

1 Drivers of plankton community structure in intermittent and 2 continuous coastal upwelling systems—from microscale in-situ imaging 3 to large scale patterns

4 **Moritz S Schmid^{1*}, Su Sponaugle^{1,2}, Kelly R Sutherland^{3,4}, Robert K Cowen¹**

5 ¹ Hatfield Marine Science Center, Oregon State University, Newport, Oregon, 97365, USA

6 ² Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331, USA

7 ³ Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA

8 ⁴ Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon, 97420, USA

9 *** Correspondence:**

10 Corresponding Author

11 schmidm@oregonstate.edu

12 **Keywords: California Current, plankton community structure, microbial loop, upwelling,**
13 **plankton imaging, climate change, machine learning, big data**

14

15 Abstract

16 Eastern Boundary Systems support major fisheries whose early life stages depend on upwelling
17 production. Upwelling can be highly variable at the regional scale, with substantial repercussions for
18 new productivity and microbial loop activity. A holistic assessment of plankton community structure
19 is challenging due to the range in body forms and sizes of the taxa. Thus, studies that integrate the
20 classic trophic web based on new production with the microbial loop are rare. Underwater imaging
21 can overcome this limitation, and together with machine learning, enables fine resolution studies
22 spanning large spatial scales. We used the In-situ Ichthyoplankton Imaging System (ISIIS) to
23 investigate the drivers of plankton community structure in the northern California Current, sampled
24 along the Newport Hydrographic (NH) and Trinidad Head (TR) lines, in OR and CA, respectively.
25 The non-invasive imaging of particles and plankton (250µm –15cm) over 1644km (30 transects) in
26 the winters and summers of 2018 and 2019 yielded 1.194 billion classified plankton images. The
27 imaged plankton community ranged from protists, crustaceans, and gelatinous taxa to larval fishes.
28 To assess community structure, >2000 single-taxon distribution profiles were analyzed using high
29 resolution spatial correlations. Co-occurrences on the NH line were consistently significantly higher
30 off-shelf while those at TR tended to be highest on-shelf. Taxa co-occurrences at TR increased
31 significantly with upwelling strength and in 2019 TR summer co-occurrences were similar to those
32 on the NH line. Random Forests models identified the concentrations of microbial loop taxa such as
33 protists, *Oithona* copepods, and appendicularians as important drivers of co-occurrences at NH line,
34 while at TR, cumulative upwelling and chlorophyll a were of the highest importance. Our results
35 indicate that the microbial loop is actively driving plankton community structure in intermittent
36 upwelling systems such as the NH line and may induce temporal stability. Where upwelling is more
37 continuous such as at TR, primary production may dominate patterns of community structure,

38 obscuring the underlying role of the microbial loop. Future changes in upwelling strength are likely
39 to disproportionately affect plankton community structure in continuous upwelling regions, while
40 high microbial loop activity enhances community structure resilience.

41 **1 Introduction**

42 Community structure in an ecological system is defined as the interactions among organisms within
43 the community (Verity and Smetacek, 1996; Smetacek, 2012; Lima-Mendez et al., 2015). Planktonic
44 community structure in the ocean and the processes driving it determine energy transfer through the
45 trophic web, setting up fisheries and top predators (Brown et al., 2004), as well as carbon sinks.
46 Community structure can be assessed through the lens of taxa co-occurrence. As co-occurrence is
47 driven by processes enabling coexistence within an ecosystem, such as niche separation (MacArthur,
48 1958; Chesson et al., 2000; Lindegren et al., 2020), co-occurrences together with their biotic and
49 abiotic environmental envelope describe ecologically important patterns that enable the investigation
50 of community structure (HilleRisLambers et al., 2012; Williams et al., 2014; Ríos-Castro et al.,
51 2022).

52

53 The oceanic environmental envelope is changing (Bakun et al., 1990; Doney et al., 2012; Bakun et
54 al., 2015; Bograd et al., 2022). While climate change is a global phenomenon, key systems in which
55 climate change has particularly strong effects are Eastern Boundary Upwelling Systems (EBUSs),
56 due to the disproportional contribution of EBUSs to global ocean productivity and ecosystem
57 services such as fisheries (Bograd et al., 2022). One such EBUS is the California Current Ecosystem
58 which extends from British Columbia, Canada, to Baja California Sur in Mexico and exhibits strong
59 physical and ecosystem variability on seasonal, interannual, and decadal time scales (Ware and
60 Thomson, 2005; Barth et al., 2007; Checkley and Barth, 2009). The Northern California Current
61 (NCC), extends from the northern border of the California Current Ecosystem southward to Cape
62 Mendocino, CA, and encompasses variable oceanography.

63

64 Upwelling in the NCC varies with latitude and season, with distinct downwelling (winter) and
65 upwelling (spring-summer) seasons off OR and WA contrasted with persistent, stronger upwelling
66 off northern CA (Bograd et al., 2009; García-Reyes and Largier, 2012). During upwelling, cold,
67 nutrient- and CO₂-rich waters reach the euphotic zone (Barth et al., 2005; Kirincich et al., 2005;
68 Hales et al., 2006), fueling high phytoplankton production (Dickson and Wheeler, 1995; Hales et al.,
69 2006). Spring-summer upwelling typically occurs in intermittent events (3-10 d) and is demarcated
70 by brief relaxation periods that cumulatively fuel strong primary and secondary production in the
71 system (Hickey and Banas, 2003; Feinberg and Peterson, 2003; Shaw et al., 2010). The NCC shelf in
72 mid and northern Oregon (e.g., Newport at 45°N) is relatively wide, allowing for higher retention of
73 upwelled waters compared to southern OR and northern CA locations such as Cape Blanco (42.8°N)
74 with a narrower shelf. Circulation tends to closely track bathymetry (Lentz and Chapman, 1989;
75 Kirincich et al., 2005; Hickey and Banas, 2008), with the coastal upwelling jet meandering off the
76 shelf south of Heceta Bank (Barth et al., 2000).

77

78 Tightly woven into the marine food web is the microbial loop, which enhances water column
79 recycling of carbon and nutrients, making these available again to higher trophic levels (Turner et al.,

80 2015; Cavan et al., 2019). While the microbial loop is often associated with low-latitude marine
81 ecosystems with low nutrient levels and more recycled production (Azam et al., 1983), the microbial
82 loop is ever-present, even in temperate areas where upwelling is prevalent (Wilkerson et al., 1987;
83 González et al., 2004). In intermittent upwelling regimes, smaller plankters associated with the
84 microbial food web can become dominant (Mousseau et al., 1998). Though patterns and processes of
85 microbial cycling have been extensively studied (Pomeroy, 1974; Azam et al., 1983; Kirchman,
86 2010), its influence is rarely examined beyond lower trophic levels, and it is often ignored in
87 upwelling systems where the primary focus has been on new production and classical food chains
88 (but see Vargas et al., 2007).

89

90 The central importance of upwelling to the NCC comes with some negative consequences in the form
91 of hypoxic and anoxic events. When low oxygen water is upwelled onto the shelf and phytoplankton
92 blooms collapse, bottom water can quickly become depleted of oxygen (Chan et al., 2008; 2019).
93 Increasingly frequent, such events are also associated with low pH (ocean acidification) conditions
94 (Feely et al., 2008; Chan et al., 2019), both having significant negative effects on demersal habitats
95 and organisms (Doney et al., 2020; Nagelkerken and Connell, 2022). Upwelling regimes are poised
96 to shift as a result of changes in wind forcing due to global climate change (Bakun, 1990; Bakun et
97 al., 2015; Buil et al., 2021). The resulting poleward intensification of upwelling and equatorward
98 reduction in upwelling will most certainly affect new productivity and thus activity of the microbial
99 loop. In particular, the northern NCC is predicted to experience more upwelling-favorable winds in
100 the future (Buil et al., 2021).

101

102 Simultaneously, climate change has the potential to affect oceanographic processes at all spatial
103 scales that comprise the environmental envelopes experienced by marine taxa. Effects are likely to be
104 evident in taxa distributions, community composition, and community structure at scales ranging
105 from microscale (e.g., predator-prey interactions, nutrient uptake in phytoplankton), fine scale (e.g.,
106 plankton thin layers and internal waves), sub-mesoscale (e.g., coastal processes such as cross-shore
107 transport and upwelling), mesoscale (e.g., eddies, wind stress curl), and large basin scale [e.g., marine
108 heat waves, Pacific Decadal Oscillation (PDO); Bakun and Nelson, 1991; Denman and Gargett,
109 1995; Mantua and Hare, 2002; Dickey and Bidigare, 2005; Prairie et al., 2012].

110

111 Historically, net-based plankton sampling has not adequately resolved planktonic communities at the
112 micro-, and fine scales that are important for plankton dynamics (Haury et al., 1978; Yamazaki et al.,
113 2002; Benoit-Bird et al., 2013; Schmid et al., 2019; Robinson et al., 2021). In response, in-situ
114 imaging instruments have been developed over the past few decades (Ortner et al., 1979) that can
115 overcome this limitation. Today a variety of systems exist that have been designed for specific tasks:
116 for instance, UVP6 (Picheral et al., 2022), Zooglider (Ohman et al., 2019), PlanktonScope (Song et
117 al., 2020), the Scripps Plankton Camera System (Orenstein et al., 2020), and the In-situ
118 Ichthyoplankton Imaging System (ISIIS; Cowen and Guigand, 2008). Advantages of imaging
119 systems include their non-destructive and high spatial resolution sampling capability (Lombard et al.,
120 2019) as well as efficient imaging of plankton traits (Schmid et al., 2018; Vilgrain et al., 2021;
121 Lertvilai and Jaffe, 2022). Data from imaging systems are often analyzed using machine learning due
122 to the volume of data generated (Luo et al., 2018; Irisson et al., 2021). Together with additional

123 onboard sensors (e.g., fluorometers, oxygen probes, CTDs) these imaging systems can describe the
124 plankton community and their environmental envelope with high spatial resolution, providing new
125 insight into plankton community structure (Briseño-Avena et al., 2020; Robinson et al. 2021).

126

127 To investigate the drivers of planktonic community structure in the NCC ecosystem, we deployed the
128 ISIIS along two cross-shelf transects that varied in their seasonal patterns of upwelling. Sampling
129 across two seasons (winter and summer) for two years (2018, 2019), in conjunction with a deep
130 learning data pipeline, yielded a very large dataset for examining plankton community structure. To
131 obtain a holistic view of community structure we used a spatially explicit high-resolution correlation
132 of taxa distributions. The co-occurrence of a wide range of organisms spanning from primary
133 producers and protists, through gelatinous plankton and crustacean zooplankton, to larval fishes, in
134 the context of their biotic and abiotic environment was used to disentangle the degree to which
135 community structure is driven by upwelling strength and new productivity versus the potential
136 impact of the microbial loop. With climate change beginning to affect the California Current
137 Ecosystem, it is important to identify current drivers of plankton community structure such that we
138 can better anticipate future changes to the structure of the water column that may disrupt the costal
139 marine food web including valuable fisheries.

140 **2 Materials and Methods**

141 **2.1 Study area**

142 Thirty transects ranging between 24 and 86 km in length were sampled along the Newport
143 Hydrographic (NH) line as well as the Trinidad Head (TR) line during the winters (February-March)
144 and summers (July-August) of 2018 and 2019. Located off Newport, Oregon (Fig. 1), the NH Line
145 has been sampled since 1961 (Peterson and Miller, 1975), while the TR line off northern California
146 has been sampled since 2007 (Robertson and Bjorkstedt, 2020). Both transects are part of regular net-
147 based sampling efforts by the National Oceanic and Atmospheric Administration (NOAA) with a
148 focus on determining the plankton community structure and the biophysical drivers of the
149 recruitment of commercially important fishes. Imagery data were collected during both day and night
150 hours, with daytime transects commencing at least 1h after sunrise and ending at least 1h before
151 sunset, and nighttime transects commencing at least 1h after sunset and ending at least 1h before
152 sunrise.

153 **2.2 In-situ Ichthyoplankton Imaging System (ISIIS)**

154 ISIIS (Cowen and Guigand, 2008) is a towed shadowgraph and line-scan imaging system, that scans
155 a large volume of water ($150 - 185 \text{ L}^{-1}$) to quantitatively sample abundant meso-zooplankton as well
156 as rarer ichthyoplankton (Cowen et al., 2013). ISIIS's large imaging frame, with a $13 \times 13\text{-cm}$ field of
157 view and 50 cm depth of field allows for the undisturbed imaging of a variety of plankton taxa
158 including fragile gelatinous zooplankton (McClatchie et al., 2012; Luo et al., 2014). The resulting
159 images have a pixel resolution of 66 μm and are recorded as continuous videography. Data are sent to
160 a top-side computer using a fiber optic cable where ISIIS data are time-stamped. ISIIS is equipped
161 with a CTD (Sea-Bird SBE 49 FastCAT), as well as a dissolved oxygen probe (Sea-Bird 43),
162 fluorescence sensor (Wet Labs FLRT), and photosynthetically active radiation sensor (PAR;
163 Biospherical QCP-2300). ISIIS is towed behind the ship at 2.5 m s^{-1} where it undulates on each
164 cross-shelf transect between 1 m and 100 m depth or as close as 2 m above the seafloor in shallower
165 water. ISIIS has been used in various ecosystems with differing scientific objectives, such as the

166 investigation of larval fish distributions at eddy fronts (Schmid et al., 2020) and fine-scale plankton
167 patchiness in the Straits of Florida (Robinson et al., 2021), larval fish distributions in the context
168 environmental gradients in the NCC (Swieca et al., 2020; Briseño-Avena et al., 2020), the
169 investigation of zooplankton individual-level interactions and parasitism in the Gulf of Mexico
170 (Greer et al., 2021), and cross-ecosystem comparisons of a gelatinous grazer (Greer et al., 2023).

171 **2.3 Sparse convolutional neural net**

172 ISIIS imagery data were processed following Luo et al. (2018) and Schmid et al. (2020), with a full
173 open-sourced, pipeline code (Schmid et al., 2021). After the collected video data were flat-fielded
174 and segmented into single regions of interest (ROIs; i.e., a single plankton specimen) using a k-
175 harmonic means clustering algorithm, a training library of images was created by choosing
176 representative images from all 2018 and 2019 transects. The training library contained 82,909 images
177 spanning 170 different classes, ranging from protists and phytoplankton to larval fishes. The sCNN
178 (SparseConvNets with Fractional Max□Pooling; Graham et al., 2015; Luo et al. 2018) was trained
179 until the error rate plateaued at ~ 5% after 399 epochs.

180

181 The 170 original classes in the training library were mapped onto 67 broader groups (e.g.,
182 chaetognaths of different shapes merged into one group). After removing five different unknown
183 groups, 62 taxonomic groups remained for ecological analyses. A random subset of images was
184 classified by two human annotators and used for probability filtering following Faillettaz et al.
185 (2016), an approach that removes very low probability images from the dataset, achieving 90%
186 predictive accuracy per taxon. Removal of these “low□confidence images” still allows for the
187 prediction of true spatial distributions (Faillettaz et al., 2016). An independent subsample of the
188 remaining images was again classified by the same two human annotators and the results compared
189 with the automated classification. The resulting confusion matrix was used to calculate taxon-specific
190 correction factors:

191

192
$$(\text{Correction factor}(\text{taxon}) = \text{Precision}(\text{taxon})/\text{Recall}(\text{taxon})).$$

193

194 Individuals and environmental data were binned into 1 m vertical strata and plankton concentrations
195 (ind. m^{-3}) estimated based on the volume of imaged seawater. Plankton concentrations were then
196 adjusted by applying the taxon-specific correction factors.

197 **2.4 Environmental and ecological data analyses**

198 To estimate the upwelling strength on each transect, we calculated the cumulative daily Coastal
199 Upwelling Transport Index (CUTI¹; Jacox et al., 2018) for the 10 d prior to sampling of a transect.
200 This period was selected to account for the lag between physical forcing (i.e., nutrient upwelling) and
201 phyto- (~7 d) and zooplankton (~13-16 d) abundances (Spitz et al., 2005). To encompass plankton
202 ranging from phyto- to zooplankton, we selected an intermediate lag of 10 d (Swieca et al., *in*

¹ ; <https://mjacox.com/upwelling-indices/>

203 *review*). Plankton community structure was assessed in two approaches using spatially explicit
204 Spearman rank correlations as measure of the co-occurrence of taxa.

205 **2.4.1 Low spatial resolution taxa co-occurrence**

206 To better describe the environmental drivers of species distributions, transects were divided into an
207 on-shelf portion and off-shelf portion based on the longitude of the 200 m isobath. Spearman rank
208 correlations between the concentrations of each taxon and the remainder of the plankton community
209 were calculated for both portions of a transect, with the underlying data binned vertically in 1-m
210 strata (Fig. 2). Thus, each taxon was correlated 122 times per transect: 61 correlations with the other
211 taxa on the shelf, and 61 correlations with other taxa off the shelf. Correlations were computed for all
212 possible combinations of the 62 taxa along the 30 transects and only correlations that were significant
213 at $p < 0.01$ were used for further analyses.

214

215 Co-occurrences were compared between the two years, seasons, study sites, and shelf condition (on-
216 and off-shelf). To determine whether on-shelf and off-shelf co-occurrences differed among the
217 different years, seasons, sites, and shelf conditions, we used Wilcoxon Rank Sum tests with a
218 confidence level of 0.999. To delineate patterns of taxa co-occurrences, coefficients of variation of
219 the co-occurrences were calculated for each possible year, season, site, and shelf condition
220 combination. Finally, to test for differences between NH and TR, the co-occurrences were regressed
221 against CUTI at the two different study sites using a Wilcoxon Rank Sum test.

222 **2.4.2 High spatial resolution taxa co-occurrence and their environmental drivers**

223 Based on the original 1-m vertically stratified data, mixed layer depth (Kara et al., 2000), Brunt
224 Vaisala Frequency, and geostrophic dynamic height anomalies (both using ‘gsw’ R package which
225 follows TEOS-10 definitions) were calculated along each transect to account for mixing depth,
226 stratification strength, and influence of the upwelling front, respectively. The data were then
227 projected onto a 10-m vertically stratified grid while keeping the underlying 1 m vertical data
228 structure intact. Spearman rank correlations were calculated similarly to 2.4.1, but instead of
229 calculating one correlation for a taxon per on- or off-shelf, the 10 m grid was used to calculate a
230 correlation for each 10 m interval of the water column. This enabled the retention of both vertically
231 stratified environmental and co-occurrence data. Only Spearman rank correlations that were
232 significant at $p < 0.01$ were used in further analyses.

233

234 Resulting environmental and taxon-specific data (Table 1) were used in two Random Forests models,
235 one for each of the two transect lines. In each case the modeled response variable was the correlation
236 coefficient for a specific 10-m vertical section of the grid; however, all data collected on NH or TR
237 were combined for the most generalist model. Random Forest analysis (Breiman et al., 2001) was
238 carried out using the ‘caret’ package in R (Kuhn et al., 2008), in the ‘ranger’ RF implementation, and
239 variable importance was assessed based on permutation importance. Partial dependence plots were
240 used to investigate the specific non-linear effects of the 10 most important explanatory variables per
241 model.

242

243 **3 Results**

244
245 1.194 billion plankton images were classified based on 195 h of underwater imagery, traversing a
246 total of 1644 km along 30 transects ranging from 24-86 km (Supplementary Material Table S1). The
247 vast diversity of NCC plankton imaged included taxa such as appendicularians, crab zoea and
248 megalopa, different types of copepods as well as hydromedusae, pteropods, chaetognaths,
249 ctenophores, salps, several groups of larval fish (Fig. 3, Supplementary Material Table S1), among
250 others. Dense thin layers of different plankton taxa were observed frequently during deployments and
251 analysis of the imagery showed these dense layers consisted of $> 25,000$ calanoid copepods per m^{-3}
252 (Feb 2018 on the TR line, Supplementary Material Table S1), or of $> 1,300$ crab zoea per m^{-3} (Feb
253 2018 on the NH line). Thin dense layers of doliolids reached densities of $> 11,000$ individuals per m^{-3}
254 (e.g., NH line in July 2018), while lobate ctenophores accumulated to > 800 individuals per m^{-3}
255 (March 2019 on the NH line). Appendicularian accumulations of $> 10,000$ individuals per m^{-3} were
256 found on the TR line in July 2019.

