

Rediversification Following Ecotype Isolation Reveals Hidden Adaptive Potential

Joao A Ascensao¹, Jonas Denk^{2,3}, Kristen Lok¹, QinQin Yu^{2,4}, Kelly M Wetmore⁵, and Oskar Hallatschek^{2,3,6,*}

¹Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA

²Department of Physics, University of California Berkeley Berkeley, CA, USA

³Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA

⁴Present affiliation: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States

⁵Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA

⁶Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany

*corresponding author: ohallats@berkeley.edu

ABSTRACT

Microbial communities play a critical role in ecological processes, and their diversity is key to their functioning. However, little is known about if communities can regenerate ecological diversity following species removal or extinction, and how the rediversified communities would compare to the original ones. Here we show that simple two-ecotype communities from the *E. coli* Long Term Evolution Experiment (LTEE) consistently rediversified into two ecotypes following the isolation of one of the ecotypes, coexisting via negative frequency-dependent selection. Communities separated by more than 30,000 generations of evolutionary time rediversify in similar ways. The rediversified ecotype appears to share a number of growth traits with the ecotype it replaces. However, the rediversified community is also different compared to the original community in ways relevant to the mechanism of ecotype coexistence, for example in stationary phase response and survival. We found substantial variation in the transcriptional states between the two original ecotypes, whereas the differences within the rediversified community were comparatively smaller, but with unique patterns of differential expression. Our results suggest that evolution may leave room for alternative diversification processes even in a maximally reduced community of only two strains. We hypothesize that the presence of alternative evolutionary pathways may be even more pronounced in communities of many species, highlighting an important role for perturbations, such as species removal, in evolving ecological communities.

1 Introduction

2 Ecological diversification is the process by which a population or community of organisms evolves to occupy different ecological
3 niches or habitats in a given ecosystem¹. This diversification can occur in various ways, such as the development of different
4 physical or behavioral adaptations that allow individuals to exploit different resources or tolerate different environmental
5 conditions²⁻⁴. The potential for ecological diversification within a community typically hinges on factors such as environmental
6 conditions, existing biodiversity, and the ecological interactions among resident species⁴⁻⁷. Microbial communities have proven
7 particularly useful for studying the interplay of evolutionary and ecological processes underlying diversification due to their
8 manageable time scales for reproduction and evolution⁸⁻¹⁶. Diversification may be influenced by the availability of unoccupied
9 niches, often referred to as “ecological opportunities”^{5,17}, which can become scarce when most niches are already occupied
10 due to high diversity levels. Alternatively, the resident community can create new niches, enabling the establishment of novel
11 species, suggesting that “diversity begets diversity”¹⁸. Cross-feeding exemplifies this latter scenario, where species release
12 metabolites that can foster the emergence of new species by creating exploitable niches^{13,15,19-21}. Ecological interactions
13 within microbial communities have been shown to have negative^{11,12}, positive^{13,15}, and even mixed effects²² on a community’s
14 ability to diversify.

15 However, the stable coexistence of a novel species and its ancestor is not guaranteed and may depend on various community
16 properties, such as metabolic trade-offs^{21,23}. In experimental settings, ecological differentiation of a diversified ecotype is often
17 indicated when an ecotype’s fitness inversely correlates with its frequency, i.e. displaying negative frequency-dependent fitness
18 effects. Stable coexistence between the diversified ecotype and its ancestor is implied if it can invade at small frequencies and
19 cannot invade at large frequencies.

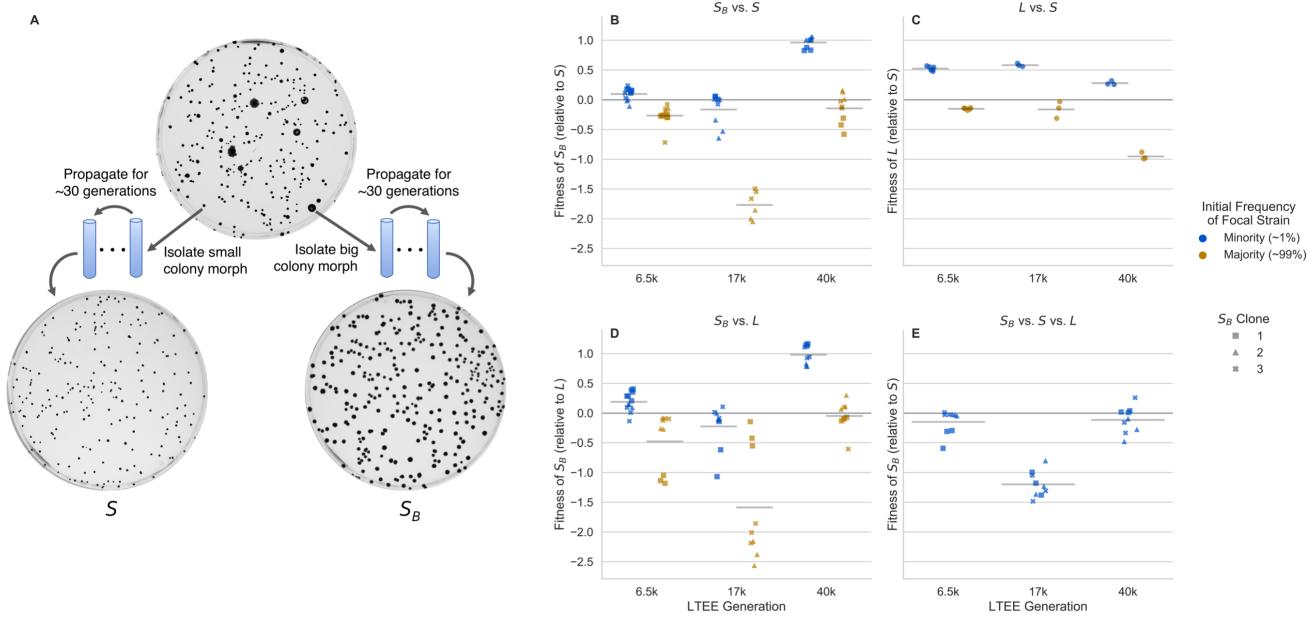
20 Even when species can stably coexist, it does not guarantee that they will coexist indefinitely or at all locations. Species

can migrate to new territories, potentially without other community members, or some species within the community may spontaneously go extinct. In either case, the community becomes perturbed, losing one or more members and potentially leaving ecological niches unfilled. Theoretical models suggest that perturbed communities may respond with a combination of ecological and evolutionary changes²⁴⁻²⁷. These evolutionary changes may include both directional and diversifying selection²⁷, with newly evolved variants either replacing existing community members or coexisting alongside them. However, it remains unclear which communities have the potential to rediversify. Recently diversified communities may be more likely to rediversify following ecotype isolation, as they have recently arisen from an ancestor that underwent ecological diversification. However, as a community coevolves, the potential for rediversification might diminish, but this may not necessarily always be the case. When rediversification does occur after species removal, there are two possible scenarios: (i) the community eventually rediversifies and returns to a state similar to the original community before the disturbance, or (ii) the perturbed community rediversifies and forms a community that is qualitatively different from the original one.

Here, we investigate the aforementioned questions surrounding rediversification using a minimal microbial model community of only two, naturally diversified *E. coli* strains. Specifically, we employ two strains derived from the *E. coli* Long-Term Evolution Experiment (LTEE), which was started by Dr. Richard Lenski and has been running for over 30 years or more than 70,000 generations²⁸. An initially isogenic strain of *E. coli* was split into 12 replicate populations and propagated through daily dilutions in glucose minimal media (DM25). At the outset of the LTEE around 6.5k generations, it was found that one lineage, ara-2, spontaneously diversified into two lineages—S and L—that coexist via negative frequency dependence²⁹. The ecotypes were named for the sizes of their colonies on certain agar plates, either small (S) or large (L). The S and L lineages inhabit distinct temporal and metabolic niches in the LTEE environment. During exponential phase, L grows more quickly on glucose, while S specializes in stationary phase survival and utilizes acetate, a byproduct of overflow metabolism^{30,31}. Since their diversification, the lineages have persisted and evolved over time, exhibiting genetic, transcriptional, and metabolic divergence²⁹⁻³⁶. The LTEE-derived communities are ideal for our plan to investigate the possibility and potential patterns of rediversification over evolutionary time. We can revive the S-L community at 6.5k generations to probe rediversification right after emergence of the community, and compare with rediversification at later stages of the evolution experiment.

