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Abstract15

The specialization of cells is a hallmark of complex multicellularity. Cell differentiation en-16

ables the emergence of specialized cell types that carry out separate functions previously17

executed by a multifunctional ancestor cell. One view is that initial cell differentiation oc-18

curred randomly, especially for genetically identical cells, exposed to the same life history19

environment. How such a change in differentiation probabilities can affect the evolution of20
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differentiation patterns is still unclear. We develop a theoretical model to investigate the ef-21

fect of stage-dependent cell differentiation – cells change their developmental trajectories22

during a single round of development via cell divisions – on the evolution of optimal differ-23

entiation patterns. We found that irreversible differentiation – a cell type gradually losing its24

differentiation capability to produce other cell types – is more favored under stage-dependent25

than stage-independent cell differentiation in relatively small organisms with limited differ-26

entiation probability variations. Furthermore, we discovered that irreversible differentiation27

of germ cells, which is the gradual loss of germ cells’ ability to differentiate, is a prominent28

pattern among irreversible differentiation patterns under stage-dependent cell differentiation.29

In addition, large variations in differentiation probabilities prohibit irreversible differentiation30

from being the optimal differentiation pattern.31

Author summary32

The differentiation of cells into different branches is a characteristic feature of multicellu-33

lar organisms. To understand its origin, the mechanism of division of labour was proposed,34

where cells are specialized at distinct tasks. In previous models, a cell type is usually assumed35

to produce another cell type with a fixed probability which is referred to as stage-independent36

differentiation. However, it has been argued that cell differentiation is a dynamic process in37

which cells possess changing differentiation capabilities during the different stages of an38

organism’s development. Stage-dependent differentiation exhibits more diverse patterns of39

development than differentiation with fixed probabilities, thus it can lead to novel targets of40

selection. How does stage-dependent differentiation impact the evolution of optimal differ-41

entiation patterns compared with stage-independent one? To address this question, we built a42

stage-dependent cell differentiation model and classified differentiation patterns based on the43

cells’ differentiation capability in their last cell division. We investigate how stage-dependent44

differentiation probabilities impact the evolution of the optimal differentiation pattern, which45

acts on the fitness of an organism. As we take the growth rate as a proxy of an organism’s46
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fitness, we seek the “optimal strategy” that leads to the fastest growth. Our numerical results47

show that irreversible differentiation which gradually loses its differentiation capability, is fa-48

vored over stage-independent differentiation in small organisms. Meanwhile, irreversible dif-49

ferentiation won’t be optimal when there are no constraints on the changes of stage-dependent50

differentiation probabilities between successive cell divisions.51

Introduction52

The evolution of multicellularity has been viewed as the major evolutionary transition for53

the evolution of life on earth Maynard Smith and Szathmáry [1995], Szathmáry and Smith54

[1995], Ratcliff et al. [2015], Sebe-Pedros et al. [2017], Márquez-Zacarı́as et al. [2021b].55

One important aspect of this is cell differentiation into different cell types. Cooperation and56

division of labor between these cells have been widely investigated in the evolution of multi-57

cellularity Ratcliff et al. [2012], Hammerschmidt et al. [2014], West et al. [2015], Gao et al.58

[2019], Rose et al. [2020]. Multicellular organisms, especially large ones, possess differ-59

ent cell types to perform diverse functions Carroll [2001], McCarthy and Enquist [2005],60

Arendt [2008]. It is widely accepted that multicellular life has evolved from unicellular61

ancestors Mikhailov et al. [2009], Claessen et al. [2014]. Division of labour in organisms62

enables a diversity of cell types, leading unicellular organisms to form increasingly larger63

and more complex organizations. Differentiated cells perform distinct functions in varying64

conditions and can in this way increase an organism’s reproductive fitness. For example,65

cell differentiation occurs under adverse environmental conditions to increase an organism’s66

survival chance, such as cyanobacteria differentiating nitrogen-fixing heterocysts to use N267

when combined-nitrogen is insufficient Gallon [1992], Saccharomyces cerevisiae producing68

cells with different apoptosis likelihood under gravitational selection Ratcliff et al. [2012] or69

Myxococcus xanthus producing a new cell type under starvation Claessen et al. [2014].70

Several mechanisms have been proposed to understand cell differentiation and phenotypic71

variation, from the perspective of gene expression, mutations, epigenetics, and the environ-72
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ment Extavour and Akam [2003], Arendt [2008], Mikhailov et al. [2009], West and Cooper73

[2016], Arendt et al. [2016], Brunet and King [2017], Márquez-Zacarı́as et al. [2021b], Huang74

et al. [2024]. These mechanisms are complementary, and thus, more than one mechanism75

could act during the evolution of cell differentiation West and Cooper [2016], Brunet and76

King [2017]. These mechanisms usually assume that multifunctional and unicellular ances-77

tors differentiate into specialized cells to carry out segregated functions, even when cells are78

genetically identical and have been exposed to an identical environment. It has been shown79

that cells differentiate depending on the development states of an organism. For example,80

one out of successive 10 to 15 vegetative cells differentiate into a new cell type, heterocyst,81

in filamentous cyanobacteria Anabaena sp.PCC 7120 Flores and Herrero [2010]; Volvox dif-82

ferentiates into two cell types at its 6th round of division in its whole 11 ∼ 12 rounds of cell83

divisions Matt and Umen [2016]. Moreover, in closed related species of Volvox family, it84

has been found that the observed stable differentiation patterns are highly likely the evolu-85

tion consequences of originally randomly happened cell differentiation. For instance, smaller86

species Gonium have identical cells, whereas intermediate-sized species Volvox aureus and87

Volvox gigas have partial germ-soma differentiation, whereas Volvox carteri and Volvox ob-88

versus have complete germ-soma differentiation Matt and Umen [2016]. How originally89

occurred state-dependent cell differentiation in an organism shapes the evolution of cell dif-90

ferentiation patterns is still unclear.91

Studies of cell differentiation have mainly focused on the optimal condition, where ma-92

ture cells of an organism allocate their resources to different tasks Michod [2007], Willens-93

dorfer [2009], Gavrilets [2010], Rossetti et al. [2010], Rueffler et al. [2012], Ispolatov et al.94

[2012], Solari et al. [2013], Goldsby et al. [2014], Cooper and West [2018], Liu et al. [2021],95

Cooper et al. [2021, 2022]. Essentially, they are focused on the proportion of each cell type96

in an organism, instead of the stochastic developmental process of each cell type during an97

organism’s growth. Cells capable of switching to another cell type have not been in the focus98

yet. Some authors considered cell differentiation abilities, but only in one cell type while99

other cell types were terminally differentiated types (without division ability) Willensdorfer100
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[2009], Rossetti et al. [2010], Solari et al. [2013]. Rodrigues et al. considered cell differenti-101

ation ability as an evolving trait, but the trait was coupled with varying cell division rates and102

organisms were constrained to filament form Rodrigues et al. [2012]. More recently, Cooper103

et al. introduced a random specialization model, but the random process only impacts the final104

fractions of different cell types rather than the internal organization of task allocation of cells105

during an organism’s growth Cooper et al. [2022]. Gavrilets and Gao et al. considered cell106

differentiation between cell types, but the differentiation probabilities are assumed to be fixed107

rather than stochastic Gavrilets [2010], Gao et al. [2021]. So far, little is known about the ef-108

fects of stage-dependent differentiation probabilities on the evolution of cell differentiation109

patterns, such as irreversible or reversible.110

In this study, based on our previous work Gao et al. [2021], we develop a theoretical111

model to investigate the effect of cell differentiation with stage-dependent differentiation112

probabilities on the evolution of optimal differentiation patterns. Stage-dependent cell dif-113

ferentiation refers to the capability of cells having different cell differentiation probabilities114

between any two successive cell divisions. Comparatively, stage-independent differentiation115

only allows a cell type to have a fixed cell differentiation probability across cell divisions116

Gao et al. [2021]. Inspired by the cells’ division of labour of Volvox, where germ cells are117

responsible for reproduction and somatic cells are responsible for viability Matt and Umen118

[2016], we consider two cell types in an organism: germ-like cells and soma-like cells. We119

use the expected offspring number of an organism i.e. growth rate as a proxy of an organism’s120

fitness because it is the simplest direct criterion Parker and Smith [1990]. We assume that121

an organism grows by cell divisions which further depends on the fraction of soma-like cells122

and transition probabilities between cell types. Different stage-dependent strategies compete123

to maximize the organism’s fitness. We numerically calculate organisms’ growth rates un-124

der different parameters and compare the evolutionary differences of optimal strategies under125

stage-dependent and stage-independent cell differentiation. Intuitively, reversible differen-126

tiation instead of irreversible differentiation under stage-dependent differentiation will be127

selected especially when cost is low, because reversible differentiation can “recycle” soma-128
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type cells for reproduction. However, we found that stage-dependent differentiation favors129

irreversible differentiation more than stage-independent differentiation even without costs in130

small organisms.131

Model and methods132

We designed a life cycle model for organisms with stage-dependent cell differentiation com-133

pared with previous work investigated under stage-independent cell differentiation Gao et al.134

[2021]. As we are focused on the formation process of differentiation patterns, we consider135

two intermediate cell types rather than specific cell types in an organism: germ-like and136

soma-like, which is inspired by the partial differentiation cell types in genus Pandorina, a137

closed genus of Volvox Matt and Umen [2016]. Here, the two cell types are allowed to differ-138

entiate into each other, and we investigate the possible differentiation process along with cell139

divisions, which we refer to as differentiation strategies. Different strategies lead organisms140

to different developmental trajectories and fitness. In the model, an organism’s growth rate is141

a fitness proxy as it is the simplest direct way to measure organisms’ fitness Parker and Smith142