257
258 Comparison of the environmental conditions at the NH and TR lines revealed distinct upwelling
259 signatures in seawater densities along both sampling lines in the summers of 2018 and 2019 (see
260 representative transects in Figs. 4, 5). Winter upwelling was less evident in TR line pycnoclines, but
261 more so in cumulative CUTI upwelling 10 d prior to sampling (Fig. 6). Sea surface temperatures on
262 the NH line peaked at 17.5°C in 2018, while water on the TR line remained substantially cooler.
263 Surface salinities at the NH line were relatively fresh at 30, while most of the water column on the
264 TR line was > 32.5 . Oxygen levels fell to $< 2 \text{ ml l}^{-1}$ levels on the NH line in summer 2018, coinciding
265 with substantial upwelling. Chlorophyll *a* was highest on the TR line in summer 2018 with levels
266 reaching up to $45 \mu\text{g l}^{-1}$. The temperature profile along the NH line in summer 2019 closely
267 mimicked that of 2018, with surface temperatures $> 17.5^\circ\text{C}$ (Fig. 5). In 2019, oxygen levels fell to $<$
268 3 ml l^{-1} in summer in near-bottom areas on the shelf, while sub-surface chlorophyll maxima reached
269 $7.5 \mu\text{g l}^{-1}$ at both sampling sites in summer.

270
271 Cumulative CUTI upwelling 10 d prior to sampling each transect was always higher on the TR line
272 relative to the NH line (Fig. 6). The mean 10-day CUTI for the NH line during winter 2018 was $3.8 \text{ m}^{-3} \text{ s}^{-1}$, while it was $4.8 \text{ m}^{-3} \text{ s}^{-1}$ during summer (Fig. 6). Upwelling in 2019 was markedly lower, with
273 a mean of $0.4 \text{ m}^{-3} \text{ s}^{-1}$ during winter and $3.6 \text{ m}^{-3} \text{ s}^{-1}$ during summer. On the TR line, 2018 10-d CUTI
274 upwelling reached $13.8 \text{ m}^{-3} \text{ s}^{-1}$ and $22.3 \text{ m}^{-3} \text{ s}^{-1}$ during winter and summer, respectively, while
275 upwelling in 2019 followed the NH trend and was reduced to $3.3 \text{ m}^{-3} \text{ s}^{-1}$ and $6.2 \text{ m}^{-3} \text{ s}^{-1}$ during winter
276 and summer, respectively.

277
278 TS-diagrams demonstrate that temperatures on the NH line in summer were consistently the highest
279 ones measured during the study (Fig. 7). Winter profiles were characterized by a substantially smaller
280 water temperature range on both transects. While warm summer surface waters on the NH line were
281 also the freshest found at either site, winter water was fresher on the TR line than on the NH line.
282 Winter and summer water at both sampling sites showed a distinct seasonal signal (Fig. 7).

283 **3.1 Low spatial resolution taxa co-occurrences**

284 Co-occurrences among taxa ranged from strongly negatively correlated at -1 to strongly positively
285 correlated at +1, with substantial intra-, and inter- taxon variation (Figs. 8, 9; not all extreme values
286 are visible in the boxplots). Mean co-occurrences of all taxa differed significantly between on-shelf
287 and off-shelf (Wilcoxon Rank Sum test, all combinations $p < 0.0001$, except winter of 2019 at TR)
288 and these on-shelf/off-shelf patterns differed between the NH and TR lines (Figs. 8, 9). On the NH
289

291 line, across both seasons and years, correlation coefficients were more positive off-shelf compared to
292 on-shelf, while on the TR line the pattern was more complex. Winter and summer 2018 correlations
293 on the TR line were the opposite of the NH line, with more positive correlations on-shelf relative to
294 off-shelf. In contrast, average TR on- and off-shelf correlations in winter 2019 were virtually
295 indistinguishable, before transitioning in summer 2019 to a pattern similar to the NH line where off-
296 shelf correlations were significantly higher than those on-shelf.
297

298 Similarly, the coefficients of variation (CVs) around these mean co-occurrences on the NH line were
299 consistently higher on-shelf (> 2) compared to off-shelf (1.5), while on the TR line, the pattern was
300 more complex (Fig. 10). In winter 2018, CVs for both on-shelf and off-shelf correlations on TR were
301 virtually identical, while in summer 2018, the on-shelf CV was lower than off-shelf, before switching
302 to a pattern similar to the NH line in 2019, with higher CVs on-shelf relative to off-shelf (Fig. 10).
303 Mean co-occurrence of all taxa as a function of the preceding 10-d cumulative CUTI was significant
304 on the TR Line (Fig. 11; Wilcoxon rank sum test $p < 0.001$), while on the NH line no such
305 relationship was detected.
306

307 **3.2 High spatial resolution taxa co-occurrence and their environmental drivers**

308 The two Random Forests (RF) models designed to predict vertically and horizontally stratified taxa
309 co-occurrences based on 83 biotic and abiotic variables (Table 1) explained 42% (NH) and 43% (TR)
310 of the variance. The variables explaining most of the variance per model differed substantially
311 between the two transect locations (Fig. 12). On the NH line, sampling depth was the most important
312 predictor, followed by the binary on-shelf/off-shelf variable, temperature, density, the distance along
313 the transect (i.e., how far offshore sampling occurred), and salinity (Fig. 12). These abiotic variables
314 were followed by taxa concentrations of *Oithona* sp. copepods, appendicularians, other small
315 copepods, and protists. On the TR line, the binary year variable (2018/2019) was the most important
316 predictor, followed by the 10-d cumulative CUTI, the binary shelf indicator, sampling depth, the
317 distance along the transect, oxygen, density, temperature, chl *a*, and salinity (Fig. 12).
318

319 On the NH line, a deeper sampling depth (> 85 m) led to a substantially higher chance of co-
320 occurrence than in shallower water, while on-shelf in general predicted lower co-occurrences (Fig.
321 13). Temperature followed a gradual pattern where warmer temperatures predicted higher co-
322 occurrence values. Density and salinity effects were similar in that the lowest densities and salinities
323 led to the lowest co-occurrence and vice versa. Distance along the transect indicated that locations
324 farther offshore predicted higher co-occurrences compared to inshore locations. Concentrations of
325 *Oithona* copepods, appendicularians, other small copepods, and protists had similar effects in that
326 their lowest concentrations predicted the least likely co-occurrence, followed by a rise in predicted
327 co-occurrence as taxa concentrations increased. Protists showed the strongest such effect whereby a
328 steady increase in protist concentrations led to the fastest increase in predicted co-occurrence,
329 matched only by sampling depth.
330

331 On the TR line, 2018 data were a good predictor of higher co-occurrence, while 2019 data led to
332 lower values (Fig. 13). The 10-d cumulative CUTI was an important predictor and increasing CUTI
333 values led to higher predicted co-occurrence until a CUTI of $\sim 20 \text{ m}^{-3} \text{ s}^{-1}$, after which the predicted
334 co-occurrence dropped (Fig. 13). Notable differences between the TR and NH lines were that the
335 shelf variable in the TR model showed that higher co-occurrence was predicted at on-shelf locations,
336 which was followed by the distance variable that showed a decline in the predicted co-occurrence
337 going from on-shore to off-shore. While the depth variable on the TR line also showed the highest
338 predicted co-occurrence at 100m depth, the range of the predicted co-occurrences was substantially
339 narrower than that on the NH line. Oxygen, density, and temperature partial effects plots had a very

340 similar pattern between locations: the lowest and highest values generally led to the highest predicted
341 co-occurrence. The positive effect of Chl *a* on the co-occurrence of taxa increased steadily across the
342 spectrum of chl *a* values ($>20 \mu\text{g l}^{-1}$). The salinity partial effects profile differed substantially
343 between locations: in contrast to the NH line, the highest salinities on the TR line were good
344 predictors of higher taxa co-occurrence.

345

346 4 Discussion

347 4.1 Plankton community structure in the Northern California Current

348

349 As the northern portion of the prototypical Eastern Boundary Upwelling System, the northern
350 California Current (NCC) is characterized by strong, but intermittent upwelling, a typically short
351 food web, and subsequently high fisheries biomass (Ryther, 1969; Pauly and Christensen, 1995;
352 Rykaczewski and Checkley, 2008). While plankton community structure in the NCC has received
353 much attention over the last decades (Peterson and Keister, 2003; Peterson et al., 2014, 2017;
354 Brodeur et al., 2019; Weber et al., 2021; Thompson et al., 2022), we still lack a comprehensive
355 understanding of how plankton community structure responds to changing environmental conditions.
356 Our high-resolution imaging of the water column at two locations in the NCC that differ in their scale
357 and continuity of upwelling enabled us to tease apart the relationships of new and recycled
358 production (i.e., microbial loop) and plankton community structure. By simultaneously sampling a
359 wide range of organisms including protists, phytoplankton, zooplankton, and fragile gelatinous
360 plankton, in situ plankton imaging can bridge the sampling gap in studying the microbial and new
361 production driven components of the plankton (Biard et al., 2016; Briseño-Avena et al., 2020;
362 Schmid et al., 2020).

363

364 Using plankton co-occurrence as a proxy for community structure (Reese and Brodeur, 2006;
365 Brodeur et al., 2008; Sildever et al., 2021; Costas-Selas et al., 2022), we condensed >2000 high
366 resolution taxa distribution profiles into a unified community approach. Plankton co-occurrence
367 patterns differed substantially between the two sampled locations, NH with intermittent upwelling
368 and TR with more continuous upwelling. TR plankton co-occurrences in 2018 were higher on-shore
369 relative to off-shore, consistent with the expectations for a nearshore upwelling system where new
370 productivity is fueled by nutrients brought to the euphotic zone (Barth et al., 2007; Bograd et al.,
371 2009; Jacox et al., 2018). However, TR plankton co-occurrences in 2019 differed from this pattern,
372 likely induced by much lower upwelling and hence chl *a* in 2019. In sharp contrast to TR, plankton
373 co-occurrence at NH was consistently higher in the more oligotrophic off-shelf waters (Peterson et
374 al., 2017) relative to on-shelf waters. This pattern at NH remained consistent across all years and
375 seasons, despite the lower upwelling in 2019 and suggests that in intermittent upwelling, nearshore
376 conditions are generally less conducive to setting up a stable plankton community structure.

377

378 The relative importance of the microbial loop was highlighted by the high spatial resolution modeling
379 of plankton co-occurrences. Among the variables explaining the most variance in taxa co-occurrence
380 on the NH line over time were concentrations of several taxa associated with the microbial loop.
381 *Oithona* sp copepods are small, ubiquitous cyclopoid copepods that are closely linked to the
382 microbial loop through feeding on protozooplankton such as ciliates and dinoflagellates (Atienza et
383 al, 2006; Zamora-Terol et al., 2014). Appendicularians similarly feed on the very small constituents
384 of the microbial loop - down to picoplankton sizes - (Gorsky and Fenaux, 1998; Sutherland et al.,
385 2010; Sutherland and Thompson, 2022) by using specialized feeding-filters (Conley and Sutherland,
386 2017). Appendicularians can be extremely abundant – we measured dense patches of $>10,000 \text{ ind. m}^{-3}$
387 on the TR line – and are important prey for numerous taxa, including copepods, chaetognaths,
388 ctenophores, and larval to small adult fishes (Gorsky and Fenaux, 1998; Purcell et al., 2005). Being a

389 key driver of plankton community structure on the NH line, while also accumulating in dense patches
390 on the TR line, the presence of appendicularians indicates the constant underlying activity of the
391 microbial loop. A key feature of appendicularians are their mucous houses that are discarded
392 regularly and contribute significantly to vertical ocean carbon flux (Alldredge, 1976; Sato et al.,
393 2003; Luo et al., 2022). The high importance of appendicularians in contributing to plankton
394 community structure in intermittent upwelling systems further advances the body of literature
395 emphasizing the often-overlooked importance of gelatinous plankton, and specifically,
396 appendicularians. Protists are the prototypical constituent of the microbial loop (Azam et al., 1983;
397 Williams and Ducklow, 2019; Glibert and Mitra, 2022) and their importance in generating plankton
398 community structure at NH is not only a robust confirmation of high microbial loop activity but may
399 also reflect the consumption of protists by appendicularians and *Oithona* copepods. These faunal
400 patterns are consistent with the importance of sampling depth and the on-shelf/off-shelf variable in
401 the NH co-occurrence model, as deeper off-shelf waters tend to be more oligotrophic and favorable
402 for heightened microbial activity (Azam et al., 1983; Williams and Ducklow, 2019; Glibert and
403 Mitra, 2022).

404
405 In contrast to the variables influencing plankton community structure at NH, variation in plankton
406 co-occurrences at TR was influenced most strongly by upwelling and chl *a*, both indicative of a
407 system dominated by new productivity with relatively reduced importance of the microbial loop, and
408 generally shorter trophic pathways (Rykaczewski and Checkley, 2008; Jacox et al., 2018). While the
409 positive effect of chl *a* on predicted plankton co-occurrence increased almost linearly across the
410 range of observed chl *a* values, predicted co-occurrence increased with the cumulative 10-d CUTI
411 only up to a value of $\sim 20 \text{ m}^{-3} \text{ s}^{-1}$ before dropping off. This non-linear relationship may be due to an
412 imbalance of upwelling and relaxation events whereby too much and continuous upwelling lead to
413 advective loss of plankton off the shelf (Largier et al., 2006; Kudela et al., 2008). Sampling year was
414 also an important driver on the TR line where both upwelling strength and chl *a* were much higher in
415 2018 compared to 2019. Northern California upwelling and chl *a* levels in 2018 and 2019 have been
416 reported as average and slightly below average, respectively (Thompson et al., 2018, 2019); however,
417 our measurements reveal larger differences. At TR, cumulative CUTI was much higher in 2018
418 (winter = $13.8 \text{ m}^{-3} \text{ s}^{-1}$; summer = $22.3 \text{ m}^{-3} \text{ s}^{-1}$) relative to 2019 (winter = $3.3 \text{ m}^{-3} \text{ s}^{-1}$; summer = 6.2 m^{-3}
419 s^{-1}). This interannual difference in CUTI likely also led to the much higher chl *a* levels observed in
420 2018 relative to 2019 ($> 45 \mu\text{g l}^{-1}$ in 2018 vs $7.5 \mu\text{g l}^{-1}$ in 2019). Considering that CUTI and chl *a*
421 were both important predictors in the TR model, these large differences between 2018 and 2019
422 likely explain why the 'year' variable was also important and why 2018 predicted higher co-
423 occurrences. Other variables that were important in driving plankton co-occurrences on the TR and
424 NH lines were temperature and oxygen. Both are key drivers in structuring pelagic plankton
425 ecosystems, through physiological effects that can impact predator-prey interactions, as well as
426 physical discontinuities that can constrain plankton movement (Rutherford et al., 1999; Rebstock,
427 2003; Brodeur et al., 2019). Temperature and oxygen are also two of the variables most affected by
428 climate change (Chan et al., 2019; Bograd et al., 2022; Smith et al., 2022).

429
430 In a strong (i.e., continuous) upwelling environment (TR), a reduction in upwelling and resulting
431 lower chl *a* lead to a reversal of the prevailing on-shelf/off-shelf pattern of co-occurrence, while in an
432 already lower upwelling strength environment (i.e., intermittent upwelling regime; NH), a further
433 reduction of upwelling leads to little change in on-shelf/off-shelf co-occurrence patterns. The larger
434 effect on plankton co-occurrences in the strong upwelling environment is consistent with the
435 expectation that the established trophic web is reliant on the input of nutrients through upwelling and
436 subsequent phytoplankton blooms (Barth et al., 2007; Bograd et al., 2009; Jacox et al., 2018). In an
437 intermittent upwelling environment, where we found several microbial loop taxa to be important in

438 predicting co-occurrences, the established trophic web (including a protist - *Oithona* -
439 appendicularian link) is less reliant on nutrient input from upwelling (Azam et al., 1983; Williams
440 and Ducklow, 2019), thus a further reduction in upwelling would be expected to have a smaller
441 effect.

442
443 It is well established that the microbial loop is an important part of many marine ecosystems
444 (Wilkerson et al., 1987; Taylor and Landry, 2018; Williams and Ducklow, 2019; Thompson et al.,
445 2021; Glibert and Mitra, 2022). Recent establishment of the mixoplankton paradigm—ubiquitous
446 microbes that survive on phototrophy and phagotrophy synergistically—has had far reaching ripple
447 effects (Flynn et al., 2019; Glibert and Mitra, 2022). Long considered minor players, mixotrophs are
448 now known to comprise large parts of the microbial loop and are of high importance in the global
449 plankton trophic web. Nonetheless, the role of the microbial loop in shaping overall plankton
450 community structure, particularly in the context of variable environmental conditions, is not well
451 understood. Several comparative studies have investigated the relative carbon contributions of broad
452 taxa to new productivity and the microbial loop (Tilstone et al., 1999; Vargas et al., 2007; Landry et
453 al., 2012; Taylor et al., 2015). For example, in a productive coastal upwelling region in the Humboldt
454 Current, the microbial loop was found to channel a large portion of the energy flow, while new
455 productivity contributed only a small portion of the transferred carbon (Vargas et al., 2007).
456

457 Our in-situ plankton imagery demonstrates that the role of the microbial loop in driving
458 mesoplankton community structure is more evident in intermittent upwelling regimes relative to
459 continuous upwelling regions. While areas dominated by upwelling and high nutrient input also
460 include microbial constituents, new productivity plays a larger role in structuring the plankton
461 community. Here, large changes in upwelling result in sharp spatial changes to plankton community
462 structure. In intermittent or low upwelling areas, microbial loop constituents are more important
463 drivers of overall plankton community structure, resulting in a more temporally stable plankton
464 community structure, even in the face of changes to upwelling strength.
465

466 Complexities of nutrient-plankton interactions, including the microbial loop, are often not well
467 represented in models, and need refining, especially with regard to adequately including mixotrophy
468 (Ratnarajah et al., 2023). Updating these models becomes especially urgent in the uncertain future
469 ocean.

470
471 **4.2 Plankton community structure under future climate change**
472

473 Recently the NCC has been subject to disruptive marine heatwaves, affecting multiple trophic levels
474 (Cavole et al., 2016; Oliver et al., 2018; Fennie et al., *in revision*) and reducing biodiversity on basin
475 scales (Smale et al., 2019; Smith et al., 2022). Unfortunately, such extreme events are also predicted
476 to become more prevalent in the future (Jacox et al., 2022). Marine heatwaves can lead to changes in
477 plankton and nekton community structure (Brodeur et al., 2019) and to die-offs in seabirds, marine
478 mammals, and kelp (Smith et al., 2022). Simultaneously, deeper and stronger stratification will result
479 in lower nutrient supply to surface waters, with a resulting impact on food web structure—i.e., a shift
480 to smaller plankters that rely to a greater extent on microbial-based nutrient recycling (Behrenfeld
481 and Boss, 2013)—generating longer, less-efficient food chains. Meanwhile, changing wind patterns
482 are projected to intensify upwelling in the NCC, and to decrease upwelling-favorable winds in the
483 central and southern California Current Ecosystem (Buil et al., 2021). Our findings suggest that as
484 these changes in wind patterns lead to shifts in intermittent and continuous upwelling regimes,
485 current continuous upwelling regions will likely transition to a plankton community structure that is
486 driven more by microbial loop constituents, and current intermittent upwelling regions will likely

487 transition to systems dominated by new productivity. Such fundamental changes would likely have
488 important consequences for energy transport through the trophic web to top predators and fisheries.
489

490 **4.3 Conclusions**

491
492 Collection and analysis of a vast dataset of in situ underwater plankton imagery (>1.1 billion
493 plankton images) revealed substantial differences in the way that plankton community structure is
494 driven under intermittent and continuous upwelling regimes. A reduction of upwelling strength in a
495 continuous upwelling regime induced large scale changes in plankton community structure that
496 affected on-shelf and off-shelf taxa co-occurrences, while in an intermittent upwelling regime, more
497 strongly influenced by microbial loop constituents, a reduction of upwelling strength had little effect
498 on plankton community structure. We thus hypothesize that high microbial loop activity enhances the
499 resilience of plankton community structure to climate change induced shifts in upwelling strength.
500 This concept is consistent with the mixotrophy paradigm in which the base of the microbial loop—the
501 mixotrophs—are better adapted to a changing ocean (e.g., changing nutrient availability) than pure
502 auto-, or heterotrophs, due to their ability to survive on either (Glibert and Mitra, 2022).

503

504

505 **5 Figure legends**

506
507 Figure 1. ISIS transects along the Newport Hydrographic (NH) and Trinidad Head (TR) lines (black
508 solid line) where sampling occurred in winter and summer 2018 and 2019. Chlorophyll *a* from Aqua
509 Modis ocean color on July 10, 2018 shows the often higher productivity in the northern California
510 part of the Northern California Current, where the shelf is narrower than farther north at the NH Line
511 (depth contours in solid grey lines at 50m, 100m, 200m, 1000m, 2000m). Light grey pixels indicate
512 non-available data from Aqua Modis.