We found that when we isolated the S ecotype under certain conditions, it would spontaneously rediversify, giving rise to a new big colony ecotype S_B , even if we used S clones separated by more than 30,000 generations of evolutionary time. The new ecotype, S_B , displays hallmarks of ecological differentiation, including negative frequency-dependent fitness effects when with its ancestral S clone. We dissected the new, rediversified community, and found that while S_B shares a number of traits with both L and S, it also behaves in entirely new ways. Our findings suggest that even in a maximally reduced community of only two strains, evolution may leave room for alternative diversification processes, suggesting a hidden adaptive potential only revealed by ecotype removal. This raises the possibility that perturbations, such as species removal, could play an important role in evolving ecological communities by creating opportunities for alternative evolutionary pathways.

Results


S can quickly diversify into a new ecotype

The ability of the S ecotype to emerge and coexist with the L ecotype in the LTEE has been attributed to its proficiency in scavenging acetate released from overflow metabolism during glycogenesis, as well as its ability to survive and thrive during stationary phase^{30,37}. It has been proposed that the L-S and similar polymorphisms may arise because of a fundamental, hard-to-break trade-off between glucose and acetate growth rates in *E. coli*^{21,38}. Based on these explanations, one may suspect, that after removing either L or S in the two species community, the community may eventually rediversify and will eventually approach a two-species community similar to the original L-S community.

We performed a simple experiment where we cultured an S clone isolated around 6.5k generations, immediately after the ara-2 lineage diversified into S and L, in glucose minimal media (DM25) for approximately 60 generations (9 days), with 12 biological replicates. To visualize colony morphologies of the resulting cultures, we plated the cultures on tetrazolium arabinose (TA) agar plates. Surprisingly, 2 of the independent cultures displayed a mixture of large and small colonies (Figure 1A).

After eliminating contamination possibilities by sequencing several diagnostic genetic loci, we examined whether the large colony phenotype was heritable. We isolated several large and small colonies and propagated them in DM25 for around 30 generations (5 days). The phenotype appeared to be stably heritable for all selected colonies. To avoid prematurely associating the larger colony phenotype with the L type, we referred to the emerging type in our experiments as S_B , due to its large (big) colonies and its ancestor S.

To gain insights into the robustness of the observed rediversification after isolation of S over evolutionary timescales, we isolated S from later generations, spanning more than 30,000 generations of evolution. We repeated the same experiment with S clones from 17k and 40k generations with 24 independent cultures each; however, we did not see any noticeable emergence of big colonies after 60 generations. It is unclear why we did not see any big colonies; one possible explanation may be that the rate at which S morphs transition to S_B morphs may be low enough that we would need to have many more replicate cultures to

Figure 1. Emergence of the stably heritable S_B morph and frequency-dependent fitness effects. **(A)** Big colony morphs can arise in S cultures derived from 3 different LTEE timepoints, separated by more than 30,000 generations of evolution (6.5k clones are shown here as an example). When both small and big colonies are isolated and propagated in liquid DM25 culture for about 30 generations, then plated on TA agar plates, we see that the colony size is heritable. **(B-D)** Reciprocal invasion experiments, measuring relative fitness of clones when they are in the minority of the population (approximately 1%) or in the majority (approximately 99%). Each point represents a biological replicate, horizontal lines represent mean across all points. Competitions between **(B)** S_B clones and S , **(C)** S and L , and **(D)** S_B and L . We generally see negative frequency dependent fitness effects across all strains and competitions. **(E)** Triple competition between S_B , S , and L , where L and S_B are near their equilibrium frequencies and S_B in the minority (around 1%). In this "full" community, S_B generally cannot invade, as most fitnesses are less than 0.

75 observe rediversification (as in the 6.5k S clones). We previously noticed that 6.5k S_B clones grew much better in LB liquid
 76 media compared to S clones (potentially accounting for their bigger colony sizes on similar agar plates). Thus, we sought
 77 to see if we could enrich for the appearance of S_B by growing 6.5k, 17k, and 40k S clones in LB liquid culture. Under these
 78 growing conditions, we indeed saw that S_B colonies appeared rapidly, within 1-3 days, in nearly all of the independent S cultures
 79 across the three LTEE timepoints (Figure S5). We attributed this to the higher fitness of S_B in LB, relative to S (Figure S6). The
 80 new S_B clones were again stably heritable for at least 30 generations.

81 The big colony phenotype S_B bears at least a superficial resemblance to L , which begs the question: do S_B and S represent
 82 genuinely different ecotypes, occupying different ecological niches, with the potential to coexist with each other? To answer
 83 this question, we performed reciprocal invasion experiments, where we mixed S and S_B clones at high and low frequencies, and
 84 tracked how their frequencies change via flow cytometry (see Methods), to estimate their relative, frequency-dependent fitness
 85 effects (Figure 1B). While relative frequencies of LTEE strains are typically measured by colony counting, we found significant
 86 bias (Figure S2) in frequency measurements of S/L when measured via colony forming units (CFUs). In contrast, we see that
 87 flow cytometry provides unbiased frequency measurements (Figure S1). We thus chose to use flow cytometry for all further
 88 measurements instead of CFUs, owing to its minimal bias and reduced measurement noise (Figures S1 and S2B).

89 We found that all S_B clones had negative frequency-dependent fitness differences when in competition with their parental
 90 S clone, a hallmark of ecological differentiation. These data suggest that many of the S_B clones can coexist with S , because
 91 relative fitness is greater than 0 at low frequencies and less than 0 at high frequencies. However, it is not clear if this is the case
 92 for all of the isolated S_B clones, as some have a relative fitness near or less than 0 at low frequencies. This may be because the
 93 aforementioned S_B clones either genuinely do not coexist with S , or perhaps they coexist at a frequency around or lower than
 94 the one where we took the measurements.

95 The frequency-dependent fitness differences between S_B and S were similar in magnitude to the fitness differences between
 96 L and S (Figure 1C). We also competed S_B against L , and again found frequency-dependent fitness differences (Figure 1D).

