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Abstract: 21 
Many sensory systems have evolved to optimally combine signals from multiple sensory 22 
modalities to improve perception. While theories have been proposed to explain how this process 23 
is accomplished through probabilistic inference using large neural populations in vertebrates, 24 
how animals with dramatically smaller nervous systems such as the Drosophila melanogaster 25 
larva achieve multisensory combination remains elusive. Here, we systematically characterize 26 
larval navigation in different configurations of odor and temperature gradients with 27 
optogenetically-controlled noise. Using a data-driven agent-based model, we find that larvae 28 
adapt to the reliability of individual sensory signals, and in some cases minimize the variance of 29 
the combined signal. Besides firmly establishing that probabilistic inference directs natural 30 
orientation behaviors in the Drosophila larva, our results indicate that the exact mechanism 31 
underlying the combination of sensory information may be modality-dependent. By underscoring 32 
that probabilistic inference is inherent to insect nervous systems, our work opens the way for 33 
studying its neural implementation.  34 
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 2 

Introduction 35 
 36 

When confronted with an ever-changing and often perilous environment, how an organism 37 
behaves in response to uncertain and incomplete sensory information can be a matter of life and 38 
death. Besides the need to assess individual sensory signals accurately, sensory systems must 39 
also be able to integrate signals from multiple sensory modalities (e.g. visual, auditory, haptic), 40 
some of which may produce conflicting information. This task of “multisensory cue 41 
combination” has therefore been the focus of many studies, particularly in psychophysics, to 42 
characterize its implementation in different organisms and to evaluate whether these solutions 43 
are optimal from a probabilistic point of view (Knill & Pouget, 2004). 44 

One mechanism adopted by organisms to integrate noisy (fluctuating) information arising 45 
from different sensory modalities is to prioritize signals based on their relative uncertainty 46 
(variance) by using a principle of Bayesian inference. This strategy has the advantages of 47 
allowing adaptation to sudden changes in the environment, permitting the filtering of irrelevant 48 
information (noise), and improving the signal-to-noise ratio of the combined signal. In humans, 49 
for example, the visual-haptic estimation of the height of an object is close to optimal and closely 50 
matches the Bayesian estimate (Ernst & Banks, 2002). Similar results have also been observed 51 
for other tasks in humans (Hillis et al., 2004), as well as in primates (Gu et al., 2008). To a lesser 52 
extent, recent evidence indicates that insect brains may also be capable of implementing similar 53 
strategies of cue combination, for example in the integration of directional information in ants 54 
(Sun et al., 2020; Wystrach et al., 2015). In addition, the neural integration of multisensory cues 55 
has been studied in the adult Drosophila and it has been shown that flies are able to dynamically 56 
adjust their response to conflicts between visual, olfactory and airflow cues (Currier et al., 2020). 57 

Although the neural implementation of cue combination is not well-understood, various 58 
theories speculate about how neural ensembles can implement probabilistic inference (Jordan et 59 
al., 2021; Ma et al., 2006). While certain theories require neuronal populations to encode 60 
probabilities and information about signal variance (Ma et al., 2006), others suggest the 61 
possibility of encoding variability through synaptic plasticity in single neurons (Jordan et al., 62 
2021). Further characterizing multisensory cue combination in a comparatively simple model 63 
organism like the Drosophila larva is advantageous, not only to reveal how strategies evolve 64 
through development, but also to delineate the minimal complexity required to mechanistically 65 
implement strategies of multisensory-cue combination (Berck et al., 2016). 66 

While it has yet to be shown how the Drosophila larva implements cue combination in 67 
natural conditions, previous studies have examined how turns are triggered in the Drosophila 68 
larva in response to the combination of aversive light input and attractive virtual odor input 69 
(Gepner et al., 2015, 2018). In the first study, a computational model that describes the basic 70 
transformation of sensory input into turning decisions was built to investigate the sequence of 71 
mathematical operations combining multi-modal inputs (Gepner et al., 2015). In subsequent 72 
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work, a modified version of the same model was used to establish that signals triggering turns 73 
adapt to the variance of the individual multi-modal sensory inputs (Gepner et al., 2018). In the 74 
present work, we investigate whether this form of variance adaptation fits into traditional cue 75 
combination models as observed in other animals and dissect how the mechanism underlying the 76 
combination of multi-modal inputs contributes to the overall navigational strategy of the larva. 77 
Specifically, we investigate how the Drosophila larva responds to gradients of two independent 78 
odors, as well as the combination of an odor and a temperature gradient. While chemotaxis and 79 
thermotaxis have been studied extensively in the larva (Klein et al., 2015; Louis, 2020; Luo et 80 
al., 2010), little is known about how unimodal navigational mechanisms contribute to navigation 81 
in unison. 82 

Experimentally, we investigate combinations of thermotactic and olfactory (real and 83 
virtual) stimuli in scenarios where cues are directionally similar (congruent) or in opposing 84 
(conflicting) directions. Furthermore, we test conditions where noise is added optogenetically to 85 
the peripheral olfactory system to study how the combination of multisensory cues adapts to 86 
changes in the variance of individual sensory inputs. To capture the precise reorientation 87 
mechanisms and navigational behavior of larvae in these scenarios, we built a data-driven agent-88 
based model inspired by Wystrach et al. (2016) that represents both turn rate and turning 89 
direction, and models how different sensory inputs are processed and transformed into 90 
behavioral outputs. Using this agent-based framework, we tested and simulated different 91 
experimental paradigms to narrow down the set of plausible mechanisms for multisensory cue 92 
combination in the Drosophila larva through a process of elimination. With this approach, we 93 
explore computationally how larvae use signal variance to weigh and combine unreliable sensory 94 
information from multiple modalities. Using our agent-based model, we conduct a perturbative 95 
analysis to characterize the modulatory impact of cue combination on individual aspects of the 96 
control of locomotion underlying sensory navigation. 97 

Motivated by a need to go beyond cue-combination models that specifically estimate the 98 
properties of a single object (e.g., the width of a bar, (Ernst & Banks, 2002)), we explore 99 
different notions of optimality related to sensory navigation in response to realistic 100 
configurations of multimodal gradients. Through a generalized formalism of cue-combination 101 
strategies, we define a bimodal contrast coefficient that represents the degree to which signal 102 
variance is prioritized over the value (reward) of individual signals in the combination of 103 
multimodal sensory inputs. In addition to the observation that larvae are near-optimal in both 104 
formalisms, we find that their cue-combination strategy can adapt depending on the nature of the 105 
sensory information available to the animal. 106 

 107 

  108 
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Results 109 
 110 
An experimental assay to quantify multisensory combination in the larva 111 

A behavioral assay was developed to study larval navigation in spatial gradients of temperature, 112 
a real odor, and a virtual odor induced optogenetically by expressing Chrimson in genetically-113 
targeted olfactory sensory neurons (OSNs). Red light elicited virtual-odor stimulations in the 114 
Or67b-expressing OSN which is not activated by ethyl butyrate (Kreher et al., 2008; Si et al., 115 
2019)., the real odor used in this study. As a result, the real and virtual odor activated a distinct 116 
and independent set of OSNs. In each experiment, larvae at the third developmental instar were 117 
uniformly distributed in groups of 10 individuals near the center of a circular behavioral arena 118 
coated with agarose (Figure 1A). The motion of the group of larvae was video-monitored during 119 
exposure to single or combined sensory gradients. The trajectories of larvae in the arena were 120 
then extracted using a custom image processing and tracking software. Larvae were analyzed 121 
individually as, given the low density of animals, group effects were found to be negligible in the 122 
context of these gradients (see ‘Materials and methods’). 123 

In conditions where single gradients were presented, which we will refer to as unimodal 124 
conditions, larvae navigate unimodal odor, virtual-odor, and temperature gradients by locating 125 
the “source”: the region associated with the highest concentration of the attractive odor or the 126 
most comfortable temperature in the arena. When placed near the center of the arena, larvae 127 
innately navigated to the location of highest odor concentration, highest virtual-odor intensity, or 128 
the location with the most preferred temperature, which was slightly higher than 16oC in our 129 
experimental conditions (Figure 1B). In the range of temperatures used in the present work, 130 
larvae demonstrated robust thermotaxis down temperature gradients toward the coolest region of 131 
the arena. 132 

In situations where two gradients are presented at the same time, which we will refer to 133 
as bimodal conditions, we initially arranged the gradients in congruent configurations such that 134 
both sources were on the same side of the arena with colinear gradients. At the start of the 135 
experiment, larvae were placed near the center of the arena and over time distributed in a way 136 
similar to the unimodal conditions. Notably, larvae in bimodal conditions demonstrated 137 
improved performance in navigating towards the congruent sources compared to the unimodal 138 
conditions. For example, the attraction towards the source increased upon combination of an 139 
odor and a temperature gradient (Figure 1C). This result is quantified by the preference index, 140 
which is the fraction of larvae on the targeted side of the arena (i.e. odor source or preferred 141 
temperature) as a function of time:  142 

 143 
 

𝑃𝐼(𝑡) = 	
𝑁!"#(𝑡)

𝑁!"#(𝑡) + 𝑁$%!"#(𝑡)
 (1) 

 144 
Sluggish  larvae displaying an average speed lower than 0.1 mm/s are excluded from the 145 
preference index calculation to avoid counting inactive outliers sitting near the starting location. 146 
For convenience of notation, we omit the time variable 𝑡 and simply refer to the preference index 147 
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as the 𝑃𝐼 in the rest of the text. We observed a similar improvement in preference index across 148 
all other experimental paradigms with congruent gradients of two distinct odors, a real odor and 149 
a virtual odor, as well as a virtual odor and temperature (Figure S1, S2). 150 
 151 

 152 

Figure 1. Assay to identify how larvae navigate unimodal (single) and bimodal (combined) 153 
gradients. (A) Schematic of the behavioral assay, which features gradients of real odor, 154 
optogenetically-induced virtual odor, and temperature. (B) Representative trajectories of third-155 
instar wild-type (w1118) larvae responding to the combination of an odor and a temperature 156 
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 6 

gradient over a period of 3 minutes. (C) Behavioral response of wild-type larvae to the individual 157 
odor and temperature gradients and both odor and temperature combined (Odor: Ethyl butyrate, 158 
10-3 M; Temperature range: 16-30oC). Larvae were tested in groups of 10 individuals (Odor: n = 159 
27 groups of 10 larvae; Temperature: n = 35; Combined: n = 27). In all subsequent figures, the 160 
shaded regions around the preference index curves represent the error bars of the SEM. The 161 
asterisks indicate that the preference index of the combined condition was significantly higher 162 
than the preference indices of either unimodal condition (after the first minute of the experiment), 163 
as assessed using a t-test (p < 0.025 upon Bonferroni correction). Also illustrated are the 164 
overlayed spatial distributions of larvae for each condition at 60, 120, and 180 s (top), and the 165 
spatial distributions for each individual condition at 180 s (right). 166 

 167 

A coarse-grained model suggests that larvae account for cue uncertainty when 168 
combining multimodal cues  169 

To characterize how heightened attraction emerges from the combination of olfactory and 170 
thermosensory cues in congruent gradients, we started by developing a parameter-free theoretical 171 
model using the principle of Bayesian inference to estimate the probability distribution of the 172 
positions of individual larvae in the arena (see section Parameter-Free Model in Supplementary 173 
methods). The model predicts that the weighting of the information from different gradients is 174 
dependent on the uncertainty associated with each gradient. As described in the Supplementary 175 
methods, this coarse-grained model estimates the PI of the response to the combined-gradient 176 
condition based on the PI of the corresponding unimodal conditions 𝑃𝐼&	and 𝑃𝐼': 177 

 𝑃𝐼&(',*%+#,	 =
./!	×	./"

./!	×	./"((&	2./!)	×	(&2./")
	. (2) 

 178 

As shown in Figure 2B, we found that the parameter-free model reproduces the behavioral 179 
improvement observed in the experimental preference index for the congruent temperature and 180 
odor gradient presented in  181 

Figure 1C. In addition, we applied the parameter-free model to predict the behavior of larvae 182 
tested in congruent gradients featuring two real odors (Figure 2A), a real and a virtual odor, a 183 
real odor and temperature, or a virtual odor and temperature (Figure S3). In all four experimental 184 
conditions, the results of the model were in excellent qualitative agreement with the behavior 185 
elicited by congruent bimodal gradients, suggesting that real larvae use probabilistic inference to 186 
combine sensory information.  187 

 188 

Building an agent-based model to characterize how the combination of 189 
sensory cues directs navigation 190 

To analyze the plausibility of different mechanisms of sensory combination and dissect the 191 
control of individual reorientation maneuvers, we developed an agent-based model that offers a 192 
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 7 

more realistic description of larval navigation in response to both unimodal and bimodal 193 
conditions (Figure 3A). The starting point of our agent-based model is an existing mechanical 194 
model of chemotaxis in the Drosophila larva (Wystrach et al., 2016), which provides a general 195 
framework for describing orientation (“taxis”) behavior elicited by unimodal stimuli. Based on 196 
evidence that larvae display continuous lateral oscillations of the anterior body segment during 197 
peristalsis, the agent-based model established that a direct sensory modulation of the oscillation 198 
amplitude of head-casts could reproduce many signatures of chemotaxis observed in larvae. 199 