[1990]. Next, we introduce the definition of differentiation strategies. We assume that each143

organism starts with a single germ-like cell, see Fig 1A. Cells divide synchronously, each144

cell producing two daughter cells at a time. After the ith cell division, organisms have 2i145

cells in total. Organisms grow and mature until they reach a maturity size 2n, where n is the146

maximal cell division of organisms. Each germ-like cell is released from a mature organism147

as offspring to start a new life cycle. All soma-like cells in a mature organism die. For each148

division, cells have a set of probabilities to produce daughter cells of a certain type. Here,149

g
(i)
gg is the probability of a germ-like cell producing two germ-like cells at the ith cell division.150

The probabilities g(i)gs , g(i)ss , s(i)gg , s(i)gs and s(i)ss are defined in a similar manner, where we have151

g
(i)
gg + g

(i)
gs + g

(i)
ss = 1 and s(i)gg + s

(i)
gs + s

(i)
ss = 1 for each growth stage i, i = 1, 2, . . . , n. We152

denote di = [g
(i)
gg , g

(i)
gs , g

(i)
ss , s

(i)
gg , s

(i)
gs , s

(i)
ss ] as the cell differentiation probabilities in the ith cell153

division. In addition, g(i)g→s =
(
g
(i)
ss +

g
(i)
gs

2

)
and s(i)s→g =

(
s
(i)
gg +

s
(i)
gs

2

)
are referred to as transi-154
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tion probabilities, i = 1, 2, . . . , n. The cell differentiation probabilities across the successive155

n rounds of cell divisions of an organism can be expressed in matrix form as156

D =



d(1)

...

d(i)

...

d(n)


=



g
(1)
gg g

(1)
gs g

(1)
ss s

(1)
gg s

(1)
gs s

(1)
ss

...
...

...
...

...
...

g
(i)
gg g

(i)
gs g

(i)
ss s

(i)
gg s

(i)
gs s

(i)
ss

...
...

...
...

...
...

g
(n)
gg g

(n)
gs g

(n)
ss s

(n)
gg s

(n)
gs s

(n)
ss


, (1)157

where the ith row of the matrix contains the cell differentiation probabilities in the ith cell158

division. We call D stage-dependent cell differentiation, as the probabilities can change159

between different division stages. We assume that this change is not larger than δ, e.g.160

g
(i)
g→s = g

(i)
ss +

g
(i)
gs

2
= g

(i−1)
g→s ± δi with δi ≤ δ sufficiently small such that all probabilities161

remain well defined. If δ = 0 for i = 1, 2, . . . , n, then D is a stage-independent cell differ-162

entiation strategy, where the same type of cells follow a fixed set of probabilities to produce163

daughter cells at each division. We should note that the stage-independent cell differentiation164

is also defined by the values of g(i)g→s and s(i)s→g but which don’t change across i. Different cell165

differentiation strategies lead to different differentiation degrees. For example, if a strategy166

has g(i)g→s ≡ 0 for i = 1, 2, . . . , n, then organisms have no cell differentiation. If a strategy167

has g(i)g→s = 1 and s(i)s→g = 1, then organisms have maximal degree of cell differentiation.168

Stage-dependent differentiation allows many different trajectories. To distinguish them and169

focus on differentiation patterns, we consider the probabilities in the last division (Fig 1B).170

If g(i)g→s ≡ 0 for i = 1, 2, . . . , n, then we call the differentiation non-differentiation ND.171

Otherwise, if germ-like cells differentiate soma-like cells at least one time before final cell172

division, i.e. g(i)g→s 6≡ 0, i = 1, 2, . . . , n − 1, but with NO differentiation for either cell type173

at last division i.e. g(n)g→s = 0 or s(n)s→g = 0, then we call it irreversible differentiation ID.174

Strategy ID captures the process by which cells gradually lose their differentiation capabil-175

ities. The rest differentiation is called reversible differentiation RD. We should stress the176

limitation of this classification, in which different strategies could lead to a similar develop-177

ment trajectory, especially in large organisms. Nevertheless, the classification is a simple way178
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that distinguish different differentiation patterns. For convenience, we use the upper script179

i to show the stage-independent strategies where cells have fixed cell differentiation proba-180

bilities. From the definition of ND, we know it is a stage-independent cell differentiation,181

thus we use NDi to denote it afterward. For strategy IDi, only soma-like cells can possess182

irreversibility i.e. ss→g = 0 Gao et al. [2021]. In this work, the acronyms of differentiation183

strategies are stage-dependent unless otherwise stated.184

We assume that cell differentiation impacts an organism’s growth Gao et al. [2021]. The185

effects of cell differentiation are further decomposed into cell differentiation benefits and186

costs on growth. We assume differentiated soma-like cells are beneficial and increase an187

organism’s growth. The assumption is based on the division of labour in Volvox, where188

somatic cells are responsible for viability and germ cells are responsible for reproduction189

Matt and Umen [2016]. Cell differentiation between germ-like cells and soma-like cells is190

costly and decreases growth. A direct impact of differentiation is the decreased number of191

offspring as the resource that could be used for reproduction to convert to newly typed somatic192

cells. Organisms grow faster with higher cell division rates and vice versa. Specifically, r(i)193

represents the growth rate in the ith cell division and is determined by two components194

r(i) =
1 + F

(i)
b

1 + F
(i)
c

, (2)

where F (i)
b and F (i)

c are the effects of cell differentiation benefit and cell differentiation cost195

in the ith cell division, i = 1, 2, . . . , n. Fb is a function of the fraction of soma-like cells fs,196

Fb = bfαs , (3)

where the b is the benefit scale, b ≥ 0. α controls the shape of the function, see Fig 1C. Fc197

is a function of the fraction of cell differentiation between germ-like cell and soma-like cell198

fg→s and fs→g,199

Fc = c(fg→s + βfs→g), (4)

where c is the cost scale, c ≥ 0. β measures the relative cost of differentiation from soma-like200

cell to germ-like cell, see Fig 1C. The fractions of cell differentiation in the ith cell division201
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are202

f (i)
g→s = f (i−1)

g g(i)g→s

f (i)
s→g = f (i−1)

s s(i)s→g,
(5)203

204

where f (i−1)
g and f (i−1)

s are the fraction of germ-like cell and soma-like cell after the (i−1)th205

germ-like
soma-like
dead cells

Newborn
Maturity 

th cell division i

Reproduction 

g(i)
g!g = g(i�1)

g!g + �i

s(i)
s!s = s(i�1)

s!s + �i

g(1)
g!g

s(1)
s!s = NA

… …
g(n)

g!g = g(n�1)
g!g + �n�1

s(n)
s!s = s(n�1)

s!s + �n�1

0  �i  �  1

… …

g(i)
g!s ⌘ 0, i = 1, 2, . . . , n

Differentiation category

g(i)g!s = g(i�1)
g!s + �i, s

(i)
s!g = s(i�1)

s!g + �i

others

g(n)
g!s = 0 or s(n)

s!g = 0

g(i)
g!s 6⌘ 0, i = 1, 2, . . . , n � 1.

Differentiation probability

Stage-independent           Stage-dependent  
� = 0 � 6= 0

IDi

RDi

NDi

RD

NDi

ID

B. Cell differentiation strategies

A. Dynamic developmental trajectories and cell differentiation categories  

C. Cell division rate components 
Cell differentiation benefit Cell differentiation cost
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Figure 1: Illustration of the stage-dependent cell differentiation, differentiation strategies, and

cell division rate components. A. Schematic of an organism’s life cycles. Organisms start from single

germ-like cells and undergo n synchronous cell divisions before reproduction. For newborn organ-

isms, the cell differentiation probability for soma-like cells is irrelevant as there are no soma-like cells.

Cell differentiation probabilities can change from the (i− 1)th cell division to the ith cell division by

a small quantity δi (0 ≤ δi ≤ 1 and i = 1, 2, . . . , n). δ is the maximum change between successive

cell differentiation probabilities i.e. 0 ≤ δi ≤ δ ≤ 1, i = 1, . . . , n. B. Cell differentiation strategy

classification. Based on the cell differentiation probabilities at the last cell division, we classify cell

differentiation into three categories: non-differentiation ND, reversible differentiation RD, and irre-

versible differentiation ID. The upper script i means the strategy is stage-independent i.e. δ = 0. For

ND, since g(i)g→s = 0, i = 1, . . . , n, thus ND equals NDi. C. Cell division rate components. The left

panel shows the benefits of cell differentiation. We assume that the cell division rate increases with

the fraction of soma-like cells fs. For the associated benefit, we assume Fb = b(fs)
α, where the shape

of the function is controlled by α. The right panel shows the costs of cell differentiation. We assume

that the cell division rate decreases with the fraction of cell divisions that turn a soma-like cell into a

germ-like cell and vice versa. For the associated cost, we assume Fc = c(fg→s + βfs→g). Here, we

show the values of Fc with varying fs→g and β by setting fg→s = 0 (Parameters: b = 1 in the left

panel and c = 1 in the right panel).

