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Abstract:

Many sensory systems have evolved to optimally combine signals from multiple sensory
modalities to improve perception. While theories have been proposed to explain how this process
is accomplished through probabilistic inference using large neural populations in vertebrates,
how animals with dramatically smaller nervous systems such as the Drosophila melanogaster
larva achieve multisensory combination remains elusive. Here, we systematically characterize
larval navigation in different configurations of odor and temperature gradients with
optogenetically-controlled noise. Using a data-driven agent-based model, we find that larvae
adapt to the reliability of individual sensory signals, and in some cases minimize the variance of
the combined signal. Besides firmly establishing that probabilistic inference directs natural
orientation behaviors in the Drosophila larva, our results indicate that the exact mechanism
underlying the combination of sensory information may be modality-dependent. By underscoring
that probabilistic inference is inherent to insect nervous systems, our work opens the way for
studying its neural implementation.
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Introduction

When confronted with an ever-changing and often perilous environment, how an organism
behaves in response to uncertain and incomplete sensory information can be a matter of life and
death. Besides the need to assess individual sensory signals accurately, sensory systems must
also be able to integrate signals from multiple sensory modalities (e.g. visual, auditory, haptic),
some of which may produce conflicting information. This task of “multisensory cue
combination” has therefore been the focus of many studies, particularly in psychophysics, to
characterize its implementation in different organisms and to evaluate whether these solutions
are optimal from a probabilistic point of view (Knill & Pouget, 2004).

One mechanism adopted by organisms to integrate noisy (fluctuating) information arising
from different sensory modalities is to prioritize signals based on their relative uncertainty
(variance) by using a principle of Bayesian inference. This strategy has the advantages of
allowing adaptation to sudden changes in the environment, permitting the filtering of irrelevant
information (noise), and improving the signal-to-noise ratio of the combined signal. In humans,
for example, the visual-haptic estimation of the height of an object is close to optimal and closely
matches the Bayesian estimate (Ernst & Banks, 2002). Similar results have also been observed
for other tasks in humans (Hillis et al., 2004), as well as in primates (Gu et al., 2008). To a lesser
extent, recent evidence indicates that insect brains may also be capable of implementing similar
strategies of cue combination, for example in the integration of directional information in ants
(Sun et al., 2020; Wystrach et al., 2015). In addition, the neural integration of multisensory cues
has been studied in the adult Drosophila and it has been shown that flies are able to dynamically
adjust their response to conflicts between visual, olfactory and airflow cues (Currier et al., 2020).

Although the neural implementation of cue combination is not well-understood, various
theories speculate about how neural ensembles can implement probabilistic inference (Jordan et
al., 2021; Ma et al., 2006). While certain theories require neuronal populations to encode
probabilities and information about signal variance (Ma et al., 2006), others suggest the
possibility of encoding variability through synaptic plasticity in single neurons (Jordan et al.,
2021). Further characterizing multisensory cue combination in a comparatively simple model
organism like the Drosophila larva is advantageous, not only to reveal how strategies evolve
through development, but also to delineate the minimal complexity required to mechanistically
implement strategies of multisensory-cue combination (Berck et al., 2016).

While it has yet to be shown how the Drosophila larva implements cue combination in
natural conditions, previous studies have examined how turns are triggered in the Drosophila
larva in response to the combination of aversive light input and attractive virtual odor input
(Gepner et al., 2015, 2018). In the first study, a computational model that describes the basic
transformation of sensory input into turning decisions was built to investigate the sequence of
mathematical operations combining multi-modal inputs (Gepner et al., 2015). In subsequent
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73 work, a modified version of the same model was used to establish that signals triggering turns
74  adapt to the variance of the individual multi-modal sensory inputs (Gepner et al., 2018). In the
75  present work, we investigate whether this form of variance adaptation fits into traditional cue

76  combination models as observed in other animals and dissect how the mechanism underlying the
77  combination of multi-modal inputs contributes to the overall navigational strategy of the larva.
78  Specifically, we investigate how the Drosophila larva responds to gradients of two independent
79  odors, as well as the combination of an odor and a temperature gradient. While chemotaxis and
80  thermotaxis have been studied extensively in the larva (Klein et al., 2015; Louis, 2020; Luo et
81 al., 2010), little is known about how unimodal navigational mechanisms contribute to navigation
82  in unison.

83 Experimentally, we investigate combinations of thermotactic and olfactory (real and

84  virtual) stimuli in scenarios where cues are directionally similar (congruent) or in opposing

85  (conflicting) directions. Furthermore, we test conditions where noise is added optogenetically to
86  the peripheral olfactory system to study how the combination of multisensory cues adapts to

87  changes in the variance of individual sensory inputs. To capture the precise reorientation

88  mechanisms and navigational behavior of larvae in these scenarios, we built a data-driven agent-
89  based model inspired by Wystrach et al. (2016) that represents both turn rate and turning

90  direction, and models how different sensory inputs are processed and transformed into

91  behavioral outputs. Using this agent-based framework, we tested and simulated different

92  experimental paradigms to narrow down the set of plausible mechanisms for multisensory cue
93  combination in the Drosophila larva through a process of elimination. With this approach, we
94  explore computationally how larvae use signal variance to weigh and combine unreliable sensory
95  information from multiple modalities. Using our agent-based model, we conduct a perturbative
96  analysis to characterize the modulatory impact of cue combination on individual aspects of the
97  control of locomotion underlying sensory navigation.

98 Motivated by a need to go beyond cue-combination models that specifically estimate the
99  properties of a single object (e.g., the width of a bar, (Ernst & Banks, 2002)), we explore
100  different notions of optimality related to sensory navigation in response to realistic
101  configurations of multimodal gradients. Through a generalized formalism of cue-combination
102  strategies, we define a bimodal contrast coefficient that represents the degree to which signal
103 variance is prioritized over the value (reward) of individual signals in the combination of
104  multimodal sensory inputs. In addition to the observation that larvae are near-optimal in both
105  formalisms, we find that their cue-combination strategy can adapt depending on the nature of the
106  sensory information available to the animal.

107

108
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109 Results
110

111  An experimental assay to quantify multisensory combination in the larva

112 A behavioral assay was developed to study larval navigation in spatial gradients of temperature,
113 areal odor, and a virtual odor induced optogenetically by expressing Chrimson in genetically-
114  targeted olfactory sensory neurons (OSNs). Red light elicited virtual-odor stimulations in the
115 Or67b-expressing OSN which is not activated by ethyl butyrate (Kreher et al., 2008; Si et al.,
116  2019)., the real odor used in this study. As a result, the real and virtual odor activated a distinct
117  and independent set of OSNs. In each experiment, larvae at the third developmental instar were
118  uniformly distributed in groups of 10 individuals near the center of a circular behavioral arena
119  coated with agarose (Figure 1A). The motion of the group of larvae was video-monitored during
120 exposure to single or combined sensory gradients. The trajectories of larvae in the arena were
121  then extracted using a custom image processing and tracking software. Larvae were analyzed
122 individually as, given the low density of animals, group effects were found to be negligible in the
123 context of these gradients (see ‘Materials and methods”).

124 In conditions where single gradients were presented, which we will refer to as unimodal
125  conditions, larvae navigate unimodal odor, virtual-odor, and temperature gradients by locating
126  the “source”: the region associated with the highest concentration of the attractive odor or the
127  most comfortable temperature in the arena. When placed near the center of the arena, larvae

128  innately navigated to the location of highest odor concentration, highest virtual-odor intensity, or
129  the location with the most preferred temperature, which was slightly higher than 16°C in our
130 experimental conditions (Figure 1B). In the range of temperatures used in the present work,

131  larvae demonstrated robust thermotaxis down temperature gradients toward the coolest region of
132 the arena.

133 In situations where two gradients are presented at the same time, which we will refer to
134 as bimodal conditions, we initially arranged the gradients in congruent configurations such that
135  both sources were on the same side of the arena with colinear gradients. At the start of the

136  experiment, larvae were placed near the center of the arena and over time distributed in a way
137  similar to the unimodal conditions. Notably, larvae in bimodal conditions demonstrated

138  improved performance in navigating towards the congruent sources compared to the unimodal
139  conditions. For example, the attraction towards the source increased upon combination of an
140  odor and a temperature gradient (Figure 1C). This result is quantified by the preference index,
141  which is the fraction of larvae on the targeted side of the arena (i.e. odor source or preferred

142 temperature) as a function of time:

143

Ncue (t)

PO = N + Nogene O ()

144

145  Sluggish larvae displaying an average speed lower than 0.1 mm/s are excluded from the

146  preference index calculation to avoid counting inactive outliers sitting near the starting location.
147  For convenience of notation, we omit the time variable t and simply refer to the preference index
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148  as the PI in the rest of the text. We observed a similar improvement in preference index across
149  all other experimental paradigms with congruent gradients of two distinct odors, a real odor and
150  avirtual odor, as well as a virtual odor and temperature (Figure S1, S2).
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153  Figure 1. Assay to identify how larvae navigate unimodal (single) and bimodal (combined)
154  gradients. (A) Schematic of the behavioral assay, which features gradients of real odor,
155  optogenetically-induced virtual odor, and temperature. (B) Representative trajectories of third-
156 instar wild-type (w'’’®) larvae responding to the combination of an odor and a temperature
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157  gradient over a period of 3 minutes. (C) Behavioral response of wild-type larvae to the individual
158  odor and temperature gradients and both odor and temperature combined (Odor: Ethyl butyrate,
159 10 M; Temperature range: 16-30°C). Larvae were tested in groups of 10 individuals (Odor: n =
160 27 groups of 10 larvae; Temperature: n = 35; Combined: n = 27). In all subsequent figures, the
161  shaded regions around the preference index curves represent the error bars of the SEM. The
162  asterisks indicate that the preference index of the combined condition was significantly higher
163  than the preference indices of either unimodal condition (after the first minute of the experiment),
164 as assessed using a t-test (p < 0.025 upon Bonferroni correction). Also illustrated are the
165 overlayed spatial distributions of larvae for each condition at 60, 120, and 180 s (top), and the
166  spatial distributions for each individual condition at 180 s (right).

167

168 A coarse-grained model suggests that larvae account for cue uncertainty when
169 combining multimodal cues

170 To characterize how heightened attraction emerges from the combination of olfactory and

171  thermosensory cues in congruent gradients, we started by developing a parameter-free theoretical
172 model using the principle of Bayesian inference to estimate the probability distribution of the

173 positions of individual larvae in the arena (see section Parameter-Free Model in Supplementary
174 methods). The model predicts that the weighting of the information from different gradients is
175  dependent on the uncertainty associated with each gradient. As described in the Supplementary
176  methods, this coarse-grained model estimates the PI of the response to the combined-gradient
177  condition based on the PI of the corresponding unimodal conditions PI; and Pl,:

PI, X PI, )
Pl; X PI,+(1 —PIy) X (1-PIy) ° 2

P11+2,M0del =

178

179 As shown in Figure 2B, we found that the parameter-free model reproduces the behavioral
180  improvement observed in the experimental preference index for the congruent temperature and
181  odor gradient presented in

182  Figure 1C. In addition, we applied the parameter-free model to predict the behavior of larvae

183  tested in congruent gradients featuring two real odors (Figure 2A), a real and a virtual odor, a
184  real odor and temperature, or a virtual odor and temperature (Figure S3). In all four experimental
185  conditions, the results of the model were in excellent qualitative agreement with the behavior
186  elicited by congruent bimodal gradients, suggesting that real larvae use probabilistic inference to
187  combine sensory information.