 200 
Figure 2. Comparison of experimentally-observed combined preference indices with a coarse-201 
grained parameter-free model for different configurations of congruent gradients. In both 202 
configurations, no significant difference exists between the final (180s) preference indices of the 203 
experimental data and the parameter-free model (t-test, p > 0.05). For the full comparison of all 204 
congruent gradients tested, see Figure S3. (A) Odor + odor (odor 1: 1-hexanol, 10-2 M, n = 20; 205 
odor 2: Ethyl butyrate, 10-3 M, n = 26; Combined: n = 19). (B) Temperature + odor, as outlined in 206 
Figure 1C. 207 

 208 

As detailed in the Agent-based Model section of the Supplemental methods, we adapted 209 
the model of Wystrach et al. (2016) based on the quantification of our behavioral data to account 210 
for a multimodal setting by capturing more closely how different sensory gradients are perceived 211 
by the larva, and then by modelling how graded information from two different sensory 212 
modalities are combined to drive reorientation maneuvers. In our expanded agent-based model, 213 
Drosophila larvae alternate between straight runs and directed turns. The alternation between 214 
these two behaviors is modulated by the detection of temporal increases or decreases in sensory 215 
input. Active sensing is achieved primarily through lateral movements of the head, which 216 
assesses the local environment to reorient toward the direction of the gradient. To achieve a 217 
realistic representation of the sensorimotor control of larval navigation, we incorporated 218 
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 8 

behavioral mechanisms to describe both how larvae determine when to initiate a turn and where 219 
to turn to. 220 

In the model developed here (Figure S4A), the larva is represented as a single segment 221 
from its midpoint to its head — the body segment from the tail to the midpoint is assumed to 222 
passively follow the head segment, which is reasonable in first approximation. The agent-based 223 
larva may be in one of the following two states: running, where the larva moves at a fixed speed 224 
in the direction of its head segment while making small adjustments to its heading, and stopping, 225 
where the body segment is stationary but the body segment is free to rotate around the midpoint. 226 
The behavioral state of the agent-based larva is updated in discrete time steps. At each time step, 227 
the head segment alternates between rotations on the left and the right side of the body axis to 228 
mimic the active sampling of sensory conditions surrounding the head. At any given timestep 𝑛, 229 
the larva perceives the sensory input 𝐶$ given by the intensity of the stimulus detected at the tip 230 
of the head segment where the olfactory organs are located. 231 

In each experimental paradigm, we simulated the behavior elicited by combinations of 232 
real-odor gradients with static virtual-odor gradients or static temperature gradients (Figure 3B). 233 
While the profiles of the virtual-odor gradients created with a LED and temperature gradients 234 
created with a Peltier element were stationary, the real-odor gradients were created by placing an 235 
odor droplet on the side of the source. To simulate the dynamics of the odor gradient during the 236 
course of an experiment, we used a biophysical model for the odor diffusion introduced in 237 
previous work (Schulze et al., 2015) (see Sensory Stimulus section of the Supplemental methods 238 
and Supplementary Video 2).  239 

For each sensory modality presented to the larva, we hypothesized that the resulting 240 
percept —the internal representation of the odor— is proportional to relative changes in stimulus 241 
strength (Adler & Alon, 2017). More specifically, the model assumes that the perceptual 242 
response to the real-odor, virtual-odor, and temperature gradients will be of the form 𝑓(Δ𝐶/𝐶̅), 243 
where 𝐶̅ is the background signal level and Δ𝐶 is the signal difference (Figure 3C). This sensory 244 
property is equivalent to Weber law, which has been established in the peripheral olfactory 245 
system of the adult fly (Cao et al., 2016; Gorur-Shandilya et al., 2017; Kadakia & Emonet, 246 
2019). We assume that the larval olfactory system detects relative changes in odor concentration, 247 
which is supported by the response properties of larval OSNs (Gomez-Marin & Louis, 2012; 248 
Schulze et al., 2015) and the apparent concentration-invariance of reorientation maneuvers 249 
(Gomez-Marin & Louis, 2012). For temperature, we make the assumption in our agent-based 250 
model that the larva perceives relative changes zeroed at the maximum temperature of the 251 
behavioral assay (i.e. 𝐶 ←	𝑇456 − 𝐶). This results in a perceptual response that increases as 252 
larvae move away in a temperature gradient from preferred temperatures. Although the 253 
sensitivity of the thermosensory system to relative changes has not been explicitly demonstrated, 254 
there is evidence that the magnitude of the behavioral response scales with the difference in 255 
temperature relative to the deviation from preferred background temperatures (Hernandez-Nunez 256 
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 9 

et al., 2021; Klein et al., 2015). In our simulations, we computed the relative change in stimulus 257 
between two consecutive timesteps 𝑛 − 1	 and 𝑛 as the following variable: 258 

 𝑠$ 	=
78
8̅
= 8#28#$!

8̅
	. (3) 

   
The background signal level 𝐶̅ is computed as the midpoint between two timesteps, 𝐶̅	= 8#(8#$!

'
.  259 

At every time step of the stimulations, the information collected by the two different sensory 260 
modalities 𝑠& and 𝑠' is combined in a decision variable 𝑑 by using the linear model: 261 

 𝑑 = 𝑤&	𝑠& +𝑤'	𝑠', 
 

(4) 

where 𝑤& and 𝑤' are weights associated with each cue. Using the model, we examine the three 262 
most common weighting strategies, each representing a qualitatively different approach to cue 263 
combination: 264 

1. Fixed Weights (FW): 265 

 𝑤& 	= 	𝑎 , 𝑤' 	= 	1 − 𝑎 (5) 

2. Shut Weights (SW):  266 

 
𝑤& 	= 91 𝑖𝑓	𝜎&' 	< 	𝜎''

0 𝑖𝑓	𝜎&' ≥	𝜎''
, 𝑤' 	= 90 𝑖𝑓	𝜎&' 	< 	𝜎''

1 𝑖𝑓	𝜎&' ≥	𝜎''
  (6) 

 267 

3. Variance Minimization (VM):  268 

 
𝑤& 	=

𝜎''

𝜎&' + 𝜎''
, 𝑤' 	=

𝜎&'

𝜎&' + 𝜎''
	 (7) 

    269 

The Fixed-Weights (FW) strategy (Negen et al., 2019) proposes that larvae combine cues with 270 
fixed preferences that are independent of the signal variances 𝜎&' and 𝜎''. The latter two 271 
strategies imply that larvae are also able to adapt their response according to the estimated 272 
variance of the sensory inputs accumulated over a time window (for numerical implementation, 273 
see Supplementary methods), as established in a previous study (Gepner et al., 2018). Being 274 
sensitive to the reliability of sensory inputs is a hallmark of probabilistic inference, a powerful 275 
form of computation when dealing with inputs subject to sensory uncertainty. The Shut-Weights 276 
(SW) also known as Winner-Take-All strategy (Bresciani et al., 2006; Welch & Warren, 1980) 277 
assumes that larvae place absolute priority on the cue that is observed to be more reliable and 278 
suppresses the weakest one. The Variance-Minimization (VM) strategy is a linear combination 279 
rule that minimizes the variance of the combined signal (Ernst & Banks, 2002). By considering 280 
the validity of these three cue-combination strategies for different sensory modalities, we can 281 
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 10 

examine whether variance adaptation is present, and then test the degree to which variance 282 
modulates cue combination of multimodal signals. 283 

Finally, the transition rates between the two states, running 𝑝:"$ and stopping 𝑝;<%=, 284 
(“when to stop”) and the amplitude of head casts 𝛿> (“where to turn to”) are described as 285 
functions of the decision variable 𝑑 using a generalized linear model (Figure 3E, see 286 
supplemental methods). The transition probabilities between states and the amplitude of 287 
orientation maneuvers are modulated adaptively based on whether the perceived stimulus is 288 
attractive (𝑑 > 0) or aversive (𝑑 < 0). The direction of head casts alternates at every time step as 289 
proposed in Wystrach et al. (2016). 290 

 291 
Figure 3. Outline of agent-based model for Drosophila larval navigation and set of plausible cue-292 
combination models. (A) The different stages of the agent-based model are represented in a 293 
flowchart from sensory input to behavioral output. The illustration depicts the sensory experience 294 
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 11 

during a left head cast in an odor and a temperature gradient. (B) Gradients presented in each 295 
experimental paradigm can be congruent (co-linear) or conflicting (90-degree angle). (C) Sensory 296 
inputs are processed individually with the assumption that the resulting perceptual cue is 297 
proportional to relative changes in stimulus strength. (D) The perceptual cues from each sensory 298 
modality are combined as a weighted linear combination, with weights dependent on the cue 299 
combination rule. (E) The decision variable determines the amplitude of head casts 𝛿! (“where to 300 
turn to”) and the probability of mode transitions 𝑝"#$, 𝑝%&'( (“when to stop”) of the agent larva. 301 

 302 

Application of the agent-based model to explore how sensorimotor integration 303 
is implemented in the Drosophila larva 304 

The motor parameters of the agent-based model were first optimized to match the behavior of 305 
freely foraging larvae. Motor parameters were fit to model the movement patterns of wild-type 306 
(w1118) larvae in the absence of any stimulus recorded at high spatio-temporal resolution with the 307 
closed-loop tracker from (Schulze et al., 2015) and are assumed to be constants across all 308 
experimental conditions. The constants derived from the parameter optimization to model larval 309 
motion in the simulations are listed in Table 1 in the Supplementary methods. 310 

The free parameters of the model associated with the multisensory stimuli from each 311 
condition (noise, sensitivity) were fit by minimizing the Kullback-Leibler (KL) divergence 312 
measured between the spatial distributions and preference indices of simulated and actual larvae. 313 
This was achieved by comparing the simulations to actual experimental probability distributions 314 
of larvae at different time intervals. We fit the free parameters using the datasets from unimodal 315 
conditions (Figure 4A-D). As part of this procedure, the variance associated with each signal was 316 
computed using the time course of the stimulus experienced by the agent larva (see 317 
Supplementary methods). We then tested each variant of the agent-based model using the three 318 
most-common cue-combination rules (Figure 3D) in the combined condition (Figure 4E-F). 319 
Based on a process of elimination, we observed that certain cue-combination rules matched the 320 
data in some gradient configurations but not others. For example, Figure 4E shows a condition 321 
where the experimental PI can be accounted for by the VM rule, but not the FW and SW rules. 322 
Additional details about how the models were constrained to capture the behavior of real larvae 323 
are provided in Supplementary methods together with Figure S4 and S5. 324 

We experimentally tested different combinations and configurations of multimodal 325 
gradients, including congruent gradients that point in the same direction and conflicting gradients 326 
that point in different directions. The KL divergence was used to quantify the degree of 327 
similarity between the spatiotemporal distribution of simulated larvae with that of real larvae. By 328 
testing paradigms with a variety of gradient geometries, we concluded that the Fixed-Weights 329 
model fails to predict behavior in conflicting gradients, such as a conflict between a virtual-odor 330 
and a real-odor gradient, (Figure 5A). The Shut-Weights (SW) model underperforms the 331 
Variance-Minimization (VM) model in congruent gradients as illustrated with the congruent 332 
temperature and real-odor gradient shown in Figure 5B. By comparing the performances on all 333 
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six experimental paradigms, the VM model gave the most consistent predictions of the three 334 
candidate solutions (Figure 5C, bottom panel), even though it did not produce the best fit for all 335 
conditions. 336 

 337 

Figure 4. Framework for parameter optimization and testing of the agent-based model for larval 338 
navigation. (A) Sample simulations for the unimodal odor condition (Odor: Ethyl butyrate, 10-3 M) 339 
after the free parameters associated with each condition were fit (n = 27). The preference index 340 
of simulated larvae was similar to the actual preference indices of wild-type larvae for the entire 341 
simulated odor condition (t-test, p > 0.05). The color bar above the plot indicates the significance 342 
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of differences between the preference indices of the data and a given fit model. (B) The 343 
histograms at 60s, 120s and 180s illustrate the spatial distributions of simulated agent larvae and 344 
real larvae (gray) for the unimodal odor condition. (C) Sample simulations for the unimodal 345 
temperature condition (Temperature: 16-30oC) after the free parameters associated with each 346 
condition were fit (n = 35). The preference index of simulated larvae was similar to the actual 347 
preference indices of wild-type larvae for over 80% of the duration of the simulated temperature 348 
condition (t-test, p > 0.05). The color bar above the plot indicates the significance of differences 349 
between the preference indices of the data and a given model. (D) The histograms of the spatial 350 
distributions of simulated agent larvae (colored) and real larvae (gray) for the unimodal 351 
temperature condition. (E) Predicted behavioral response of larvae to the combined odor and 352 
temperature conditions for each cue-combination rule compared to the actual preference index 353 
(n = 27). The preference indices of the simulated Variance-Minimization (VM) and Fixed-Weights 354 
(FW) strategies were indistinguishable with the data for over 90% of the entire time course (t-test, 355 
p > 0.05), while the Shut-Weights (SW) strategy remained significantly different from the data 356 
after the first minute of the simulation (t-test, p > 0.05). The color bars above the plot indicate the 357 
significant difference between the preference indices of the data and each model. (F) Histograms 358 
of the spatial distributions of simulated agent larvae (colored) and real larvae (gray) for the 359 
combined odor and temperature condition. 360 