513

514 Figure 2. High spatial distribution profiles (e.g., here *Oithona* sp., left panel – shelf delineated as a
515 grey polygon) are correlated with all other taxa and led to correlograms that depict co-occurrence
516 amongst taxa (right panel). In this example, the on-shelf portion of the left panel would result in one
517 correlogram, and the off-shelf part in another. The black box shows *Oithona* sp. co-occurrence with
518 other taxa (blue hues indicating negative correlation and red hues positive correlation, grey boxes are
519 correlations that are not significant at $p < 0.01$), while other taxa correlations above and below depict
520 correlations of the remainder of the plankton community on the transect.

521

522 Figure 3. ISIS images of key taxa in the northern California Current. (A) Primary producers and
523 protists; (B-C) crustaceans (D) cnidarians, ctenophores, and echinoderms; (E) heteropods and
524 pteropods; (F) chaetognaths and polychaetes; (G) pelagic tunicates; (H) larval fishes.

525

526 Figure 4. Temperature (A), Salinity (B), Density (C), Oxygen (D) and Chlorophyll *a* (chl *a*, E) across
527 the Newport Hydrographic (NH) and Trinidad Head (TR) transects in winter and summer 2018.
528 Winter sampling on the NH and TR shown here was carried out February 16 and 21, respectively,
529 while summer sampling was carried out on July 10 and 7, respectively. Note that Chl *a* is plotted in
530 $\log(x+1)$ due to the values ranging from 0.01 to 45 $\mu\text{g l}^{-1}$. Shelf indicated in dark grey.

531

532 Figure 5. Temperature (A), Salinity (B), Density (C), Oxygen (D) and Chlorophyll *a* (chl *a*, E) across
533 the Newport Hydrographic (NH) and Trinidad Head (TR) transects in winter and summer 2019.
534 Winter sampling on the NH and TR shown here was carried out on March 6 and 8, respectively,
535 while summer sampling was carried out on July 23 and 18, respectively. Shelf indicated in dark grey.

536
537 Figure 6. Cumulative Coastal Upwelling Transport Index (CUTI) over 10 d prior to sampling at the
538 Newport Hydrographic (NH) and Trinidad Head (TR) lines.
539
540 Figure 7. T-S diagrams during summer and winter sampling (2018, 2019) along the Newport
541 Hydrographic (NH), and Trinidad Head (TR) lines. Light grey numbers and dotted lines indicate
542 isopycnals.
543
544 Figure 8. Co-occurrence of plankton taxa (y-axis) with all other taxa on the shelf (green) and off the
545 shelf (red) along the Newport Hydrographic (NH) line. Vertical lines indicate taxa averages of co-
546 occurrence as measured by spatial correlations. Stars indicate significant differences between on-,
547 and off-shelf co-occurrence averages using Wilcoxon Rank Sum tests ($p < 0.0001$).
548
549 Figure 9. Co-occurrence of plankton taxa (y-axis) with all other taxa on the shelf (green) and off the
550 shelf (red) along the Trinidad Head line. Vertical lines indicate taxa averages of co-occurrence as
551 measured by spatial correlations. Stars indicate significant differences between on-, and off-shelf co-
552 occurrence averages using Wilcoxon Rank Sum tests ($p < 0.0001$).
553
554 Figure 10. Coefficients of variation of plankton taxa co-occurrences along the Newport Hydrographic
555 (NH) and Trinidad Head (TR) lines.
556
557 Figure 11. Plankton taxa co-occurrence as a function of the 10-d cumulative Coastal Upwelling
558 Transport Index (CUTI) along the Newport Hydrographic (NH) and Trinidad Head (TR) lines;
559 Wilcoxon test (ns = not significant, ** $p < 0.001$).
560
561 Figure 12. Top ten variables in the Random Forests models of plankton cooccurrence at the Newport
562 Hydrographic (NH) and Trinidad Head (TR) lines, ordered by relative variance explained (variance
563 scaled to 100% based on the most important variable).
564
565 Figure 13. Partial dependence plots for the top 10 most important variables in the Random Forests
566 models of plankton co-occurrence on the Newport Hydrographic (NH) and Trinidad Head (TR) lines.
567 Note the differing y-axis scale between NH and TR
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

585
586
587

6 Tables

Table 1: Variables used in Random Forests modeling included biotic and abiotic environmental variables (1-14) and taxa concentrations derived from underwater imaging (15-83).

	Name	Unit	Name	Unit
1	Shelf (On/Off)	-	43	detritus
2	Distance	km	44	diatoms
3	Depth	m	45	echinoderm_brachiolaria
4	Year (2018 / 2019)	-	46	echinoderm_pluteus
5	Season (winter / summer)	-	47	fish_clupeiformes
6	Cumulative CUTI (10 day)	$m^{-3} s^{-1}$	48	fish_flatfish
7	Temperature	°C	49	fish_long_slender
8	Salinity	-	50	fish_myctophid
9	Oxygen	$ml l^{-1}$	51	fish_sebastes
10	Chlorophyll <i>a</i>	$\mu g l^{-1}$	52	fish_unknown
11	Density	$kg m^{-3}$	53	foraminifera
12	Geostrophic Dynamic Height Anomaly	$m^2 s^{-2}$	54	hydromedusae_anthomedusae_other
13	Mixed layer depth	m	55	hydromedusae_anthomedusae_velella
14	Brunt Vaisala Frequency squared	$rad^2 s^{-2}$	56	hydromedusae_leptomedusae_eutonina
15	appendicularians	$ind. m^{-3}$	57	hydromedusae_leptomedusae_clytia_mitrocoma
16	chaetognaths	"	58	hydromedusae_leptomedusae_other
17	copepod_calanoid_calanus	"	59	hydromedusae_narcomedusae_aegina
18	copepod_calanoid_diaptomoidea	"	60	hydromedusae_narcomedusae_other
19	copepod_calanoid_mesocalanus	"	61	hydromedusae_narcomedusae_solmaris
20	copepod_calanoid_metridia	"	62	hydromedusae_narcomedusae_solmundella
21	copepod_calanoid_other	"	63	hydromedusae_other
22	copepod_calanoid_paracalanidae	"	64	hydromedusae_trachymedusae_aglantha
23	copepod_calanoid_paraeuchaeta	"	65	hydromedusae_trachymedusae_aglaura
24	copepod_calanoid_pseudocalanus	"	66	hydromedusae_trachymedusae_arctapodema
25	copepod_carcass	"	67	hydromedusae_unknown
26	copepod_cyclopoid_oithona	"	68	phytoplankton_diatom_chain
27	copepod_cyclopoid_oithona_eggs	"	69	polychaete
28	copepod_eucalaniid	"	70	polychaete_larvae
29	copepod_other	"	71	protist_acantharia
30	copepod_poecilostomatoid	"	72	protist_noctiluca
31	crustacean_amphipods	"	73	protist_other
32	crustacean_megalopae	"	74	protist_radiolarian_other
33	crustacean_ostracod	"	75	pteropod
34	crustacean_other	"	76	pyrosome
35	crustacean_shrimp_caridean	"	77	siphonophore_calycophoran_abylidae
36	crustacean_shrimp_euphausiid	"	78	siphonophore_calycophoran_muggiaeae
37	crustacean_shrimp_molt	"	79	siphonophore_calycophoran_sphaeronectes
38	crustacean_shrimp_mysids	"	80	siphonophore_other
39	crustacean_zoea	"	81	siphonophore_physonect
40	ctenophore_beroe	"	82	tunicate_doliolid
41	ctenophore_cydippid	"	83	tunicate_salp
42	ctenophore_lobate	"		

588

589 **7 Conflict of Interest**

590 The authors declare that the research was conducted in the absence of any commercial or financial
591 relationships that could be construed as a potential conflict of interest.

592 **8 Author Contributions**

593 MSS performed analyses and wrote the initial manuscript; SS, RKC, KRS, and MSS conceptualized
594 hypotheses and research questions; SS, RKC, and KRS designed the study, sampling program, and
595 wrote grant proposals; MSS, RKC, and KRS collected data; all authors interpreted the data, discussed
596 the results, contributed to the critical revision of the manuscript and figures, and approved the final
597 version.

598 **9 Funding**

599 Support for this study was provided by NSF OCE-1737399, NSF OCE-2125407, and NSF
600 XSEDE/ACCESS OCE170012.

601 **10 Acknowledgments**

602 We thank our collaborators Chris Sullivan and Dominic Daprano (both at Oregon State University)
603 for invaluable support with processing the vast quantity of data presented here. We also thank Kelsey
604 Swieca and Christian Briseño-Avena for their help creating the sCNN training library. Current and
605 former members of the OSU Plankton Ecology Lab at the Hatfield Marine Science Center helped
606 collect the data presented here on the four cruises, we thank them for their efforts – Jami Ivory,
607 Christian Briseño-Avena, Kelsey Swieca, Miram Gleiber, H. Will Fennie, Megan Wilson, and Keely
608 Axler. The professionalism of the officers and crews of RV *Sikuliaq* (Winter 2018 and 2019), RV
609 *Sally Ride* (Summer 2018) and RV *Atlantis* (Summer 2019) enabled this project, and we are grateful
610 to them. We thank NSF XSEDE/ACCESS and specifically staff Manu Shantharam at the San Diego
611 Supercomputing Center as well as Sergiu Sanlievici at the Pittsburgh Supercomputing Center for
612 their support with classifying the image data presented here.

613

614 **11 References**

615

616 Alldredge, A. L. (1976). Discarded appendicularian houses as sources of food, surface habitats, and
617 particulate organic matter in planktonic environments. *Limnol Oceanogr* 21, 14–24. doi:
618 10.4319/lo.1976.21.1.0014.

619

620 Atienza, D., Calbet, A., Saiz, E., Alcaraz, M., and Trepat, I. (2006). Trophic impact, metabolism, and
621 biogeochemical role of the marine cladoceran *Penilia avirostris* and the co-dominant copepod
622 *Oithona nana* in NW Mediterranean coastal waters. *Mar Biol* 150, 221–235. doi: 10.1007/s00227-
623 006-0351-z.

624

625 Azam, F., Fenchel, T., Field, J., Gray, J., Meyer-Reil, L., and Thingstad, F. (1983). The ecological
626 role of water-column microbes in the sea. *Mar Ecol Prog Ser* 10, 257–263. doi:
627 10.3354/meps010257.

628

629 Bakun, A. (1990). Global climate change and intensification of coastal ocean upwelling. *Science* 247,
630 198–201. doi: 10.1126/science.247.4939.198.

631

632 Bakun, A., Black, B. A., Bograd, S. J., García-Reyes, M., Miller, A. J., Rykaczewski, R. R., et al.
633 (2015). Anticipated effects of climate change on coastal upwelling ecosystems. *Curr Clim Change
634 Reports* 1, 85–93. doi: 10.1007/s40641-015-0008-4.

635

636 Bakun, A., and Nelson, C. S. (1991). The Seasonal Cycle of Wind-Stress Curl in Subtropical Eastern
637 Boundary Current Regions. *J Phys Oceanogr* 21, 1815–1834. doi: 10.1175/1520-
638 0485(1991)021<1815:tscows>2.0.co;2.

639

640 Barth, J. A., Menge, B. A., Lubchenco, J., Chan, F., Bane, J. M., Kirincich, A. R., et al. (2007).
641 Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current. *Proc
642 National Acad Sci* 104, 3719–3724. doi: 10.1073/pnas.0700462104.

643

644 Barth, J. A., Pierce, S. D., and Castelao, R. M. (2005). Time□dependent, wind□driven flow over a
645 shallow midshelf submarine bank. *J Geophys Res Oceans* 110. doi: 10.1029/2004jc002761.

646

647 Barth, J. A., Pierce, S. D., and Smith, R. L. (2000). A separating coastal upwelling jet at Cape
648 Blanco, Oregon and its connection to the California Current System. *Deep Sea Res Part Ii Top Stud
649 Oceanogr* 47, 783–810. doi: 10.1016/s0967-0645(99)00127-7.

650

651 Behrenfeld, M. J., and Boss, E. S. (2013). Resurrecting the Ecological Underpinnings of Ocean
652 Plankton Blooms. *Annu Rev Mar Sci* 6, 167–194. doi: 10.1146/annurev-marine-052913-021325.

653

654 Benoit□Bird, K. J., Shroyer, E. L., and McManus, M. A. (2013). A critical scale in plankton
655 aggregations across coastal ecosystems. *Geophys Res Lett* 40, 3968–3974. doi: 10.1002/grl.50747.

656

657 Biard, T., Stemmann, L., Picheral, M., Mayot, N., Vandromme, P., Hauss, H., et al. (2016). In situ
658 imaging reveals the biomass of giant protists in the global ocean. *Nature* 532, 504. doi:
659 10.1038/nature17652

660

661 Bograd, S. J., Jacox, M. G., Hazen, E. L., Lovecchio, E., Montes, I., Buil, M. P., et al. (2022).
662 Climate Change Impacts on Eastern Boundary Upwelling Systems. *Annu Rev Mar Sci* 15, 303–328.
663 doi: 10.1146/annurev-marine-032122-021945.

664

665 Bograd, S. J., Schroeder, I., Sarkar, N., Qiu, X., Sydeman, W. J., and Schwing, F. B. (2009).
666 Phenology of coastal upwelling in the California Current. *Geophys Res Lett* 36. doi:
667 10.1029/2008gl035933.

668

669 Breiman, L. (2001). Random Forests. *Mach Learn* 45, 5–32. doi: 10.1023/a:1010933404324.

670

671 Briseño-Avena, C., Schmid, M. S., Swieca, K., Sponaugle, S., Brodeur, R. D., and Cowen, R. K.
672 (2020). Three-dimensional cross-shelf zooplankton distributions off the Central Oregon Coast during
673 anomalous oceanographic conditions. *Prog Oceanogr* 188, 102436. doi:
674 10.1016/j.pocean.2020.102436.

675

676 Brodeur, R. D., Auth, T. D., and Phillips, A. J. (2019). Major Shifts in Pelagic Micronekton and
677 Macrozooplankton Community Structure in an Upwelling Ecosystem Related to an Unprecedented
678 Marine Heatwave. *Frontiers Mar Sci* 6, 212. doi: 10.3389/fmars.2019.00212.

679

680 Brodeur, R. D., Suchman, C. L., Reese, D. C., Miller, T. W., and Daly, E. A. (2008). Spatial overlap
681 and trophic interactions between pelagic fish and large jellyfish in the northern California Current.
682 *Mar Biol* 154, 649–659. doi: 10.1007/s00227-008-0958-3.

683

684 Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B. (2004). Toward a
685 metabolic theory of ecology. *Ecology* 85, 1771–1789. doi: 10.1890/03-9000.

686

687 Buil, M. P., Jacox, M. G., Fiechter, J., Alexander, M. A., Bograd, S. J., Curchitser, E. N., et al.
688 (2021). A Dynamically Downscaled Ensemble of Future Projections for the California Current
689 System. *Frontiers Mar Sci* 8, 612874. doi: 10.3389/fmars.2021.612874.

690

691 Cavan, E. L., Laurenceau-Cornec, E. C., Bressac, M., and Boyd, P. W. (2019). Exploring the ecology
692 of the mesopelagic biological pump. *Prog Oceanogr* 176, 102125. doi:
693 10.1016/j.pocean.2019.102125.

694

695 Cavole, L., Demko, A., Diner, R., Giddings, A., Koester, I., et al. (2016). Biological Impacts of the
696 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future.
697 *Oceanography* 29. doi: 10.5670/oceanog.2016.32.

698

699 Chan, F., Barth, J. A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W. T., et al. (2008).
700 Emergence of Anoxia in the California Current Large Marine Ecosystem. *Science* 319, 920–920. doi:
701 10.1126/science.1149016.

702

703 Chan, F., Barth, J., Kroeker, K., Lubchenco, J., and Menge, B. (2019). The Dynamics and Impact of
704 Ocean Acidification and Hypoxia: Insights from Sustained Investigations in the Northern California
705 Current Large Marine Ecosystem. *Oceanography* 32, 62–71. doi: 10.5670/oceanog.2019.312.

706

707 Checkley, D. M., and Barth, J. A. (2009). Patterns and processes in the California Current System.
708 *Prog Oceanogr* 83, 49–64. doi: 10.1016/j.pocean.2009.07.028.

709

710 Chesson, P. (2000). Mechanisms of maintenance of species diversity. *Annu Rev Ecol Syst* 31, 343–
711 366. doi: 10.1146/annurev.ecolsys.31.1.343.

712

713 Conley, K. R., and Sutherland, K. R. (2017). Particle shape impacts export and fate in the ocean
714 through interactions with the globally abundant appendicularian *Oikopleura dioica*. *Plos One* 12,
715 e0183105. doi: 10.1371/journal.pone.0183105.

716

717 Costas-Selas, C., Martínez-García, S., Logares, R., Hernández-Ruiz, M., and Teira, E. (2022). Role
718 of Bacterial Community Composition as a Driver of the Small-Sized Phytoplankton Community
719 Structure in a Productive Coastal System. *Microbial Ecol.* 1–18. doi: 10.1007/s00248-022-02125-2.

720

721 Cowen, R. K., Greer, A. T., Guigand, C. M., Hare, J. A., Richardson, D. E., and Walsh, H. J. (2013).
722 Evaluation of the In Situ Ichthyoplankton Imaging System (ISIIS): comparison with the traditional
723 (bongo net) sampler. *Fish B* 111. doi: 10.7755/fb.111.1.1.

724

725 Cowen, R. K., and Guigand, C. M. (2008). In situ ichthyoplankton imaging system (ISIIS): system
726 design and preliminary results. *Limnology Oceanogr Methods* 6, 126–132. doi:
727 10.4319/lom.2008.6.126.

728

729 Denman, K. L., and Gargett, A. E. (1995). Biological-Physical Interactions in the Upper Ocean: The
730 Role of Vertical and Small Scale Transport Processes. *Annu Rev Fluid Mech* 27, 225–256. doi:
731 10.1146/annurev.fl.27.010195.001301.

732

733 Dickey, T. D., and Bidigare, R. R. (2005). Interdisciplinary oceanographic observations: the wave of
734 the future. *Sci Mar* 69, 23–42. doi: 10.3989/scimar.2005.69s123.

735

736 Dickson, M., and Wheeler, P. (1995). Ammonium uptake and regeneration rates in a coastal
737 upwelling regime. *Mar Ecol Prog Ser* 121, 239–248. doi: 10.3354/meps121239.

738

739 Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J. (2020). The Impacts of Ocean
740 Acidification on Marine Ecosystems and Reliant Human Communities. *Annu Rev Env Resour* 45, 1–
741 30. doi: 10.1146/annurev-environ-012320-083019.

742

743 Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., et al. (2012).
744 Climate Change Impacts on Marine Ecosystems. *Annu Rev Mar Sci* 4, 11–37. doi: 10.1146/annurev-
745 marine-041911-111611.

746

747 Faillettaz, R., Picheral, M., Luo, J. Y., Guigand, C., Cowen, R. K., and Irisson, J.-O. (2016).
748 Imperfect automatic image classification successfully describes plankton distribution patterns.
749 *Methods Oceanogr* 15, 60–77. doi: 10.1016/j.mio.2016.04.003.

750

751 Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B. (2008). Evidence for
752 Upwelling of Corrosive “Acidified” Water onto the Continental Shelf. *Science* 320, 1490–1492. doi:
753 10.1126/science.1155676.

754

755 Feinberg, L. R., and Peterson, W. T. (2003). Variability in duration and intensity of euphausiid
756 spawning off central Oregon, 1996–2001. *Prog Oceanogr* 57, 363–379. doi: 10.1016/s0079-
757 6611(03)00106-x.

758

759 Fennie, H. W., Grorud-Colvert, K., and Sponaugle, S. (*in revision*). Larval rockfish growth and
760 survival in response to anomalous ocean conditions. *Sci Rep*

761

762 Flynn, K. J., Mitra, A., Anestis, K., Anschütz, A. A., Calbet, A., Ferreira, G. D., et al. (2019).
763 Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now?
764 *J Plankton Res* 41, 375–391. doi: 10.1093/plankt/fbz026.

765

766 García-Reyes, M., and Largier, J. L. (2012). Seasonality of coastal upwelling off central and
767 northern California: New insights, including temporal and spatial variability. *J Geophys Res Oceans*
768 117, n/a-n/a. doi: 10.1029/2011jc007629.

769

770 Glibert, P. M., and Mitra, A. (2022). From webs, loops, shunts, and pumps to microbial multitasking:
771 Evolving concepts of marine microbial ecology, the mixoplankton paradigm, and implications for a
772 future ocean. *Limnol Oceanogr* 67, 585–597. doi: 10.1002/lno.12018.

773

774 González, H. E., Giesecke, R., Vargas, C. A., Pavez, M., Iriarte, J., Santibáñez, P., et al. (2004).
775 Carbon cycling through the pelagic foodweb in the northern Humboldt Current off Chile (23°S). *Ices*
776 *J Mar Sci* 61, 572–584. doi: 10.1016/j.icesjms.2004.03.021.