188

189  Building an agent-based model to characterize how the combination of
190  sensory cues directs navigation

191  To analyze the plausibility of different mechanisms of sensory combination and dissect the
192  control of individual reorientation maneuvers, we developed an agent-based model that offers a
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more realistic description of larval navigation in response to both unimodal and bimodal
conditions (Figure 3A). The starting point of our agent-based model is an existing mechanical
model of chemotaxis in the Drosophila larva (Wystrach et al., 2016), which provides a general
framework for describing orientation (“taxis’) behavior elicited by unimodal stimuli. Based on
evidence that larvae display continuous lateral oscillations of the anterior body segment during
peristalsis, the agent-based model established that a direct sensory modulation of the oscillation
amplitude of head-casts could reproduce many signatures of chemotaxis observed in larvae.

A B

. B PI,PI,
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Figure 2. Comparison of experimentally-observed combined preference indices with a coarse-
grained parameter-free model for different configurations of congruent gradients. In both
configurations, no significant difference exists between the final (180s) preference indices of the
experimental data and the parameter-free model (t-test, p > 0.05). For the full comparison of all
congruent gradients tested, see Figure S3. (A) Odor + odor (odor 1: 1-hexanol, 102 M, n = 20;
odor 2: Ethyl butyrate, 10°M, n = 26; Combined: n = 19). (B) Temperature + odor, as outlined in
Figure 1C.

As detailed in the Agent-based Model section of the Supplemental methods, we adapted
the model of Wystrach et al. (2016) based on the quantification of our behavioral data to account
for a multimodal setting by capturing more closely how different sensory gradients are perceived
by the larva, and then by modelling how graded information from two different sensory
modalities are combined to drive reorientation maneuvers. In our expanded agent-based model,
Drosophila larvae alternate between straight runs and directed turns. The alternation between
these two behaviors is modulated by the detection of temporal increases or decreases in sensory
input. Active sensing is achieved primarily through lateral movements of the head, which
assesses the local environment to reorient toward the direction of the gradient. To achieve a
realistic representation of the sensorimotor control of larval navigation, we incorporated
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219  behavioral mechanisms to describe both how larvae determine when to initiate a turn and where
220  to turn to.

221 In the model developed here (Figure S4A), the larva is represented as a single segment
222 from its midpoint to its head — the body segment from the tail to the midpoint is assumed to
223 passively follow the head segment, which is reasonable in first approximation. The agent-based
224 larva may be in one of the following two states: running, where the larva moves at a fixed speed
225  in the direction of its head segment while making small adjustments to its heading, and stopping,
226  where the body segment is stationary but the body segment is free to rotate around the midpoint.
227  The behavioral state of the agent-based larva is updated in discrete time steps. At each time step,
228  the head segment alternates between rotations on the left and the right side of the body axis to
229  mimic the active sampling of sensory conditions surrounding the head. At any given timestep n,
230  the larva perceives the sensory input C, given by the intensity of the stimulus detected at the tip
231  of the head segment where the olfactory organs are located.

232 In each experimental paradigm, we simulated the behavior elicited by combinations of
233 real-odor gradients with static virtual-odor gradients or static temperature gradients (Figure 3B).
234 While the profiles of the virtual-odor gradients created with a LED and temperature gradients
235  created with a Peltier element were stationary, the real-odor gradients were created by placing an
236  odor droplet on the side of the source. To simulate the dynamics of the odor gradient during the
237  course of an experiment, we used a biophysical model for the odor diffusion introduced in

238  previous work (Schulze et al., 2015) (see Sensory Stimulus section of the Supplemental methods
239  and Supplementary Video 2).

240 For each sensory modality presented to the larva, we hypothesized that the resulting

241  percept —the internal representation of the odor— is proportional to relative changes in stimulus
242 strength (Adler & Alon, 2017). More specifically, the model assumes that the perceptual

243 response to the real-odor, virtual-odor, and temperature gradients will be of the form f(AC/C),
244 where C is the background signal level and AC is the signal difference (Figure 3C). This sensory
245  property is equivalent to Weber law, which has been established in the peripheral olfactory

246  system of the adult fly (Cao et al., 2016; Gorur-Shandilya et al., 2017; Kadakia & Emonet,

247  2019). We assume that the larval olfactory system detects relative changes in odor concentration,
248  which is supported by the response properties of larval OSNs (Gomez-Marin & Louis, 2012;

249  Schulze et al., 2015) and the apparent concentration-invariance of reorientation maneuvers

250  (Gomez-Marin & Louis, 2012). For temperature, we make the assumption in our agent-based
251  model that the larva perceives relative changes zeroed at the maximum temperature of the

252  behavioral assay (i.e. C « T« — C). This results in a perceptual response that increases as

253  larvae move away in a temperature gradient from preferred temperatures. Although the

254  sensitivity of the thermosensory system to relative changes has not been explicitly demonstrated,
255  there is evidence that the magnitude of the behavioral response scales with the difference in

256  temperature relative to the deviation from preferred background temperatures (Hernandez-Nunez
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257  etal, 2021; Klein et al., 2015). In our simulations, we computed the relative change in stimulus
258  between two consecutive timesteps n — 1 and n as the following variable:

_AC_ Cp—Cp—q

5y = 88 = Enlns, 3)

CntCn—1
r—
260 At every time step of the stimulations, the information collected by the two different sensory

259  The background signal level C is computed as the midpoint between two timesteps, C =

261  modalities s; and s, is combined in a decision variable d by using the linear model:

d :W1 Sl+W252,
“4)
262  where w; and w, are weights associated with each cue. Using the model, we examine the three
263  most common weighting strategies, each representing a qualitatively different approach to cue
264  combination:

265 1. Fixed Weights (FW):
266 2. Shut Weights (SW):
(1 ifof < o2 (0 ifof < oZ
W1 _{ o 2 2 o+ W2 _{ ) 2 6)
0 ifof=o; 1 if of = oy
267
268 3. Variance Minimization (VM):
2 2
03 01
= —— B = 7
" i + o7 W2 af + o7 )
269

270  The Fixed-Weights (FW) strategy (Negen et al., 2019) proposes that larvae combine cues with
271  fixed preferences that are independent of the signal variances o and ¢Z. The latter two

272  strategies imply that larvae are also able to adapt their response according to the estimated

273  variance of the sensory inputs accumulated over a time window (for numerical implementation,
274  see Supplementary methods), as established in a previous study (Gepner et al., 2018). Being
275  sensitive to the reliability of sensory inputs is a hallmark of probabilistic inference, a powerful
276  form of computation when dealing with inputs subject to sensory uncertainty. The Shut-Weights
277  (SW) also known as Winner-Take-All strategy (Bresciani et al., 2006; Welch & Warren, 1980)
278  assumes that larvae place absolute priority on the cue that is observed to be more reliable and
279  suppresses the weakest one. The Variance-Minimization (VM) strategy is a linear combination
280  rule that minimizes the variance of the combined signal (Ernst & Banks, 2002). By considering
281  the validity of these three cue-combination strategies for different sensory modalities, we can
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282  examine whether variance adaptation is present, and then test the degree to which variance
283  modulates cue combination of multimodal signals.

284 Finally, the transition rates between the two states, running py,,, and stopping Psop,

285  (“when to stop”) and the amplitude of head casts 8y (“where to turn to”) are described as

286  functions of the decision variable d using a generalized linear model (Figure 3E, see

287  supplemental methods). The transition probabilities between states and the amplitude of

288  orientation maneuvers are modulated adaptively based on whether the perceived stimulus is
289  attractive (d > 0) or aversive (d < 0). The direction of head casts alternates at every time step as
290  proposed in Wystrach et al. (2016).

A Agent-based model

Sensory Sensory Cue Behavioral
input processing combination output
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2901
292 Figure 3. Outline of agent-based model for Drosophila larval navigation and set of plausible cue-

293  combination models. (A) The different stages of the agent-based model are represented in a
294 flowchart from sensory input to behavioral output. The illustration depicts the sensory experience

10
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295  during a left head cast in an odor and a temperature gradient. (B) Gradients presented in each
296  experimental paradigm can be congruent (co-linear) or conflicting (90-degree angle). (C) Sensory
297  inputs are processed individually with the assumption that the resulting perceptual cue is
298  proportional to relative changes in stimulus strength. (D) The perceptual cues from each sensory
299  modality are combined as a weighted linear combination, with weights dependent on the cue
300  combination rule. (E) The decision variable determines the amplitude of head casts 5y (“where to
301  turnto”) and the probability of mode transitions p,,, pstop (‘When to stop”) of the agent larva.

302

303 Application of the agent-based model to explore how sensorimotor integration
304 is implemented in the Drosophila larva

305  The motor parameters of the agent-based model were first optimized to match the behavior of
306  freely foraging larvae. Motor parameters were fit to model the movement patterns of wild-type
307  (w!!%) larvae in the absence of any stimulus recorded at high spatio-temporal resolution with the
308 closed-loop tracker from (Schulze et al., 2015) and are assumed to be constants across all

309  experimental conditions. The constants derived from the parameter optimization to model larval
310  motion in the simulations are listed in Table 1 in the Supplementary methods.

311 The free parameters of the model associated with the multisensory stimuli from each

312 condition (noise, sensitivity) were fit by minimizing the Kullback-Leibler (KL) divergence

313  measured between the spatial distributions and preference indices of simulated and actual larvae.
314  This was achieved by comparing the simulations to actual experimental probability distributions
315  oflarvae at different time intervals. We fit the free parameters using the datasets from unimodal
316  conditions (Figure 4A-D). As part of this procedure, the variance associated with each signal was
317  computed using the time course of the stimulus experienced by the agent larva (see

318  Supplementary methods). We then tested each variant of the agent-based model using the three
319  most-common cue-combination rules (Figure 3D) in the combined condition (Figure 4E-F).

320  Based on a process of elimination, we observed that certain cue-combination rules matched the
321  data in some gradient configurations but not others. For example, Figure 4E shows a condition
322 where the experimental PI can be accounted for by the VM rule, but not the FW and SW rules.
323  Additional details about how the models were constrained to capture the behavior of real larvae
324  are provided in Supplementary methods together with Figure S4 and S5.