 361 

Since the VM model combines information with cues that are weighted according to their 362 
relative level of reliability (eq. (7)), this scenario suggests that larvae are capable of measuring 363 
and processing the variance of their sensory inputs. To test this hypothesis, we experimentally 364 
modulated the variability associated with the olfactory cue by optogenetically corrupting sensory 365 
encoding in the olfactory sensory neuron (OSN) expressing the Or42a odorant receptor, which is 366 
tuned to the fruity odor ethyl butyrate (Asahina et al., 2009; Kreher et al., 2008). As described in 367 
the Materials and methods, the additive noise consisted in brief random flashes of light inducing 368 
the transient depolarization of the Or42a OSN expressing Chrimson, while the OSN was 369 
responding to the real-odor gradient. As expected, we observed that the chemotaxis of real larvae 370 
was weakened when olfactory noise was added to the odor gradient. More surprisingly, we found 371 
that thermotaxis improved as quantified by the PI when olfactory noise was added to the 372 
detection of a temperature gradient in the absence of any odor gradient (Figure 6A). This 373 
seemingly counterintuitive improvement in thermotactic performance illustrates that the weight 374 
of each cue is defined by its relative level of reliability: as the noise level increases in the 375 
olfactory channel, the reliability of the encoding of genuine dynamic changes due to the odor 376 
gradient decreases. In eq. (7), we observe that an increase in	𝜎&	produces an increase in 𝑤' 377 
irrespective of the presence of any directional signal 𝑠&. Therefore, the injection of pure noise 378 
into the olfactory system decreases the weight of this modality and enhances the salience of the 379 
thermosensory information. 380 

 381 
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 382 

Figure 5. Comparison of the model performances for three cue-combination rules across different 383 
experimental paradigms. (A) Final distributions of larvae for each simulated cue-combination rule 384 
in a conflicting virtual-odor and real-odor gradient (Virtual Odor: Or67b>Chrimson, Light 625nm; 385 
Real Odor: Ethyl butyrate, 7.5 x 10-5M) in comparison to actual Or67b-functional larvae (n = 20). 386 
The FW strategy led to the poorest fit and was significantly different from both the SW and VM 387 
strategies (t-test, p < 0.05). (B) Final distributions of larvae for each cue combination rule in a 388 
congruent temperature and odor gradient (Temperature: 20-40oC; Odor: Ethyl butyrate, 10-3M) in 389 
comparison to actual Or42a single functional larvae (n = 30). The SW strategy gave the least 390 
accurate predictions and was significantly different from both the FW and VM strategies (t-test, p 391 
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< 0.05). (C) Comparison of the goodness of fit, as measured by the KL divergence, for cue-392 
combination rules across all experimental paradigms (1-6). The predictions of the VM strategy 393 
produced the closest goodness of fit on average to the data (overall), and the VM strategy was 394 
significantly different to the FW and SW strategies (t-test, p < 0.05). Asterisks indicate significant 395 
differences between each model to the best fitting model for each experimental paradigm. 396 

To simulate the effects of the olfactory noise on the thermotaxis of agent-based larvae, 397 
random disturbances in the activity of the Or42a OSN were modeled by the addition of an 398 
internal Gaussian noise term to the olfactory signal (see Supplementary methods). In this 399 
framework, numerical simulations established that only the VM model was able to qualitatively 400 
capture an improvement in thermotactic performances upon injection of pure noise to the 401 
olfactory channel (Figure 6B-C). This result strongly supports our hypothesis that the Drosophila 402 
larva uses an uncertainty-weighted mechanism to integrate multimodal stimuli. 403 

Two alternative strategies to navigate multimodal gradients optimally 404 

Next, we asked whether the larval nervous system might have evolved to optimize other 405 
objectives besides the reliability of each sensory signal to navigate multimodal gradients, and 406 
how other strategies might compare to the VM rule (Figure 7). More specifically, we examined 407 
whether the exact cue-combination strategy used by larvae is dependent on the nature of the 408 
sensory modalities that are combined. Figure 7B illustrates how the VM rule combines a noisy 409 
olfactory cue (blue, broader distribution) with mean 𝑠' and a less noisy temperature cue (red, 410 
narrower distribution) with mean 𝑠& into the decision variable 𝑑. As a result of eq. (7), the 411 
temperature cue has a higher weight than the olfactory cue since 𝜎& < 𝜎'. 412 

An alternative objective that a larva could plausibly maximize during navigation is 413 
reward. More concretely, we define reward as the probability that motion is directed toward a 414 
direction favorable to the encounter of food (motion oriented up an odor gradient) or away from 415 
the punishment of potentially noxious heat (motion down a temperature gradient). This strategy, 416 
which we call Reward Maximization (RM), is illustrated in Figure 7A with the same two cues 417 
configuration presented in Figure 7B. For each of the two cues, the probability that the gradient 418 
is positive is equal to the cumulative probability that the cue is greater than zero. Given that the 419 
experiments are set up by design for each gradient to be similar in attraction, we make the 420 
modeling assumption that there is an equal preference for reaching either favorable sensory 421 
condition — whether it is food at the peak of an odor gradient or a temperature range suitable to 422 
development. Thus, the reward associated with the maintenance of an ongoing heading is the 423 
sum of the probabilities of following a favorable gradient for each of the two modalities. As 424 
shown in the Supplementary methods, the sum of these cumulative probabilities can be 425 
approximated as the following decision variable: 426 

 𝑑 = ?!(?"
?!?"

× ( ?"
?!(?"

	𝑠& +
?!

?!(?"
𝑠'). (8) 

 427 
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To facilitate a comparison with the reward maximization strategy, the VM rule can be rewritten 428 
as: 429 

 𝑑 = ?!"(?""

?!"?""
× B ?""

?!"(?""
	𝑠& +

?!"

?!"(?""
𝑠'C.  (9) 

 
 

  

 430 

Figure 6. Drosophila larvae adapt their orientation responses to the variance of sensory inputs. 431 
(A) Or42a-functional larva navigated odor and temperature gradients while pure noise was 432 
injected into the olfactory system via the Or42a neuron in the form of optogenetic light flashes. 433 
The top graph compares the preference indices for larvae navigating a temperature gradient with 434 
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and without olfactory noise (Temperature: 20-40oC; Olfactory noise injected through the Or42a 435 
OSN with light flashes at 625nm, 11.15W/m2). The bottom plot compares the preference indices 436 
for larvae in an odor gradient versus the same odor gradient with olfactory noise (Odor: Ethyl 437 
butyrate, 10-3M; Olfactory Noise: Or42a, Light 625nm, 11.15W/m2). The preference indices for 438 
conditions with and without noise are significantly different from one another at the end of the 439 
experiment as indicated by the asterisks (t-test, p < 0.05). (B) Actual and simulated response for 440 
larvae in a temperature gradient based on the preference index. The FW, SW, and VM strategies 441 
are all in agreement with the data for the entire duration of the simulation (t-test, p > 0.05). (C) 442 
Actual and simulated response for larvae in a temperature gradient with olfactory noise based on 443 
the preference index. The VM strategy is indistinguishable from the data for the entire duration of 444 
the simulation (t-test, p > 0.05), but the FW and SW strategies are significantly different in the 445 
latter half of the simulation (t-test, p < 0.05). The statistical significances of differences between 446 
the data and each model are indicated by the color bars above the plots. 447 

 448 

More generally, we note that the VM and RM rules can be written in the form: 449 

 𝑑 = ?!
%(?"

%

?!
%?"

% × (
?"
%

?!
%(?"

% 	𝑠& +
?!
%

?!
%(?"

% 	𝑠'), 

 
(10) 

where the value of 𝑝 determines the exact decision rule used. We will hence also refer to the RM 450 
strategy as the 𝑝 = 1 rule and the VM strategy as the 𝑝 = 2. Furthermore, the FW strategy can 451 
be obtained by setting 𝑝 = 0, while the SW strategy is obtained in the limit as 𝑝 approaches 452 
infinity. The decision variable of eq. (10) is generic: it captures a variety of cue-combination 453 
strategies defined by the value of a parameter 𝑝 called a bimodal-contrast parameter. 454 

The decision rule applied by a larva is modality-dependent 455 

For a congruent gradient with real odors, the simulated behavior of agent larvae directed by the 456 
RM rule reproduced the behavior of real larvae more accurately than agent larvae implementing 457 
the VM rule (Figure 7D). This is consistent with the initial results where we showed that the 458 
multiplicative combination rule captured the combined PI and that its decision rule corresponds 459 
to the case 𝑝 = 1 (eq. (7) in Supplementary methods). On the other hand, the VM rule was more 460 
accurate than the RM rule to reproduce larval behavior for a conflicting gradient of odor and 461 
temperature (Figure 7E). To generalize this analysis, we set out to compare the goodness of fit of 462 
both of the RM and VM rules across all experimental paradigms considered in Figure 5. In 463 
addition, we systematically computed the performances associated with specific cases of the 464 
decision rule captured by eq. (10), with 𝑝 = 1 representing the RM rule, 𝑝 = 2 representing the 465 
VM rule, and the FW and SW rules defining the lower and upper bounds as the value of 𝑝 466 
approaches zero and infinity, respectively. By following this approach, we aimed to determine 467 
whether the same rule produced the best fit with the behavior of real larvae for all experimental 468 
conditions. 469 
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By evaluating the goodness of fit of the simulations to the data for decision rules with 470 
different values of 𝑝 (Figure 7C), we made the striking observation that the decision rule applied 471 
by real larvae may be dependent on the sensory modalities being combined. While experimental 472 
paradigms combining odor and temperature gradients were on average best predicted by decision 473 
rules with a value of the bimodal-contrast parameter 𝑝 close to 2, experimental paradigms 474 
combining two odor gradients had a goodness of fit curve that suggested the use of a decision 475 
rules with	a bimodal-contrast parameter close to 1. 476 

 477 

Figure 7. Exploring two different notions of optimality for navigation in sensory gradients. (A) 478 
Visualization of the reward maximization (RM) rule (p = 1) combining two noisy signals. (B) 479 
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Example of the variance minimization (VM) rule (p = 2) combining a noisy odor signal (blue) and 480 
a less noisy temperature signal (red). (C) The goodness of fit across experimental paradigms to 481 
decision rules with different non-integer values of p. (D) Final distributions of larvae in a congruent 482 
odor and odor gradient (Odor 1: 1-hexanol, 10-2M; Odor 2: Ethyl butyrate, 10-3M) for the simulated 483 
RM and VM rules in comparison to actual wild-type  larvae (n = 19). (E) Final distributions of larvae 484 
in a conflicting temperature and odor gradient (Temperature: 20-36oC; Odor: Ethyl butyrate, 2.5 485 
x 10-4M) for the simulated RM and VM rules in comparison to actual Or42a-functional larvae (n = 486 
20).  487 

To understand why Drosophila larvae may use different cue combination strategies 488 
depending on the environmental context, we turned to numerical simulations. We quantified how 489 
well agent larvae navigated toward favorable gradients using each strategy. To compare how the 490 
𝑝 = 1 rule (equivalent to RM) performed with respect to the 𝑝 = 2 rule (equivalent to VM), we 491 
defined two additional metrics quantifying larval behavior to explore and reveal the nuances 492 
between the two strategies (Figure 8A-B). The first is “Reward”, which would presumably be 493 
maximized under the 𝑝 = 1 rule; the second is “Fraction at Source”, which is a generalization of 494 
the PI beyond congruent gradients. The “Fraction at Source” metric, like the PI, quantifies the 495 
proportion of larvae that are within specified regions defining favorable conditions (peak of the 496 
odor gradient or region with a comfortable temperature, see Supplementary methods). The 497 
“Fraction at Source” metric is binary: either an animal is inside or outside a favorable region. 498 
The “Reward” metric defines in a graded way how well larvae remain near or at a favorable 499 
location on average. For conflicting gradients, the Reward metric can take relatively large values 500 
when a larva is located in a region representing a trade-off between the odor and the temperature 501 
gradients, whereas the Fraction at Source metric leads to 0 values unless the larva has focused 502 
on one of the two gradients. Thus, these two metrics tell us how effective each cue combination 503 
strategy is at achieving a trade-off between two gradients. 504 

When we applied the two metrics to quantify the behavior of simulated agent larvae 505 
directed by the 𝑝 = 1 (RM) and 𝑝 = 2 (VM) rules, we observed that the differences between the 506 
two rules were more significant in congruent gradients than in conflicting gradients (Figure 8C-507 
D). The reward gained by using 𝑝 = 1 instead of 𝑝 = 2 was more significant for congruent 508 
gradients compared to conflicting gradients (Figure 8E). We also numerically validated this 509 
effect through simulations of a fictive scenario where the conflict angle was sequentially 510 
modulated from 0 to 90 degrees (Figure S8). This hints that the advantages of 𝑝 = 1 over 𝑝 = 2 511 
are situational. When comparing these metrics across experimental paradigms, we observed that 512 
in general, the 𝑝 = 1 rule performs equally well or better than 𝑝 = 2 when it comes to 513 
maximizing the net reward that arises from the combination of two modalities. Effectively, the 514 
RM rule achieves a tradeoff between the hedonic value associated with each sensory gradient. 515 

