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Abstract 19 

Changes in the intracellular calcium concentration are a fundamental fingerprint of astrocytes, the 20 

main type of glial cell. Astrocyte calcium signals can be measured with two-photon microscopy, 21 

occur in anatomically restricted subcellular regions, and are coordinated across astrocytic 22 

networks. However, current analytical tools to identify the astrocytic subcellular regions where 23 

calcium signals occur are time-consuming and extensively rely on user-defined parameters. These 24 

limitations limit reproducibility and prevent scalability to large datasets and fields-of-view. Here, we 25 

present Astrocytic calcium Spatio-Temporal Rapid Analysis (ASTRA), a novel software combining 26 

deep learning with image feature engineering for fast and fully automated semantic segmentation 27 

of two-photon calcium imaging recordings of astrocytes. We applied ASTRA to several two-photon 28 

microscopy datasets and found that ASTRA performed rapid detection and segmentation of 29 

astrocytic cell somata and processes with performance close to that of human experts, 30 

outperformed state-of-the-art algorithms for the analysis of astrocytic and neuronal calcium data, 31 

and generalized across indicators and acquisition parameters. We also applied ASTRA to the first 32 

report of two-photon mesoscopic imaging of hundreds of astrocytes in awake mice, documenting 33 

large-scale redundant and synergistic interactions in extended astrocytic networks. ASTRA is a 34 

powerful tool enabling closed-loop and large-scale reproducible investigation of astrocytic 35 

morphology and function. 36 

 37 

Introduction  38 

Astrocytes tile the entire central nervous system in non-overlapping domains 1 interacting with 39 

neurons, vasculature, and other glial cells. Astrocytes exhibit a form of excitability based on 40 

changes in the intracellular calcium concentration 2-4. These calcium signals can be tightly related 41 

to synaptic activity 5-7 and to sensory inputs 8-11 and are instrumental for cognitive performance 12, 42 

13. More recently, astrocytic calcium signals have been shown to encode information about external 43 

variables in awake behaving animals 14-17.  44 

 45 
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Astrocytic calcium signals can be monitored with high spatial resolution in the intact brain of awake 46 

animals using two-photon microscopy and chemical or genetically encoded calcium (GECI) 47 

indicators 10, 18, 19. The spatial features of astrocytic calcium signals are inextricably related to their 48 

highly ramified morphological structure, with thin (µm- and sub-µm-size) processes stemming from 49 

the soma and covering a tissue volume of ~ 70-100 µm diameter (astrocytic domain). Within this 50 

tissue volume, astrocytic processes contact few neural cell bodies, hundreds of dendrites, and 51 

thousands of synapses (Halassa, Fellin, and Haydon 2007). Astrocytic calcium dynamics that can 52 

be localized to specific subcellular compartments including the cell body and portions of processes 53 

20-22, can have different temporal characteristics 10, 19, 20, 22-24, and be coordinated across multiple 54 

astrocytes spanning hundreds, potentially thousands, of µm of brain tissue 19, 23, 25, 26.  55 

 56 

Because of these complex properties, it is important to have software tools that systematically 57 

identify process and soma in two-photon functional recordings. Methods to identify and 58 

semantically segment astrocytic subcellular regions displaying calcium dynamics in individual 59 

astrocytes such as GECI-Quant 19  and CHIPS 27 are available. However, they heavily depend on 60 

data acquisition conditions, require the user to arbitrarily set several parameters, and need 61 

significant computation time. Other approaches identify calcium events within and across 62 

astrocytes as coherent, spatially-confined activity regions, based on pixel-wise fluorescence 63 

dynamics 4, 28-31. These event-based approaches are computationally demanding, still require a 64 

posteriori segmentation to relate identified events to astrocytic morphology, and have not been 65 

validated on large fields-of-view comprising large networks of astrocytes. As a result, currently 66 

available approaches still do not allow a fully automated, reproducible, fast and scalable analysis 67 

of astrocytic calcium signals within individual cells and across large populations that generalizes 68 

well to unseen datasets, different indicators, and experimental parameters. Therefore, developing 69 

fast, automated, and reliable image segmentation methods to analyze large-scale astrocytic 70 

calcium signals is of utmost urgency.  71 

 72 
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Similar challenges are faced in neuronal calcium imaging, where most advanced neural 73 

segmentation methods include both unsupervised and supervised machine learning approaches 74 

32-38. However, approaches specifically developed for segmentation of neuronal calcium imaging t-75 

series cannot be readily applied to the analysis of astrocytic calcium signals, as demonstrated in 76 

this work, because the spatial and temporal features of astrocytic calcium signals are intrinsically 77 

different from those of neurons. 78 

 79 

Here we present ASTRA, Astrocytic calcium Spatio-Temporal Rapid Analysis, a novel deep 80 

learning software that performs fast, precise, scalable, and fully automated semantic segmentation 81 

of astrocytic two-photon imaging t-series. ASTRA combines feature engineering and a deep 82 

learning algorithm to enable scalable and repeatable analysis. We validated ASTRA using the 83 

consensus annotation generated by three human experts of four novel two-photon microscopy 84 

datasets recorded in awake head-fixed animals. These annotated datasets are shared here, for 85 

future community-based development and benchmarking of algorithms for the detection and 86 

segmentation of astrocytes. ASTRA performed cell detection (identification of somata of astrocytes) 87 

and semantic segmentation (identification and labeling of cell soma and proximal processes) with 88 

near-human-expert performance. ASTRA outperformed all tested state-of-the-art software for the 89 

analysis of astrocytic and neuronal signals, was endowed with features combining segmentation 90 

with event-based analyses to identify astrocytic cellular domains, and generalized well across 91 

indicators and acquisition conditions. ASTRA also scaled well to large datasets, allowing rapid 92 

automated analyses of entire databases characterized by many recording sessions and enabled 93 

analysis of the first report of simultaneous functional imaging of hundreds of astrocytes distributed 94 

over millimeters of cortical tissue recorded in awake mice using two-photon fluorescence 95 

mesoscopic imaging.  96 

 97 

Results 98 

ASTRA: structure and analysis workflow 99 
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Here we developed ASTRA, a software that combines statistical image analysis and deep learning 100 

to perform fully automated segmentation of astrocytes imaged with two-photon fluorescence 101 

microscopy. ASTRA operates on astrocytic two-photon imaging t-series and uses both 102 

morphological and dynamical information to provide, as output, three classes of regions of interest 103 

(ROIs): somata, processes, and cross-correlated regions denoting a two-dimensional 104 

measurement of the astrocytic domains (Fig, 1).  105 

ASTRA includes a training pipeline and an inference pipeline (Fig. 1A-B, Fig. S1A-B). Each pipeline 106 

analyzes a dedicated training and inference dataset, respectively. The training set is the subset of 107 

the data (e.g., a subset of the available fields-of-view (FOVs)) annotated by human experts. The 108 

training set is used to optimize ASTRA’s pre-processing hyper-parameters and train the weights of 109 

the Deep Neural Network (DNN), which performs semantic segmentation. The inference dataset is 110 

a separate data subset (e.g., FOVs not included in the training set), on which the algorithm performs 111 

inference (i.e., semantic segmentation). Because pre-processing parameters and DNN weights are 112 

optimized automatically on the training dataset, the inference pipeline runs on test data without 113 

human supervision. 114 

 115 

The inference pipeline comprises three main steps: i) pre-processing; ii) semantic segmentation; 116 

iii) subcellular cross-correlation analysis (Fig. 1B and S1B). The pre-processing step computes a 117 

bi-dimensional reconstruction of the recorded field-of-view (FOV), compressing spatial and 118 

temporal features into a highly informative spatiotemporal projection (Fig. S2A-B, see also 119 

Methods). Pre-processing enhances astrocytic subcellular structures (e.g., processes and somata) 120 

and decreases acquisition noise from the bi-dimensional reconstruction of the FOV. The spatial 121 

component of the pre-processing uses histogram equalization and kernel convolution to compute 122 

a sharpened spatial map (Fig S2A, right) from the median projection of the time series, enhancing 123 

astrocytic morphological substructures. Then, it evaluates statistically pixel-wise temporal 124 

dynamics to set an optimal intensity threshold used to classify pixels that display foreground 125 

fluorescence. Foreground pixels are maintained in the sharpened spatial map while non-foreground 126 

(background) pixels are set to 0. The output of pre-processing feeds into the Segmentation step, 127 
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which performs subcellular semantic segmentation of astrocytic somata and processes using U-128 

Net- 39 based DNN architecture (Fig. S1E). The training of the DNN weights on the annotated 129 

training datasets becomes feasible on the relatively limited data size typical of conventional two-130 

photon imaging datasets because of the efficient feature-engineering during the pre-processing, 131 

and because ASTRA takes advantage of transfer-learning by employing a DNN encoder 38, 40-42  132 

pre-trained on ImagNet dataset 43 (see Methods). Finally, the subcellular cross-correlation analysis 133 

identifies regions of the astrocytic domain showing fluorescence signals that are statistically 134 

correlated to the ones present in the semantically segmented regions of the astrocyte (see 135 

Methods).  136 

 137 

We provide ASTRA with default pre-processing hyperparameters and DNN weights trained 138 

extensively on two different two-photon microscopic datasets. With these parameters, the inference 139 

pipeline can readily operate even on previously unseen data, as extensively demonstrated below 140 

on several datasets. However, ASTRA also offers users a further-training pipeline (Fig. 1A), which 141 

allows the inclusion of new own training data annotated with ImageJ 44. This additional pipeline can 142 

be used to further refine (and export for future use) the DNN weights and the pre-processing 143 

parameters to optimize the software to the applications at hand. 144 

 145 

The ASTRA inference pipeline works fast on either CPUs or GPUs. Retraining the DNN with new 146 

annotated data provided by the user can be done on a single GPU or in parallel on multiple GPUs, 147 

setting simple options in the code. 148 

 149 

Datasets for consensus annotation and algorithm training and benchmarking 150 

To train and benchmark ASTRA, we recorded and analyzed four datasets of two-photon 151 

fluorescence hippocampal recordings in awake head-fixed mice running on a wheel (Fig. 1C). The 152 

four datasets (Fig. 1D) differed for the type of fluorophore which was expressed in astrocytes (e.g., 153 

GCaMP6f and Td-Tomato), imaged area (from 26.3 x 103 µm2 to 26.2 x 104 µm2), acquisition 154 
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procedures (galvanometric mirror-based imaging vs resonant scanning imaging), and pixel 155 

resolution (from 0.63 µm/ pixel to 1.06 µm/ pixel). 156 

 157 

We generated a manual consensus annotation of all four datasets. Three expert annotators 158 

detected and segmented astrocytes, labelling somata and individual processes. Annotators had 159 

access to both the raw t-series and the bi-dimensional projections of the t-series obtained using the 160 

spatial component of the pre-processing pipeline. Annotators detected astrocytes on the t-series, 161 

while segmenting subcellular structures on bi-dimensional projections. After each expert annotator 162 

labeled independently the data, annotators were asked to converge on a consensus by resolving 163 

each single annotation discrepancy according to standard procedures (Methods). The result of this 164 

procedure was termed “consensus annotation” (Fig. 2A, Fig. S3). Consensus annotation was used, 165 

following standard practice 36, 37, to train the algorithm and to benchmark its performance (Fig. 2B). 166 

The four datasets, including individual and consensus annotations, will be shared upon publication.  167 

 168 

We first utilized the consensus annotation to quantify the performance and consistency of human 169 

experts (Fig. 2C-D). Somata detection performance of human annotators was highly accurate (high 170 

F1-score, Fig. 2C), demonstrating a high human consistency on astrocyte somata detection. 171 

Conversely, segmentation performance of human annotators showed lower F1-scores (Fig. 2D). 172 

This was especially true for processes (Fig. 2D), implying that annotation by a single human grader 173 

can be unreliable (Supplementary information Tab. S1, Tab. S4, Tab. S5, and Tab. S6), and that 174 

benchmarking and training should be better done using the consensus annotation 36, 37.  175 

 176 

ASTRA achieves human performance and replicates previously published results obtained with 177 

manual annotation 178 

We then used the consensus annotation datasets to train and test ASTRA. We first used dataset-179 

1, which comprises a set of 24 two-photon calcium imaging recordings of the CA1 hippocampal 180 

region recorded in head-tethered awake mice, which were spontaneously walking on a wheel (Fig. 181 

1C). In the hippocampal CA1 region, astrocytes expressed the genetically encoded calcium 182 
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indicator GCaMP6f after adeno-associate viral transduction. GCaMP6f signals were collected from 183 

a FOV of area approximately 26 x 103 µm2 with a spatial sampling of 0.634 µm/pixel (Fig. 1D, see 184 

Methods). 185 

 186 

We tested ASTRA on dataset-1 using leave-one-out cross-validation (see Methods). Fig. 2A and 187 

2B show an example of annotations obtained by ASTRA on a representative FOV compared to the 188 

consensus annotation. Importantly, Precision, Recall, and F1-score of ASTRA detection were high 189 

and did not significantly differ from those of the annotators (Fig. 2C, SI Tab. S1). Segmentation F1-190 

score was high for somata and similar to that of two out of the three annotators (Fig. 2D, S4A-B, SI 191 

Tab. S2). Segmentation F1-score was lower for processes, but similar to that of all annotators (Fig. 192 

2D, Fig.  S4A-B, SI Tab. S2). Overall, these results indicate that ASTRA detection and 193 

segmentation accuracy levels are comparable to those of individual human experts. 194 

 195 

Given that ASTRA performed like human experts, we tested if it could replicate, in a fast and fully 196 

automated way, previously published results based on manual segmentation of astrocytes. We 197 

applied ASTRA to perform automated semantic segmentation of CA1 hippocampal astrocytes 198 

imaged with two-photon functional microscopy during mouse virtual navigation (15, Fig. S5). 199 

Astrocytic ROIs detected using ASTRA resembled human detections used in 15 (mean ± sem, 200 

Precision: 0.86 ± 0.05, Recall: 0.75 ± 0.07, F1: 0.78 ± 0.05, N = 7 imaging sessions from 3 mice). 201 

Using ASTRA annotations, we were able to replicate the major results described in (15, Fig. S5 C-202 

E), demonstrating that astrocytic spatial tuning parameters obtained by manual annotation were 203 

recapitulated using ASTRA semantic segmentation (Fig. S5 F-G). Importantly, while manual 204 

annotation of the dataset described in 15 required several days of work, ASTRA segmented the 205 

whole dataset in 15 in approximately 9 minutes without human intervention or arbitrary parameter 206 

settings. ASTRA can thus be used for fast, automated, and reproducible analysis of entire datasets 207 

and compares well with manual expert annotation of the same datasets. 208 

 209 

ASTRA outperforms state-of-the-art algorithms for the analysis of astrocytic and neuronal signals 210 
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We benchmarked ASTRA against several major methods for analysis of two-photon fluorescence 211 

recordings of astrocytes and neurons (Fig. 2E-G, Fig. S4E-L).  212 

 213 

We first compared ASTRA with GECI-Quant 19, a threshold-based user-supervised software for the 214 

analysis of astrocytic two-photon calcium imaging data. For each FOVs, one of our annotators 215 

(annotator A-1) manually identified astrocytic domains and defined the intensity thresholds to 216 

segment somata and processes (see Fig. S4F). This manual input is needed to run GECI-Quant. 217 

The indications of the GECI-Quant documentation 19 were closely followed during this procedure. 218 

The detection F1-score of GECI-Quant was not significantly different from that of ASTRA (two-219 

sided Wilcoxon rank sum test N=24, Fig. S4G), not surprisingly because the domain identification 220 

of GECI-Quant was performed by a human expert and ASTRA performed as a human expert. 221 

However, segmentation performances of GECI-Quant were lower than those of ASTRA for somata 222 

and especially so for processes (Fig. 2E and Fig. S4H-I, SI Tab. S2, two-sided Wilcoxon rank sum 223 

test, N= 24).  224 

 225 

We then compared the performance of ASTRA to that of AQuA 28, an event-based algorithm which 226 

identifies ROIs associated with astrocytic calcium events based on the coherence of fluorescence 227 

dynamics across pixels. Although the AQuA definition of events does not consider morphological 228 

constraints, we reasoned that it should be possible to use AQuA to potentially identify astrocytic 229 

somata and processes, because a subsets of calcium events should be restricted to astrocytic 230 

soma or processes. We thus identified the morphology of putative somas and processes by 231 

thresholding a time-averaged spatial map of calcium events identified by AQuA, and we compared 232 

it to the consensus annotation. The segmentation so obtained with AQuA had precision, recall, and 233 