325 We experimentally tested different combinations and configurations of multimodal

326  gradients, including congruent gradients that point in the same direction and conflicting gradients
327  that point in different directions. The KL divergence was used to quantify the degree of

328  similarity between the spatiotemporal distribution of simulated larvae with that of real larvae. By
329  testing paradigms with a variety of gradient geometries, we concluded that the Fixed-Weights
330  model fails to predict behavior in conflicting gradients, such as a conflict between a virtual-odor
331  and areal-odor gradient, (Figure 5A). The Shut-Weights (SW) model underperforms the

332 Variance-Minimization (VM) model in congruent gradients as illustrated with the congruent

333 temperature and real-odor gradient shown in Figure 5B. By comparing the performances on all
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334 six experimental paradigms, the VM model gave the most consistent predictions of the three
335  candidate solutions (Figure 5C, bottom panel), even though it did not produce the best fit for all

336  conditions.
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337

338  Figure 4. Framework for parameter optimization and testing of the agent-based model for larval
339  navigation. (A) Sample simulations for the unimodal odor condition (Odor: Ethyl butyrate, 10 M)
340  after the free parameters associated with each condition were fit (n = 27). The preference index
341  of simulated larvae was similar to the actual preference indices of wild-type larvae for the entire
342 simulated odor condition (t-test, p > 0.05). The color bar above the plot indicates the significance
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343  of differences between the preference indices of the data and a given fit model. (B) The
344  histograms at 60s, 120s and 180s illustrate the spatial distributions of simulated agent larvae and
345  real larvae (gray) for the unimodal odor condition. (C) Sample simulations for the unimodal
346  temperature condition (Temperature: 16-30°C) after the free parameters associated with each
347  condition were fit (n = 35). The preference index of simulated larvae was similar to the actual
348  preference indices of wild-type larvae for over 80% of the duration of the simulated temperature
349  condition (t-test, p > 0.05). The color bar above the plot indicates the significance of differences
350 between the preference indices of the data and a given model. (D) The histograms of the spatial
351  distributions of simulated agent larvae (colored) and real larvae (gray) for the unimodal
352  temperature condition. (E) Predicted behavioral response of larvae to the combined odor and
353 temperature conditions for each cue-combination rule compared to the actual preference index
354 (n=27). The preference indices of the simulated Variance-Minimization (VM) and Fixed-Weights
355  (FW) strategies were indistinguishable with the data for over 90% of the entire time course (t-test,
356  p > 0.05), while the Shut-Weights (SW) strategy remained significantly different from the data
357  after the first minute of the simulation (t-test, p > 0.05). The color bars above the plot indicate the
358  significant difference between the preference indices of the data and each model. (F) Histograms
359  of the spatial distributions of simulated agent larvae (colored) and real larvae (gray) for the
360 combined odor and temperature condition.

361

362 Since the VM model combines information with cues that are weighted according to their
363  relative level of reliability (eq. (7)), this scenario suggests that larvae are capable of measuring
364  and processing the variance of their sensory inputs. To test this hypothesis, we experimentally
365 modulated the variability associated with the olfactory cue by optogenetically corrupting sensory
366  encoding in the olfactory sensory neuron (OSN) expressing the Or42a odorant receptor, which is
367  tuned to the fruity odor ethyl butyrate (Asahina et al., 2009; Kreher et al., 2008). As described in
368  the Materials and methods, the additive noise consisted in brief random flashes of light inducing
369  the transient depolarization of the Or42a OSN expressing Chrimson, while the OSN was

370  responding to the real-odor gradient. As expected, we observed that the chemotaxis of real larvae
371  was weakened when olfactory noise was added to the odor gradient. More surprisingly, we found
372  that thermotaxis improved as quantified by the PI when olfactory noise was added to the

373  detection of a temperature gradient in the absence of any odor gradient (Figure 6A). This

374  seemingly counterintuitive improvement in thermotactic performance illustrates that the weight
375  of each cue is defined by its relative level of reliability: as the noise level increases in the

376  olfactory channel, the reliability of the encoding of genuine dynamic changes due to the odor
377  gradient decreases. In eq. (7), we observe that an increase in g; produces an increase in w,

378 irrespective of the presence of any directional signal s;. Therefore, the injection of pure noise
379 into the olfactory system decreases the weight of this modality and enhances the salience of the
380  thermosensory information.

381
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Figure 5. Comparison of the model performances for three cue-combination rules across different
experimental paradigms. (A) Final distributions of larvae for each simulated cue-combination rule
in a conflicting virtual-odor and real-odor gradient (Virtual Odor: Or67b>Chrimson, Light 625nm;
Real Odor: Ethyl butyrate, 7.5 x 10°M) in comparison to actual Or67b-functional larvae (n = 20).
The FW strategy led to the poorest fit and was significantly different from both the SW and VM
strategies (t-test, p < 0.05). (B) Final distributions of larvae for each cue combination rule in a
congruent temperature and odor gradient (Temperature: 20-40°C; Odor: Ethyl butyrate, 10M) in
comparison to actual Or42a single functional larvae (n = 30). The SW strategy gave the least
accurate predictions and was significantly different from both the FW and VM strategies (t-test, p
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392 < 0.05). (C) Comparison of the goodness of fit, as measured by the KL divergence, for cue-
393  combination rules across all experimental paradigms (1-6). The predictions of the VM strategy
394  produced the closest goodness of fit on average to the data (overall), and the VM strategy was
395  significantly different to the FW and SW strategies (t-test, p < 0.05). Asterisks indicate significant
396 differences between each model to the best fitting model for each experimental paradigm.

397 To simulate the effects of the olfactory noise on the thermotaxis of agent-based larvae,
398  random disturbances in the activity of the Or42a OSN were modeled by the addition of an

399 internal Gaussian noise term to the olfactory signal (see Supplementary methods). In this

400 framework, numerical simulations established that only the VM model was able to qualitatively
401  capture an improvement in thermotactic performances upon injection of pure noise to the

402  olfactory channel (Figure 6B-C). This result strongly supports our hypothesis that the Drosophila
403  larva uses an uncertainty-weighted mechanism to integrate multimodal stimuli.

404  Two alternative strategies to navigate multimodal gradients optimally

405  Next, we asked whether the larval nervous system might have evolved to optimize other

406  objectives besides the reliability of each sensory signal to navigate multimodal gradients, and
407  how other strategies might compare to the VM rule (Figure 7). More specifically, we examined
408  whether the exact cue-combination strategy used by larvae is dependent on the nature of the
409  sensory modalities that are combined. Figure 7B illustrates how the VM rule combines a noisy
410  olfactory cue (blue, broader distribution) with mean s, and a less noisy temperature cue (red,
411  narrower distribution) with mean s, into the decision variable d. As a result of eq. (7), the

412  temperature cue has a higher weight than the olfactory cue since o; < g,.

413 An alternative objective that a larva could plausibly maximize during navigation is

414  reward. More concretely, we define reward as the probability that motion is directed toward a
415  direction favorable to the encounter of food (motion oriented up an odor gradient) or away from
416  the punishment of potentially noxious heat (motion down a temperature gradient). This strategy,
417  which we call Reward Maximization (RM), is illustrated in Figure 7A with the same two cues
418  configuration presented in Figure 7B. For each of the two cues, the probability that the gradient
419  is positive is equal to the cumulative probability that the cue is greater than zero. Given that the
420  experiments are set up by design for each gradient to be similar in attraction, we make the

421  modeling assumption that there is an equal preference for reaching either favorable sensory

422  condition — whether it is food at the peak of an odor gradient or a temperature range suitable to
423 development. Thus, the reward associated with the maintenance of an ongoing heading is the
424 sum of the probabilities of following a favorable gradient for each of the two modalities. As
425  shown in the Supplementary methods, the sum of these cumulative probabilities can be

426  approximated as the following decision variable:

_ O'1+0'2 () 041
d - 01072 X (0'1+0'2 sl + o1+03 52). (8)

427
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428  To facilitate a comparison with the reward maximization strategy, the VM rule can be rewritten
429  as:

2,2 2 2
_ o7 +0'2 () ()
d = o202 X (02+02 1+ o2+0? S2)- (9)
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430

431  Figure 6. Drosophila larvae adapt their orientation responses to the variance of sensory inputs.
432 (A) Or42a-functional larva navigated odor and temperature gradients while pure noise was
433 injected into the olfactory system via the Or42a neuron in the form of optogenetic light flashes.
434  The top graph compares the preference indices for larvae navigating a temperature gradient with
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435  and without olfactory noise (Temperature: 20-40°C; Olfactory noise injected through the Or42a
436 OSN with light flashes at 625nm, 11.15W/m?). The bottom plot compares the preference indices
437  for larvae in an odor gradient versus the same odor gradient with olfactory noise (Odor: Ethyl
438  butyrate, 10°M; Olfactory Noise: Or42a, Light 625nm, 11.15W/m?). The preference indices for
439  conditions with and without noise are significantly different from one another at the end of the
440  experiment as indicated by the asterisks (t-test, p < 0.05). (B) Actual and simulated response for
441 larvae in a temperature gradient based on the preference index. The FW, SW, and VM strategies
442  are all in agreement with the data for the entire duration of the simulation (t-test, p > 0.05). (C)
443 Actual and simulated response for larvae in a temperature gradient with olfactory noise based on
444  the preference index. The VM strategy is indistinguishable from the data for the entire duration of
445  the simulation (t-test, p > 0.05), but the FW and SW strategies are significantly different in the
446 latter half of the simulation (t-test, p < 0.05). The statistical significances of differences between
447  the data and each model are indicated by the color bars above the plots.

448

449  More generally, we note that the VM and RM rules can be written in the form:

14
(p+p 1+%52), (10)

D
0'1 +02

d_

450  where the value of p determines the exact decision rule used. We will hence also refer to the RM
451  strategy as the p = 1 rule and the VM strategy as the p = 2. Furthermore, the FW strategy can
452  be obtained by setting p = 0, while the SW strategy is obtained in the limit as p approaches

453  infinity. The decision variable of eq. (10) is generic: it captures a variety of cue-combination
454  strategies defined by the value of a parameter p called a bimodal-contrast parameter.

455  The decision rule applied by a larva is modality-dependent

456  For a congruent gradient with real odors, the simulated behavior of agent larvae directed by the
457  RM rule reproduced the behavior of real larvae more accurately than agent larvae implementing
458  the VM rule (Figure 7D). This is consistent with the initial results where we showed that the
459  multiplicative combination rule captured the combined PI and that its decision rule corresponds
460  tothe case p = 1 (eq. (7) in Supplementary methods). On the other hand, the VM rule was more
461  accurate than the RM rule to reproduce larval behavior for a conflicting gradient of odor and
462  temperature (Figure 7E). To generalize this analysis, we set out to compare the goodness of fit of
463  both of the RM and VM rules across all experimental paradigms considered in Figure 5. In

464  addition, we systematically computed the performances associated with specific cases of the
465  decision rule captured by eq. (10), with p = 1 representing the RM rule, p = 2 representing the
466 VM rule, and the FW and SW rules defining the lower and upper bounds as the value of p

467  approaches zero and infinity, respectively. By following this approach, we aimed to determine
468  whether the same rule produced the best fit with the behavior of real larvae for all experimental
469  conditions.
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By evaluating the goodness of fit of the simulations to the data for decision rules with
different values of p (Figure 7C), we made the striking observation that the decision rule applied
by real larvae may be dependent on the sensory modalities being combined. While experimental
paradigms combining odor and temperature gradients were on average best predicted by decision

rules with a value of the bimodal-contrast parameter p close to 2, experimental paradigms
combining two odor gradients had a goodness of fit curve that suggested the use of a decision
rules with a bimodal-contrast parameter close to 1.
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Figure 7. Exploring two different notions of optimality for navigation in sensory gradients. (A)
Visualization of the reward maximization (RM) rule (p = 1) combining two noisy signals. (B)
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480  Example of the variance minimization (VM) rule (p = 2) combining a noisy odor signal (blue) and
481 aless noisy temperature signal (red). (C) The goodness of fit across experimental paradigms to
482  decision rules with different non-integer values of p. (D) Final distributions of larvae in a congruent
483  odor and odor gradient (Odor 1: 1-hexanol, 102M; Odor 2: Ethyl butyrate, 10*M) for the simulated
484 RMand VM rules in comparison to actual wild-type larvae (n = 19). (E) Final distributions of larvae
485 in a conflicting temperature and odor gradient (Temperature: 20-36°C; Odor: Ethyl butyrate, 2.5
486  x 10™*M) for the simulated RM and VM rules in comparison to actual Or42a-functional larvae (n =
487  20).