  516 
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Discussion 517 
 518 

In the present work, we developed an experimental paradigm to quantify the behavior of larvae 519 
experiencing congruent or conflicting spatial gradients of odor and temperature. Using this 520 
paradigm, we demonstrated that larvae are capable of adjusting the sensitivity of individual 521 
sensory channels to changes in the variance of signals transmitted by each modality. In a similar 522 
vein as the model delineated in (Gepner et al., 2018) for larvae stimulated by nondirectional 523 
white noise with different statistical properties, we establish that the mechanism for variance 524 
adaptation can also be described as a weighted sum of sensory cues with weights modulated by 525 
signal variance.  526 

While previous work in the larva analyzed multisensory combination mechanisms by 527 
observing one specific behavior — the “when to turn” mechanism that controls the timing of 528 
sensory-driven transitions from running (crawling) to turning (Gepner et al., 2015, 2018), we 529 
extended this analysis to directional cues and showed that variance adaptation generalizes to the 530 
navigation algorithm as a whole including the mechanism of “where to turn to” that creates a 531 
turning bias towards favorable sensory gradients. Through numerical simulations, we used a 532 
data-driven agent-based model to establish that both of these orientation mechanisms are 533 
necessary to account for the navigation of real larvae in multimodal stimuli as removing either 534 
component leads to a reduction in performance (Figure S5E). Similar to the adult fly (Demir et 535 
al., 2020), the ability to bias turning toward the gradient (“where to turn to”) was found to be 536 
critical for larvae to navigate toward and accumulate near the odor source. 537 

We tested different plausible strategies for combining sensory inputs, starting with a 538 
comparison between the Variance-Minimization (VM), the Fixed-Weights (FW) and the Shut-539 
Weights (SW) rules. The FW and SW rules can be viewed as opposite extremes in the 540 
framework of Bayesian cue integration (Ernst & Banks, 2002): while the FW rule always 541 
integrates both sensory stimuli, the SW rule systematically discards the less reliable sensory 542 
stimulus. This explains why the SW rule is sometimes called Winner-Take-All rule. Similar 543 
comparative approaches have been used in the past to compare and evaluate how well different 544 
cue combination models fit behavior, for example in human behavior in a two-alternative-forced-545 
choice task (Weisswange et al., 2011). In our results across experimental paradigms, the VM rule 546 
accounted best for the behavioral data, while we found that the FW and SW rules were 547 
insufficient on their own to adequately reproduce the navigational behavior of larvae for all 548 
tested conditions. Next, we introduced the Reward-Maximization (RM) rule, which differs from 549 
the VM rule in that it does not assume that the two gradients originate from the same object and 550 
location, and seeks to maximize the expected reward of the two gradients (see Figure 7A-B and 551 
Supplementary methods). Given the assumptions of the model, both the VM and RW rules are 552 
optimal with respect to the objectives they seek to maximize: in the case of the RM rule, it is the 553 
reward —strength of the odor stimulus and comfort level of the temperature— that is optimized 554 
whereas in the case of the VM rule, it is the reliability of the combined signal. 555 
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 Since the cue-combination strategies compared in the present study could simply 556 
represent four mechanisms out of a limitless set of possible models, we developed a framework 557 
to map all four models into a canonical model described in eq. (10) defined by the value of a 558 
bimodal-contrast parameter 𝑝. With this generalized set of models, we showed that our results 559 
remained the same in that the RM (𝑝 = 1) and VM (𝑝 = 2) were most representative of the way 560 
cue combination is implemented by real larvae. Furthermore, we found that some experimental 561 
paradigms were better accounted for by the RM rule while others appeared to be more 562 
compatible with the VM rule, depending on the pairs of sensory modalities combined by the 563 
animal. In particular, the behavior of larvae in a real-odor gradient combined with a congruent 564 
temperature gradient was better explained by a principle of variance minimization (VM rule). 565 
We believe that this gradation in the decision rule across sensory modalities might reflect the 566 
existence of different noise-suppression mechanisms on the underlying behaviors. 567 

Intuitively, larvae may have developed mechanisms of sensory cue combination 568 
resembling the RM and the VM rules to exploit different aspects of the sensory conditions that 569 
favor their survival in complex natural environments. This hypothesis was tested numerically by 570 
evaluating the performance of simulated agent larvae directed by either of the RM (𝑝 = 1) and 571 
VM (𝑝 = 2) rules in each experimental paradigm (Figure 8C-E), as well as in hypothetical 572 
scenarios not tested with real larvae (Figure S8) that include more realistic three dimensional 573 
environments. Not surprisingly, we found that larvae experienced a larger “reward” on average 574 
with the RM (𝑝 = 1) rule compared to the VM (𝑝 = 2) rule. However, the comparison between 575 
the RM and VM rules led to more ambiguous results when performances were evaluated based 576 
on the fraction of larvae reaching the “source”, as differences in performances between the two 577 
rules vanished in conflicting gradients compared to congruent gradients. This result is consistent 578 
with the fact that increasing the spatial proximity between cues leads to a smaller improvement 579 
in signal reliability during cue combination (Gepshtein et al., 2005). 580 

In the extreme scenario where gradients are pointing at a 90-degree angle, both the RM 581 
and VM rules perform similarly as the combination of sensory information becomes less 582 
advantageous (Figure 8D and Figure S8A-B). In addition, the two rules differ in that the RM 583 
(𝑝 = 1) rule is closer to the FW (𝑝 = 0) rule, which always integrates information from both 584 
sensory inputs. By contrast, the VM rule leads to a choice of one source over the other 585 
resembling the SW (𝑝 = ∞) rule. When presented with two sources of sensory information, 586 
virtual larvae using the RM rule were more prone to remain in between two attractive sources 587 
while larvae using the VM rule tended to choose one source over the other. Our agent-based 588 
model provides a computational platform to investigate larval integration strategies in more 589 
realistic settings, such as navigation on the surface of a sphere (i.e. a rotting piece of fruit). For 590 
example, we find that our results extend to a conflict between two attractive odor sources on a 591 
spherical surface (Figure S8C). 592 

 593 
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 594 

Figure 8. Comparison of the overall performances and characteristics of the RM rule (𝑝 = 1) and 595 
the VM rule (𝑝 = 2) directing the behavior of simulated agent-based larvae. (A) Metric quantifying 596 
the “Fraction at Source” metric to quantify how well larvae remain near the source for conflicting 597 
temperature + odor gradients. Red dotted lines indicate the boundaries of the two sources. The 598 
color gradient indicates the performance of larvae at each location in the arena. (B) Metric 599 
quantifying the “Reward” for the same data as panel A. In both panel A and B, a higher score 600 
implies a better performance. (C) Comparison of the Fraction at Source and Reward for a pair of 601 
congruent odor + odor gradients. The control condition refers to the performance of simulated 602 
agent-based larvae in the absence of any sensory (C-E) information (i.e., decision variable 𝑑 =603 
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0). Simulations of the RM and VM rules lead to a significant difference in both the final Fraction 604 
at Source and Reward (t-test, p < 0.05). (D) Comparison of the Fraction at Source and Reward 605 
metrics for a pair of conflicting odor + odor gradients. Both rules result in a significant difference 606 
in the final Fraction at Source (t-test, p < 0.05) but not the reward (t-test, p > 0.05). (E) Comparison 607 
of the Fraction at Source and Reward across all experimental paradigms. The RM rules and VM 608 
rules were significantly different for all conditions by both metrics (t-test, p < 0.05/6 upon 609 
Bonferroni correction) except for conditions with conflicting gradients. The asterisks indicate 610 
significant differences between the RM rule (p = 1) and the VM rule (p = 2) for each condition. 611 

 612 

To explain why larvae appear to utilize the more-integrative RM (𝑝 = 1) rule in odor-613 
odor gradients but use the choice-like VM (𝑝 = 2) rule in odor-temperature gradients, we 614 
speculate that this nuance may be an example of bet hedging, when organisms suffer decreased 615 
fitness in comfortable conditions in exchange for increased fitness in stressful conditions 616 
(Danforth, 1999). A larva that cannot feed in a region of moderate temperature is less likely to 617 
survive than a larva that chooses to either follow an odor gradient predictive of the presence of 618 
food even at the cost potential of noxious heat or to navigate toward a cooler region where food 619 
might be found eventually. In the case of odor-odor gradients, larvae might have an advantage to 620 
combine multiple chemical cues in a more integrative way given that food sources typically 621 
release dozens or hundreds of distinct odorant molecules that are detected by the peripheral 622 
olfactory system. By contrast, in situations that present possible danger like aversively high 623 
temperatures or starvation in the absence of food, it may be more prudent for larvae to select the 624 
more reliable sensory modality earlier as predicted by the VM rule.  625 

Here, we report experimental and modeling-based evidence that Drosophila larvae are 626 
capable of computing and combining the reliability of sensory inputs to organize orientation 627 
behavior in natural conditions. This result suggests that the nervous system of organisms as 628 
simple as the Drosophila larva can achieve probabilistic inference —a form of computation 629 
highly advantageous in uncertain environments. Moreover, the ability of the larva to adapt its 630 
navigation strategy to the nature of the perceived multisensory signals offers an opportunity to 631 
study differences in the neural implementation of two general rules achieving cue combination 632 
based on probabilistic inference, reward maximation and variance minimization. With the 633 
availability of the larval brain connectome (Winding et al., 2023), the Drosophila larva sets a 634 
path to pinpoint where and how different sensory cues are combined and to investigate how these 635 
rules evolve across different development stages, such as for the cue integration of odor and 636 
wind in the adult fly (Currier et al., 2020; Matheson et al., 2022). 637 

  638 
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Material and Methods 646 
 647 

Fly Stocks 648 
Fly stocks were raised in a 12h light-dark cycle at 22°C/60% humidity. All behavioral 649 
experiments were conducted with third-instar larvae reared for 120 hours in tubes on 650 
conventional cornmeal-agar fly food. Before each experimental test, larvae were separated from 651 
the food by rinsing with a 15% (wt/V) sucrose solution according to a previously established 652 
protocol (Louis et al., 2008; Schulze et al., 2015). Testing occurred between 30 to 120 minutes 653 
after the introduction of the sucrose. The w1118 strain was used as “wild-type” larvae in 654 
experiments combining real odor and temperature gradients. For experimental paradigms 655 
involving optogenetically induced virtual odor gradients, the w;+;Or67b-Gal4 and w;Or42a-Gal4;+ 656 
strains were used to drive the expression of Chrimson in single OSNs. Odor-virtual odor 657 
experiments were performed with w;+;Or67b-Gal4 larvae, while temperature-virtual odor 658 
experiments were achieved with w;Or42a-Gal4;+ larvae. 659 

Behavioral Assay 660 
The behavioral assay was built using two Peltier elements (CPP-065, TE Technology Inc., USA) 661 
attached to a rectangular copper plate via thermo-conductive paste (Céramique, Arctic Silver, 662 
USA). Between the Peltier elements, two temperature sensors (Thermistor: MP-2444, TE 663 
Technology Inc., USA) were embedded into the metal plate. The temperature of every sensor 664 
was monitored by a separate control unit that regulated the Peltier element. Linear temperature 665 
gradients were established by setting different target temperatures at each sensor. For an 666 
independent temperature assessment, a thermometer with a surface probe (MM2000, 667 
TME Electronics, UK, and TS01-S, Surface/Immersion Probe Backfilled, TME Electronics, UK) 668 
and an infrared thermometer (Fluke 561, Fluke, USA) were also used to confirm the linear 669 
temperature gradient experienced by animals on the surface of the behavioral arena. Virtual odor 670 
gradients and noise were generated using red light (62 5nm) by LEDs mounted above the assay 671 
(PLS-0625-030-S, Mightex Systems, Canada). The emitted light passed through a mask 672 
(exponential cone r=16.5 mm diameter, Leicrom, Spain) in front of the LED resulting in a light 673 
gradient in the behavioral arena. In noise experiments, light flashes illuminating the behavioral 674 
arena evenly were added on top of the presented gradients. These flashes originated from a 675 
rectangular array of red LEDs (Flexible LED strip red 30 x SMD-LED, 850 nm, 12 V, 676 
Lumitronix, Germany). Odor gradients were established by pipetting 5 μL of an odorant dilution 677 
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into a transparent reinforcement ring at the bottom of the arena. In each experiment, the circular 678 
behavioral arena was coated with a slab of 3% agarose with a diameter of 107mm.  A camera 679 
(Stingray F145B ASG, Allied Vision Technologies GmbH, Germany) recorded the behavior of 680 
the group of ten larvae for 300 seconds at seven frames per second. An infrared filter (Optical 681 
Cast Plastic IR Longpass Filter, Edmund Optics, USA) was placed in front of the camera to 682 
exclude any light artifacts. 683 
 684 