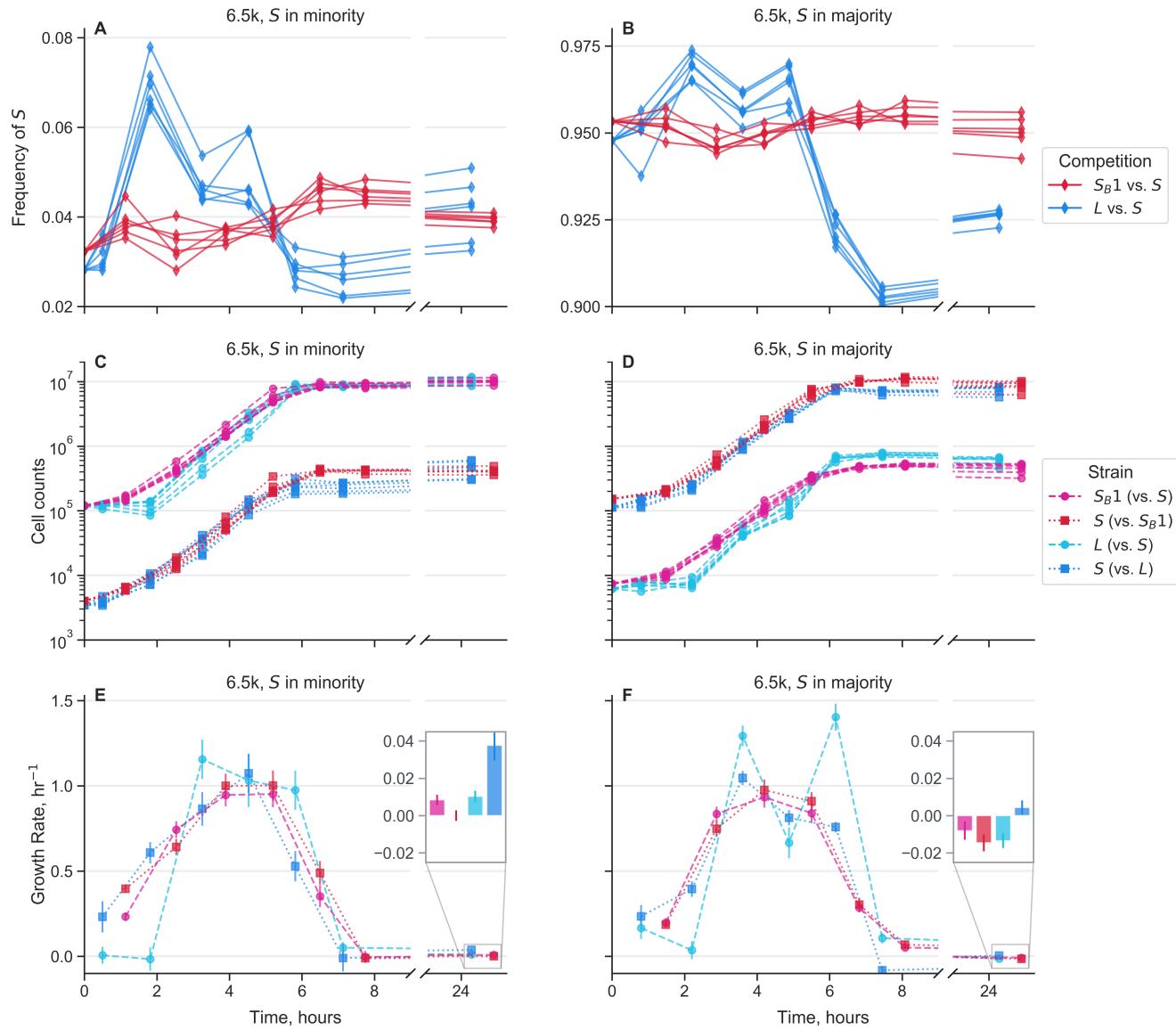
97 However, if at least some S_B clones can invade both S and L when rare, why has the S_B morph not appeared in the ara-2
98 population of the LTEE, where L and S have been coexisting and coevolving for tens of thousands of generations? We
99 hypothesized that S_B could not invade an already "full" community, and could only have the chance to invade when one of
100 the ecotypes is removed. Indeed, when we performed a triple competition experiment, with L and S near their equilibrium
101 frequency and S_B in the minority, we found that S_B could not invade the community (Figure 1E).

102 While we have shown that S_B spontaneously emerges from a monoclonal population of S and occupies a distinct ecological
103 niche, it is not yet clear how S_B compares to S and L . In particular, we want to understand if S_B simply fills the same niche that
104 L had occupied before removal, making it somewhat functionally equivalent to L . In the following, we will show that while S_B
105 resembles L in some of its growth properties, it also shows clear differences that are critical for its coexistence with S .

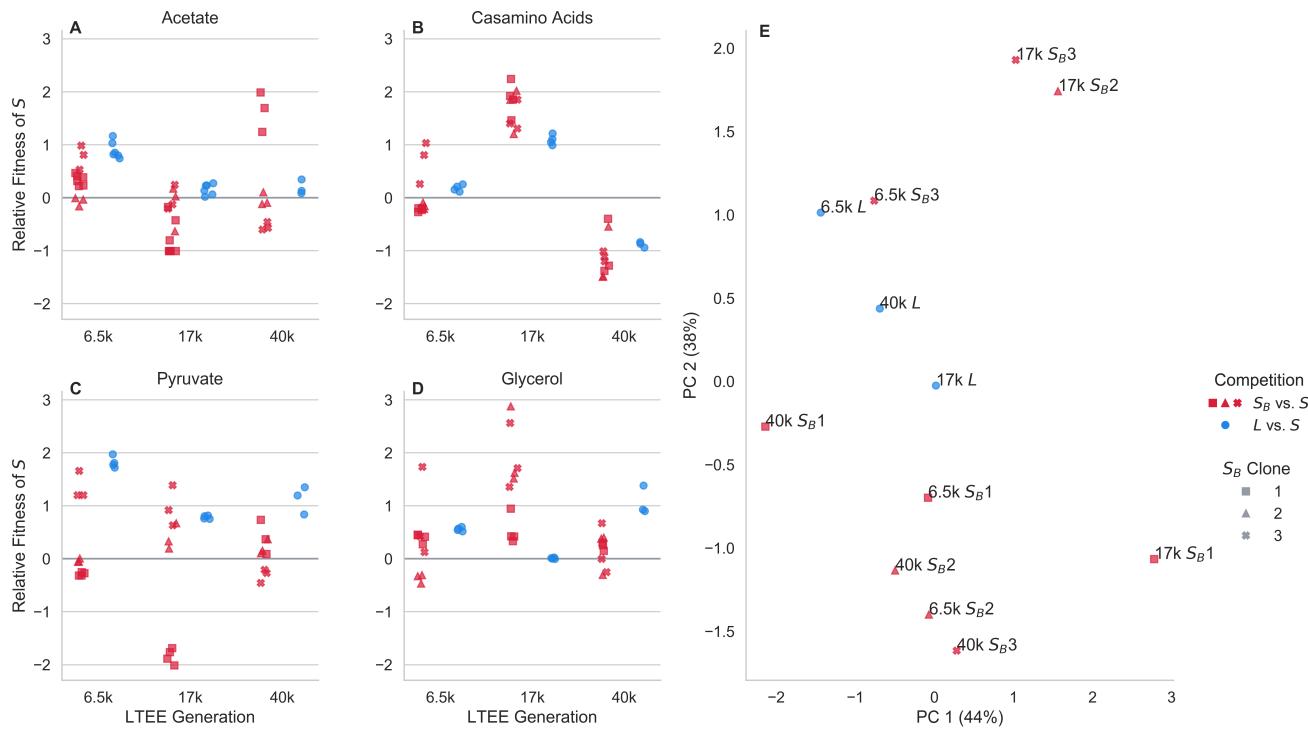
106 **Within-cycle growth dynamics of cocultures**

107 To better understand how ecological differentiation arises in the S_B - S and L - S systems, we measured the within-cycle growth
108 dynamics of S_B , L , and S in coculture with each other via flow cytometry. The LTEE environment is a seasonal one^{30,39}—every
109 24 hours, cultures are transferred 1:100 into fresh glucose minimal media. The populations spend the first part of the day in
110 exponential phase; the remaining time, more than 2/3 of the day, is spent transitioning out of exponential phase and in stationary
111 phase. It has been previously shown that L and S occupy different temporal niches from one another, where L specializes on
112 exponential growth on glucose, and S specializes on stationary phase survival and growth on acetate. Thus, it is natural to ask
113 how temporal variations in growth are similar or different in the S_B - S system.

114 To perform the experiments, we propagated S , S_B , and L separately in monocultures for two days, before mixing S with S_B
115 and S with L , both at high and low frequencies. We mixed strains with their partners from the same LTEE generation. For
116 simplicity, we only used S_B clone 1 for all experiments and LTEE generations. We propagated the cocultures for one more
117 cycle to allow the populations to physiologically adapt to the new environment. At the end of the 24 hour cycle, we took a flow
118 cytometry measurement of the culture, then split the cultures into biological replicates and diluted the cocultures 1:100 into
119 fresh media. Afterwards, we took flow cytometry measurements from the cocultures approximately every hour for about eight
120 hours, then we took one last measurement at the end of the 24 hour cycle (Figures 2, S7). We chose this design because the
121 fastest dynamics occur during and right after exponential phase—the first 8 hours—while dynamics in stationary phase are much
122 slower. The cultures were grown in a 37°C shaking water bath. We corrected the cell counts measured in flow cytometry by the
123 total dilution rate.