488 To understand why Drosophila larvae may use different cue combination strategies

489  depending on the environmental context, we turned to numerical simulations. We quantified how
490  well agent larvae navigated toward favorable gradients using each strategy. To compare how the
491  p = 1 rule (equivalent to RM) performed with respect to the p = 2 rule (equivalent to VM), we
492  defined two additional metrics quantifying larval behavior to explore and reveal the nuances

493  between the two strategies (Figure 8 A-B). The first is “Reward”, which would presumably be
494  maximized under the p = 1 rule; the second is “Fraction at Source”, which is a generalization of
495  the PI beyond congruent gradients. The “Fraction at Source” metric, like the PI, quantifies the
496  proportion of larvae that are within specified regions defining favorable conditions (peak of the
497  odor gradient or region with a comfortable temperature, see Supplementary methods). The

498  “Fraction at Source” metric is binary: either an animal is inside or outside a favorable region.
499  The “Reward” metric defines in a graded way how well larvae remain near or at a favorable

500 location on average. For conflicting gradients, the Reward metric can take relatively large values
501  when a larva is located in a region representing a trade-off between the odor and the temperature
502  gradients, whereas the Fraction at Source metric leads to 0 values unless the larva has focused
503  on one of the two gradients. Thus, these two metrics tell us how effective each cue combination
504  strategy is at achieving a trade-off between two gradients.

505 When we applied the two metrics to quantify the behavior of simulated agent larvae

506  directed by the p = 1 (RM) and p = 2 (VM) rules, we observed that the differences between the
507  two rules were more significant in congruent gradients than in conflicting gradients (Figure 8C-
508 D). The reward gained by using p = 1 instead of p = 2 was more significant for congruent

509  gradients compared to conflicting gradients (Figure 8E). We also numerically validated this

510  effect through simulations of a fictive scenario where the conflict angle was sequentially

511  modulated from 0 to 90 degrees (Figure S8). This hints that the advantages of p = 1 over p = 2
512 are situational. When comparing these metrics across experimental paradigms, we observed that
513  in general, the p = 1 rule performs equally well or better than p = 2 when it comes to

514  maximizing the net reward that arises from the combination of two modalities. Effectively, the
515  RM rule achieves a tradeoff between the hedonic value associated with each sensory gradient.

516
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517 Discussion
518

519 In the present work, we developed an experimental paradigm to quantify the behavior of larvae
520  experiencing congruent or conflicting spatial gradients of odor and temperature. Using this

521  paradigm, we demonstrated that larvae are capable of adjusting the sensitivity of individual

522  sensory channels to changes in the variance of signals transmitted by each modality. In a similar
523  vein as the model delineated in (Gepner et al., 2018) for larvae stimulated by nondirectional

524  white noise with different statistical properties, we establish that the mechanism for variance
525  adaptation can also be described as a weighted sum of sensory cues with weights modulated by
526  signal variance.

527 While previous work in the larva analyzed multisensory combination mechanisms by
528  observing one specific behavior — the “when to turn” mechanism that controls the timing of
529  sensory-driven transitions from running (crawling) to turning (Gepner et al., 2015, 2018), we
530  extended this analysis to directional cues and showed that variance adaptation generalizes to the
531 navigation algorithm as a whole including the mechanism of “where fo turn to” that creates a
532  turning bias towards favorable sensory gradients. Through numerical simulations, we used a
533  data-driven agent-based model to establish that both of these orientation mechanisms are

534  necessary to account for the navigation of real larvae in multimodal stimuli as removing either
535  component leads to a reduction in performance (Figure SSE). Similar to the adult fly (Demir et
536  al., 2020), the ability to bias turning toward the gradient (“where to turn to”’) was found to be
537  critical for larvae to navigate toward and accumulate near the odor source.

538 We tested different plausible strategies for combining sensory inputs, starting with a

539  comparison between the Variance-Minimization (VM), the Fixed-Weights (FW) and the Shut-
540  Weights (SW) rules. The FW and SW rules can be viewed as opposite extremes in the

541  framework of Bayesian cue integration (Ernst & Banks, 2002): while the FW rule always

542  integrates both sensory stimuli, the SW rule systematically discards the less reliable sensory

543  stimulus. This explains why the SW rule is sometimes called Winner-Take-All rule. Similar

544  comparative approaches have been used in the past to compare and evaluate how well different
545  cue combination models fit behavior, for example in human behavior in a two-alternative-forced-
546  choice task (Weisswange et al., 2011). In our results across experimental paradigms, the VM rule
547  accounted best for the behavioral data, while we found that the FW and SW rules were

548 insufficient on their own to adequately reproduce the navigational behavior of larvae for all

549  tested conditions. Next, we introduced the Reward-Maximization (RM) rule, which differs from
550  the VM rule in that it does not assume that the two gradients originate from the same object and
551  location, and seeks to maximize the expected reward of the two gradients (see Figure 7A-B and
552 Supplementary methods). Given the assumptions of the model, both the VM and RW rules are
553  optimal with respect to the objectives they seek to maximize: in the case of the RM rule, it is the
554  reward —strength of the odor stimulus and comfort level of the temperature— that is optimized
555  whereas in the case of the VM rule, it is the reliability of the combined signal.
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556 Since the cue-combination strategies compared in the present study could simply

557  represent four mechanisms out of a limitless set of possible models, we developed a framework
558  to map all four models into a canonical model described in eq. (10) defined by the value of a
559  bimodal-contrast parameter p. With this generalized set of models, we showed that our results
560  remained the same in that the RM (p = 1) and VM (p = 2) were most representative of the way
561  cue combination is implemented by real larvae. Furthermore, we found that some experimental
562  paradigms were better accounted for by the RM rule while others appeared to be more

563  compatible with the VM rule, depending on the pairs of sensory modalities combined by the
564  animal. In particular, the behavior of larvae in a real-odor gradient combined with a congruent
565  temperature gradient was better explained by a principle of variance minimization (VM rule).
566  We believe that this gradation in the decision rule across sensory modalities might reflect the
567 existence of different noise-suppression mechanisms on the underlying behaviors.

568 Intuitively, larvae may have developed mechanisms of sensory cue combination

569  resembling the RM and the VM rules to exploit different aspects of the sensory conditions that
570  favor their survival in complex natural environments. This hypothesis was tested numerically by
571  evaluating the performance of simulated agent larvae directed by either of the RM (p = 1) and
572 VM (p = 2) rules in each experimental paradigm (Figure 8C-E), as well as in hypothetical

573  scenarios not tested with real larvae (Figure S8) that include more realistic three dimensional
574  environments. Not surprisingly, we found that larvae experienced a larger “reward” on average
575  with the RM (p = 1) rule compared to the VM (p = 2) rule. However, the comparison between
576  the RM and VM rules led to more ambiguous results when performances were evaluated based
577  on the fraction of larvae reaching the “source”, as differences in performances between the two
578  rules vanished in conflicting gradients compared to congruent gradients. This result is consistent
579  with the fact that increasing the spatial proximity between cues leads to a smaller improvement
580 in signal reliability during cue combination (Gepshtein et al., 2005).

581 In the extreme scenario where gradients are pointing at a 90-degree angle, both the RM
582  and VM rules perform similarly as the combination of sensory information becomes less

583  advantageous (Figure 8D and Figure S8A-B). In addition, the two rules differ in that the RM
584  (p = 1) ruleis closer to the FW (p = 0) rule, which always integrates information from both
585  sensory inputs. By contrast, the VM rule leads to a choice of one source over the other

586  resembling the SW (p = o) rule. When presented with two sources of sensory information,
587  virtual larvae using the RM rule were more prone to remain in between two attractive sources
588  while larvae using the VM rule tended to choose one source over the other. Our agent-based
589  model provides a computational platform to investigate larval integration strategies in more
590 realistic settings, such as navigation on the surface of a sphere (i.e. a rotting piece of fruit). For
591  example, we find that our results extend to a conflict between two attractive odor sources on a
592  spherical surface (Figure S8C).

593
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Figure 8. Comparison of the overall performances and characteristics of the RM rule (p = 1) and
the VM rule (p = 2) directing the behavior of simulated agent-based larvae. (A) Metric quantifying
the “Fraction at Source” metric to quantify how well larvae remain near the source for conflicting
temperature + odor gradients. Red dotted lines indicate the boundaries of the two sources. The
color gradient indicates the performance of larvae at each location in the arena. (B) Metric
quantifying the “Reward’ for the same data as panel A. In both panel A and B, a higher score
implies a better performance. (C) Comparison of the Fraction at Source and Reward for a pair of
congruent odor + odor gradients. The control condition refers to the performance of simulated
agent-based larvae in the absence of any sensory (C-E) information (i.e., decision variable d =
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604  0). Simulations of the RM and VM rules lead to a significant difference in both the final Fraction
605  at Source and Reward (t-test, p < 0.05). (D) Comparison of the Fraction at Source and Reward
606  metrics for a pair of conflicting odor + odor gradients. Both rules result in a significant difference
607 inthe final Fraction at Source (t-test, p < 0.05) but not the reward (t-test, p > 0.05). (E) Comparison
608  of the Fraction at Source and Reward across all experimental paradigms. The RM rules and VM
609 rules were significantly different for all conditions by both metrics (t-test, p < 0.05/6 upon
610  Bonferroni correction) except for conditions with conflicting gradients. The asterisks indicate
611  significant differences between the RM rule (p = 1) and the VM rule (p = 2) for each condition.

612

613 To explain why larvae appear to utilize the more-integrative RM (p = 1) rule in odor-
614  odor gradients but use the choice-like VM (p = 2) rule in odor-temperature gradients, we

615  speculate that this nuance may be an example of bet hedging, when organisms suffer decreased
616 fitness in comfortable conditions in exchange for increased fitness in stressful conditions

617  (Danforth, 1999). A larva that cannot feed in a region of moderate temperature is less likely to
618  survive than a larva that chooses to either follow an odor gradient predictive of the presence of
619  food even at the cost potential of noxious heat or to navigate toward a cooler region where food
620  might be found eventually. In the case of odor-odor gradients, larvae might have an advantage to
621  combine multiple chemical cues in a more integrative way given that food sources typically

622  release dozens or hundreds of distinct odorant molecules that are detected by the peripheral

623  olfactory system. By contrast, in situations that present possible danger like aversively high

624  temperatures or starvation in the absence of food, it may be more prudent for larvae to select the
625  more reliable sensory modality earlier as predicted by the VM rule.

626 Here, we report experimental and modeling-based evidence that Drosophila larvae are
627  capable of computing and combining the reliability of sensory inputs to organize orientation
628  behavior in natural conditions. This result suggests that the nervous system of organisms as
629  simple as the Drosophila larva can achieve probabilistic inference —a form of computation
630  highly advantageous in uncertain environments. Moreover, the ability of the larva to adapt its
631  navigation strategy to the nature of the perceived multisensory signals offers an opportunity to
632  study differences in the neural implementation of two general rules achieving cue combination
633  based on probabilistic inference, reward maximation and variance minimization. With the

634  availability of the larval brain connectome (Winding et al., 2023), the Drosophila larva sets a
635  path to pinpoint where and how different sensory cues are combined and to investigate how these
636  rules evolve across different development stages, such as for the cue integration of odor and
637  wind in the adult fly (Currier et al., 2020; Matheson et al., 2022).

