp search, 54,896 potential
379  G3PDHs were screened with three standards: the best hit is a glyceraldehyde 3-
380 phosphate dehydrogenase (EC:1.2.1.12, KO: K00134), the identity is more than 40,
381 and the align length is more than 200. After filtering too long and too short genes,
382 40,000 potential G3PDHs were selected to construct generative model.

383

384  Building and training the Thermo-selector

385  To identify sequences of high temperature resistant proteins, a two-part dataset was
386 compiled, consisting of 30,968 high temperature sequences (OMT >= 50) and
387 162,890 low temperature sequences (OMT < 30). These sequences are range from 300
388  to 800 amino acids length and the sequence identity between each other are no more
389  than 50%. 70% of the sequences were chosen as training set and others remained as
390 testing set. The training data was first preprocessed by encoding each sequence into a
391  1280-dimensional vector using the pre-trained ESM-1b model. These encoded vectors
392 were then used to train a three-layer multilayer perceptron with dimensions
393  1280:64:16 and a binary cross-entropy loss function. An Adam optimizer was used to
394 train the model with a learning rate 1 x 107. 75 epochs of training were performed to
395 make the loss stable. The model was evaluated using standard metrics such as
396  precision, recall, and F1 score (Supplementary Methods). The pytorch framework was
397  used for building this model.

398

399  Building and training the Variant-generator

400  To build the Variant-generator, we filtered the collected G3PDH sequences with the
401  length > 300 and < 800 amino acids. A total of 15,454 sequences were used for
402  training and testing. We randomly split these sequences in the ratio of 9:1 as the
403  training set and test set respectively. The GAN architecture to generate G3PDH
404  sequences was based on the ProteinGAN model. The discriminator and generator
405  networks were built by ResNet blocks which contained three convolution layers with
406  rectified linear unit activations and a transformer block with muti-head attention
407  mechanism. A random vector of 128 values was used as the input to the generator, and
408  the output matrix dimensions were 512 x 21, which was correspond to the one-hot
409  encoded sequence of length 512 with a 21 words vocabulary (20 amino acids and a
410  sign for gaps at the beginning or ending of the sequence). The matrix with the same
411 dimensions as the output of the generator is used as input to the discriminator. In the
412 training process, the generator generated 64 sequences as a batch, and these generated
413  sequences were mixed with 64 natural G3PDH sequences sampled in the training set
414 based on the sampling weights described above, and then they were passed to the
415  discriminator for discrimination. A non-saturating loss with R1 regularization was
416  used as loss function in this model, and we selected the Adam algorithm for
417 optimizing the networks. The learning rate was gradually decreased from 1 x 103 to 5
418  x 10™°. The model was trained for 200,000 steps, which took about 12 hours on a
419  Nvidia GTX2080Ti system.

420
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421 Analysis of generated sequences

422 A distance matrix of cluster representatives was used as the t-SNE input. To obtain
423  cluster representatives, the numbers of sequences in both datasets were first equalized
424 by taking 10000 sequences from natural and generated datasets. These sequences
425  were independently clustered using MMseqgs2 with 80% minimal sequence identity.
426  Representative sequences of these clusters were chosen based on the MMseqs2 output.
427  From the representative sequences, a distance matrix was generated using Clustal
428  Omega. The distance matrix was used with the scikit-learn t-SNE module with default
429  settings, except that the embedding generation perplexity was set to 7. Coordinates
430 given by t-SNE were used for plotting and the size of a given dot was visualized
431  based on the cluster size it represents.

432

433  Select generated sequences for experimental test

434  To filter out representative sequences for experimental testing, we first used the
435 discriminator of the GAN-based Variant-generator. After ranking the generated
436  sequences by this score, the top 20% that were strongly discriminated as natural-like
437  sequences were kept. We then used a crystallized G3PDH (PDBID: 3KV3) as a
438  template, extracted the NAD and G3P binding positions (residue numbers 12, 13, 35,
439 78, 316 for NAD binding, 151, 152, 181, 183, 234 for G3P binding), and constructed
440  a functional motif. We then aligned the generated sequences to the template, and if
441 there was no gap in the functional motif region, the sequences were retained. We then
442  calculated the identities of the generated sequences and the natural sequences with
443  blastp. Tens of sequences were selected with different levels of variation (60%-90%
444  for the original Variant-generator and 80%-90% for the refined Variant-generator).
445  The selected sequences were then structurally modeled with Alphafold2, keeping
446  those with plddt >90%.

447

448  Expression and purification of Proteins

449  Protein coding DNA sequences mentioned in this study were all synthesized, cloned
450 into pET28a expression vector between Ndel and Xhol then sequence-verified by
451  Zhong He Gene Co.Ltd (Tianjin). The constructs were transformed into BL21 (DE3)
452  or Arctic Express (DE3) E. cali. Cells were seeded in 2YT medium (kanamycin, 50
453  ug/mL) at a ratio of 1:160 and grown at 37 °C, 220rpm. After ODggo Of cells were
454  reaching 0.4~0.6, IPTG was added to a final concentration of 0.5 mM IPTG to
455  induce expression. Strain cells were cultured at 16 °C, 220 rpm overnight then
456  harvested by centrifugation. Cells were resuspended in lysis buffer (50mM Tris-HCL,
457  pH6.8) and lysed by using a high-pressure homogenizer at 1200~1500 bar, for 2-3
458  times. Cell debris was discarded by centrifugation at 10,000L/x g for 40_Imin. The
459  Ni-NTA agarose column was balanced with ddH,O and lysis buffer for 2 column
460  volume. The supernatant was applied to the column then proteins were eluted using a
461  gradient of elution buffer (50mM Tris-HCL with 10mM, 50mM 200mM imidazole).
462  The fractions were then collected and analyzed by SDS-PAGE. Purified proteins were
463  concentrated by centrifugation (4,000g, 300Jmin) in 100kDa ultrafiltration tubes
464  (Centriplus YM series, Millipore) and flash frozen in liquid nitrogen then stored at -
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465 80 °C.

466

467  G3PDH activity and thermal stability assay

468 The assay for G3PDH activity was carried out according to the method originally
469  described by Ferdinand®® with minor modifications. Briefly, the activity can be
470  monitored by measuring the formation of NADH. Triplicate samples of purified
471 proteins were mixed with 10mM NAD in 993uL Reaction (40mM triethanolamine, 50
472 mM NaHPO4, 5 mM EDTA, 0.1 mM DTT, pH8.6) separately. 7 ul DL-G3PDH
473  solution(sigma) were added into systems, then determining the Ass immediately. The
474  reaction systems were incubated at 30 °C for 10 min and determining the Agsso again.

475  The activity of G3PDHs were calculated with the formula Units/mg/min = 2Asz4 X

476  VT(Volume of tube)/(6.22 x Concentration(mg) x Time(s)). For the thermal stability
477  assay, 100 ul reaction systems were developed in 96 well plate. The plates were
478  incubated at designed temperature in a thermostable microplate reader with persistent
479  reading of Ay for 30 min.

480

481
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