Tracking of Animal Posture and Behavioral Quantification 685 
Larvae were tracked offline with a custom-written software in MATLAB. Individual video 686 
frames were processed using a black-and-white threshold to perform background subtraction and 687 
a size threshold to identify larvae-sized objects. The identities of larvae were labelled in the first 688 
frame of the experiment, and subsequent labels were assigned both automatically and manually. 689 
The distances between tagged larvae in neighboring frames were computed to match larvae from 690 
one frame to the next. 691 
 692 
Parameter optimization and performance quantification of the agent-based 693 
model for larval navigation 694 
The constants defining larval navigation in the absence of sensory stimuli (i.e. 𝑑 = 0) were fit 695 
using maximum likelihood estimation (Figure S5A-5D). The resulting running, stopping, and 696 
head-casting statistics generated by our model were in agreement with actual unstimulated larvae 697 
from the closed loop tracker built in (Schulze et al., 2015). To define an appropriate level of 698 
complexity for the model, the Akaike information criterion (AIC) and Bayesian information 699 
criterion (BIC) were used to quantify the relative importance of each variable in describing 700 
larvae behavior in each experimental paradigm. This approach was used to select a final agent-701 
based model with enough degrees of freedom to recapitulate larval navigation across different 702 
gradient configurations (Figure S5F). These parameters were then tuned to each experimental 703 
paradigm using the unimodal conditions as training data. We defined the objective function to be 704 
minimized as the mean Kullback-Leibler divergence (Kullback, 1951) between the simulated and 705 
actual X, Y spatial distributions of larvae over the entire time course of the experiment. The 706 
parameter sets for each experimental paradigm were optimized using the Global Optimization 707 
Toolbox in MATLAB.  708 
  709 

To compare larval performance between the Reward Maximization (p = 1) and Variance 710 
Minimization (p = 2) rules, we defined two metrics: “Fraction at Source” and “reward”. The 711 
Fraction at Source, like the preference index, computes the fraction at larvae within bounded 712 
regions near the peak of each gradient that is present. Reward assigns each larva a score based on 713 
its sensory experience relative to the peaks of each gradient that is present, situated between 0 – 714 
the worst location possible and 1 – the best location (see Supplementary methods).   715 
  716 
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Supplementary Information 
 

 

Figure S1. Preference indices corresponding to the performances of wild-type larvae for congruent 
gradients: odor + odor and odor + temperature. When two congruent unimodal gradients are 
combined, the final preference index is significantly higher than the preference indices of either 
unimodal condition as indicated by the asterisks (t-test with Bonferroni correction, p < 0.025). The 
shaded regions around the preference index curves indicate the error bars of the SEM. (A) Odor + 
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odor (odor 1: 1-hexanol, 10-2 M, n = 20 groups of 10 larvae; odor 2: ethyl butyrate, 10-3 M, n = 26; 
combined: n = 19). (B) Temperature + odor (odor: ethyl butyrate, 10-3 M, n = 27; temperature: 16-
30oC, n = 35; combined: n = 27).  

 

Figure S2. Preference indices corresponding to the performances of wild-type larvae for congruent 
gradients: virtual odor + odor and virtual odor + temperature. When two congruent unimodal 
gradients are combined, the final preference index is significantly higher than the preference 
indices of either unimodal condition as indicated by the asterisks (t-test with Bonferroni correction, 
p < 0.025). (A) Virtual odor + odor (virtual odor: Or67b>Chrimson, light 625nm, n = 30; real odor: 
ethyl butyrate, 2.5 x 10-4 M, n = 30; combined: n = 30). (B) Temperature + virtual odor (virtual 
odor: Or42a>Chrimson, n = 49; temperature: 20-40oC, n = 49; combined: n = 49). 
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Figure S3. Comparison of the combined preference indices of wild-type larvae with predictions 
from a parameter-free model for the four configurations outlined in Figure S1 and Figure S2. In 
all configurations (A-D), there is no significant difference between the final preference indices of 
the experimental data and the parameter-free model (t-test, p > 0.05). 
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Figure S4. Parameter optimization and performance quantification of the agent-based model for 
larval navigation. (A) Illustration of the framework of the lateral oscillation model (Wystrach et 
al., 2016) used for the agent based model. The larva is modelled as two segments: the anterior 
(midpoint to the head) and the posterior (tail). (B) The larva alternates between left and right head-
casts between every timestep. The black arrow illustrates the direction of motion at the previous 
timestep while the red arrow is the heading vector at the indicated timestep. (C) Ratio of runs and 
stops observed in real larvae versus in simulations in the absence of stimuli. (n = 100 larvae) (D) 
Simulation results for the fraction of larvae at the walls of the arena for hypothetical boundary 
conditions tested when designing the agent-based model. Larvae are defined as being at the 
boundary if they are within one larva-length from the edge of the arena. Lines represent the mean 
and shaded error bars represent one standard deviation (n = 10 groups of 100 larvae). (E) Stages 
at which noise is added in the agent-based model. 
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Figure S5. Parameter optimization and performance quantification of the agent-based model for 
larval navigation. (A-D) The histograms compare the behavioral statistics of real larvae to 
simulated larvae (n = 100 larvae): (A) run durations, (B) turn durations, (C) casting speed during 
runs, (D) casting speed during turns. (E) Performance of the agent-based model with the removal 
of its constituent mechanisms (“where to turn to”, “when to stop”) to direct larvae up gradients. 
When either mechanism is removed, a smaller fraction of larvae reach the source. (Odor + odor 
congruent, n = 19 groups of 20 larvae). (F) Justification of model complexity. The plot indicates 
the change in prediction error as quantified by the AIC/BIC as variables are removed or added to 
the agent-based model. (Odor + odor congruent, n = 19 groups of 20 larvae) 
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Figure S6. Comparison of final distributions of simulated larvae for each cue-combination rule 
across different experimental paradigms. (A) Odor + odor congruent (odor 1: 1-hexanol, 10-2 M; 
odor 2: ethyl butyrate, 10-3 M; n = 19). (B) Temperature + odor congruent (odor: ethyl butyrate, 
10-3 M; temperature: 16-30oC; n = 27). (C) Virtual odor + odor congruent (virtual odor: 
Or67b>Chrimson, light 625nm; real odor: ethyl butyrate, 2.5 x 10-4 M; n = 30). (D) virtual odor + 
odor conflict (virtual odor: Or67b>Chrimson, light 625nm; real odor: ethyl butyrate, 7.5 x 10-5 M; 
n = 20) (E) Temperature + odor conflict (temperature: 20-36oC; odor: ethyl butyrate, 2.5 x 10-4 M; 
n = 20). (F) Temperature + virtual odor congruent (virtual odor: Or42a>Chrimson; temperature: 
20-40oC; n = 49). 
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Figure S7. The effect of olfactory noise on navigation in a temperature gradient, an odor gradient, 
and a conflicting temperature and odor gradient. Each figure shows a comparison of the 
distributions of real larvae in gradient configurations with and without olfactory noise applied 
optogenetically (optogenetic olfactory noise: Or42a>Chrimson). The mean trajectory of all larvae 
is shown in the arena over each time interval (60s, 120s, 180s). (A) Temperature: 20-36oC, n = 20. 
(B) Odor: ethyl butyrate, 2.5 x 10-4 M; n = 20. (C) Temperature + odor conflict (Temperature: 20-
36oC; odor: ethyl butyrate, 2.5 x 10-4 M; n = 20) 
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Figure S8. Agent-based model as a testing environment for simulating hypothetical gradient 
configurations with different conflicting angles (A-B) and 3D configurations (C). (A) Virtual odor 
+ odor conflict (n = 19). The mean reward at the end of the simulation is compared between the 
reward maximization (𝑝 = 1) and variance minimization (𝑝 = 2) rules. The asterisk indicates a 
significant difference by a t-test (p < 0.05) (B) Temperature + odor conflict (n = 19). (C) 
Simulations of larvae navigation on the surface of a sphere for different stimulus landscapes 
(randomly sampled larvae trajectories indicated in black): a single odor source (left), two odor 
sources (middle), and a single odor source with a linear temperature gradient along the y-axis 
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(right). Color gradient indicates attractiveness of each region (bright = high reward, dark = low 
reward). 
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Supplementary methods 
 

Parameter-Free	Model	

Drosophila larvae sample the environment to gather information about local odor and temperature 
gradients through head casts and runs to guide their behavior (Louis et al., 2008). We assume that 
local information is relatively weak as it is corrupted by fluctuations due to intrinsic noise in the 
local gradient; thus, the larva needs to accumulate information over time. Two main experimental 
setups are considered here: one in which two odor gradients are present (one real and another 
virtual generated by optogenetic stimulation), corresponding to the ‘intramodal’ condition, and 
another in which an odor and a temperature gradient are present, corresponding to the ‘intermodal’ 
condition. Mathematically these two conditions can be described with the same formalism, and 
therefore we do not distinguish them here. We generally use ‘cue 1’ and ‘cue 2’ to refer to either 
odor or temperature gradients, regardless of the sensory modality used. We will also model the 
effect of noise injection through optogenetics.  

Our model is based on the idea that the larva’s goal is estimating a hidden binary variable 
𝑠, with values −1 and 1, denoting the ‘best location in the world’: if 𝑠 = 1, then the goal location 
is on the right of the petri dish; if 𝑠 = −1, then the goal location is on the left. The larva estimates 
this hidden variable by iteratively sampling gradients through the space. We assume that up to time 
𝑡 the accumulated evidence for cues 1 and 2 is characterized by sampled gradients ∆𝑐! and ∆𝑐", 
respectively. These sampled gradients correspond to the accumulated local sampled gradients, 
which are lumped together into a single mean-field value. Since sensory observations are noisy 
due to intrinsic and extrinsic variability, the sampled gradients are corrupted versions of the true 
gradients, ∆𝑐!#and ∆𝑐"# with Gaussian noise. Because both gradients are generated congruently, 
then we can use the same hidden variable 𝑠 to express ∆𝑐!# = 𝑠∆𝐶! and ∆𝑐"# = 𝑠∆𝐶", where ∆𝐶$ ≥
0	are the absolute values of the true gradients ∆𝑐$#, 𝑖 = 1, 2. Therefore 𝑠 represents the sign of the 
gradient, which points towards the goal location, while ∆𝐶$ ≥ 0	 controls the intensity of the 
gradients. The sampled gradients follow then the equations 

 𝛥𝑐! = 𝑠𝛥𝐶! + 𝜎!𝑛!	
𝛥𝑐" = 𝑠𝛥𝐶" + 𝜎"𝑛" , (1) 

where 𝑛$(𝑖 = 1, 2) are independent normal random variables with zero-mean and unit variance, 
and 𝜎$ is the inverse reliability of the i-th cue. Control of independence of the fluctuations of the 
two cues can be achieved in our experiments by using odor and virtual odor gradients.  

It is important to emphasize that the primary goal of the larva is to estimate the value of the 
hidden variable 𝑠 rather than estimating the true values of the gradients ∆𝐶$ 	through the sampled 
gradients ∆𝑐! and ∆𝑐". The variable 𝑠 (the sign of the gradient) specifies the goal location, while 
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the absolute value true gradients are uninformative about the goal location. As the larva estimates 
the value of the variable 𝑠, it moves to the estimated goal location. It is important to note that the 
larva does not have direct access to the true gradient ∆𝐶$ and to the hidden variable 𝑠. In contrast, 
in the model the larva has direct access to the inverse reliabilities of each cue through sampling of 
the noise, as is well documented in other similar scenarios (Ernst & Banks, 2002). This assumption 
is also supported by our experimental observations. 

Errors in the estimated goal location can occur when the two sampled gradients have a 
different sign with respect to the true location (e.g., when	∆𝑐! < 0, ∆𝑐" < 0	and 𝑠 = 1). When one 
of the sampled gradients is positive but the other is negative, then the larva should weigh them 
according to the reliabilities of each cue. There is a unique way of combining the sampled gradients 
optimally, the so-called optimal strategy, which we will derive. Our framework is based on 
Bayesian inference of the hidden variable	𝑠, which corresponds to the optimal strategy in the sense 
that the goal location is attained with the highest probability. Given the sampled gradients ∆𝑐! and 
∆𝑐", one can build the posterior probability of the hidden variable 𝑠 and the absolute true gradients 
as 𝑝(𝑠, 𝛥𝐶!, 𝛥𝐶"|𝛥𝑐!, 𝛥𝑐"). Using Bayes’ rule,  

 𝑝(𝑠, 𝛥𝐶!, 𝛥𝐶"|𝛥𝑐!, 𝛥𝑐") ∝ 𝑝(𝛥𝑐!, 𝛥𝑐"|𝑠, 𝛥𝐶!, 𝛥𝐶")
= 𝑝(𝛥𝑐!|𝑠, 𝛥𝐶!)𝑝(𝛥𝑐"|𝑠, 𝛥𝐶") 

(2) 

where the proportionality is in relation to 𝑠, 𝛥𝐶!and 𝛥𝐶". Since the sampled gradients specify the 
order of magnitude of the true gradients, and because the true gradients are distributed over several 
orders of magnitude, we ignore the prior distribution on the true gradients above (effectively, we 
assume that the prior is flat). In addition, on the right side of the equation we assume that, 
conditioned on the true gradients and goal location, the fluctuations of the sampled gradients are 
independent. This is strictly true in our experimental condition in which one gradient is odor and 
the other is a virtual odor gradient, and they are close-to-independent in other conditions because 
of the random mixing of odors due to chaotic dynamics in fluids. 

