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19  Abstract

20 Changes in the intracellular calcium concentration are a fundamental fingerprint of astrocytes, the
21 main type of glial cell. Astrocyte calcium signals can be measured with two-photon microscopy,
22 occur in anatomically restricted subcellular regions, and are coordinated across astrocytic
23 networks. However, current analytical tools to identify the astrocytic subcellular regions where
24 calcium signals occur are time-consuming and extensively rely on user-defined parameters. These
25 limitations limit reproducibility and prevent scalability to large datasets and fields-of-view. Here, we
26 present Astrocytic calcium Spatio-Temporal Rapid Analysis (ASTRA), a novel software combining
27 deep learning with image feature engineering for fast and fully automated semantic segmentation
28 of two-photon calcium imaging recordings of astrocytes. We applied ASTRA to several two-photon
29 microscopy datasets and found that ASTRA performed rapid detection and segmentation of
30 astrocytic cell somata and processes with performance close to that of human experts,
31 outperformed state-of-the-art algorithms for the analysis of astrocytic and neuronal calcium data,
32 and generalized across indicators and acquisition parameters. We also applied ASTRA to the first
33 report of two-photon mesoscopic imaging of hundreds of astrocytes in awake mice, documenting
34 large-scale redundant and synergistic interactions in extended astrocytic networks. ASTRA is a
35 powerful tool enabling closed-loop and large-scale reproducible investigation of astrocytic
36  morphology and function.

37

38  Introduction

39  Astrocytes tile the entire central nervous system in non-overlapping domains ' interacting with
40 neurons, vasculature, and other glial cells. Astrocytes exhibit a form of excitability based on
41 changes in the intracellular calcium concentration 2. These calcium signals can be tightly related
42  to synaptic activity >7 and to sensory inputs &' and are instrumental for cognitive performance 2
43 13, More recently, astrocytic calcium signals have been shown to encode information about external
44 variables in awake behaving animals 417,
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46 Astrocytic calcium signals can be monitored with high spatial resolution in the intact brain of awake
47 animals using two-photon microscopy and chemical or genetically encoded calcium (GECI)
48  indicators 10.18. 19, The spatial features of astrocytic calcium signals are inextricably related to their
49 highly ramified morphological structure, with thin (um- and sub-um-size) processes stemming from
50 the soma and covering a tissue volume of ~ 70-100 uym diameter (astrocytic domain). Within this
51 tissue volume, astrocytic processes contact few neural cell bodies, hundreds of dendrites, and
52 thousands of synapses (Halassa, Fellin, and Haydon 2007). Astrocytic calcium dynamics that can
53 be localized to specific subcellular compartments including the cell body and portions of processes
54 2022 can have different temporal characteristics 0. 19.20. 2224 and be coordinated across multiple
55  astrocytes spanning hundreds, potentially thousands, of um of brain tissue 192325, 26,

56

57 Because of these complex properties, it is important to have software tools that systematically
58 identify process and soma in two-photon functional recordings. Methods to identify and
59 semantically segment astrocytic subcellular regions displaying calcium dynamics in individual
60  astrocytes such as GECI-Quant ' and CHIPS 27 are available. However, they heavily depend on
61 data acquisition conditions, require the user to arbitrarily set several parameters, and need
62 significant computation time. Other approaches identify calcium events within and across
63 astrocytes as coherent, spatially-confined activity regions, based on pixel-wise fluorescence
64  dynamics 4 2831, These event-based approaches are computationally demanding, still require a
65  posteriori segmentation to relate identified events to astrocytic morphology, and have not been
66 validated on large fields-of-view comprising large networks of astrocytes. As a result, currently
67 available approaches still do not allow a fully automated, reproducible, fast and scalable analysis
68 of astrocytic calcium signals within individual cells and across large populations that generalizes
69  well to unseen datasets, different indicators, and experimental parameters. Therefore, developing
70 fast, automated, and reliable image segmentation methods to analyze large-scale astrocytic
71 calcium signals is of utmost urgency.

72
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73 Similar challenges are faced in neuronal calcium imaging, where most advanced neural
74  segmentation methods include both unsupervised and supervised machine learning approaches
75 3238 However, approaches specifically developed for segmentation of neuronal calcium imaging t-
76 series cannot be readily applied to the analysis of astrocytic calcium signals, as demonstrated in
77 this work, because the spatial and temporal features of astrocytic calcium signals are intrinsically
78  different from those of neurons.

79

80 Here we present ASTRA, Astrocytic calcium Spatio-Temporal Rapid Analysis, a novel deep
81 learning software that performs fast, precise, scalable, and fully automated semantic segmentation
82 of astrocytic two-photon imaging t-series. ASTRA combines feature engineering and a deep
83 learning algorithm to enable scalable and repeatable analysis. We validated ASTRA using the
84  consensus annotation generated by three human experts of four novel two-photon microscopy
85  datasets recorded in awake head-fixed animals. These annotated datasets are shared here, for
86 future community-based development and benchmarking of algorithms for the detection and
87 segmentation of astrocytes. ASTRA performed cell detection (identification of somata of astrocytes)
88 and semantic segmentation (identification and labeling of cell soma and proximal processes) with
89 near-human-expert performance. ASTRA outperformed all tested state-of-the-art software for the
90 analysis of astrocytic and neuronal signals, was endowed with features combining segmentation
91 with event-based analyses to identify astrocytic cellular domains, and generalized well across
92 indicators and acquisition conditions. ASTRA also scaled well to large datasets, allowing rapid
93 automated analyses of entire databases characterized by many recording sessions and enabled
94  analysis of the first report of simultaneous functional imaging of hundreds of astrocytes distributed
95 over millimeters of cortical tissue recorded in awake mice using two-photon fluorescence
96  mesoscopic imaging.

97

98  Results

99  ASTRA: structure and analysis workflow
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100  Here we developed ASTRA, a software that combines statistical image analysis and deep learning
101  to perform fully automated segmentation of astrocytes imaged with two-photon fluorescence
102 microscopy. ASTRA operates on astrocytic two-photon imaging t-series and uses both
103 morphological and dynamical information to provide, as output, three classes of regions of interest
104 (ROIs): somata, processes, and cross-correlated regions denoting a two-dimensional
105  measurement of the astrocytic domains (Fig, 1).

106 ASTRA includes a training pipeline and an inference pipeline (Fig. 1A-B, Fig. S1A-B). Each pipeline
107  analyzes a dedicated training and inference dataset, respectively. The training set is the subset of
108  the data (e.g., a subset of the available fields-of-view (FOVs)) annotated by human experts. The
109 training set is used to optimize ASTRA’s pre-processing hyper-parameters and train the weights of
110  the Deep Neural Network (DNN), which performs semantic segmentation. The inference dataset is
111  aseparate data subset (e.g., FOVs not included in the training set), on which the algorithm performs
112 inference (i.e., semantic segmentation). Because pre-processing parameters and DNN weights are
113 optimized automatically on the training dataset, the inference pipeline runs on test data without
114 human supervision.

115

116  The inference pipeline comprises three main steps: i) pre-processing; ii) semantic segmentation;
117 iii) subcellular cross-correlation analysis (Fig. 1B and S1B). The pre-processing step computes a
118 bi-dimensional reconstruction of the recorded field-of-view (FOV), compressing spatial and
119  temporal features into a highly informative spatiotemporal projection (Fig. S2A-B, see also
120 Methods). Pre-processing enhances astrocytic subcellular structures (e.g., processes and somata)
121 and decreases acquisition noise from the bi-dimensional reconstruction of the FOV. The spatial
122 component of the pre-processing uses histogram equalization and kernel convolution to compute
123 a sharpened spatial map (Fig S2A, right) from the median projection of the time series, enhancing
124 astrocytic morphological substructures. Then, it evaluates statistically pixel-wise temporal
125 dynamics to set an optimal intensity threshold used to classify pixels that display foreground
126 fluorescence. Foreground pixels are maintained in the sharpened spatial map while non-foreground

127 (background) pixels are set to 0. The output of pre-processing feeds into the Segmentation step,
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128  which performs subcellular semantic segmentation of astrocytic somata and processes using U-
129  Net- % based DNN architecture (Fig. S1E). The training of the DNN weights on the annotated
130 training datasets becomes feasible on the relatively limited data size typical of conventional two-
131 photon imaging datasets because of the efficient feature-engineering during the pre-processing,
132  and because ASTRA takes advantage of transfer-learning by employing a DNN encoder 38 40-42
133 pre-trained on ImagNet dataset “3 (see Methods). Finally, the subcellular cross-correlation analysis
134 identifies regions of the astrocytic domain showing fluorescence signals that are statistically
135 correlated to the ones present in the semantically segmented regions of the astrocyte (see
136  Methods).

137

138 We provide ASTRA with default pre-processing hyperparameters and DNN weights trained
139 extensively on two different two-photon microscopic datasets. With these parameters, the inference
140 pipeline can readily operate even on previously unseen data, as extensively demonstrated below
141 on several datasets. However, ASTRA also offers users a further-training pipeline (Fig. 1A), which
142 allows the inclusion of new own training data annotated with ImageJ 44. This additional pipeline can
143 be used to further refine (and export for future use) the DNN weights and the pre-processing
144  parameters to optimize the software to the applications at hand.

145

146  The ASTRA inference pipeline works fast on either CPUs or GPUs. Retraining the DNN with new
147 annotated data provided by the user can be done on a single GPU or in parallel on multiple GPUs,
148  setting simple options in the code.

149

150  Datasets for consensus annotation and algorithm training and benchmarking

151 To train and benchmark ASTRA, we recorded and analyzed four datasets of two-photon
152  fluorescence hippocampal recordings in awake head-fixed mice running on a wheel (Fig. 1C). The
153 four datasets (Fig. 1D) differed for the type of fluorophore which was expressed in astrocytes (e.g.,

154  GCaMP6f and Td-Tomato), imaged area (from 26.3 x 10% um2to 26.2 x 10* ym?), acquisition
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155 procedures (galvanometric mirror-based imaging vs resonant scanning imaging), and pixel
156  resolution (from 0.63 um/ pixel to 1.06 um/ pixel).

157

158 We generated a manual consensus annotation of all four datasets. Three expert annotators
159 detected and segmented astrocytes, labelling somata and individual processes. Annotators had
160  access to both the raw t-series and the bi-dimensional projections of the t-series obtained using the
161  spatial component of the pre-processing pipeline. Annotators detected astrocytes on the t-series,
162  while segmenting subcellular structures on bi-dimensional projections. After each expert annotator
163 labeled independently the data, annotators were asked to converge on a consensus by resolving
164 each single annotation discrepancy according to standard procedures (Methods). The result of this
165 procedure was termed “consensus annotation” (Fig. 2A, Fig. S3). Consensus annotation was used,
166  following standard practice 36 %7, to train the algorithm and to benchmark its performance (Fig. 2B).
167  The four datasets, including individual and consensus annotations, will be shared upon publication.
168

169 We first utilized the consensus annotation to quantify the performance and consistency of human
170  experts (Fig. 2C-D). Somata detection performance of human annotators was highly accurate (high
171 F1-score, Fig. 2C), demonstrating a high human consistency on astrocyte somata detection.
172 Conversely, segmentation performance of human annotators showed lower F1-scores (Fig. 2D).
173 This was especially true for processes (Fig. 2D), implying that annotation by a single human grader
174  can be unreliable (Supplementary information Tab. S1, Tab. S4, Tab. S5, and Tab. S6), and that
175  benchmarking and training should be better done using the consensus annotation 3637,

176

177 ASTRA achieves human performance and replicates previously published results obtained with
178  manual annotation

179  We then used the consensus annotation datasets to train and test ASTRA. We first used dataset-
180 1, which comprises a set of 24 two-photon calcium imaging recordings of the CA1 hippocampal
181 region recorded in head-tethered awake mice, which were spontaneously walking on a wheel (Fig.

182 1C). In the hippocampal CA1 region, astrocytes expressed the genetically encoded calcium


https://doi.org/10.1101/2023.05.03.539211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.03.539211; this version posted May 3, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

183 indicator GCaMP6f after adeno-associate viral transduction. GCaMP6f signals were collected from
184  a FOV of area approximately 26 x 103 um?2 with a spatial sampling of 0.634 um/pixel (Fig. 1D, see
185  Methods).

186

187 We tested ASTRA on dataset-1 using leave-one-out cross-validation (see Methods). Fig. 2A and
188 2B show an example of annotations obtained by ASTRA on a representative FOV compared to the
189  consensus annotation. Importantly, Precision, Recall, and F1-score of ASTRA detection were high
190  and did not significantly differ from those of the annotators (Fig. 2C, SI Tab. S1). Segmentation F1-
191 score was high for somata and similar to that of two out of the three annotators (Fig. 2D, S4A-B, Sl
192 Tab. S2). Segmentation F1-score was lower for processes, but similar to that of all annotators (Fig.
193 2D, Fig. S4A-B, SI Tab. S2). Overall, these results indicate that ASTRA detection and
194  segmentation accuracy levels are comparable to those of individual human experts.

195

196 Given that ASTRA performed like human experts, we tested if it could replicate, in a fast and fully
197 automated way, previously published results based on manual segmentation of astrocytes. We
198 applied ASTRA to perform automated semantic segmentation of CA1 hippocampal astrocytes
199  imaged with two-photon functional microscopy during mouse virtual navigation ('°, Fig. S5).
200 Astrocytic ROIs detected using ASTRA resembled human detections used in '® (mean * sem,
201  Precision: 0.86 + 0.05, Recall: 0.75 + 0.07, F1: 0.78 + 0.05, N = 7 imaging sessions from 3 mice).
202 Using ASTRA annotations, we were able to replicate the major results described in (', Fig. S5 C-
203 E), demonstrating that astrocytic spatial tuning parameters obtained by manual annotation were
204 recapitulated using ASTRA semantic segmentation (Fig. S5 F-G). Importantly, while manual
205 annotation of the dataset described in '® required several days of work, ASTRA segmented the
206 whole dataset in 15 in approximately 9 minutes without human intervention or arbitrary parameter
207 settings. ASTRA can thus be used for fast, automated, and reproducible analysis of entire datasets
208 and compares well with manual expert annotation of the same datasets.

209

210  ASTRA outperforms state-of-the-art algorithms for the analysis of astrocytic and neuronal signals
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211  We benchmarked ASTRA against several major methods for analysis of two-photon fluorescence
212 recordings of astrocytes and neurons (Fig. 2E-G, Fig. S4E-L).

213

214 We first compared ASTRA with GECI-Quant '9, a threshold-based user-supervised software for the
215 analysis of astrocytic two-photon calcium imaging data. For each FOVs, one of our annotators
216 (annotator A-1) manually identified astrocytic domains and defined the intensity thresholds to
217 segment somata and processes (see Fig. S4F). This manual input is needed to run GECI-Quant.
218  The indications of the GECI-Quant documentation '® were closely followed during this procedure.
219 The detection F1-score of GECI-Quant was not significantly different from that of ASTRA (two-
220  sided Wilcoxon rank sum test N=24, Fig. S4G), not surprisingly because the domain identification
221 of GECI-Quant was performed by a human expert and ASTRA performed as a human expert.
222 However, segmentation performances of GECI-Quant were lower than those of ASTRA for somata
223 and especially so for processes (Fig. 2E and Fig. S4H-I, SI Tab. S2, two-sided Wilcoxon rank sum
224 test, N=24).