777

778 Gorsky, G., and Fenaux, R. (1998). “The role of Appendicularia in marine food webs,” in *The*
779 *Biology of Pelagic Tunicates* (Oxford: Oxford University Press), 161–169.

780

781 Graham, B. (2014). Fractional Max-Pooling. *Arxiv*. doi: 10.48550/arxiv.1412.6071.

782

783 Greer, A. T., Chiaverano, L. M., Treble, L. M., Briseño-Avena, C., and Hernandez, F. J. (2021).
784 From spatial pattern to ecological process through imaging zooplankton interactions. *Ices J Mar Sci*
785 78, 2664–2674. doi: 10.1093/icesjms/fsab149.

786

787 Greer, A. T., Schmid, M. S., Duffy, P. I., Robinson, K. L., Genung, M. A., Luo, J. Y., et al. (2023).
788 In situ imaging across ecosystems to resolve the fine-scale oceanographic drivers of a globally
789 significant planktonic grazer. *Limnol Oceanogr* 68, 192–207. doi: 10.1002/lno.12259.

790

791 Hales, B., Karp-Boss, L., Perlin, A., and Wheeler, P. A. (2006). Oxygen production and carbon
792 sequestration in an upwelling coastal margin. *Global Biogeochem Cy* 20. doi:
793 10.1029/2005gb002517.

794

795 Haury, L. R., McGowan, J. A., and Wiebe, P. H. (1978). Spatial Pattern in Plankton Communities.
796 277–327. doi: 10.1007/978-1-4899-2195-6_12.

797

798 Hickey, B., and Banas, N. (2008). Why is the Northern End of the California Current System So
799 Productive? *Oceanography* 21, 90–107. doi: 10.5670/oceanog.2008.07.

800

801 Hickey, B. M., and Banas, N. S. (2003). Oceanography of the U.S. Pacific Northwest Coastal Ocean
802 and estuaries with application to coastal ecology. *Estuaries* 26, 1010–1031. doi:
803 10.1007/bf02803360.

804

805 HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., and Mayfield, M. M. (2012).
806 Rethinking Community Assembly through the Lens of Coexistence Theory. *Ecol Evol Syst* 43, 227–
807 248. doi: 10.1146/annurev-ecolsys-110411-160411.

808

809 Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L., and Stemmann, L. (2021). Machine
810 Learning for the Study of Plankton and Marine Snow from Images. *Annu Rev Mar Sci* 14, 1–25. doi:
811 10.1146/annurev-marine-041921-013023.

812

813 Jacox, M. G., Alexander, M. A., Amaya, D., Becker, E., Bograd, S. J., Brodie, S., et al. (2022).
814 Global seasonal forecasts of marine heatwaves. *Nature* 604, 486–490. doi: 10.1038/s41586-022-
815 04573-9.

816

817 Jacox, M. G., Edwards, C. A., Hazen, E. L., and Bograd, S. J. (2018). Coastal Upwelling Revisited:
818 Ekman, Bakun, and Improved Upwelling Indices for the U.S. West Coast. *J Geophys Res Oceans*
819 123, 7332–7350. doi: 10.1029/2018jc014187.

820

821 Kara, A. B., Rochford, P. A., and Hurlburt, H. E. (2000). An optimal definition for ocean mixed layer
822 depth. *J Geophys Res Oceans* 105, 16803–16821. doi: 10.1029/2000jc900072.

823

824 Kirchman, D. L. (2010). Microbial Ecology of the Oceans. 1–26. doi: 10.1002/9780470281840.ch1.

825

826 Kirincich, A. R., Barth, J. A., Grantham, B. A., Menge, B. A., and Lubchenco, J. (2005).

827 Wind-driven inner-shelf circulation off central Oregon during summer. *J Geophys Res Oceans* 110.

828 doi: 10.1029/2004jc002611.

829

830 Kudela, R., Banas, N., Barth, J., Frame, E., Jay, D., Largier, J., et al. (2008). New Insights into the

831 Controls and Mechanisms of Plankton Productivity in Coastal Upwelling Waters of the Northern

832 California Current System. *Oceanography* 21, 46–59. doi: 10.5670/oceanog.2008.04.

833

834 Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. *J Stat Softw* 28. doi:

835 10.18637/jss.v028.i05.

836

837 Landry, M. R., Ohman, M. D., Goericke, R., Stukel, M. R., Barbeau, K. A., Bundy, R., et al. (2012).

838 Pelagic community responses to a deep-water front in the California Current Ecosystem: overview of

839 the A-Front Study. *J Plankton Res* 34, 739–748. doi: 10.1093/plankt/fbs025.

840

841 Largier, J. L., Lawrence, C. A., Roughan, M., Kaplan, D. M., Dever, E. P., Dorman, C. E., et al.

842 (2006). WEST: A northern California study of the role of wind-driven transport in the productivity of

843 coastal plankton communities. *Deep Sea Res Part II Top Stud Oceanogr* 53, 2833–2849. doi:

844 10.1016/j.dsr2.2006.08.018.

845

846 Lentz, S. J., and Chapman, D. C. (1989). Seasonal differences in the current and temperature

847 variability over the northern California Shelf during the Coastal Ocean Dynamics Experiment. *J*

848 *Geophys Res Oceans* 94, 12571–12592. doi: 10.1029/jc094ic09p12571.

849

850 Lertvilai, P., and Jaffe, J. S. (2022). In situ size and motility measurement of aquatic invertebrates

851 with an underwater stereoscopic camera system using tilted lenses. *Methods Ecol Evol* 13, 1192–

852 1200. doi: 10.1111/2041-210x.13855.

853

854 Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., et al. (2015).

855 Determinants of community structure in the global plankton interactome. *Science* 348, 1262073. doi:

856 10.1126/science.1262073.

857

858 Lindegren, M., Thomas, M. K., Jónasdóttir, S. H., Nielsen, T. G., and Munk, P. (2020).
859 Environmental niche separation promotes coexistence among ecologically similar zooplankton
860 species—North Sea copepods as a case study. *Limnol Oceanogr* 65, 545–556. doi:
861 10.1002/lno.11322.

862

863 Lombard, F., Boss, E., Waite, A. M., Vogt, M., Uitz, J., Stemmann, L., et al. (2019). Globally
864 Consistent Quantitative Observations of Planktonic Ecosystems. *Frontiers Mar Sci* 6, 196. doi:
865 10.3389/fmars.2019.00196.

866

867 Luo, J., Grassian, B., Tang, D., Irisson, J., Greer, A., Guigand, C., et al. (2014). Environmental
868 drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front.
869 *Mar Ecol Prog Ser* 510, 129–149. doi: 10.3354/meps10908.

870

871 Luo, J. Y., Irisson, J., Graham, B., Guigand, C., Sarafraz, A., Mader, C., et al. (2018). Automated
872 plankton image analysis using convolutional neural networks. *Limnology Oceanogr Methods* 16,
873 814–827. doi: 10.1002/lom3.10285.

874

875 Luo, J. Y., Stock, C. A., Henschke, N., Dunne, J. P., and O'Brien, T. D. (2022). Global ecological
876 and biogeochemical impacts of pelagic tunicates. *Prog Oceanogr* 205, 102822. doi:
877 10.1016/j.pocean.2022.102822.

878

879 MacArthur, R. H. (1958). Population Ecology of Some Warblers of Northeastern Coniferous Forests.
880 *Ecology* 39, 599–619. doi: 10.2307/1931600.

881

882 Mantua, N. J., and Hare, S. R. (2002). The Pacific Decadal Oscillation. *J Oceanogr* 58, 35–44. doi:
883 10.1023/a:1015820616384.

884

885 McClatchie, S., Cowen, R., Nieto, K., Greer, A., Luo, J. Y., Guigand, C., et al. (2012). Resolution of
886 fine biological structure including small narcomedusae across a front in the Southern California
887 Bight. *J Geophys Res Oceans* 117, n/a-n/a. doi: 10.1029/2011jc007565.

888

889 Mousseau, L., Fortier, L., and Legendre, L. (1998). Annual production of fish larvae and their prey in
890 relation to size-fractionated primary production (Scotian Shelf, NW Atlantic). *Ices J Mar Sci* 55, 44–
891 57. doi: 10.1006/jmsc.1997.0224.

892 Nagelkerken, I., and Connell, S. D. (2022). Ocean acidification drives global reshuffling of
893 ecological communities. *Global Change Biol* 28, 7038–7048. doi: 10.1111/gcb.16410.

894

895 Ohman, M. D., Davis, R. E., Sherman, J. T., Grindley, K. R., Whitmore, B. M., Nickels, C. F., et al.
896 (2019). Zooglider: An autonomous vehicle for optical and acoustic sensing of zooplankton.
897 *Limnology Oceanogr Methods* 17, 69–86. doi: 10.1002/lom3.10301.

898

899 Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., et al.
900 (2018). Longer and more frequent marine heatwaves over the past century. *Nat Commun* 9, 1324.
901 doi: 10.1038/s41467-018-03732-9.

902

903 Orenstein, E. C., Ratelle, D., Briseño-Avena, C., Carter, M. L., Franks, P. J. S., Jaffe, J. S., et al.
904 (2020). The Scripps Plankton Camera system: A framework and platform for in situ microscopy.
905 *Limnology Oceanogr Methods* 18, 681–695. doi: 10.1002/lom3.10394.

906

907 Ortner, P. B., Cummings, S. R., Aftring, R. P., and Edgerton, H. E. (1979). Silhouette photography of
908 oceanic zooplankton. *Nature* 277, 50–51. doi: 10.1038/277050a0.

909

910 Pauly, D., and Christensen, V. (1995). Primary production required to sustain global fisheries. *Nature*
911 374, 255–257. doi: 10.1038/374255a0.

912

913 Peterson, W., Fisher, J., Peterson, J., Morgan, C., Burke, B., et al. (2014). Applied Fisheries
914 Oceanography: Ecosystem Indicators of Ocean Conditions Inform Fisheries Management in the
915 California Current. *Oceanography* 27, 80–89. doi: 10.5670/oceanog.2014.88.

916

917 Peterson, W. T., Fisher, J. L., Strub, P. T., Du, X., Risien, C., Peterson, J., et al. (2017). The pelagic
918 ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies
919 within the context of the past 20 years. *J Geophys Res Oceans* 122, 7267–7290. doi:
920 10.1002/2017jc012952.

921

922 Peterson, W. T., and Keister, J. E. (2003). Interannual variability in copepod community composition
923 at a coastal station in the northern California Current: a multivariate approach. *Deep Sea Res Part II*
924 *Top Stud Oceanogr* 50, 2499–2517. doi: 10.1016/s0967-0645(03)00130-9.

925

926 Peterson, W. T., and Miller, C. B. (1975). Year-to-year variations in the planktology of the Oregon
927 upwelling zone. *Fish Bull* 73, 642–653.

928

929 Picheral, M., Catalano, C., Brousseau, D., Claustre, H., Coppola, L., Leymarie, E., et al. (2022). The
930 Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for
931 autonomous and cabled platforms. *Limnology Oceanogr Methods* 20, 115–129. doi:
932 10.1002/lom3.10475.

933

934 Pomeroy, L. R. (1974). The Ocean's Food Web, A Changing Paradigm. *Bioscience* 24, 499–504. doi:
935 10.2307/1296885.

936

937 Prairie, J. C., Sutherland, K. R., Nickols, K. J., and Kaltenberg, A. M. (2012). Biophysical
938 interactions in the plankton: A cross-scale review. *Limnology Oceanogr Fluids Environ* 2, 121–145.
939 doi: 10.1215/21573689-1964713.

940

941 Purcell, J.E., Sturdevant, M.V., Galt, C.P. (2005). A review of appendicularians as prey of fish and
942 invertebrate predators, in: Gorsky, G., Youngbluth, M.J., Diebel, D. (Eds.), in Response of Marine
943 Ecosystems to Global Change: Ecological Impact of Appendicularians. Contemporary Publishing
944 International, Paris, France, pp. 359–435.

945

946 Ratnarajah, L., Abu-Alhaija, R., Atkinson, A., Batten, S., Bax, N. J., Bernard, K. S., et al. (2023).
947 Monitoring and modelling marine zooplankton in a changing climate. *Nat Commun* 14, 564. doi:
948 10.1038/s41467-023-36241-5.

949

950 Rebstock, G. A. (2003). Long-term change and stability in the California Current System: lessons
951 from CalCOFI and other long-term data sets. *Deep Sea Res Part II Top Stud Oceanogr* 50, 2583–
952 2594. doi: 10.1016/s0967-0645(03)00124-3.

953

954 Reese, D. C., and Brodeur, R. D. (2006). Identifying and characterizing biological hotspots in the
955 northern California Current. *Deep Sea Res Part II Top Stud Oceanogr* 53, 291–314. doi:
956 10.1016/j.dsr2.2006.01.014.

957

958 Ríos-Castro, R., Costas-Selas, C., Pallavicini, A., Vezzulli, L., Novoa, B., Teira, E., et al. (2022). Co-
959 occurrence and diversity patterns of benthonic and planktonic communities in a shallow marine
960 ecosystem. *Frontiers Mar Sci* 9, 934976. doi: 10.3389/fmars.2022.934976.

961 Robertson, R. R., and Bjorkstedt, E. P. (2020). Climate-driven variability in *Euphausia pacifica* size
962 distributions off northern California. *Prog Oceanogr* 188, 102412. doi:
963 10.1016/j.pocean.2020.102412.

964

965 Robinson, K. L., Sponaugle, S., Luo, J. Y., Gleiber, M. R., and Cowen, R. K. (2021). Big or small,
966 patchy all: Resolution of marine plankton patch structure at micro- to submesoscales for 36 taxa. *Sci
967 Adv* 7, eabk2904. doi: 10.1126/sciadv.abk2904.

968

969 Rutherford, S., D'Hondt, S., and Prell, W. (1999). Environmental controls on the geographic
970 distribution of zooplankton diversity. *Nature* 400, 749–753. doi: 10.1038/23449.

971

972 Rykaczewski, R. R., and Checkley, D. M. (2008). Influence of ocean winds on the pelagic ecosystem
973 in upwelling regions. *Proc National Acad Sci* 105, 1965–1970. doi: 10.1073/pnas.0711777105.

974

975 Ryther, J. H. (1969). Photosynthesis and Fish Production in the Sea. *Science* 166, 72–76. doi:
976 10.1126/science.166.3901.72.

977

978 Sato, R., Tanaka, Y., and Ishimaru, T. (2003). Species-specific house productivity of
979 appendicularians. *Mar Ecol Prog Ser* 259, 163–172. doi: 10.3354/meps259163.

980

981 Schmid, M. S., Cowen, R. K., Robinson, K., Luo, J. Y., Briseño-Avena, C., and Sponaugle, S.
982 (2020). Prey and predator overlap at the edge of a mesoscale eddy: fine-scale, in-situ distributions to
983 inform our understanding of oceanographic processes. *Sci Rep* 10, 921. doi: 10.1038/s41598-020-
984 57879-x.

985

986 Schmid, M. S., Daprano, D., Jacobson, K. M., Sullivan, C., Briseño-Avena, C., Luo, J. Y., et al.
987 (2021). A Convolutional Neural Network based high-throughput image classification pipeline - code
988 and documentation to process plankton underwater imagery using local HPC infrastructure and
989 NSF's XSEDE. Zenodo. doi: <http://dx.doi.org/10.5281/zenodo.4641158>.

990

991 Schmid, M. S., and Fortier, L. (2019). The intriguing co-distribution of the copepods *Calanus*
992 *hyperboreus* and *Calanus glacialis* in the subsurface chlorophyll maximum of Arctic seas. *Elem Sci
993 Anth* 7, 50. doi: 10.1525/elementa.388.

994

995 Schmid, M. S., Maps, F., and Fortier, L. (2018). Lipid load triggers migration to diapause in Arctic
996 Calanus copepods—insights from underwater imaging. *J Plankton Res* 40, 311–325. doi:
997 10.1093/plankt/fby012.

998

999 Shaw, C. T., Peterson, W. T., and Feinberg, L. R. (2010). Growth of *Euphausia pacifica* in the
1000 upwelling zone off the Oregon coast. *Deep Sea Res Part II Top Stud Oceanogr* 57, 584–593. doi:
1001 10.1016/j.dsr2.2009.10.008.

1002

1003 Sildever, S., Laas, P., Kolesova, N., Lips, I., Lips, U., and Nagai, S. (2021). Plankton biodiversity
1004 and species co-occurrence based on environmental DNA – a multiple marker study. *Metabarcoding*
1005 *Metagenomics* 5, e72371. doi: 10.3897/mbmg.5.72371.

1006

1007 Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., et al. (2019).
1008 Marine heatwaves threaten global biodiversity and the provision of ecosystem services. *Nat Clim
1009 Change* 9, 306–312. doi: 10.1038/s41558-019-0412-1.

1010

1011 Smetacek, V. (2012). Making sense of ocean biota: How evolution and biodiversity of land
1012 organisms differ from that of the plankton. *J Biosciences* 37, 589–607. doi: 10.1007/s12038-012-
1013 9240-4.

1014

1015 Smith, K. E., Burrows, M. T., Hobday, A. J., King, N. G., Moore, P. J., Gupta, A. S., et al. (2022).
1016 Biological Impacts of Marine Heatwaves. *Annu Rev Mar Sci* 15, 119–145. doi: 10.1146/annurev-
1017 marine-032122-121437.

1018

1019 Song, J., Bi, H., Cai, Z., Cheng, X., He, Y., Benfield, M. C., et al. (2020). Early warning of *Noctiluca*
1020 *scintillans* blooms using in-situ plankton imaging system: An example from Dapeng Bay, P.R. China.
1021 *Ecol Indic* 112, 106123. doi: 10.1016/j.ecolind.2020.106123.

1022

1023 Spitz, Y. H., Allen, J. S., and Gan, J. (2005). Modeling of ecosystem processes on the Oregon shelf
1024 during the 2001 summer upwelling. *J Geophys Res Oceans* 110. doi: 10.1029/2005jc002870.

1025

1026 Sutherland, K. R., Madin, L. P., and Stocker, R. (2010). Filtration of submicrometer particles by
1027 pelagic tunicates. *Proc National Acad Sci* 107, 15129–15134. doi: 10.1073/pnas.1003599107.

1028

1029 Sutherland, K. R., and Thompson, A. W. (2022). Pelagic tunicate grazing on marine microbes
1030 revealed by integrative approaches. *Limnol Oceanogr* 67, 102–121. doi: 10.1002/lno.11979.

1031

1032 Swieca, K., Sponaugle, S., Briseño-Avena, C., Schmid, M., Brodeur, R., and Cowen, R. (2020).
1033 Changing with the tides: fine-scale larval fish prey availability and predation pressure near a tidally
1034 modulated river plume. *Mar Ecol Prog Ser* 650, 217–238. doi: 10.3354/meps13367.

1035

1036 Swieca, K., Sponaugle, S., Schmid, M. S., Ivory, J., and Cowen, R. K. (in review). Shedding light on
1037 lanternfish: growth and diet of a larval myctophid across distinct upwelling regimes in the California
1038 Current. *ICES Journal of Marine Science*.

1039

1040 Taylor, A., and Landry, M. (2018). Phytoplankton biomass and size structure across trophic gradients
1041 in the southern California Current and adjacent ocean ecosystems. *Mar Ecol Prog Ser* 592, 1–17. doi:
1042 10.3354/meps12526.

1043

1044 Taylor, A. G., Landry, M. R., Selph, K. E., and Wokuluk, J. J. (2015). Temporal and spatial patterns
1045 of microbial community biomass and composition in the Southern California Current Ecosystem.
1046 *Deep Sea Res Part II Top Stud Oceanogr* 112, 117–128. doi: 10.1016/j.dsr2.2014.02.006.

1047

1048 Thompson, A. R., Bjorkstedt, E. P., Bograd, S. J., Fisher, J. L., Hazen, E. L., Leising, A., et al.
1049 (2022). State of the California Current Ecosystem in 2021: Winter is coming? *Frontiers Mar Sci* 9,
1050 958727. doi: 10.3389/fmars.2022.958727.

1051

1052 Thompson, A. R., Schroeder, I. D., Bograd, S. J., Hazen, E. L., Jacox, M. G., Leising, A., et al.
1053 (2019). State of the California current 2018–19: a novel anchovy regime and a new marine heat
1054 wave? *Calif. Cooperat. Ocean. Fish. Investig. Rep.* 60, 1–65.

1055

1056 Thompson, A. R., Schroeder, I. D., Bograd, S. J., Hazen, E. L., Jacox, M. G., Leising, A., et al.
1057 (2018). State of the California Current 2017-18: Still not quite normal in the North and getting
1058 interesting in the South. *Calif. Cooperat. Ocean. Fish. Investig. Rep.* 59, 1–66.