Using eq. (1), 𝑝(𝛥𝑐$|𝑠, 𝛥𝐶$) = 𝛮(𝛥𝑐$|𝑠𝛥𝐶$ , 𝜎$")  for 𝑖 = 1,2 , that is, the density is a 
Gaussian probability density with mean 𝑠𝛥𝐶$and variance 𝜎$". Inserting this expression into eq. (2), 
we find  

 
𝑝(𝛥𝑐!, 𝛥𝑐"|𝑠, 𝛥𝐶!, 𝛥𝐶") ∝ 𝑒

%&(()!&*(+!)
"

"-!"
&(()"&*(+")

"

"-""
.
. (3) 

Optimal behavior involves determining the distribution of the hidden variable, but ignoring the 
absolute values of true concentration gradients, as the latter are not informative about the goal 
location. Therefore, we are interested in the posterior over the hidden variable 𝑠 , where the 
absolute values of the gradients are marginalized, 

 𝑝(𝑠|𝛥𝑐!, 𝛥𝑐") ∝ ∫ 𝑑𝛥𝐶!
∞
# ∫ 𝑑𝛥𝐶"

∞
# 	𝑝(𝑠, 𝛥𝐶!, 𝛥𝐶"|𝛥𝑐!, 𝛥𝑐") . (4) 
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Using eqs. (2-4) and the definition of cumulative Gaussian, Φ(𝑥) = ∫ 𝑑𝑦𝛮(𝑦 | 0,1)/
&∞ , we find 

 

 𝑝(𝑠|𝛥𝑐!, 𝛥𝑐") ∝ Φ(𝑠𝛥𝑐!/𝜎!)Φ(𝑠𝛥𝑐"/𝜎") . (5) 

To find a closed expression for 𝑝(𝑠|𝛥𝑐!, 𝛥𝑐")  we approximate the cumulative Gaussians by 
sigmoid functions, which is known to be an excellent approximation for the best fit parameters 
(that is, Φ(𝑥)  is approximated by Φ(𝑥) ∼ 1/(1 + 𝑒&0/) , where 𝛼  is the best fit parameter). 
Therefore, within this approximation, we can write the probability over 𝑠 as 

 𝑝(𝑠|𝛥𝑐!, 𝛥𝑐") =
!

!12($%(&'!/)!*&'"/)"),)
= !

!13$%	.	,
. (6) 

where we have defined the ‘decision variable d’   

 𝑑 = 𝛥𝑐!/𝜎! + 𝛥𝑐"/𝜎" . (7) 

Note that the decision variable weighs the size of the sampled gradients with the reliability of each 
gradient.  

Obtaining the decision variable is one of the central results of this section, as it dictates 
what the larva should do trial by trial based on the sampled gradients and their reliability. 
Specifically, when the decision variable is positive, 𝑑 > 0, the probability of 𝑠 = 1 is larger than 
one half, and therefore optimal behavior dictates moving towards the right. If the decision variable 
is negative, then optimal behavior dictates moving towards the left. In summary, the decision rule 
reads: 

 “choose	𝑠 = 1”					if			𝑑 > 0 

"choose	𝑠 = −1"		if				𝑑 > 0. 
(8) 

It is important to emphasize that for a larva to follow the optimal behavior it should follow 
the decision rule in eq. (8). This obviously does not mean that the neuronal circuitry needs to 
perform explicitly the computation described in eqs. (2-6): all these computations can be bypassed 
if the decision rule in eq. (8) is hardwired within the neuronal circuits. 

The decision rule in eq. (8) is a deterministic rule given the sampled gradients  𝛥𝑐! and 
𝛥𝑐". However, we do not have access to the sampled gradients as measured by the larvae. This 
means that the value of the decision variable 𝑑 at any particular trial is unknown to us. This implies 
in turn that we can only know the behavior of the larvae averaged over observations given a 
predetermined experimental setup, which is characterized by the true gradients 𝛥𝑐!# = 𝑠𝛥𝐶! and 
𝛥𝑐"# = 𝑠𝛥𝐶". We will take advantage of the fact that, while the true gradients are unknown to the 
larvae, they are known to the experimenter.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2023. ; https://doi.org/10.1101/2023.05.04.539474doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539474
http://creativecommons.org/licenses/by/4.0/


13 
 

We first note that 𝑑 is the sum of two Gaussian variables, and therefore it is a Gaussian 
variable. Its mean and variance are respectively 

 
𝑑̅(𝛥𝐶!, 𝛥𝐶") =

𝛥𝐶!
𝜎!

+
𝛥𝐶"
𝜎"
	

𝑉𝑎𝑟(𝑑)(𝛥𝐶!, 𝛥𝐶") = 2 , 
(9) 

where we assume without loss of generality that the goal location is at 𝑠 = 1. From this expression 
we can compute the central experimental measurement, the preference index, 𝑃𝐼. This quantity is 
defined experimentally as the number of larvae that at time t are located on the correct half-side of 
the petri dish, 𝑠 = 1. We can make a prediction using eq. (9) by noticing that the 𝑃𝐼 is the fraction 
of times that the decision variable d is above zero,   
 

 𝑃𝐼(𝛥𝐶!, 𝛥𝐶") = ΦS (+!
√"-!

+ (+"
√"-"

T. (10) 

This equation provides a prediction of the preference index when the two gradients are present. 
Now we can use the same expression to find expressions for the preference indexes for the single-
gradient conditions as 

 
𝑃𝐼(𝛥𝐶!) = 𝑃5(𝛥𝐶!, 𝛥𝐶" = 0) = ΦU

𝛥𝐶!
√2𝜎!

W	 

𝑃𝐼(𝛥𝐶") = 𝑃5(𝛥𝐶! = 0, 𝛥𝐶") = ΦU
𝛥𝐶"
√2𝜎"

W.	
(11) 

Finally, we can use eqs. (10-11) to obtain the combination rule 

 𝑃𝐼67839(𝛥𝐶!, 𝛥𝐶") = Φ(Φ&!(𝑃5(𝛥𝐶!)) + 𝛷&!(𝑃5(𝛥𝐶"))) , (12) 

where 𝛷&!(𝑥) is the inverse cumulative normal. Thus, using the same sigmoidal approximation of 
the cumulative Gaussian employed above, we obtain the coarse-grained model given by eq. (2) in 
the main text. Another important feature of these predictions, which will be exploited later, is that 
optogenetic stimulation can affect the reliability of each cue in predefined ways. In particular, it 
should be possible to increase the noise level of cue 1 without affecting the noise level in cue 2. If 
this happens, then the model predicts that the preference index when only cue 2 is present should 
remain unchanged in the presence of noise in cue 1. To understand this result, note that in this rule 
increasing the variance of one signal does not change the total variance of eq. (9), which implies 
that it is not possible to shut down a cue even if it is very noisy. This is however the optimal thing 
to do under the above assumption, as the signal is scaled down by the standard deviation of the 
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noise, but gives a different result than the variance weighted combination rule of eq. (7) in the 
main text. In the main text, 𝑃𝐼67839(𝛥𝐶!, 𝛥𝐶")	is denoted as 𝑃𝐼!1",67839	. 

Agent-based	Model	

We model Drosophila larvae with an adapted version of an agent-based model developed by 
Wystrach et al. (Wystrach et al., 2016). This model provided a general framework for describing 
taxis behavior in unimodal stimulus gradients, based on evidence that larvae display continuous 
lateral oscillations (“head-casts”) of the anterior body during peristalsis. Their work showed that 
this simple mechanism coupled with the direct sensory modulation of oscillation amplitude could 
reproduce many taxis signatures observed in larvae. To test different mechanistic hypotheses for 
cue integration, we build upon this framework to investigate how information can be combined 
across real odor, virtual odor, and temperature gradients to modulate taxis. 

 

Lateral Oscillation Model  

In our adaptation of the above agent-based model we consider the anterior and posterior body of 
the larva as two connected segments. The anterior body is modelled as a single segment from the 
midpoint to the head (Figure S4A). To mimic active sampling, this segment rotates about the 
midpoint and alternates between left and right rotations between timesteps (Figure S4B), with 
casting amplitude modulated by the sensory experience. The posterior body on the other hand, is 
“passive” and assumed to follow the axis of the anterior segment. Larvae are assumed to be 
uniform in length and move along the anterior heading direction at a constant speed. At any 
timestep 𝑛 of 1s, this mechanism can be summarized with the following state-update equations: 

 𝜃< =	𝜃<&! + 𝛿=(𝑑)(−1)<	
𝑥< = 𝑥<&! + 𝑣 cos(𝜃<)	
𝑦< = 𝑦<&! + 𝑣 sin(𝜃<), 

(13) 

where 𝜃< is the heading direction of the anterior body relative to the midpoint at timestep 𝑛, 𝑣 is 
the distance travelled in a single time-step, and {𝑥<, 𝑦<} is the updated midpoint of the larva. The 
quantity 𝛿=(𝑑) is the casting amplitude, which is modulated by a decision variable 𝑑 that is a 
function of the sensory experience (see below). The constant 𝑣 was estimated based on the average 
speed observed in larva in the experimental data. In ref. (Wystrach et al., 2016), the amplitudes of 
the lateral oscillations is modelled as a hard-limit ramp function: 

 
𝛿=(𝑑) = 𝐻(𝜃> + 𝑑), where 𝐻(𝑥) = `

𝑥 0 ≤ 𝑥 ≤ 𝜋
𝜋 𝑥 > 𝜋
0 𝑥 < 0

, 

 

(14) 

where 𝜃> is the baseline amplitude of the lateral oscillations in the absence of stimuli (i.e. when 𝑑 
= 0). During larval chemotaxis, turning increases during upgradient motion whereas it is reduced 
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during downgradient motion. Accordingly, the decision variable 𝑑  should be negative when 
moving up a stimulus gradient and positive when moving down a stimulus gradient.  

One important feature of our adaptation of the agent-based model that is distinct from 
Wystrach’s model (Wystrach et al., 2016) is that sensory measurements are sampled at every time-
step by a sensor located at the extremity of the larva’s head, which rotates about the midpoint. This 
allows us to distinguish between head casting during “runs” when the larva is undergoing forward 
peristalsis and head casting during “stops”, when the midpoint of the larva is stationary. In contrast, 
the larva in ref. (Wystrach et al., 2016) is modelled as a point agent that rotates on the spot for 
simplicity.  Note that in our model, the position of the larva head is given by: 

 𝑥<? = 𝑥< +
9
"
cos(𝜃<)  

𝑦<? = 𝑦< +
9
"
𝑠𝑖𝑛(𝜃<)	, 

(15) 

where l is the average length of larva at the 3rd instar developmental stage. 

 

Stopping  

For the lateral oscillation model developed in ref. (Wystrach et al., 2016), it was noted that stopping 
was not essential for chemotaxis except for improving orientation by enabling larger turns in their 
paths. Thus, this mechanism was ignored as a simplifying assumption and larvae were simulated 
to run continuously at a fixed speed. However, in order to accurately represent larvae navigation 
about odor sources in our experimental paradigms, it was necessary to incorporate the mechanism 
of stopping. We make the following modelling assumptions regarding larvae runs and stops: 

1. During runs, larvae move along the anterior heading direction at a constant speed (as 
before).  

2. During stops, larvae remain stationary at the midpoint but are still able to cast the anterior 
body in either direction.  

3. The casting amplitude is larger during stops than during runs.  

To capture the behaviors associated with running and stopping in our agent-based model, 
we assume that larvae not only update their heading direction at each time-step, but also make a 
decision to run or to stop. Therefore, there are two decisions that must be made at every time-step: 

1. When to Stop: Should the larva be in a running or stopping state? 
2. Where to Turn: Given the state of the larva, what adjustment should be made to the current 

heading? 
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When to stop 
We modeled running and stopping in larvae as a binary Markov process, with transition 
probabilities dependent on the same decision variable 𝑑 (Figure 2E). The transition probabilities 
between states were given by the following logistic functions: 

 𝑝@A<(𝑑) =
1

1 + 𝑒&81)/01 	 

𝑝*B7C(𝑑) =
1

1 + 𝑒&81),234
.	

 

(16) 

The parameters 𝑐@A<  and 𝑐*B7C  are constants that determine the statistics of running and stopping 
in the absence of sensory stimuli (i.e. 𝑑 = 0). Using the classification algorithm of the closed loop 
tracker from ref. (Schulze et al., 2015), we quantified the statistics of running and stopping in 
unstimulated larvae (Figure S4C). We then used maximum likelihood estimation to fit parameters 
𝑐@A<  and 𝑐*B7C in our model (Figure S5A-D). We verified that the negative binomial distribution 
of running and stopping durations resulting from the simple Markov model showed a reasonable 
agreement with actual data. 