225

226 We then compared the performance of ASTRA to that of AQUA 28, an event-based algorithm which
227 identifies ROIs associated with astrocytic calcium events based on the coherence of fluorescence
228 dynamics across pixels. Although the AQuA definition of events does not consider morphological
229 constraints, we reasoned that it should be possible to use AQuA to potentially identify astrocytic
230 somata and processes, because a subsets of calcium events should be restricted to astrocytic
231 soma or processes. We thus identified the morphology of putative somas and processes by
232 thresholding a time-averaged spatial map of calcium events identified by AQuA, and we compared
233 it to the consensus annotation. The segmentation so obtained with AQuUA had precision, recall, and
234 F1-score against consensus annotation lower than ASTRA's (Fig. 2F, S| Tab. S3, two-sided
235  Wilcoxon rank sum test, N= 24). Taken together, these results demonstrate that ASTRA
236  outperforms the tested state-of-the-art methods used for the analysis of astrocytes data in

237 identifying astrocytic somata and processes.

238
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239 We then asked whether software for segmentation of neurons from two-photon imaging can be
240  used for the segmentation of astrocytes. We compared ASTRA with STNeuroNet 37, UNet2DS 39,
241 and CalmAn 36, three state-of-the-art algorithms, which perform binary classification (foreground vs
242 background) of pixels in FOVs to identify neuronal ROIs. STNeuroNet and UNet2DS use DNN in a
243 way conceptually comparable to ASTRA, but are specialized for neurons. In contrast, CalmAn is a
244 fully unsupervised algorithm not based on deep learning. When initially applying to astrocytic data
245 STNeuroNet and UNet2DS in their off-the-shelf form, they almost never identified regions labeled
246  as astrocytic soma or processes in the consensus (data not shown). We thus retrained the weights
247 of STNeuroNet and UNet2DS on our astrocytic consensus data. Moreover, we adjusted the pre-
248 and post-processing steps of STNeuroNet to constraint source detection using parameters based
249 on astrocytic (rather than neural) calcium dynamics and morphology (Methods). We instead
250  straightforwardly applied CalmAn without making any change, as it is a fully unsupervised
251 algorithm. We found that all three neural algorithms identified only regions that were labeled as
252 soma in the consensus, but they did not detect regions labeled as processes in the consensus (Fig.
253 S4J-L). This was not surprising because these neural algorithms were conceived to mostly detect
254 neuronal cell somata. We thus analyzed the output of these algorithms only considering astrocyte
255 somata detection (Fig. 2G, Sl Tab. S2). We found that the F1-score of somata detection
256  performance of UNet2DS (mean + sem, 0.65 *+ 0.04, N = 24 was significantly higher than that of
257  CalmAn (mean * sem, 0.20 + 0.04, N = 24) and STNeuroNet (mean * sem 0.27 + 0.05, N = 24,
258  two-sided Wilcoxon rank sum test). Importantly, somata detection performance of all three neural
259 algorithms was inferior to that of ASTRA (Fig. 2G, two-sided Wilcoxon rank sum test, N = 24).
260

261 Together, these results stress the need to introduce dedicated algorithms for astrocytic
262 segmentation and indicate that ASTRA outperforms available analysis methods specifically
263 developed for neuronal datasets, even after adjusting them to astrocytic analysis.

264

265 Identification of functional domains of individual astrocytes using ASTRA

10
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266  Thin (diameter < 1 um) astrocytic processes substantially contribute to fill the domain of brain tissue
267 occupied by a single astrocyte (astrocytic domain) and display information-rich calcium dynamics
268 192230 However, the identification of these thin structures is challenging, because of the dimension
269 of thin astrocytic processes is smaller than the spatial resolution of two-photon microscopy. The
270 difficulty in identifying thin astrocytic processes makes it challenging to measure the astrocytic
271 domain based only on morphological features. We thus implemented within ASTRA an algorithm
272  based on activity correlation measurement, termed “subcellular cross-correlation analysis”, to
273 reproducibly identify, based on activity measurements, the extent of an astrocytic “functional”
274 domain, including somata, main processes, and subresolved cellular compartments. This analysis
275 automatically selected pixels within the typical extent of a domain of an individual astrocyte. Based
276 on previous reports ' 45, we set the astrocytic domain as a circular region of radius ~40 um centered
277 on the center of mass of the astrocyte soma. The fluorescence dynamics of the domain pixels were
278 correlated to the pixels belonging to the semantically segmented ROls (either somata or processes)
279 of that same astrocyte (Fig. 3A). The output of this analytical procedure was a ROI of correlated
280 pixels (Fig. 3A), which included cell somata and processes and which resembled anatomically
281  defined astrocytic domains - 45,

282

283 The identified astrocytic domain depended on a single parameter, the value of the cross-correlation
284  threshold (Fig. 3B). Low threshold values selected larger areas, including potentially pixels
285 belonging to neuronal structures (i.e., neuronal cell somata and processes). Conversely, high
286 thresholds select smaller areas, possibly neglecting meaningful astrocytic structures. To set an
287 optimal, intermediate, threshold value, we programmed ASTRA to dynamically auto-tune the cross-
288 correlation threshold separately for each FOV, to control for the ratio of false positives. Once
289 segmentation of the entire dataset was completed by ASTRA, the cross-correlation module
290 randomly sampled 250 pixels located outside the astrocytic domains identified around the
291 segmented astrocytic somas. ASTRA computed the cross-correlation between the activity of the
292 randomly sampled pixels and the pixels inside ASTRA-segmented ROIs and estimated the false

293 positive rate as the fraction of randomly sampled pixels with correlation above the set threshold.

11


https://doi.org/10.1101/2023.05.03.539211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.03.539211; this version posted May 3, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

294  The algorithm then tested a grid of threshold values and automatically set the threshold as the
295  smallest threshold value with false positive percentage error < 5% (see Methods). ASTRA then
296 randomly sampled 1000 pixels located outside the astrocytic domains identified around the
297 segmented astrocytic somas and used them to confirm that the false positive rate < 5 %. This
298 procedure was effective at minimizing false positives. On dataset-1 and across all FOVs, this
299  procedure selected pixels with an average false positive percentage of 2.0 + 0.2 % (mean sem,
300  Fig. 3C). On dataset-1 the cross correlated area was 585 + 57 um?2 (mean * sem).

301

302 Importantly, the functional domains of individual astrocytes identified by ASTRA can then be used
303 to seed the event-based analysis performed by AQuA 28, This was demonstrated in (Fig. S6), where
304 we show examples of astrocytic domain identified by ASTRA, which were used as priors to instruct
305  cell-specific AQUA analysis.

306

307 Taken together, these findings demonstrate that ASTRA could be used to identify functional
308 domains of individual astrocytes encompassing the cell somata, main processes, and thin
309 astrocytic structures. Moreover, combining ASTRA with the event-based analysis software AQUA
310 allowed overlaying anatomical with functional analysis of astrocytic domains, enabling the
311  extraction of previously hidden morpho-functional information from individual astrocytes recorded
312  in two-photon GCaMP imaging experiments.

313

314  ASTRA performance across signal-to-noise ratios

315 To investigate the performance of ASTRA as a function of the signal-to-noise ratio of two-photon
316 images, we performed a set of comparative analyses on t-series from dataset-1 in which we
317 artificially increased and decreased the peak signal-to-noise ratio (PSNR) of the fluorescent signals
318 (see Fig. 4A). Manipulations ranged from nearly halving to nearly doubling the PSNR, with respect
319  to the original data. ASTRA detection F1-score significantly decreased when the PSNR was
320  strongly reduced (Fig. 4B, two-sided Wilcoxon rank sum test N = 24). However, the F1-score for

321 the segmentation of somata and processes remained unaltered (Fig. 4C, Fig. S7TA-B). These results

12
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322 showed that ASTRA semantic segmentations was robust to the degradation of the PSNR. In
323 contrast, an increase of the PSNR resulted in an improvement of the F1-score for detection (Fig.
324 4B, two-sided Wilcoxon rank sum test N = 24) and of the F1-score for segmentation of processes
325  (Fig. 4C, Fig. S7A-B; two-sided Wilcoxon rank sum test N = 24), with no significant change of the
326  F1-score for somata segmentation.

327

328 We also evaluated the other state-of-the-art detection and segmentation methods, described
329  above, on these artificial datasets with modified PSNR. We first tested GECI-Quant detection and
330  segmentation performance under high PSNR conditions (1.81 times the original PSNR, Fig. S7C-
331 G). For each FOVs one annotator manually defined astrocyte somatic regions, astrocyte domains,
332  and intensity thresholds (Fig. S7C). We found that the detection F1-score of GECI-Quant was
333  significantly lower than that of ASTRA (Fig. S7D, two-sided Wilcoxon rank sum test N = 24). GECI-
334  Quant F1-scores for process segmentation was also lower than that of ASTRA (Fig. 7G, two-sided
335 Wilcoxon rank sum test N = 24). We then tested algorithm developed for the analysis of neuronal
336  datasets. We found that STNeuroNet and CalmAn showed lower performance across all PSNR
337 conditions when compared with ASTRA (Fig. S7 H-I, two-sided Wilcoxon rank sum test on all
338 artificial datasets, N = 24, compared with real data). UNet2DS showed lower F1-score compared
339  to ASTRA, but this decrease was significant only for PSNR = 0.88 (Fig. S7J, two-sided Wilcoxon
340 rank sum test N = 24). The stability of UNet2DS to changes in PSNR can be understood considering
341 that UNet2DS use only the mean projection in time of the recorded videos and that the injected
342  Gaussian noise does not affect this projection.

343

344  Overall, these results show that ASTRA performance remains stable even with low PSNR, and
345 favorably compares with the performance of state-of-the-art methods for the analysis of astrocytic
346  and neuronal functional signals over a wide range of PSNR.

347

348  Pre-processing is important for ASTRA performance
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349  The ASTRA DNN segmentation operated on fluorescence imaging t-series downstream of the pre-
350 processing modules, which performed image processing to enhance spatial information and
351 performed temporal processing to filter out background from foreground signals. We produced two
352 reduced versions of ASTRA. A first version called (ASTRA-unprocessed, Fig. 4D-E and Fig. S8) in
353 which we removed both spatial and temporal pre-processing by performing DNN analysis directly
354 on the raw median projection of the t-series. A second reduced version (ASTRA-spatial, Fig. 4D-E
355 and S8) where we only removed the temporal pre-processing. Compared against the consensus
356  annotation, we found that ASTRA-unprocessed had considerably lower performance than the full
357  version of ASTRA (Fig. 4D-E, two-sided Wilcoxon rank sum test N = 24) for somata detection and
358 for somata and process segmentation. Moreover, we observed that ASTRA-spatial had similar
359 performance for somata detection and segmentation, but much lower performance for process
360  segmentation than the full version of ASTRA (Fig. 4D-E, two-sided Wilcoxon rank sum test N = 24).
361  These findings highlight the importance of the pre-processing step for ASTRA performance.

362

363 Number of frames needed to reach good performance when training ASTRA from scratch

364  Although we trained and tested ASTRA using all experimentally recorded imaging frames in each
365 dataset, we wanted to estimate how ASTRA would have performed had we had less recorded
366 frames. We thus repeated our analyses after decimating dataset 1 to only include between 50 and
367 400 frames, rather than the 550-750 frames of the original t-series. This is of interest because the
368 size of t-series can greatly vary across experiments in two-photon imaging experiments. The
369  ASTRA detection F1-score remained stable as long as the t-series was longer than 200 frames
370 (Fig. S9A, two-sided Wilcoxon rank sum test N = 24) and the F1-score for process segmentation
371 also remained unchanged for t-series longer or equal than 100 frames (Fig. S9D, two-sided
372  Wilcoxon rank sum test, N = 24). These results suggest that 100-200 frames per FOV are sufficient
373  totrain ASTRA.

374

375 ASTRA generalizes across indicators and acquisition parameters
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376 To investigate whether ASTRA generalizes across experimental preparations, acquisition
377 parameters, as well as to never-seen-before data, we benchmarked it on datasets 2-4.

378

379 We first investigated whether ASTRA could be trained anew on a novel dataset with very different
380 characteristics. We thus trained anew and tested ASTRA (using exactly the same procedure
381  detailed above for dataset-1) on the dataset-2, a set of eight two-photon imaging recordings
382  collected in either resonant- or galvanometric mirror-based scanning in the hippocampus of head-
383 fixed awake animals spontaneously walking on a wheel (Fig. 1C-D). In this dataset, hippocampal
384 astrocytes specifically expressed TdTomato and fluorescence signals were collected from a FOV
385 of area 26.2 x 10* ym? with pixel size of 1.06 um/pixel (Fig. 1D, see Methods). On dataset-2, ASTRA
386 detection and segmentation performance reached the level of the individual human experts (Fig.
387 S10C-F, Tab. S4). This result suggests that ASTRA can be readily trained to reach human expert
388 performance, regardless of the indicator and of the acquisition parameters used.

389

390 We then tested whether ASTRA can be used with the pre-trained DNN weights and without any
391 further training on never-seen-before datasets with different indicators and acquisition parameters.
392  We thus took ASTRA with the DNN pre-trained weights (obtained by training on dataset 1 and
393  available as default weights in the online ASTRA software) and we applied it straightforwardly to
394  two new never-seen-before datasets (dataset-3 and dataset-4). Dataset-3 was composed of a set
395 of seven two-photon imaging recordings collected in resonant scanning mode in the hippocampus
396  of head-tethered awake animals spontaneously walking on a wheel (Fig. 1 C-D). Hippocampal
397 astrocytes specifically expressed TdTomato and fluorescence signals were collected from a FOV
398  of area 16.4 x 10% ym?2 with a pixel size of 0.79 ym/pixel (Fig. 1D). Dataset-4 included a set of ten
399 two-photon calcium imaging t-series collected in the resonant scanning modality in head-fixed
400  awake animals free to run on a wheel (Fig. 1C-D). In dataset-4, hippocampal astrocytes specifically
401 expressed GCaMP6f and fluorescence signals were collected from a FOV of area 16.4 x 103 ym?
402  with a pixel size of 0.79 um/pixel (Fig. 1D). Both dataset-3 and dataset-4 had a consensus

403 annotation obtained as for dataset-1. Results of benchmarking against the consensus revealed that

15


https://doi.org/10.1101/2023.05.03.539211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.03.539211; this version posted May 3, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

404  ASTRA reached the level of human experts for both dataset-3 (Fig S10G-L, S| Tab. S5) and
405 dataset-4 (Fig. 5 and S11, see also S| Tab. S6). Thus, in the case of the two never-seen-before
406 dataset-3 and dataset-4, ASTRA reached human expert performance with pre-trained weights,
407 implying that there would be no benefit in re-training the DNN adding new consensus annotated
408 data from the new datasets (something that we explicitly verified, data not shown).

409

410 Overall, these results demonstrate that ASTRA compared to individual human annotators even on
411  never-seen-before data.

412

413 Given the above success, however, it is conceivable that in some other never-seen-before
414  datasets, ASTRA may not reach human expert performance when using off-the-shelf pretrained
415  weights. In such case, ASTRA offers the possibility to fine tune the DNN weights by retaining on
416 new data added by the users starting from the pre-trained weight that we made available with the
417 software or from any other set of initial weights chosen by the user (Fig. 1A, Fig S12).