1059

1060 Thompson, A. W., Ward, A. C., Sweeney, C. P., and Sutherland, K. R. (2021). Host-specific
1061 symbioses and the microbial prey of a pelagic tunicate (*Pyrosoma atlanticum*). *Isme Commun* 1, 11.
1062 doi: 10.1038/s43705-021-00007-1.

1063

1064 Tilstone, G., Figueiras, F., Fermín, E., and Arbones, B. (1999). Significance of nanophytoplankton
1065 photosynthesis and primary production in a coastal upwelling system (Ría de Vigo, NW Spain). Mar
1066 Ecol Prog Ser 183, 13–27. doi: 10.3354/meps183013.

1067

1068 Turner, J. T. (2015). Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological
1069 pump. *Prog Oceanogr* 130, 205–248. doi: 10.1016/j.pocean.2014.08.005.

1070

1071 Vargas, C. A., Martínez, R. A., Cuevas, L. A., Pavez, M. A., Cartes, C., González, H. E., et al.
1072 (2007). The relative importance of microbial and classical food webs in a highly productive coastal
1073 upwelling area. *Limnol Oceanogr* 52, 1495–1510. doi: 10.4319/lo.2007.52.4.1495.

1074

1075 Verity, P., and Smetacek, V. (1996). Organism life cycles, predation, and the structure of marine
1076 pelagic ecosystems. *Mar Ecol Prog Ser* 130, 277–293. doi: 10.3354/meps130277.

1077

1078 Vilgrain, L., Maps, F., Picheral, M., Babin, M., Aubry, C., Irisson, J., et al. (2021). Trait-based
1079 approach using in situ copepod images reveals contrasting ecological patterns across an Arctic ice
1080 melt zone. *Limnol Oceanogr* 66, 1155–1167. doi: 10.1002/lo.11672.

1081

1082 Ware, D. M., and Thomson, R. E. (2005). Bottom-Up Ecosystem Trophic Dynamics Determine Fish
1083 Production in the Northeast Pacific. *Science* 308, 1280–1284. doi: 10.1126/science.1109049.

1084

1085 Weber, E. D., Auth, T. D., Baumann-Pickering, S., Baumgartner, T. R., Bjorkstedt, E. P., Bograd, S.
1086 J., et al. (2021). State of the California Current 2019–2020: Back to the Future With Marine
1087 Heatwaves? *Frontiers Mar Sci* 8, 709454. doi: 10.3389/fmars.2021.709454.

1088

1089 Wilkerson, F. P., Dugdale, R. C., and Barber, R. T. (1987). Effects of El Niño on new, regenerated,
1090 and total production in eastern boundary upwelling systems. *J Geophys Res Oceans* 92, 14347–
1091 14353. doi: 10.1029/jc092ic13p14347.

1092

1093 Williams, P. J. le B., and Ducklow, H. W. (2019). The microbial loop concept: A history, 1930–
1094 1974. *J Mar Res* 77, 23–81. doi: 10.1357/002224019828474359.

1095

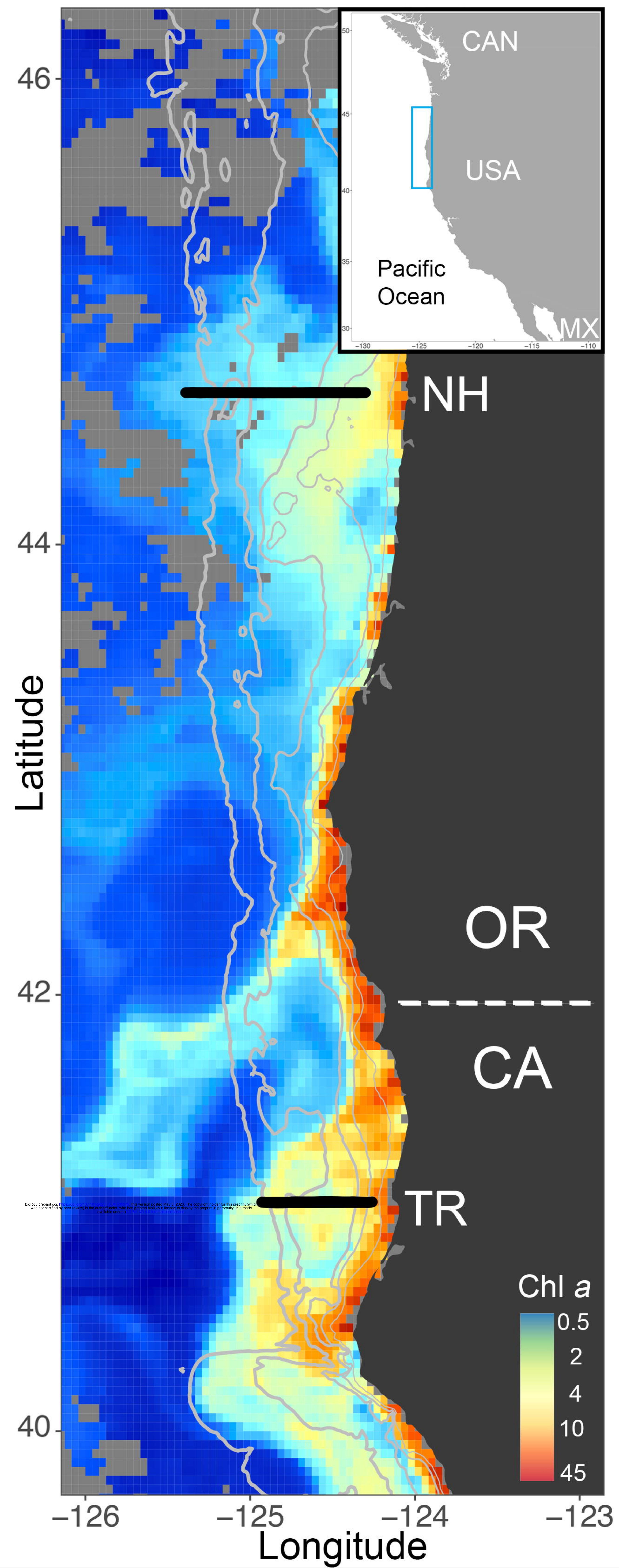
1096 Williams, R. J., Howe, A., and Hofmockel, K. S. (2014). Demonstrating microbial co-occurrence
1097 pattern analyses within and between ecosystems. *Front Microbiol* 5, 358. doi:
1098 10.3389/fmicb.2014.00358.

1099

1100 Yamazaki, H., Mackas, D. L., and Denman, K. (2002). “Coupling small-scale physical processes
1101 with biology,” in *Biological-physical interactions in the sea.*, eds. A. R. Robinson, J. J. McCarthy,
1102 and B. J. Rothschild (John Wiley and Sons), 51–112.

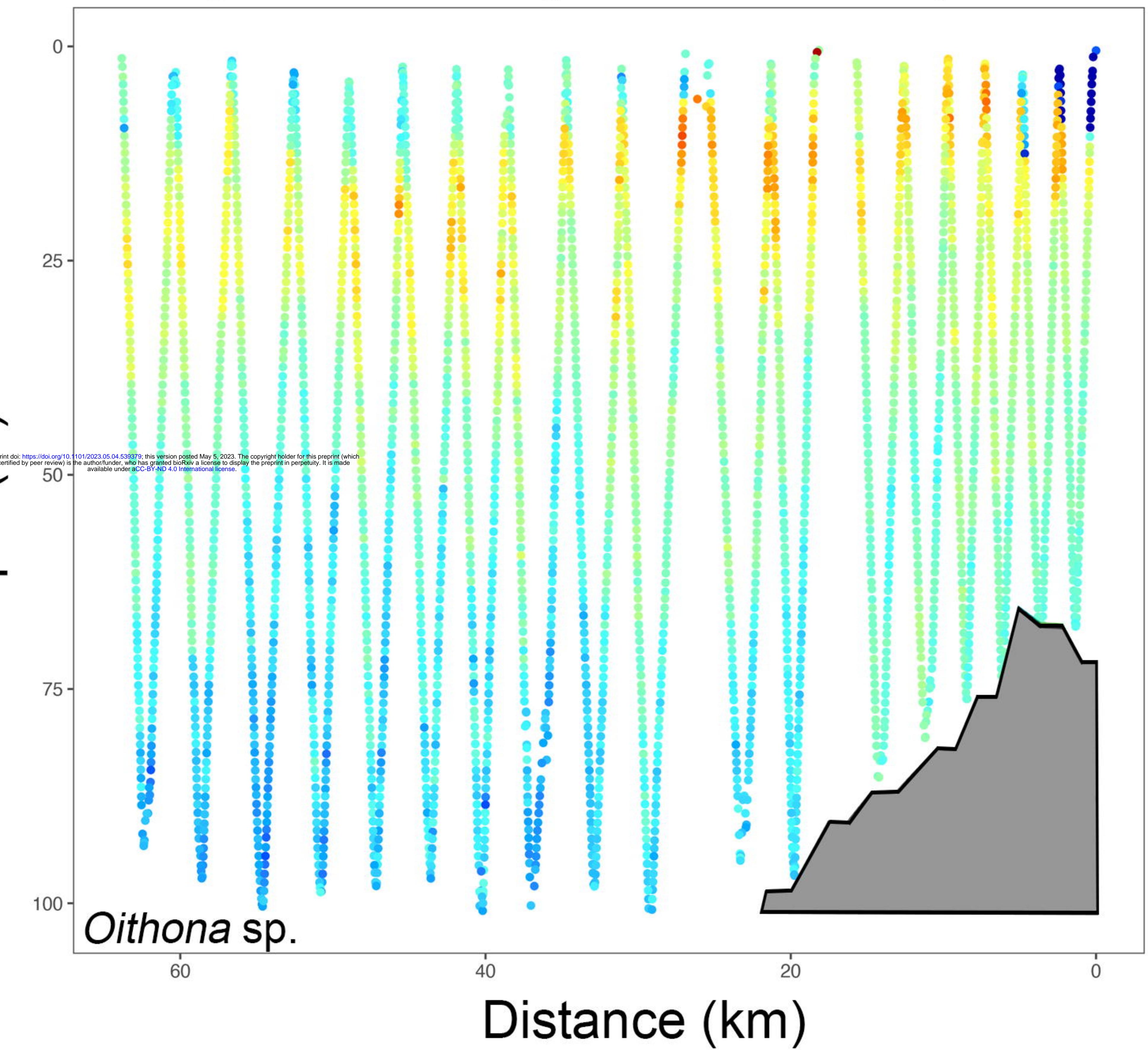
1103

1104 Zamora-Terol, S., Mckinnon, A. D., and Saiz, E. (2014). Feeding and egg production of Oithona spp.
1105 in tropical waters of North Queensland, Australia. *J Plankton Res* 36, 1047–1059. doi:
1106 10.1093/plankt/fbu039.