F1-score against consensus annotation lower than ASTRA’s (Fig. 2F, SI Tab. S3, two-sided 234 

Wilcoxon rank sum test, N= 24). Taken together, these results demonstrate that ASTRA 235 

outperforms the tested state-of-the-art methods used for the analysis of astrocytes data in 236 

identifying astrocytic somata and processes. 237 

 238 
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We then asked whether software for segmentation of neurons from two-photon imaging can be 239 

used for the segmentation of astrocytes. We compared ASTRA with STNeuroNet 37, UNet2DS 39, 240 

and CaImAn 36, three state-of-the-art algorithms, which perform binary classification (foreground vs 241 

background) of pixels in FOVs to identify neuronal ROIs. STNeuroNet and UNet2DS use DNN in a 242 

way conceptually comparable to ASTRA, but are specialized for neurons. In contrast, CaImAn is a 243 

fully unsupervised algorithm not based on deep learning. When initially applying to astrocytic data 244 

STNeuroNet and UNet2DS in their off-the-shelf form, they almost never identified regions labeled 245 

as astrocytic soma or processes in the consensus (data not shown). We thus retrained the weights 246 

of STNeuroNet and UNet2DS on our astrocytic consensus data. Moreover, we adjusted the pre- 247 

and post-processing steps of STNeuroNet to constraint source detection using parameters based 248 

on astrocytic (rather than neural) calcium dynamics and morphology (Methods). We instead 249 

straightforwardly applied CaImAn without making any change, as it is a fully unsupervised 250 

algorithm. We found that all three neural algorithms identified only regions that were labeled as 251 

soma in the consensus, but they did not detect regions labeled as processes in the consensus (Fig. 252 

S4J-L). This was not surprising because these neural algorithms were conceived to mostly detect 253 

neuronal cell somata. We thus analyzed the output of these algorithms only considering astrocyte 254 

somata detection (Fig. 2G, SI Tab. S2). We found that the F1-score of somata detection 255 

performance of UNet2DS (mean ± sem, 0.65 ± 0.04, N = 24 was significantly higher than that of 256 

CaImAn (mean ± sem, 0.20 ± 0.04, N = 24) and STNeuroNet (mean ± sem 0.27 ± 0.05, N = 24, 257 

two-sided Wilcoxon rank sum test). Importantly, somata detection performance of all three neural 258 

algorithms was inferior to that of ASTRA (Fig. 2G, two-sided Wilcoxon rank sum test, N = 24).  259 

 260 

Together, these results stress the need to introduce dedicated algorithms for astrocytic 261 

segmentation and indicate that ASTRA outperforms available analysis methods specifically 262 

developed for neuronal datasets, even after adjusting them to astrocytic analysis.  263 

 264 

Identification of functional domains of individual astrocytes using ASTRA 265 
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Thin (diameter < 1 µm) astrocytic processes substantially contribute to fill the domain of brain tissue 266 

occupied by a single astrocyte (astrocytic domain) and display information-rich calcium dynamics 267 

19-22, 30. However, the identification of these thin structures is challenging, because of the dimension 268 

of thin astrocytic processes is smaller than the spatial resolution of two-photon microscopy. The 269 

difficulty in identifying thin astrocytic processes makes it challenging to measure the astrocytic 270 

domain based only on morphological features. We thus implemented within ASTRA an algorithm 271 

based on activity correlation measurement, termed “subcellular cross-correlation analysis”, to 272 

reproducibly identify, based on activity measurements, the extent of an astrocytic “functional” 273 

domain, including somata, main processes, and subresolved cellular compartments. This analysis 274 

automatically selected pixels within the typical extent of a domain of an individual astrocyte. Based 275 

on previous reports 1, 45, we set the astrocytic domain as a circular region of radius ~40 m centered 276 

on the center of mass of the astrocyte soma. The fluorescence dynamics of the domain pixels were 277 

correlated to the pixels belonging to the semantically segmented ROIs (either somata or processes) 278 

of that same astrocyte (Fig. 3A). The output of this analytical procedure was a ROI of correlated 279 

pixels (Fig. 3A), which included cell somata and processes and which resembled anatomically 280 

defined astrocytic domains 1, 45.  281 

 282 

The identified astrocytic domain depended on a single parameter, the value of the cross-correlation 283 

threshold (Fig. 3B). Low threshold values selected larger areas, including potentially pixels 284 

belonging to neuronal structures (i.e., neuronal cell somata and processes). Conversely, high 285 

thresholds select smaller areas, possibly neglecting meaningful astrocytic structures. To set an 286 

optimal, intermediate, threshold value, we programmed ASTRA to dynamically auto-tune the cross-287 

correlation threshold separately for each FOV, to control for the ratio of false positives. Once 288 

segmentation of the entire dataset was completed by ASTRA, the cross-correlation module 289 

randomly sampled 250 pixels located outside the astrocytic domains identified around the 290 

segmented astrocytic somas. ASTRA computed the cross-correlation between the activity of the 291 

randomly sampled pixels and the pixels inside ASTRA-segmented ROIs and estimated the false 292 

positive rate as the fraction of randomly sampled pixels with correlation above the set threshold. 293 
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The algorithm then tested a grid of threshold values and automatically set the threshold as the 294 

smallest threshold value with false positive percentage error < 5% (see Methods). ASTRA then 295 

randomly sampled 1000 pixels located outside the astrocytic domains identified around the 296 

segmented astrocytic somas and used them to confirm that the false positive rate < 5 %. This 297 

procedure was effective at minimizing false positives. On dataset-1 and across all FOVs, this 298 

procedure selected pixels with an average false positive percentage of 2.0 ± 0.2 % (mean± sem, 299 

Fig. 3C). On dataset-1 the cross correlated area was 585 ± 57 µm2 (mean ± sem). 300 

 301 

Importantly, the functional domains of individual astrocytes identified by ASTRA can then be used 302 

to seed the event-based analysis performed by AQuA 28. This was demonstrated in (Fig. S6), where 303 

we show examples of astrocytic domain identified by ASTRA, which were used as priors to instruct 304 

cell-specific AQuA analysis. 305 

 306 

Taken together, these findings demonstrate that ASTRA could be used to identify functional 307 

domains of individual astrocytes encompassing the cell somata, main processes, and thin 308 

astrocytic structures. Moreover, combining ASTRA with the event-based analysis software AQuA 309 

allowed overlaying anatomical with functional analysis of astrocytic domains, enabling the 310 

extraction of previously hidden morpho-functional information from individual astrocytes recorded 311 

in two-photon GCaMP imaging experiments. 312 

 313 

ASTRA performance across signal-to-noise ratios 314 

To investigate the performance of ASTRA as a function of the signal-to-noise ratio of two-photon 315 

images, we performed a set of comparative analyses on t-series from dataset-1 in which we 316 

artificially increased and decreased the peak signal-to-noise ratio (PSNR) of the fluorescent signals 317 

(see Fig. 4A). Manipulations ranged from nearly halving to nearly doubling the PSNR, with respect 318 

to the original data. ASTRA detection F1-score significantly decreased when the PSNR was 319 

strongly reduced (Fig. 4B, two-sided Wilcoxon rank sum test N = 24). However, the F1-score for 320 

the segmentation of somata and processes remained unaltered (Fig. 4C, Fig. S7A-B). These results 321 
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showed that ASTRA semantic segmentations was robust to the degradation of the PSNR. In 322 

contrast, an increase of the PSNR resulted in an improvement of the F1-score for detection (Fig. 323 

4B, two-sided Wilcoxon rank sum test N = 24) and of the F1-score for segmentation of processes 324 

(Fig. 4C, Fig. S7A-B; two-sided Wilcoxon rank sum test N = 24), with no significant change of the 325 

F1-score for somata segmentation. 326 

 327 

We also evaluated the other state-of-the-art detection and segmentation methods, described 328 

above, on these artificial datasets with modified PSNR. We first tested GECI-Quant detection and 329 

segmentation performance under high PSNR conditions (1.81 times the original PSNR, Fig. S7C-330 

G). For each FOVs one annotator manually defined astrocyte somatic regions, astrocyte domains, 331 

and intensity thresholds (Fig. S7C). We found that the detection F1-score of GECI-Quant was 332 

significantly lower than that of ASTRA (Fig. S7D, two-sided Wilcoxon rank sum test N = 24). GECI-333 

Quant F1-scores for process segmentation was also lower than that of ASTRA (Fig. 7G, two-sided 334 

Wilcoxon rank sum test N = 24). We then tested algorithm developed for the analysis of neuronal 335 

datasets. We found that STNeuroNet and CaImAn showed lower performance across all PSNR 336 

conditions when compared with ASTRA (Fig. S7 H-I, two-sided Wilcoxon rank sum test on all 337 

artificial datasets, N = 24, compared with real data). UNet2DS showed lower F1-score compared 338 

to ASTRA, but this decrease was significant only for PSNR = 0.88 (Fig. S7J, two-sided Wilcoxon 339 

rank sum test N = 24). The stability of UNet2DS to changes in PSNR can be understood considering 340 

that UNet2DS use only the mean projection in time of the recorded videos and that the injected 341 

Gaussian noise does not affect this projection. 342 

 343 

Overall, these results show that ASTRA performance remains stable even with low PSNR, and 344 

favorably compares with the performance of state-of-the-art methods for the analysis of astrocytic 345 

and neuronal functional signals over a wide range of PSNR.  346 

 347 

Pre-processing is important for ASTRA performance 348 
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The ASTRA DNN segmentation operated on fluorescence imaging t-series downstream of the pre-349 

processing modules, which performed image processing to enhance spatial information and 350 

performed temporal processing to filter out background from foreground signals. We produced two 351 

reduced versions of ASTRA. A first version called (ASTRA-unprocessed, Fig. 4D-E and Fig. S8) in 352 

which we removed both spatial and temporal pre-processing by performing DNN analysis directly 353 

on the raw median projection of the t-series. A second reduced version (ASTRA-spatial, Fig. 4D-E 354 

and S8) where we only removed the temporal pre-processing. Compared against the consensus 355 

annotation, we found that ASTRA-unprocessed had considerably lower performance than the full 356 

version of ASTRA (Fig. 4D-E, two-sided Wilcoxon rank sum test N = 24) for somata detection and 357 

for somata and process segmentation. Moreover, we observed that ASTRA-spatial had similar 358 

performance for somata detection and segmentation, but much lower performance for process 359 

segmentation than the full version of ASTRA (Fig. 4D-E, two-sided Wilcoxon rank sum test N = 24). 360 

These findings highlight the importance of the pre-processing step for ASTRA performance.  361 

 362 

Number of frames needed to reach good performance when training ASTRA from scratch 363 

Although we trained and tested ASTRA using all experimentally recorded imaging frames in each 364 

dataset, we wanted to estimate how ASTRA would have performed had we had less recorded 365 

frames. We thus repeated our analyses after decimating dataset 1 to only include between 50 and 366 

400 frames, rather than the 550-750 frames of the original t-series. This is of interest because the 367 

size of t-series can greatly vary across experiments in two-photon imaging experiments. The 368 

ASTRA detection F1-score remained stable as long as the t-series was longer than 200 frames 369 

(Fig. S9A, two-sided Wilcoxon rank sum test N = 24) and the F1-score for process segmentation 370 

also remained unchanged for t-series longer or equal than 100 frames (Fig. S9D, two-sided 371 

Wilcoxon rank sum test, N = 24). These results suggest that 100-200 frames per FOV are sufficient 372 

to train ASTRA. 373 

 374 

ASTRA generalizes across indicators and acquisition parameters 375 
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To investigate whether ASTRA generalizes across experimental preparations, acquisition 376 

parameters, as well as to never-seen-before data, we benchmarked it on datasets 2-4.  377 

 378 

We first investigated whether ASTRA could be trained anew on a novel dataset with very different 379 

characteristics. We thus trained anew and tested ASTRA (using exactly the same procedure 380 

detailed above for dataset-1) on the dataset-2, a set of eight two-photon imaging recordings 381 

collected in either resonant- or galvanometric mirror-based scanning in the hippocampus of head-382 

fixed awake animals spontaneously walking on a wheel (Fig. 1C-D). In this dataset, hippocampal 383 

astrocytes specifically expressed TdTomato and fluorescence signals were collected from a FOV 384 

of area 26.2 x 104 µm2 with pixel size of 1.06 µm/pixel (Fig. 1D, see Methods). On dataset-2, ASTRA 385 

detection and segmentation performance reached the level of the individual human experts (Fig. 386 

S10C-F, Tab. S4). This result suggests that ASTRA can be readily trained to reach human expert 387 

performance, regardless of the indicator and of the acquisition parameters used. 388 

 389 

We then tested whether ASTRA can be used with the pre-trained DNN weights and without any 390 

further training on never-seen-before datasets with different indicators and acquisition parameters. 391 

We thus took ASTRA with the DNN pre-trained weights (obtained by training on dataset 1 and 392 

available as default weights in the online ASTRA software) and we applied it straightforwardly to 393 

two new never-seen-before datasets (dataset-3 and dataset-4). Dataset-3 was composed of a set 394 

of seven two-photon imaging recordings collected in resonant scanning mode in the hippocampus 395 

of head-tethered awake animals spontaneously walking on a wheel (Fig. 1 C-D). Hippocampal 396 

astrocytes specifically expressed TdTomato and fluorescence signals were collected from a FOV 397 

of area 16.4 x 103 µm2 with a pixel size of 0.79 µm/pixel (Fig. 1D). Dataset-4 included a set of ten 398 

two-photon calcium imaging t-series collected in the resonant scanning modality in head-fixed 399 

awake animals free to run on a wheel (Fig. 1C-D). In dataset-4, hippocampal astrocytes specifically 400 

expressed GCaMP6f and fluorescence signals were collected from a FOV of area 16.4 x 103 µm2 401 

with a pixel size of 0.79 µm/pixel (Fig. 1D). Both dataset-3 and dataset-4 had a consensus 402 

annotation obtained as for dataset-1. Results of benchmarking against the consensus revealed that 403 
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ASTRA reached the level of human experts for both dataset-3 (Fig S10G-L, SI Tab. S5) and 404 

dataset-4 (Fig. 5 and S11, see also SI Tab. S6). Thus, in the case of the two never-seen-before 405 

dataset-3 and dataset-4, ASTRA reached human expert performance with pre-trained weights, 406 

implying that there would be no benefit in re-training the DNN adding new consensus annotated 407 

data from the new datasets (something that we explicitly verified, data not shown).  408 

 409 

Overall, these results demonstrate that ASTRA compared to individual human annotators even on 410 

never-seen-before data. 411 

 412 

Given the above success, however, it is conceivable that in some other never-seen-before 413 

datasets, ASTRA may not reach human expert performance when using off-the-shelf pretrained 414 

weights. In such case, ASTRA offers the possibility to fine tune the DNN weights by retaining on 415 

new data added by the users starting from the pre-trained weight that we made available with the 416 

software or from any other set of initial weights chosen by the user (Fig. 1A, Fig S12). 417 

 418 

Automated analysis of two-photon mesoscopic imaging of astrocytes using ASTRA 419 

The activity of multiple astrocytes is known to be correlated over spatial scales of few hundreds of 420 