cell division, respectively. Note that f (i−1)
g +f

(i−1)
s = 1, g(i)g→g+g

(i)
g→s = 1, and s(i)s→s+s

(i)
s→g =206

1, i = 1, 2, . . . , n. Specifically, f (i)
g and f (i)

s are calculated by using transition probabilities,207

see Eq (11) in S1 Appendix. Taking Eq (2), Eq (3), Eq (4) and Eq (5) together, we have208

r(i) =
1 + b(f

(i−1)
s )α

1 + c(f
(i)
g→s + βf

(i)
s→g)

. (6)

After the (i − 1)th cell division, the waiting time before the ith cell division occurring t(i)209

follows the exponential distribution f(t(i)) = r(i)e−r
(i)t(i) , i = 1, 2, . . . , n. Thus the expected210

waiting time from the (i−1)th to the ith cell division is t(i) = 1
r(i)

Allen [2010]. The expected211

growth time of organisms with n rounds of cell divisions is212

t =
n∑
i=1

t(i) =
n∑
i=1

1

r(i)
=

n∑
i=1

1 + c
(
f
(i−1)
g g

(i)
g→s + βf

(i−1)
s s

(i)
s→g

)
1 + b

(
f
(i−1)
s

)α . (7)213

214
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We consider a density-independent population, see Ress et al. [2022] for a discussion when215

density dependence is relevant in a related model. The growth rate of an organism only de-216

pends on the number of offspring and their growth time. As organisms divide synchronously,217

the number of offspring that an organism produces during its life is 2nf
(n)
g . The expected218

number of offspring per unit time of an organism captures the effect of a given strategy on219

organisms. Therefore, organisms grow exponentially and an organism’s growth rate can be220

approximated by221

λ =
lnN

t
=

ln(2nf (n)
g )

n∑
i=1

1

r(i)

=
ln
(
2nf (n)

g

)
n∑
i=1

1 + c
(
f

(i−1)

g g
(i)
g→s + βf

(i−1)

s s
(i)
s→g

)
1 + b

(
f
(i−1)
s

)α
, (8)222

223

where n is the number of cell divisions an organism undergoes before maturity. f (i)
g and f (i)

s224

are fractions of germ-like cell and soma-like cell after the ith cell division. Here, g(i)g→s and225

s
(i)
s→g are the transition probabilities between germ-like cell and soma-like cell in the ith cell226

division (1 ≤ i ≤ n), see the S1 Appendix. We provide the calculation details of the growth227

rate in S1 Appendix and S2 Appendix.228

It should be noted that the growth rate calculated here is not the exact growth rate for each229

realization. As each strategy in the model is stochastic, each strategy has different potential230

developmental trajectories. Therefore the growth rate of an organism under a strategy is a ran-231

dom variable depending on the probability of each trajectory that an organism can develop.232

Thus, the growth rate calculated via Eq (8) is an approximation of the mean growth rate.233

We test the robustness of the approximation in S3 Appendix. Our results show that the ap-234

proximation is consistent with the mean growth rate of an organism. This model generalizes235

our previous study of stage-independent developmental trajectories using individual-based236

simulations Gao et al. [2021]. Here, however, we investigate the mean developmental trajec-237

tory numerically which is more efficient than individual-based simulations, especially for the238

complex developmental trajectories under stage-dependent scenario. In addition, as each or-239

ganism starts with a single germ-like cell, f (0)
g = 1 and f (0)

s = 0. In NDi, cells only produce240

germ-like cells, thus g(i)g→g = 1 for all i, and all other probabilities are irrelevant. Therefore,241
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f
(i)
g ≡ 1, f (i)

s ≡ 0. From Eq (8), the growth rate of NDi is λNDi = ln 2. Biologically, it242

means that organisms double their size per unit of time when they take the NDi strategy.243

Results244

Stage-dependent cell differentiation promotes irreversible cell differenti-245

ation in small organisms246

Theoretically, differentiation probabilities at different cell divisions could be arbitrary values.247

Therefore, differentiation probabilities can be arbitrary values between 0 and 1. However, we248

rarely observe drastic changes in cell differentiation probabilities during an organism’s devel-249

opment – instead, these probabilities change slowly during development. For instance, cells250

in a series of closely relative species in Volvox family show gradual degrees of germ-soma251

differentiation Matt and Umen [2016]. Thus, it is natural to assume that the maximum value252

of the change of two successive differentiation probabilities is small. Therefore, we restrict253

attention to a small range of δ and set δ = 0.1 (i.e. 0 ≤ δi ≤ δ = 0.1, i = 1, . . . , n)254

in this section and the effects of large δ will be investigated in the third section. We found255

that stage-dependent differentiation promotes the evolution of irreversible strategies ID com-256

pared with stage-independent differentiation IDi in small organisms, see Fig 2. Specifically,257

stage-dependent differentiation ID evolves at more parameter space of differentiation ben-258

efits and costs than stage-independent IDi in small organisms. However, stage-dependent259

ID gradually loses its advantages when organismal size increases. It has been shown that260

stage-independent differentiation IDi is more likely to evolve in large organisms, see IDi in261

Fig 2. The conclusion about IDi is consistent with the previous findings Gao et al. [2021].262

Next, with the constraint of δ, we investigate the effects of stage-dependent differentiation263

on an organism’s growth rate under varying differentiation benefits and costs, comparing it264

with the results of stage-independent differentiation strategies. We first focus on the parame-265

ter space where both stage-independent and stage-dependent differentiation evolve the same266
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n=5 n=3

n=10

A B

C

Figure 2: Comparison of optimal strategies between stage-independent and stage-dependent

differentiation. Comparison of the parameter space of the optimal strategy between stage-

independent and stage-dependent cell differentiation under maximal cell number of division rounds

of n = 5 (panel A), n = 3 (panel B) and n = 10 (panel C). The grey, dark grey, and black areas

represent the parameter space where the optimal strategies are the same under both stage-independent

and stage-dependent cell differentiation. The green strip represents stage-dependent ID leading to a

larger growth rate than stage-independent NDi. Similarly, the blue area and the brown area represent

ID andRD leading to higher growth rates than stage-independentRDi and IDi, respectively. Purple

color represents NDi leads to a higher growth rate than IDi in panel C. Parameters of all panels:

0 ≤ δi ≤ 0.1, and α = β = 1. Parameters of calculating optimal strategy: the number of initial sam-

pling d(1), M = 1000, the number of stage-dependent strategies starting with a given d(1), R = 100,

for more detail, see S2 Appendix. At each pixel, the frequency of each optimal strategy was calculated

across 100 replicates in panel A and 20 replicates in the rest panels.
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strategies. NDi dominates under both stage-independent and stage-dependent differentiation267

at high differentiation costs which largely decreases an organism’s growth rates under dif-268

ferentiation strategies (RDi, IDi, RD and ID). In the absence of differentiation benefits,269

i.e. b = 0 and c > 0, we show that NDi is optimal analytically (S4 Appendix). Addition-270

ally, if there is only a single cell division (n = 1), NDi is still optimal in the absence of271

differentiation costs, i.e. c = 0 and b > 0 (S4 Appendix). This is because differentiation272

benefits F (i)
b at the ith division are based on the fraction of soma-like cells after the (i− 1)th273

division. Similarly, under the scenario of high costs and low benefits, stage-dependent dif-274

ferentiation bears huge costs, thus only NDi is chosen. When benefits are much higher than275

costs, then reversible differentiation (RDi, RD) is chosen under both stage-independent and276

stage-dependent differentiation. This is because differentiation benefits will cover the dif-277

ferentiation costs caused by cell differentiation among divisions, see S5 Appendix for the278

optimal strategy under larger scales of benefits and costs.279

Then, we analyze the effects of organism size on the effects of the occurrence of stage-280

dependent ID. In the model, cell differentiation plays a dual role in growth rate. It pro-281

vides benefits, but also incurs costs on the growth rate. The best strategy is the one that can282

maximally use cell differentiation benefits and at the same time reduce costs. So under the283

conditions of high benefits or high costs, only ND is selected. Due to the randomness of284

cell differentiation probabilities, stage-dependent strategies contain the one that can adjust285

the fraction of germ-like cells to gain differentiation benefits and avoid differentiation costs286

during growth, especially in large organisms that contain more cell divisions, see Fig 2. In287

small organisms, due to the constraints on the fluctuations of two successive cell differen-288

tiation probabilities, stage-dependent ID strategies only accumulate limited differentiation289

benefits. Since stage-dependent ID needs to undergo the differentiation from germ-like to290

soma-like first and then at least cell type turns irreversible, thus higher cell differentiation291

costs, especially high differentiation from germ-like to soma-like, will prohibit it from being292

the optimal strategy. But for ID in large organisms that need more cell divisions to mature,293

the differentiation from germ-like to soma-like can occur only in the first several cell divi-294
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sions to gain benefits, then cells can remain irreversible to avoid costs in the following cell295

divisions cells. Thus, stage-dependent differentiation strategies (either RD or ID) can lead296

to higher growth rates than stage-independent ones (either RDi or IDi) in small organisms297

for the account of their flexible adjustment of the differentiation probability patterns.298

Irreversible germ differentiation dominates among optimal stage-dependent299

irreversible cell differentiation300

To further analyze why stage-dependent irreversible differentiation is favored over stage-301

independent irreversible differentiation in small organisms, we should further study the pos-302

sible irreversible differentiation forms in ID. In the model, an organism can contain two303

cell types, thus irreversibility can occur on either cell type. Therefore, the stage-dependent304

irreversible differentiation (ID) can further be classified into three subcategories: irreversible305

germ differentiation IGD (g(n)g→s = 0 and s(n)s→g 6= 0), irreversible soma differentiation ISD306