418

419 Automated analysis of two-photon mesoscopic imaging of astrocytes using ASTRA

420  The activity of multiple astrocytes is known to be correlated over spatial scales of few hundreds of
421  um, which are typically imaged with two-photon microscopes (reviewed in 4 46 47), However, very
422 little is known about how the activity of astrocytes is organized at the network level over regions
423 spanning several millimeters. It is now possible to perform high-resolution functional imaging over
424  distances of millimeters with two-photon large FOV microscopes (mesoscopes) “8. However,
425 analysis of mesoscopic images requires the segmentation of hundreds of ROIls in each FOV,
426 making manual annotation prohibitive. Thus, an important application of ASTRA is enabling
427 analyses of mesoscopic FOVs with distributed astrocytic networks encompassing hundreds of
428  cells. Here, we demonstrate the usefulness of ASTRA for this application.

429

430 To this aim, we performed for the first time two-photon mesoscopic imaging in awake head-fixed

431 mice expressing GCaMP6f in cortical astrocytes (Fig. 6). Mice were free to run on a wheel and
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432 licked at will from a water spout. We ran ASTRA on these mesoscopic t-series. An example of
433  mesoscopic FOV segmentation is shown in Fig. 6A. On average, ASTRA extracted, 119 + 29
434  astrocyte somata per FOV, N = 15 FOVs (average area of FOV, ~ 2.3 mm?). Moreover, we found
435 that ASTRA identified processes that were less numerous (per identified soma), smaller, and
436  shorter than those identified with standard two-photon microscopes analyzed above (see Fig. S13).
437  This was most likely due to the lower numerical aperture of the two-photon mesoscope objective 48
438 with respect to that of standard two-photon microscope objectives, which implies lower spatial
439 resolution in mesoscopic recording compared to standard two-photon recordings. We thus focused
440 our next mesoscopic analyses on networks of astrocytic somata.

441

442 We next extracted the calcium fluorescent traces from each detected astrocytic soma and we used
443  the extracted traces to characterize the network-level interactions of large-scale astrocytic
444 populations. We first computed the Pearson correlation between the calcium activities of all pairs
445 of somatic astrocytic ROls. Activity correlations (Fig. 6C) were on average positive and larger than
446  those typically observed when imaging the activity of neurons with calcium indicators, e.g., 15 4°.
447 Correlation strength decreased as function of distance, but remained above zero even up to spatial
448 distances of 2 mm, implying that astrocytes are functionally organized over mm-scale networks.
449

450 Activity correlations between neurons profoundly shape how neurons encode and transmit
451 information at the level of large neural populations 50-54, However, little is known about how activity
452 correlations of astrocytes influence the encoding of information about external variables in
453 astrocytic networks. We investigated whether astrocytic activity correlations increased or
454 decreased the information encoded by populations of astrocytes about two external variables: i)
455 locomotion, i.e. whether or not the animal was running, and ii) licking, i.e., whether or not the mouse
456 used its tongue to reach a water spout. For each cell pair, we computed the interaction information,
457 quantifying how much correlations influence the information on a population code. This quantity is
458 defined as the difference between the information about the external variables encoded in the “real

459 data” activity of the pair, (Fig 6E,J) which contains contributions of both the tuning of the individual
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460 cells and of their correlations, and the “shuffled” information (Fig 6E,J) that the cell pair would carry
461  if the cells have the same tuning to the stimuli as in the actual data but correlations are removed 5
462 56, Positive (negative, respectively) interaction information values indicate that correlations
463 enhanced (limited, respectively) the information encoded by the cell pair. For a given pair of cells,
464 theoretical work, widely validated on neurons, demonstrated that positive activity correlations
465 enhance or limit information, according to whether cells have similar or different tuning to the
466  external variables, respectively % 52. 57, We found (Fig 6G,L) both information-limiting and
467 information-enhancing correlations in astrocytic pairs, similarly to what previously reported for
468 neurons %2, This could be explained by the same principles previously found in neurons. In fact, a
469 large majority of astrocytes elevated their activity when animals ran (Fig. 6D), whereas comparable
470 fractions of astrocytes elevated and decreased their activity when animals licked (Fig 6l). Thus,
471 while most astrocyte pairs shared similar tuning to locomotion, a more balanced fraction of
472 astrocytic pairs with similar vs different tuning to licking was present. As a result of the stronger
473 homogeneity of tuning to locomotion, pairs of astrocytes had similar locomotion tuning and positive
474 activity correlations. This led to a large majority of astrocytic pairs with correlations limiting
475 locomotion information (Fig 6F-G). For licking, the greater diversity of tuning led to a more even
476 distribution of positively-correlated pairs with either similar (information-limiting correlations) or
477 dissimilar (information-enhancing correlations) licking tuning. Thus, because of the greater diversity
478 of tuning for licking, the fraction of pairs with significantly information-enhancing and significantly
479 information-limiting correlations was more balanced (Fig. 6K-L).

480

481 On average across all astrocytic pairs, there was a significant but moderate averaged information-
482 limiting effect for locomotion information (Fig. 6E) and no effect for licking information (Fig. 6J). The
483 average effect on pairwise information of correlations decreased as a function of distance for both
484  information-enhancing and information-limiting pairs. This was because the correlations strength
485 decreased, but remained sizeable, over distances > 1 mm (Fig. 6G, L).

486
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487  Given that we obtained the first simultaneous recording of hundreds of astrocytes, we could
488  evaluate how much information about licking and locomotion was encoded in large astrocytic
489 populations, far beyond single cells and pairs, and how activity correlations shaped it. Studies with
490 neurons showed large quantitative differences between encoding in small and large neural
491 populations 515258 \We computed the decoded information about the animal’s locomotion from a
492 Support Vector Machine (SVM) operating on population vectors of mesoscopic astrocytic ROls. In
493 the large population, we found a large information limiting effect for locomotion (Fig 6H, the total
494 information in population activity was more than 2 times smaller than the information in the trial-
495 shuffled responses). This effect emerged because the relatively small, yet predominant, pairwise
496 information-limiting effects summed up in the large population (Fig. S13E). Conversely, when
497 considering the information about licking encoded by the large-scale astrocytic population, we
498  found that there was no effect of correlations on population information (Fig 6M). This result could
499 be explained because the pairwise information-enhancing effects for licking were compensated by
500  pairwise information-limiting effects (Fig. S13F).

501

502  We also considered the total amount of information carried by the mesoscopic astrocytic
503 population. The population of all astrocytes in the mesoscopic FOV carried ~ 0.2 bits of information
504  about both locomotion (Fig. 6H) and licking (Fig. 6M), an increase of a factor of more than 10 with
505 respect to the corresponding single cell values. Interestingly, the population of all astrocytes carried
506 approximately the same amount of population information about licking and locomotion, despite the
507  fact that the single-cell information values were almost twice as small for licking compared to
508 locomotion (cf. Fig. 6H-M with Fig. 6E-J). This is because for licking the higher tuning diversity and
509 the consequent lower information limiting effect made different cells less redundant and allowed
510 licking information to build up more at the population level. Importantly, considering populations of
511 astrocytes coming from more restricted spatial regions, such as those of size comparable to the
512 FOV of traditional two-photon microscopes, would have given much lower information values (Fig.
513 S13G-H), confirming the power of mesoscopic imaging for revealing large information-encoding

514  network of astrocytes.
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515

516  Taken together, these results demonstrate that information about external variables (locomotion
517 and licking) is encoded across large-scale astrocytic networks spanning several mm of cortical
518 tissue. These distributed networks of astrocytes are endowed with emergent properties due to their
519 correlations, which are highly specific to the information content (that is, to the specific external
520  variable being encoded).

521

522  ASTRA processing time

523 We measured ASTRA processing time for the whole inference pipeline, repeating the analysis over
524 10 iterations. To allow for performance comparison across different configurations of hardware
525 resources, we used a 26.3*10% um?2 FOV and we artificially changed the t-series length from 300 to
526 700 frames. We compared three computational resource configurations: 4 CPUs, 20 CPUs, and 20
527 CPUs + 1 GPU (Fig. S14A). These configurations were chosen to compare the time needed to
528 perform ASTRA analysis from laptop-like performance (i.e., 4 CPUs) to high-performance
529  workstation equipped with computing accelerators (i.e., 20 CPUs and 20 CPUs + 1 GPU). We found
530  the 4 CPUs configuration was the slowest configuration (12.33 = 0.08 s for 700 frames, mean %
531 std) to detect and semantically segment astrocytic somata and processes. In contrast, the 20 CPUs
532 configuration and the usage of a GPU accelerator reduced ASTRA processing time (7.27 + 0.03 s
533 for 700 frames with GPU vs 10.80 + 0.09 s without GPU). The cross-correlation module was a
534  significantly time-consuming block in the inference pipeline. We found that GPU computational
535 power reduced the execution time of the cross-correlation computation (0.919 £ 0.004 s for 90 s t-
536  series, mean * std) compared to the 20 CPUs implementations (19.23 + 0.09 s for 90 s t-series)
537  and the 4 CPUs implementation (26.39 + 0.04 s for 90 s t-series; Fig. S14B). We finally measured
538 the processing time to detect and semantically segment somata and processes of astrocytes for
539 large-scale mesoscopic and high sampling rate non-mesoscopic recordings using the 20 CPUs +
540 1 GPU configuration. We measured processing time of the inference pipeline for 10 iterations on

541 FOV areas of 0.16 mm? and 0.26 mm? changing artificially the t-series length from 1000 to 5000

20


https://doi.org/10.1101/2023.05.03.539211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.03.539211; this version posted May 3, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

542 frames (Fig. S14C). ASTRA processing time was 22.1 + 0.3 s for the 0.16 mm?2 FOV and 25.7 +
543 0.1 s for the 0.26 mm?2 FOV both composed of 5000 frames.

544

545 These results demonstrate that ASTRA performed fast (few tens of s) semantic segmentation of
546 astrocytes in two-photon t-series, speeding up and facilitating the analysis of astrocytic calcium
547  signals in vivo.

548

549  Discussion

550 Astrocytes, the main type of glial cells in the brain, display complex intracellular calcium dynamics
551 4.5,46 that can be captured with two-photon microscopy. These complex dynamics can be spatially
552 localized in subcellular astrocytic ROls, involve large portions of the astrocyte cell, and be
553  coordinated across the astrocytic network 20. 21. 23. 25 Moreover, calcium signals in astrocytes
554  encode information about synaptic function, circuit activity, and cognitive states 2 3 59, Having
555 efficient tools for the analyses of these signals and the precise identification of astrocytic ROls is
556 thus of fundamental importance to study the physiology of astrocytic and neuronal circuits. To
557 identify and segment astrocytes, manual annotation is still largely used. A problem with this
558 approach is that it does not scale to large datasets and fields of view, requires significant amount
559  of human training, and intrinsically suffers from human-dependent variability. State-of-the-art
560 approaches to analytically segment astrocytic ROls in two-photon imaging experiments as, for
561 example, GECI-Quant (Srinivasan et al. 2015) and CHIPS (Stobart et al. 2018) provide semantic
562 segmentation of astrocytes. These methods require careful setting of multiple user-defined
563 parameters, which may vary with data acquisition conditions and with SNR, and require significant
564 computation time. Moreover, CHIPS only segments active processes. The point discussed above
565 limit the reliability and scalability of these approaches. Other analytical methods identify calcium
566  events within and across astrocytes based on pixel-wise correlated dynamics 14 28-31.60_ However,
567 event-based approaches are computationally demanding, making it challenging to apply them to
568 large datasets and fields of view. Moreover, event-based methods identify ROls, but do not relate

569 identified ROIs to the morphology of individual astrocytes. ASTRA enables the identification of
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570  astrocyte somata, processes, and domains, is scalable to large datasets and fields of view,
571  addressing most limitations of current state-of-the-art methods.

572

573  ASTRA achieves fast automated segmentation

574 ASTRA was designed to minimize computational time and its pipeline was massively parallelized
575 on GPUs, enabling fast DNN training and inference steps. For example, ASTRA required few tens
576  of seconds to process a t-series of average length and could segment a whole dataset of previously
577 published data 15 in few minutes, reducing analysis time by more than a factor of 60 compared to
578  current methods 0 1927 and by almost three orders of magnitude compared to manual annotations.
579 This feature of ASTRA was fundamental to enable scalability of ASTRA to large datasets, as for
580  example the field-of-view of mesoscopic two-photon imaging (see discussion below) and may
581  enable closed-loop experimental designs.

582

583 ASTRA provides precise and reliable segmentation

584 ASTRA performance in astrocyte segmentation was similar to that of human annotators. We used
585 three different annotators to manually identify and segment somata and processes in our datasets.
586  We combined these annotations into a consensus annotation. Annotators showed large level of
587 agreement in the segmentation of somata and lower level of agreement in the segmentation of
588 processes in all the datasets, highlighting the variability of this manual task. Once trained on the
589 consensus, ASTRA provided reliable and reproducible segmentation, avoiding human operator-
590  dependent variability. Moreover, in this study we shared our imaging dataset, annotations, and
591 codes. In future work, this open access repository may be enriched with additional segmentations
592 by users from other laboratories, initializing the process of generating consensus annotations
593 agreed across laboratories. Additionally, our datasets and annotations can be used as an online
594  platform for benchmarking new computational algorithms for the analyses of astrocytic functional
595  imaging recordings.

596
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597  ASTRA outperforms current methods and can be combined with event-triggered approaches for
598  combined morpho-functional segmentation

599  We found that ASTRA performance was better than that of the multiple state-of-the-art tools for the
600 analysis of astrocytic (e.g., GECI-Quant '9) and neural signals (e.g., CalmAn 3¢, UNet2DS 39, and
601 STNeuroNet ¥7) that we tested. Compared to GECI-Quant, a main algorithm for the segmentation
602 of astrocytic functional images, ASTRA did not require user intervention while the semi-automatic
603  implementation of GECI-Quant required the user to define at least one specific intensity threshold
604  for each astrocyte based on a temporal projection of the imaging session. This GECI-Quant feature
605 resulted in a time-consuming procedure that limited the reproducibility of this approach and its
606 scalability to large datasets. Conversely, ASTRA’s automatic pipeline used both spatial and
607 temporal information to reliably generate a highly informative projection, which is semantically
608 segmented by the specific design of the DNN. Several event-based methods have also been
609 implemented to characterize the spatio-temporal patterns of astrocytic calcium activity 2831,
610 However, these algorithms require several user-defined parameters, which often depend on
611 imaging conditions, SNR regimes, and fluorescent indicator. Moreover, the algorithmic complexity
612 of these methods scale poorly with the size of the input sample (i.e. number of signal sources per
613 sample, number of pixels per frames, and number of frames). Semantic segmentation performance
614  of ASTRA was robust and reproducible and can thus be used to mitigate some of the limits of event
615 based methods. ASTRA performance was stable over a wide range of PSNR situations and ASTRA
616 performance was crucially aided by efficient feature engineering on two-photon images in the pre-
617  processing step.