µm, which are typically imaged with two-photon microscopes (reviewed in 4, 46, 47). However, very 421 

little is known about how the activity of astrocytes is organized at the network level over regions 422 

spanning several millimeters. It is now possible to perform high-resolution functional imaging over 423 

distances of millimeters with two-photon large FOV microscopes (mesoscopes) 48. However, 424 

analysis of mesoscopic images requires the segmentation of hundreds of ROIs in each FOV, 425 

making manual annotation prohibitive. Thus, an important application of ASTRA is enabling 426 

analyses of mesoscopic FOVs with distributed astrocytic networks encompassing hundreds of 427 

cells. Here, we demonstrate the usefulness of ASTRA for this application.  428 

 429 

To this aim, we performed for the first time two-photon mesoscopic imaging in awake head-fixed 430 

mice expressing GCaMP6f in cortical astrocytes (Fig. 6). Mice were free to run on a wheel and 431 
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licked at will from a water spout. We ran ASTRA on these mesoscopic t-series. An example of 432 

mesoscopic FOV segmentation is shown in Fig. 6A. On average, ASTRA extracted, 119  29 433 

astrocyte somata per FOV, N = 15 FOVs (average area of FOV, ~ 2.3 mm2). Moreover, we found 434 

that ASTRA identified processes that were less numerous (per identified soma), smaller, and 435 

shorter than those identified with standard two-photon microscopes analyzed above (see Fig. S13). 436 

This was most likely due to the lower numerical aperture of the two-photon mesoscope objective 48 437 

with respect to that of standard two-photon microscope objectives, which implies lower spatial 438 

resolution in mesoscopic recording compared to standard two-photon recordings. We thus focused 439 

our next mesoscopic analyses on networks of astrocytic somata.  440 

 441 

We next extracted the calcium fluorescent traces from each detected astrocytic soma and we used 442 

the extracted traces to characterize the network-level interactions of large-scale astrocytic 443 

populations. We first computed the Pearson correlation between the calcium activities of all pairs 444 

of somatic astrocytic ROIs. Activity correlations (Fig. 6C) were on average positive and larger than 445 

those typically observed when imaging the activity of neurons with calcium indicators, e.g., 15, 49. 446 

Correlation strength decreased as function of distance, but remained above zero even up to spatial 447 

distances of 2 mm, implying that astrocytes are functionally organized over mm-scale networks.  448 

 449 

Activity correlations between neurons profoundly shape how neurons encode and transmit 450 

information at the level of large neural populations 50-54. However, little is known about how activity 451 

correlations of astrocytes influence the encoding of information about external variables in 452 

astrocytic networks. We investigated whether astrocytic activity correlations increased or 453 

decreased the information encoded by populations of astrocytes about two external variables: i) 454 

locomotion, i.e. whether or not the animal was running, and ii) licking, i.e., whether or not the mouse 455 

used its tongue to reach a water spout. For each cell pair, we computed the interaction information, 456 

quantifying how much correlations influence the information on a population code. This quantity is 457 

defined as the difference between the information about the external variables encoded in the “real 458 

data” activity of the pair, (Fig 6E,J) which contains contributions of both the tuning of the individual 459 
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cells and of their correlations, and the “shuffled” information (Fig 6E,J) that the cell pair would carry 460 

if the cells have the same tuning to the stimuli as in the actual data but correlations are removed 55, 461 

56. Positive (negative, respectively) interaction information values indicate that correlations 462 

enhanced (limited, respectively) the information encoded by the cell pair. For a given pair of cells, 463 

theoretical work, widely validated on neurons, demonstrated that positive activity correlations 464 

enhance or limit information, according to whether cells have similar or different tuning to the 465 

external variables, respectively 50, 52, 57. We found (Fig 6G,L) both information-limiting and 466 

information-enhancing correlations in astrocytic pairs, similarly to what previously reported for 467 

neurons 52. This could be explained by the same principles previously found in neurons. In fact, a 468 

large majority of astrocytes elevated their activity when animals ran (Fig. 6D), whereas comparable 469 

fractions of astrocytes elevated and decreased their activity when animals licked (Fig 6I). Thus, 470 

while most astrocyte pairs shared similar tuning to locomotion, a more balanced fraction of 471 

astrocytic pairs with similar vs different tuning to licking was present. As a result of the stronger 472 

homogeneity of tuning to locomotion, pairs of astrocytes had similar locomotion tuning and positive 473 

activity correlations. This led to a large majority of astrocytic pairs with correlations limiting 474 

locomotion information (Fig 6F-G). For licking, the greater diversity of tuning led to a more even 475 

distribution of positively-correlated pairs with either similar (information-limiting correlations) or 476 

dissimilar (information-enhancing correlations) licking tuning. Thus, because of the greater diversity 477 

of tuning for licking, the fraction of pairs with significantly information-enhancing and significantly 478 

information-limiting correlations was more balanced (Fig. 6K-L).  479 

 480 

On average across all astrocytic pairs, there was a significant but moderate averaged information-481 

limiting effect for locomotion information (Fig. 6E) and no effect for licking information (Fig. 6J). The 482 

average effect on pairwise information of correlations decreased as a function of distance for both 483 

information-enhancing and information-limiting pairs. This was because the correlations strength 484 

decreased, but remained sizeable, over distances > 1 mm (Fig. 6G, L). 485 

 486 
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Given that we obtained the first simultaneous recording of hundreds of astrocytes, we could 487 

evaluate how much information about licking and locomotion was encoded in large astrocytic 488 

populations, far beyond single cells and pairs, and how activity correlations shaped it. Studies with 489 

neurons showed large quantitative differences between encoding in small and large neural 490 

populations 51, 52, 58. We computed the decoded information about the animal’s locomotion from a 491 

Support Vector Machine (SVM) operating on population vectors of mesoscopic astrocytic ROIs. In 492 

the large population, we found a large information limiting effect for locomotion (Fig 6H, the total 493 

information in population activity was more than 2 times smaller than the information in the trial-494 

shuffled responses). This effect emerged because the relatively small, yet predominant, pairwise 495 

information-limiting effects summed up in the large population (Fig. S13E). Conversely, when 496 

considering the information about licking encoded by the large-scale astrocytic population, we 497 

found that there was no effect of correlations on population information (Fig 6M). This result could 498 

be explained because the pairwise information-enhancing effects for licking were compensated by 499 

pairwise information-limiting effects (Fig. S13F).  500 

 501 

We also considered the total amount of information carried by the mesoscopic astrocytic 502 

population. The population of all astrocytes in the mesoscopic FOV carried ~ 0.2 bits of information 503 

about both locomotion (Fig. 6H) and licking (Fig. 6M), an increase of a factor of more than 10 with 504 

respect to the corresponding single cell values. Interestingly, the population of all astrocytes carried 505 

approximately the same amount of population information about licking and locomotion, despite the 506 

fact that the single-cell information values were almost twice as small for licking compared to 507 

locomotion (cf. Fig. 6H-M with Fig. 6E-J). This is because for licking the higher tuning diversity and 508 

the consequent lower information limiting effect made different cells less redundant and allowed 509 

licking information to build up more at the population level. Importantly, considering populations of 510 

astrocytes coming from more restricted spatial regions, such as those of size comparable to the 511 

FOV of traditional two-photon microscopes, would have given much lower information values (Fig. 512 

S13G-H), confirming the power of mesoscopic imaging for revealing large information-encoding 513 

network of astrocytes.  514 
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 515 

Taken together, these results demonstrate that information about external variables (locomotion 516 

and licking) is encoded across large-scale astrocytic networks spanning several mm of cortical 517 

tissue. These distributed networks of astrocytes are endowed with emergent properties due to their 518 

correlations, which are highly specific to the information content (that is, to the specific external 519 

variable being encoded). 520 

 521 

ASTRA processing time 522 

We measured ASTRA processing time for the whole inference pipeline, repeating the analysis over 523 

10 iterations. To allow for performance comparison across different configurations of hardware 524 

resources, we used a 26.3*103 µm2 FOV and we artificially changed the t-series length from 300 to 525 

700 frames. We compared three computational resource configurations: 4 CPUs, 20 CPUs, and 20 526 

CPUs + 1 GPU (Fig. S14A). These configurations were chosen to compare the time needed to 527 

perform ASTRA analysis from laptop-like performance (i.e., 4 CPUs) to high-performance 528 

workstation equipped with computing accelerators (i.e., 20 CPUs and 20 CPUs + 1 GPU). We found 529 

the 4 CPUs configuration was the slowest configuration (12.33 ± 0.08 s for 700 frames, mean ± 530 

std) to detect and semantically segment astrocytic somata and processes. In contrast, the 20 CPUs 531 

configuration and the usage of a GPU accelerator reduced ASTRA processing time (7.27 ± 0.03 s 532 

for 700 frames with GPU vs 10.80 ± 0.09 s without GPU). The cross-correlation module was a 533 

significantly time-consuming block in the inference pipeline. We found that GPU computational 534 

power reduced the execution time of the cross-correlation computation (0.919 ± 0.004 s for 90 s t-535 

series, mean ± std) compared to the 20 CPUs implementations (19.23 ± 0.09 s for 90 s t-series) 536 

and the 4 CPUs implementation (26.39 ± 0.04 s for 90 s t-series; Fig. S14B). We finally measured 537 

the processing time to detect and semantically segment somata and processes of astrocytes for 538 

large-scale mesoscopic and high sampling rate non-mesoscopic recordings using the 20 CPUs + 539 

1 GPU configuration. We measured processing time of the inference pipeline for 10 iterations on 540 

FOV areas of 0.16 mm2 and 0.26 mm2 changing artificially the t-series length from 1000 to 5000 541 
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frames (Fig. S14C). ASTRA processing time was 22.1 ± 0.3 s for the 0.16 mm2 FOV and 25.7 ± 542 

0.1 s for the 0.26 mm2 FOV both composed of 5000 frames.  543 

 544 

These results demonstrate that ASTRA performed fast (few tens of s) semantic segmentation of 545 

astrocytes in two-photon t-series, speeding up and facilitating the analysis of astrocytic calcium 546 

signals in vivo. 547 

 548 

Discussion 549 

Astrocytes, the main type of glial cells in the brain, display complex intracellular calcium dynamics 550 

4, 5, 46 that can be captured with two-photon microscopy. These complex dynamics can be spatially 551 

localized in subcellular astrocytic ROIs, involve large portions of the astrocyte cell, and be 552 

coordinated across the astrocytic network 20, 21, 23, 25. Moreover, calcium signals in astrocytes 553 

encode information about synaptic function, circuit activity, and cognitive states 2, 3, 59. Having 554 

efficient tools for the analyses of these signals and the precise identification of astrocytic ROIs is 555 

thus of fundamental importance to study the physiology of astrocytic and neuronal circuits. To 556 

identify and segment astrocytes, manual annotation is still largely used. A problem with this 557 

approach is that it does not scale to large datasets and fields of view, requires significant amount 558 

of human training, and intrinsically suffers from human-dependent variability. State-of-the-art 559 

approaches to analytically segment astrocytic ROIs in two-photon imaging experiments as, for 560 

example, GECI-Quant (Srinivasan et al. 2015) and CHIPS (Stobart et al. 2018) provide semantic 561 

segmentation of astrocytes. These methods require careful setting of multiple user-defined 562 

parameters, which may vary with data acquisition conditions and with SNR, and require significant 563 

computation time. Moreover, CHIPS only segments active processes. The point discussed above 564 

limit the reliability and scalability of these approaches. Other analytical methods identify calcium 565 

events within and across astrocytes based on pixel-wise correlated dynamics 14, 28-31, 60. However, 566 

event-based approaches are computationally demanding, making it challenging to apply them to 567 

large datasets and fields of view. Moreover, event-based methods identify ROIs, but do not relate 568 

identified ROIs to the morphology of individual astrocytes. ASTRA enables the identification of 569 
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astrocyte somata, processes, and domains, is scalable to large datasets and fields of view, 570 

addressing most limitations of current state-of-the-art methods.  571 

 572 

ASTRA achieves fast automated segmentation 573 

ASTRA was designed to minimize computational time and its pipeline was massively parallelized 574 

on GPUs, enabling fast DNN training and inference steps. For example, ASTRA required few tens 575 

of seconds to process a t-series of average length and could segment a whole dataset of previously 576 

published data 15 in few minutes, reducing analysis time by more than a factor of 60 compared to 577 

current methods 10, 19, 27 and by almost three orders of magnitude compared to manual annotations. 578 

This feature of ASTRA was fundamental to enable scalability of ASTRA to large datasets, as for 579 

example the field-of-view of mesoscopic two-photon imaging (see discussion below) and may 580 

enable closed-loop experimental designs.  581 

 582 

ASTRA provides precise and reliable segmentation 583 

ASTRA performance in astrocyte segmentation was similar to that of human annotators. We used 584 

three different annotators to manually identify and segment somata and processes in our datasets. 585 

We combined these annotations into a consensus annotation. Annotators showed large level of 586 

agreement in the segmentation of somata and lower level of agreement in the segmentation of 587 

processes in all the datasets, highlighting the variability of this manual task. Once trained on the 588 

consensus, ASTRA provided reliable and reproducible segmentation, avoiding human operator-589 

dependent variability. Moreover, in this study we shared our imaging dataset, annotations, and 590 

codes. In future work, this open access repository may be enriched with additional segmentations 591 

by users from other laboratories, initializing the process of generating consensus annotations 592 

agreed across laboratories. Additionally, our datasets and annotations can be used as an online 593 

platform for benchmarking new computational algorithms for the analyses of astrocytic functional 594 

imaging recordings.  595 

 596 
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ASTRA outperforms current methods and can be combined with event-triggered approaches for 597 

combined morpho-functional segmentation 598 

We found that ASTRA performance was better than that of the multiple state-of-the-art tools for the 599 

analysis of astrocytic (e.g., GECI-Quant 19) and neural signals (e.g., CaImAn 36, UNet2DS 39, and 600 

STNeuroNet 37) that we tested. Compared to GECI-Quant, a main algorithm for the segmentation 601 

of astrocytic functional images, ASTRA did not require user intervention while the semi-automatic 602 

implementation of GECI-Quant required the user to define at least one specific intensity threshold 603 

for each astrocyte based on a temporal projection of the imaging session. This GECI-Quant feature 604 

resulted in a time-consuming procedure that limited the reproducibility of this approach and its 605 

scalability to large datasets. Conversely, ASTRA’s automatic pipeline used both spatial and 606 

temporal information to reliably generate a highly informative projection, which is semantically 607 

segmented by the specific design of the DNN. Several event-based methods have also been 608 

implemented to characterize the spatio-temporal patterns of astrocytic calcium activity 28-31. 609 

However, these algorithms require several user-defined parameters, which often depend on 610 

imaging conditions, SNR regimes, and fluorescent indicator. Moreover, the algorithmic complexity 611 

of these methods scale poorly with the size of the input sample (i.e. number of signal sources per 612 

sample, number of pixels per frames, and number of frames). Semantic segmentation performance 613 

of ASTRA was robust and reproducible and can thus be used to mitigate some of the limits of event 614 

based methods. ASTRA performance was stable over a wide range of PSNR situations and ASTRA 615 

performance was crucially aided by efficient feature engineering on two-photon images in the pre-616 

processing step. 617 

 618 

Importantly, ASTRA can be coupled with event-based segmentation methods, such as AQuA 28. 619 

Event-based segmentation approaches identify ROIs relying on the correlated temporal dynamics 620 

of calcium signals across individual pixels 28-31. ROIs identified with event-based methods, however, 621 

are not usually related to morphological features of astrocytes 28-31. To this end, we used ASTRA 622 

to obtain fast segmentation of individual astrocyte domains and then we seeded AquA using the 623 
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domain ROIs identified by ASTRA. With this combined strategy, we enabled the extraction of 624 

morpho-functional information from individual astrocyte domain in population imaging recordings. 625 

 626 

ASTRA outperformed multiple state-of-the-art methods for detection and segmentation of neurons 627 

in two-photon imaging recordings. We understand the lower performance of neuronal tools when 628 

applied to the analysis of astrocytes as arising from the major differences in morphological structure 629 

and in the timescales of calcium signals between neurons and astrocytes. Neuronal tools based on 630 

non-negative matrix factorization 33, 36 heavily rely on hypotheses of spatial contiguity and temporal 631 

activity organized over time scales of tens to hundreds of milliseconds. These hypotheses are ill 632 

suited to describe subcellular astrocytic calcium signals, which show heterogeneous spatial 633 

extents, diverse dynamic properties at the somatic and processes compartments, and slower 634 

timescales. Neuronal algorithms based on DNNs, such as Unet2DS 39 and STNeuroNet 37, albeit 635 

sharing architectural similarities with the DNN module of ASTRA, showed specific limitations. For 636 

example, Unet2DS allowed some degree of astrocytic somata detection. However, Unet2DS failed 637 

to perform semantic segmentation of astrocytic processes, especially in the absence of the pre-638 

processing step aimed to enhance spatial and temporal features of astrocytic signals. Conversely, 639 