(s(n)s→g = 0 and g(n)g→s 6= 0), and irreversible germ and soma differentiation IGSD (g(n)g→s =307

s
(n)
s→g = 0). Next, we investigate the occurrence conditions of each sub-strategy.308

The results show that among the optimal ID in small organisms, IGD evolves at most309

parameter space of benefits and costs, see Fig 3 A and B. IGD leads stage-dependent ID310

replaces NDi as the optimal strategy in small organisms at small c, see Fig 2A and Fig 3B.311

Specifically, we first found that the IGD strategy replaces NDi when b is slightly larger312

than c. Under this scenario, the best strategy would be to produce a few soma-like cells to313

use differentiation benefits, but decrease the differentiation probabilities between cell types314

to avoid differentiation costs as the growth rate is a tradeoff between differentiation benefits315

and differentiation costs based on Eq (8). Thus, the IGD that produces few soma-like cells316

in the first few cell divisions and then turns into irreversible becomes optimal (the first panel317

in Fig 3C). The IGD strategy can keep a high fraction of germ-like cells which increases318

the growth rate by increasing the number of offspring i.e. 2nf (n)
g . Under this IGD strategy,319

although the differentiation probabilities of soma-like cells s(n)s→g is not small, we should note320

that the differentiation costs are still low as the number of soma-like cells is small, which is321
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A

B

C

Figure 3: Irreversible germ differentiation evolved mostly among irreversible differentiation

under stage-dependent differentiation. A. Fractions of three stage-dependent cell differentiation

strategies being optimal under differentiation benefits and costs. B. Fractions of three sub-irreversible

stage-dependent strategies being optimal under differentiation benefits and costs. C. Cell differen-

tiation probabilities (g(i)g→s, s
(i)
s→g) and the frequencies of germ-like cell (f (i)g ) of the optimal irre-

versible strategy via cell divisions at the parameter space indicated by circles in panel B. The circle

color follows that in Fig 3 Parameters of all panels: maximal cell number of division rounds n = 5,

0 ≤ δi ≤ 0.1, and α = β = 1. At each pixel, the frequency of each optimal strategy was calculated

across 100 replicates. Parameters of calculating optimal strategy: the number of initial sampling d(1),

M = 1000, the number of stage-dependent strategies starting with a given d(1), R = 100, replicates

for each pixel is 100, for more detail, see S2 Appendix.
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2i(1 − f (i)
g ) after the ith cell division. Then, we found that IGD is optimal when b is much322

larger than small c in small organisms (the second panel in Fig 3C). Under this scenario,323

due to the tradeoff between differentiation benefits and costs, the IGD strategy with higher324

germ-like differentiation probabilities gg→s at first several cell divisions becomes optimal.325

Taken together, we found that ID’s sub-strategy IGD evolves at low c. Furthermore, we326

show an analytical proof that except for n = 1 (S4 Appendix), either RD or ID is optimal327

in the absence of cell differentiation costs, i.e. c = 0 and b > 0 (S6 Appendix). The finding328

indicates that without the punishment of differentiation costs ND cannot be selected.329

Meanwhile, We found that ISD and IGSD, the other subcategories of ID, evolve at both330

intermediate values of differentiation benefits and costs, see the last two panels in Fig 3B. We331

analytically proved that both cell differentiation benefits and costs are indispensable factors332

for the evolution of ISD and IGSD, see the proof in S7 Appendix. The subcategory strategy333

IGSD and ISD of ID evolves at both high b and high c. Specifically, IGSD evolves at both334

higher b and c than the strategy of ISD. This is an account of the differences in irreversibility335

features of cell types between IGSD and ISD. Compared with ISD strategies, IGSD with336

both irreversible cell types at last cell division bears lower cell differentiation costs, thus it337

can evolve either at higher c or at low conditions of b and c than ISD (the last two panels338

of Fig 3C). Meanwhile, IGSD has relatively higher fractions of germ-like cells than ISD,339

which leading a larger number of offspring i.e. 2nf (n)
g and then leads to a higher growth rate340

based on Eq (8). Additionally, it is noteworthy that for the evolution conditions of stage-341

independent irreversible soma differentiation ISDi, the only IDi under stage-independent342

cell differentiation, the result is consistent with our previous study Gao et al. [2021].343

In addition, compared with the previous work which investigated cell differentiation un-344

der stage-independent differentiation Gao et al. [2021], stage-dependent differentiation also345

promotes the evolution of irreversible differentiation under the effects of α and β, see S8346

Appendix. Meanwhile, we found that under stage-dependent differentiation α plays a similar347

role as that of stage-independent differentiation. That is, irreversible differentiation strategies348

are optimal when α < 1, i.e. the cell division rate component Fb accelerates with α, see Fig 8349
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in S8 Appendix. However, the effects of β, measuring the relative weight of cell transition350

between germ-like and soma-like cells, leads to different results between stage-dependent351

and stage-independent differentiation. Specifically, we found that irreversible differentiation352

evolves across all values of β. As the subcategory IGD of ID evolves when β is small, and353

ISD and IGSD of ID evolve when β is large.354

Large changes in two successive probabilities of cell differentiation pre-355

vent irreversible differentiation from becoming optimal356

b = 10, c = 1.5b = 4, c = 8

Figure 4: The evolutionary conditions for non-differentiationNDi and extreme differentiation

ED, and their corresponding growth rates. The blue line represents the condition for λNDi = λED.

The shaded area represents where λNDi < λED. We found that NDi is optimal under high c and ED

is optimal under high b. The black stars correspond to the parameter combinations where growth rates

have been calculated in the right panel. Parameters: n = 5 and α = β = 1.

Without constraints, the differences of cell differentiation probabilities in successive cell357

divisions can take any value, i.e. 0 ≤ δ ≤ 1, where 0 ≤ δi ≤ δ ≤ 1. Then, cells’ differ-358

entiation probabilities and related organism’s growth are completely arbitrary. An extreme359

example that optimally exploits the potential of somatic cells would be that both types of cells360

produce soma-like cells in the first (n− 1) divisions, and then all produce germ-like cells in361
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the last division. We refer to this cell differentiation as “extreme differentiation” (ED). We362

will first take ED as a typical example to investigate the effects of stage-dependent differen-363

tiation without any constraints. ED is a strategy that fully uses cell differentiation benefits.364

In contrast, NDi is a strategy that does not receive cell differentiation benefit or cell differ-365

entiation cost. Next, we compare the evolving conditions for ED and NDi. Naturally, we366

expect that when b � 1 and c � 1, ED is optimal, and when c � 1 and b � 1, NDi is367

optimal. Based on Eq (8), the growth rate of ED is λED = ln 2
n+b+(1+b+β)c

n(1+b)

and the growth rate368

of NDi is λNDi = ln 2. Thus, when c < (n−1)b
1+b+β

, we have λED > λNDi and when c > (n−1)b
1+b+β

,369

we have λED < λNDi , see Fig 4. The outcome indicates that if the costs of differentiation are370

high, the strategy of no differentiation will be chosen, and if the benefits of differentiation are371

high, differentiation strategies will be selected.372

We next investigate the effects of the maximum change of two successive differentiation373

probabilities i.e. parameter δ on the growth rates of the general stage-dependent strategies374

NDi, RD, and ID. We found that irreversible differentiation cannot be optimal under large375

δ, see Fig 5. Large δ means more randomness of cell differentiation during an organism’s376

growth. A higher value of δ intensifies the spectrum of an organism’s growth rate except for377

NDi whose differentiation probabilities don’t change with δ. For instance, we found that the378

growth rate of the optimal differentiation strategies including RD and ID all increase with379

increasing δ. However,RD has a relatively greater increase than ID (Fig 5). Furthermore, we380

found that RD outcompetes ID and turns into the optimal strategy when δ is 1. Specifically,381

when δ = 0.1, we found that the sub-strategy IGD of ID leads to a larger growth rate382

than RD, whereas when δ = 1, RD outcompetes IGD and leads to the largest growth383

rate, see Fig 5 A-C and D-F. Based on Eq (8), we know that the growth rate depends both384

on cell division rates and the number of offspring (the fraction of germ-like cells after the385

nth division). Furthermore, the cell division rate is proportional to the fraction of soma-like386

cells but inversely proportional to the differentiation probabilities which cause differentiation387

costs. Taken together, the largest growth rate favors the strategy with a higher fraction of388

soma-like cells all the time, a higher fraction of germ-like cells after the last cell division,389
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Figure 5: The effect of the maximum change of two successive differentiation probabilities

δ on the growth rate of optimal strategies. Frequencies of germ-like cells, cell division rates, and

growth rate of the optimal stage-dependent strategy of each category under δ = 0.1, δ = 0.5 and

δ = 1 respectively, i = 1, 2, . . . , n. Small dots are the values of each interesting feature at each

cell division. Thick lines are the averaged values at each cell division. The shaded areas indicate

the standard deviation. α = β = 1 and colors correspond with those in Fig 3. Parameters: n = 5,

and α = β = 1, we chose 20 duplicates for generating the optimal strategies in each category which

includes subcategories.

and lower differentiation probabilities. RD contains the strategy to increase the fraction of390

soma-like cells in the middle stages of cell divisions and the number of offspring which is the391

number of germ-like cells after the nth cell division. Thus, higher δ prohibits the emergence392

of strategy ID being optimal.393
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Conclusion and discussion394