 

Where to turn to 
Using experimental data generated with a closed loop tracker (Schulze et al., 2015), we observe 
differences in both casting amplitude and casting speed in the two states. Given that the 
dynamics of head casting differ in running and stopping, separate schemes are required to 
describe the casting amplitude of these two states: 

 
𝛿=(𝑑) = 	 c

𝛿=,@A<(𝑑) 𝑑𝑢𝑟𝑖𝑛𝑔	𝑟𝑢𝑛𝑠
𝛿=,*B7C(𝑑) 𝑑𝑢𝑟𝑖𝑛𝑔	𝑠𝑡𝑜𝑝𝑠	

	
𝛿=,@A<(𝑑) =

=5,/01
!13$7.

  

𝛿=,*B7C(𝑑) =
=5,,234
!13$7.

.	

(17) 

Here, we use a smooth approximation of the hard limit ramp function in ref. (Wystrach et al., 
2016). The parameter 𝜃6 can be viewed as a physical constraint on the maximum casting 
amplitude or head casting speed in running and stopping states. These constants were estimated 
to fit the physical constraints of the head casting speeds of real larvae. 𝛾 is a tuning parameter 
that governs the slope of the ramp and allows for differences in how the decision variable 𝑑 
modulates casting amplitude compared to stopping. The resulting head-casting speeds generated 
by our model were in agreement with real unstimulated larvae from the closed loop tracker. 
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Sensory Stimulus 

In the present section, we outline the models used to describe the stimulus presented to the larvae. 
In each experimental paradigm, we presented combinations of dynamic real odor gradients, with 
static virtual odor gradients and static temperature gradients. At each timestep, we assume that the 
larva receives a sensory input 𝐶<(𝑥<? , 𝑦<?) that is dependent on its head position {𝑥<? , 𝑦<?}	in the 
assay at timestep 𝑛.  

 

Odor 
Two different odors were used in experiments, 1-hexanol and ethyl butyrate. In each experiment, 
a small odor droplet was placed in an enclosed assay and gradually diffused over the course of 
three minutes. Since we observed changes in the behavioral response to the odor stimulus over the 
course of each experiment, we could not assume that the odor gradient was static. Hence, we 
modeled the evolution of an odor gradient as a diffusion process from a point source as outlined in 
ref. (Schulze et al., 2015). At timestep 𝑛, the solution to diffusion partial differential equation is: 

 
𝐶<(𝑥<? , 𝑦<?) = 	∫

D3.3/
(EFG<)8/"

𝑒&
/"

9:1
<
# 𝑑𝑛, (18) 

where 𝑟  denotes the Euclidean distance from the larva head to the odor source 𝑟 =

hi𝑥* − 𝑥<?j
" + i𝑦* − 𝑥<?j

"	 and 𝐽787@ is the flux of the odor droplet. 𝐷 is the diffusion coefficient 

of the odor droplet in air, which differs slightly between 1-hexanol and ethyl butyrate. These values 
were estimated using the method in ref. (Tucker & Nelken, 1990). 

 

Temperature 
The behavioral experiments feature a linear temperature gradient that varied from 𝑇HIJ =	167C 
to a maximum of 𝑇HKL =	307C  (aversive to larvae). For example, a temperature gradient 
increasing in the positive x-direction would be given by: 

 𝐶<(𝑥<? , 𝑦<?) = 𝑇HIJ + (𝑇HKL − 𝑇HIJ)(
/
"M
), (19) 

where 𝑅 is the radius of the arena. Under the rearing conditions of the experiments, larvae are 
drawn to the cooler end of this temperature range. 

 

Virtual Odor 
In the experiments with real larvae, we passed emitted light from a LED through an exponential 
filter to create a Gaussian source for optogenetic virtual odor experiments. This is modelled as: 

 
𝐶<(𝑥<? , 𝑦<?) = 𝐽9$N?B𝑒

& /"

"%", (20) 
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where r is again the distance to the source = hi𝑥* − 𝑥<?j
" + i𝑦* − 𝑥<?j

"	,  𝐽9$N?B  specifies the 

intensity of the light stimulus, and 𝛼 is the standard deviation of the Gaussian function. This 
mathematical fit is supported by measurements of the physical gradient using a photodiode. 

Sensory Threshold 
For experimental conditions involving real odors, we noticed that there was a slight delay in the 
behavioral response of real larvae at the onset of the experiment. Given that the odor source is 
introduced in the assay at the same time as larvae, we speculate that the lag in directed behavior is 
due to the time required for the odor to build up to detectable levels in the arena. To account for 
this effect, we introduced a sensory threshold parameter 𝛽 such that: 

 𝐶<(𝑥<? , 𝑦<?) = 0 𝑖𝑓	𝐶<(𝑥<? , 𝑦<?) < 𝛽. (21) 

For consistency, we included this threshold as a parameter to be optimized by the framework for 
all three sensory modalities. However, the effect is significant only for real odors. 

  

Stimulus to Percept 

For each sensory modality presented to the larvae, we assume that the resulting percept (internal 
intensity representation of the odor) is proportional to relative changes in stimulus strength (Adler 
& Alon, 2017). Thus, we assume that the perceptual response to the real odor, virtual odor, and 
temperature gradients will be of the form 𝑓(Δ𝐶/𝐶̅), where 𝐶̅ is the background signal level (see 
eq. (22) below). The validity of this relationship has been established in adult flies (Cao et al., 2016; 
Kadakia & Emonet, 2019) and it appears to hold for larval olfactory sensory neurons (OSN) that 
respond to a normalized form of the stimulus derivative (Gomez-Marin & Louis, 2012; Schulze et 
al., 2015). Although this feature has not been explicitly shown for thermosensation, there is 
evidence that the behavioral response to an absolute change in temperature increases the larger the 
deviation from preferred background temperatures (Klein et al., 2015). It was shown further that 
this process is mediated by cross-inhibition between warming cells and cooling cells (Hernandez-
Nunez et al., 2021), activated by positive and negative temperature gradients respectively, and a 
model was developed to show that the relative contributions of each corresponding signal towards 
behavior increased as larvae moved away from preferred temperatures. In our experimental 
paradigm, this would imply that a temperature change of Δ𝐶 = 17C at 𝑇HKL =	307C would trigger 
a stronger behavioral effect than an identical change of Δ𝐶 = 17C at the preferred temperature 
𝑇HIJ =	167C . We incorporate this perceptually in our agent-based model by rescaling the 
temperature signal as 𝐶 ←	𝑇HKL − 𝐶.  In our simulations, we compute the relative change in 
stimulus between two consecutive timesteps 𝑛, 𝑛 − 1 as the following: 

 𝑠< 	=
+1&+1$!

+̅
	. (22) 

We compute the background signal level as the midpoint between two timesteps, 𝐶̅	= +11+1$!
"

. To 
be able to compare signals from different sensory modalities and stimulus ranges, we define a gain 
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𝐺 associated with each sensory modality that represents the perceptual sensitivity of larvae. The 
perceptual (internal) representation of an odor cue, for example, is modelled as: 

 𝑠787@,< = 𝐺787@
+1&+1$!

+̅
	. (23) 

This quantity can be both positive and negative depending on the direction of the sensory gradient. 
As we do not explicitly model firing rates, we assume that this perceptual representation is encoded 
by different elements of the peripheral olfactory circuit of the larva. The exact mechanism is 
unknown; it is not accounted for in the agent-based model. 

 

Cue Combination 

Finally, we model the link between the sensory experience of the larva and its orientation behavior. 
The mode transitions and casting amplitudes of larva in our agent-based model are described as 
functions of a decision variable 𝑑< , which is dependent on some combination of the sensory 
modalities perceived by the larva. In subsequent sections, all variables are computed at timestep 𝑛 
and we drop the subscript to avoid cluttered notation (e.g. we refer to the decision variable as 𝑑	 ≡
𝑑<). We describe the combination of the two different sensory modalities 𝑠!, 𝑠" using the linear 
model: 

 𝑑 = 𝑤!𝑠! +𝑤"𝑠", (24) 

where 𝑤!, 𝑤" are weights associated with each cue. We hypothesize that larvae may have a bias 
for one sensory modality over another. Furthermore, we hypothesize that larvae are able to measure 
the reliability of individual signals when integrating multiple sources of information. We assume 
that the “reliability” of a sensory signal represented by a time series is inversely proportional to its 
variance 𝜎" (see below). Thus, we test three different plausible weighting strategies: 

 

1. Fixed Weights (FW): 

 𝑤! 	= 	𝑎 , 𝑤" 	= 	1 − 𝑎 (25) 

2. Shut Weights (SW):  

 
𝑤! 	= y1 𝑖𝑓	𝜎!" 	< 	𝜎""

0 𝑖𝑓	𝜎!" ≥	𝜎""
, 𝑤" 	= y0 𝑖𝑓	𝜎!" 	< 	𝜎""

1 𝑖𝑓	𝜎!" ≥	𝜎""
  (26) 

 

3. Variance Minimization (VM):  

 
𝑤! 	=

𝜎""

𝜎!" + 𝜎""
, 𝑤" 	=

𝜎!"

𝜎!" + 𝜎""
	 (27) 
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The first weighting strategy proposes that larvae combine cues with fixed preferences that 
are independent of the signal variance. The latter two strategies imply that larvae are also able to 
adapt their response according to the estimated variance of the sensory inputs, which has been 
demonstrated in previous studies (Gepner et al., 2018). The SW strategy assumes that larvae place 
absolute priority on the cue that is observed to be more reliable. The VM strategy is based on the 
optimal linear combination rule for minimizing the variance of the combined signal, given certain 
assumptions (Ernst & Banks, 2002). In the SW and VM models, we assume the larva accumulates 
sensory evidence over some time window as it navigates the environment and uses this to estimate 
the variability of each sensory modality. For simplicity, we assume that the variance is estimated 
through sampling as 

 
𝜎" =

1
𝜏 	 {

(𝑠[𝑖] − 𝜇	)"
<

$P<&Q

,	 (28) 

where µ	is the sample mean, and 𝜏 is the time sampling window, which was estimated as 𝜏 = 11𝑠 
for Or42a OSN activation and was shown to be similar in duration for other sensory modalities 
(Gepner et al., 2018). In the case of a real odor whose concentration is below the detection 
threshold, the odor would not be perceived as being present and hence the variance 𝜎 would be 
assumed to be infinite. This equation assumes that larvae integrate both the temporal variance of 
the sensory signal itself and self-motion induced spatial fluctuations due to continuous head casting. 
While it has been suggested that larvae may be able to filter sensory inputs in sync with the 
frequency of its own peristaltic motion (Gepner et al., 2018), it is unknown how this filtering adapts 
to motion as the rhythm of head casting is variable and not strictly coupled to peristalsis (Wystrach 
et al., 2016). Given that it is a weighting of the variances of both channels as ratios that is used to 
compute cue weights, we assume that the distortions in the estimated variation due to head casting 
are negligible compared to the true temporal variance of the sensory signal. 

 

Variance Minimization  

For model 3, the decision rule maximizes the reliability of the combined sensory modalities, with 
the assumption that both gradients originate from a single source (Ernst & Banks, 2002). Let 𝑠! 
and 𝑠" denote the observed cues for attraction from two different gradients, which can be congruent 
(if the two signs coincide, or incongruent, if the two signs are different). We assume that larvae 
associate the hedonic value of both gradients in an overall level of attraction, which we denote as 
𝑧. To decide whether to continue in a given direction of motion (heading) or to reorient, larvae 
infer the latent variable 𝑧 from the observed cues 𝑠! and 𝑠". The optimal estimate of the source of 
attraction 𝑧 can be obtained by applying Bayes rule: 

 𝑝(𝑧	|	𝑠!, 𝑠")𝑝(𝑠!, 𝑠") = 𝑝(𝑠!, 𝑠"|	𝑧)	𝑝(𝑧). (29) 
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Given that 𝑠! and 𝑠" are independent cues as their fluctuations are driven by different physical 
processes affecting distinct sensory modalities (we neglect joint odor fluctuations due to 
turbulence, as our assay is far from that regime), we have: 

 𝑝(𝑧	|	𝑠!, 𝑠")𝑝(𝑠!)𝑝(𝑠") = 𝑝(𝑠!|	𝑧)𝑝(𝑠"|	𝑧)	𝑝(𝑧). (30) 

Since 𝑝(𝑠!)  and 𝑝(𝑠")  do not depend on z, the variable of interest, we can treat them as 
proportionality constants: 

 𝑝(𝑧	|	𝑠!, 𝑠") ∝ 	𝑝(𝑠!|	𝑧)𝑝(𝑠"|	𝑧)𝑝(𝑧).	 (31) 

In addition, we assume that the prior 𝑝(𝑧) is flat at every time step, as experiments are performed 
in an environment that is new to the larvae and there is no evidence that larvae can form spatial 
memory from previous time steps. We assume that the cues 𝑠! and 𝑠" are normal random variables 
with variances 𝜎!" and 𝜎"". To obtain the optimal estimate of the source of attraction, we calculate 
the value of 𝑧 that maximizes the posterior probability (maximum a posteriori estimate): 

 
argmax

R
𝑝(𝑧	|	𝑠!, 𝑠") = 	

8
8R
	𝑙𝑛	[𝑝(𝑠!|	𝑧)𝑝(𝑠"|	𝑧)	] = 	

8
8R
	𝑙𝑛 �𝑒

&(,!$;)
"

")!
" 𝑒

&(,"$;)
"

")"
" 	� =

"(*!&R)
"-!"