638
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646 Material and Methods
647

648  Fly Stocks

649  Fly stocks were raised in a 12h light-dark cycle at 22°C/60% humidity. All behavioral

650  experiments were conducted with third-instar larvae reared for 120 hours in tubes on

651  conventional cornmeal-agar fly food. Before each experimental test, larvae were separated from
652  the food by rinsing with a 15% (wt/V) sucrose solution according to a previously established
653  protocol (Louis et al., 2008; Schulze et al., 2015). Testing occurred between 30 to 120 minutes
654  after the introduction of the sucrose. The w!/!¥ strain was used as “wild-type” larvae in

655  experiments combining real odor and temperature gradients. For experimental paradigms

656  involving optogenetically induced virtual odor gradients, the »;+;0r675-Gal4 and w;O0r424-Gal4;+
657  strains were used to drive the expression of Chrimson in single OSNs. Odor-virtual odor

658  experiments were performed with w;+;0r675-Gal4 larvae, while temperature-virtual odor

659  experiments were achieved with »;0r424-Gal4;+ larvae.

660 Behavioral Assay

661  The behavioral assay was built using two Peltier elements (CPP-065, TE Technology Inc., USA)
662  attached to a rectangular copper plate via thermo-conductive paste (Céramique, Arctic Silver,
663  USA). Between the Peltier elements, two temperature sensors (Thermistor: MP-2444, TE

664  Technology Inc., USA) were embedded into the metal plate. The temperature of every sensor
665  was monitored by a separate control unit that regulated the Peltier element. Linear temperature
666  gradients were established by setting different target temperatures at each sensor. For an

667  independent temperature assessment, a thermometer with a surface probe (MM2000,

668  TME Electronics, UK, and TS01-S, Surface/Immersion Probe Backfilled, TME Electronics, UK)
669  and an infrared thermometer (Fluke 561, Fluke, USA) were also used to confirm the linear

670  temperature gradient experienced by animals on the surface of the behavioral arena. Virtual odor
671  gradients and noise were generated using red light (62 5Snm) by LEDs mounted above the assay
672  (PLS-0625-030-S, Mightex Systems, Canada). The emitted light passed through a mask

673  (exponential cone r=16.5 mm diameter, Leicrom, Spain) in front of the LED resulting in a light

674  gradient in the behavioral arena. In noise experiments, light flashes illuminating the behavioral
675  arena evenly were added on top of the presented gradients. These flashes originated from a

676  rectangular array of red LEDs (Flexible LED strip red 30 x SMD-LED, 850 nm, 12 V,

677  Lumitronix, Germany). Odor gradients were established by pipetting 5 uL of an odorant dilution

24


https://doi.org/10.1101/2023.05.04.539474
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.539474; this version posted May 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

678 into a transparent reinforcement ring at the bottom of the arena. In each experiment, the circular
679  behavioral arena was coated with a slab of 3% agarose with a diameter of 107mm. A camera
680  (Stingray F145B ASG, Allied Vision Technologies GmbH, Germany) recorded the behavior of
681  the group of ten larvae for 300 seconds at seven frames per second. An infrared filter (Optical
682  Cast Plastic IR Longpass Filter, Edmund Optics, USA) was placed in front of the camera to

683  exclude any light artifacts.

684

685 Tracking of Animal Posture and Behavioral Quantification

686  Larvae were tracked offline with a custom-written software in MATLAB. Individual video

687  frames were processed using a black-and-white threshold to perform background subtraction and
688  asize threshold to identify larvae-sized objects. The identities of larvae were labelled in the first
689  frame of the experiment, and subsequent labels were assigned both automatically and manually.
690  The distances between tagged larvae in neighboring frames were computed to match larvae from

691 one frame to the next.
692

693 Parameter optimization and performance quantification of the agent-based
694 model for larval navigation

695  The constants defining larval navigation in the absence of sensory stimuli (i.e. d = 0) were fit
696  using maximum likelihood estimation (Figure SS5A-5D). The resulting running, stopping, and
697  head-casting statistics generated by our model were in agreement with actual unstimulated larvae
698  from the closed loop tracker built in (Schulze et al., 2015). To define an appropriate level of

699  complexity for the model, the Akaike information criterion (AIC) and Bayesian information

700  criterion (BIC) were used to quantify the relative importance of each variable in describing

701  larvae behavior in each experimental paradigm. This approach was used to select a final agent-
702  based model with enough degrees of freedom to recapitulate larval navigation across different
703  gradient configurations (Figure S5F). These parameters were then tuned to each experimental
704  paradigm using the unimodal conditions as training data. We defined the objective function to be
705  minimized as the mean Kullback-Leibler divergence (Kullback, 1951) between the simulated and
706  actual X, Y spatial distributions of larvae over the entire time course of the experiment. The

707  parameter sets for each experimental paradigm were optimized using the Global Optimization
708  Toolbox in MATLAB.

709

710 To compare larval performance between the Reward Maximization (p = 1) and Variance
711  Minimization (p = 2) rules, we defined two metrics: “Fraction at Source” and “reward”. The

712 Fraction at Source, like the preference index, computes the fraction at larvae within bounded
713 regions near the peak of each gradient that is present. Reward assigns each larva a score based on
714 its sensory experience relative to the peaks of each gradient that is present, situated between 0 —
715  the worst location possible and 1 — the best location (see Supplementary methods).

716
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Figure S1. Preference indices corresponding to the performances of wild-type larvae for congruent
gradients: odor + odor and odor + temperature. When two congruent unimodal gradients are
combined, the final preference index is significantly higher than the preference indices of either
unimodal condition as indicated by the asterisks (¢-test with Bonferroni correction, p <0.025). The
shaded regions around the preference index curves indicate the error bars of the SEM. (A) Odor +


https://doi.org/10.1101/2023.05.04.539474
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.539474; this version posted May 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

odor (odor 1: 1-hexanol, 102 M, n = 20 groups of 10 larvae; odor 2: ethyl butyrate, 10 M, n = 26;
combined: n = 19). (B) Temperature + odor (odor: ethyl butyrate, 10 M, n = 27; temperature: 16-
30°C, n = 35; combined: n = 27).
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Figure S2. Preference indices corresponding to the performances of wild-type larvae for congruent
gradients: virtual odor + odor and virtual odor + temperature. When two congruent unimodal
gradients are combined, the final preference index is significantly higher than the preference
indices of either unimodal condition as indicated by the asterisks (#-test with Bonferroni correction,
p <0.025). (A) Virtual odor + odor (virtual odor: Or67b>Chrimson, light 625nm, n = 30; real odor:
ethyl butyrate, 2.5 x 10* M, n = 30; combined: n = 30). (B) Temperature + virtual odor (virtual
odor: Or42a>Chrimson, n = 49; temperature: 20-40°C, n = 49; combined: n = 49).
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Figure S3. Comparison of the combined preference indices of wild-type larvae with predictions
from a parameter-free model for the four configurations outlined in Figure S1 and Figure S2. In
all configurations (A-D), there is no significant difference between the final preference indices of
the experimental data and the parameter-free model (#test, p > 0.05).
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Figure S4. Parameter optimization and performance quantification of the agent-based model for
larval navigation. (A) Illustration of the framework of the lateral oscillation model (Wystrach et
al., 2016) used for the agent based model. The larva is modelled as two segments: the anterior
(midpoint to the head) and the posterior (tail). (B) The larva alternates between left and right head-
casts between every timestep. The black arrow illustrates the direction of motion at the previous
timestep while the red arrow is the heading vector at the indicated timestep. (C) Ratio of runs and
stops observed in real larvae versus in simulations in the absence of stimuli. (n = 100 larvae) (D)
Simulation results for the fraction of larvae at the walls of the arena for hypothetical boundary
conditions tested when designing the agent-based model. Larvae are defined as being at the
boundary if they are within one larva-length from the edge of the arena. Lines represent the mean
and shaded error bars represent one standard deviation (n = 10 groups of 100 larvae). (E) Stages
at which noise is added in the agent-based model.
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Figure S5. Parameter optimization and performance quantification of the agent-based model for
larval navigation. (A-D) The histograms compare the behavioral statistics of real larvae to
simulated larvae (n = 100 larvae): (A) run durations, (B) turn durations, (C) casting speed during
runs, (D) casting speed during turns. (E) Performance of the agent-based model with the removal
of its constituent mechanisms (“where to turn to”, “when to stop”) to direct larvae up gradients.
When either mechanism is removed, a smaller fraction of larvae reach the source. (Odor + odor
congruent, n = 19 groups of 20 larvae). (F) Justification of model complexity. The plot indicates
the change in prediction error as quantified by the AIC/BIC as variables are removed or added to

the agent-based model. (Odor + odor congruent, n = 19 groups of 20 larvae)
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Figure S6. Comparison of final distributions of simulated larvae for each cue-combination rule
across different experimental paradigms. (A) Odor + odor congruent (odor 1: 1-hexanol, 102 M;
odor 2: ethyl butyrate, 103 M; n = 19). (B) Temperature + odor congruent (odor: ethyl butyrate,
103 M; temperature: 16-30°C; n = 27). (C) Virtual odor + odor congruent (virtual odor:
Or67b>Chrimson, light 625nm; real odor: ethyl butyrate, 2.5 x 10 M; n = 30). (D) virtual odor +
odor conflict (virtual odor: Or67b>Chrimson, light 625nm; real odor: ethyl butyrate, 7.5 x 10> M;
n = 20) (E) Temperature + odor conflict (temperature: 20-36°C; odor: ethyl butyrate, 2.5 x 10 M;
n = 20). (F) Temperature + virtual odor congruent (virtual odor: Or42a>Chrimson; temperature:
20-40°C; n = 49).
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Figure S7. The effect of olfactory noise on navigation in a temperature gradient, an odor gradient,
and a conflicting temperature and odor gradient. Each figure shows a comparison of the
distributions of real larvae in gradient configurations with and without olfactory noise applied
optogenetically (optogenetic olfactory noise: Or42a>Chrimson). The mean trajectory of all larvae
is shown in the arena over each time interval (60s, 120s, 180s). (A) Temperature: 20-36°C, n = 20.
(B) Odor: ethyl butyrate, 2.5 x 10*M; n = 20. (C) Temperature + odor conflict (Temperature: 20-
36°C; odor: ethyl butyrate, 2.5 x 10 M; n = 20)
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Figure S8. Agent-based model as a testing environment for simulating hypothetical gradient
configurations with different conflicting angles (A-B) and 3D configurations (C). (A) Virtual odor
+ odor conflict (n = 19). The mean reward at the end of the simulation is compared between the
reward maximization (p = 1) and variance minimization (p = 2) rules. The asterisk indicates a
significant difference by a t-test (p < 0.05) (B) Temperature + odor conflict (n = 19). (C)
Simulations of larvae navigation on the surface of a sphere for different stimulus landscapes
(randomly sampled larvae trajectories indicated in black): a single odor source (left), two odor
sources (middle), and a single odor source with a linear temperature gradient along the y-axis
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(right). Color gradient indicates attractiveness of each region (bright = high reward, dark = low
reward).
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Supplementary methods

Parameter-Free Model

Drosophila larvae sample the environment to gather information about local odor and temperature
gradients through head casts and runs to guide their behavior (Louis et al., 2008). We assume that
local information is relatively weak as it is corrupted by fluctuations due to intrinsic noise in the
local gradient; thus, the larva needs to accumulate information over time. Two main experimental
setups are considered here: one in which two odor gradients are present (one real and another
virtual generated by optogenetic stimulation), corresponding to the ‘intramodal’ condition, and
another in which an odor and a temperature gradient are present, corresponding to the ‘intermodal’
condition. Mathematically these two conditions can be described with the same formalism, and
therefore we do not distinguish them here. We generally use ‘cue 1’ and ‘cue 2’ to refer to either
odor or temperature gradients, regardless of the sensory modality used. We will also model the
effect of noise injection through optogenetics.