We investigated the effect of stage-dependent differentiation on an organism’s growth and395

compared it with stage-independent cell differentiation. Stage-independent cell differenti-396

ation only allows a fixed cell differentiation probability for a cell type. Stage-dependent397

differentiation, by contrast, refers to being capable of changing differentiation probabilities398

in consecutive cell divisions. The most extreme case would be an organism that is entirely399

consisting of soma-like cells until the last cell division, where all cells turn into germ-like400

cells to produce as many offspring as possible. Stage-dependent differentiation intensifies401

the fluctuation of the germ-soma ratio during an organism’s growth, which further increases402

the complexity of competition between different strategies. We used the growth rate of an or-403

ganism as a proxy to investigate the growth competition of different strategies under different404

benefits and costs. Based on the differentiation probabilities in the last division, we classify405

stage-dependent differentiation into three categories: non-differentiationNDi, reversible dif-406

ferentiation RD, and irreversible differentiation ID. The evolution of irreversible differenti-407

ation under stage-independent differentiation has been demonstrated by previous work to be408

challenging Gao et al. [2021]. Contrary to our expectations, we found that stage-dependent409

differentiation favors ID (in the last division step) more than stage-independent irreversible410

differentiation IDi in smaller organisms. Specifically, IGD, a sub-strategy of ID, leads to411

a higher growth rate than other strategies in small organisms. Additionally, ISD and IGSD412

evolved in the parameter space with intermediate benefits and costs, consistent with previous413

findings Gao et al. [2021]. Finally, we found that large differentiation probability variation414

prohibits irreversible differentiation ID from becoming the optimal strategy. The findings in-415

dicate that stage-dependent differentiation favors the evolution of irreversible differentiation416

in small organisms and with limited variations between successive cell divisions.417

That irreversible differentiation is favored in small organisms is contrary to the intuition418

provided by stage-independent differentiation, where irreversible differentiation is favored419

in large organisms Gao et al. [2021]. Our previous work has shown that the minimum size420

for irreversible differentiation occurring is n = 6 Gao et al. [2021]. This discrepancy arises421
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because of the flexibility of the developmental trajectories under stage-dependent differenti-422

ation. These complex developmental trajectories in different categories increase the growth423

differences between different strategies. Thus, we found that the optimal strategies of dif-424

ferentiation categories can lead to divergent growth rates. In addition, stage-dependent ir-425

reversible differentiation evolves two more subcategories than stage-independent one: irre-426

versible germ differentiation IGD and irreversible germ and soma differentiation IGSD.427

The broad form of stage-dependent differentiation strategies can capture more cell differenti-428

ation patterns in reality. For example, the evolution of IGSD can help us to understand cell429

lineage segregation in nature Matt and Umen [2016]. Our model can screen the stage where430

irreversible differentiation emerges, in line with the question of early segregation of germ and431

soma in animals Buss [1983], Knaut et al. [2000], Buehr [1997], McLaren [2003], Extavour432

and Akam [2003], but late in most plants Lanfear [2018]. To identify the segregation, we433

need to investigate the irreversible developmental states of germ-like and soma-like cells in434

our model. Future work is necessary for seeking and analyzing the conditions where different435

segregation occurs.436

Previous investigations of cell differentiation mostly focused on the state with a group437

of undifferentiated clonal cells Michod [2007], Gavrilets [2010], Rodrigues et al. [2012],438

Goldsby et al. [2014], Cooper and West [2018], Yanni et al. [2020], Liu et al. [2021], Cooper439

et al. [2021, 2022] or cells with randomly chosen initial cell types (similar to aggregated440

organisms) Rodrigues et al. [2012]. The focus of these studies was on the final static condi-441

tions that lead to the division of labor rather than the dynamic process during an organism’s442

growth. These models ignored the dynamic developmental trajectories of organisms from443

newborn to maturity. In our model, the developmental trajectories of each organism are444

recorded by stage-dependent differentiation probabilities, allowing us to know the dynamic445

fractions of each cell type during an organism’s growth, which further allow us to investigate446

cell differentiation patterns. In addition, Rodrigues et al. have considered cell differentiation447

probability as an evolving trait to understand the evolution of differentiation Rodrigues et al.448

[2012]. They concluded that differentiation costs, compared with the difference in division449
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rates between cell types, have less impact on the evolution of terminal and reversible differ-450

entiation. They also found that differentiation costs played a crucial role in the evolution of451

diversity differentiation strategies. Moreover, Rodrigues et al. investigated developmental452

strategies in filament multicellular organisms with two essential tasks, and they found that453

high differentiation costs can promote the evolution of symbioses. In the model, we employ454

functions to demonstrate differentiation benefits and costs (Eq (3), Eq (4) as they can capture455

more general forms of benefits and costs by varying relevant parameters.456

In our model, since we focus on the evolution process that cells reach the final specialized457

types, thus we assumed that differentiation occurs randomly and both cell types are capable458

of cell differentiation Gao et al. [2021]. The assumption is based on the cell differentiation459

situation of species observed in genus Volvox, which reveals that cell types undergo an in-460

termediate and partial differentiation stage in some closed related species before eventually461

becoming specialized cell types Matt and Umen [2016]. We classify the stage-dependent dif-462

ferentiation strategy based on its differentiation probability at the last round of cell division.463

The classification is based on the idea that the differentiation strategy (reversible and irre-464

versible) describes the changes in differentiation capability along the cell division process.465

Nevertheless, we stress that this classification is imperfect, especially for large organisms466

with more cell divisions, where a more refined classification criterion is needed. However,467

owing to the simple classification, the current classification can still largely reflect the evolv-468

ing situation of the specific strategies interested. For instance, the strategy that cells all turn469

into specialized types after half a round of cell divisions is a subset strategy of ID, thus it can470

only evolve in the parameter space that ID emerged. Meanwhile, we assumed that organ-471

isms are clonal, growing from a single founding cell. The reasons for our clonal assumption472

are that multicellularity is formed commonly by clonal division rather than cell aggregation473

Fisher et al. [2013], Grosberg and Strathmann [1998], Tarnita et al. [2013], Brunet and King474

[2017], Pentz et al. [2020], Márquez-Zacarı́as et al. [2021a]. and clonal organisms with iden-475

tical genes have advantages at purging deleterious mutations and reducing conflicts among476

cells Grosberg and Strathmann [1998, 2007]. Therefore, clonal multicellularity is predicted477
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to be evolutionarily stable Mikhailov et al. [2009]. In the cell differentiation models of aggre-478

gated multicellularity, a relatedness parameter can be used to evaluate the level of cooperation479

between cell types Ispolatov et al. [2012], Cooper and West [2018], Madgwick et al. [2018],480

Liu et al. [2021]. Additionally, the maturity size is fixed in the model as previous work has481

shown that selection favors life cycles where all organisms grow to the same size and frag-482

ment into pieces with the same pattern Pichugin et al. [2017]. The assumption is generally in483

line with the size observation in some species such as Volvox Matt and Umen [2016].484

We assumed that cell differentiation costs influence an organism’s growth. In nature,485

cell differentiation and cell plasticity usually originally occur under severe environmental486

conditions, indicating a differentiation cost involved Gallon [1992], Claessen et al. [2014],487

Aguirre et al. [2005], Loenarz et al. [2011]. Differentiation cost has been considered in pre-488

vious theoretical research via varying forms DeWitt et al. [1998], Gavrilets [2010], Ispolatov489

et al. [2012], Rodrigues et al. [2012], Goldsby et al. [2012], Staps and Tarnita [2022]. But490

the modeling purpose of cell differentiation costs is the same, i.e. reducing an organism’s491

fitness. In our model, we are interested in the relative growth advantage between different492

differentiation strategies. Therefore, we assume that differentiation costs affect the growth493

rate, reducing cell division rates. Finally, we suppose that cells undergo synchronous cell494

divisions. This is not true for large multicellularity with many more cell divisions New-495

port and Kirschner [1982], Matt and Umen [2016]. Asynchronous cell division has been496

explored under stage-independent differentiation in previous studies, leading to the same497

predictions as the synchronous one Gao et al. [2021]. Yet, it still needs to be investigated498

whether asynchronous cell division leads to the same conclusion as synchronous ones under499

stage-dependent differentiation in the future. Our model could be further extended by includ-500

ing cell death or differentiation costs related to the risk of organism death. Yet, our model501

gives first insights into understanding the effects of dynamic differentiation on the evolution502

of cell differentiation in multicellularity.503
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Supporting information504

S1 Appendix. Growth rate. In our model, we treat both the number of cells and growth505

time as continuous, distilling the stochastic process down to two quantities for calculating the506

growth rate: the expected offspring number of germ-like cells N and the amount of growth507

time for an organism to grow t. The expected growth rate λ can be calculated by the following508

equation approximately509

λ =
lnN

t
. (9)

The robustness of the approximation is tested in S3 Appendix. Here, we use fg(i) and fs(i)510

to denote the fractions of germ-like cells and soma-like cells after the ith cell division. Since511

each organism starts with a single germ-like cell, fg(0) = 1 and fs(0) = 0. We use p(i)x→y to512

denote the transition probability from cell type x to y in the ith cell division, where x and y513

are either germ-like cells or soma-like cells. Based on Eq (1), we have514

g(i)g→g = g(i)gg +
g
(i)
gs

2

g(i)g→s = g(i)ss +
g
(i)
gs

2

s(i)s→g = s(i)gg +
s
(i)
gs

2

s(i)s→s = s(i)ss +
s
(i)
gs

2
.