DNNs designed to extract activity localized at specific spatial footprints and temporal scales (such 640 

as STNneuroNet 37) do not fit the spatial and temporal features of astrocytic calcium signals. These 641 

considerations showcase some of the reasons underlying the better performance of ASTRA in 642 

comparison to the state-of-the-art methods for neuronal analysis that we tested, and highlight the 643 

necessity to develop algorithms and computational architectures specific for astrocytes, as done in 644 

this study.   645 

 646 

ASTRA generalized across acquisition conditions and fluorescence indicators 647 

We tested ASTRA on four datasets that differed for acquisition parameters (galvanometric mirror-648 

based scanning vs resonant mirror-base scanning; pixel size, 0.7-1.1 µm/pixel) and fluorophore 649 

type (GCaMP6f vs TdTomato). Importantly, it was possible to use ASTRA, endowed with its default 650 

weights pre-trained DNN on dataset-1, on never-before-seen data (datasets 3-4), achieving high 651 
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detection and segmentation performance. Moreover, ASTRA performance in ROI detection and 652 

segmentation was comparable to that of human annotators for all datasets. These results suggest 653 

ASTRA is a flexible analytical tool that can be applied to heterogeneous two-photon imaging 654 

datasets of astrocytes. The high performance of ASTRA benefitted from transfer learning (as we 655 

started training from DNN weights pre-trained on a large dataset natural images) and from pre-656 

processing specifically designed for astrocytes. However, while we used for training datasets that 657 

can be considered of reasonable size in the field of two-photon astrocytic recordings, the amount 658 

of data used for training was still limited with respect to those used to train DNNs on other tasks 659 

such as the identification of objects in natural images 43, 61, 62. As a result, it is possible that ASTRA 660 

may not work well under some conditions for never-seen-before data. To alleviate this concern, we 661 

included in ASTRA the possibility to further train its DNN on new annotated images that may better 662 

suit the setup at hand.  663 

 664 

Analysis of two-photon mesoscopic functional imaging of cortical astrocytes using ASTRA 665 

Given its speed and performance, we used ASTRA for fast automated segmentation of large-scale 666 

mesoscopic imaging data comprising hundreds of astrocytes. This type of data is challenging for 667 

current analytical methods and is unpractical for manual annotation. Yet, mesoscopic two-photon 668 

imaging 48 has the potential to unravel the extent to which astrocyte interact and how they organize 669 

at the level of large networks. We here performed the first two-photon mesoscopic imaging of 670 

GCaMP6f-expressing astrocytes in awake head-restrained animals and then applied ASTRA to 671 

segment the mesoscopic acquisitions. This made it possible to obtain the first simultaneous calcium 672 

imaging analysis of networks of hundreds of astrocytes over the mesoscale. Using ASTRA, we 673 

found that calcium dynamics of distributed ensembles of astrocytes carried information about 674 

external variables, such as licking and locomotion, and that their calcium activity was correlated 675 

over large spatial scales. This finding suggests that astrocytes form extended information-bearing 676 

networks spanning several mm of cortical mantle. Moreover, we observed that these activity 677 

correlations had a major influence on the emergent properties of astrocytic population codes and 678 

that this influence strongly depended on the content of the information of the astrocytic population 679 
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code. For locomotion, activity correlations had a profound information-limiting effects on the 680 

populations, because of the homogeneity of tuning of astrocytes. In contrast, activity correlations 681 

did not limit the population information when considering licking.  682 

 683 

Thirty years of combined recording and analysis of neural populations contributed to lay down the 684 

foundations for the emergent principles of organization of neural population codes and their 685 

contribution to multiple brain functions 50, 52 . The results presented in this study suggest that 686 

coupling analysis methods such as ASTRA with tools of mesoscopic imaging can reveal as rich 687 

emergent properties in large astrocytic networks. 688 

 689 

To conclude, we developed a novel DNN-based tool to achieve fast, precise, and automated 690 

semantic identification of ROIs in two-photon imaging experiments of large-scale astrocyte calcium 691 

signals. Our method enables automated astrocyte segmentation of mesoscopic two-photon 692 

imaging of astrocytes, revealing distinct behavioral-dependent population coding properties in mm-693 

scale astrocytic network. Moreover, our shared dataset, annotation, and codes offers the field the 694 

possibility to achieve community-based consensus ground truth for astrocyte segmentation and a 695 

ready-to-use tool to benchmark new computational developments. 696 

 697 

Materials and Methods 698 

ASTRA algorithm 699 

General information about the use of data and the pipeline. The workflow of ASTRA has two 700 

different pipelines: training and inference (Fig. 1A-B). Each pipeline analyzed a dedicated training 701 

or inference dataset, respectively. The training set was a dataset (for example, a subset of FOVs 702 

with annotated t-series) which was used to optimize the algorithm finding adequate pre-processing 703 

hyperparameters and DNN weights (see Activity Map Generation Module, Local Activity Filtering 704 

Module, and Deep Neural Network Module). The inference set was a dataset, completely separated 705 

from the training one (for example, another subset of FOVs), which was used to evaluate the 706 

performances of the algorithm.   707 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2023. ; https://doi.org/10.1101/2023.05.03.539211doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.03.539211
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

27 

 

Consensus annotated two-photon t-series recordings of astrocytes in the training set underwent a 708 

pre-processing procedure comprising Spatial sharpening, Putative bounding box extraction, and 709 

Local activity filtering (see Fig. S1C red flow chart path); preprocessed data were used to optimize 710 

the DNN weights (see Deep Neural Network Module). Analogously, t-series in the inference set 711 

underwent a similar pre-processing procedure, with the difference that data entered the pipeline 712 

without annotations (Fig. S1C blue flow chart path).  The algorithm proceeded detecting putative 713 

cells which were then segmented by the DNN (Fig. S1B). 714 

When we tested ASTRA on dataset-1 or dataset-2 (see Generation of the two-photon imaging 715 

dataset in awake head-restrained mice), we first trained the algorithm from scratch and then we 716 

tested it using leave-one-out cross-validation (the training set consisted of all but one t-series which 717 

was held out and tested as inference dataset). Results of these tests are reported as the averages 718 

across the leave-one-out replicates of training and inference.  719 

We obtained the two sets of default weights distributed with the software training the DNN on the 720 

entire dataset-1 and dataset-2, respectively. When we performed inference on dataset-3 and 721 

dataset-4, we used the default weights obtained from the entire dataset-1. 722 

The version of ASTRA released in this article can readily perform inference using the default values 723 

of pre-processing hyperparameters and DNN weights trained on dataset-1 or dataset-2. Both sets 724 

of parameters are distributed with the released software. New users can further optimize ASTRA 725 

by adding to the training pipeline their own t-series annotated with ImageJ (Fig. 1A, Fig. S12).  726 

 727 

 In the following sections, we provide detailed descriptions of the modules of ASTRA. 728 

 729 

Spatial Sharpening Module. This module performed spatial sharpening and pixel intensity 730 

standardization on the median projection of a t-series. First, the module subtracted from each frame 731 

the 10th percentile of the pixel intensities 10, then it computed the median projection on the entire t-732 

series. Median projection’ pixels intensity was then standardized and rescaled as a 16-bit integer 733 

(i.e. within the interval [0; 216]). Image contrast has been adjusted by using clipping limited adaptive 734 
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histogram equalization (CLAHE, 63 OpenCV-python). Projections were then convolved with a 735 

sharpening kernel K. 736 

𝐾 = [
−1 −1 −1
−1 9 −1
−1 −1 −1

] 737 

 738 

This set of operations condensed information about the spatial location of astrocytic signals 739 

collected over time into a single, highly informative, spatial map. 740 

 741 

Activity Map Generation Module. This module detected regions in FOVs characterized by spatially-742 

localized high fluorescence intensity (see below), generating a putative “activity map”.  743 

As a first step, the input FOV was subsampled in overlapping patches (Fig. S1D), each subject to 744 

independent statistical analysis. Each patch was a 3D tensor in time and space in which the 745 

intensity value of each 3D voxel was considered an independent sample. For each time t, Voxels- 746 

vi,j(t), where i,j were indexes over the patch dimension, were binarized setting their value to 1 if their 747 

fluorescence intensity values were greater than the N-th percentile of the voxels intensity 748 

distribution within the patch or set to 0 otherwise. The N-th percentile was selected by optimization 749 

of the activity map generator performances on the training set (see below). Finally, a bi-dimensional 750 

(spatial) average projection of the binarized 3D tensors was generated reporting the fraction of time 751 

in which the voxels vi,j were classified to 1. In the areas of patch overlap, a bi-dimensional average 752 

projection for each pixel the spatial average was computed as the average value across patches. 753 

To provide biologically relevant constraints to this statistical filter, the number of astrocytes in each 754 

FOVs was estimated as the ratio of the FOVs surface with respect to the area of an astrocytic 755 

domain. Here, each astrocytic domain was approximated as a circle of surface (d/2)2, where d 756 

was the characteristic diameter of an astrocytic domain (~40 µm 1, 45). The estimated number of 757 

astrocytes represented a lower bound for the number of active zones; in fact, the number of 758 

identified clusters could be greater than the estimated number of astrocytes because of portions of 759 

astrocytic bodies visible in the FOV or blood vessels appearing as active areas. Finally, the 760 

algorithm identified all the spatially contiguous active clusters of pixels on the bi-dimensional 761 
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(spatial) average projection of the binarized 3D tensors, selecting clusters with surface greater or 762 

equal than a putative somata (~40 m2). As a conservative initialization, pixels were considered 763 

active if their average projection value was greater than 0.6 (i.e. being classified as 1 on 60% of 764 

time frames).  If the number of clusters identified was smaller than the estimated number of 765 

astrocytes the algorithm decreased by 0.03 the threshold for selecting active pixels. For each new 766 

threshold the putative somata surface area was decreased iteratively by 4 µm2 starting from 40 767 

m2 to 20 m2. This tuning process stopped when the number of identified clusters is equal or 768 

greater than the estimated number of astrocytes the algorithm. This procedure aimed to minimize 769 

the difference between the number of detected active regions and the theoretical astrocyte number. 770 

 771 

The N-th percentile used to binarize the 3D tensor was tuned optimizing the performances of the 772 

activity map generator module on the training set. Performances of this module were evaluated 773 

computing the F1-score value between consensus somata annotations (see Manual Dataset 774 

Annotation section) and active zones identified in each FOV of the training-set. The performance 775 

was computed for a set of percentiles (30, 40, 50, 60, 70, 80, 90) and the one which maximized the 776 

F1-score was selected. 777 

 778 

Putative Bounding Boxes Extraction Module. This module computed centroids of active zones 779 

detected by the activity map generation module and generated bounding boxes (BBs) surrounding 780 

them. BBs were ~55 m high and wide. These BBs were used to extract from t-series and spatial 781 

sharpened maps respectively (putative) single-cell spatial map and (putative) single-cell recordings, 782 

respectively. 783 

 784 

Local Activity Filtering Module. This module performed a fine local time filtering on single-cell 785 

recordings. The module computed the 90th percentile of the pixels intensity distribution and used it 786 

as a threshold to binarize the tensor. Then the module selected the pixels which were set to 1 for 787 

at least the 1% of the frames. This binarization procedure was repeated setting to zero the 788 

previously selected pixels from the starting distribution. Hence, all the pixels which were set to 1 789 
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for at least 2% of the frames were selected. The binary mask obtained from the summation of the 790 

two previous set of pixels was used to generate a binary map (1 foreground and 0 background) to 791 

filter background regions and eventual artifacts generated by spatial sharpening from spatial single-792 

cell spatial maps. 793 

 794 

The thresholds 1 and 2 used in this module were tuned on the training set. The module explored 795 

a set of 1 and 2 couples ([0.3,0.15], [0.25,0.1], [0.2,0.07], [0.15,0.05]) and computed the fraction 796 

of pixels belonging to consensus annotation removed by the filter. Finally, the module selected the 797 

couple (1, 2) with the highest threshold values that removes less than 5% of consensus pixels for 798 

both soma and processes (i.e. 1=0.25 and 2=0.10 for dataset-1). We provided these values as 799 

defaults for new users who will decide to run inference with ASTRA with default hyperparameters 800 

and weights without further optimizing it using new annotated data.  801 

 802 

Deep Neural Network Module. Our design of this convolutional Deep Neural Network (DNN) started 803 

from a U-net 39 architecture with an encoder part (the descending part of the U shape in Fig. S1E) 804 

that analyzed the input image and a decoder (the ascending part of the U shape in Fig. S1E)) that 805 

took the information from the encoder and up-sampled it to classify the pixels of the input image. 806 

The first two blocks of the encoder (L1 and L2 of the left part in Fig. S1E) were two basic U-net 807 

blocks that analyzed input images using convolutional filters. We then nested three pretrained 808 

Inception-Resnet-v2 modules 64 in our network (L3 to L5 levels in the left part in Fig. S1E) changing 809 

its encoder backbone 65, 66. 810 

 811 

The decoder part of the U-Net (right part of Fig. S1E) implemented in 5 levels (L5 to L1) an up-812 

sampling strategy that was a fundamental transformation operation to obtain a pixel-level prediction 813 

of the class with which each pixel should be labeled. In the Decoder part, we adopted Dense Up-814 

sampling Convolution (DUC) to reduce the decoder number of weights 67. The DNN outputs 815 

consisted in a 3D tensor whose dimensions were: input height, input width and 3 channels 816 
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corresponding to the probability of the pixel to belong to somata, processes, or background classes. 817 

Each pixel was finally assigned to the class with the highest probability.  818 

 819 

During training of all the layers of both the encoder and decoder parts, we used data augmentation 820 

techniques to limit algorithm overfitting problems caused by the relatively small size of the dataset. 821 

During training, we used standard transformations 68 of input images: rotation by 90, 180, 270, 822 

Gaussian blurring with a 3x3 pixels kernel and =3, Gaussian noise sampling values from a 823 

Gaussian distribution with  = 0 and   = 0.3, salt and pepper noise on 4% of pixels, scaling of 824 

image size by factor 1.4, 0.9 and 0.8, horizontal and vertical flipping, pixels intensity scaling by 825 

factors 3 and 0.5. Moreover, we used morphological transformations that altered the spatial 826 

structure of input images: elastic (Ronneberger, Fischer, and Brox 2015), barrel, and pincushion. 827 

 828 

We combined a Binary-Cross-Entropy (BCE) loss with soft Dice loss (Milletari, Navab, and Ahmadi 829 

2016); BCE was applied to all the three classes soma, process, and background. Soft Dice has 830 

been applied only on soma and processes:  831 

 

𝐿(𝑋, 𝑋̃) =  −
1

𝑁𝑏

 ∑ {(∑ 𝑋𝑖𝑐𝑙𝑜𝑔𝑋̃𝑖𝑐

3

𝑐=1

) + [∑ (1 −
2 ∗ 𝑋𝑖𝑐 ∗ 𝑋̃𝑖𝑐 + 𝜀

𝑋𝑖𝑐 + 𝑋̃𝑖𝑐 + 𝜀
)

2

𝑐=1

]}

𝑁𝑏

𝑖=1

 

 

(1) 

where X and 𝑋̃  represented user defined mask tensor and prediction mask tensor,  = 0.5 was 832 

constant that preserved the numerical stability, 𝑁𝑏 was the batch size and c=1,2,3 was the class 833 

index for: processes, soma, and background. The role of DNN was to assign small regions to the 834 

correct class, hence, the soft dice loss represented a proper metric to measure area overlapping 835 

accuracy. We trained the DNN using Adam Optimizer 69 and starting learning rate lr (see SI Tab. 836 

S7). The number of training epochs was N = N1+N2. In the first N1 epochs of training, the weights 837 

of pretrained blocks (Reduction Blocks and IncecptionResNet Blocks) were not updated. During 838 

the remaining N2 epochs, we performed a fine tuning of the entire net weights. All the filters trained 839 

since the first epochs were initialized as described in 65. Training details are reported in SI Tab. S7. 840 