618

619  Importantly, ASTRA can be coupled with event-based segmentation methods, such as AQuA 28,
620 Event-based segmentation approaches identify ROIls relying on the correlated temporal dynamics
621  of calcium signals across individual pixels 2831, ROls identified with event-based methods, however,
622  are not usually related to morphological features of astrocytes 2831, To this end, we used ASTRA

623 to obtain fast segmentation of individual astrocyte domains and then we seeded AquA using the
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624  domain ROIs identified by ASTRA. With this combined strategy, we enabled the extraction of
625 morpho-functional information from individual astrocyte domain in population imaging recordings.
626

627  ASTRA outperformed multiple state-of-the-art methods for detection and segmentation of neurons
628 in two-photon imaging recordings. We understand the lower performance of neuronal tools when
629  applied to the analysis of astrocytes as arising from the major differences in morphological structure
630  and in the timescales of calcium signals between neurons and astrocytes. Neuronal tools based on
631 non-negative matrix factorization 33 36 heavily rely on hypotheses of spatial contiguity and temporal
632 activity organized over time scales of tens to hundreds of milliseconds. These hypotheses are ill
633 suited to describe subcellular astrocytic calcium signals, which show heterogeneous spatial
634 extents, diverse dynamic properties at the somatic and processes compartments, and slower
635 timescales. Neuronal algorithms based on DNNs, such as Unet2DS 3° and STNeuroNet 37, albeit
636  sharing architectural similarities with the DNN module of ASTRA, showed specific limitations. For
637 example, Unet2DS allowed some degree of astrocytic somata detection. However, Unet2DS failed
638 to perform semantic segmentation of astrocytic processes, especially in the absence of the pre-
639 processing step aimed to enhance spatial and temporal features of astrocytic signals. Conversely,
640 DNNs designed to extract activity localized at specific spatial footprints and temporal scales (such
641 as STNneuroNet %7) do not fit the spatial and temporal features of astrocytic calcium signals. These
642 considerations showcase some of the reasons underlying the better performance of ASTRA in
643 comparison to the state-of-the-art methods for neuronal analysis that we tested, and highlight the
644 necessity to develop algorithms and computational architectures specific for astrocytes, as done in
645  this study.

646

647 ASTRA generalized across acquisition conditions and fluorescence indicators

648  We tested ASTRA on four datasets that differed for acquisition parameters (galvanometric mirror-
649 based scanning vs resonant mirror-base scanning; pixel size, 0.7-1.1 ym/pixel) and fluorophore
650 type (GCaMP6f vs TdTomato). Importantly, it was possible to use ASTRA, endowed with its default

651 weights pre-trained DNN on dataset-1, on never-before-seen data (datasets 3-4), achieving high
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652  detection and segmentation performance. Moreover, ASTRA performance in ROI detection and
653 segmentation was comparable to that of human annotators for all datasets. These results suggest
654 ASTRA is a flexible analytical tool that can be applied to heterogeneous two-photon imaging
655 datasets of astrocytes. The high performance of ASTRA benefitted from transfer learning (as we
656 started training from DNN weights pre-trained on a large dataset natural images) and from pre-
657 processing specifically designed for astrocytes. However, while we used for training datasets that
658  can be considered of reasonable size in the field of two-photon astrocytic recordings, the amount
659 of data used for training was still limited with respect to those used to train DNNs on other tasks
660  such as the identification of objects in natural images 43 8'.62, As a result, it is possible that ASTRA
661 may not work well under some conditions for never-seen-before data. To alleviate this concern, we
662 included in ASTRA the possibility to further train its DNN on new annotated images that may better
663  suit the setup at hand.

664

665  Analysis of two-photon mesoscopic functional imaging of cortical astrocytes using ASTRA

666 Given its speed and performance, we used ASTRA for fast automated segmentation of large-scale
667 mesoscopic imaging data comprising hundreds of astrocytes. This type of data is challenging for
668 current analytical methods and is unpractical for manual annotation. Yet, mesoscopic two-photon
669 imaging *8 has the potential to unravel the extent to which astrocyte interact and how they organize
670 at the level of large networks. We here performed the first two-photon mesoscopic imaging of
671 GCaMP&6f-expressing astrocytes in awake head-restrained animals and then applied ASTRA to
672 segment the mesoscopic acquisitions. This made it possible to obtain the first simultaneous calcium
673 imaging analysis of networks of hundreds of astrocytes over the mesoscale. Using ASTRA, we
674  found that calcium dynamics of distributed ensembles of astrocytes carried information about
675 external variables, such as licking and locomotion, and that their calcium activity was correlated
676 over large spatial scales. This finding suggests that astrocytes form extended information-bearing
677 networks spanning several mm of cortical mantle. Moreover, we observed that these activity
678 correlations had a major influence on the emergent properties of astrocytic population codes and

679 that this influence strongly depended on the content of the information of the astrocytic population
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680  code. For locomotion, activity correlations had a profound information-limiting effects on the
681  populations, because of the homogeneity of tuning of astrocytes. In contrast, activity correlations
682  did not limit the population information when considering licking.

683

684 Thirty years of combined recording and analysis of neural populations contributed to lay down the
685 foundations for the emergent principles of organization of neural population codes and their
686  contribution to multiple brain functions %52 | The results presented in this study suggest that
687 coupling analysis methods such as ASTRA with tools of mesoscopic imaging can reveal as rich
688  emergent properties in large astrocytic networks.

689

690 To conclude, we developed a novel DNN-based tool to achieve fast, precise, and automated
691  semantic identification of ROls in two-photon imaging experiments of large-scale astrocyte calcium
692 signals. Our method enables automated astrocyte segmentation of mesoscopic two-photon
693 imaging of astrocytes, revealing distinct behavioral-dependent population coding properties in mm-
694 scale astrocytic network. Moreover, our shared dataset, annotation, and codes offers the field the
695 possibility to achieve community-based consensus ground truth for astrocyte segmentation and a
696  ready-to-use tool to benchmark new computational developments.

697

698  Materials and Methods

699  ASTRA algorithm

700 General information about the use of data and the pipeline. The workflow of ASTRA has two
701 different pipelines: training and inference (Fig. 1A-B). Each pipeline analyzed a dedicated training
702 or inference dataset, respectively. The training set was a dataset (for example, a subset of FOVs
703 with annotated t-series) which was used to optimize the algorithm finding adequate pre-processing
704  hyperparameters and DNN weights (see Activity Map Generation Module, Local Activity Filtering
705 Module, and Deep Neural Network Module). The inference set was a dataset, completely separated
706  from the training one (for example, another subset of FOVs), which was used to evaluate the

707  performances of the algorithm.
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708  Consensus annotated two-photon t-series recordings of astrocytes in the training set underwent a
709 pre-processing procedure comprising Spatial sharpening, Putative bounding box extraction, and
710 Local activity filtering (see Fig. S1C red flow chart path); preprocessed data were used to optimize
711 the DNN weights (see Deep Neural Network Module). Analogously, t-series in the inference set
712 underwent a similar pre-processing procedure, with the difference that data entered the pipeline
713 without annotations (Fig. S1C blue flow chart path). The algorithm proceeded detecting putative
714 cells which were then segmented by the DNN (Fig. S1B).

715  When we tested ASTRA on dataset-1 or dataset-2 (see Generation of the two-photon imaging
716 dataset in awake head-restrained mice), we first trained the algorithm from scratch and then we
717 tested it using leave-one-out cross-validation (the training set consisted of all but one t-series which
718 was held out and tested as inference dataset). Results of these tests are reported as the averages
719  across the leave-one-out replicates of training and inference.

720  We obtained the two sets of default weights distributed with the software training the DNN on the
721 entire dataset-1 and dataset-2, respectively. When we performed inference on dataset-3 and
722 dataset-4, we used the default weights obtained from the entire dataset-1.

723 The version of ASTRA released in this article can readily perform inference using the default values
724 of pre-processing hyperparameters and DNN weights trained on dataset-1 or dataset-2. Both sets
725 of parameters are distributed with the released software. New users can further optimize ASTRA
726 by adding to the training pipeline their own t-series annotated with ImageJ (Fig. 1A, Fig. S12).
727

728 In the following sections, we provide detailed descriptions of the modules of ASTRA.

729

730  Spatial Sharpening Module. This module performed spatial sharpening and pixel intensity
731 standardization on the median projection of a t-series. First, the module subtracted from each frame
732 the 10t percentile of the pixel intensities 19, then it computed the median projection on the entire t-
733 series. Median projection’ pixels intensity was then standardized and rescaled as a 16-bit integer

734 (i.e. within the interval [0; 2'6]). Image contrast has been adjusted by using clipping limited adaptive
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735 histogram equalization (CLAHE, 8 OpenCV-python). Projections were then convolved with a

736  sharpening kernel K.

737 K

-1 -1

738

739  This set of operations condensed information about the spatial location of astrocytic signals
740  collected over time into a single, highly informative, spatial map.

741

742 Activity Map Generation Module. This module detected regions in FOVs characterized by spatially-
743 localized high fluorescence intensity (see below), generating a putative “activity map”.

744  As afirst step, the input FOV was subsampled in overlapping patches (Fig. S1D), each subject to
745 independent statistical analysis. Each patch was a 3D tensor in time and space in which the
746 intensity value of each 3D voxel was considered an independent sample. For each time t, Voxels-
747  vij(t), where i,j were indexes over the patch dimension, were binarized setting their value to 1 if their
748 fluorescence intensity values were greater than the N-th percentile of the voxels intensity
749 distribution within the patch or set to 0 otherwise. The N-th percentile was selected by optimization
750  of the activity map generator performances on the training set (see below). Finally, a bi-dimensional
751 (spatial) average projection of the binarized 3D tensors was generated reporting the fraction of time
752 in which the voxels vij were classified to 1. In the areas of patch overlap, a bi-dimensional average
753 projection for each pixel the spatial average was computed as the average value across patches.
754  To provide biologically relevant constraints to this statistical filter, the number of astrocytes in each
755 FOVs was estimated as the ratio of the FOVs surface with respect to the area of an astrocytic
756  domain. Here, each astrocytic domain was approximated as a circle of surface n(d/2)?, where d
757  was the characteristic diameter of an astrocytic domain (~40 pm ' 45). The estimated number of
758 astrocytes represented a lower bound for the number of active zones; in fact, the number of
759 identified clusters could be greater than the estimated number of astrocytes because of portions of
760 astrocytic bodies visible in the FOV or blood vessels appearing as active areas. Finally, the

761 algorithm identified all the spatially contiguous active clusters of pixels on the bi-dimensional
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762  (spatial) average projection of the binarized 3D tensors, selecting clusters with surface greater or
763 equal than a putative somata (~40 um?). As a conservative initialization, pixels were considered
764  active if their average projection value was greater than 0.6 (i.e. being classified as 1 on 60% of
765 time frames). If the number of clusters identified was smaller than the estimated number of
766 astrocytes the algorithm decreased by 0.03 the threshold for selecting active pixels. For each new
767 threshold the putative somata surface area was decreased iteratively by 4 ym?2 starting from 40
768  pm2 to 20 um2. This tuning process stopped when the number of identified clusters is equal or
769 greater than the estimated number of astrocytes the algorithm. This procedure aimed to minimize
770  the difference between the number of detected active regions and the theoretical astrocyte number.
771

772 The N-th percentile used to binarize the 3D tensor was tuned optimizing the performances of the
773 activity map generator module on the training set. Performances of this module were evaluated
774 computing the F1-score value between consensus somata annotations (see Manual Dataset
775 Annotation section) and active zones identified in each FOV of the training-set. The performance
776  was computed for a set of percentiles (30, 40, 50, 60, 70, 80, 90) and the one which maximized the
777  F1-score was selected.

778

779 Putative Bounding Boxes Extraction Module. This module computed centroids of active zones
780  detected by the activity map generation module and generated bounding boxes (BBs) surrounding
781 them. BBs were ~55 um high and wide. These BBs were used to extract from t-series and spatial
782 sharpened maps respectively (putative) single-cell spatial map and (putative) single-cell recordings,
783 respectively.

784

785  Local Activity Filtering Module. This module performed a fine local time filtering on single-cell
786 recordings. The module computed the 90t percentile of the pixels intensity distribution and used it
787 as a threshold to binarize the tensor. Then the module selected the pixels which were set to 1 for
788 at least the a1% of the frames. This binarization procedure was repeated setting to zero the

789 previously selected pixels from the starting distribution. Hence, all the pixels which were set to 1
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790  for at least 02% of the frames were selected. The binary mask obtained from the summation of the
791 two previous set of pixels was used to generate a binary map (1 foreground and 0 background) to
792 filter background regions and eventual artifacts generated by spatial sharpening from spatial single-
793 cell spatial maps.

794

795 The thresholds a1 and a2 used in this module were tuned on the training set. The module explored
796  aset of a1 and a2 couples ([0.3,0.15], [0.25,0.1], [0.2,0.07], [0.15,0.05]) and computed the fraction
797 of pixels belonging to consensus annotation removed by the filter. Finally, the module selected the
798 couple (a1, a2) with the highest threshold values that removes less than 5% of consensus pixels for
799 both soma and processes (i.e. a1=0.25 and 02=0.10 for dataset-1). We provided these values as
800  defaults for new users who will decide to run inference with ASTRA with default hyperparameters
801  and weights without further optimizing it using new annotated data.

802

803  Deep Neural Network Module. Our design of this convolutional Deep Neural Network (DNN) started
804  from a U-net 30 architecture with an encoder part (the descending part of the U shape in Fig. S1E)
805 that analyzed the input image and a decoder (the ascending part of the U shape in Fig. S1E)) that
806 took the information from the encoder and up-sampled it to classify the pixels of the input image.
807 The first two blocks of the encoder (L1 and L2 of the left part in Fig. S1E) were two basic U-net
808 blocks that analyzed input images using convolutional filters. We then nested three pretrained
809  Inception-Resnet-v2 modules 8 in our network (L3 to L5 levels in the left part in Fig. S1E) changing
810 its encoder backbone 65 6,

811

812  The decoder part of the U-Net (right part of Fig. S1E) implemented in 5 levels (L5 to L1) an up-
813 sampling strategy that was a fundamental transformation operation to obtain a pixel-level prediction
814  of the class with which each pixel should be labeled. In the Decoder part, we adopted Dense Up-
815  sampling Convolution (DUC) to reduce the decoder number of weights 67. The DNN outputs

816  consisted in a 3D tensor whose dimensions were: input height, input width and 3 channels
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817 corresponding to the probability of the pixel to belong to somata, processes, or background classes.
818  Each pixel was finally assigned to the class with the highest probability.

819

820 During training of all the layers of both the encoder and decoder parts, we used data augmentation

821 techniques to limit algorithm overfitting problems caused by the relatively small size of the dataset.