(10)515

516

After the ith cell division, the expected fraction of germ-like cells is f (i)
g = g

(i)
g→gf

(i−1)
g +

s
(i)
s→gf

(i−1)
s and the expected fraction for soma-like cells is f (i)

s = g
(i)
g→sf

(i−1)
g + s

(i)
s→sf

(i−1)
s ,

which can be expressed in f (i)
g

f
(i)
s

 =

g(i)g→g s
(i)
s→g

g
(i)
g→s s

(i)
s→s

f (i−1)

g

f
(i−1)

s

 . (11)

The expected f (n)
g and f (n)

s can be calculated recursively by Eq (11)f (n)
g

f
(n)
s

 =

g(n)g→g s
(n)
s→g

g
(n)
g→s s

(n)
s→s

 . . .

g(i)g→g s
(i)
s→g

g
(i)
g→s s

(i)
s→s

 . . .

g(1)g→g s
(1)
s→g

g
(1)
g→s s

(1)
s→s

f (0)
g

f
(0)
s

 . (12)
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Since cells divide synchronously and no cell dies during growth, the expected number of517

germ-like cells N (n)
g and soma-like cells N (n)

s after the nth cell division are518 N (n)
g

N
(n)
s

 = 2n

f (n)
g

f
(n)
s

 , (13)519

520

where 0 ≤ f
(n)
g , f

(n)
s ≤ 1.521

The cell division rate determines the growth duration of organisms. Since cells divide with522

a rate r(i) = 1+b[f
(i−1)
s ]α

1+c[f
(i)
g→s+βf

(i)
s→g ]

during the ith cell division, the waiting time for a cell division523

t(i) follows the exponential distribution f(t(i)) = r(i)e−r
(i)t(i) , where f (i)

g→s = f
(i−1)

g s
(i)
s→g and524

f
(i)
s→g = f

(i−1)

s s
(i)
s→g, see Eq (6). Thus the expected waiting time from the ith cell division to525

the (i + 1)th cell division is t(i) = 1
r(i)

. The expected growth time for organisms with total n526

cell divisions is527

t =
n∑
i=1

t(i) =
n∑
i=1

1

r(i)
=

n∑
i=1

1 + c[f
(i−1)

g g
(i)
g→s + βf

(i−1)

s s
(i)
s→g]

1 + b[f
(i−1)
s ]α

. (14)528

529

Substituting Eq (13) and Eq (14) into Eq (9), we have530

λ =
lnN

t
=

n ln 2 + ln f
(n)
g∑n

i=1

1+c
[
f
(i−1)
g g

(i)
g→s+βf

(i−1)
s s

(i)
s→g

]
1+b[f

(i−1)
s ]α

, (15)531

532

where n is the number of total cell divisions of organisms, f (i)
g and f

(i)
s are fractions of533

germ-like cell and soma-like cell after the ith cell division, g(i)g→s and s(i)s→g are the transition534

probabilities between germ-like cell and soma-like cell at the ith cell division (1 ≤ i ≤ n).535

We have f (0)
g = 1 and f (0)

s = 0. For the non-differentiation strategy NDi, no soma-like536

cells are produced during growth, i.e. gg→g = 1 and gg→s = ss→g = ss→s = 0. Therefore,537

f
(i)
g = 1, f (i)

s = 0. Thus from Eq (15) the growth rate of NDi which is denoted by λNDi538

is ln 2. Biologically, the growth rate of NDi describes the number of cells doubling per unit539

of time. As we defined strategies based on the series of cell differentiation probabilities, the540

growth rate of a strategy should be a distribution rather than a fixed value. But for calculation541

convenience, we took Eq (15) as an approximation of a stochastic differentiation strategy. In542

appendix S3, we show the approximation is reliable in finding the optimal differentiation543

strategy.544
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S2 Appendix. Numerical calculation of the growth rate of the stage-dependent dif-

ferentiation strategy. We introduce the method of calculating growth rate numerically in

stage-dependent cell differentiation. To find the optimal strategy, at a fixed benefit and cost

condition, we use the Monte-Carlo methods randomly to sample differentiation strategies and

then calculate and compare the growth rates of organisms under these strategies. Grid search

is used to find the optimal strategy in different conditions of benefits and costs. We first look at

the cell differentiation probabilities in the first division step d(1) = [g
(1)
gg , g

(1)
gs , g

(1)
ss , s

(1)
gg , s

(1)
gs , s

(1)
ss ].

Each probability can take the value 0 or other values by increasing 0.1 from 0 at each

time until reaching the highest value 1, thus there are 11 possible values for each proba-

bility, i.e 0, 0.1, 0.2, . . . , 1. We first define the number of probability combinations. Since

g
(1)
gg + g

(1)
gs + g

(1)
ss = 1 and g(1)ss = 1 − g(1)gg + g

(1)
gs , as long as we know the values of g(1)gg and

g
(1)
gs , we know gss. When ggg = 0, ggs can take the 11 values from 0 to 1, Thus, there are

totally
∑11

i=1 i = 66 combinations for g(1)gg , g
(1)
gs , g

(1)
ss . The same number of combinations exist

for soma-like cells. Thus, there are a total of 66× 66 = 4356 combinations for d(1). As long

as d(1) is chosen, we need to identify d(2), d(3), . . . , d(n). d(2) deviates from d(1) by either a 0

or δ2. That is 0 ≤ |g(1)gg − g(2)gg | ≤ δ2. The same for the other probabilities ggs, gss, sgg, sgs, sss.

The choice of d(i+1) depends on number of neighbours of d(i), which further depends on the

elements d(i). For δ(i+1) = 0.1, if ggg = sss = 1 in d(i), then ggg and sss can only be decreased

or be constant. Thus, there are 5 choices for d(i+1). However, if the elements in d(i) are either

0.3 or 0.4, then each element can be increased, decreased, or unchanged. Therefore, it has 13

choices for choosing d(i+1). Let’s take d1 = [0.3, 0.3, 0.4, 0.3, 0.3, 0.4] as an example, then
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it’s neighbours are

[0.3, 0.3, 0.4, 0.3, 0.3, 0.4],

[0.4, 0.2, 0.4, 0.3, 0.3, 0.4],

[0.4, 0.3, 0.3, 0.3, 0.3, 0.4],

[0.2, 0.4, 0.4, 0.3, 0.3, 0.4],

[0.2, 0.3, 0.5, 0.3, 0.3, 0.4],

[0.3, 0.4, 0.3, 0.3, 0.3, 0.4],

[0.3, 0.2, 0.5, 0.3, 0.3, 0.4],

[0.3, 0.3, 0.4, 0.4, 0.2, 0.4],

[0.3, 0.3, 0.4, 0.4, 0.3, 0.3],

[0.3, 0.3, 0.4, 0.2, 0.4, 0.4],

[0.3, 0.3, 0.4, 0.2, 0.3, 0.5],

[0.3, 0.4, 0.3, 0.3, 0.3, 0.4],

[0.3, 0.3, 0.4, 0.3, 0.2, 0.5].

Note that d(1) is considered as one of its neighbours. To generate a stage-dependent differen-545

tiation strategy, we first chose d(1) from the combination pool and then chose d(2) from d(1)’s546

neighbors and repeat the process until obtaining d(n). We choose each strategy randomly fol-547

lowing a uniform distribution. As long as we have classified strategies, we will have a pool548

of each strategy and then we choose strategies from the pools. Specificity, we first choose549

the last probabilities and then randomly choose other probabilities backward in rounds of cell550

division. For example, for choosing aRD strategy, we first randomly pick the probabilities at551

the nth round of cell division, which should satisfy 0 < g
(n)
g→s, s

(n)
s→g < 1. Then we randomly552

choose the probabilities at the (n− 1)th round of cell division and so on until the first one.553

In stage-independent cell differentiation, we calculate the growth rates of each strategy554

in the cell differentiation probabilities pool. We seek the optimal strategy which leads to the555

fastest growing among these 4356 strategies. To find the optimal strategy at a given parameter556
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point, we first chose M = 1000 values for d(1) from the cell differentiation pool. Then for557

each chosen d(1), we randomly chose R = 100 stage-dependent strategies, all generated558

from this d(1). R = 100 is the sampling size of the stage-dependent strategies from the same559

initial differentiation probabilities d(1). Then we compute the growth rate of the 105 strategies560

and choose the strategy leading to the largest growth rate. Next, we optimize that strategy561

further. For the optimal strategy with the largest growth rate, we compare its growth rate562

with a slightly modified strategy. The modified strategies include the one removing d(1) but563

compensating with an d(n+1) or removing d(n) by compensating with an d(0). Specifically,564

for the focused D = [d(1), d(2), . . . , d(n)], we check whether D′ = [d(0), d(1), d(2), . . . , d(n−1)]565

or D′ = [d(2), . . . , d(n), d(n+1)] leads to a higher growth rate over D. Here the d(0) is one566

neighbour of d(1), and d(n+1) is one neighbour of d(n). If the D′ leads to a higher growth rate,567

we keep the process until we find the D′ which makes the growth rate stay at the maxima.568

We aim to find a local optimum close to the strategy that was identified in our grid search.569

Local optimization stops when the largest steady growth rate in the local neighbourhood570

is identified. Overall, we first search the optimal D globally by randomly choosing d(1),571

represented by M and R. The values of M and R and the number of duplications used in572

the main text were chosen to ensure the optimal strategy converging to a unique strategy.573

Then, we used a local grid search by modifying d(1) or d(n) of a strategy until finding the574

optimal D. Besides, we have constructed initial sampling strategies from the middle of d(i)575

sequences. We first identified d(
n+1
2

) if n is odd and d(
n
2
) if n is even, and then constructed576

the rest d(i)s. The results show that there is almost no differences in terms of searching for577

optimal strategies between the two methods.578

S3 Appendix. Robustness of the growth rates of stochastic differentiation strategies.579

In our model, we calculated the growth rate of a stochastic strategy based on its expected580

growth time and expected number of germ-like cells. That is, we treat a stochastic differenti-581

ation strategy that may contain many potential developmental trajectories as a deterministic582

one. Theoretically, the growth rate of a stochastic strategy should be a random variable.583
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A B

Figure 6: Comparison of growth rates by approximation and random sampling. A. Growth

rate comparison of potential random trajectories (strategies) of a randomly chosen RD strategy under

Gaussian distribution with variance 0.015 and 0.025 respectively. The small blue dots represent the

potential trajectories. The lines represent the expected growth rates calculated based on Eq (15).