 841 
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Cross Correlation Module. This module analyzed fluorescence intensity dynamics of pixels within 842 

the putative domain surrounding the semantically segmented astrocytic soma and processes ROIs 843 

(i.e. a circular region of radius ~40 m). We referred to the intensity fluctuations in time of each 844 

pixel as 𝑠(𝑡). This module was composed of two blocks – cross-correlation computation and 845 

threshold optimization – that were executed iteratively. The cross-correlation computation block 846 

classified a set of input 𝑠𝐼
𝑙[𝑡] for l =1, …, L as correlated to a set of reference  𝑠𝑅

𝑘[𝑡] or k =1, …, K 847 

given a threshold thcc; where L was the number of inputs and K is the number of references. The 848 

block computed the normalized cross-correlation between each (l,k) couple (Eq. 2) and selected 849 

its maximum value (Eq.3). Then, the cross-correlation matrix Mcc is defined as in eq. 4. 850 

 𝑐𝑐𝑙𝑘[n] =
1

𝛼𝐼
𝑙𝛼𝑅

𝑘 (𝑠𝐼
𝑙[𝑡] − 𝜇𝐼

𝑙) ∗ (𝑠𝑅
𝑘[(𝑡 + 𝑛)] − 𝜇𝑅

𝑘)    for 𝑛 ∈ [−5,5] (2) 

 

 

 

𝑚𝑙𝑘 = max
𝑛

𝑐𝑐𝑙𝑘 (3) 

 
𝑀𝑐𝑐  = (

𝑚11 ⋯ 𝑚𝐾1

⋮ ⋱ ⋮
𝑚1𝐿 ⋯ 𝑚𝐾𝐿

) 
(4) 

Mcc was then binarized selecting only values greater than threshold thcc. 𝑠𝐼
𝑙[𝑡] was classified cross-851 

correlated if at least one element in the lth-row of Mcc was equal to one. 852 

 853 

The threshold optimization block selected an optimal threshold using an iterative approach. A set 854 

of 250 pixels was sampled outside astrocyte domains in each FOV and their 𝑠𝑃
 [𝑡] were collected. 855 

This set represented a proxy over which we could compute the number of false positive selections 856 

obtained from the cross-correlation computation block using as a reference set the 𝑠𝑅 [𝑡] extracted 857 

from ROIs pixels. Since pixels were sampled outside astrocytic domains, these pixels could not 858 

belong to any subcellular region of the astrocytes detected in the FOV. For this reason, we assumed 859 

that the sampled pixels 𝑠𝑃 [𝑡] were independent from the ones of the semantically segmented ROIs 860 

pixels. In the threshold optimization block, for each threshold value in the range 0.60 to 0.95 with 861 

minimum spacing between values of 0.05, we computed the number of false positive pixels. Then, 862 

this block selected as optimal threshold thOp the smallest threshold value with average false positive 863 
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percentage error less than 5 %. Finally, for each detected cell the cross-correlation module 864 

collected all the pixel 𝑠𝐼 ⌈𝑡⌉ in the circular region that surrounded it and all the ROIs pixels 𝑠𝑅 [𝑡]; 865 

then it applied the cross-correlation computation block on these two sets of 𝑠[𝑡] using thOp as 866 

threshold. 867 

 868 

Workflow pipelines  869 

Training Pipeline. The training-phase was organized as a series of steps that end with the DNN 870 

training as shown in Fig. S1A. First, the spatial sharpening module was applied to the training FOVs 871 

generating spatial sharpened maps. Since cells in the training set were already segmented in the 872 

consensus segmentation, the Putative Bounding Boxes Extraction module generated the BBs using 873 

the somata annotated in the consensus segmentation as input. The Putative Bounding Box 874 

Extraction module generated a set of single cell spatial maps and a set of single-cell recordings. 875 

The Local Activity Filtering module analyzed the single-cell recordings obtaining binary masks of 876 

foreground/background pixels. Finally, single cell images extracted from the spatial maps were 877 

filtered with these binary masks. This filter further denoised and enhanced the so-obtained single 878 

cell spatial maps. This pipeline ended after the training of the DNN with the so obtained single cell 879 

filtered spatial map images. 880 

 881 

Inference Pipeline. The inference-phase started with the pre-processing which generated a set of 882 

putative filtered single-cell maps from the inference set, as shown in Fig. S1B. The pre-processing 883 

was organized in several steps where Spatial Sharpening, Activity Map Generation, Putative 884 

Bounding Boxes Extraction, and Activity Filtering modules are applied. For each FOV, the spatial 885 

map and the activity map were generated by the Spatial Sharpening module and by the Activity 886 

Map Generation module, respectively (Fig. S2A). Then, the Putative Bounding Boxes Extraction 887 

module extracted the putative single-cell spatial maps and the putative single-cell recordings. 888 

Finally, the Activity Filtering module analyzed single-cell recordings and identified background 889 

zones. These zones were filtered from the single-cell spatial map (Fig. S2B). Subsequently, the 890 

filtered single-cell spatial maps were used to reconstruct a spatial map of the entire FOV where all 891 
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the background parts were filtered. The DNN analyzed the filtered single-cell spatial maps and the 892 

segmentations of the DNN were placed at the correct location within the FOV using the BB 893 

coordinates. Altogether these segmentations constituted the semantic segmentation of the entire 894 

FOV. Then, the DNN analyzed the FOV filtered spatial map providing for each cell the probability 895 

of being a true- or a false-positive. Cell probability was computed as the mean probability of pixels 896 

inside somata ROIs of being classified as soma-type pixels by the DNN. Cells with probability 897 

smaller than 0.9 were filtered from the FOV segmentation results. The segmented regions obtained 898 

were spatially filtered including only cells with identified soma area greater than 0.9*Amin and 899 

smaller than 1.1*Amax, where Amin was the smallest somata area measured in the training dataset 900 

whereas Amax was the greatest somata area measured. Finally, identified processes were filtered 901 

if not spatially connected to an identified soma. If needed, users can then proceed to subcellular 902 

parcellation of the segmented processes setting a suitable surface value to split process-ROIs in 903 

“mini-ROIs”. The last step consisted in the refinement of the ROIs so obtained using the cross-904 

correlation module. In fact, it identified regions where calcium signals were cross-correlated with 905 

the semantically segmented ROIs signals in the FOV. 906 

 907 

Detection and Segmentation Metrics 908 

We evaluated the detection performances of our algorithm by comparing ASTRA somata 909 

segmentations with the manual consensus labels, as described in 36, 37. We quantified three somata 910 

detection metrics: recall, precision, and F1 score, defined as follows:  911 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑁𝑇𝑃

𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

 
 

(5) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑁𝑇𝑃

𝑁𝐶

 
 

(6) 

 
𝐹1 = 2 ∗

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

(7) 

We defined these quantities as follows: number of manually labelled somata (consensus somata, 912 

𝑁𝐶 ), number of true positive somata (𝑁𝑇𝑃) and number of somata detected (𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑) 36, 37. We 913 
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matched masks between the consensus labels and the detected masks using the Intersection-over-914 

Union (IoU) metric along with the Hungarian algorithm 70. We computed the IoU metrics for 2 binary 915 

masks 𝑀1 and 𝑀2  as follows: 916 

 
𝐼𝑜𝑈(𝑀1, 𝑀2) =  

|𝑀1   ∩  𝑀2|

|𝑀1   ∪  𝑀2|
 

 

(8) 

Then we computed the distance matrix between any pair of masks in GT manual annotations set 917 

and in ASTRA annotations set as described in 36, 37. Each element of this matrix has been computed 918 

as follows: 919 

 

𝑑(𝑀𝑖
𝐺𝑇 , 𝑀𝑗) =  {

1 −  𝐼𝑜𝑈(𝑀𝑖
𝐺𝑇 , 𝑀𝑗) 𝑖𝑓 𝐼𝑜𝑈(𝑀𝑖

𝐺𝑇 , 𝑀𝑗)  ≥ 0.5

0 𝑖𝑓 𝑀𝑖
𝐺𝑇 ⊆ 𝑀𝑗  𝑜𝑟 𝑀𝑖

𝐺𝑇 ⊇ 𝑀𝑗

∞ 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(9) 

 

A distance of infinity corresponded to non-matching masks due to their small IoU score. Finally, we 920 

solved the matching problem applying the Hungarian algorithm to the distance matrix. The number 921 

of matched masks corresponded to 𝑁𝑇𝑃. 922 

Segmentation scores have been computed at the pixel level to quantify how complex structures 923 

like processes were segmented by ASTRA. For each FOV, we computed the segmentation score 924 

considering only the detected cell; when no detected cells were available in a FOV the 925 

segmentation score was discarded. The segmentation score was quantified by three metrics: recall, 926 

precision, and F1 score, defined in eq.5, eq.6, eq.7. We defined 𝑁𝐶 number of manually labelled 927 

pixels, 𝑁𝑇𝑃 number of true positive pixels in the ASTRA segmentation and 𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  the number of 928 

pixels segmented by ASTRA. We computed the F1-score for both somata and processes pixel-929 

classes. 930 

 931 

Cross-Correlation Error evaluation 932 

Error estimation for the cross-correlation module has been performed computing the number of 933 

pixels outside astrocyte domains that were cross-correlated with the consensus ROIs pixels in each 934 

FOV. 935 
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For each cell in the FOVs, we sampled 1000 pixels outside the astrocytes’ domain avoiding pixels 936 

which were used to tune the cross-correlation threshold. This set was fundamental to compute the 937 

number of false positive selections for each astrocyte. Domains were estimated as a circular region 938 

of radius ~40 µm surrounding each cell in FOVs. Then, we computed the number of false positive 939 

pixel per FOVi as: 940 

 

FP(𝐹𝑂𝑉𝑖) =

∑ 𝑓𝑝(𝑐𝑒𝑙𝑙𝑗)𝑗=𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓
𝑐𝑒𝑙𝑙

𝑁𝐶

 

(10) 

 941 

Where fp was the number of false positive pixels selected for cellj and NC was the number of cells 942 

in FOVi.  943 

 944 

Implementation of other state-of-the-art algorithms used for comparison 945 

UNet2DS implementation 946 

We segmented dataset-1 with UNet2DS software (https://github.com/alexklibisz/deep-calcium) 947 

validating its performance using leave-one-out cross validation strategy. For dataset-1, we used 948 

the same training procedure outlined in 35. We used 50 epochs with 100 training iterations in each 949 

epoch using sixteen randomly cropped 128×128 pixels regions from the mean image, utilizing the 950 

dice-loss and the Adam optimizer. We monitored the 𝐹1 score on a validation set, which was 951 

selected from the training set (5% of the training set) to ensure the network was not overfitting. 952 

 953 

STNeuronet implementation 954 

We segmented dataset-1 with STNeuronet 37, validating its performance using a leave-one-out 955 

cross validation strategy. We preprocessed our data as described in 37 and we adapted the 956 

consensus annotation (see Consensus annotation) to identify active somata of astrocyte in each 957 

frame of our data (https://github.com/soltanianzadeh/STNeuroNet, prepareTemporalMask.m). In 958 

the training dataset, somata were classified as active/inactive analyzing Δf/f0 traces extracted using 959 

the procedure described in 15 to detect statistically significant calcium events. For each FOV, we 960 

generated the training set cropping 120x144x144 voxels surrounding each somata in the 961 
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consensus annotation. Then, we trained the net for 10000 epochs with leaning rate 0.5*10^-4 and 962 

batch size of 3. The loss function always converged to a plateau within 10000 epochs with these 963 

training parameters. Then, we used the same training procedure outlined by 37. 964 

 965 

CaImAn implementation 966 

We segmented dataset-1 with CaImAn 36, validating its performance against the consensus 967 

annotations. CaImAn hyperparameters were set according to astrocytic somata morphology 1, 45 968 

and signal dynamics. We used patch_ size = [80, 80] and overlap = [20, 20] for dataset-1. 969 

Components to be found was set to K = 1 since in these patches there was at least 1 astrocytic 970 

somata. Decay time was 1.5 s and we set merging threshold equal to 0.6 in each test. Other 971 

parameters were set to default settings.  972 

  973 

GECI-Quant 974 

To perform semi-automatic semantic segmentation with GECI-Quant, annotator-1 followed the 975 

procedure described in 19. Briefly, for each FOV in dataset-1, the annotator selected two regions of 976 

interest for every astrocyte corresponding to soma and astrocytic domain, respectively. Then, 977 

annotator-1 manually selected an intensity threshold for each region of interest following the 978 

procedure outlined in 19. GECI-Quant segmentations were used to compute the performance. 979 

 980 

Reconstruction of astrocytic morphology from the spatio-temporal map of AQuA 981 

Starting from the spatio-temporal map of calcium events resulted from AQuA 28, we reconstructed 982 

astrocytic morphology since a subset of pixels classified as events should in principle belong to 983 

astrocytic somata and processes. For each astrocyte detected in the consensus annotation, we ran 984 

AQuA in circular regions of radius ~40 µm surrounding these cells, thus limiting the analysis to the 985 

putative astrocytic domain. Using putative calcium events detected by AQuA, we selected the pixels 986 

belonging to a minimum number of events. For each astrocyte the minimum number of events was 987 

tuned as the value that maximize F1-score between the selected set of pixels and the consensus 988 

annotation (using the union of somata and processes annotations). Hence, we computed precision, 989 
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recall and F1-score between the best reconstruction and the consensus annotation. This strategy 990 

provided the F1-score upper bound for the reconstruction astrocytic morphology using AQuA. 991 

 992 

PSNR evaluation 993 

We evaluated the peak signal-to-noise ratio (PSNR) of the FOVi containing N astrocytic ROIs as: 994 

 
PSNR(𝐹𝑂𝑉𝑖) =

1

𝑁
∑

max
𝑡

𝑦𝑗 (y)

𝜎𝑗
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑁

𝑗=1

 
(11) 

where yj (t) was the mean fluorescence signal in astrocyte ROIj and 𝜎𝑗
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  was the standard 995 

deviation of the baseline distribution of fluorescence values in astrocytic ROIj. To compute the 996 

baseline distribution of each astrocyte, we considered only pixels inside the astrocyte domain 997 

(circular area of radius ~40 m). The values of these pixels across time formed the full fluorescence 998 

distribution. The baseline distribution consisted of all the fluorescence value smaller than the 80th 999 

percentile of the full fluorescence distribution. 1000 

 1001 

Manual dataset annotation 1002 

Two-photon t-series were motion corrected with a custom Python implementation of phase 1003 

correlation correction algorithm 71. Motion-corrected t-series were pre-processed with the spatial 1004 

sharpening module (see above). The consensus generation process included 2 steps. In the first 1005 

step, three expert annotators independently labeled the datasets using the freehand and ROI 1006 

Manager tools of Fiji 72 according to the following rules: i) annotators used the t-series to detect 1007 

visible astrocytic somata; ii) spatial maps were used to select and to label ROIs, identifying visible 1008 

astrocytic somata and processes; iii) annotators sequentially added ROIs, defining the contours of 1009 

the optically resolved proximal processes displaying active calcium dynamics and presumably 1010 

belonging to the same astrocyte. 1011 

In the second step, annotators solved inconsistencies in their annotations reaching a consensus 36 1012 

as follows: i) annotations of the three annotators were combined in overlapping masks (Fig. S3) to 1013 

highlight discrepancies among annotators; ii) each soma or process identified by 3 annotators was 1014 

included in the consensus; iii) each soma or process identified by < 3 annotators was included in 1015 
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the consensus only after an ad-hoc review, where the annotators judged looking at both the 1016 

preprocessed spatial maps and motion corrected t-series. 1017 

 1018 

Extraction of calcium event traces 1019 

For each ROI, we computed fluorescence signals as in eq. 12. 1020 

 𝛥𝑓

𝑓0

=
𝑓(𝑡) − 𝑓0(𝑡)

𝑓0(𝑡)
 

(12) 