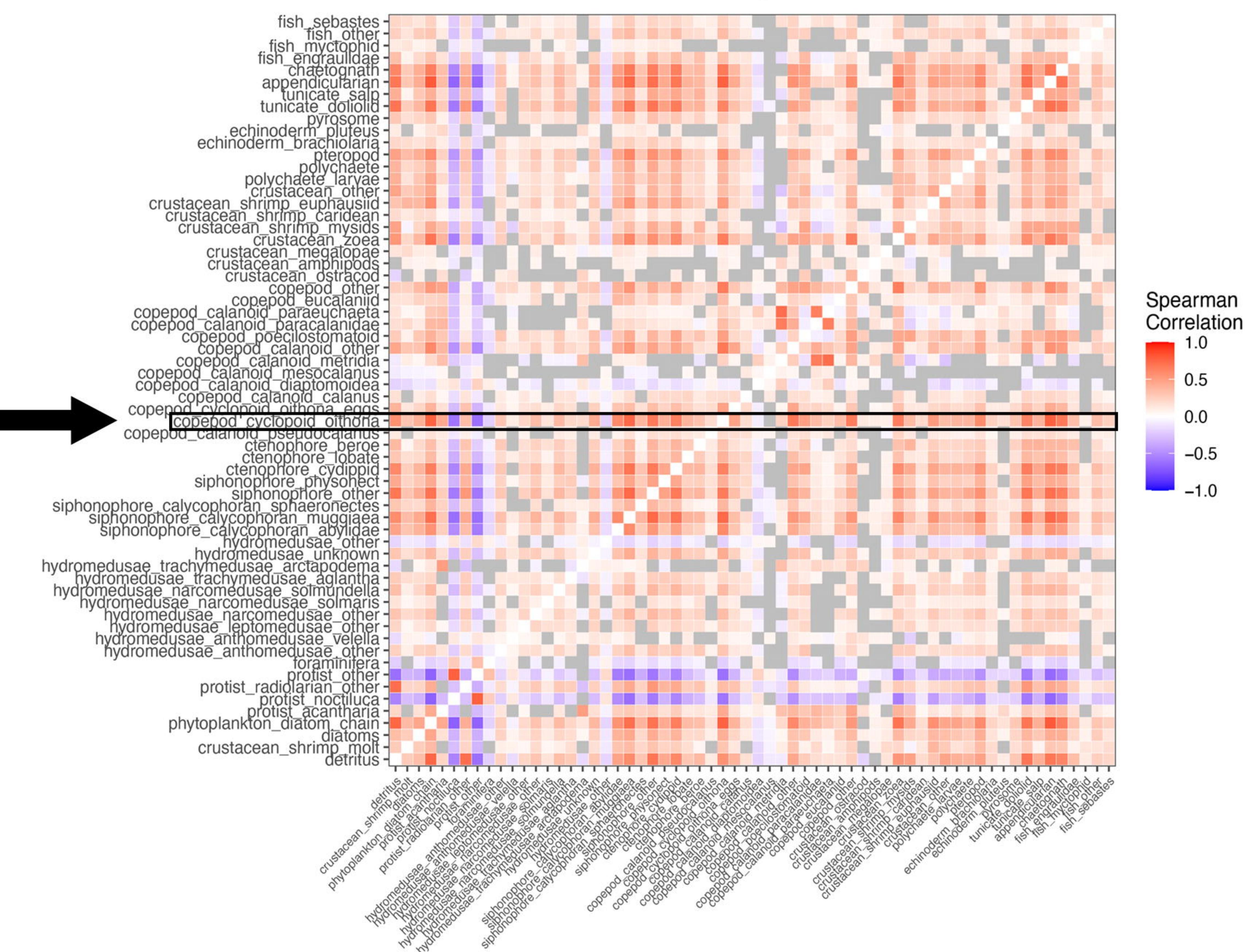

1107

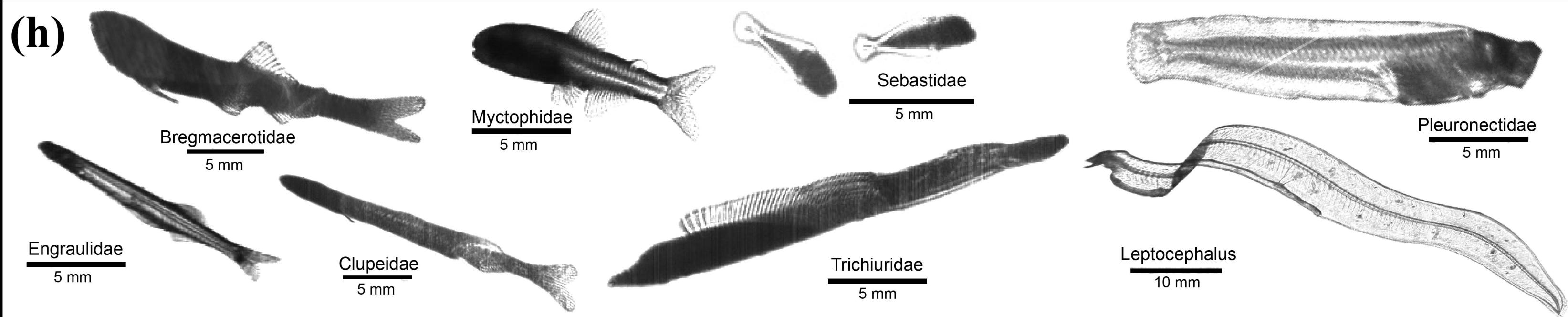
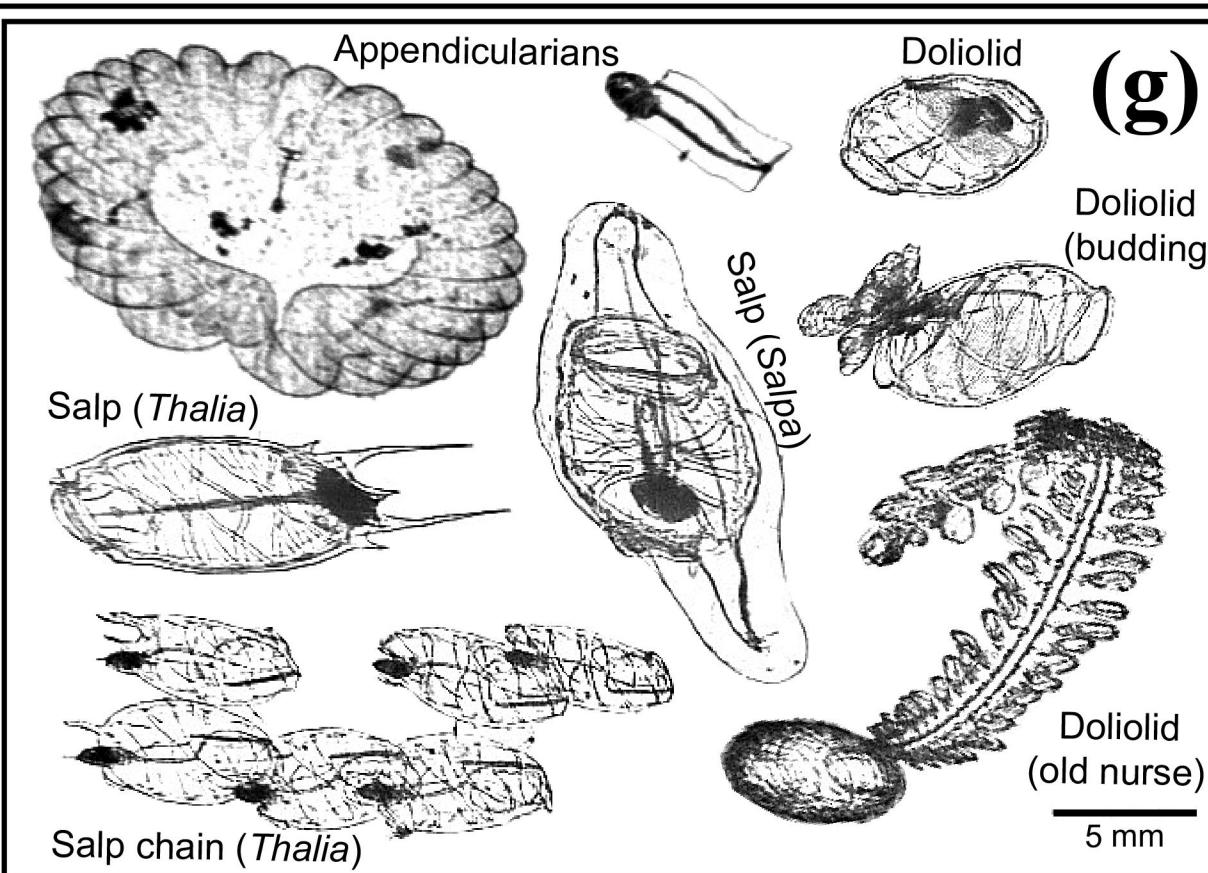
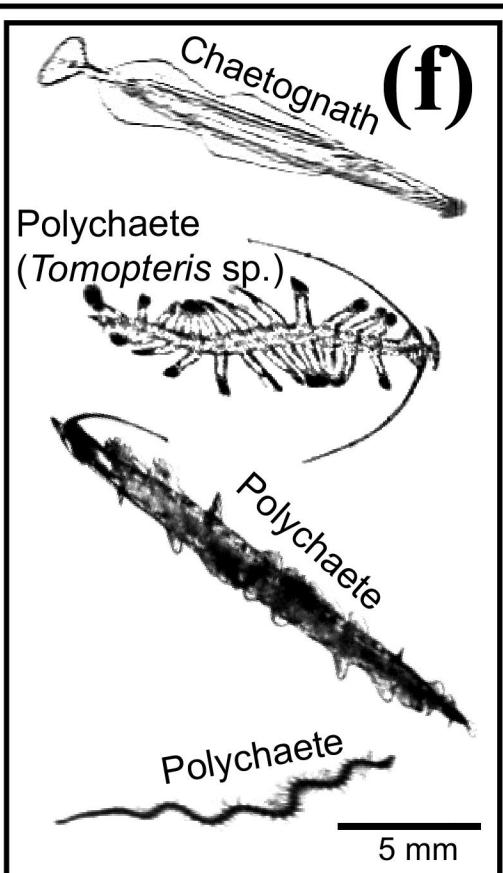
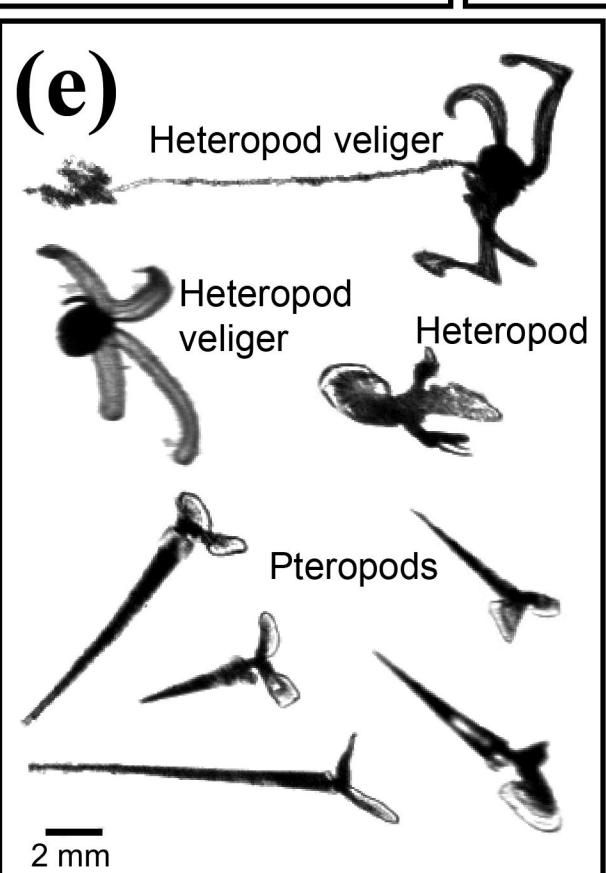
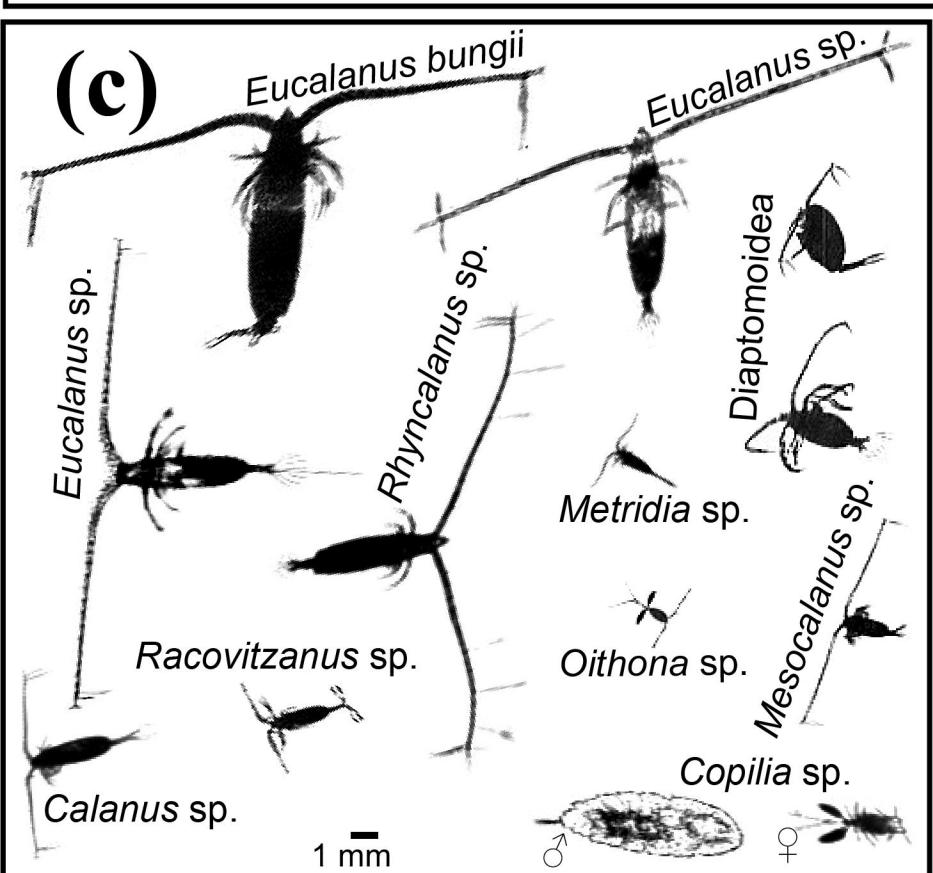
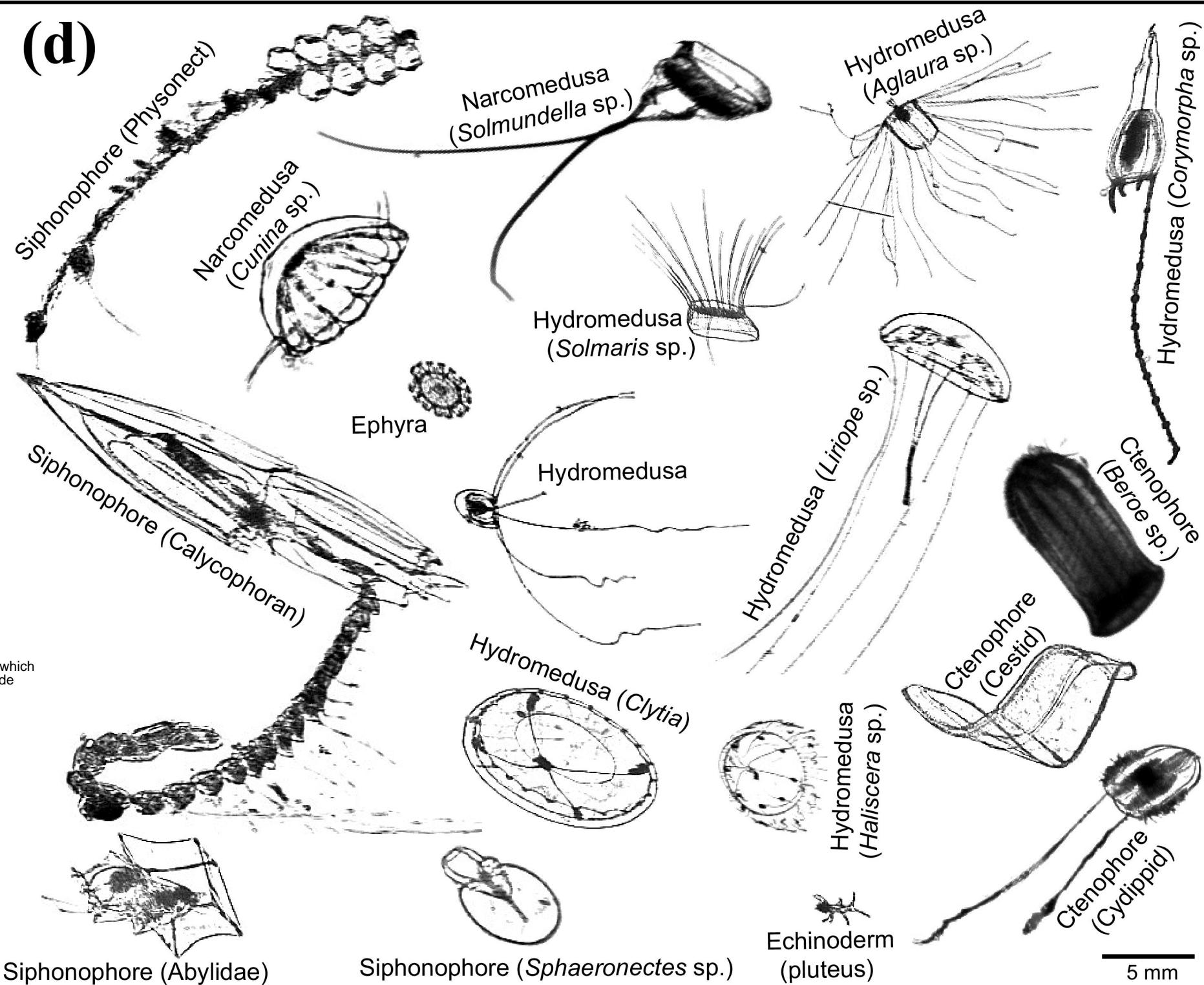
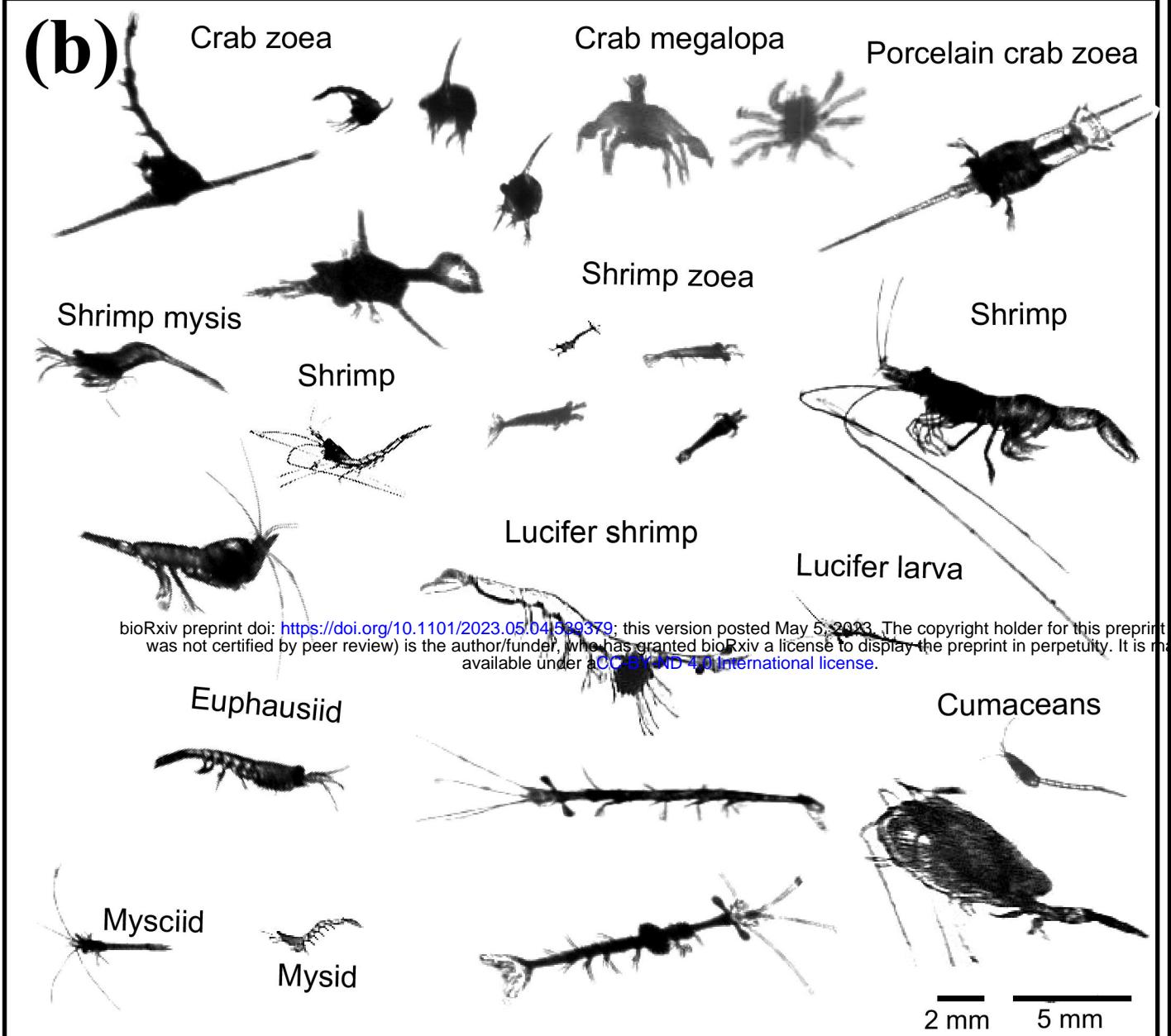
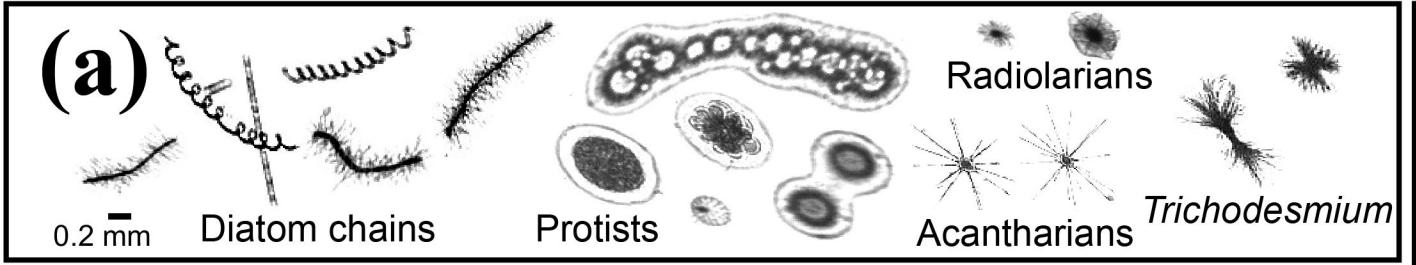
1108