Our model is based on the idea that the larva’s goal is estimating a hidden binary variable
s, with values —1 and 1, denoting the ‘best location in the world’: if s = 1, then the goal location
is on the right of the petri dish; if s = —1, then the goal location is on the left. The larva estimates
this hidden variable by iteratively sampling gradients through the space. We assume that up to time
t the accumulated evidence for cues 1 and 2 is characterized by sampled gradients Ac; and Ac,,
respectively. These sampled gradients correspond to the accumulated local sampled gradients,
which are lumped together into a single mean-field value. Since sensory observations are noisy
due to intrinsic and extrinsic variability, the sampled gradients are corrupted versions of the true
gradients, Acand Ac? with Gaussian noise. Because both gradients are generated congruently,
then we can use the same hidden variable s to express AcY = sAC; and AcY = sAC,, where AC; =
0 are the absolute values of the true gradients Ac?, i = 1, 2. Therefore s represents the sign of the
gradient, which points towards the goal location, while AC; > 0 controls the intensity of the
gradients. The sampled gradients follow then the equations

ACl = SACl + 0'1n1 (1)

ACZ == SACZ + O'an 5
where n; (i = 1, 2) are independent normal random variables with zero-mean and unit variance,
and g; is the inverse reliability of the i-th cue. Control of independence of the fluctuations of the
two cues can be achieved in our experiments by using odor and virtual odor gradients.

It is important to emphasize that the primary goal of the larva is to estimate the value of the
hidden variable s rather than estimating the true values of the gradients AC; through the sampled
gradients Ac; and Ac,. The variable s (the sign of the gradient) specifies the goal location, while
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the absolute value true gradients are uninformative about the goal location. As the larva estimates
the value of the variable s, it moves to the estimated goal location. It is important to note that the
larva does not have direct access to the true gradient AC; and to the hidden variable s. In contrast,
in the model the larva has direct access to the inverse reliabilities of each cue through sampling of
the noise, as is well documented in other similar scenarios (Ernst & Banks, 2002). This assumption
is also supported by our experimental observations.

Errors in the estimated goal location can occur when the two sampled gradients have a
different sign with respect to the true location (e.g., when Ac; < 0, Ac; < 0 and s = 1). When one
of the sampled gradients is positive but the other is negative, then the larva should weigh them
according to the reliabilities of each cue. There is a unique way of combining the sampled gradients
optimally, the so-called optimal strategy, which we will derive. Our framework is based on
Bayesian inference of the hidden variable s, which corresponds to the optimal strategy in the sense
that the goal location is attained with the highest probability. Given the sampled gradients Ac; and
Ac,, one can build the posterior probability of the hidden variable s and the absolute true gradients
as p(s,4C,,AC,|Acq, Acy). Using Bayes’ rule,

p(s,ACy,AC,|Acq, Acy) < p(Acy, Acy|s, AC;, ACS) @)
=p(4cy|s,ACy)p(4Acy s, AC,)

where the proportionality is in relation to s, AC;and AC,. Since the sampled gradients specify the
order of magnitude of the true gradients, and because the true gradients are distributed over several
orders of magnitude, we ignore the prior distribution on the true gradients above (effectively, we
assume that the prior is flat). In addition, on the right side of the equation we assume that,
conditioned on the true gradients and goal location, the fluctuations of the sampled gradients are
independent. This is strictly true in our experimental condition in which one gradient is odor and
the other is a virtual odor gradient, and they are close-to-independent in other conditions because
of the random mixing of odors due to chaotic dynamics in fluids.

Using eq. (1), p(4c;|s, AC;) = N(Ac;|sAC;, 6?) for i = 1,2, that is, the density is a
Gaussian probability density with mean sAC;and variance . Inserting this expression into eq. (2),
we find

(Acy—SACq)? (ACZ—SAC2)2>

p(Acy, Acy|s, ACy, AC,) o« e< 207 207 €)

Optimal behavior involves determining the distribution of the hidden variable, but ignoring the
absolute values of true concentration gradients, as the latter are not informative about the goal
location. Therefore, we are interested in the posterior over the hidden variable s, where the
absolute values of the gradients are marginalized,

p(sldcy, Acy) o [ dAC, [ dAC, p(s,AC,, AC,|Acy, Acy) . 4)
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Using egs. (2-4) and the definition of cumulative Gaussian, ®(x) = f_xoo dyN(y|0,1), we find

p(sldcy, Acy) < ®(sdcy/o1)P(sdc,/a7) . (5)

To find a closed expression for p(s|4cy,4c,) we approximate the cumulative Gaussians by
sigmoid functions, which is known to be an excellent approximation for the best fit parameters
(that is, ®(x) is approximated by ®(x) ~ 1/(1 + e~**), where a is the best fit parameter).
Therefore, within this approximation, we can write the probability over s as

1 1

p(slAcl'ACZ) = 14+e(—a(4ci/a1+4cy/a2)s) = 1t+e—ads’ (6)
where we have defined the ‘decision variable d’
d=ACl/O'1 +AC2/0-2. (7)

Note that the decision variable weighs the size of the sampled gradients with the reliability of each
gradient.

Obtaining the decision variable is one of the central results of this section, as it dictates
what the larva should do trial by trial based on the sampled gradients and their reliability.
Specifically, when the decision variable is positive, d > 0, the probability of s = 1 is larger than
one half, and therefore optimal behavior dictates moving towards the right. If the decision variable
is negative, then optimal behavior dictates moving towards the left. In summary, the decision rule
reads:

“chooses =17 if d>0 (8)
"chooses = —1"if d > 0.

It is important to emphasize that for a larva to follow the optimal behavior it should follow
the decision rule in eq. (8). This obviously does not mean that the neuronal circuitry needs to
perform explicitly the computation described in egs. (2-6): all these computations can be bypassed
if the decision rule in eq. (8) is hardwired within the neuronal circuits.

The decision rule in eq. (8) is a deterministic rule given the sampled gradients Ac; and
Ac,. However, we do not have access to the sampled gradients as measured by the larvae. This
means that the value of the decision variable d at any particular trial is unknown to us. This implies
in turn that we can only know the behavior of the larvae averaged over observations given a
predetermined experimental setup, which is characterized by the true gradients Ac{ = sAC; and
Ac) = sAC,. We will take advantage of the fact that, while the true gradients are unknown to the
larvae, they are known to the experimenter.
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We first note that d is the sum of two Gaussian variables, and therefore it is a Gaussian
variable. Its mean and variance are respectively

d(AC AC)—ACl+ACZ
YT e o 9)

VaT'(d)(ACl, ACZ) == 2 5

where we assume without loss of generality that the goal location is at s = 1. From this expression
we can compute the central experimental measurement, the preference index, PI. This quantity is
defined experimentally as the number of larvae that at time # are located on the correct half-side of
the petri dish, s = 1. We can make a prediction using eq. (9) by noticing that the P/ is the fraction
of times that the decision variable d is above zero,

_ AC, | ACG
PI(AC,, AC,) = @ (ﬁal + ﬁaz)' (10)
This equation provides a prediction of the preference index when the two gradients are present.
Now we can use the same expression to find expressions for the preference indexes for the single-
gradient conditions as

AC,
PI(AC]_) S PI(ACI’ACZ == O) = CD

\/70'1
(1)
PI(AC,) = P,(AC, = 0 AC)—CD(ACZ>
2 140 407 V2o,)
Finally, we can use eqgs. (10-11) to obtain the combination rule
Plyoaer(AC;, ACy) = @(@71(P(ACY)) + @71 (P (ACY))) (12)

where ®@~1(x) is the inverse cumulative normal. Thus, using the same sigmoidal approximation of
the cumulative Gaussian employed above, we obtain the coarse-grained model given by eq. (2) in
the main text. Another important feature of these predictions, which will be exploited later, is that
optogenetic stimulation can affect the reliability of each cue in predefined ways. In particular, it
should be possible to increase the noise level of cue 1 without affecting the noise level in cue 2. If
this happens, then the model predicts that the preference index when only cue 2 is present should
remain unchanged in the presence of noise in cue 1. To understand this result, note that in this rule
increasing the variance of one signal does not change the total variance of eq. (9), which implies
that it is not possible to shut down a cue even if it is very noisy. This is however the optimal thing
to do under the above assumption, as the signal is scaled down by the standard deviation of the
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noise, but gives a different result than the variance weighted combination rule of eq. (7) in the
main text. In the main text, Ply,q¢,(4Cy, AC,) is denoted as Pl 45 poger -

Agent-based Model

We model Drosophila larvae with an adapted version of an agent-based model developed by
Wystrach et al. (Wystrach et al., 2016). This model provided a general framework for describing
taxis behavior in unimodal stimulus gradients, based on evidence that larvae display continuous
lateral oscillations (“head-casts”) of the anterior body during peristalsis. Their work showed that
this simple mechanism coupled with the direct sensory modulation of oscillation amplitude could
reproduce many taxis signatures observed in larvae. To test different mechanistic hypotheses for
cue integration, we build upon this framework to investigate how information can be combined
across real odor, virtual odor, and temperature gradients to modulate taxis.

Lateral Oscillation Model

In our adaptation of the above agent-based model we consider the anterior and posterior body of
the larva as two connected segments. The anterior body is modelled as a single segment from the
midpoint to the head (Figure S4A). To mimic active sampling, this segment rotates about the
midpoint and alternates between left and right rotations between timesteps (Figure S4B), with
casting amplitude modulated by the sensory experience. The posterior body on the other hand, is
“passive” and assumed to follow the axis of the anterior segment. Larvae are assumed to be
uniform in length and move along the anterior heading direction at a constant speed. At any
timestep n of 1s, this mechanism can be summarized with the following state-update equations:

en = Hn—l + 59(d)(—1)n
Xy = Xp_1 + v cos(6,) (13)
Yn = Yn-1 T vsin(6y),

where 0, is the heading direction of the anterior body relative to the midpoint at timestep n, v is
the distance travelled in a single time-step, and {x,, y,,} is the updated midpoint of the larva. The
quantity &4 (d) is the casting amplitude, which is modulated by a decision variable d that is a
function of the sensory experience (see below). The constant v was estimated based on the average
speed observed in larva in the experimental data. In ref. (Wystrach et al., 2016), the amplitudes of
the lateral oscillations is modelled as a hard-limit ramp function:

x 0<x<nm
6g(d) = H(Bg + d), where H(x) =1{m xX>m
0 x<0 (14)

where 65 is the baseline amplitude of the lateral oscillations in the absence of stimuli (i.e. when d
= 0). During larval chemotaxis, turning increases during upgradient motion whereas it is reduced
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during downgradient motion. Accordingly, the decision variable d should be negative when
moving up a stimulus gradient and positive when moving down a stimulus gradient.

One important feature of our adaptation of the agent-based model that is distinct from
Woystrach’s model (Wystrach et al., 2016) is that sensory measurements are sampled at every time-
step by a sensor located at the extremity of the larva’s head, which rotates about the midpoint. This
allows us to distinguish between head casting during “runs” when the larva is undergoing forward
peristalsis and head casting during “stops”, when the midpoint of the larva is stationary. In contrast,
the larva in ref. (Wystrach et al., 2016) is modelled as a point agent that rotates on the spot for
simplicity. Note that in our model, the position of the larva head is given by:

xt=x, + écos(@n)
1 (15)
Vi =yt 5sin(6,),

where / is the average length of larva at the 3rd instar developmental stage.