Where f(t) was the average fluorescence signal of a given ROI at time t and f0(t) was the baseline 1021 

fluorescence. f0(t) was computed as the 20th percentile of the fluorescence intensity in a 30 s rolling 1022 

window centered in t. Then, we generated the calcium event traces of astrocytes following the 1023 

procedure described in 15. For each Δf/f0 trace, the standard deviation σ1 of the whole signal was 1024 

computed. Values above and below the interval ± σ1 were removed from the trace and the standard 1025 

deviation σ2 of the filtered trace was computed.  Finally, fluorescence transients were identified on 1026 

the original trace as events if: i) fluorescence values were above 2σ2; and ii) fluorescence values 1027 

returned within the ± σ2 interval in more than 0.5 s. Hence, we generated the calcium event trace 1028 

setting all fluorescence values in Δf/f0 outside of those belonging to positive events to 0. 1029 

 1030 

Mutual information analysis of individual astrocytic soma and of pairs 1031 

For experiments in which we recorded astrocytic calcium activity using mesoscopic two-photon 1032 

microscopy, we computed locomotion information (information about whether the animal was 1033 

running or was still) and licking information (information about whether the animal was or was not 1034 

licking the waterspout) carried by the calcium signals of either a single astrocytic soma or jointly by 1035 

a pair of simultaneously recorded astrocytic somata.  1036 

Mutual information between the considered behavioral variable, S (describing licking or 1037 

locomotion), and the astrocytic activity, R, was computed as: 1038 

 
I(S; R) =  ∑ 𝑝(𝒓, 𝑠) log2

𝑝(𝒓, 𝑠)

𝑝(𝒓)𝑝(𝑠)𝑠∈𝑆,𝒓∈𝑹
 

(13) 
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where p(r,s) is the joint probability of observing at the same time a value s and r for the behavioral 1039 

and the astrocytic activity variable, and p(s) and p(r)  are the marginal probabilities, respectively. 1040 

The calcium activity of each individual soma was discretized in two equally spaced bins. For single 1041 

soma information, r was a one-dimensional array reporting the discretized activity of the considered 1042 

cell, and for pairs it was the two-dimensional array containing the discretized activity of the two 1043 

somata. The behavioral variable locomotion was computed as a binary array, set to 1 for epochs 1044 

of motion (mouse speed ≥ 0.5 cm/s) and set to 0 for epochs of immobility (mouse speed < 0.5 1045 

cm/s). The behavioral variable licking was a binary variable, in which contacts of the mouse’s 1046 

tongue to the capacitive waterspout were encoded as 1 while licking was set to 0 otherwise.  1047 

When considering pairs of ROIs, we further performed information breakdown analysis 56, 73, 1048 

decomposing mutual information carried by a pair of ROIs, I(S;R), into four terms: 1) ILIN  the mutual 1049 

information linear term; 2) ISS  the signal similarity term; 3) ICI the stimulus independent correlation 1050 

term; 4) ICD the stimulus dependent correlation term. 1051 

 1052 

We computed the null distribution for each pair of ROIs to evaluate if information in the two ROIs 1053 

of the pair is information-enhancing or information-limiting. We generated n = 100 random shuffling 1054 

of the behavioral variable label of the data, which destroyed the relationship between the behavioral 1055 

variable and the calcium response. From the shuffled data, we computed the distribution of Ish = I 1056 

– ILIN-Iss. A pair was classified information-enhancing or information-limiting if its real Ish value was 1057 

>the 95th percentile or < 5th percentile of the shuffled distribution, respectively. 1058 

 1059 

To correct the mutual information bias caused by limited sampling of astrocytic responses, we used 1060 

the quadratic-extrapolation bias correction 73, 74. 1061 

 1062 

Mutual information computed from large astrocytic populations from the confusion matrix 1063 

of an SVM decoder 1064 

To compute information for large populations of astrocytic ROIs, we computed mutual information 1065 

with an intermediate decoding step 75, because we could not extend the direct information 1066 
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calculation of the previous sections to large populations due to sampling problems 76. We trained a 1067 

support vector machine (SVM) 77 with Gaussian kernel to classify the state of either one of two 1068 

behavioral variables (S) according to a single-trial population vector made combining calcium 1069 

signals of all individual astrocytic ROIs within the FOV (either using all of them, or only part of it, 1070 

see main text). Behavioral variables classified were locomotion and licking. Locomotion was 1071 

defined as vector of binary values in which 1 or 0 indicated epochs of motion (mouse speed ≥ 0.5 1072 

cm/s) or epochs of immobility (mouse speed < 0.5 cm/s). Licking was defined as a binary vector: 1 1073 

when contacts of the mouse’s tongue to the capacitive waterspout were done and 0 otherwise. For 1074 

each experimental sessions, the dataset was composed by Zexp observations (Xj,sj) with j = 1,…, 1075 

Zexp. Xj is the n-dimensional array of the calcium activity of the N ROIs in the session, whereas sj 1076 

corresponded to either running/still or licking/not licking behavioral variables. Calcium observations 1077 

Xj were used to predict sj variables using a support vector machine with Gaussian kernel. We 1078 

trained and tested the SVM using 5-fold cross-validation procedure independently on each 1079 

experimental session. During each iteration of the cross-validation, optimal hyperparameters were 1080 

selected performing 5-fold cross-validation on each fold training set. 1081 

 1082 

Predictions of the decoder for each of the 5-folds used as test were then collected to compute the 1083 

overall mutual information between the predicted behavioral variable Sp and the real value S. 1084 

Mutual information I(S; 𝑆𝑝) was defined as the information in the confusion matrix: 1085 

 
I(S; 𝑆𝑝) =  ∑ 𝑝(𝑠𝑝, 𝑠) log2

𝑝(𝑠𝑝 , 𝑠)

𝑝(𝑠𝑝)𝑝(𝑠)𝑠∈𝑆,𝑠𝑝∈𝑆𝑝

 
(14) 

where 𝑝(𝑠𝑝 , 𝑠) was the confusion matrix, that is the probability of observing a given value s of the 1086 

behavioral variable and of predicting is as 𝑠𝑝 , and 𝑝(𝑠) and 𝑝(𝑠𝑝)  are the marginal probabilities, 1087 

respectively.  To assess if the correlations among astrocytes increased the amount of information 1088 

related to a behavioral variable, we disrupted correlations by randomly shuffling, separately for 1089 

each ROI, the order of trials with the same behavioral variable identity. We performed 100 trial 1090 

shuffling. We then used the distribution of I(S; 𝑆𝑝) values on trial shuffled data to compute the trial 1091 

shuffling information as the mean value of this distribution. 1092 
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 1093 

Animals 1094 

All experiments involving animals were approved by the National Council on Animal Care of the 1095 

Italian Ministry of Health and carried out in accordance with the guidelines established by the 1096 

European Communities Council Directive authorization (61/2019-PR). All data were collected from 1097 

male C57BL/6J mice (Charles River, Calco, Italy). From postnatal days 30, animals were separated 1098 

from the original cage and housed in groups of up to five littermates per cage with ad libitum access 1099 

to food and water in a 12-hours light-dark cycle. All the preparative and experimental procedures 1100 

were conducted on animals older than 10 weeks.  1101 

 1102 

AAV injection and chronic hippocampal window surgery 1103 

Animals were anesthetized with 2% isoflurane 0.8 % oxygen, placed into a stereotaxic apparatus 1104 

(Stoelting Co, Wood Dale, IL), and maintained on a warm platform at 37C for the whole duration 1105 

of the anesthesia. Before surgery, a bolus of Dexamethasone (Dexadreson, 4 gr/kg) was injected 1106 

in the animal’s hamstring. After scalp incision, a 0.5 mm craniotomy was drilled on the right 1107 

hemisphere (1.75 mm posterior, 1.35 mm lateral to bregma), the AAV-loaded micropipette was 1108 

lowered into the hippocampal CA1 region (1.40 mm deep to bregma). 0.8 l of AAV solution 1109 

containing pZac2.1 gfaABC1D-cyto-GCaMP6f (Addgene viral prep # 52925-AAV5) was injected at 1110 

100 nL/min by means of a hydraulic injection apparatus driven by a syringe pump (UltraMicroPump, 1111 

WPI, Sarasota, FL). Following the viral injection, a stainless-steel screw was implanted on the 1112 

cranium of the left hemisphere and a chronic hippocampal window was implanted on the 1113 

contralateral hemisphere similarly to 15, 78, 79. In brief, a trephine drill was used to open a 3 mm 1114 

craniotomy centered at coordinates 2.00 mm posterior and 1.80 mm lateral to bregma. The dura 1115 

was removed using fine forceps and the cortical tissue overlaying the hippocampus slowly 1116 

aspirated using a blunt needle coupled to a vacuum pump. During aspiration the exposed tissue 1117 

was continuously irrigated with normal HEPES-buffered artificial cerebrospinal fluid (ACSF). 1118 

Aspiration was stopped once the thin fibers of the external capsule were exposed. An optical 1119 

window was fitted to the craniotomy in contact to the external capsule and a thin layer of silicone 1120 
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elastomer (Kwik-Sil, World Precision Instruments) was used to surround the interface between the 1121 

brain tissue and the steel surface of the optical window. The optical window was composed of a 1122 

thin-walled stainless-steel cannula segment (OD, 3 mm; ID, 2.77 mm; height, 1.50 - 1.60 mm) and 1123 

a 3.00 mm diameter round coverslip, which was attached to one end of the cannula using UV 1124 

curable optical epoxy. Sharp edges and bonding residues were smoothed using a diamond coated 1125 

burr. A custom stainless-steel head-plate was attached to the skull using epoxy glue. The 1126 

components described above were finally fixed in place using black dental cement and the scalp 1127 

incision was sutured to adhere to the implant. All the animals received an intraperitoneal bolus of 1128 

antibiotic (BAYTRIL, Bayer, Germany) to prevent postsurgical infections. 1129 

 1130 

Generation of the two-photon imaging dataset in awake head-restrained mice 1131 

The optical setup for two-photon imaging was composed of a pulsed laser source (Chameleon 1132 

Ultra, 80 MHz repetition rate tuned at 920 nm, Coherent) and Bruker Ultima Investigator equipped 1133 

with 6 mm raster scanning galvanometers, movable objective mount, 16x/0.8 NA objective (CFI75 1134 

LWD 16X W, Nikon, Milan), and multi-alkali photomultiplier tubes. Laser beam intensity was 1135 

adjusted using a Pockel cell (Conoptics Inc, Danbury). Laser beam power at the objective outlet 1136 

was 90-110 mW. GCaMP6f or TdTomato emission signal was collected by the photomultipliers 1137 

after band-pass filtering (525/70 nm) and digitalized in 12 bits. Imaging sessions were conducted 1138 

in raster scanning mode. t-series were motion corrected using an open-source implementation of 1139 

up-sampled phase cross-correlation 71, 80 and the t-series median projection was used as reference 1140 

frame. One or two weeks after surgery the animals were handled by the operator for a minimum of 1141 

two days and habituated to the imaging setup. Starting from the second session, the animals were 1142 

head-restrained for a progressively increasing amount of time, reaching 1 hour in approximately 1143 

one week. Mice were free to run on a custom 3D printed wheel. Experimental sessions lasted 1144 

approximately one hour. After each session, animals were returned to their home cages. 1145 

 1146 

Dataset-1. This dataset was composed of 24 t-series of hippocampal astrocytes expressing 1147 

GCaMP6f, recorded in head-fixed mice running on a wheel. This dataset was composed of 15 t-1148 
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series with 550 frames and 9 FOVs with 750 frames (image size, 256 pixels x 256 pixels, 0.634 1149 

m/pixel. T-series were acquired at 3 Hz. 1150 

 1151 

Dataset-2. This dataset was composed of 10 t-series of hippocampal astrocytes expressing 1152 

TdTomato, recorded in head-fixed mice running on a wheel. 4 t-series were recorded with 1153 

galvanometric mirror scanning and 4 t-series were recorded with resonant mirror scanning. Image 1154 

dimensions were 512 pixels x 512 pixels, 1.057 m/pixel. t-series recorded with galvanometric 1155 

mirror scanning comprised 250 frames. t-series recorded with resonant mirror scanning comprised 1156 

1200 frames (one t-series), 5500 frames (two t-series), and 9000 frames (one t-series). t-series 1157 

recorded with galvanometric mirror scanning were recorded at [0.8-1 Hz], whereas t-series 1158 

recorded with resonant mirror scanning were recorded at 30 Hz. 1159 

 1160 

Dataset-3. This dataset was composed of 7 t-series of hippocampal astrocytes expressing 1161 

TdTomato indicator recorded in awake mice running on a wheel. t-series length was:  5500 frames 1162 

(5 t-series), 4500 frames (one t-series), and 9000 frames (one t-series). Image dimensions: 512 1163 

pixels x 512 pixels, 0.79 m/pixel. t-series were acquired at 30 Hz. 1164 

 1165 

Dataset-4. This dataset was composed of 10 t-series of hippocampal astrocytes expressing 1166 

GCaMP6f, recorded in head-fixed mice running on a wheel. The dataset comprised 10 t-series. t-1167 

series length, 9000 frames; image dimension, 512 pixels x 512 pixels; pixel dimension, 0.793 1168 

m/pixel; acquisition frequency, 30 Hz. 1169 

 1170 

Simulated datasets. We generated 4 artificial datasets with increased noise levels using dataset-1. 1171 

To this aim, we first estimated the standard deviation,   for each pixel in the FOVs. We then 1172 

computed a novel temporal intensity trace adding zero mean gaussian noise with * standard 1173 

deviation to the recorded raw trace. The noise scaling factor, , was 0.5, 1, 1.5, 2 for the four 1174 

artificial datasets, respectively.  1175 

 1176 
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We also generated 2 datasets with reduced background pixels intensity. For each t-series, we 1177 

defined as background all the pixels outside the consensus annotations, and we scaled background 1178 

pixel intensity by a factor , ( values, 0.75 and 0.5, respectively). 1179 

 1180 

AAV injection and chronic optical window surgery for mesoscopic imaging of cortical 1181 

astrocytes 1182 

Animals were anesthetized with 2% isoflurane 0.8 % oxygen, placed into a stereotaxic apparatus 1183 

(Stoelting Co, Wood Dale, IL), and maintained on a warm platform at 37C for the whole duration 1184 

of the anesthesia. Before surgery, a bolus of Dexamethasone (Dexadreson, 4 gr/kg) was injected 1185 

in the animal’s hamstring. After scalp incision, two small craniotomies were drilled on the right 1186 

hemisphere (craniotomy 1: 1.25 mm posterior, 2.00 mm lateral to bregma; craniotomy 2: 1.75 mm 1187 

posterior, 1.60 mm lateral to bregma). A micropipette loaded with AAV solution was lowered 300 1188 

µm below pial surface into the cortical parenchyma. 0.4 l of AAV solution containing pZac2.1 1189 

gfaABC1D-cyto-GCaMP6f (Addgene viral prep # 52925-AAV5) was injected at 50 nL/min using a 1190 

hydraulic injection apparatus driven by a syringe pump (UltraMicroPump, WPI, Sarasota, FL). 1191 

Following the viral injection, a circular craniotomy (3 mm diameter) was centered at the stereotaxic 1192 

coordinates (1.5 mm anterior and 1.8 mm lateral to bregma) using a trephine drill. The dura was left 1193 

intact, and a custom chronic cranial window for mesoscopic two-photon imaging was placed above 1194 

the craniotomy and secured using cyanoacrylate glue. A custom titanium head-plate was attached 1195 

to the skull using cyanoacrylate glue. Finally, the components were secured using dental cement 1196 

(C&B Superbond; Sun Medical). All the animals received an intraperitoneal bolus of antibiotic 1197 

(BAYTRIL, Bayer, Germany) to prevent postsurgical infections. 1198 

 1199 

Mesoscale two-photon imaging in awake head-restrained mice  1200 

A two-photon random access mesoscope (2P-RAM, 48, ThorLabs Mesoscope, Thorlabs, Newton, 1201 

NJ) was coupled with a pulsed laser source (Chameleon Ultra, 80 MHz repetition rate tuned at 920 1202 

nm, Coherent). Group delay dispersion was compensated using a prism-based compensation unit. 1203 