124 We initially focus on the dynamics of strains from 6.5k generations (Figure 2). Overall, it is immediately clear that there
125 are larger differences in dynamics in the L - S cocultures compared to the S_B - S cocultures. When S is in both the majority and
126 minority, L has a long, two hour lag time, while S starts growing almost immediately (Figure 2C-D), causing a large upward
127 spike in S frequency. When S is cocultured with S_B , we don't see any noticeable lag time; however, when S is in the minority, S
128 "wakes up" more quickly than S_B , leading to a small spike in S frequency at the beginning of the time course. We see similar
129 patterns in the cocultures from 17k and 40k generations—both L and S_B appear to have growth rates very close to 0 at the
130 beginning of the timecourse, but S consistently has a larger initial growth rate (Figure S7).

131 When 6.5k L starts growing, it has a significantly larger exponential growth rate than S , pushing the frequency of S back
132 down. The magnitude of this growth rate difference is similar regardless of the relative frequency of the ecotypes (Figure 2E-F).
133 In contrast, the differences between S_B and S are much smaller. At both starting frequencies, S_B may have a small growth rate
134 advantage compared to S early in exponential phase, then S appears to grow faster in late exponential phase.


135 In contrast to the dynamics in lag and exponential phase, the stationary phase dynamics are highly dependent on which
136 ecotype is in the majority. When S is cocultured with L , S grows better than L under both conditions, but the absolute growth
137 rates differ between the conditions (Figure 2E-F). When S is in the minority with L , both S and L have net positive growth in
138 stationary phase, although it is higher for S , potentially pointing to the favorable conditions of L -dominated stationary phase
139 and the putatively large amount of excreted acetate available for exploitation. In contrast, when S is in the majority with L , S
140 has a smaller, albeit still positive, net growth rate, while L has a net negative growth rate in stationary phase. Concordantly,
141 these patterns suggest that S -dominated stationary phase is much less hospitable to both S and L .

142 We see different stationary phase patterns when S_B and S are in coculture, where S_B now performs consistently better than S
143 (Figure 2E-F). When S_B is in the majority with S , S_B has a moderately positive net growth rate, while S has essentially a net 0
144 growth rate in stationary phase. Then when S_B is in the minority, both S_B and S have net negative growth rates, but S declines
145 more than S_B . If S_B were more similar to L , i.e. an exponential phase specialist that secretes a substantial amount of acetate, we
146 would have expected that S_B - S and L - S cocultures would have similar behavior in stationary phase. Instead, S_B appears to have
147 enhanced survival in stationary phase, and decreases the survival prospects of S , perhaps because of the reduced availability of
148 acetate. Thus, while S_B doesn't have a significant advantage over S in exponential phase, like L has, it compensates with a clear
149 advantage over S in stationary phase, essential for coexistence of S_B with S .

150 The results show differences in stationary phase behavior across generations, as well as several conserved features (Figure

Figure 2. Growth dynamics of cocultures over the course of one twenty-four hour growth cycle. Measurements were taken approximately every hour via flow cytometry for the first eight hours after transfer into new media. An additional measurement was taken approximately 24 hours after the start of the cycle. Mixed S_{B1} with S along with L with S, all from 6.5k generations, where ecotypes were mixed both in the majority and minority of the population. Different lines represent biological replicates. **(A-B)** Frequency dynamics of S against S_{B1} and against L. **(C-D)** Total cell count dynamics, separated by each strain in the cocultures. **(E-F)** Growth rates over time for each strain in the cocultures, calculated as the log-slope between adjacent timepoints, using the second timepoint as the x-axis location. Insets represent growth rates in stationary phase, from around 8 to 24 hours. Error bars represent standard errors.

Figure 3. Competition of S_B and L against S in novel environments. (A-D) Red and blue points represent the relative fitness of S in competition with S_B and L clones from the same LTEE timepoint, respectively, where different symbols represent different clones. Competitions performed in exponential phase in the same media base (DM) supplemented with different carbon sources: (A) 200mg/L acetate, (B) 1mg/mL casamino acids, (C) 20mM pyruvate, (D) 20mM glycerol. (E) Principal components analysis, using relative fitness in each environment as features. Percentages in parentheses represent percent variance explained by each principal component.

151 S7). Similar to the 6.5k strains, when 17k S are in the minority with L , S has a large positive growth rate during stationary
 152 phase, while L does not grow. However, when S is in the majority with L , its growth rate is comparable to that of L . The 40k
 153 S and L strains show different patterns, where L actually generally has a higher stationary phase growth rate. However, this
 154 appears to be offset by a large growth advantage of S right at the end of exponential phase/beginning of stationary phase; this
 155 growth advantage is much larger when S is in the minority compared to when it is in the majority. This indicates that the growth
 156 advantage of 40k S has shifted earlier, potentially because it has adapted to consumed the acetate secreted by L much more
 157 quickly.

158 Again, the stationary phase behavior when 17k and 40k S and S_B are grown in coculture is noticeably distinct from the
 159 behavior of L - S coculture. Similarly, 17k S also does not grow well in S_B -dominated stationary phase. And 17k S_B actually
 160 has a large positive stationary phase growth rate when S is setting the environment, suggesting that S_B has more to gain from
 161 stationary phase when it is in the minority compared to vice versa. The picture shifts again with the 40k strains— S_B benefits
 162 very little from being in stationary phase, but in contrast, S grows well in stationary phase, especially when dominated by S_B .
 163 This is quite different from the behavior of 40k S - L cocultures, albeit in a different direction than the strains from the earlier
 164 generations. Thus, in 40k cultures, it appears that S_B - S cocultures act more like L - S cocultures from earlier generations, where
 165 S_B is the clear exponential phase specialist and S is the stationary phase specialist.

166 Together, these results show that growth traits of L - S cocultures change over evolutionary time, and S_B - S cocultures are
 167 similar in important ways (e.g. lag responses), but also show departures from the original community (e.g. stationary phase
 168 behavior) that reveal how the ecological dynamics have shifted with the new, rediversified ecotype.