822  During training, we used standard transformations 8 of input images: rotation by 90°, 180°, 270°,
823 Gaussian blurring with a 3x3 pixels kernel and 6=3, Gaussian noise sampling values from a

824 Gaussian distribution with i = 0 and & = 0.3, salt and pepper noise on 4% of pixels, scaling of

825 image size by factor 1.4, 0.9 and 0.8, horizontal and vertical flipping, pixels intensity scaling by
826 factors 3 and 0.5. Moreover, we used morphological transformations that altered the spatial
827 structure of input images: elastic (Ronneberger, Fischer, and Brox 2015), barrel, and pincushion.
828

829  We combined a Binary-Cross-Entropy (BCE) loss with soft Dice loss (Milletari, Navab, and Ahmadi

830  2016); BCE was applied to all the three classes soma, process, and background. Soft Dice has
831  been applied only on soma and processes:

_ 1 &(/< _
L(X,X) = N ;{(;Xiclogxic) + } "

832 where X and X represented user defined mask tensor and prediction mask tensor, € = 0.5 was

2 ~
Z 1 2% Xie * Xje + €
XiC +X;ic+8

c=1

833 constant that preserved the numerical stability, N, was the batch size and c=1,2,3 was the class
834 index for: processes, soma, and background. The role of DNN was to assign small regions to the
835 correct class, hence, the soft dice loss represented a proper metric to measure area overlapping
836  accuracy. We trained the DNN using Adam Optimizer © and starting learning rate I (see Sl Tab.
837 S7). The number of training epochs was N = N1+Nz. In the first N1 epochs of training, the weights
838 of pretrained blocks (Reduction Blocks and IncecptionResNet Blocks) were not updated. During
839  the remaining N2 epochs, we performed a fine tuning of the entire net weights. All the filters trained
840  since the first epochs were initialized as described in 5. Training details are reported in Sl Tab. S7.

841
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842  Cross Correlation Module. This module analyzed fluorescence intensity dynamics of pixels within
843 the putative domain surrounding the semantically segmented astrocytic soma and processes ROls
844 (i.e. a circular region of radius ~40 um). We referred to the intensity fluctuations in time of each
845 pixel as s(t). This module was composed of two blocks — cross-correlation computation and
846 threshold optimization — that were executed iteratively. The cross-correlation computation block
847  classified a set of input s}[t] for | =1, ..., L as correlated to a set of reference sk[t]ork =1, ..., K
848 given a threshold thc; where L was the number of inputs and K is the number of references. The
849 block computed the normalized cross-correlation between each (I,k) couple (Eq. 2) and selected

850 its maximum value (Eq.3). Then, the cross-correlation matrix M is defined as in eq. 4.

ccpeln] = g (sf e — ) » (sK[(e +m)] — ) forn € [-55] @
my, = mT?X CCrx (3)
(’”.“ m.’“) (4)
MCC = H ‘. H
myy, - Mgy

851 Mcc was then binarized selecting only values greater than threshold thec. s}[t] was classified cross-
852 correlated if at least one element in the Ith-row of Mcc was equal to one.

853

854 The threshold optimization block selected an optimal threshold using an iterative approach. A set
855 of 250 pixels was sampled outside astrocyte domains in each FOV and their s,[t] were collected.
856 This set represented a proxy over which we could compute the number of false positive selections
857 obtained from the cross-correlation computation block using as a reference set the sy [t] extracted
858 from ROlIs pixels. Since pixels were sampled outside astrocytic domains, these pixels could not
859 belong to any subcellular region of the astrocytes detected in the FOV. For this reason, we assumed
860 that the sampled pixels s, [t] were independent from the ones of the semantically segmented ROIs
861 pixels. In the threshold optimization block, for each threshold value in the range 0.60 to 0.95 with
862 minimum spacing between values of 0.05, we computed the number of false positive pixels. Then,

863 this block selected as optimal threshold thop the smallest threshold value with average false positive
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864 percentage error less than 5 %. Finally, for each detected cell the cross-correlation module
865 collected all the pixel s; [t] in the circular region that surrounded it and all the ROls pixels s [t];
866  then it applied the cross-correlation computation block on these two sets of s[t] using thop as
867  threshold.

868

869  Workflow pipelines

870 Training Pipeline. The training-phase was organized as a series of steps that end with the DNN
871 training as shown in Fig. S1A. First, the spatial sharpening module was applied to the training FOVs
872 generating spatial sharpened maps. Since cells in the training set were already segmented in the
873 consensus segmentation, the Putative Bounding Boxes Extraction module generated the BBs using
874  the somata annotated in the consensus segmentation as input. The Putative Bounding Box
875 Extraction module generated a set of single cell spatial maps and a set of single-cell recordings.
876 The Local Activity Filtering module analyzed the single-cell recordings obtaining binary masks of
877 foreground/background pixels. Finally, single cell images extracted from the spatial maps were
878 filtered with these binary masks. This filter further denoised and enhanced the so-obtained single
879 cell spatial maps. This pipeline ended after the training of the DNN with the so obtained single cell
880 filtered spatial map images.

881

882 Inference Pipeline. The inference-phase started with the pre-processing which generated a set of
883 putative filtered single-cell maps from the inference set, as shown in Fig. S1B. The pre-processing
884 was organized in several steps where Spatial Sharpening, Activity Map Generation, Putative
885 Bounding Boxes Extraction, and Activity Filtering modules are applied. For each FOV, the spatial
886 map and the activity map were generated by the Spatial Sharpening module and by the Activity
887 Map Generation module, respectively (Fig. S2A). Then, the Putative Bounding Boxes Extraction
888 module extracted the putative single-cell spatial maps and the putative single-cell recordings.
889  Finally, the Activity Filtering module analyzed single-cell recordings and identified background
890  zones. These zones were filtered from the single-cell spatial map (Fig. S2B). Subsequently, the

891 filtered single-cell spatial maps were used to reconstruct a spatial map of the entire FOV where all
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892 the background parts were filtered. The DNN analyzed the filtered single-cell spatial maps and the
893  segmentations of the DNN were placed at the correct location within the FOV using the BB
894 coordinates. Altogether these segmentations constituted the semantic segmentation of the entire
895 FOV. Then, the DNN analyzed the FOV filtered spatial map providing for each cell the probability
896 of being a true- or a false-positive. Cell probability was computed as the mean probability of pixels
897 inside somata ROIls of being classified as soma-type pixels by the DNN. Cells with probability
898  smaller than 0.9 were filtered from the FOV segmentation results. The segmented regions obtained
899 were spatially filtered including only cells with identified soma area greater than 0.9*Amin and
900 smaller than 1.1*Amax, where Amin was the smallest somata area measured in the training dataset
901 whereas Amax was the greatest somata area measured. Finally, identified processes were filtered
902 if not spatially connected to an identified soma. If needed, users can then proceed to subcellular
903 parcellation of the segmented processes setting a suitable surface value to split process-ROls in
904  “mini-ROIs”. The last step consisted in the refinement of the ROIs so obtained using the cross-
905 correlation module. In fact, it identified regions where calcium signals were cross-correlated with
906  the semantically segmented ROIs signals in the FOV.

907

908 Detection and Segmentation Metrics

909 We evaluated the detection performances of our algorithm by comparing ASTRA somata
910  segmentations with the manual consensus labels, as described in 3637, We quantified three somata

911 detection metrics: recall, precision, and F1 score, defined as follows:

. Nrp
Precision =
detected
(5)
N
Recall = —£
c
(6)
(Precision = Recall)
F1=2=x —
(Precision + Recall) @)

912  We defined these quantities as follows: number of manually labelled somata (consensus somata,

913 N ), number of true positive somata (N;») and number of somata detected (N gecteq) 36 37. We
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914  matched masks between the consensus labels and the detected masks using the Intersection-over-
915 Union (loU) metric along with the Hungarian algorithm 79. We computed the loU metrics for 2 binary
916  masks M; and M, as follows:

M, N M,]| (8)
My U M,

IoU(My, M,) =
917 Then we computed the distance matrix between any pair of masks in GT manual annotations set
918  andin ASTRA annotations set as described in 3637, Each element of this matrix has been computed
919  as follows:

1— IoU(MFT,M;) if  IoU(MET,M;) =05
d(M{", M;) = 0 if METc M;or MFT 2 M
00 if otherwise

(9)
920  Adistance of infinity corresponded to non-matching masks due to their small loU score. Finally, we
921 solved the matching problem applying the Hungarian algorithm to the distance matrix. The number
922  of matched masks corresponded to Nyp.

923 Segmentation scores have been computed at the pixel level to quantify how complex structures
924 like processes were segmented by ASTRA. For each FOV, we computed the segmentation score
925 considering only the detected cell; when no detected cells were available in a FOV the
926  segmentation score was discarded. The segmentation score was quantified by three metrics: recall,
927 precision, and F1 score, defined in eq.5, eq.6, €q.7. We defined N, number of manually labelled
928 pixels, Nrp number of true positive pixels in the ASTRA segmentation and Ngg¢ecteq the number of
929 pixels segmented by ASTRA. We computed the F1-score for both somata and processes pixel-
930 classes.

931

932  Cross-Correlation Error evaluation

933 Error estimation for the cross-correlation module has been performed computing the number of
934 pixels outside astrocyte domains that were cross-correlated with the consensus ROls pixels in each

935  FOV.
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936  For each cell in the FOVs, we sampled 1000 pixels outside the astrocytes’ domain avoiding pixels
937  which were used to tune the cross-correlation threshold. This set was fundamental to compute the
938 number of false positive selections for each astrocyte. Domains were estimated as a circular region
939  of radius ~40 um surrounding each cell in FOVs. Then, we computed the number of false positive
940  pixel per FOV; as:

Zj:number offp(cellj) (10)
FP(FOV)) = celt

Ne
941

942  Where fp was the number of false positive pixels selected for cell;and Nc was the number of cells

943  in FOV.
944
945 Implementation of other state-of-the-art algorithms used for comparison

946  UNet2DS implementation

947  We segmented dataset-1 with UNet2DS software (https://github.com/alexklibisz/deep-calcium)

948  validating its performance using leave-one-out cross validation strategy. For dataset-1, we used
949  the same training procedure outlined in 35. We used 50 epochs with 100 training iterations in each
950  epoch using sixteen randomly cropped 128x128 pixels regions from the mean image, utilizing the
951 dice-loss and the Adam optimizer. We monitored the F1 score on a validation set, which was
952 selected from the training set (5% of the training set) to ensure the network was not overfitting.
953

954  STNeuronet implementation

955 We segmented dataset-1 with STNeuronet 37, validating its performance using a leave-one-out
956 cross validation strategy. We preprocessed our data as described in 37 and we adapted the
957 consensus annotation (see Consensus annotation) to identify active somata of astrocyte in each

958 frame of our data (https://qgithub.com/soltanianzadeh/STNeuroNet, prepareTemporalMask.m). In

959  the training dataset, somata were classified as active/inactive analyzing Af/fo traces extracted using
960  the procedure described in 15 to detect statistically significant calcium events. For each FOV, we

961  generated the training set cropping 120x144x144 voxels surrounding each somata in the
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962  consensus annotation. Then, we trained the net for 10000 epochs with leaning rate 0.5*10*-4 and
963  batch size of 3. The loss function always converged to a plateau within 10000 epochs with these
964 training parameters. Then, we used the same training procedure outlined by 7.

965

966  CalmAn implementation

967 We segmented dataset-1 with CalmAn 36, validating its performance against the consensus
968 annotations. CalmAn hyperparameters were set according to astrocytic somata morphology ' 4
969  and signal dynamics. We used patch_ size = [80, 80] and overlap = [20, 20] for dataset-1.
970 Components to be found was set to K = 1 since in these patches there was at least 1 astrocytic
971 somata. Decay time was 1.5 s and we set merging threshold equal to 0.6 in each test. Other
972  parameters were set to default settings.

973

974  GECI-Quant

975 To perform semi-automatic semantic segmentation with GECI-Quant, annotator-1 followed the
976 procedure described in 9. Briefly, for each FOV in dataset-1, the annotator selected two regions of
977 interest for every astrocyte corresponding to soma and astrocytic domain, respectively. Then,
978 annotator-1 manually selected an intensity threshold for each region of interest following the
979 procedure outlined in '°. GECI-Quant segmentations were used to compute the performance.

980

981 Reconstruction of astrocytic morphology from the spatio-temporal map of AQuA

982 Starting from the spatio-temporal map of calcium events resulted from AQUA 28, we reconstructed
983 astrocytic morphology since a subset of pixels classified as events should in principle belong to
984 astrocytic somata and processes. For each astrocyte detected in the consensus annotation, we ran
985 AQUA in circular regions of radius ~40 uym surrounding these cells, thus limiting the analysis to the
986 putative astrocytic domain. Using putative calcium events detected by AQuA, we selected the pixels
987 belonging to a minimum number of events. For each astrocyte the minimum number of events was
988 tuned as the value that maximize F1-score between the selected set of pixels and the consensus

989 annotation (using the union of somata and processes annotations). Hence, we computed precision,
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990  recall and F1-score between the best reconstruction and the consensus annotation. This strategy
991 provided the F1-score upper bound for the reconstruction astrocytic morphology using AQuA.

992

993  PSNR evaluation

994  We evaluated the peak signal-to-noise ratio (PSNR) of the FOV; containing N astrocytic ROls as:

o maxy; (v) (11)

PSNR(FOV;) = %ZW
=1

995 where y; (t) was the mean fluorescence signal in astrocyte ROI; and a}’“se”"e was the standard

996  deviation of the baseline distribution of fluorescence values in astrocytic ROIj. To compute the

997 baseline distribution of each astrocyte, we considered only pixels inside the astrocyte domain

998 (circular area of radius ~40 um). The values of these pixels across time formed the full fluorescence

999  distribution. The baseline distribution consisted of all the fluorescence value smaller than the 80t
1000  percentile of the full fluorescence distribution.
1001
1002  Manual dataset annotation
1003  Two-photon t-series were motion corrected with a custom Python implementation of phase
1004 correlation correction algorithm 7'. Motion-corrected t-series were pre-processed with the spatial
1005 sharpening module (see above). The consensus generation process included 2 steps. In the first
1006  step, three expert annotators independently labeled the datasets using the freehand and ROI
1007 Manager tools of Fiji 72 according to the following rules: i) annotators used the t-series to detect
1008  visible astrocytic somata; ii) spatial maps were used to select and to label ROIs, identifying visible
1009 astrocytic somata and processes; iii) annotators sequentially added ROls, defining the contours of
1010  the optically resolved proximal processes displaying active calcium dynamics and presumably
1011 belonging to the same astrocyte.
1012 In the second step, annotators solved inconsistencies in their annotations reaching a consensus 3
1013 as follows: i) annotations of the three annotators were combined in overlapping masks (Fig. S3) to
1014 highlight discrepancies among annotators; ii) each soma or process identified by 3 annotators was

1015 included in the consensus; iii) each soma or process identified by < 3 annotators was included in
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1016  the consensus only after an ad-hoc review, where the annotators judged looking at both the
1017  preprocessed spatial maps and motion corrected t-series.

1018

1019  Extraction of calcium event traces

1020  For each ROI, we computed fluorescence signals as in eq. 12.

Af _ f®) = fo(®) (12)

fo  fo®

1021  Where f(t) was the average fluorescence signal of a given ROI at time t and fo(t) was the baseline

1022  fluorescence. fo(t) was computed as the 20t percentile of the fluorescence intensity in a 30 s rolling
1023 window centered in t. Then, we generated the calcium event traces of astrocytes following the
1024  procedure described in 5. For each Af/f, trace, the standard deviation o1 of the whole signal was
1025 computed. Values above and below the interval + 01 were removed from the trace and the standard

1026 deviation o2 of the filtered trace was computed. Finally, fluorescence transients were identified on
1027  the original trace as events if: i) fluorescence values were above 202; and ii) fluorescence values

1028  returned within the + o2 interval in more than 0.5 s. Hence, we generated the calcium event trace

1029  setting all fluorescence values in Af/fp outside of those belonging to positive events to 0.