The color of the dots represents the probability of the randomly chosen RD choosing the dots. The

histograms represent the distribution frequency of λ. B. Growth rate of randomly sampled optimal

strategies of each category (NDi, RD, IGD, ISD and IGSD). The optimal strategy is obtained

based on the calculation in S1 Appendix and the grid search method in S2 Appendix. The color of

the dots represents the probability of the optimal given strategy choosing the strategy. The histograms

represent the distribution frequency of λ. The colors represent the same strategy as that in Fig 3.

Parameters for all panels δ = 0.05, n = 5 and b = c = 1. For calculating the growth rate of each

strategy, see the appendix S2 Appendix.

Next, we show that the method used in the model is a good approximation for seeking the584

optimal strategy in an average sense. To simulate the consecutive stochastic differentiation585

probabilities, at a given stage we need to know the differentiation probability distribution586

that the next consecutive probabilities follow. Without loss of generality, we assume that the587

differentiation probabilities follow Gaussian distribution. Then, the coming cell differentia-588

tion probability of a cell type is a variable with the last past differentiation probability as the589

mean. For an arbitrary strategyD = [d(1), d(2), . . . , d(n)], we can get g(i)g→s and s(i)s→g for each i,590

i = 0, 1, . . . , n. Then the variable g(i+1)
g→s follows the Gaussian distribution g(i+1)

g→s ∼ N (µ, σ2),591
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where µ = g
(i)
g→s. To capture the growth rate of the stochastic differentiation strategy D, we592

randomly choose the new g
(i)
g→s and the new s

(i)
s→g from the Gaussian distribution with mean593

g
(i)
g→s and s(i)s→g respectively, i = 1, 2, 3, . . . , n. Each sampling will generate a new strategy594

D∗, which is a potential developmental strategy based on D. For each D∗, we can calculate595

its growth rate based on Eq (15). Then we adopt the Monte Carlo method to capture the po-596

tential growth rate distribution by randomly choosing a large number of D∗ and calculating597

their growth rate. Based on our numerical calculation, we found that our approximation is598

along well with the expected growth rate of a randomly chosen strategy (Fig 6A). The value599

of variance σ is undefined. As here we focus on the mean behavior of a strategy, thus vari-600

ance only impacts the range of growth rate. Furthermore, we testified whether the conclusion601

under the approximation is consistent with the statistical results introduced above. We found602

that the optimal strategies are the same (Fig 3 and Fig 6B), indicating the robustness of the603

approximation method. However, we should note the expected growth rate of a stochastic604

differentiation strategy may not be equal to our approximation. The former is
∑

λ kpk, where605

k is the all possible trajectories of D∗, pk is the corresponding probability of choosing trajec-606

tory k, and λk is the growth rate under trajectory k. pk is multiplication of pik which is the607

probability of choosing a differentiation probability for either germ-like cell g(i)g→s or soma-608

like cell s(i)s→g in D∗, where i = 1, 2, . . . , n. In the numerical calculation (Fig 6), we roughly609

classify 8 intervals i.e. 8 different probabilities for generating g(i)g→s or s(i)s→g for a given i. The610

8 intervals are classified based on boundaries of µ + j ∗ σ, where j = −3,−2,−1, 1, 2, 3.611

As we seek the optimal strategy, which depends on the relative difference between different612

strategies i.e. the rank of the growth rate of different strategies, we employ the approximation613

to seek the optimal strategy in the model.614

S4 Appendix. Optimality of non-differentiation strategy NDi.615
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NDi is optimal in the absence of cell differentiation benefits for any maximal cell divi-616

sion number n617

When the cell differentiation benefit is absent, i.e. b = 0 and c > 0, we find that NDi is the618

optimal strategy based on Eq (15).619

NDi is optimal in the absence of costs for n = 1620

Next, when there is only one cell division (n = 1), we prove that NDi leads to the largest621

growth rate under b > 0 and c = 0. Since f (0)
g = 1 and f (0)

s = 0, based on Eq (14), the622

growth time is623

t =
n=1∑
i=1

t(i) =
1

r(1)
=

1

1 + b[f
(0)
s ]α

= 1. (16)624

625

Substituting Eq (16) into Eq (15) and using Eq (12), we have626

λ =
lnN

t
= ln 2 + ln f (1)

g = ln 2 + ln g(1)g→g. (17)627
628

Since 0 ≤ g
(1)
g→g ≤ 1, the optimal strategy is NDi which has g(1)g→g = 1. Thus, NDi is the629

optimal strategy under b > 0, c = 0 and n = 1.630

S5 Appendix. Optimal strategies of n = 5 under a larger range of parameter space.631

Here, we show that RD is optimal when benefits are far larger than costs, see Fig 7. NDi is632

optimal when differentiation costs are far larger than benefits.633

S6 Appendix. Either IGD or RD is optimal in the absence of cell differentiation costs634

when maximal cell division n > 1. To show the optimal strategy is either IGD orRD under635

b > 0 and c = 0. We first prove λIGD > λIGSD > λNDi , and then prove λRD > λISD >636

λNDi .637

IGD is optimal among IGD, IGSD and NDi
638

To prove λIGD > λIGSD > λNDi , we begin with the proof of λIGSD > λNDi . Unlike the639

NDi strategy, ISD, RD, IGD and IGSD are categories which include many strategies. As640
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Figure 7: Comparison of the optimal strategies between stage-independent differentiation and

stage-dependent differentiation under the large scale of benefits and costs. The colors show the

same meaning as that in Fig 2. Parameters: 0 ≤ δi ≤ 0.1, α = β = 1, and n = 5. Parameters of

calculating optimal strategy: the number of initial sampling d(1), M = 1000, the number of stage-

dependent strategies starting with a given d(1), R = 100, for more detail, see S2 Appendix. At each

pixel, the frequency of each optimal strategy was calculated across 20 replicates..

long as one strategy in IGSD has a greater growth rate than NDi, we say IGSD is more641

optimal than NDi. Think of an IGSD strategy with only a non-zero cell differentiation642

probability from germ-like cells to soma-like cells and zero differentiation probabilities the643

other way around. Let’s assume it is the ith cell division that makes g(i)g→s > 0, thus we have644

g
(j)
g→s = 0 for j 6= i and s(i)s→g = 0 for any i. Based on Eq (12), the cell frequencies after the645

nth division are646 f (n)
g

f
(n)
s

 =

1 0

0 1

 . . .

g(i)g→g 0

g
(i)
g→s 1

 . . .

1 0

0 1

f (0)
g

f
(0)
s


=

g(i)g→g
g
(i)
g→s

 ,

(18)647

648
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where f (0)
g = 1 and f (0)

s = 0. For convenience, we denote g(i)g→g = g∗ and g(i)g→s = 1 − g∗.649

From Eq (15), we have650

λIGSD =
n ln 2 + ln g∗

n− 1

1 + b
+

1

1 + b(1− g∗)α

≥ n ln 2 + ln g∗

n+b
1+b

= ln 2 +
(n− 1)b

n+ b
ln 2 +

1 + b

n+ b
ln g∗

= λNDi +
ln 2(n−1)b(g∗)1+b

n+ b
,

(19)651

652

where we use (1− g∗) ≥ 0 to obtain the inequality and λNDi = ln 2 (appendix ). Since b > 0653

and n > 1, as long as 2(n−1)b(g∗)1+b ≥ 1, we obtain λIGSD > λNDi . That is g∗ ≥ 1

2
(n−1)b
1+b

.654

Therefore, when b > 0, we can always find an IGSD strategy with a g(i)g→s ≤ 1 − 1

2
(n−1)b
1+b

655

and all other g(i)g→s = 0 and s(i)s→g = 0, which leads to higher growth rate than NDi. Thus,656

λIGSD > λNDi . The proof of λIGD > λIGSD is in the appendix . Taken these together, we657

have λIGD > λIGSD > λNDi .658

RD is optimal among RD, ISD and NDi
659

Next, we prove λRD > λISD > λNDi . We first prove λISD > λNDi . We prove that there660

exists an ISD strategy leading to a higher λ than λNDi = ln 2 (appendix ). Consider the661