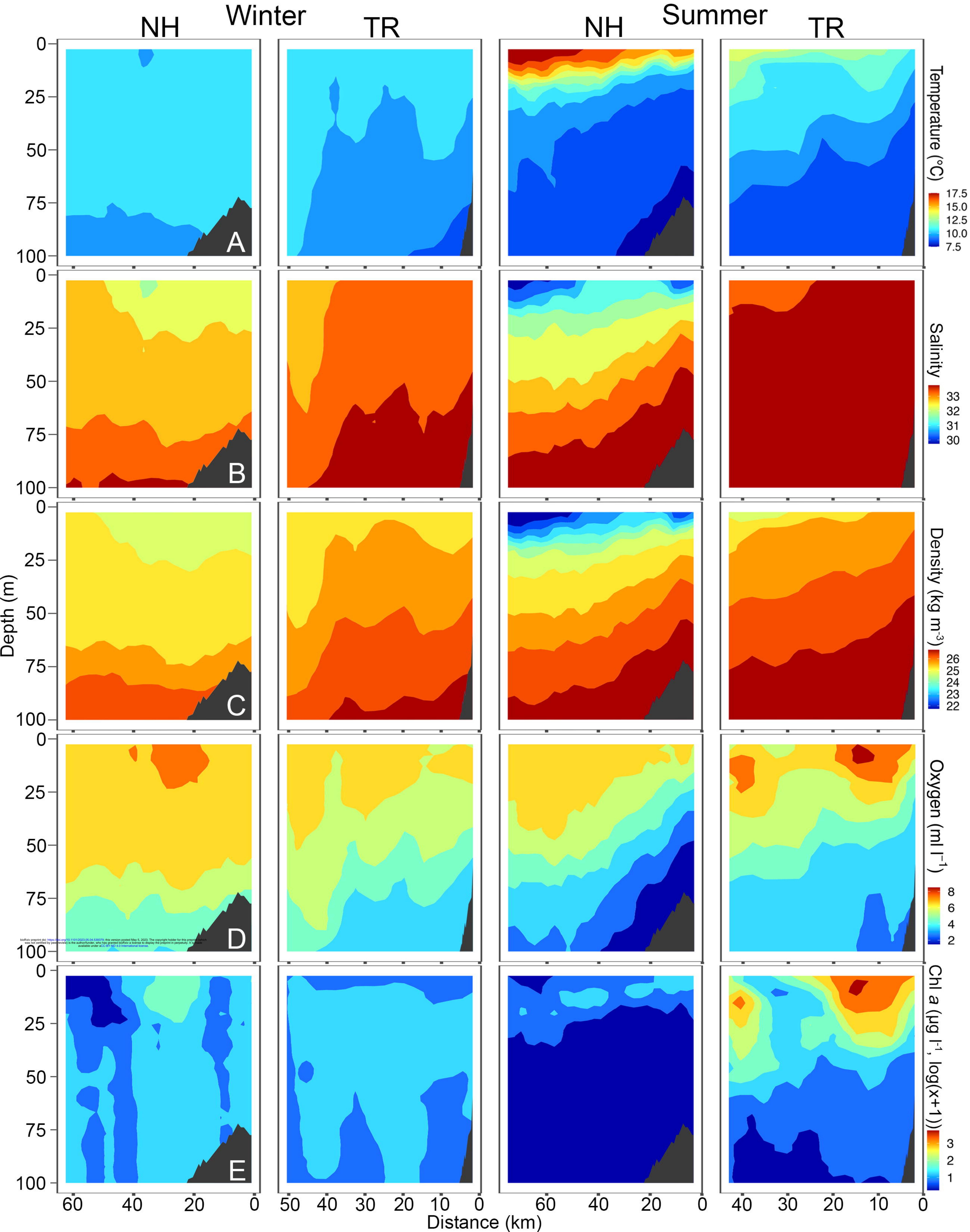
1109

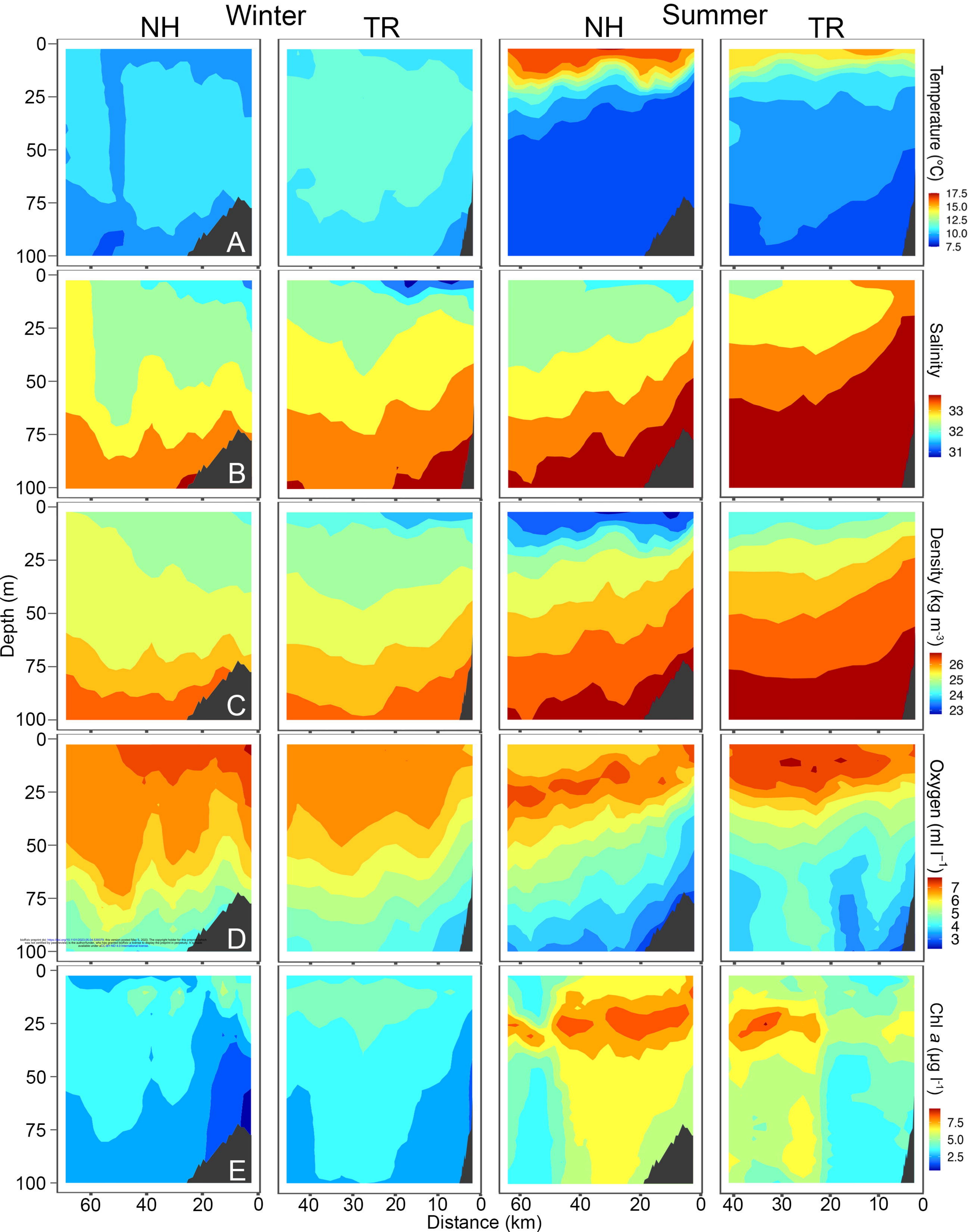

1110 **12 Data Availability Statement**

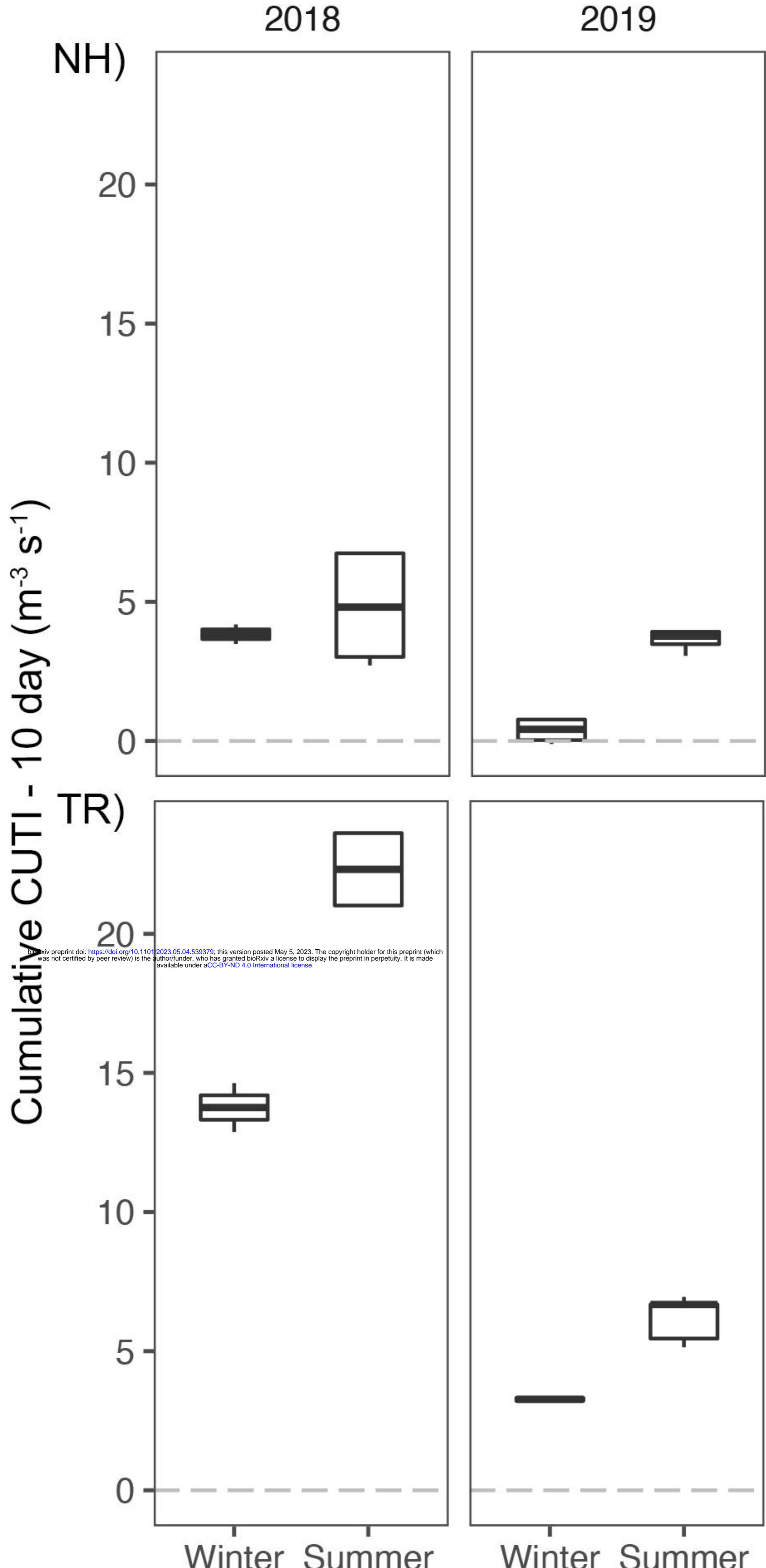
1111 Data are available at NSF’s BCO-DMO <https://www.bco-dmo.org/project/743417> as well as the R2R
1112 program: <https://www.rvdata.us/search/cruise/SKQ201804S>,
1113 <https://www.rvdata.us/search/cruise/SR1810>, <https://www.rvdata.us/search/cruise/AT42-13>, and
1114 <https://www.rvdata.us/search/cruise/SKQ201903S>.

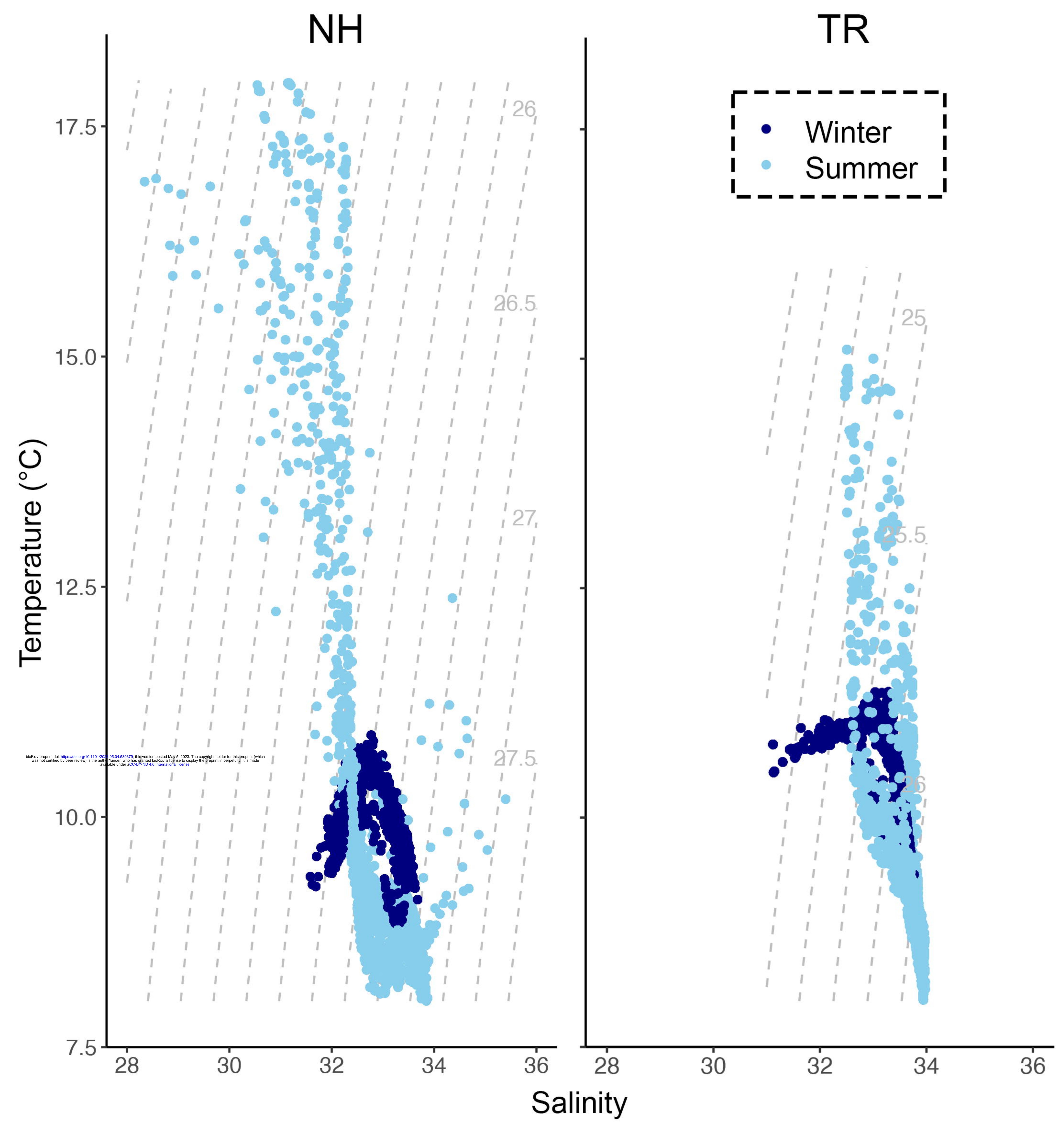










Single taxon high resolution profiles

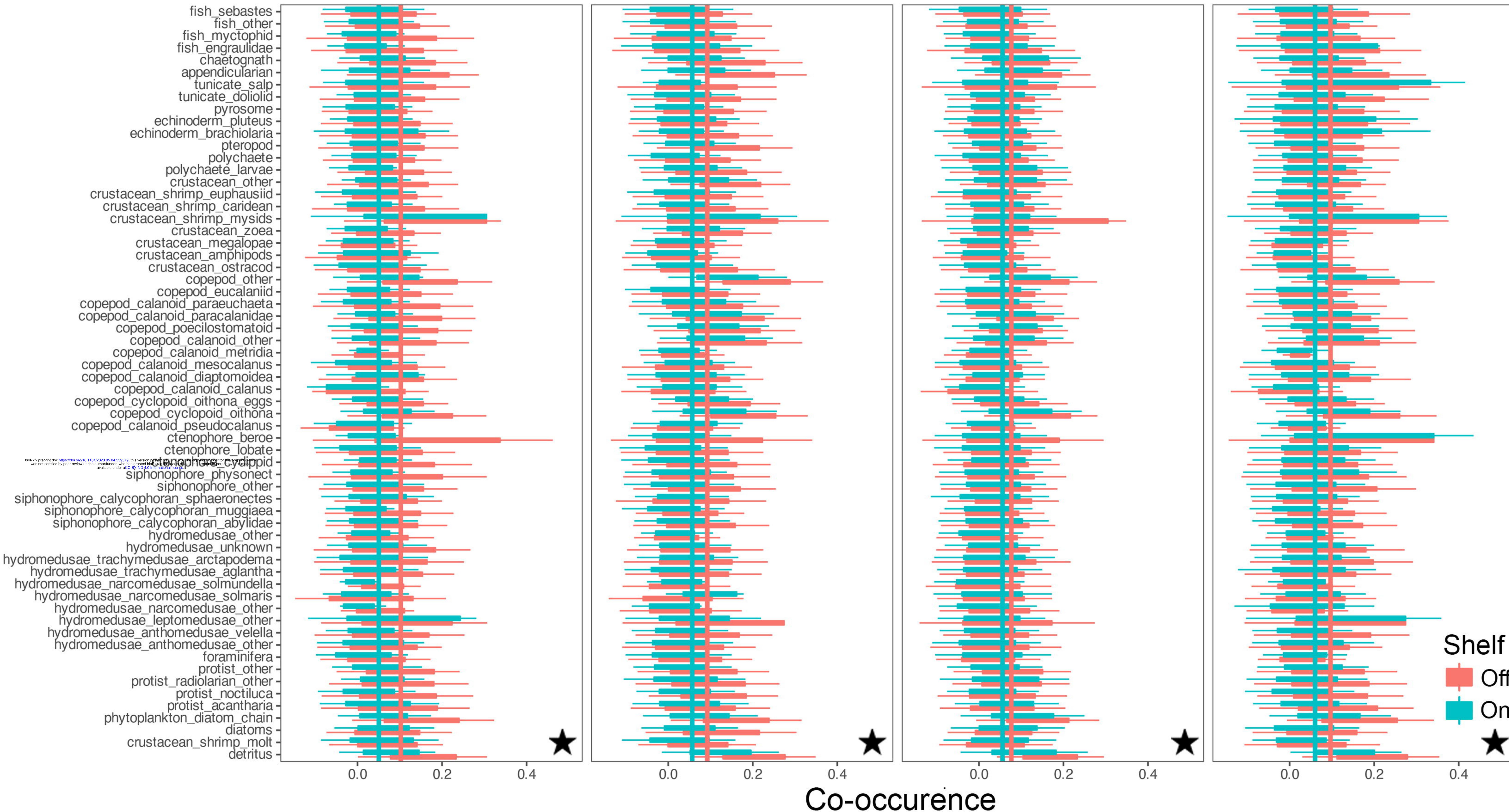

Depth (m)