1030

1031  Mutual information analysis of individual astrocytic soma and of pairs

1032 For experiments in which we recorded astrocytic calcium activity using mesoscopic two-photon
1033  microscopy, we computed locomotion information (information about whether the animal was
1034 running or was still) and licking information (information about whether the animal was or was not
1035 licking the waterspout) carried by the calcium signals of either a single astrocytic soma or jointly by
1036  a pair of simultaneously recorded astrocytic somata.

1037  Mutual information between the considered behavioral variable, S (describing licking or
1038  locomotion), and the astrocytic activity, R, was computed as:

p(r,s) (13)

I(S;R) = ZSEW p(rs)log 5 o
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1039  where p(r,s) is the joint probability of observing at the same time a value s and r for the behavioral
1040  and the astrocytic activity variable, and p(s) and p(r) are the marginal probabilities, respectively.
1041 The calcium activity of each individual soma was discretized in two equally spaced bins. For single
1042 soma information, r was a one-dimensional array reporting the discretized activity of the considered
1043 cell, and for pairs it was the two-dimensional array containing the discretized activity of the two
1044  somata. The behavioral variable locomotion was computed as a binary array, set to 1 for epochs
1045  of motion (mouse speed = 0.5 cm/s) and set to 0 for epochs of immobility (mouse speed < 0.5
1046  cmi/s). The behavioral variable licking was a binary variable, in which contacts of the mouse’s
1047 tongue to the capacitive waterspout were encoded as 1 while licking was set to 0 otherwise.

1048  When considering pairs of ROIls, we further performed information breakdown analysis 56 73,
1049  decomposing mutual information carried by a pair of ROIs, I(S;R), into four terms: 1) ILn the mutual
1050  information linear term; 2) Iss the signal similarity term; 3) Ici the stimulus independent correlation

1051  term; 4) Icp the stimulus dependent correlation term.

1052

1053 We computed the null distribution for each pair of ROIs to evaluate if information in the two ROls
1054  of the pair is information-enhancing or information-limiting. We generated n = 100 random shuffling
1055 of the behavioral variable label of the data, which destroyed the relationship between the behavioral
1056 variable and the calcium response. From the shuffled data, we computed the distribution of Ish = |
1057 — lun-lss. A pair was classified information-enhancing or information-limiting if its real Isn value was
1058  >the 95 percentile or < 5% percentile of the shuffled distribution, respectively.

1059

1060  To correct the mutual information bias caused by limited sampling of astrocytic responses, we used
1061  the quadratic-extrapolation bias correction 73. 74,

1062

1063  Mutual information computed from large astrocytic populations from the confusion matrix
1064  of an SVM decoder
1065  To compute information for large populations of astrocytic ROIs, we computed mutual information

1066  with an intermediate decoding step 75, because we could not extend the direct information
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1067  calculation of the previous sections to large populations due to sampling problems 6. We trained a
1068  support vector machine (SVM) 77 with Gaussian kernel to classify the state of either one of two
1069 behavioral variables (S) according to a single-trial population vector made combining calcium
1070  signals of all individual astrocytic ROls within the FOV (either using all of them, or only part of it,
1071 see main text). Behavioral variables classified were locomotion and licking. Locomotion was
1072  defined as vector of binary values in which 1 or 0 indicated epochs of motion (mouse speed = 0.5
1073  cm/s) or epochs of immobility (mouse speed < 0.5 cm/s). Licking was defined as a binary vector: 1
1074 when contacts of the mouse’s tongue to the capacitive waterspout were done and 0 otherwise. For
1075 each experimental sessions, the dataset was composed by Zexp observations (Xj,s;j) with j = 1,...,
1076 Zexp. X is the n-dimensional array of the calcium activity of the N ROls in the session, whereas s;
1077 corresponded to either running/still or licking/not licking behavioral variables. Calcium observations
1078  X; were used to predict s;j variables using a support vector machine with Gaussian kernel. We
1079  trained and tested the SVM using 5-fold cross-validation procedure independently on each
1080 experimental session. During each iteration of the cross-validation, optimal hyperparameters were
1081  selected performing 5-fold cross-validation on each fold training set.

1082

1083  Predictions of the decoder for each of the 5-folds used as test were then collected to compute the
1084  overall mutual information between the predicted behavioral variable S, and the real value S.

1085  Mutual information I(S; S, ) was defined as the information in the confusion matrix:

_ B p(sp,S) (14)
1(5:5,) = Zses,s,,esp P(sp$) 1082 e s

1086  where p(s,, s) was the confusion matrix, that is the probability of observing a given value s of the
1087 behavioral variable and of predicting is as s,, and p(s) and p(s,) are the marginal probabilities,
1088 respectively. To assess if the correlations among astrocytes increased the amount of information
1089  related to a behavioral variable, we disrupted correlations by randomly shuffling, separately for
1090  each ROI, the order of trials with the same behavioral variable identity. We performed 100 trial
1091  shuffling. We then used the distribution of I(S; S,) values on trial shuffled data to compute the trial

1092  shuffling information as the mean value of this distribution.
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1093

1094  Animals

1095 All experiments involving animals were approved by the National Council on Animal Care of the
1096 Italian Ministry of Health and carried out in accordance with the guidelines established by the
1097  European Communities Council Directive authorization (61/2019-PR). All data were collected from
1098  male C57BL/6J mice (Charles River, Calco, Italy). From postnatal days 30, animals were separated
1099  from the original cage and housed in groups of up to five littermates per cage with ad libitum access
1100  to food and water in a 12-hours light-dark cycle. All the preparative and experimental procedures
1101  were conducted on animals older than 10 weeks.

1102

1103  AAV injection and chronic hippocampal window surgery

1104  Animals were anesthetized with 2% isoflurane 0.8 % oxygen, placed into a stereotaxic apparatus
1105 (Stoelting Co, Wood Dale, IL), and maintained on a warm platform at 37°C for the whole duration
1106  of the anesthesia. Before surgery, a bolus of Dexamethasone (Dexadreson, 4 gr/kg) was injected
1107 in the animal’s hamstring. After scalp incision, a 0.5 mm craniotomy was drilled on the right
1108  hemisphere (1.75 mm posterior, 1.35 mm lateral to bregma), the AAV-loaded micropipette was
1109  lowered into the hippocampal CA1 region (1.40 mm deep to bregma). 0.8 ul of AAV solution
1110  containing pZac2.1 gfaABC1D-cyto-GCaMP6f (Addgene viral prep # 52925-AAV5) was injected at
1111 100 nL/min by means of a hydraulic injection apparatus driven by a syringe pump (UltraMicroPump,
1112 WPI, Sarasota, FL). Following the viral injection, a stainless-steel screw was implanted on the
1113 cranium of the left hemisphere and a chronic hippocampal window was implanted on the
1114  contralateral hemisphere similarly to 5 78.79_ In brief, a trephine drill was used to open a 3 mm
1115 craniotomy centered at coordinates 2.00 mm posterior and 1.80 mm lateral to bregma. The dura
1116  was removed using fine forceps and the cortical tissue overlaying the hippocampus slowly
1117 aspirated using a blunt needle coupled to a vacuum pump. During aspiration the exposed tissue
1118  was continuously irrigated with normal HEPES-buffered artificial cerebrospinal fluid (ACSF).
1119  Aspiration was stopped once the thin fibers of the external capsule were exposed. An optical

1120  window was fitted to the craniotomy in contact to the external capsule and a thin layer of silicone
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1121  elastomer (Kwik-Sil, World Precision Instruments) was used to surround the interface between the
1122  brain tissue and the steel surface of the optical window. The optical window was composed of a
1123  thin-walled stainless-steel cannula segment (OD, 3 mm; ID, 2.77 mm; height, 1.50 - 1.60 mm) and
1124  a 3.00 mm diameter round coverslip, which was attached to one end of the cannula using UV
1125 curable optical epoxy. Sharp edges and bonding residues were smoothed using a diamond coated
1126  burr. A custom stainless-steel head-plate was attached to the skull using epoxy glue. The
1127 components described above were finally fixed in place using black dental cement and the scalp
1128  incision was sutured to adhere to the implant. All the animals received an intraperitoneal bolus of
1129  antibiotic (BAYTRIL, Bayer, Germany) to prevent postsurgical infections.

1130

1131  Generation of the two-photon imaging dataset in awake head-restrained mice

1132  The optical setup for two-photon imaging was composed of a pulsed laser source (Chameleon
1133 Ultra, 80 MHz repetition rate tuned at 920 nm, Coherent) and Bruker Ultima Investigator equipped
1134  with 6 mm raster scanning galvanometers, movable objective mount, 16x/0.8 NA objective (CFI75
1135 LWD 16X W, Nikon, Milan), and multi-alkali photomultiplier tubes. Laser beam intensity was
1136  adjusted using a Pockel cell (Conoptics Inc, Danbury). Laser beam power at the objective outlet
1137  was 90-110 mW. GCaMP6f or TdTomato emission signal was collected by the photomultipliers
1138  after band-pass filtering (525/70 nm) and digitalized in 12 bits. Imaging sessions were conducted
1139 in raster scanning mode. t-series were motion corrected using an open-source implementation of
1140 up-sampled phase cross-correlation 7180 and the t-series median projection was used as reference
1141 frame. One or two weeks after surgery the animals were handled by the operator for a minimum of
1142  two days and habituated to the imaging setup. Starting from the second session, the animals were
1143  head-restrained for a progressively increasing amount of time, reaching 1 hour in approximately
1144  one week. Mice were free to run on a custom 3D printed wheel. Experimental sessions lasted
1145  approximately one hour. After each session, animals were returned to their home cages.

1146

1147 Dataset-1. This dataset was composed of 24 t-series of hippocampal astrocytes expressing

1148  GCaMPé6f, recorded in head-fixed mice running on a wheel. This dataset was composed of 15 t-
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1149  series with 550 frames and 9 FOVs with 750 frames (image size, 256 pixels x 256 pixels, 0.634
1150  um/pixel. T-series were acquired at 3 Hz.

1151

1152 Dataset-2. This dataset was composed of 10 t-series of hippocampal astrocytes expressing
1153  TdTomato, recorded in head-fixed mice running on a wheel. 4 t-series were recorded with
1154 galvanometric mirror scanning and 4 t-series were recorded with resonant mirror scanning. Image
1155 dimensions were 512 pixels x 512 pixels, 1.057 pum/pixel. t-series recorded with galvanometric
1156 mirror scanning comprised 250 frames. t-series recorded with resonant mirror scanning comprised
1157 1200 frames (one t-series), 5500 frames (two t-series), and 9000 frames (one t-series). t-series
1158 recorded with galvanometric mirror scanning were recorded at [0.8-1 Hz], whereas t-series
1159  recorded with resonant mirror scanning were recorded at 30 Hz.

1160

1161 Dataset-3. This dataset was composed of 7 t-series of hippocampal astrocytes expressing
1162 TdTomato indicator recorded in awake mice running on a wheel. t-series length was: 5500 frames
1163 (5 t-series), 4500 frames (one t-series), and 9000 frames (one t-series). Image dimensions: 512
1164  pixels x 512 pixels, 0.79 um/pixel. t-series were acquired at 30 Hz.

1165

1166  Dataset-4. This dataset was composed of 10 t-series of hippocampal astrocytes expressing
1167 GCaMP6f, recorded in head-fixed mice running on a wheel. The dataset comprised 10 t-series. t-
1168  series length, 9000 frames; image dimension, 512 pixels x 512 pixels; pixel dimension, 0.793
1169  um/pixel; acquisition frequency, 30 Hz.

1170

1171  Simulated datasets. We generated 4 artificial datasets with increased noise levels using dataset-1.
1172  To this aim, we first estimated the standard deviation, o, for each pixel in the FOVs. We then
1173  computed a novel temporal intensity trace adding zero mean gaussian noise with B*c standard
1174  deviation to the recorded raw trace. The noise scaling factor, B, was 0.5, 1, 1.5, 2 for the four

1175  artificial datasets, respectively.

1176
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1177  We also generated 2 datasets with reduced background pixels intensity. For each t-series, we
1178  defined as background all the pixels outside the consensus annotations, and we scaled background
1179  pixel intensity by a factor 2, (A values, 0.75 and 0.5, respectively).

1180

1181  AAV injection and chronic optical window surgery for mesoscopic imaging of cortical
1182  astrocytes

1183  Animals were anesthetized with 2% isoflurane 0.8 % oxygen, placed into a stereotaxic apparatus
1184  (Stoelting Co, Wood Dale, IL), and maintained on a warm platform at 37°C for the whole duration
1185 of the anesthesia. Before surgery, a bolus of Dexamethasone (Dexadreson, 4 gr/kg) was injected
1186  in the animal’'s hamstring. After scalp incision, two small craniotomies were drilled on the right
1187 hemisphere (craniotomy 1: 1.25 mm posterior, 2.00 mm lateral to bregma; craniotomy 2: 1.75 mm
1188  posterior, 1.60 mm lateral to bregma). A micropipette loaded with AAV solution was lowered 300
1189  um below pial surface into the cortical parenchyma. 0.4 ul of AAV solution containing pZac2.1
1190  gfaABC1D-cyto-GCaMP6f (Addgene viral prep # 52925-AAV5) was injected at 50 nL/min using a
1191  hydraulic injection apparatus driven by a syringe pump (UltraMicroPump, WPI, Sarasota, FL).
1192 Following the viral injection, a circular craniotomy (3 mm diameter) was centered at the stereotaxic
1193 coordinates (1.5 mm anterior and 1.8 mm lateral to bregma) using a trephine drill. The dura was left
1194 intact, and a custom chronic cranial window for mesoscopic two-photon imaging was placed above
1195 the craniotomy and secured using cyanoacrylate glue. A custom titanium head-plate was attached
1196 to the skull using cyanoacrylate glue. Finally, the components were secured using dental cement
1197 (C&B Superbond; Sun Medical). All the animals received an intraperitoneal bolus of antibiotic
1198  (BAYTRIL, Bayer, Germany) to prevent postsurgical infections.

1199

1200  Mesoscale two-photon imaging in awake head-restrained mice

1201 A two-photon random access mesoscope (2P-RAM, 48, ThorLabs Mesoscope, Thorlabs, Newton,
1202 NJ) was coupled with a pulsed laser source (Chameleon Ultra, 80 MHz repetition rate tuned at 920
1203 nm, Coherent). Group delay dispersion was compensated using a prism-based compensation unit.

1204  2P-RAM scanning unit was composed of a resonant scanner (24 kHz, CRS 12 K, Cambridge
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1205 Technology), a pair of galvanometric mirrors, and an acoustic coil remote focusing unit. Image
1206  acquisition was controlled using Scanimage 8' (MBF Bioscience, Ashburn VA). Imaging was
1207  performed using a 0.6 NA objective (S/N:126, Jenoptik, Jena), and emitted fluorescence was
1208  collected using GaAsP photomultiplier tubes (PMT2103, Thorlabs, Newton, NJ) after band-pass
1209  filtering (520/70 nm). Laser beam intensity was adjusted using a Pockel cell (ConOptics Inc,
1210  Danbury). Laser beam power at the objective outlet was 50-70 mW. Imaging was conducted on a
1211 ~1.5x1.5 mm field of view scanned using three tiled regions of interest of 1500x500 pixels (1
1212 um/pixel) resulting in a composite field of view of 1500x1500 pixels sampled at ~3 Hz frame rate.
1213 T-series were motion corrected using an open-source implementation of up-sampled phase cross-
1214  correlation 71.8% and the t-series median projection was used as reference frame. Three weeks after
1215 surgery the animals were handled by the operator for two days and habituated to the imaging setup.
1216  Starting from the second session, the animals were head-restrained for a progressively increasing
1217 amount of time, reaching 1 hour in approximately one week. Mice were free to run on a custom 3D
1218 printed wheel and water rewards were provided by the operator through a custom waterspout.
1219 Experimental sessions lasted between 1-1.5 hours. After each session, animals were returned to
1220  their home cages.