2P-RAM scanning unit was composed of a resonant scanner (24 kHz, CRS 12 K, Cambridge 1204 
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Technology), a pair of galvanometric mirrors, and an acoustic coil remote focusing unit. Image 1205 

acquisition was controlled using Scanimage 81 (MBF Bioscience, Ashburn VA). Imaging was 1206 

performed using a 0.6 NA objective (S/N:126, Jenoptik, Jena), and emitted fluorescence was 1207 

collected using GaAsP photomultiplier tubes (PMT2103, Thorlabs, Newton, NJ) after band-pass 1208 

filtering (520/70 nm). Laser beam intensity was adjusted using a Pockel cell (ConOptics Inc, 1209 

Danbury). Laser beam power at the objective outlet was 50-70 mW. Imaging was conducted on a 1210 

~1.5x1.5 mm field of view scanned using three tiled regions of interest of 1500x500 pixels (1 1211 

µm/pixel) resulting in a composite field of view of 1500x1500 pixels sampled at ~3 Hz frame rate. 1212 

T-series were motion corrected using an open-source implementation of up-sampled phase cross-1213 

correlation 71, 80 and the t-series median projection was used as reference frame. Three weeks after 1214 

surgery the animals were handled by the operator for two days and habituated to the imaging setup. 1215 

Starting from the second session, the animals were head-restrained for a progressively increasing 1216 

amount of time, reaching 1 hour in approximately one week. Mice were free to run on a custom 3D 1217 

printed wheel and water rewards were provided by the operator through a custom waterspout. 1218 

Experimental sessions lasted between 1-1.5 hours. After each session, animals were returned to 1219 

their home cages. 1220 

 1221 

Algorithm Open-source implementation and Datasets availability 1222 

ASTRA was developed in Python 3.6 82 and PyTorch 1.2 83 and the code is publicly available at 1223 

(https://gitlab.iit.it/fellin-public/astra). ASTRA uses several open-source libraries like OpenCV 63, 1224 

scikit-learn 84, scikit-image 80 and Scipy 85. The repository contains documentations, Docker 1225 

(docker.com) image for fast installation, Jupyter notebook tutorials, bindings for widely used 1226 

software (Fiji, 72 and MATLAB (MathWorks)), visualization and analysis tools, and a 1227 

message/discussion board. DNN weights for all the datasets used in this study are reported in the 1228 

repository. The four datasets, including individual and consensus annotations, will be shared upon 1229 

publication. 1230 

 1231 

Statistics 1232 
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In statistical testing of detection and segmentation performance of ASTRA, we used a two-sided 1233 

Wilcoxon rank test. When performing multiple comparisons between ASTRA and human users of 1234 

detection and segmentation performance, we used Holm-Bonferroni method for post-hoc 1235 

correction.  1236 

 1237 

Time Analysis  1238 

We analyzed the computational performances of ASTRA in terms of processing time for the various 1239 

steps in the Inference Pipeline. We used the following computing architecture, a Linux based 1240 

workstation (Ubuntu 18.04.3 LTS distribution) equipped with 20 Intel(R) Core (TM) i9-9900X CPU 1241 

clocked @ 3.50GHz, 130 GB of RAM, and 3 INVIDIA GeForce RTX 2080Ti GPUs. 1242 
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 1258 

Figure 1. ASTRA: a machine learning algorithm for fast and automated semantic segmentation of 1259 

astrocytes. A-B) Flow-charts of ASTRA segmentation pipelines for training (A) and inference (B). 1260 

At the end of the training pipeline, pre-processing hyperparameters and DNN weights are saved. 1261 

At the end of the inference pipeline spatial coordinates corresponding to somata, processes, and 1262 

cross-correlated regions are saved. C) Two-photon Ca2+ imaging of hippocampal astrocytes was 1263 

performed in head-fixed mice running on a wheel.  D) Four datasets were initially used for ASTRA 1264 

training and testing. Details of each dataset are listed in the figure. Each dataset was manually 1265 

segmented by 3 expert annotators. White bar on the top-right of each image represent the scale 1266 

bar. Dataset-1, 40 µm, Dataset-2, 50 µm Dataset-3, 40 µm, and Dataset-4, 40 µm. 1267 
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 1268 

Figure 2. Evaluation and benchmarking of ASTRA on dataset-1. A) Representative comparison of 1269 

consensus annotations (left, FOV id: 2) and ASTRA semantic segmentation (right). On the top of 1270 

the right image are reported somata detection Precision, Recall, and F1-score for FOV id: 2. B) 1271 

Representative example of the comparison of somata and processes segmentations between 1272 

ASTRA and the consensus annotations. True positive pixels (red), false negative pixels (green), 1273 

and false positive (cyan) are shown. C) Performance of the three annotators A-1, A-2, and A-3 1274 

against ASTRA. Precision (P), Recall (R), and F1-score (F1) are shown. Two-sided Wilcoxon rank 1275 

sum test N= 24; leave-one-out cross validation (LOOCV) results. In this as well as in following 1276 

figures: n.s., not significant, *P < 0.05, **P < 0.005 and ***P < 0.0005. D) F1-score for somata and 1277 

processes segmentation for annotators and ASTRA. Two-sided Wilcoxon rank sum test, N= 24, 1278 

LOOCV results. E) F1-score for somata and processes segmentation of GECI-Quant and ASTRA. 1279 

Two-sided Wilcoxon rank sum test N= 24; LOOCV results. F) Astrocytic morphology reconstructed 1280 

using ASTRA segmentations and AQuA event detection. Two-sided Wilcoxon rank sum test N= 24; 1281 

LOOCV results. G) Soma detection performance of STNeuronet, CaImAn, UNet2DS, and ASTRA. 1282 

Two-sided Wilcoxon rank sum test N= 24; LOOCV results. See also table S1, S2, and S3.  1283 
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 1284 

Figure 3. Identification of correlated calcium signals in astrocytic domains using ASTRA. A) Two 1285 

representative examples of statistically correlated regions in the astrocytic domain identified with 1286 

the cross-correlation module (FOV (Id:2)). ROIs corresponding to somata and processes are 1287 

colored in red and pink, respectively. ROIs extracted using cross correlation are shown in green. B) 1288 

Ratio of ROI area extracted using the cross-correlation module and ROI area obtained by summing 1289 

soma and processes ROIs together as a function of the cross-correlation threshold. C) Cross 1290 

correlation error distribution. The cross-correlation error was estimated as the mean percentage of 1291 

false-positive pixels selected in each FOV sampling 1000 pixels outside astrocytes domains, which 1292 

were not used to tune the cross-correlation threshold. Two-sided Wilcoxon rank sum test, N=24.  1293 
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 1294 

Figure 4. Impact of image noise and pre-processing on ASTRA performance. A) Representative 1295 

image (single cell in FOV id 2) under various simulated noise regimes. Values of peak signal-to-1296 

noise ratio (PSNR) for each noise regime are reported above the images. B) Precision, Recall, and 1297 

F1-score for soma detection performance for different PSNRs. Two-sided Wilcoxon rank sum test, 1298 

N = 24; LOOCV results. C) F1-score for segmentation of somata and processes across different 1299 

PSNRs. Two-sided Wilcoxon rank sum test, N = 24; LOOCV results. D-E) ASTRA detection and 1300 

segmentation performance as a function of the omission of ASTRA pre-processing steps. We 1301 

omitted either the temporal pre-processing step (ASTRA-Spatial) or all the pre-processing steps 1302 

(ASTRA-unprocessed). Soma detection Precision, Recall, and F1 are reported in D. Two-sided 1303 

Wilcoxon rank sum test, N = 24; LOOCV results. The segmentation F1-score for somata and 1304 

processes are shown in E. Two-sided Wilcoxon rank sum test, N = 24; LOOCV results.  1305 
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 1306 

Figure 5. ASTRA performance on never-seen-before data. A) Consensus annotation of FOV (Id: 1307 

1, dataset-4). B) ASTRA segmentation on the same FOV shown in A. C) Soma detection 1308 

performance is reported as Precision (P), Recall (R), and F1-score (F1) for the three human 1309 

annotators (A-1, A-2, and A-3) and for ASTRA. Two-sided Wilcoxon rank sum test, N=10; LOOCV 1310 

results. D) F1-score for segmentation of somata and processes for the three human annotators 1311 

(blue, yellow, and green) and ASTRA (red). Two-sided Wilcoxon rank sum test, N=10; LOOCV 1312 

results. See also table S5. 1313 
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Figure 6. ASTRA enables fast segmentation of large-scale astrocytic networks imaged with two-1315 

photon mesoscopic microscopy. A) Representative image of somata segmentation (green) 1316 

identified by ASTRA on cortical astrocytes expressing GCaMP6f and recorded using two-photon 1317 

mesoscopic imaging (FOV dimension: 1.5 mm x 1.5 mm; FOV Id: 4). B) Zoom in of the region 1318 

highlighted in A. On A-B image contrast has been adjusted to aid visualization. C) Pearson 1319 

correlation of calcium signals for pairs of astrocytic somata as a function of pair-wise distance. Grey 1320 

lines are linear fit of data from individual sessions, the red line is the mean ± std across 15 imaging 1321 

sessions from 3 animals. Two-sided Wilcoxon rank-sum test. D) Fraction of active ROIs during 1322 

animal locomotion (Run) and absence of locomotion (No-Run). Two-sided Wilcoxon signed rank 1323 

test N = 13. E) Mutual information about animal locomotion carried by pairs of ROIs (I) compared 1324 

with the sum of the information separately encoded by each member of the pair (ILIN) plus the signal 1325 

similarity information component (Ish = ILIN+ ISS). Two-sided Wilcoxon signed rank test, N = 13. 1326 

F)  Fraction of information-enhancing (Info-enh.) and information-limiting (Info-lim.) pairs encoding 1327 

locomotion information. N = 13. G) I - Ish values within pairs of somata as a function of pairwise 1328 

distance. Information-enhancing pairs are reported in cyan and information-limiting pairs are 1329 

reported in red. Linear regression fit: all pairs (solid line), information-enhancing pairs (dotted line), 1330 

and information-limiting pairs (dashed line). Two-sided Wilcoxon signed rank test, N = 13. H) 1331 

Information about locomotion behavior (Irun) decoded from astrocytic population vectors on real 1332 

(white), and trial-shuffled (gray) data. Two-sided Wilcoxon signed rank test N = 13. I-M) Same as 1333 

in D-H but for licking (lick) vs no liking (No-lick) behavior. I, two-sided Wilcoxon signed rank test N 1334 

= 13; J, two-sided Wilcoxon signed rank test N = 8; K, N = 8; L, two-sided Wilcoxon rank-sum test, 1335 

N = 8; M, Two-sided paired t-test., N=8. In (H-M) trial shuffling disrupted temporal coupling within 1336 

astrocytic population vectors, while preserving single ROI activity patterns. In panels D, E, F, H, I, 1337 

J, K, and M, data are represented as mean ± sem.  1338 
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SUPPLEMENTARY FIGURES 1339 
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Figure S1. Schematic representation of ASTRA pipelines and modules. A-B) Flowcharts of the 1341 

training (A) and inference (B) pipelines. C) Flowchart of the pre-processing steps: i) generation of 1342 

the spatial sharpening map (Spatial Sharpening); ii) extraction of putative bounding boxes (PBB 1343 

Extraction); and iii) local activity filtering (LA Filtering) of single-cell images. Please note that 1344 

extraction of single-cell images during pre-processing of the training set relies on ground-truth 1345 

segmentation. Extraction of single-cell images during pre-processing of the inference set relies on 1346 

the activity map generator (Activity Map Generation). D) Schematic representation of ASTRA 1347 

activity map generator: i) patch extraction; ii) patch parallel analysis; iii) clustering of active pixels. 1348 

E) ASTRA DNN architecture. In each level Li with i = (1, 2, 3, 4, 5), height (H) and width (W) of the 1349 

input image is reduced by a factor 2i-1. Conv2D+BN+ReLu: this block is composed of two 1350 

consecutive sequences of 3 x 3 convolutional filters (Conv2D) followed by batchnorm normalization 1351 

(BN) and rectified linear unit (Relu). Max Pooling: we used a kernel_size of (2,2) - the size of the 1352 

sliding window where the maximum value of the input tensor is taken - resulting in input tensor of 1353 

dimensions H and W reduced to H/2 and  W/2. Mixed_i: in L3, we used Mixed_5a, in L4 we used 1354 

Mixed_6a, and, in L5, we used Mixed_7a from Inception-ResNetv2 implementation in 64. Inception-1355 

ResNet Block: in L3 the block is composed as (Inception-ResNet-A, Block35)x10, in L4 the block 1356 

is composed by (Inception-ResNet-B, Block 17)x20 and in  L5 the block is composed by (Inception-1357 

ResNet-C, Block8)x10 from Inception-ResNetv2 implementation in (Szegedy et al. 2017). 1358 

Upsampling: we adopted dense upsampling convolution (DUC, 67) to perform the upsampling on 1359 

the input tensor. The input tensor dimensions are H x W x D and they are transformed to (2H) x 1360 

(2W) x (D/4). Conv2D+Softmax: this block is composed by a 3x3 convolutional filter and a Softmax 1361 

transformation.  1362 
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 1363 

Figure S2. ASTRA pre-processing. A) Left: median projection of a representative FOV (Id:2) 1364 

overlaid with putative bounding boxes computed by activity map generation. Right: spatial 1365 

sharpening of the same FOV shown on the left panel. B) Top: zoom in showing sharpened images 1366 

of four cells (cell 1-4) extracted from the putative bounding boxes shown in the left panel of A. 1367 

Bottom: for each image the result of local activity filtering is shown.  1368 
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 1369 

Figure S3. Generation of the consensus annotation. Top: individual manual annotations (colored 1370 

contours) for FOV (Id:2) by three graders (annotator-1, annotator-2, and annotator-3). Manual 1371 

annotations are plotted on top of the median projection of the two-photon t-series. The numbers in 1372 

parenthesis in the top label report detection Precision, Recall, and F1 score. Bottom: intersection 1373 

of somata annotations (left), intersection of process annotations (middle), and result of the 1374 

consensus annotation (right).  1375 
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 1376 

Figure S4. Benchmarking ASTRA against human annotators and against state-of-the-art cell 1377 

detection and segmentation methods. A-B) Precision (A) and Recall (B) of somata and process 1378 

segmentation for the three annotators and ASTRA (two-sided Wilcoxon rank sum test N = 24; 1379 

LOOCV results). See also table S1. C-I) ASTRA semantic segmentation against GECI-quant 1380 

segmentation. Representative example of segmentations of somata and processes for: C) the 1381 

consensus annotation, somata (white), processes (light purple); D) ASTRA, somata (red), 1382 
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processes (pink); E) GECI-Quant, somata (light blue), processes (green). F) GECI-Quant user 1383 

defined thresholds distributions for dataset-1. Box charts show the median values (red line) and the 1384 

interquartile range (IQR, black top and bottom limit of the box). The whiskers extend to 1.5 times 1385 

the IQR. G) GECI-Quant soma detection vs. ASTRA in dataset-1. Precision, Recall, and F1-score 1386 

are shown (two-sided Wilcoxon signed rank sum test, N = 24; LOOCV results). H-I) Precision (H) 1387 

and Recall (I) for somata and process segmentation (two-sided Wilcoxon rank sum test, N = 24; 1388 

LOOCV results). See also table S2. J-L) Representative examples of somata segmentations on 1389 

the same FOV shown in C for: J) STNeuroNet, somata (blue); K) UNet2DS somata (orange); L) 1390 

CaImAn, somata (light green). In A-B and G-H-I: n.s., not significant, * p < 0.05, ** p < 0.005, and 1391 

*** p < 0.0005.  1392 
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 1393 

Figure S5. ASTRA automated analysis replicates previously published results obtained with 1394 

manual annotation. A) ASTRA segmentation (white) of GCaMP6f-labeled astrocytes in the CA1 1395 

pyramidal layer. Experimental data from 15. B) Same FOV as in (A) with astrocytic ROIs color-coded 1396 

according to response field position along the virtual corridor. In (A) and (B) scale bar: 20 μm. C) 1397 

Normalized astrocytic calcium responses as a function of position for astrocytic ROIs that contain 1398 

significant spatial information (N = 260 ROIs with reliable spatial information out of 595 total ROIs, 1399 