Stopping

For the lateral oscillation model developed in ref. (Wystrach et al., 2016), it was noted that stopping
was not essential for chemotaxis except for improving orientation by enabling larger turns in their
paths. Thus, this mechanism was ignored as a simplifying assumption and larvae were simulated
to run continuously at a fixed speed. However, in order to accurately represent larvae navigation
about odor sources in our experimental paradigms, it was necessary to incorporate the mechanism
of stopping. We make the following modelling assumptions regarding larvae runs and stops:

1. During runs, larvae move along the anterior heading direction at a constant speed (as
before).

2. During stops, larvae remain stationary at the midpoint but are still able to cast the anterior
body in either direction.

3. The casting amplitude is larger during stops than during runs.

To capture the behaviors associated with running and stopping in our agent-based model,
we assume that larvae not only update their heading direction at each time-step, but also make a
decision to run or to stop. Therefore, there are two decisions that must be made at every time-step:

1. When to Stop: Should the larva be in a running or stopping state?
2. Where to Turn: Given the state of the larva, what adjustment should be made to the current
heading?
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When to stop

We modeled running and stopping in larvae as a binary Markov process, with transition
probabilities dependent on the same decision variable d (Figure 2E). The transition probabilities
between states were given by the following logistic functions:

1

Prun(d) = 1T o-Tomn

(16)
Pstop @ = 1

+ e_d+CSt0p '

The parameters ¢, and ¢4 are constants that determine the statistics of running and stopping
in the absence of sensory stimuli (i.e. d = 0). Using the classification algorithm of the closed loop
tracker from ref. (Schulze et al., 2015), we quantified the statistics of running and stopping in
unstimulated larvae (Figure S4C). We then used maximum likelihood estimation to fit parameters
Crun and Cgtop in our model (Figure S5A-D). We verified that the negative binomial distribution
of running and stopping durations resulting from the simple Markov model showed a reasonable
agreement with actual data.

Where to turn to

Using experimental data generated with a closed loop tracker (Schulze et al., 2015), we observe
differences in both casting amplitude and casting speed in the two states. Given that the
dynamics of head casting differ in running and stopping, separate schemes are required to
describe the casting amplitude of these two states:

Sa(d) = 69,run(d) du?‘ing runs
A 8g,stop(d) during stops

OM,run (17)
59,run(d) = 1_|I:—yd

9M sto
0 d) = —=£
9,stop( ) 1te-vd

Here, we use a smooth approximation of the hard limit ramp function in ref. (Wystrach et al.,
2016). The parameter 6,, can be viewed as a physical constraint on the maximum casting
amplitude or head casting speed in running and stopping states. These constants were estimated
to fit the physical constraints of the head casting speeds of real larvae. y is a tuning parameter
that governs the slope of the ramp and allows for differences in how the decision variable d
modulates casting amplitude compared to stopping. The resulting head-casting speeds generated
by our model were in agreement with real unstimulated larvae from the closed loop tracker.
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Sensory Stimulus

In the present section, we outline the models used to describe the stimulus presented to the larvae.
In each experimental paradigm, we presented combinations of dynamic real odor gradients, with
static virtual odor gradients and static temperature gradients. At each timestep, we assume that the
larva receives a sensory input C, (x%,y*) that is dependent on its head position {x/, y*} in the
assay at timestep n.

Odor

Two different odors were used in experiments, 1-hexanol and ethyl butyrate. In each experiment,
a small odor droplet was placed in an enclosed assay and gradually diffused over the course of
three minutes. Since we observed changes in the behavioral response to the odor stimulus over the
course of each experiment, we could not assume that the odor gradient was static. Hence, we
modeled the evolution of an odor gradient as a diffusion process from a point source as outlined in
ref. (Schulze et al., 2015). At timestep n, the solution to diffusion partial differential equation is:

2

Co(al, yt) = [M—Lodor _o=3pa g, (18)

0 (4mDn)3/2

where r denotes the FEuclidean distance from the larva head to the odor source r =

\[ (x5 — x,’ll)2 + (ys — x,’{)z and J, 40, is the flux of the odor droplet. D is the diffusion coefficient

of the odor droplet in air, which differs slightly between /-hexanol and ethyl butyrate. These values
were estimated using the method in ref. (Tucker & Nelken, 1990).

Temperature

The behavioral experiments feature a linear temperature gradient that varied from Ty,;, = 16°C
to a maximum of Ty, = 30°C (aversive to larvae). For example, a temperature gradient
increasing in the positive x-direction would be given by:

Cn(xfll' yrrll) = Tmin + (Tmax - Tmin)(%)a (19)

where R is the radius of the arena. Under the rearing conditions of the experiments, larvae are
drawn to the cooler end of this temperature range.

Virtual Odor
In the experiments with real larvae, we passed emitted light from a LED through an exponential
filter to create a Gaussian source for optogenetic virtual odor experiments. This is modelled as:

2

Cn (xrrll' yrrll) = ]lighte_ma (20)
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. ) . 2 2 )
where 7 is again the distance to the source = \[ (xs - x,’l‘) + (ys - x,’ll) » Jiight specifies the

intensity of the light stimulus, and « is the standard deviation of the Gaussian function. This
mathematical fit is supported by measurements of the physical gradient using a photodiode.

Sensory Threshold

For experimental conditions involving real odors, we noticed that there was a slight delay in the
behavioral response of real larvae at the onset of the experiment. Given that the odor source is
introduced in the assay at the same time as larvae, we speculate that the lag in directed behavior is
due to the time required for the odor to build up to detectable levels in the arena. To account for
this effect, we introduced a sensory threshold parameter f such that:

Calxmyn) =0 if Co(xitym) < B. @2y

For consistency, we included this threshold as a parameter to be optimized by the framework for
all three sensory modalities. However, the effect is significant only for real odors.

Stimulus to Percept

For each sensory modality presented to the larvae, we assume that the resulting percept (internal
intensity representation of the odor) is proportional to relative changes in stimulus strength (Adler
& Alon, 2017). Thus, we assume that the perceptual response to the real odor, virtual odor, and
temperature gradients will be of the form f(AC/C), where C is the background signal level (see
eq. (22) below). The validity of this relationship has been established in adult flies (Cao et al., 2016;
Kadakia & Emonet, 2019) and it appears to hold for larval olfactory sensory neurons (OSN) that
respond to a normalized form of the stimulus derivative (Gomez-Marin & Louis, 2012; Schulze et
al., 2015). Although this feature has not been explicitly shown for thermosensation, there is
evidence that the behavioral response to an absolute change in temperature increases the larger the
deviation from preferred background temperatures (Klein et al., 2015). It was shown further that
this process is mediated by cross-inhibition between warming cells and cooling cells (Hernandez-
Nunez et al., 2021), activated by positive and negative temperature gradients respectively, and a
model was developed to show that the relative contributions of each corresponding signal towards
behavior increased as larvae moved away from preferred temperatures. In our experimental
paradigm, this would imply that a temperature change of AC = 1°C at T, = 30°C would trigger
a stronger behavioral effect than an identical change of AC = 1°C at the preferred temperature
Tmin = 16°C. We incorporate this perceptually in our agent-based model by rescaling the
temperature signal as C « T, — C. In our simulations, we compute the relative change in
stimulus between two consecutive timesteps n, n — 1 as the following:

— n=Cn

Sp =L (22)

: . . = Cp+Cne
We compute the background signal level as the midpoint between two timesteps, C = % To

be able to compare signals from different sensory modalities and stimulus ranges, we define a gain
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G associated with each sensory modality that represents the perceptual sensitivity of larvae. The
perceptual (internal) representation of an odor cue, for example, is modelled as:

_ Cn—Cp-1
Sodor,n - Godor c . (23)

This quantity can be both positive and negative depending on the direction of the sensory gradient.
As we do not explicitly model firing rates, we assume that this perceptual representation is encoded
by different elements of the peripheral olfactory circuit of the larva. The exact mechanism is
unknown; it is not accounted for in the agent-based model.

Cue Combination

Finally, we model the link between the sensory experience of the larva and its orientation behavior.
The mode transitions and casting amplitudes of larva in our agent-based model are described as
functions of a decision variable d,,, which is dependent on some combination of the sensory
modalities perceived by the larva. In subsequent sections, all variables are computed at timestep n
and we drop the subscript to avoid cluttered notation (e.g. we refer to the decision variable as d =
d,). We describe the combination of the two different sensory modalities s;, s, using the linear
model:

d = W151 + WZSZJ (24)

where wy, w, are weights associated with each cue. We hypothesize that larvae may have a bias
for one sensory modality over another. Furthermore, we hypothesize that larvae are able to measure
the reliability of individual signals when integrating multiple sources of information. We assume
that the “reliability” of a sensory signal represented by a time series is inversely proportional to its
variance o2 (see below). Thus, we test three different plausible weighting strategies:

1. Fixed Weights (FW):

2. Shut Weights (SW):
1 if o? < o} 0 ifol < a2
wy :{ f 12 % » W2 :{ f 12 % (26)
0 ifof=o; 1 if of = o0y
3. Variance Minimization (VM):
o? o?
W=, Wy =y 27)

- 2 2
o + 0,
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The first weighting strategy proposes that larvae combine cues with fixed preferences that
are independent of the signal variance. The latter two strategies imply that larvae are also able to
adapt their response according to the estimated variance of the sensory inputs, which has been
demonstrated in previous studies (Gepner et al., 2018). The SW strategy assumes that larvae place
absolute priority on the cue that is observed to be more reliable. The VM strategy is based on the
optimal linear combination rule for minimizing the variance of the combined signal, given certain
assumptions (Ernst & Banks, 2002). In the SW and VM models, we assume the larva accumulates
sensory evidence over some time window as it navigates the environment and uses this to estimate
the variability of each sensory modality. For simplicity, we assume that the variance is estimated
through sampling as

g% =

S| =

l

> Gl -w), (28)

T

where p is the sample mean, and 7 is the time sampling window, which was estimated as 7 = 11s
for Or42a OSN activation and was shown to be similar in duration for other sensory modalities
(Gepner et al., 2018). In the case of a real odor whose concentration is below the detection
threshold, the odor would not be perceived as being present and hence the variance o would be
assumed to be infinite. This equation assumes that larvae integrate both the temporal variance of
the sensory signal itself and self-motion induced spatial fluctuations due to continuous head casting.
While it has been suggested that larvae may be able to filter sensory inputs in sync with the
frequency of its own peristaltic motion (Gepner et al., 2018), it is unknown how this filtering adapts
to motion as the rhythm of head casting is variable and not strictly coupled to peristalsis (Wystrach
et al., 2016). Given that it is a weighting of the variances of both channels as ratios that is used to
compute cue weights, we assume that the distortions in the estimated variation due to head casting
are negligible compared to the true temporal variance of the sensory signal.