Community structure



2018


Winter

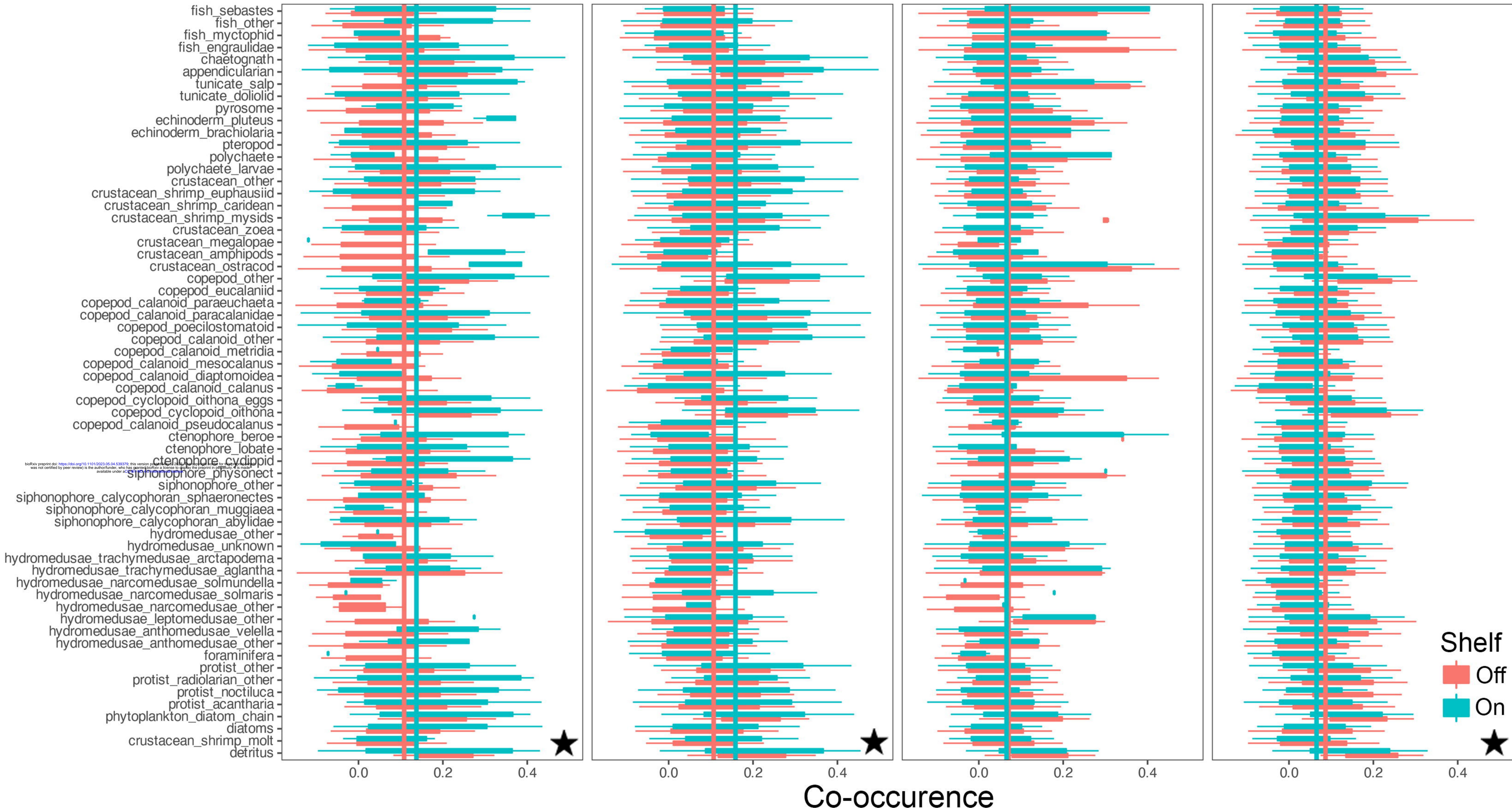
Summer

2019

Winter

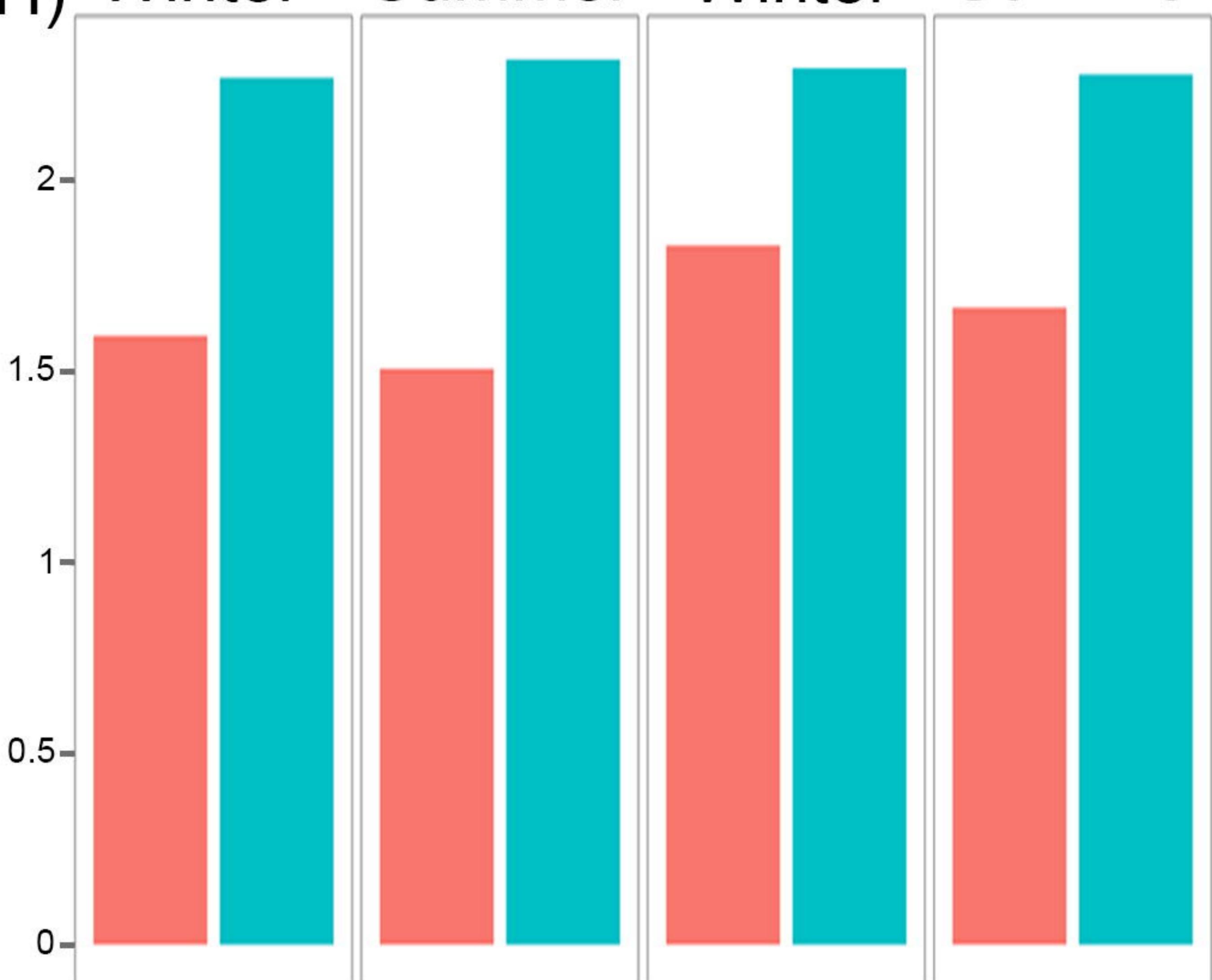
Summer

2018


Winter

Summer

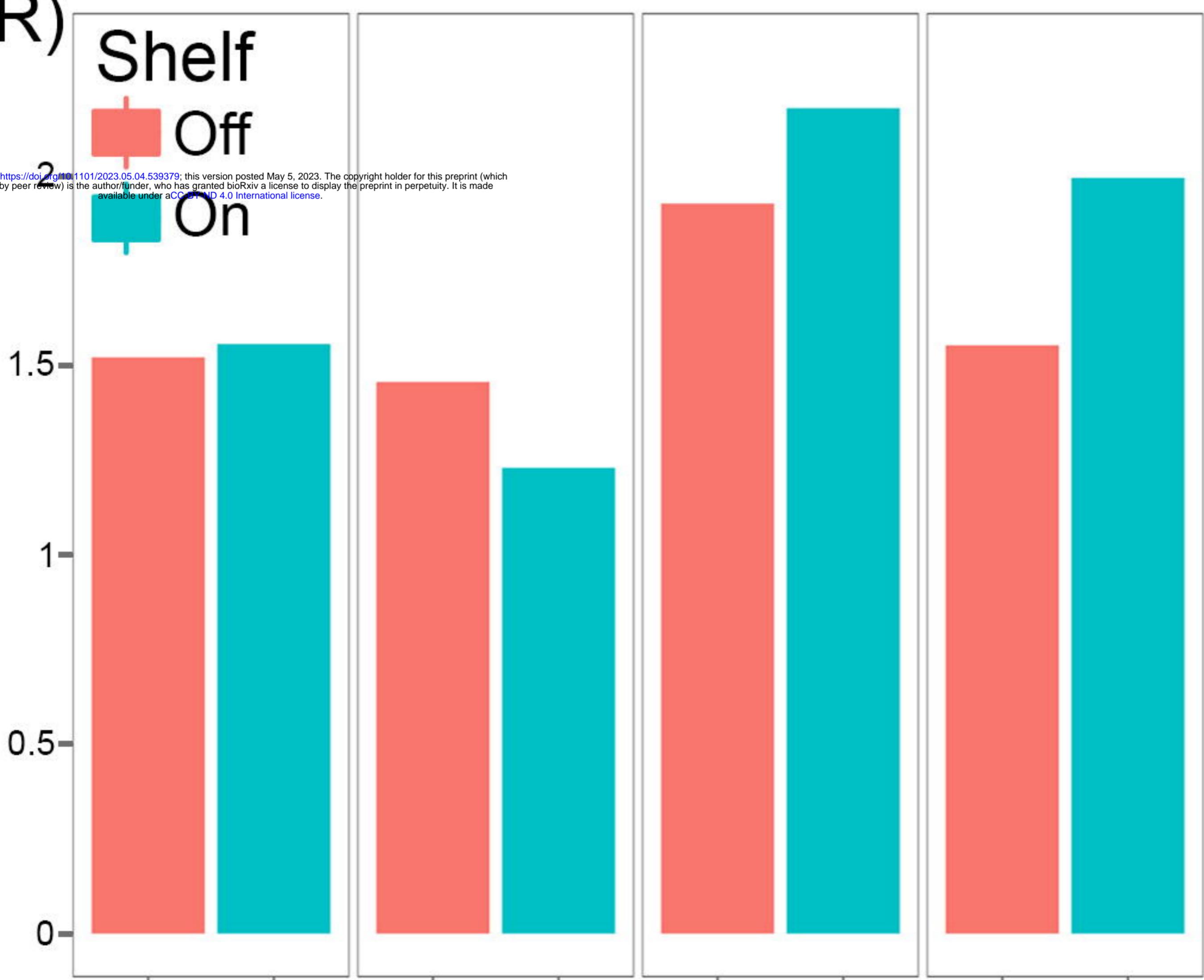
2019


Winter

Summer

2018 2019
NH) Winter Summer Winter Summer

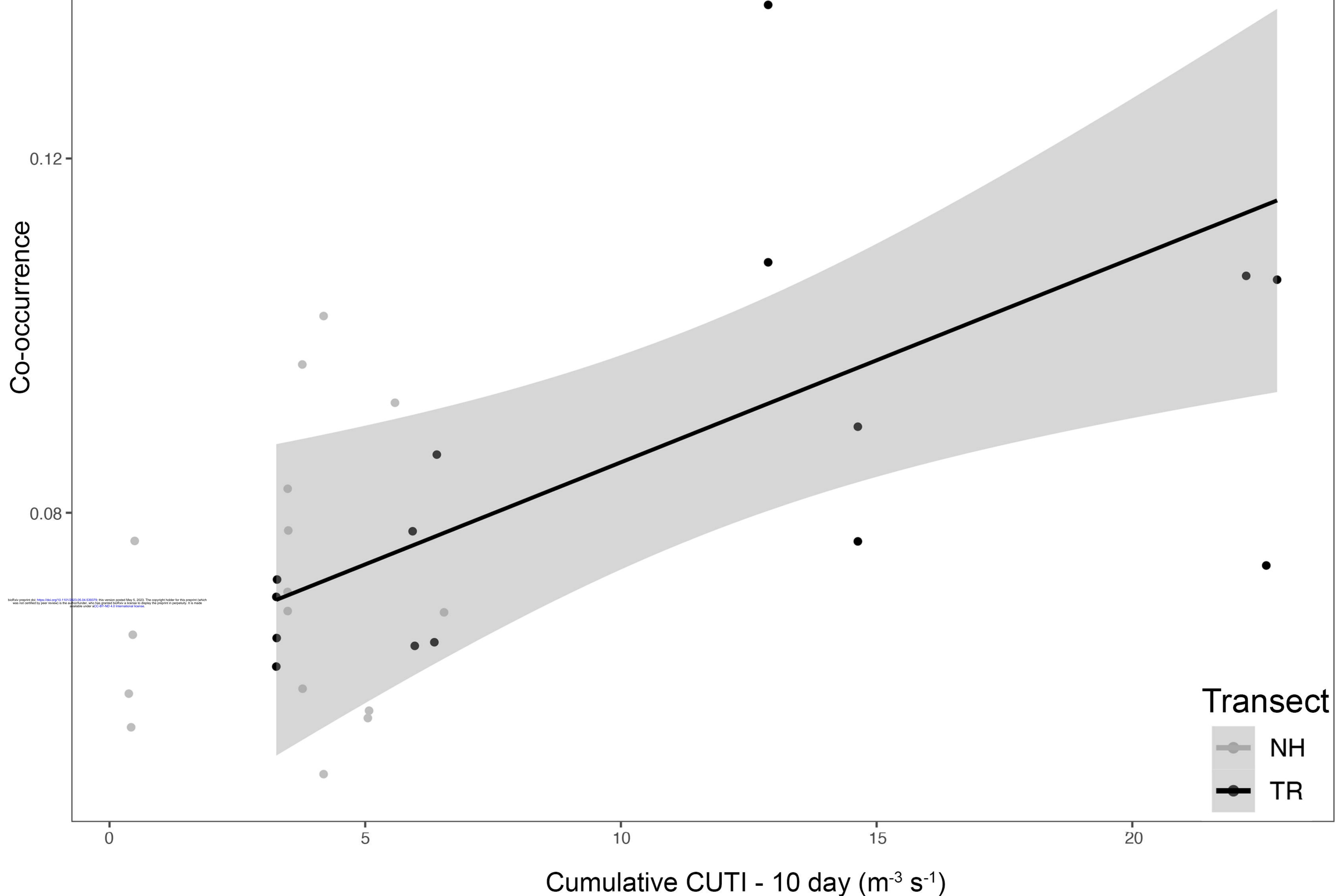
Coefficient of variation of co-occurrence

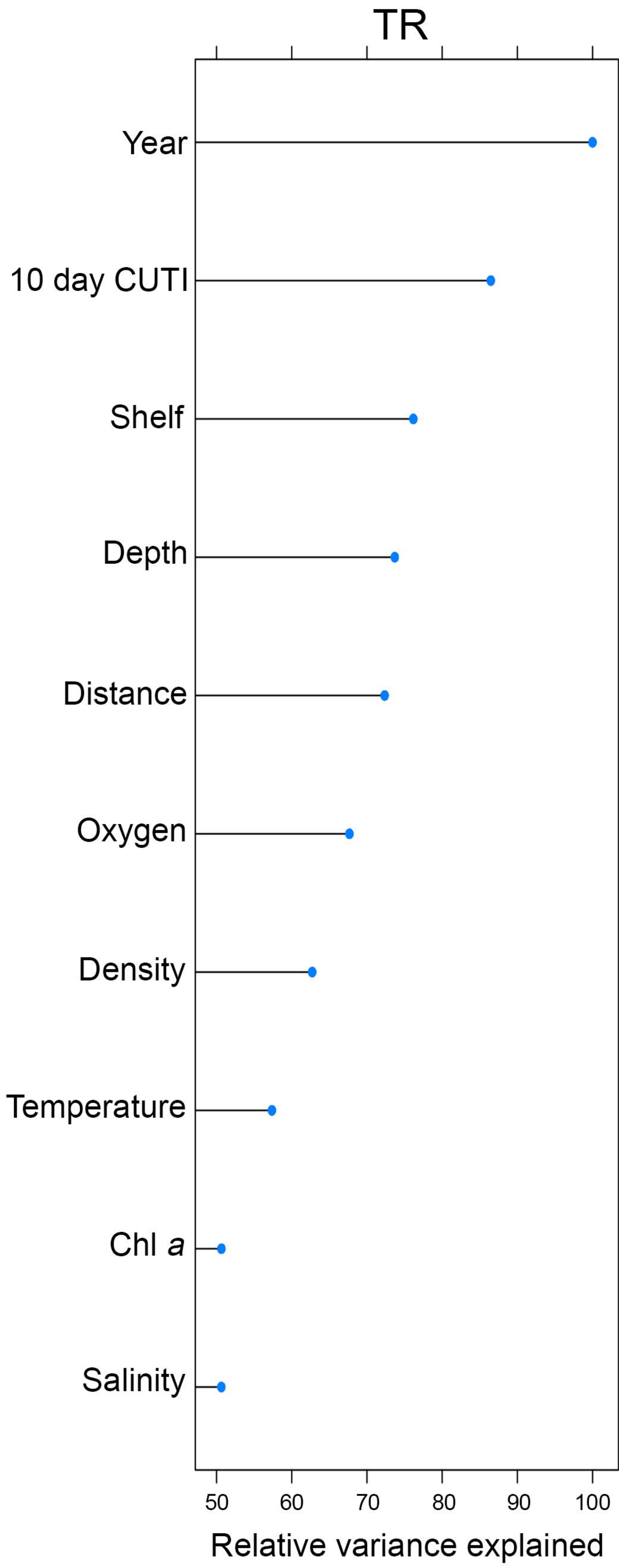
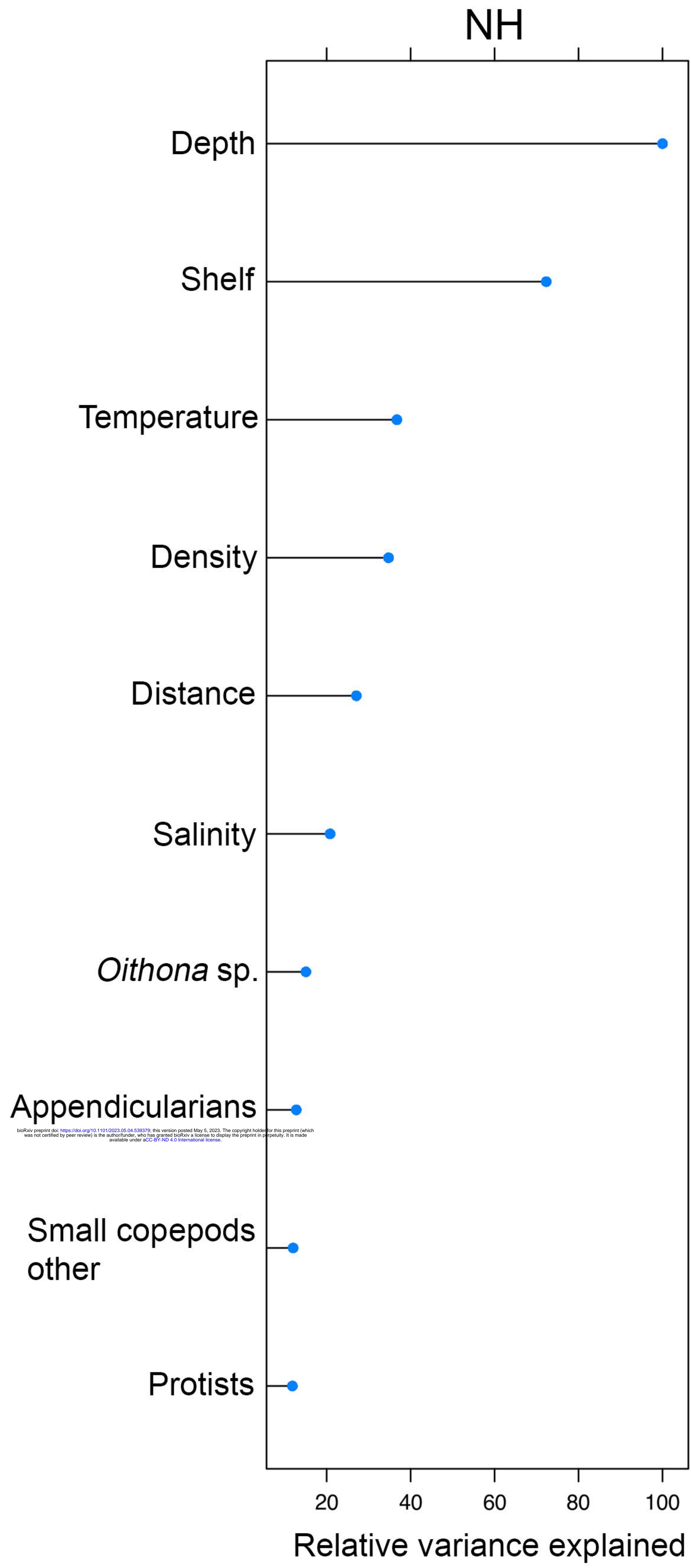


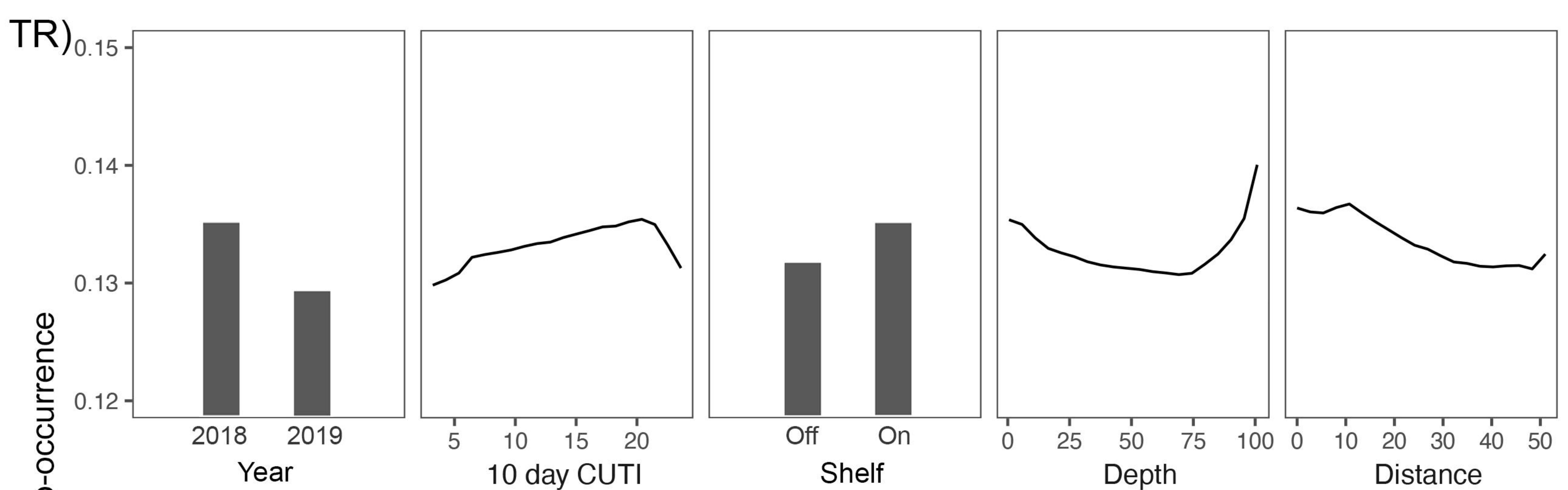
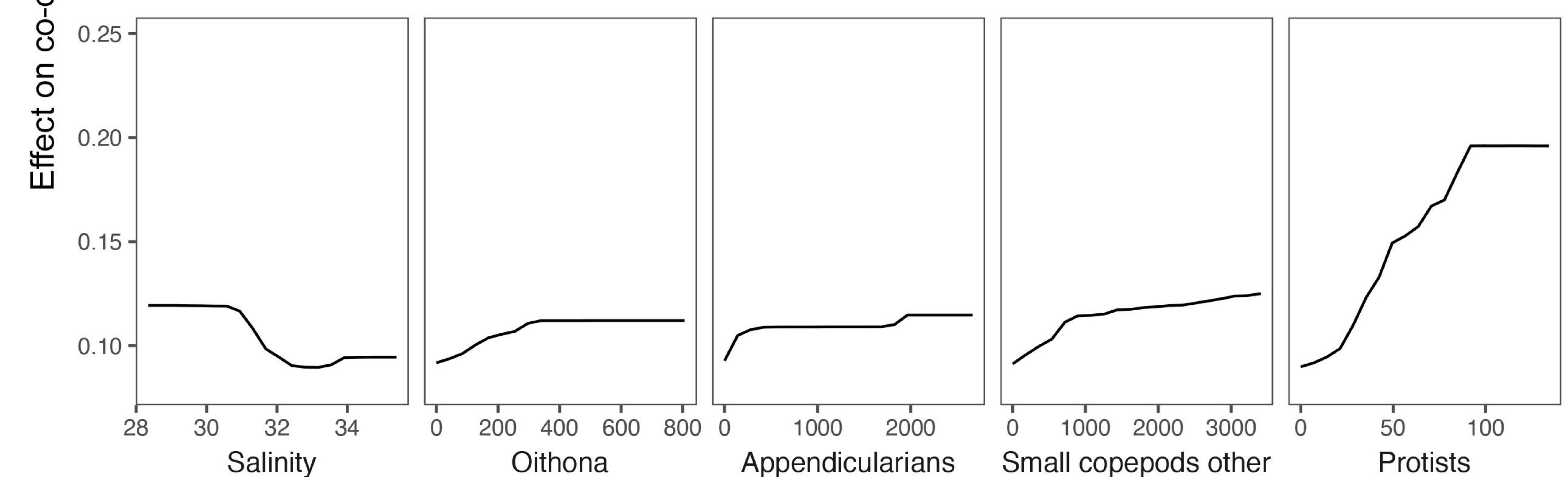
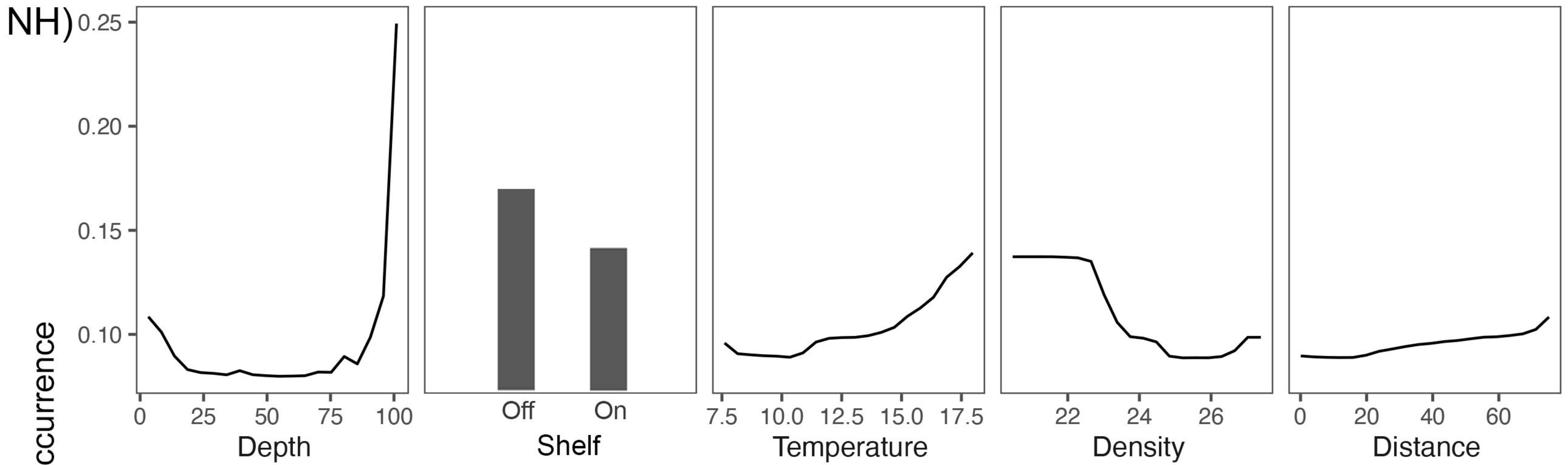
TR)

Shelf
Off
On

bioRxiv preprint doi: <https://doi.org/10.1101/2023.05.04.539379>; this version posted May 5, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.


Coefficient of variation of co-occurrence




Shelf categories

0.16- Wilcoxon: $y = 0.069 + 0.0004 x$, $R^2 = 0.04$ $p = \text{ns}$

$$y = 0.062 + 0.002 x, R^2 = 0.39 \quad p = **$$