7 imaging sessions from 3 animals, see Methods for details). Responses are ordered according to 1400 

the position of the center of the response field (from minimum to maximum). Left panel, astrocytic 1401 

calcium responses from all trials. Center and right panels, astrocytic calcium responses from odd 1402 

(center) and even (right) trials. Yellow dots indicate the center position of the response field, while 1403 

magenta dots indicate the extension of the field response (see Methods, vertical scale: 50 ROIs). 1404 

D-E) Bias-corrected mutual information values (D) and fraction of ROIs encoding reliable spatial 1405 

information (E) as a function of the number of bins for the stimulus (animal position along the linear 1406 

track). Colors indicate binning of the response (calcium event trace). F-G) Cell-wise comparison of 1407 

average response field center position (F) and width (G) between the results obtained with ASTRA 1408 

(y axis) and those reported in 15 (x axis). Dots represent average of ROI parameters for each cell. 1409 

The black line is least-squares linear fit (in (F) y = 0.94x+2.79 cm, R2 = 0.87; in (G) y = 0.87x+12.41 1410 

cm, R2 = 0.56). In (F-G) n = 33 true positive astrocytes detected by ASTRA in 7 imaging sessions 1411 

from 3 mice.    1412 
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 1413 

Figure S6. ASTRA seeding of event-based segmentation. Example of a spatiotemporal Ca2+ 1414 

events (red to white colors) detected with AQuA when seeded with the astrocytic domain (green 1415 

line) identified by ASTRA. Each image represents a single frame of a representative t-series (id: 2, 1416 

dataset-1). Colors superimposed to each frame represent a detected event in the astrocyte. Frame 1417 

acquisition time is reported on the top of each image.  1418 
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 1419 

Figure S7. Comparative analysis of the effect of signal-to-noise ratio regimens on detection 1420 

and segmentation performances. A-B) Precision (A) and Recall (B) for ASTRA segmentation of 1421 

somata and processes under the different simulated conditions of PSNR (two-sided Wilcoxon rank 1422 
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sum test, N = 24; LOOCV results). C) Distribution of GECI-Quant thresholds for the 0.54 PSNR 1423 

dataset for somata (Som.) and processes (Proc.). Box charts show the median values (red line) 1424 

and the interquartile range (IQR, black top and bottom limit of the box). The whiskers extend to 1.5 1425 

times the IQR. D) Precision, Recall, and F1-score for soma detection for GECI-Quant (white) and 1426 

ASTRA (red) for the 0.54 PSNR dataset (two-sided Wilcoxon signed rank sum test, N = 24; LOOCV 1427 

results). E-G) Segmentation Precision (E), Recall (F), and F1-score (G) GECI-Quant (white) and 1428 

ASTRA (red) for the 0.54 PSNR dataset (two-sided Wilcoxon rank sum test, N = 24; LOOCV 1429 

results). H-J) Effect of artificial noise on soma detection performances. Detection Precision, Recall 1430 

and F1-score for ASTRA (grey bars), STNeuronet (H), CaIman (I), and UNet2DS (J) on the same 1431 

dataset under different regimens of PSNR (two-sided Wilcoxon rank sum test, N = 24; LOOCV 1432 

results). In all panels: n.s., not significant, * p < 0.05, ** p < 0.005, and *** p < 0.0005.  1433 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2023. ; https://doi.org/10.1101/2023.05.03.539211doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.03.539211
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

66 

 

 1434 

Figure S8. Impact of pre-processing on ASTRA performance. A) Flow-chart describing the pre-1435 

processing block in the training pipeline for ASTRA-Naïve and ASTRA-Spatial (see main results). 1436 

In ASTRA-unprocessed, the DNN is trained with the single cell images extracted from the median 1437 

projection of the FOVs. In ASTRA-Spatial, the DNN is trained with the single cell images extracted 1438 

from the spatial map of the FOVs. B) Flow-chart of pre-processing block in the inference pipeline 1439 

for ASTRA-unprocessed and ASTRA-Spatial. In ASTRA-unprocessed, the DNN directly evaluates 1440 

median projection of the whole FOV. In ASTRA-Spatial, the DNN evaluates the spatial map of the 1441 

whole FOV. C-D) Segmentation Precision (C) and Recall (D) for ASTRA-unprocessed, ASTRA-1442 

Spatial, and ASTRA on dataset-1 (two-sided Wilcoxon rank sum test, N = 24; LOOCV results). In 1443 

C-D: n.s., not significant, * p < 0.05, ** p < 0.005, and *** p < 0.0005.  1444 
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 1445 

Figure S9. ASTRA performance as a function of recording length. A) ASTRA detection Precision, 1446 

Recall, and F1-score for t-series of different length (two-sided Wilcoxon rank sum test, N = 24; 1447 

LOOCV results). B-D) ASTRA segmentation Precision (B), Recall (C), and F1-score (D) for t-series 1448 

of different length (two-sided Wilcoxon rank sum test, N = 24; LOOCV results).  1449 
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Figure S10. ASTRA detection and segmentation performance on dataset 2 and 3. A) Consensus 1451 

annotation of one representative FOV (Id: 3) showing Td-Tomato-expressing astrocytes. B) ASTRA 1452 

segmentation result for the same FOV shown in (A). C) Detection Precision, Recall, and F1-score 1453 

for ASTRA and the three annotators (two-sided Wilcoxon rank sum test, N = 8; LOOCV results). D-1454 

F) Segmentation Precision, Recall, and F1-score of ASTRA and the three annotators for somata 1455 

(Som.) and processes (Proc.) (two-sided Wilcoxon rank sum test, N = 8; LOOCV results). See also 1456 

Table S3. G) Consensus annotation of one representative FOV (Id: 5) showing Td-Tomato-1457 

expressing astrocytes. H) ASTRA segmentation result for the same FOV shown in (G). I) Detection 1458 

Precision, Recall, and F1-score for ASTRA and the three annotators (two-sided Wilcoxon rank sum 1459 

test N = 7; LOOCV results). J-L) Segmentation Precision, Recall, and F1-score of ASTRA and the 1460 

three annotators for somata (Som.) and processes (Proc.) (two-sided Wilcoxon rank sum test, N=7; 1461 

LOOCV results). In C-F and I-L: n.s., not significant, * p < 0.05, ** p < 0.005, and *** p < 0.0005. 1462 

See also Table S4 and Table S5.  1463 
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 1464 

 1465 

Figure S11. ASTRA detection and segmentation performance on dataset-4. A-B) Segmentation 1466 

Precision (A) and Recall (B) of ASTRA and the three annotators for somata (Som.) and processes 1467 

(Proc.) (two-sided Wilcoxon rank sum test, N=10; LOOCV results). In all panels: n.s., not significant, 1468 

* p < 0.05, ** p < 0.005, and *** p < 0.0005. See also Table S6.  1469 
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 1470 

Figure S12. ASTRA workflow. The diagram delineates the workflow which is color-coded to identify 1471 

input of new data and eventually new annotated data (cyan), ASTRA training and inference 1472 

pipelines (dark red), and user evaluation of ASTRA results (yellow). Inference and training pipelines 1473 

details are reported in the 2 boxes placed on the sides.  1474 
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Figure S13. Stimulus encoding properties of mesoscale astrocytic networks in the mouse 1476 

neocortex. A) Representative ASTRA somata and processes segmentation on a zoomed in image 1477 

of 0.48 mm2 area extracted from a 2.25 mm2 area FOV recorded with the two-photon mesoscope. 1478 

B) Representative ASTRA somata and processes segmentation on a FOV recorded with 1479 

conventional two-photon configuration (Id: 3, in dataset-2). The FOV in B has the same size as in 1480 

A. C-D) Cumulative distribution of area (C) and maximum length (D) of process ROIs segmented 1481 

using ASTRA on the mesoscope dataset and on dataset-2. ROI area: mean ± std 29 ± 23 µm2 for 1482 

mesoscope dataset and 51 ± 44 µm2 for dataset-2, t-test N = 964 ROIs from 15 imaging sessions 1483 

and N = 1483 ROIs from 8 imaging sessions for the mesoscope dataset and dataset-2, respectively. 1484 

Maximal ROI length: mean ± std 10 ± 5 um for mesoscope dataset and 15 ± 8 um for dataset-2, t-1485 

test N = 964 ROIs from 15 imaging sessions and N = 1483 ROIs from 8 imaging sessions for the 1486 

mesoscope dataset and dataset-2, respectively. E-F) Information breakdown analysis from ROI 1487 

pairs. E) Mutual information about locomotion (I, white) encoded by a pair of ROIs, sum of the 1488 

mutual information encoded in the response of each member of the pair (ILIN, grey), the information 1489 

component due to signal-similarity (ISS, red), stimulus independent information contribution of 1490 

correlation (ICI, green), and stimulus dependent information contribution of correlation (ICD, blue) 1491 

are shown. Data are represented as mean ± sem and were collected in 13 imaging sessions from 1492 

3 animals for running encoding pairs. F) Same as in (E) but for encoding of licking behavior. Data 1493 

from 8 imaging sessions from 3 animals. G-H) Decoded information increases with the spatial size 1494 

of the network. G) Decoded information of locomotion from astrocytic population vectors on real 1495 

(black), and trial-shuffled (gray) as a function of the fraction of the original FOV area. For each 1496 

fraction of area two-sided Wilcoxon signed rank test (N = 13) has been performed between real 1497 

and trial-shuffled data. H) Decoded information of licking from astrocytic population vectors on real 1498 

(black), and trial-shuffled (gray) as a function of the fraction of the original FOV area. For each 1499 

fraction of area two-sided Wilcoxon signed rank test (N = 8) has been performed between real and 1500 

trial-shuffled data. Data are represented as mean ± sem. In panel A data are obtained from 13 1501 

imaging sessions in 3 animals. In panel B data are obtained from 8 imaging sessions in 3 animals.  1502 
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 1503 

Figure S14. Execution time of the ASTRA inference pipeline. A) Execution time of ASTRA 1504 

inference pipeline without the cross-correlation analysis as a function of the size of the input t-1505 

series. The different colors indicate the execution time for three different hardware configurations: 1506 

4 CPUs, 20 CPUs, and 20 CPUs + GPU. B) Execution time for the astrocytic domain module as a 1507 

function of the size of the input t-series. Color code same as in (A). Please note that the GPU 1508 

configuration is faster than the multi-processing CPU configuration. This is because the 1509 

computation of cross-correlation value between pixels can be massively parallelizable with GPUs. 1510 

C) Execution time for the inference pipeline without cross-correlation analysis as a function of the 1511 

size of the input t-series for dataset-2 (black, area 0.26 mm2) and dataset-3 (red, area of FOV 0.16 1512 

mm2).  1513 
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Table S1. Results of each annotator against consensus annotation of dataset-1. Detection and 1514 
Segmentation results are given using F1-score (Precision, Recall) metrics (mean  sem). 1515 
 1516 
 Detection 

 
Segmentation 
 

Somata Processes 

Annotator-1 0.880.02 

(0.910.02,0.890.03) 

0.8450.009 

(0.780.02,0.9390.005) 

0.620.02 

(0.560.02,0.740.01) 

Annotator -2 0.880.02 

(0.870.03,0.910.02) 

0.840.01 

(0.850.01,0.8520.006) 

0.560.01 

(0.550.02,0.620.02) 

Annotator -3 0.900.02 

(0.890.03,0.920.02) 

0.8820.007 

(0.9230.008,0.860.01) 

0.640.02 

(0.750.02,0.590.02) 

  1517 
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Table S2. Results of ASTRA, STNeuronet, Caiman and GECI-Quant against consensus annotation 1518 
of dataset-1. Detection and Segmentation results are given using F1-score (Precision, Recall) 1519 
metrics (mean  sem) 1520 
 1521 
 Detection 

 
Segmentation 
 

Somata Processes 

ASTRA 0.810.04 

(0.790.04,0.870.03) 

0.8220.008 

(0.780.02,0.890.01) 

0.590.01 

(0.620.02,0.600.01) 

STNeuronet 0.270.05 

(0.260.05,0.320.06) 

- - 

Caiman 0.200.04 

(0.250.04,0.170.03) 

- - 

UNet2DS 
 

0.650.04 

(0.670.06,0.670.05 

- - 

GECI-Quant 0.740.04 

(0.720.04,0.760.04) 

0.7750.008 

(0.720.01,0.880.01) 

0.330.02 

(0.250.02,0.650.03) 

  1522 
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Table S3. Results of ASTRA, and AQuA in reconstructing astrocytic morphology. Results are F1-1523 
score (Precision, Recall) metrics (mean  sem) vs consensus annotation. 1524 
 1525 
 F1-score 

(Precision, Recall) 
 

ASTRA 0.620.03 

(0.610.03,0.650.03) 

AQuA 0.230.02 

(0.120.02,0.530.2) 

  1526 
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Table S4.  Results of each annotator and ASTRA against consensus annotation of dataset-2. 1527 
Detection and Segmentation results are given using F1-score (Precision, Recall) metrics (mean  1528 
sem) 1529 
 1530 
 Detection 

 
Segmentation 
 

Somata Processes 

Annotator -1 0.8590.008 

(0.880.01, 0.830.01) 

0.860.004 

(0.900.01,0.840.02) 

0.630.02 

(0.650.01,0.670.03) 

Annotator -2 0.840.02 

(0.890.01, 0.800.03) 

0.8360.006 

(0.9180.003,0.780.01) 

0.580.02 

(0.580.02,0.640.03) 

Annotator -3 0.850.02 

(0.830.02, 0.880.02) 

0.8340.005 

(0.9350.006,0.760.01) 

0.530.02 

(0.600.02,0.520.02) 

ASTRA 0.810.02 

(0.760.02,0.860.01) 

0.8220.004 

(0.8050.009,0.9100.008) 

0.570.02 

(0.680.02,0.550.02) 

  1531 
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Table S5.  Results of each annotator and ASTRA against consensus annotation of dataset-3. 1532 
Detection and Segmentation results are given using F1-score (Precision, Recall) metrics (mean  1533 
sem) 1534 
 1535 
 Detection 

 
Segmentation 
 

Somata Processes 

Annotator -1 0.840.01 

(0.910.01, 0.780.02) 

0.8530.006 

(0.8780.008,0.850.01) 

0.620.01 

(0.690.02,0.610.02) 

Annotator -2 0.830.02 

(0.810.02, 0.850.03) 

0.8560.003 

(0.9040.005,0.8250.005) 

0.550.02 

(0.580.01,0.600.02) 

Annotator -3 0.810.03 

(0.780.03, 0.850.03) 

0.8150.009 

(0.9620.005,0.7170.02) 

0.550.01 

(0.660.01,0.510.01) 

ASTRA 0.780.02 

(0.760.04,0.820.03) 

0.8350.002 

(0.7800.008,0.920.01) 

0.570.01 

(0.570.02,0.630.01) 
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Table S6.  Results of each annotator and ASTRA against consensus annotation of dataset-4. 1537 
Detection and Segmentation results are given using F1-score (Precision, Recall) metrics (mean  1538 
sem) 1539 
 1540 
 Detection 

 
Segmentation 
 

Somata Processes 

Annotator -1 0.810.01 

(0.900.01, 0.750.02) 

0.8350.006 

(0.840.01,0.8520.007) 

0.550.02 

(0.690.02,0.520.03) 

Annotator -2 0.720.02 

(0.730.03, 0.730.03) 

0.8270.007 

(0.8970.007,0.780.01) 

0.500.02 

(0.630.01,0.470.02) 

Annotator -3 0.740.03 

(0.700.06, 0.800.01) 

0.8340.004 

(0.8980.008,0.790.01) 

0.500.02 

(0.650.03,0.460.02) 

ASTRA 0.800.02 

(0.780.03,0.820.02) 

0.8130.006 

(0.7550.007,0.9040.006) 

0.530.01 

(0.500.02,0.660.02) 
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Table S7. ASTRA DNN training parameters  1542 
 1543 
  Epochs  Optimizer lr Batch size Input 

image size 
  N1 N2     

Dataset-1  12 3 Adam 10-4 35 96x96 

Dataset-2  12 3 Adam 10-4 35 48x48 

Dataset-3 Training. on  
Dataset-1 

- - - - - - 

Dataset-4 Training on  
Dataset-1 

- - - - - - 

 1544 
  1545 
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