Variance Minimization

For model 3, the decision rule maximizes the reliability of the combined sensory modalities, with
the assumption that both gradients originate from a single source (Ernst & Banks, 2002). Let s;
and s, denote the observed cues for attraction from two different gradients, which can be congruent
(if the two signs coincide, or incongruent, if the two signs are different). We assume that larvae
associate the hedonic value of both gradients in an overall level of attraction, which we denote as
z. To decide whether to continue in a given direction of motion (heading) or to reorient, larvae
infer the latent variable z from the observed cues s; and s,. The optimal estimate of the source of
attraction z can be obtained by applying Bayes rule:

p(z | s1,52)p(51,52) = p(51,52| 2) P(2). (29)
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Given that s; and s, are independent cues as their fluctuations are driven by different physical
processes affecting distinct sensory modalities (we neglect joint odor fluctuations due to
turbulence, as our assay is far from that regime), we have:

p(z | s1,52)p(s1)p(s2) = p(s1]| 2)p(s2] 2) p(2). (30)

Since p(s;) and p(s,) do not depend on z, the variable of interest, we can treat them as
proportionality constants:

p(z | s1,52) < p(s1| 2)p(sz| 2)p(2). 1)

In addition, we assume that the prior p(z) is flat at every time step, as experiments are performed
in an environment that is new to the larvae and there is no evidence that larvae can form spatial
memory from previous time steps. We assume that the cues s; and s, are normal random variables
with variances o and 0. To obtain the optimal estimate of the source of attraction, we calculate
the value of z that maximizes the posterior probability (maximum a posteriori estimate):

(s1-2)%  (sp-2)2
argmaxp(z | sy,s;) = % In[p(s1l 2)p(sz|2) | = % In le 201 ¢ 203 l = )
Z
2(s1-2) 2(sp-2z) _ 0
202 202 -
Rearranging, we have:
7) st ()
—|s1+ |=] s
Z—<012 L) o s1 + i s (33)
- - 1 2
(iz) n (iz) of + o} ol + o}
01 03

Reward Maximization

An alternative strategy without assuming a common origin of the two sources is to maximize the
expected reward by following each of the two gradients, where reward is defined as the probability
that the larva is moving up-gradient. We use the same assumption that the cues s; and s, are
Gaussian random variables with variances o and 0. Given any trajectory, the probability that the

larva is travelling up-gradient for each of two modalities is @ (2—1) and @ (z_—z), where
1 2

o (x) = = dx (34)

1 x
7w
is the standard normal cumulative density function. Assuming that there is an equal preference for

reaching either source, the reward of continuing at the current heading is the sum of the
probabilities of travelling up-gradient in each of the two sources
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Z=(D(Z—1)+ qs(s—z). (35)

g2

Conversely, the reward of stopping and reorienting is
r__ S1 _ S2.
Z=(1- ¢ (01)) +(1-9 (UZ)). (36)

The optimal decision that maximizes reward is therefore to continue at the current heading if z >
Z', and to reorient otherwise. We implement this at the motor level in the agent-based model by

) + @ (5—2) , so that the agent will have a
02

defining the decision variable as the reward d = @ (Z—l
1

low probability of stopping if d is large, and will have a high probability of stopping in the opposite
case.

Comparing p = 1 (Reward-Maximization) and p = 2 (Variance-
Minimization) rules

To compare these two strategies, we make several approximations. For maximizing reward, we
make the following approximation given o; > s; and g, > s,
d=0(2)+ o (2) ~ 242, (37)
g1 (4] g1 (4]

Note that this approximation is identical to eq. (7) in the derivation of the parameter-free model.
The p = 1 rule corresponds to Reward Maximization. For maximizing reliability, we obtain a
different decision variable, namely

o} 01

d: 51+ 2

2 2
o + o3 oy + 03

2, 2 2 2

O'1+0'2 gy () S1 S

X —= T2 S1 T 5 352)= St
0202 \o?+02 0% +02 o?

(38)

The combination rule with p = 2 corresponds to Variance Minimization. In general, we can
embed both rules into a single rule with free parameter p as

p, P p p

cPio o. o s
d=20% (2 s v Ars)= S4+% (39)
p_p p p °1 D2 14 P

0,0, 0,10, 110, 2

In our simulations, we will optimize the free parameter p, as well as compare thep = 1 and p =
2 rules. We propose to call p the bimodal-contrast parameter.

Noise

As we propose that larvae are sensitive to the variance of sensory inputs, an important aspect of
this model is to account for noise in the sensory signal. We model noise as Gaussians n with zero-
mean. For generalizability, we consider noise added at several stages of the flowchart (Figure S4E):

1. Additive external sensory noise: C,, + eyt
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2. Additive internal sensory noise: S, + Nin¢
3. Decision noise: d + 74

The first is additive external noise 7., that does not scale with the sensory input. This may
be more prominent in experimental paradigms with virtual odor gradients for example, where the
noise might result from fluctuations in the action of the LED light on the light-gated ion channel
(Chrimson (Klapoetke et al., 2014)). The fixed amplitude light flashes used to perturb the larvae
in experimental paradigms with noise can be also modelled with this approach.

The second is additive internal sensory noise 1;,,; due to the assumption that larvae perceive
relative changes in stimulus in the agent-based model. Noise that scales with the sensory input
would be more plausible for experimental paradigms with real odors, as the fluctuations in odorant
molecules tend to fluctuate according to a Poisson distribution, resulting in noise that is dependent
on odor concentration.

The third is decision noise, which models the inherent stochasticity of larvae behavior in its
mode transitions and variability in casting amplitudes. In our model, we have found similar
predictions when incorporating all levels of noise (1 + 2 + 3) and the reduced scheme (2 + 3).
While the quality of the predictions may change, we find that the hierarchy of the performance of
the weighting strategies does not change with the variations in the framework. This is illustrated
in the comparison of AIC and BIC in Figure S5F.

Optimization Framework

Below is a list of constants used to model larva motion in the simulations:

Parameter Value

Run velocity v 1.3 mm/s

Larva length l 3.86 mm

Run transition constant Crun 1.46

Stop transition constant Cstop 0.16

Maximum casting amplitude during runs O run 0.75 rad/s
Maximum casting amplitude during stops Om,stop 2.93 rad/s
Variance sampling time window T I1s

Decision noise Na 0.32
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These parameters model the movement patterns of foraging 3™ instar larvae in the absence of
any stimulus recorded at high spatio-temporal resolution with the closed-loop tracker from ref.
(Schulze et al., 2015), and are assumed to be constant across all experimental conditions. The run
velocity v and larva length [ were chosen to match the mean observed in wildtype w’/’® larva (n
= 100 larvae). The parameters Cryn, Cstops Omruns Om stops and ng were fit using maximum
likelihood estimation as illustrated in Figure SSA-D. The variance sampling time window t was
estimated based on the timescale of variance adaptation in (Gepner et al., 2018).

For each experimental paradigm, there are four free parameters associated with each of the two
sensory modalities (unimodal conditions):

*Nine: Internal additive noise
e G: Perceptual gain

¢ y: Sensitivity to Turning

e 3: Sensory threshold

Each experimental paradigm has a unimodal condition with each sensory modality presented
independently and then a bimodal condition with both sensory modalities presented at the same
time. Our approach is to use the data from the unimodal conditions to fit the free parameters of our
model, and then use the data from bimodal conditions to evaluate the goodness of fit of the different
weighting strategies. Therefore, there are a total of eight free parameters for each experimental
paradigm — one set of four parameters for each unimodal condition. We consider the signal and
noise of each sensory modality regardless of the test condition (unimodal, bimodal), but we assume
that the signal-to-noise ratio is what allows the larva to determine whether a stimulus is present or
whether the larva is only perceiving white noise.

To evaluate the goodness of fit of our models, we compared the preference index and the spatial
distributions between the experimental data and the simulation.

e Preference Index: The preference index (PI) is the fraction of larvae on the preferred side
of the arena. The error in the preference index is given by computing the mean squared
error between the simulated PI and the experimental PI at different intervals over the course
of the experiment.

e Spatial Distribution: We use the Kullback-Leibler (KL) divergence to compare the error
between the simulated and experimental spatial distributions over the entire course of the
experiment. The X and Y dimensions are considered separately when computing the KL
divergence.

Because the preference index only measures the fraction of larvae that are on the preferred side of
the arena, we find that the spatial distributions give a more accurate representation of the quality
of fit. All parameter fitting was performed using the Global Optimization Toolbox in MATLAB.
Below is a list of the median parameter values for each experiment across different tested bimodal
contrast coefficients p:
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Experiments Parameters
Gradient 1 Gradient 2 Orientation G; N1 B1 G2 Nine2z P2 Y

Odor Odor
Congruent 4.90 0.13 0.28 5.75 0.18 0.68 1.09
(1-hexanol)  (ethyl butyrate)

Odor
Virtual odor Congruent 3.78 0.47 5.54 490 0.26 0.56 1.05
(ethyl butyrate)
Odor
Temperature Congruent  7.06 0.37 2.23 6.70 0.24 0.27 0.98
(ethyl butyrate)
Odor + noise
Temperature Congruent 7.06 0.37 2.23 6.70 040 0.27 0.98
(ethyl butyrate)

Temperature  Virtual odor Congruent 2.00 0.55 5.10 2.75 0.57 5.13 1.20

Odor
Virtual odor Conflict  4.01 0.33 5.03 633 023 029 097
(ethyl butyrate)
Odor
Temperature Conflict 546 0.26 288 6.62 0.15 0.18 0.96
(ethyl butyrate)
Odor + noise
Temperature Conflict 546 0.26 2.88 6.62 0.45 0.18 0.96
(ethyl butyrate)

Simulating Wall (Boundary) Conditions

Since the arena is small, one last component of our model is accounting for larvae behavior at the
edges for the arena. We noted that a significant fraction of larvae remained close to the arena
boundary (its wall), particularly in conditions with a linear temperature gradient. We considered
several possibilities if a larva’s path is obstructed by the arena wall (Figure S4D):

1. The larva remains stationary in a stopping state as long as its position at the next timestep
is outside the bounds of the arena.
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2. The larva moves tangent to the edge of the arena at a velocity veq4. = cos(y) v, where v
is the larva’s original speed, and i is the angle between the larva’s heading direction and
the direction tangent to the arena.

3. The larva “bounces” off the edge of the arena at the angle of incidence (ballistic collision
model).

Through numerical simulations, we found that the first approach is the closest representation of
the behavior observed in our experimental data based on the stopping statistics of larvae at the
boundary.

Fraction-at-Source and Reward Metrics

The “Fraction at Source” is defined as the number of larvae within bounded regions near the peak
of the gradients divided by the total number of larvae:

Fraction at Source = — e (40)

cuetNnocue

For odor configurations, this bounded region is defined as an area within radius r of the source.
For temperature configurations, the bounded region associated with the comfortable (targeted)
temperature is any location x < r, where x = 0 corresponds to the leftmost, coolest side of the
arena. The radius r was chosen such that the areas of the bounded regions were identical for both
odor and temperature configurations (r = 1.8cm). The “reward” for each sensory modality is
defined as the mean perceived sensory experience of all larvae relative to the peak sensory
experience in the arena. In the bimodal condition, the reward is calculated as the average reward
across both sensory modalities. For N; number of sensory modalities, the reward is given by:

Nj

Cmean,j - Cmin,j (41)

)

R d=—
ewar N

C — C .
]j=1 max, j min, j

where Cppean, j 1 the mean sensory experience of all larva for sensory modality j, while Cp,;p 5 and
Cmax,j denote the least and most preferred sensory experience in the arena respectively for sensory
modality j.

Model Selection with AIC/BIC

The prediction error for the AIC/BIC (Akaike, 1998; Schwarz, 1978) was computed for the
Variance Minimization rule across all bimodal experimental paradigms:

AIC = 2k — 21n(L)
(42)
BIC = kIn(N) — 2In(L).

Where k is the number of model parameters, N is the number of simulated larvae for each
experimental paradigm, and L is the likelihood function given the actual observed spatial
distributions of larvae. In each model variant, one component of the model was added/removed,
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and the model parameters were re-optimized. The resulting prediction error was then compared to
that of the final model. All variations of the model resulted in a higher prediction error, as shown
in Figure SSF.
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