1221

1222 Algorithm Open-source implementation and Datasets availability

1223  ASTRA was developed in Python 3.6 8 and PyTorch 1.2 8 and the code is publicly available at

1224 (https://gitlab.iit.it/fellin-public/astra). ASTRA uses several open-source libraries like OpenCV 63,

1225  scikit-learn 84, scikit-image 8 and Scipy 8. The repository contains documentations, Docker
1226 (docker.com) image for fast installation, Jupyter notebook tutorials, bindings for widely used
1227  software (Fiji, 72 and MATLAB (MathWorks)), visualization and analysis tools, and a
1228  message/discussion board. DNN weights for all the datasets used in this study are reported in the
1229 repository. The four datasets, including individual and consensus annotations, will be shared upon
1230  publication.

1231

1232 Statistics
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1233 In statistical testing of detection and segmentation performance of ASTRA, we used a two-sided
1234 Wilcoxon rank test. When performing multiple comparisons between ASTRA and human users of
1235  detection and segmentation performance, we used Holm-Bonferroni method for post-hoc
1236  correction.

1237

1238  Time Analysis

1239  We analyzed the computational performances of ASTRA in terms of processing time for the various
1240  steps in the Inference Pipeline. We used the following computing architecture, a Linux based
1241  workstation (Ubuntu 18.04.3 LTS distribution) equipped with 20 Intel(R) Core (TM) i9-9900X CPU
1242  clocked @ 3.50GHz, 130 GB of RAM, and 3 INVIDIA GeForce RTX 2080Ti GPUs.
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1258
1259  Figure 1. ASTRA: a machine learning algorithm for fast and automated semantic segmentation of

1260  astrocytes. A-B) Flow-charts of ASTRA segmentation pipelines for training (A) and inference (B).
1261 At the end of the training pipeline, pre-processing hyperparameters and DNN weights are saved.
1262 At the end of the inference pipeline spatial coordinates corresponding to somata, processes, and
1263 cross-correlated regions are saved. C) Two-photon Ca?* imaging of hippocampal astrocytes was
1264  performed in head-fixed mice running on a wheel. D) Four datasets were initially used for ASTRA
1265 training and testing. Details of each dataset are listed in the figure. Each dataset was manually
1266  segmented by 3 expert annotators. White bar on the top-right of each image represent the scale
1267  bar. Dataset-1, 40 ym, Dataset-2, 50 ym Dataset-3, 40 ym, and Dataset-4, 40 ym.
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1269  Figure 2. Evaluation and benchmarking of ASTRA on dataset-1. A) Representative comparison of
1270  consensus annotations (left, FOV id: 2) and ASTRA semantic segmentation (right). On the top of
1271 the right image are reported somata detection Precision, Recall, and F1-score for FOV id: 2. B)
1272 Representative example of the comparison of somata and processes segmentations between
1273  ASTRA and the consensus annotations. True positive pixels (red), false negative pixels (green),
1274  and false positive (cyan) are shown. C) Performance of the three annotators A-1, A-2, and A-3
1275 against ASTRA. Precision (P), Recall (R), and F1-score (F1) are shown. Two-sided Wilcoxon rank
1276  sum test N= 24; leave-one-out cross validation (LOOCV) results. In this as well as in following
1277  figures: n.s., not significant, *P < 0.05, **P < 0.005 and ***P < 0.0005. D) F1-score for somata and
1278 processes segmentation for annotators and ASTRA. Two-sided Wilcoxon rank sum test, N= 24,
1279 LOOCV results. E) F1-score for somata and processes segmentation of GECI-Quant and ASTRA.
1280  Two-sided Wilcoxon rank sum test N= 24; LOOCYV results. F) Astrocytic morphology reconstructed
1281 using ASTRA segmentations and AQUA event detection. Two-sided Wilcoxon rank sum test N= 24;
1282  LOOCYV results. G) Soma detection performance of STNeuronet, CalmAn, UNet2DS, and ASTRA.
1283  Two-sided Wilcoxon rank sum test N= 24; LOOCYV results. See also table S1, S2, and S3.
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Figure 3. Identification of correlated calcium signals in astrocytic domains using ASTRA. A) Two
representative examples of statistically correlated regions in the astrocytic domain identified with
the cross-correlation module (FOV (Id:2)). ROIs corresponding to somata and processes are
colored in red and pink, respectively. ROls extracted using cross correlation are shown in green. B)
Ratio of ROI area extracted using the cross-correlation module and ROI area obtained by summing
soma and processes ROIs together as a function of the cross-correlation threshold. C) Cross
correlation error distribution. The cross-correlation error was estimated as the mean percentage of
false-positive pixels selected in each FOV sampling 1000 pixels outside astrocytes domains, which

were not used to tune the cross-correlation threshold. Two-sided Wilcoxon rank sum test, N=24.
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Figure 4. Impact of image noise and pre-processing on ASTRA performance. A) Representative
image (single cell in FOV id 2) under various simulated noise regimes. Values of peak signal-to-
noise ratio (PSNR) for each noise regime are reported above the images. B) Precision, Recall, and
F1-score for soma detection performance for different PSNRs. Two-sided Wilcoxon rank sum test,
N = 24; LOOCYV results. C) F1-score for segmentation of somata and processes across different
PSNRs. Two-sided Wilcoxon rank sum test, N = 24; LOOCYV results. D-E) ASTRA detection and
segmentation performance as a function of the omission of ASTRA pre-processing steps. We
omitted either the temporal pre-processing step (ASTRA-Spatial) or all the pre-processing steps
(ASTRA-unprocessed). Soma detection Precision, Recall, and F1 are reported in D. Two-sided
Wilcoxon rank sum test, N = 24; LOOCYV results. The segmentation F1-score for somata and

processes are shown in E. Two-sided Wilcoxon rank sum test, N = 24; LOOCV results.
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Figure 5. ASTRA performance on never-seen-before data. A) Consensus annotation of FOV (ld:
1, dataset-4). B) ASTRA segmentation on the same FOV shown in A. C) Soma detection
performance is reported as Precision (P), Recall (R), and F1-score (F1) for the three human
annotators (A-1, A-2, and A-3) and for ASTRA. Two-sided Wilcoxon rank sum test, N=10; LOOCV
results. D) F1-score for segmentation of somata and processes for the three human annotators
(blue, yellow, and green) and ASTRA (red). Two-sided Wilcoxon rank sum test, N=10; LOOCV

results. See also table S5.
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1315 Figure 6. ASTRA enables fast segmentation of large-scale astrocytic networks imaged with two-
1316  photon mesoscopic microscopy. A) Representative image of somata segmentation (green)
1317  identified by ASTRA on cortical astrocytes expressing GCaMP6f and recorded using two-photon
1318  mesoscopic imaging (FOV dimension: 1.5 mm x 1.5 mm; FOV Id: 4). B) Zoom in of the region
1319  highlighted in A. On A-B image contrast has been adjusted to aid visualization. C) Pearson
1320  correlation of calcium signals for pairs of astrocytic somata as a function of pair-wise distance. Grey
1321  lines are linear fit of data from individual sessions, the red line is the mean + std across 15 imaging
1322  sessions from 3 animals. Two-sided Wilcoxon rank-sum test. D) Fraction of active ROls during
1323 animal locomotion (Run) and absence of locomotion (No-Run). Two-sided Wilcoxon signed rank
1324  test N = 13. E) Mutual information about animal locomotion carried by pairs of ROIs (l) compared
1325 with the sum of the information separately encoded by each member of the pair (ILin) plus the signal
1326  similarity information component (Ish = lun+ Iss). Two-sided Wilcoxon signed rank test, N = 13.
1327 F) Fraction of information-enhancing (Info-enh.) and information-limiting (Info-lim.) pairs encoding
1328  locomotion information. N = 13. G) | - Isn values within pairs of somata as a function of pairwise
1329  distance. Information-enhancing pairs are reported in cyan and information-limiting pairs are
1330  reported in red. Linear regression fit: all pairs (solid line), information-enhancing pairs (dotted line),
1331  and information-limiting pairs (dashed line). Two-sided Wilcoxon signed rank test, N = 13. H)
1332 Information about locomotion behavior (Iwn) decoded from astrocytic population vectors on real
1333 (white), and trial-shuffled (gray) data. Two-sided Wilcoxon signed rank test N = 13. I-M) Same as
1334 in D-H but for licking (lick) vs no liking (No-lick) behavior. I, two-sided Wilcoxon signed rank test N
1335 =13, J, two-sided Wilcoxon signed rank test N = 8; K, N = 8; L, two-sided Wilcoxon rank-sum test,
1336 N =8; M, Two-sided paired t-test., N=8. In (H-M) trial shuffling disrupted temporal coupling within
1337  astrocytic population vectors, while preserving single ROI activity patterns. In panels D, E, F, H, |,

1338  J, K, and M, data are represented as mean + sem.
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1341 Figure S1. Schematic representation of ASTRA pipelines and modules. A-B) Flowcharts of the
1342  training (A) and inference (B) pipelines. C) Flowchart of the pre-processing steps: i) generation of
1343  the spatial sharpening map (Spatial Sharpening); ii) extraction of putative bounding boxes (PBB
1344  Extraction); and iii) local activity filtering (LA Filtering) of single-cell images. Please note that
1345 extraction of single-cell images during pre-processing of the training set relies on ground-truth
1346 segmentation. Extraction of single-cell images during pre-processing of the inference set relies on
1347 the activity map generator (Activity Map Generation). D) Schematic representation of ASTRA
1348  activity map generator: i) patch extraction; ii) patch parallel analysis; iii) clustering of active pixels.
1349  E) ASTRA DNN architecture. In each level Liwith i = (1, 2, 3, 4, 5), height (H) and width (W) of the
1350  input image is reduced by a factor 2-'. Conv2D+BN+RelLu: this block is composed of two
1351 consecutive sequences of 3 x 3 convolutional filters (Conv2D) followed by batchnorm normalization
1352 (BN) and rectified linear unit (Relu). Max Pooling: we used a kernel_size of (2,2) - the size of the
1353 sliding window where the maximum value of the input tensor is taken - resulting in input tensor of
1354  dimensions H and W reduced to H/2 and W/2. Mixed_i: in L3, we used Mixed_5a, in L4 we used
1355 Mixed_6a, and, in L5, we used Mixed_7a from Inception-ResNetv2 implementation in 4. Inception-
1356  ResNet Block: in L3 the block is composed as (Inception-ResNet-A, Block35)x10, in L4 the block
1357 is composed by (Inception-ResNet-B, Block 17)x20 and in L5 the block is composed by (Inception-
1358  ResNet-C, Block8)x10 from Inception-ResNetv2 implementation in (Szegedy et al. 2017).
1359 Upsampling: we adopted dense upsampling convolution (DUC, 7) to perform the upsampling on
1360  the input tensor. The input tensor dimensions are H x W x D and they are transformed to (2H) x
1361  (2W) x (D/4). Conv2D+Softmanx: this block is composed by a 3x3 convolutional filter and a Softmax
1362  transformation.
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A Median Projection

Non-Filtered Single Cell Im.

Filtered Single Cell Im.

Figure S2. ASTRA pre-processing. A) Left: median projection of a representative FOV (1d:2)
overlaid with putative bounding boxes computed by activity map generation. Right: spatial
sharpening of the same FOV shown on the left panel. B) Top: zoom in showing sharpened images
of four cells (cell 1-4) extracted from the putative bounding boxes shown in the left panel of A.

Bottom: for each image the result of local activity filtering is shown.
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1369
1370 Figure S3. Generation of the consensus annotation. Top: individual manual annotations (colored

1371 contours) for FOV (Id:2) by three graders (annotator-1, annotator-2, and annotator-3). Manual
1372 annotations are plotted on top of the median projection of the two-photon t-series. The numbers in
1373 parenthesis in the top label report detection Precision, Recall, and F1 score. Bottom: intersection
1374  of somata annotations (left), intersection of process annotations (middle), and result of the

1375  consensus annotation (right).
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Figure S4. Benchmarking ASTRA against human annotators and against state-of-the-art cell
detection and segmentation methods. A-B) Precision (A) and Recall (B) of somata and process
segmentation for the three annotators and ASTRA (two-sided Wilcoxon rank sum test N = 24;
LOOCV results). See also table S1. C-I) ASTRA semantic segmentation against GECIl-quant
segmentation. Representative example of segmentations of somata and processes for: C) the

consensus annotation, somata (white), processes (light purple); D) ASTRA, somata (red),
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1383  processes (pink); E) GECI-Quant, somata (light blue), processes (green). F) GECI-Quant user
1384  defined thresholds distributions for dataset-1. Box charts show the median values (red line) and the
1385  interquartile range (IQR, black top and bottom limit of the box). The whiskers extend to 1.5 times
1386  the IQR. G) GECI-Quant soma detection vs. ASTRA in dataset-1. Precision, Recall, and F1-score
1387  are shown (two-sided Wilcoxon signed rank sum test, N = 24; LOOCYV results). H-1) Precision (H)
1388  and Recall (I) for somata and process segmentation (two-sided Wilcoxon rank sum test, N = 24;
1389  LOOCV results). See also table S2. J-L) Representative examples of somata segmentations on
1390  the same FOV shown in C for: J) STNeuroNet, somata (blue); K) UNet2DS somata (orange); L)
1391  CalmAn, somata (light green). In A-B and G-H-I: n.s., not significant, * p < 0.05, ** p < 0.005, and
1392  **p <0.0005.
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1393
1394  Figure S5. ASTRA automated analysis replicates previously published results obtained with

1395  manual annotation. A) ASTRA segmentation (white) of GCaMP6f-labeled astrocytes in the CA1
1396  pyramidal layer. Experimental data from 5. B) Same FOV as in (A) with astrocytic ROIs color-coded
1397  according to response field position along the virtual corridor. In (A) and (B) scale bar: 20 ym. C)
1398 Normalized astrocytic calcium responses as a function of position for astrocytic ROIs that contain
1399  significant spatial information (N = 260 ROIs with reliable spatial information out of 595 total ROIs,
1400 7 imaging sessions from 3 animals, see Methods for details). Responses are ordered according to
1401  the position of the center of the response field (from minimum to maximum). Left panel, astrocytic
1402  calcium responses from all trials. Center and right panels, astrocytic calcium responses from odd
1403  (center) and even (right) trials. Yellow dots indicate the center position of the response field, while
1404  magenta dots indicate the extension of the field response (see Methods, vertical scale: 50 ROIs).
1405 D-E) Bias-corrected mutual information values (D) and fraction of ROIs encoding reliable spatial
1406 information (E) as a function of the number of bins for the stimulus (animal position along the linear
1407  track). Colors indicate binning of the response (calcium event trace). F-G) Cell-wise comparison of
1408  average response field center position (F) and width (G) between the results obtained with ASTRA
1409  (y axis) and those reported in '® (x axis). Dots represent average of ROl parameters for each cell.
1410  The black line is least-squares linear fit (in (F) y = 0.94x+2.79 cm, R2=0.87;in (G) y = 0.87x+12.41
1411  cm, R2=0.56). In (F-G) n = 33 true positive astrocytes detected by ASTRA in 7 imaging sessions
1412 from 3 mice.
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t=7193s t=72.26s t=7259s