169 Growth traits in novel environments

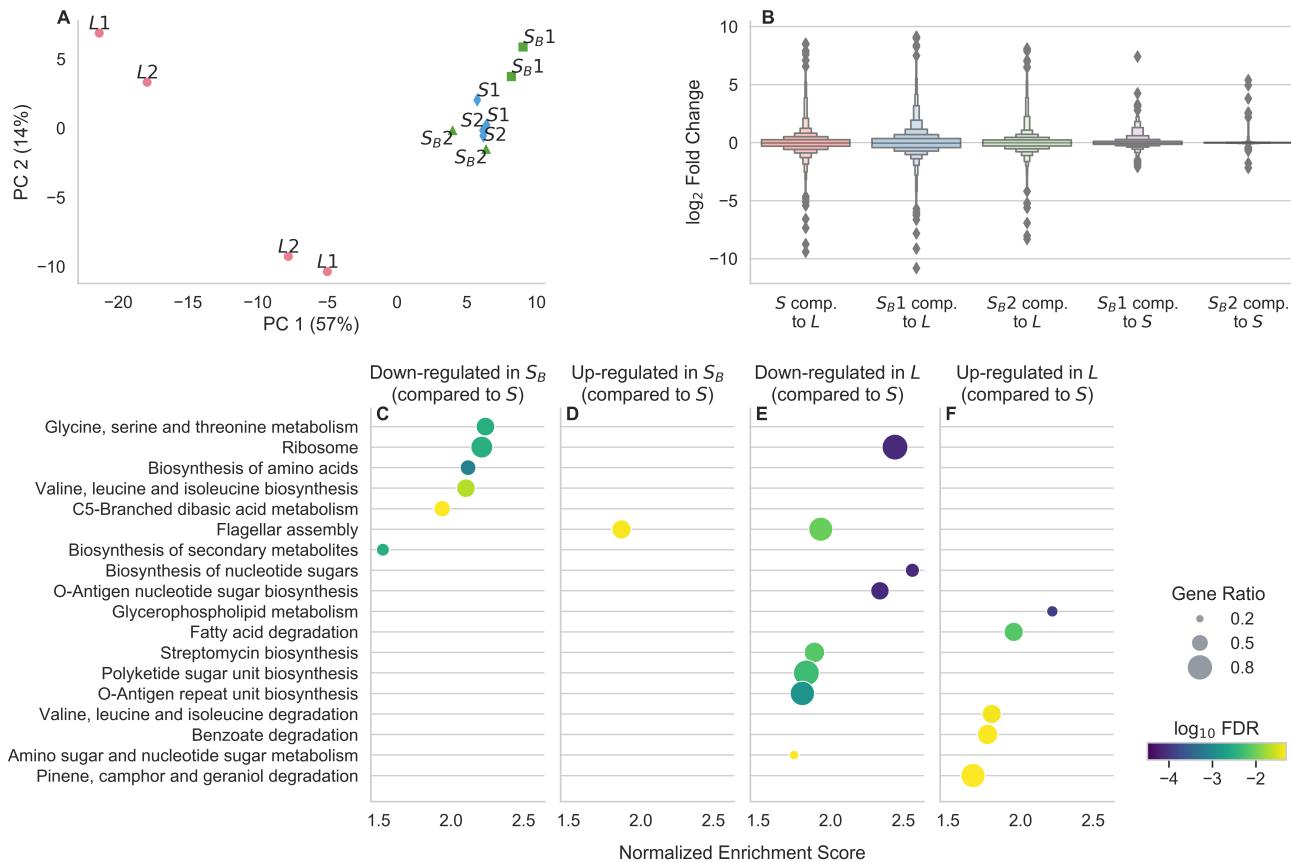
170 While we have shown that S_B has distinct growth traits when in coculture with S in the evolutionary condition, does S_B also
 171 behave differently compared to S in novel environments that neither have been in contact with before? If S and S_B mostly
 172 behave similarly in novel environments, then perhaps the underlying change between the two morphs is targeted only towards

173 traits relevant to the mechanism of ecological differentiation. On the other hand, if such "pleiotropic" effects are widespread,
174 then the underlying metabolic/physiological shift in S_B may be much broader.

175 To this end, we competed S_B clones against S clones for each LTEE timepoint in the same minimal media base as the
176 evolutionary condition (DM), supplemented with different carbon sources (Figure 3). For comparison, we also competed S
177 against L clones for each LTEE timepoint in each of the conditions. We chose four different carbon sources that support growth
178 of S , S_B , and L clones from all timepoints and that enter into central metabolism at different points⁴⁰, potentially allowing us
179 to gain insight into global changes in physiology and metabolism. After growing cocultures together for two days in DM25,
180 we diluted them 1:100 in each different media. We kept the cultures in exponential phase, and took two ecotype frequency
181 measurements via flow cytometry: one right before transfer into the new media, and one at the end of exponential phase. As
182 usual, relative fitness was computed as the change in logit frequency.

183 We see that for most S_B clones, across most conditions, S_B is noticeably non-neutral relative to S . Perhaps unsurprisingly,
184 and consistent with previous experiments⁴¹, we see that L is also usually non-neutral relative to S across the different carbon
185 sources. The relative fitness of S_B and L clones varies considerably across timepoints and carbon sources. In general, it appears
186 that there is little relationship between the relative fitness of S_B and that of L from the same timepoint. This is also visible in the
187 PCA representation of the data (Figure 3E)— S_B clones within timepoints generally cluster together (but not completely), not
188 with the L clones from their timepoint.

189 Across all three timepoints, we see that S is better at growth in acetate compared with L . This is consistent with prior
190 findings, and the notion that S represents a consistent acetate-scavenging specialist over evolutionary time. In contrast, the
191 behavior of S_B in acetate is more variable, both across time points and between different S_B clones. Most 6.5k S_B clones have a
192 fitness disadvantage in acetate relative to S (albeit less pronounced compared to L), whereas some 17k and 40k S_B clones have a
193 fitness *advantage* in acetate. This is another sign that S_B is occupying a genuinely different ecological niche compared to L .


194 Again, there is some variation between different S_B clones. For example, the 17k S_B 1 clone behaves noticeably differently
195 compared to the 17k S_B 2 and S_B 3 clones especially in the pyruvate and glycerol conditions, while the three clones cluster
196 together in the acetate condition. The 17k S_B 2 and S_B 3 clones also cluster together, away from the 17k S_B 1 clone in the PCA
197 plot (Figure 3E). The 17k S_B 1 clone also behaved differently compared to the other two in the reciprocal invasion experiment
198 against 17k L , where 17k S_B 1 did not show noticeable frequency-dependence (Figure 1D). The 6.5k S_B 3 and 40k S_B 1 clones
199 also cluster away from the other two clones within their timepoint. The conditions where these "outlier" clones diverge from
200 the other clones varies between timepoints—6.5k S_B 3 is different when grown in in pyruvate and casamino acids, and 40k S_B 1
201 is primarily different in the acetate condition.

202 Together, these results suggest that the metabolic/physiological change(s) that occur when S_B arises from S are not just
203 targeted towards traits relevant for ecological differentiation; rather, there may be global changes to metabolism.

204 Transcriptional differences between ecotypes

205 Given the strong heritability of the S_B phenotype, and multiple traits that differ with respect to S , we reasoned that the S_B
206 phenotype may have an underlying genetic cause. Thus, we performed whole-genome shotgun sequencing of several S and S_B
207 clones with both short-read sequencing (Illumina) and long-read sequencing (Nanopore) (see Methods). After reference-based
208 assembly, we saw that all S_B clones had several mutations relative to their ancestor, and all S clones from the same LTEE
209 generation also has several mutations relative to each other. The mutations were a mix of synonymous and non-synonymous
210 point mutations, insertions and deletions, and several large genomic rearrangements (see SI section 4). However, none of
211 the mutations differentiated S and S_B —there were no consistent mutations in specific genes or operons. The large number of
212 mutations separating S_B clones from their S ancestor is not surprising; the ara-2 lineage fixed a hypermutator allele before the S
213 and L lineages split, such that the germline mutation rate is about 100x higher than that of the LTEE ancestor⁴². This makes it
214 likely that many of the mutations are likely (nearly) neutral hitchhikers, or otherwise were not affected by selection. Thus,
215 because of the combination of the high mutational background and lack of detectable genetic parallelism, we cannot determine
216 if the S_B phenotype has a genetic cause, or what the causative mutation(s) would be. If the S_B phenotype is caused by some
217 genetic change, it is likely that many different mutations cause the same/similar phenotype.