ISD with s(i)s→s = 1, but with at least one i which makes g(i)g→s > 0 i.e. g(i)g→g = 1− g(i)g→s < 1662

for 1 ≤ i ≤ n . The above constraint corresponds with the definition of the ISD strategy.663

Based on Eq (12), the cell frequencies after the nth division are664 f (n)
g

f
(n)
s

 =

g(n)g→g 0

g
(n)
g→s 1

 . . .

g(i)g→g 0

g
(i)
g→s 1

 . . .

g(1)g→g 0

g
(1)
g→s 1

f (0)
g

f
(0)
s


=

 ∏n
i=1 g

(i)
g→g

1−∏n
i=1 g

(i)
g→g

 ,

(20)665

666
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where n ≥ 1. Substituting Eq (20) into Eq (15) and together with c = 0, we find the growth667

rate of the ISD strategy668

λISD =

n ln 2 + ln
n∏
i=1

g(i)g→g

1 +

n∑
i=2

1

1 + b[1−∏i−1
k=1 g

(k)
g→g]α

, (21)669

670

where the first item in the denominator represents the time for the first cell division t1 = 1671

because of f (0)
s = 0. We define the second item of the denominator of Eq (21) as F (n) =672 ∑n

i=2 f
(i), where f (i) = 1

1 + b[1−
i−1∏
k=1

g(k)g→g]
α

. Next, we prove F (n) is a bounded function.673

Since 0 ≤ g
(k)
g→g ≤ 1, thus sequence {∏i−1

k=1 g
(k)
g→g}∞i=2 decreases with increasing i. That is,674

{f (i)}∞i=2 is a positive but decreasing sequence. f (2) is the largest one in {f (i)}∞i=2. Therefore,675

the sequence {F (n) =∑n
i=2 f

(i)} is an accelerating discrete sequence with respect to n. We676

have677

F (n) ≤ (n− 1)f (2) =
n− 1

1 + b
(
1− g(1)g→g

)α . (22)678

679

Substituting the right-hand side of inequality (22) into Eq (21), we have680

λISD =

n ln 2 + ln
n∏
i=1

g(i)g→g

n∑
i=1

1

1 + b(1−∏n
i=1 g

(i)
g→g)α

≥
n ln 2 + ln

n∏
i=1

g(i)g→g

1 +
n− 1

1 + b
(
1− g(1)g→g

)α

=

(
n ln 2 + ln

n∏
i=1

g(i)g→g

)
[1 + b

(
1− g(1)g→g

)α
]

n+ b
(
1− g(1)g→g

)α
= ln 2 +

(n− 1)b
(
1− g(1)g→g

)α
ln 2 + [1 + b

(
1− g(1)g→g

)α
)] ln

n∏
i=1

g(i)g→g

n+ b
(
1− g(1)g→g

)α .

(23)681

682

35

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2024. ; https://doi.org/10.1101/2023.05.04.539351doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539351
http://creativecommons.org/licenses/by/4.0/


As long as there exist a strategy which makes the right side of Eq (23) greater than ln 2, we683

have λNDi < λISD. Then we need to identify the conditions for684

(n− 1)b
(
1− g(1)g→g

)α
ln 2 + (1 + b

(
1− g(1)g→g

)α
) ln

n∏
i=1

g(i)g→g > 0 (24)685

686

to hold. As b > 0 and α > 0, (n − 1)b
(
1− g(1)g→g

)α
ln 2 ≥ 0. Since 0 ≤ g

(i)
g→g ≤ 1,687 ∏n

i=1 g
(i)
g→g ≤ 1 and ln

∏n
i=1 g

(i)
g→g ≤ 0. The second item of Eq (24) is negative. There exists688

a sequence {g(i)g→g}, which makes
∏n

i=1 g
(i)
g→g → 1− and689

ln
n∏
i=1

g(i)g→g > −
(n− 1)b

(
1− g(1)g→g

)α
ln 2

1 + b
(
1− g(1)g→g

)α
= − (n− 1) ln 2

1 +
1

b
(
1− g(1)g→g

)α ,
(25)690

691

which makes the Eq (24) hold. With the above proof, we conclude that λISD > λNDi with692

only cell differentiation benefit. From Eq (25), we found that more ISD strategies are better693

than NDi under high benefits b. However, when b is small, only ISD with g(i)g→g → 1 leads694

higher growth rate thanNDi. The proof of λRD > λISD can be found in the appendix . Thus,695

we have λRD > λISD > λNDi . The results show that when there is a benefit and no costs,696

differentiation strategies (ISD, IGSD, IGD and RD) are better over NDi. Either IGD or697

RD is optimal under b > 0 and c = 0.698

S7 Appendix. IGSD and ISD cannot be optimal in the absence of either cell differen-699

tiation benefit or cost. In the appendix , we have proved NDi is optimal in the absence of700

differentiation benefits, i.e. b = 0 and c > 0. Thus, we prove IGSD and ISD can be optimal701

in the absence of differentiation costs, i.e. c = 0 and b > 0. Since we also have proved that702

NDi is optimal under n = 1 when c = 0 and b > 0 in appendix . Therefore, we only need to703

prove that the optimal strategy can neither be IGSD nor ISD when b > 0, c = 0 and n ≥ 2.704

We first prove λIGD > λIGSD. For a given IGSD strategy, we can always modify it705

and obtain an IGD strategy, which leads to a higher λ than the given IGSD strategy. For a706

given IGSD strategy, we know its transition probabilities s(n)s→g = 0. We modify the IGSD707

36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2024. ; https://doi.org/10.1101/2023.05.04.539351doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539351
http://creativecommons.org/licenses/by/4.0/


strategy by setting 0 < s
(n)
s→g = k ≤ 1 to get a IGD strategy. The constructed IGD strategy708

produces more offspring than the given IGSD strategy as its final number of germ-like cells709

isN = 2n(f
(n−1)
g g

(n)
g→g+f

(n−1)
s s

(n)
s→g), which is greater than that of the IGSD as s(n)s→g = k > 0710

in the IGD strategy. Since there is no cell differentiation cost (c = 0), cell division rates are711

the same among all strategies. Thus, λIGD > λIGSD.712

Next, we prove λRD > λISD. Given an ISD strategy, we have s(n)s→g = 0. Construct aRD713

strategy that has the same transition probability matrixes as the given ISD strategy for the714

first (n−1) cell divisions. For the nth transition probability matrix, we keep the g(n)g→g and g(n)g→s715

the same as that in the given ISD strategy. However, we set s(n)s→g > 0 rather than s(n)s→g = 0716

as that in ISD strategy. s(n)s→g > 0 implies s(n)s→s = 1 − s(n)s→g < 1. Then, ISD and RD have717

the same germ-like cells during the first n− 1 cell divisions. The fraction of germ-like cells718

for the ISD strategy after the nth cell divisions is f (n−1)
g g

(n)
g→g + f

(n−1)
s s

(n)
s→g = f

(n−1)
g g

(n)
g→g719

as s(n)s→g = 0. Whereas, the fraction of germ-like cells for the RD strategy after the nth cell720

divisions is f (n−1)
g g

(n)
g→g + f

(n−1)
s s

(n)
s→g. Thus, the constructed RD has an extra 2nf

(n−1)
s s

(n)
s→g721

germ-like cells compared with the ISD strategy. Since the cell division rate at the nth cell722

division depends on the fraction of soma-like cells at the (n − 1)th cell division, the cell723

division rates r(i) for the two strategies are the same, 1 ≤ i ≤ n. Thus, from Eq (15), we724

have725

λRD =
ln{2n[f (n−1)

g g(n)g→g + f (n−1)
s s(n)s→g]}

n∑
i=1

1

1 + b[f
(i−1)
s ]α

>
ln{2n[f (n−1)

g g(n)g→g]}
n∑
i=1

1

1 + b[f
(i−1)
s ]α

= λISD.

(26)726

727

Therefore, λRD > λISD.728

S8 Appendix. Stage-dependent differentiation promotes irreversible cell differentia-729

tion under the effects of benefit function forms α and the ratio of differentiation costs730

between germ-like cells and soma-like cells β.731
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Stage-dependent differentiation 

Stage-independent differentiation A B

C

Figure 8: The effects of α and β on the growth rates of cell differentiation strategies. A. Compar-

ison of the optimal strategy evolved in stage-independent and stage-dependent differentiation strate-

gies depending on α and β. The areas of grey and black represent the parameter space in which the

same strategy are optimal both under stage-independent and stage-dependent cell differentiation. The

green area represents stage-dependent ID leading to a larger growth rate than stage-independentNDi.

The blue strip represents stage-dependent ID leading to a larger growth rate than stage-independent

RDi. B. The parameter space of optimal stage-independent differentiation strategy at different values

of α and β. C. The frequencies of each stage-dependent strategy depending on α and β. Parameters

for all panels δ = 0.1, n = 5 and b = c = 1. For calculating the growth rate of each strategy, see the

appendix .

Under the effects of α and β, we found that stage-dependent differentiation favors irre-732

versible cell differentiation over stage-independent cell differentiation. IGD replaces stage-733

independent RD when α and β are both small, see Fig 8. Under this scenario, the cell734

transition probability ss→g has a smaller effect in decreasing the growth rate than the transi-735

tion probability gg→s. Thus, IGD produces a higher fraction of germ-like cells and bears less736

cell differentiation costs, leading to a higher growth rate. When α is around 1, IGD leads to737

faster growth than NDi. The reason is analogous to the one given in the main text.738
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