1413
1414  Figure S6. ASTRA seeding of event-based segmentation. Example of a spatiotemporal Ca?*

1415  events (red to white colors) detected with AQuA when seeded with the astrocytic domain (green
1416 line) identified by ASTRA. Each image represents a single frame of a representative t-series (id: 2,
1417 dataset-1). Colors superimposed to each frame represent a detected event in the astrocyte. Frame

1418  acquisition time is reported on the top of each image.
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Figure S7. Comparative analysis of the effect of signal-to-noise ratio regimens on detection
and segmentation performances. A-B) Precision (A) and Recall (B) for ASTRA segmentation of

somata and processes under the different simulated conditions of PSNR (two-sided Wilcoxon rank
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1423  sum test, N = 24; LOOCYV results). C) Distribution of GECI-Quant thresholds for the 0.54 PSNR
1424  dataset for somata (Som.) and processes (Proc.). Box charts show the median values (red line)
1425  and the interquartile range (IQR, black top and bottom limit of the box). The whiskers extend to 1.5
1426  times the IQR. D) Precision, Recall, and F1-score for soma detection for GECI-Quant (white) and
1427  ASTRA (red) for the 0.54 PSNR dataset (two-sided Wilcoxon signed rank sum test, N = 24; LOOCV
1428  results). E-G) Segmentation Precision (E), Recall (F), and F1-score (G) GECI-Quant (white) and
1429  ASTRA (red) for the 0.54 PSNR dataset (two-sided Wilcoxon rank sum test, N = 24; LOOCV
1430  results). H-J) Effect of artificial noise on soma detection performances. Detection Precision, Recall
1431  and F1-score for ASTRA (grey bars), STNeuronet (H), Calman (1), and UNet2DS (J) on the same
1432  dataset under different regimens of PSNR (two-sided Wilcoxon rank sum test, N = 24; LOOCV
1433 results). In all panels: n.s., not significant, * p < 0.05, ** p < 0.005, and *** p < 0.0005.
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Figure S8. Impact of pre-processing on ASTRA performance. A) Flow-chart describing the pre-
processing block in the training pipeline for ASTRA-Naive and ASTRA-Spatial (see main results).
In ASTRA-unprocessed, the DNN is trained with the single cell images extracted from the median
projection of the FOVs. In ASTRA-Spatial, the DNN is trained with the single cell images extracted
from the spatial map of the FOVs. B) Flow-chart of pre-processing block in the inference pipeline
for ASTRA-unprocessed and ASTRA-Spatial. In ASTRA-unprocessed, the DNN directly evaluates
median projection of the whole FOV. In ASTRA-Spatial, the DNN evaluates the spatial map of the
whole FOV. C-D) Segmentation Precision (C) and Recall (D) for ASTRA-unprocessed, ASTRA-
Spatial, and ASTRA on dataset-1 (two-sided Wilcoxon rank sum test, N = 24; LOOCYV results). In
C-D: n.s., not significant, * p < 0.05, ** p < 0.005, and *** p < 0.0005.
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Figure S9. ASTRA performance as a function of recording length. A) ASTRA detection Precision,
Recall, and F1-score for t-series of different length (two-sided Wilcoxon rank sum test, N = 24;
LOOCV results). B-D) ASTRA segmentation Precision (B), Recall (C), and F1-score (D) for t-series
of different length (two-sided Wilcoxon rank sum test, N = 24; LOOCYV results).
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1451  Figure S10. ASTRA detection and segmentation performance on dataset 2 and 3. A) Consensus
1452 annotation of one representative FOV (ld: 3) showing Td-Tomato-expressing astrocytes. B) ASTRA
1453  segmentation result for the same FOV shown in (A). C) Detection Precision, Recall, and F1-score
1454  for ASTRA and the three annotators (two-sided Wilcoxon rank sum test, N = 8; LOOCV results). D-
1455  F) Segmentation Precision, Recall, and F1-score of ASTRA and the three annotators for somata
1456  (Som.) and processes (Proc.) (two-sided Wilcoxon rank sum test, N = 8; LOOCYV results). See also
1457  Table S3. G) Consensus annotation of one representative FOV (Id: 5) showing Td-Tomato-
1458 expressing astrocytes. H) ASTRA segmentation result for the same FOV shown in (G). |) Detection
1459 Precision, Recall, and F1-score for ASTRA and the three annotators (two-sided Wilcoxon rank sum
1460  test N =7; LOOCYV results). J-L) Segmentation Precision, Recall, and F1-score of ASTRA and the
1461 three annotators for somata (Som.) and processes (Proc.) (two-sided Wilcoxon rank sum test, N=7;
1462  LOOCV results). In C-F and I-L: n.s., not significant, * p < 0.05, ** p < 0.005, and *** p < 0.0005.
1463  See also Table S4 and Table S5.
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1466  Figure S11. ASTRA detection and segmentation performance on dataset-4. A-B) Segmentation
1467 Precision (A) and Recall (B) of ASTRA and the three annotators for somata (Som.) and processes
1468  (Proc.) (two-sided Wilcoxon rank sum test, N=10; LOOCYV results). In all panels: n.s., not significant,
1469  *p <0.05, ** p <0.005, and *** p < 0.0005. See also Table S6.
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1471 Figure S12. ASTRA workflow. The diagram delineates the workflow which is color-coded to identify
1472 input of new data and eventually new annotated data (cyan), ASTRA training and inference
1473 pipelines (dark red), and user evaluation of ASTRA results (yellow). Inference and training pipelines

1474  details are reported in the 2 boxes placed on the sides.
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1476 Figure S$13. Stimulus encoding properties of mesoscale astrocytic networks in the mouse
1477 neocortex. A) Representative ASTRA somata and processes segmentation on a zoomed in image
1478  of 0.48 mm? area extracted from a 2.25 mm? area FOV recorded with the two-photon mesoscope.
1479  B) Representative ASTRA somata and processes segmentation on a FOV recorded with
1480  conventional two-photon configuration (Id: 3, in dataset-2). The FOV in B has the same size as in
1481  A. C-D) Cumulative distribution of area (C) and maximum length (D) of process ROls segmented
1482  using ASTRA on the mesoscope dataset and on dataset-2. ROl area: mean + std 29 + 23 um2for
1483  mesoscope dataset and 51 * 44 ym? for dataset-2, t-test N = 964 ROls from 15 imaging sessions
1484  and N = 1483 ROlIs from 8 imaging sessions for the mesoscope dataset and dataset-2, respectively.
1485  Maximal ROI length: mean * std 10 + 5 um for mesoscope dataset and 15 + 8 um for dataset-2, t-
1486  test N = 964 ROIs from 15 imaging sessions and N = 1483 ROls from 8 imaging sessions for the
1487 mesoscope dataset and dataset-2, respectively. E-F) Information breakdown analysis from ROI
1488  pairs. E) Mutual information about locomotion (I, white) encoded by a pair of ROIls, sum of the
1489  mutual information encoded in the response of each member of the pair (ILn, grey), the information
1490  component due to signal-similarity (lss, red), stimulus independent information contribution of
1491  correlation (Ici, green), and stimulus dependent information contribution of correlation (Ico, blue)
1492 are shown. Data are represented as mean + sem and were collected in 13 imaging sessions from
1493 3 animals for running encoding pairs. F) Same as in (E) but for encoding of licking behavior. Data
1494  from 8 imaging sessions from 3 animals. G-H) Decoded information increases with the spatial size
1495 of the network. G) Decoded information of locomotion from astrocytic population vectors on real
1496  (black), and trial-shuffled (gray) as a function of the fraction of the original FOV area. For each
1497  fraction of area two-sided Wilcoxon signed rank test (N = 13) has been performed between real
1498  and trial-shuffled data. H) Decoded information of licking from astrocytic population vectors on real
1499  (black), and trial-shuffled (gray) as a function of the fraction of the original FOV area. For each
1500 fraction of area two-sided Wilcoxon signed rank test (N = 8) has been performed between real and
1501 trial-shuffled data. Data are represented as mean * sem. In panel A data are obtained from 13

1502 imaging sessions in 3 animals. In panel B data are obtained from 8 imaging sessions in 3 animals.
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Figure S14. Execution time of the ASTRA inference pipeline. A) Execution time of ASTRA
inference pipeline without the cross-correlation analysis as a function of the size of the input t-
series. The different colors indicate the execution time for three different hardware configurations:
4 CPUs, 20 CPUs, and 20 CPUs + GPU. B) Execution time for the astrocytic domain module as a
function of the size of the input t-series. Color code same as in (A). Please note that the GPU
configuration is faster than the multi-processing CPU configuration. This is because the
computation of cross-correlation value between pixels can be massively parallelizable with GPUs.
C) Execution time for the inference pipeline without cross-correlation analysis as a function of the
size of the input t-series for dataset-2 (black, area 0.26 mm?) and dataset-3 (red, area of FOV 0.16

mm?).
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1514  Table S1. Results of each annotator against consensus annotation of dataset-1. Detection and

1515 Segmentation results are given using F1-score (Precision, Recall) metrics (mean + sem).
1516

Detection Segmentation
Somata Processes
Annotator-1 0.88+0.02 0.845+0.009 0.62+0.02
(0.91+0.02,0.89+0.03)  (0.78+0.02,0.939+0.005) (0.56+0.02,0.74+0.01)
Annotator -2 0.88+0.02 0.84+0.01 0.56+0.01
(0.87+0.03,0.91+0.02)  (0.85+0.01,0.852+0.006) (0.55+0.02,0.62+0.02)
Annotator -3 0.90+0.02 0.882+0.007 0.64+0.02

(0.89+0.03,0.92+0.02)  (0.923+0.008,0.86+0.01) (0.75+0.02,0.59+0.02)
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Table S2. Results of ASTRA, STNeuronet, Caiman and GECI-Quant against consensus annotation
of dataset-1. Detection and Segmentation results are given using F1-score (Precision, Recall)
metrics (mean + sem)

Detection Segmentation
Somata Processes
ASTRA 0.81+£0.04 0.822+0.008 0.59+0.01
(0.79+0.04,0.87+0.03)  (0.78+0.02,0.89+0.01)  (0.62+0.02,0.60+0.01)
STNeuronet 0.27+0.05 - -
(0.26+0.05,0.32+0.06)
Caiman 0.20+0.04 - -
(0.25+0.04,0.17+0.03)
UNet2DS 0.65+0.04 - -
(0.67+0.06,0.67+0.05
GECI-Quant 0.74+0.04 0.775+0.008 0.33+0.02

(0.72+0.04,0.76+0.04)

(0.72+0.01,0.88+0.01)

(0.25+0.02,0.65+0.03)

76


https://doi.org/10.1101/2023.05.03.539211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.03.539211; this version posted May 3, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1523
1524
1525

1526

available under aCC-BY-NC-ND 4.0 International license.

Table S3. Results of ASTRA, and AQuA in reconstructing astrocytic morphology. Results are F1-
score (Precision, Recall) metrics (mean + sem) vs consensus annotation.

F1-score
(Precision, Recall)

ASTRA 0.62+0.03
(0.61+0.03,0.65+0.03)
AQuA 0.23+0.02

(0.12+0.02,0.53£0.2)
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1527  Table S4. Results of each annotator and ASTRA against consensus annotation of dataset-2.
1528 Detection and Segmentation results are given using F1-score (Precision, Recall) metrics (mean *

1529  sem)
1530
Detection Segmentation
Somata Processes
Annotator -1 0.859+0.008 0.86+0.004 0.63+0.02
(0.88+0.01, 0.83+0.01)  (0.90+0.01,0.84+0.02) (0.65+0.01,0.67+0.03)
Annotator -2  0.84+0.02 0.836+0.006 0.58+0.02
(0.89+0.01, 0.80+0.03) (0.918+0.003,0.78+0.01) (0.58+0.02,0.64+0.03)
Annotator -3  0.85+0.02 0.834+0.005 0.53+0.02
(0.83+0.02, 0.88+0.02) (0.935+0.006,0.76+0.01) (0.60+0.02,0.52+0.02)
ASTRA 0.81+0.02 0.822+0.004 0.57+0.02
(0.76+0.02,0.86+0.01)  (0.805+0.009,0.910+0.008) (0.68+0.02,0.55+0.02)
1531
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1532  Table S5. Results of each annotator and ASTRA against consensus annotation of dataset-3.
1533  Detection and Segmentation results are given using F1-score (Precision, Recall) metrics (mean +

1534  sem)
1535
Detection Segmentation
Somata Processes
Annotator -1 0.84+0.01 0.853+0.006 0.62+0.01
(0.91+0.01, 0.78+£0.02) (0.878+0.008,0.85+0.01) (0.69+0.02,0.61+0.02)
Annotator -2  0.83+0.02 0.856+0.003 0.55+0.02
(0.81+0.02, 0.85+0.03) (0.904+0.005,0.825+0.005) (0.58+0.01,0.60+0.02)
Annotator -3  0.81+0.03 0.815+0.009 0.55+0.01
(0.78+0.03, 0.85+0.03) (0.962+0.005,0.717+0.02)  (0.66+0.01,0.51+0.01)
ASTRA 0.78+0.02 0.835+0.002 0.57+0.01
(0.76+0.04,0.82+0.03)  (0.780+0.008,0.92+0.01) (0.57+0.02,0.63+0.01)
1536
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1537 Table S6. Results of each annotator and ASTRA against consensus annotation of dataset-4.
1538  Detection and Segmentation results are given using F1-score (Precision, Recall) metrics (mean +

1539  sem)
1540
Detection Segmentation
Somata Processes
Annotator -1 0.81+0.01 0.835+0.006 0.55+0.02
(0.90+0.01, 0.75+0.02) (0.84+0.01,0.852+0.007) (0.69+0.02,0.52+0.03)
Annotator -2  0.72+0.02 0.827+0.007 0.50+0.02
(0.73+0.03, 0.73+£0.03) (0.897+0.007,0.78+0.01) (0.63+0.01,0.47+0.02)
Annotator -3  0.74+0.03 0.834+0.004 0.50+0.02
(0.70+0.06, 0.80+0.01) (0.898+0.008,0.79+0.01) (0.65+0.03,0.46+0.02)
ASTRA 0.80+0.02 0.813+0.006 0.53+0.01
(0.78+0.03,0.82+0.02)  (0.755+0.007,0.904+0.006) (0.50+0.02,0.66+0.02)
1541
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1542  Table S7. ASTRA DNN training parameters

1543
Epochs Optimizer Ir Batch size Input
image size
N1 N2
Dataset-1 12 3 Adam 10+ 35 96x96
Dataset-2 12 3 Adam 10+ 35 48x48
Dataset-3 Training.on - - - - - -
Dataset-1
Dataset-4 Trainingon - - - - - -
Dataset-1
1544
1545
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