218 To further understand the underlying causes of the S_B phenotype, we turned to measuring transcriptional differences between
219 L , S , and S_B from 6.5k generations using RNA-Seq. We chose to focus on 6.5k strains because this is the LTEE timepoint
220 immediately after the S and L lineages diversified, allowing us to focus on the "minimal" differences between S and L , rather
221 than after extensive evolution and divergence. We cultured two biological replicates of two independent clones of each L , S , and
222 S_B from 6.5k generations in glucose minimal media, and collected samples in mid-exponential phase (see Methods). Procedures
223 for RNA extraction, sequencing, and processing are described in Methods. For a broad overview of the data, we first performed
224 a principal components analysis, using (normalized, transformed) expression for each gene as the features (Figure 4A). We see
225 that the first principal component already captures more than half of the variance between samples, which primarily serves to
226 separate the L clones from the S and S_B clones. The S clones appear to cluster together strongly, with the S_B clones flanking

Figure 4. Results from RNA-Seq of *L*, *S*, and *S_B* clones from 6.5k generations. **(A)** Principal components analysis of RNA-Seq data, after processing. Samples with the same name represent biological replicates of the same clone; the 1 and 2 labels are to indicate which clone the samples come from. **(B)** Distributions of log₂ fold changes in gene expression across all genes, comparing different strains to each other. **(C-F)** Results of a KEGG gene set enrichment analysis to identify pathways with coordinated changes in gene expression between ecotypes, where **(C-D)** is comparing *S_B* to *S* and **(E-F)** is comparing *L* to *S*. Only pathways that are called as significant at $p < 0.05$ after an FDR correction are included; points are colored by FDR-corrected log₁₀ p-value. Pathways are ordered by normalized enrichment score, which is roughly a measure of the extent to which pathway-associated genes are overrepresented at the top or bottom of the entire list of genes, ranked by fold expression change. The size of the points is proportional to the "gene ratio", which is the ratio of core enrichment genes to the total number of genes in the pathway, i.e. the fraction of genes in the pathway that show differential expression.

them. Hierarchical clustering also reveals that the *S* clones cluster together, with the *S_B* 2 clone as the next most similar, and the *S_B* 1 clone as the outer-most member of the cluster (Figure S8). This suggests that there are more differences between *S* and *S_B* than there are between the two *S* clones, but there are stronger differences comparing both *S* and *S_B* with the *L* clones. The same picture emerges if we look at the distribution of log₂ fold expression changes between different ecotypes (Figures 4B, S9). Comparing *S* and *S_B* with *L*, there are many genes with a large range of expression changes, both increasing and decreasing in expression. In contrast, there are generally smaller differences between the two *S_B* clones and *S*. Again, there are larger and more differences between *S_B* 1 and *S*, compared with *S_B* 2 and *S*, suggesting some amount of variability between the two *S_B* clones.

Given that there are noticeable differences between *S_B* and *S*, we next sought to understand what those differences represent. Are there identifiable pathways with coordinated expression changes? How do they compare with the differences between *L* and *S*? To this end, we performed gene set enrichment analyses to identify differentially expressed KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways⁴³. We first compared *S_B* to *S* and *L* to *S*, and only look at pathways that are significantly enriched at $p < 0.05$ after a multiple-testing correction (Figure 4C-F). We see that there are a number of pathways significantly down-regulated in *S_B* compared to *S*, and only one pathway significantly up-regulated (Figure 4C-D). Most of the down-regulated pathways are related to different aspects of amino acid metabolism. We also separately compared *S_B* 1 and *S_B* 2

against *S* to better understand the variability between the two clones (Figure S10). As expected, most of the terms identified in the pooled analysis (e.g. ribosomal proteins, amino acid metabolism terms) appeared as the top terms when we analyzed the clones separately, albeit at a lower significance level than when the data from the two clones are pooled together. There are potentially a handful of differences in enriched pathways between the two clones. For example, terms related with O-antigen biosynthesis (e.g. Biosynthesis of nucleotide sugars, O-Antigen nucleotide sugar biosynthesis) may be upregulated in *S_B* 1, but not *S_B* 2. The differentially expressed pathways between *L* and *S* are mostly different, there are no terms related to amino acid biosynthesis, and many terms related to lipid metabolism and O-antigen biosynthesis (Figure 4E-F). Differentially expressed pathways in *L* tend to not be differentially expressed in *S_B*, and vice versa (Figure S11).

There are two pathways that are enriched in both comparisons: flagellar assembly and ribosomal proteins. The changes to flagellar assembly expression is in the opposite direction for *S_B* and *L*, where it is up-regulated in *S_B* but down-regulated in *L*, suggesting that gene expression for this pathway is ordered *L* < *S* < *S_B*. In contrast, expression of ribosomal proteins is down-regulated in both *L* and *S_B*, perhaps indicating some degree of parallelism involving a fundamental aspect of cell physiology between the two ecotypes. But overall, with the exception of the down-regulation of ribosomal proteins, it appears that the transcriptional changes that differentiate *S_B* and *L* from *S* are quite distinct.

Discussion

Our study explores the capacity of an evolved microbial community to quickly regenerate ecological diversity following the removal of a species. Our results suggest that even in the case of a community composed of only two strains in a minimal environment, evolution can leave room for alternative diversification processes.

The rediversified ecotype, *S_B*, demonstrates the robustness of microbial communities to perturbations by sharing several growth traits with the ecotype it replaces, *L*. For instance, both *S_B* and *L* exhibit slower initial growth or longer lag times compared to *S* across all LTEE timepoints, which may be involved in a trade-off allowing for higher exponential growth rates, as observed in other systems⁴⁴. However, differences between the rediversified and original communities suggest that the mechanism of ecotype coexistence has shifted. Notably, we observe variations in stationary phase responses and survival, as well as distinct patterns of gene expression. Together, these findings indicate that ecological rediversification in the *S*-*L* system may be influenced by a combination of constraints and opportunities. While adaptation may lead some traits to evolve nearly deterministically due to strong ecological or physiological constraints, other trait values may experience more freedom. The interplay between contingency and determinism mirrors patterns observed in various other evolving systems, including the LTEE⁴⁵⁻⁴⁷. Dissecting why some traits are more evolutionarily constrained during diversification compared to others could be a fruitful avenue for future investigation.

We attempted to determine a potential genetic origin of the *S_B* phenotype. However, we did not find any consistent mutations shared between the independent *S_B* clones, relative to their *S* ancestor. Thus, the *S_B* phenotype likely either has a large target size, such that many different mutations can cause the same phenotype^{48,49}, or it is caused by a non-genetic heritable change. Despite the fact that we did not find any shared mutations, the transcriptional changes of two *S_B* clones were targeted to the same handful of pathways, predominantly related to amino acid metabolism. This points to parallelism at least on the transcriptional level, if not on the genetic level. Additionally, while the differentially expressed pathways in *S_B* and *L* relative to *S* were generally different, we saw decreased expression of ribosomal proteins in both ecotypes. The fraction of the proteome devoted to ribosomes is known to control many growth traits in bacteria^{50,51}, so the similar changes in *L* and *S_B* may help to explain the handful of observed similarities in growth traits. One might expect that ribosome expression should be lower in *S*, due to its slower exponential growth rate^{52,53}; so the fact that this is not the case may suggest that *S_B* and *L* are both allocating their proteome not just to optimize exponential growth rate, but also other growth traits as well.

While we saw that *S* could rediversify following isolation, we did not see any obvious ecological or phenotypic diversification when *L* was isolated. There may be several reasons for this. (i) *S* may have some amount of physiological/ genetic/ metabolic plasticity that allows it to diversify that *L* lacks. (ii) Diversification of *L* may happen slowly or rarely, or more quickly only under certain environmental conditions. (iii) Perhaps *L* can rapidly diversify, but cryptically, where no phenotypic changes are obvious without more extensive phenotyping. It is certainly the case that we would not have found *S_B* without the obvious changes in colony size. It could be that rediversification is much more common than currently appreciated, but simply not detected. Sequencing technologies, including metagenomic³⁵ and DNA barcoding-based methods⁵⁴, could help to better reveal the full extent of rediversification across microbial communities. In fact, through metagenomic sequencing, we now know that ecological diversification is much more common in the LTEE than previously thought³⁵.

Our study has implications for our understanding of the ecological consequences of species removal or extinction. The ability of microbial communities to rediversify following such perturbations may represent a crucial mechanism by which communities can maintain their functioning and stability over time. While one might think that evolution would be too slow compared to ecological processes, we see here that evolution is crucial for community recovery following a perturbation. The presence of alternative evolutionary pathways, even in a maximally reduced community of only two strains, suggests that such

296 mechanisms may be even more pronounced in communities with greater species richness. In conclusion, our study provides
297 insights into the capacity of microbial communities to regenerate ecological diversity and adapt to environmental perturbations.
298 Further research into the mechanisms that govern these dynamics will be crucial for understanding the functioning and stability
299 of microbial communities, as well as their response to environmental change.