+	"(*"&R)
"-""

= 0. 
(32) 

Rearranging, we have: 

 

𝑧 =
� 1𝜎!"

�	𝑠! +	�
1
𝜎""
�	𝑠"

� 1𝜎!"
� +	� 1𝜎""

�
= 	

𝜎""

𝜎!" + 𝜎""
	𝑠! +

𝜎!"

𝜎!" + 𝜎""
𝑠"	 (33) 

 

Reward Maximization  

An alternative strategy without assuming a common origin of the two sources is to maximize the 
expected reward by following each of the two gradients, where reward is defined as the probability 
that the larva is moving up-gradient. We use the same assumption that the cues 𝑠!  and 𝑠"  are 
Gaussian random variables with variances 𝜎!" and 𝜎"". Given any trajectory, the probability that the 
larva is travelling up-gradient for each of two modalities is 𝛷 S*!

-!
T and 𝛷 S*"

-"
T, where 

 𝛷(𝑥) = !
√"F	

∫ 𝑒&
<"

"
/
&S		 𝑑𝑥	, (34) 

is the standard normal cumulative density function. Assuming that there is an equal preference for 
reaching either source, the reward of continuing at the current heading is the sum of the 
probabilities of travelling up-gradient in each of the two sources  
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 𝑧 = 𝛷 S*!
-!
T + 	𝛷 S*"

-"
T	. (35) 

Conversely, the reward of stopping and reorienting is 

 𝑧′ = (1 − 	𝛷 S*!
-!
T) +	(1 − 𝛷 S*"

-"
T)	. (36) 

The optimal decision that maximizes reward is therefore to continue at the current heading if 𝑧 >
𝑧′, and to reorient otherwise. We implement this at the motor level in the agent-based model by 
defining the decision variable as the reward 𝑑 = 	𝛷 S*!

-!
T + 	𝛷 S*"

-"
T	,	so that the agent will have a 

low probability of stopping if 𝑑 is large, and will have a high probability of stopping in the opposite 
case. 

Comparing 𝒑 = 𝟏 (Reward-Maximization) and 𝒑 = 𝟐 (Variance-
Minimization) rules 

To compare these two strategies, we make several approximations. For maximizing reward, we 
make the following approximation given 𝜎! ≫ 𝑠! and 𝜎" ≫ 𝑠", 

 𝑑 = 𝛷 S*!
-!
T + 	𝛷 S*"

-"
T 	≈ 	 *!

-!
+ *"

-"
	. (37) 

Note that this approximation is identical to eq. (7) in the derivation of the parameter-free model. 
The 𝑝 = 1 rule corresponds to Reward Maximization. For maximizing reliability, we obtain a 
different decision variable, namely 

 
𝑑 = 	

𝜎""

𝜎!" + 𝜎""
	𝑠! +

𝜎!"

𝜎!" + 𝜎""
𝑠"	 

∝ -!"1-""

-!"-""
S -""

-!"1-""
	𝑠! +

-!"

-!"1-""
𝑠"T = 		

*!
-!"
+ *"

-""
.	   

(38) 

The combination rule with 𝑝 = 2  corresponds to Variance Minimization. In general, we can 
embed both rules into a single rule with free parameter 𝑝 as 

 𝑑 = -!
41-"

4

-!
4-"

4 (
-"
4

-!
41-"

4 	𝑠! +
-!
4

-!
41-"

4 𝑠") =		 *!
-!
4 +

*"
-"
4. (39) 

In our simulations, we will optimize the free parameter 𝑝, as well as compare the 𝑝 = 1 and 𝑝 =
2 rules. We propose to call 𝑝 the bimodal-contrast parameter. 

Noise 

As we propose that larvae are sensitive to the variance of sensory inputs, an important aspect of 
this model is to account for noise in the sensory signal. We model noise as Gaussians 𝜂 with zero-
mean.	For generalizability, we consider noise added at several stages of the flowchart (Figure S4E): 

1. Additive external sensory noise: 𝐶< +	𝜂3/B	 
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2. Additive internal sensory noise: 𝑠< +	𝜂$<B 
3. Decision noise: 𝑑 +	𝜂8 

The first is additive external noise 𝜂3/B that does not scale with the sensory input. This may 
be more prominent in experimental paradigms with virtual odor gradients for example, where the 
noise might result from fluctuations in the action of the LED light on the light-gated ion channel 
(Chrimson (Klapoetke et al., 2014)). The fixed amplitude light flashes used to perturb the larvae 
in experimental paradigms with noise can be also modelled with this approach.  

The second is additive internal sensory noise 𝜂$<B due to the assumption that larvae perceive 
relative changes in stimulus in the agent-based model. Noise that scales with the sensory input 
would be more plausible for experimental paradigms with real odors, as the fluctuations in odorant 
molecules tend to fluctuate according to a Poisson distribution, resulting in noise that is dependent 
on odor concentration. 

The third is decision noise, which models the inherent stochasticity of larvae behavior in its 
mode transitions and variability in casting amplitudes. In our model, we have found similar 
predictions when incorporating all levels of noise (1 + 2 + 3) and the reduced scheme (2 + 3). 
While the quality of the predictions may change, we find that the hierarchy of the performance of 
the weighting strategies does not change with the variations in the framework. This is illustrated 
in the comparison of AIC and BIC in Figure S5F.  

 

Optimization Framework 

Below is a list of constants used to model larva motion in the simulations: 

Parameter Value 

Run velocity 𝑣 1.3 mm/s 

Larva length  𝑙 3.86 mm 

Run transition constant 𝑐@A< 1.46 

Stop transition constant 𝑐*B7C 0.16 

Maximum casting amplitude during runs 𝜃6,@A< 0.75 rad/s 

Maximum casting amplitude during stops 𝜃6,*B7C 2.93 rad/s 

Variance sampling time window 𝜏 11 s 

Decision noise 𝜂8 0.32 
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These parameters model the movement patterns of foraging 3rd instar larvae in the absence of 
any stimulus recorded at high spatio-temporal resolution with the closed-loop tracker from ref. 
(Schulze et al., 2015), and are assumed to be constant across all experimental conditions. The run 
velocity 𝑣 and larva length 𝑙 were chosen to match the mean observed in wildtype w1118 larva (n 
= 100 larvae). The parameters 𝑐@A<, 	𝑐*B7C, 𝜃6,@A<, 𝜃6,*B7C, and 𝜂8 were fit using maximum 
likelihood estimation as illustrated in Figure S5A-D. The variance sampling time window 𝜏 was 
estimated based on the timescale of variance adaptation in (Gepner et al., 2018).  

For each experimental paradigm, there are four free parameters associated with each of the two 
sensory modalities (unimodal conditions): 

• 𝜂$<B: Internal additive noise 
• 𝐺: Perceptual gain 
• 𝛾: Sensitivity to Turning 
• 𝛽: Sensory threshold 

Each experimental paradigm has a unimodal condition with each sensory modality presented 
independently and then a bimodal condition with both sensory modalities presented at the same 
time. Our approach is to use the data from the unimodal conditions to fit the free parameters of our 
model, and then use the data from bimodal conditions to evaluate the goodness of fit of the different 
weighting strategies. Therefore, there are a total of eight free parameters for each experimental 
paradigm – one set of four parameters for each unimodal condition. We consider the signal and 
noise of each sensory modality regardless of the test condition (unimodal, bimodal), but we assume 
that the signal-to-noise ratio is what allows the larva to determine whether a stimulus is present or 
whether the larva is only perceiving white noise. 

To evaluate the goodness of fit of our models, we compared the preference index and the spatial 
distributions between the experimental data and the simulation.  

• Preference Index: The preference index (PI) is the fraction of larvae on the preferred side 
of the arena. The error in the preference index is given by computing the mean squared 
error between the simulated PI and the experimental PI at different intervals over the course 
of the experiment. 

• Spatial Distribution: We use the Kullback-Leibler (KL) divergence to compare the error 
between the simulated and experimental spatial distributions over the entire course of the 
experiment. The X and Y dimensions are considered separately when computing the KL 
divergence. 

Because the preference index only measures the fraction of larvae that are on the preferred side of 
the arena, we find that the spatial distributions give a more accurate representation of the quality 
of fit. All parameter fitting was performed using the Global Optimization Toolbox in MATLAB. 
Below is a list of the median parameter values for each experiment across different tested bimodal 
contrast coefficients 𝑝: 
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Experiments Parameters 

Gradient 1 Gradient 2 Orientation 𝑮𝟏 𝜼𝒊𝒏𝒕,𝟏 𝜷𝟏 
 

𝑮𝟐 𝜼𝒊𝒏𝒕,𝟐 
 

𝜷𝟐 
 

𝜸 

Odor 

(1-hexanol) 

Odor 

(ethyl butyrate) 
Congruent 4.90 0.13 0.28 5.75 0.18 0.68 1.09 

Virtual odor 
Odor 

(ethyl butyrate) 
Congruent 3.78 0.47 5.54 4.90 0.26 0.56 1.05 

Temperature 
Odor 

(ethyl butyrate) 
Congruent 7.06 0.37 2.23 6.70 0.24 0.27 0.98 

Temperature 
Odor + noise 

(ethyl butyrate) 
Congruent 7.06 0.37 2.23 6.70 0.40 0.27 0.98 

Temperature Virtual odor Congruent 2.00 0.55 5.10 2.75 0.57 5.13 1.20 

Virtual odor 
Odor 

(ethyl butyrate) 
Conflict 4.01 0.33 5.03 6.33 0.23 0.29 0.97 

Temperature 
Odor 

(ethyl butyrate) 
Conflict 5.46 0.26 2.88 6.62 0.15 0.18 0.96 

Temperature 
Odor + noise 

(ethyl butyrate) 
Conflict 5.46 0.26 2.88 6.62 0.45 0.18 0.96 

 

Simulating Wall (Boundary) Conditions 

Since the arena is small, one last component of our model is accounting for larvae behavior at the 
edges for the arena. We noted that a significant fraction of larvae remained close to the arena 
boundary (its wall), particularly in conditions with a linear temperature gradient. We considered 
several possibilities if a larva’s path is obstructed by the arena wall (Figure S4D): 

1. The larva remains stationary in a stopping state as long as its position at the next timestep 
is outside the bounds of the arena. 
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2. The larva moves tangent to the edge of the arena at a velocity 𝑣38N3 = cos(𝜓) 𝑣, where v 
is the larva’s original speed, and ψ is the angle between the larva’s heading direction and 
the direction tangent to the arena. 

3. The larva “bounces” off the edge of the arena at the angle of incidence (ballistic collision 
model). 

Through numerical simulations, we found that the first approach is the closest representation of 
the behavior observed in our experimental data based on the stopping statistics of larvae at the 
boundary. 

Fraction-at-Source and Reward Metrics 

The “Fraction at Source” is defined as the number of larvae within bounded regions near the peak 
of the gradients divided by the total number of larvae: 

 Fraction	at	Source = 	 Y'0=
Y'0=1Y13'0=

. (40) 

For odor configurations, this bounded region is defined as an area within radius 𝑟 of the source. 
For temperature configurations, the bounded region associated with the comfortable (targeted) 
temperature is any location 𝑥 < 𝑟, where 𝑥 = 0 corresponds to the leftmost, coolest side of the 
arena. The radius 𝑟 was chosen such that the areas of the bounded regions were identical for both 
odor and temperature configurations (𝑟 = 1.8𝑐𝑚). The “reward” for each sensory modality is 
defined as the mean perceived sensory experience of all larvae relative to the peak sensory 
experience in the arena. In the bimodal condition, the reward is calculated as the average reward 
across both sensory modalities. For 𝑁Z number of sensory modalities, the reward is given by:  

 
Reward =

1
𝑁Z
{

𝐶H2KJ,Z 	− 	𝐶HIJ,Z
𝐶HKL,Z −	𝐶HIJ,Z

,

Y>

ZP!

 (41) 

where 𝐶H2KJ,Z is the mean sensory experience of all larva for sensory modality 𝑗, while 𝐶HIJ,[ and 
𝐶HKL,[	denote the least and most preferred sensory experience in the arena respectively for sensory 
modality 𝑗.  

Model Selection with AIC/BIC 

The prediction error for the AIC/BIC (Akaike, 1998; Schwarz, 1978) was computed for the 
Variance Minimization rule across all bimodal experimental paradigms: 

 𝐴𝐼𝐶 = 2𝑘 − 2 lni𝐿¤j	 

𝐵𝐼𝐶 = 𝑘	ln(𝑁) − 2 lni𝐿¤j	. 
(42) 

Where 𝑘  is the number of model parameters, 𝑁  is the number of simulated larvae for each 
experimental paradigm, and 𝐿¤  is the likelihood function given the actual observed spatial 
distributions of larvae. In each model variant, one component of the model was added/removed, 
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and the model parameters were re-optimized. The resulting prediction error was then compared to 
that of the final model. All variations of the model resulted in a higher prediction error, as shown 
in Figure S5F.     
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