300 Methods

301 Growth Conditions and Media

302 Most of the experiments presented here were performed in Davis Minimal Media (DM) base [5.36 g/L potassium phosphate
303 (dibasic), 2g/L potassium phosphate (monobasic), 1g/L ammonium sulfate, 0.5g/L sodium citrate, 0.01% Magnesium sulfate,
304 0.0002% Thiamine HCl]. The media used in the LTEE and the competitions shown in Figures 1 and 2 is DM25, that is DM
305 supplement with 25mg/L dextrose.

306 For competition experiments, generally we first innoculated the strain into 1mL LB + 0.2% dextrose + 20mM pyruvate
307 (which we found prevented the emergence of the *S_B* while allowing for robust growth). After overnight growth, we washed
308 the culture 3 times in DM0 (DM without a carbon source added) by centrifuging it at 2500xg for 3 minutes, aspirating the
309 supernatant, and resuspending in DM0. We transferred the washed culture 1:1000 into DM25 in a glass tube. If a strain was
310 isolated directly from a colony, we would instead directly resuspend the colony in DM25. Generally, we grew 1mL cultures
311 in a glass 96 well plate (Thomas Scientific 6977B05). We then grew the culture for 24 hours at 37°C in a shaking incubator.
312 The next day, we transferred all the cultures 1:100 again into 1mL DM25. After another 24 hours of growth under the same
313 conditions, we would mix selected cultures at desired frequencies, then transfer the mixture 1:100 to DM25. After another
314 24 hours of growth under the same conditions, we would transfer the culture 1:100 to a desired media and start taking flow
315 cytometry measurements—in the competitions of Figures 1 and 2, the media would be DM25, for the competitions of Figure 3,
316 the media would be DM supplement with 200mg/L acetate, 1mg/mL casamino acids, 20mM pyruvate, or 20mM glycerol. For
317 the competitions of Figure 1, we took measurements for 3-4 total days, doing 1:100 serial transfers every 24 hours in DM25;
318 for Figure 2 we took measurements approximately every hour for 8 hours, then another measurement at 24 hours; for Figure 3
319 we took a second measurement after 8 hours, when the cultures were still in exponential phase.

320 Integration of fluorescent proteins

321 We sought to use flow cytometry to quantify ecotype abundances, which would necessitate that we could differentiate the strains
322 via fluorescence. We decided to integrate fluorescent proteins into a neutral genomic location of our various strains rather
323 than using plasmids, because plasmids can carry a significant metabolic burden, and it is often necessary to add antibiotics
324 to the media to select against plasmid loss. We used a system based on that of Schlechter *et al.*⁵⁵ to integrate fluorescent
325 proteins with miniTn7, a transposon that inserts cargo at a putatively neutral intergenic site downstream of *glmS*. Briefly, the
326 system works by mating the recipient strain-of-interest with a donor strain, harboring a plasmid with the miniTn7 proteins,
327 an ampicillin-resistance gene, a temperature-dependent origin of replication, and the cargo flanked by the left and right Tn7
328 recognition sites. In this case, the cargo consists of a fluorescent protein, under the control of a broad host-range promoter, and
329 a chloramphenicol resistance gene, for selection of integration.

330 Our protocol for integration proceeded as follows. First, we grew the donor strain with the desired plasmid in LB +
331 100 μ g/mL carbenicillin + 10 μ g/mL chloramphenicol at 30°C shaken, overnight. We also grew the recipient strain overnight
332 in DM2000 media at 37°C, directly from glycerol stock. The next day, we washed the donor culture by centrifuging it at
333 2500xg for 3 minutes, aspirating the supernatant, and resuspending in DM0. We then measured the optical density (OD) of
334 both cultures, and mixed about 1 OD of each culture on a 20mL LB/agar plate supplemented with 0.2% dextrose + 20mM
335 pyruvate. The cultures were allowed to grow into a lawn overnight at 30°C, allowing the donor strain to conjugate with the
336 recipient. Afterwards, we scraped up the lawn and resuspended it in 3mL DM0. We washed the resuspended culture 3 times, as
337 previously described, and then streaked out the culture on a DM2000 + 10 μ g/mL chloramphenicol + agar plate, then allowing
338 the plates to incubate overnight at 37°C. This step simultaneously selects against the presence of the donor (the donor is a
339 proline auxotroph), against the Tn7 plasmid (it has a temperature-sensitive origin of replication), and for integration of the Tn7
340 cargo (via the chloramphenicol resistance gene). After two days of growth, we restreaked a number of colonies that appeared
341 on DM2000/agar plates for isolation. We then tested for integration of the Tn7 cargo by amplifying and sanger sequencing
342 the junction between the genome and the fluorescent protein insertion (see SI section 3 for oligonucleotide sequences), and
343 by looking for fluorescence via fluorescence microscopy. We confirmed that the plasmid was not present in the colony by
344 testing resistance against carbenicillin. We ensured that the colony was not the donor or a contaminant by checking colony
345 morphologies on tetrazolium -maltose (TM), -arabinose (TA), and -xylose (TX) agar plates. We further confirmed identity by
346 sanger sequencing the *arcA* and *aspS* loci of the clones we moved forward with (see SI section 3 for oligonucleotide sequences).

347 We found that the fluorescence provided by the plasmids designed in Schlechter *et al.*⁵⁵ were insufficiently strong for
348 our purposes. We also needed two different fluorescent proteins with non-overlapping fluorescence profiles so that we could

349 distinguish the two in our flow cytometer. We decided to use the fluorescent proteins sYFP2⁵⁶ and eBFP2⁵⁷ because they share
350 the same ancestor and are highly homologous, and are thus likely to have the same or similar physiological effects on their
351 host, and they have sufficiently different fluorescence profiles that are compatible with our flow cytometer. Thus, we sought to
352 increase the expression levels of the fluorescent proteins, and add in BFP, by constructing new plasmids. We chose to use the
353 strong BBa_J23119 promoter⁵⁸ and a ribosome binding site (RBS) designed *in silico* with the Salis lab "RBS calculator"⁵⁹,
354 placing them immediately upstream of the fluorescent protein sequences. We used Gibson assembly to construct the plasmids
355 by ordering compatible oligonucleotides with the promoter and RBS sequences on them, and then using the backbone of
356 pMRE-Tn7-133 from⁵⁵ and the eBFP2 gene from pBad-EBFP2⁵⁷ for the BFP plasmid (see SI for plasmid and oligonucleotide
357 information). Final plasmid sequences were confirmed with Sanger sequencing.

358 Flow cytometry

359 For all population measurements taken with flow cytometry, we used the ThermoFisher Attune Flow Cytometer (2017 model)
360 at the UC Berkeley QB3 Cell and Tissue Analysis Facility (CTAF). For every measurement, we loaded the samples into a
361 round bottom 96 well plate, for use with the autosampler. Typically we diluted the samples 1:5 in DM0, but we changed the
362 dilution rate over the course of the 8 hour within-cycle timecourse. We set the flow cytometer to perform one washing and
363 mixing cycle before each measurement, and ran 50 μ L of bleach through the autosampler in between each measurement to
364 ensure that there was no cross-contamination between wells. We used the "VL1" channel to detect eBFP2 fluorescence, which
365 uses a 405nm laser and a 440/50nm bandpass emission filter. We used the "BL1" channel to detect sYFP2 fluorescence,
366 which uses a 488nm laser and a 530/30nm bandpass emission filter. For the triple competitions shown in Figure 1E, we used
367 a BFP-tagged *S*, a YFP-tagged *S_B*, and a non-fluorescent *L* strain. To estimate the frequency of *L*, we added 5 μ M of Syto62
368 red fluorescent dye (ThermoFisher S11344) to the sample immediately before measurement. We used the "RL1" channel to
369 detect Syto62 fluorescence, which uses a 637nm laser and a 670/14nm bandpass emission filter. We always used a sample
370 flow rate of 25 μ L/min.

371 To analyze flow cytometry data, we first create threshold gates to sufficiently separate the "noise cloud" (nonfluorescent
372 particles present even when running blank media) from particles with clear fluorescence. We noticed that in addition to seeing
373 single positive BFP⁺ and YFP⁺ particles, we also see some particles called as fluorescent in both channels (Figure S3). We
374 observed that the proportion of double positive events decreased as a function of fluid flow rate and dilution rate (Figure S4),
375 suggesting that sometimes multiple cells end up in front of the flow cytometry laser at the same time, and are counted as one
376 event. Thus, we sought to correct for this effect. We will have to make an assumption that the probability of a cell ending up
377 in front of the laser is constant per unit time, and uncorrelated in time, i.e. that it is a poisson process. Thus, for any given
378 window of time, the probability of observing some number of events is distributed as a poisson distribution. So under this
379 model, the observed BFP or YFP "clouds" will consist of single cells, double cells, triple cells, and so on. Similarly, there are
380 many combinations of BFP/YFP cells that can end up in the double positive cloud. So in order to get the expectation of the
381 observed frequencies, we add up the contributions of singlets, doublets, triplets, etc by considering the probability of *n* cells
382 passing in front of the laser together times the probability of all *n* cells being the same color,

$$f_i^{obs} = \sum_{n=1}^{\infty} p(n \text{ cells}) f_i^n \quad (1)$$

383 where $i \in \{1, 2\}$. As previously mentioned, $p(n \text{ cells})$ will follow a poisson distribution, but as we do not observe the case
384 when zero cells pass in front of the laser, we will use a zero-truncated poisson.

$$f_i^{obs} = \sum_{n=1}^{\infty} \frac{\lambda^n}{n!(e^{\lambda} - 1)} f_i^n \quad (2)$$

385 Where λ is the average number of cells per event. We have two equations (for f_1^{obs} and f_2^{obs}) and two unknowns (λ
386 and f_1), so we can solve for the real frequencies, which we solve for via numerical root-solving, performing the sum to
387 100 (which appears to be more than sufficient for convergence). The total cell count N also must be corrected, where
388 $N_{corrected} = N_{observed} \lambda e^{\lambda} / (e^{\lambda} - 1)$. The post-correction frequencies appear to be well-reflective of frequencies measured with
389 colony counting (Figure S1).

390 Whole Genome Sequencing

391 To perform short-read sequencing of *S_B* and *S* clones (see SI), we first grew the clones overnight in 1mL of DM2000, then
392 pelleted the cultures and extracted genomic DNA with the DNeasy Blood and Tissue Kit (Qiagen 69504). We prepared the
393 sample libraries with NEBNext DNA Library Prep kit for Illumina according to the manufacturer's protocol (New England

394 Biolabs E7645). We sequenced the samples with the Illumina 4000 HiSeq 150PE. We used `breseq`⁶⁰ to compare raw reads to
395 the REL606 genome⁶¹ (GenBank: CP000819.1) and to the *S* ancestor of each *S_B*, and then call genetic variants.

396 To perform long-read sequencing of *S_B* and *S* clones (see SI), we again grew the clones overnight in 1mL of DM2000, then
397 pelleted the cultures. High-molecular weight DNA extraction was performed via a standard phenol-chloroform extraction
398 and isopropanol precipitation. Distribution of DNA fragment sizes were obtained using the Agilent Femto Pulse System.
399 Fragment size selection was performed using Pippin Prep (Sage Biosciences). The samples were prepared for sequencing with
400 the Nanopore ligation sequencing kit (Oxford Nanopore, SQK-LSK109). The libraries were then sequenced on an Oxford
401 Nanopore MinION. We used `minimap2`⁶² and `sniffles`⁶³ with default parameters to detect structural variants.

402 RNA Sequencing

403 6.5k *S* and *L* clones 1 and 2 were isolated from REL11555 and REL11556 respectively; 6.5k *S_B* clones 1 and 2 were the same
404 clones as previously described. Cultures of 6.5k *S*, *S_B*, and *L* clones 1 and 2 were started directly from glycerol stock into
405 1ml LB + 2g/L dextrose + 20mM pyruvate, as a pre-culture. We started two independent cultures for each clone as biological
406 replicates. After overnight growth, the cultures were washed by centrifuging the cultures at 2500xg for 3 minutes, aspirating
407 the supernatant, and resuspending in DM0, repeated three times. Then, the cultures were diluted 1 : 10⁻⁴ into 1mL fresh DM
408 media supplemented with 4g/L dextrose, in glass tubes. After approximately four hours of growth at 37°C, the cultures were
409 again diluted 1 : 50 in 1mL of the same media in glass tubes. The cultures were grown shaken at 37°C. The cultures were grown
410 to mid-exponential phase, i.e. until *OD* ~ 0.4, then the entire culture was immediately centrifuged at 2500xg for 3 minutes to
411 pellet. Immediately after centrifugation, we resuspended the pellets in 25µL TES buffer (10 mM Tris-HCl [pH 7.5], 1 mM
412 EDTA, and 100 mM NaCl) and then lysed the pelleted cultures with 250U/µL lysozyme (Ready-Lyse Lysozyme Solution;
413 Lucigen R1804M) at room temperature for 5 minutes. For all subsequent steps, we used Monarch Total RNA Miniprep Kit
414 (New England BioLabs T2010S) according to the standard given protocol for gram-negative bacteria. Samples were eluted in
415 30µL nuclease-free water, and stored at -80°C. The concentration and purity of all RNA samples was quantified using Qubit.

416 RNAse-free DNase (Invitrogen AM2222) was used to treat the samples for DNA removal. The library preparation was
417 conducted using Illumina's Stranded Total RNA Prep Ligation with Ribo-Zero Plus kit and 10bp IDT for Illumina indices.
418 Subsequently, the samples were sequenced using NextSeq2000, resulting in 2x51bp reads. The process of demultiplexing,
419 quality control, and adapter trimming was carried out using `bcl-convert` (v3.9.3) and `bcl2fast` (v2.20.0.445) (both
420 are proprietary Illumina software for the conversion of bcl files to basecalls). `HISAT2` (v2.2.0)⁶⁴ was used for read mapping.
421 Reads were mapped to the REL606 genome⁶¹ (GenBank: CP000819.1). The read quantification was performed using the
422 functionality of `featureCounts` (v2.0.1) in `Subread`⁶⁵. All of the above steps in the pipeline were performed with default
423 parameters, the last two steps also were run with `-very-sensitive` and `-Q 20` tags, respectively. All sequencing and
424 pre-processing steps were performed by SeqCenter, LLC.

425 After pre-processing, we obtained a matrix of read counts for each gene for each sample. With this table, we used `DESeq2`
426 (v1.38.3)⁶⁶ to compute fold change in expression between strains and variance-stabilized relative expression values for each
427 gene across samples (blindly with respect to the design matrix), all with default parameters. We used the variance-stabilized
428 relative expression values for the principal components analysis (PCA). We used the `ashr` method (v2.2)⁶⁷ with default
429 parameters to shrink and regularize the log₂ fold changes in expression. We computed log₂ fold change in expression between
430 samples in two ways, (1) treating the *S_B* clones as one "strain", and (2) treating the *S_B* clones as separate, so that we get
431 different fold changes in expression for each clone. Otherwise, for *S* and *L*, we pooled data across the two clones and biological
432 replicates when computing fold change in expression. We used the package `clusterProfiler` (v4.6.2)⁶⁸ to perform the
433 KEGG gene set enrichment analysis (GSEA). We used the previously computed log₂ fold change in expression as the metric to
434 pre-sort the list of genes. We used the `gseKEGG` method along with the parameters `organism="ebr"`, `nPerm=1000000`,
435 `minGSSize=3`, `maxGSSize=800`, `eps=1e-20` to perform the analysis. We also generated the GSEA plots (Figures
436 S12,S13) with `clusterProfiler`.

437 Acknowledgements

438 We thank Adam Arkin, Morgan Price, Benjamin Good, Tanush Jagdish, Michael Desai, Jeff Barrick, Dominique Schneider, and
439 all members of the Hallatschek lab (past and present) for helpful comments and advice on the project. We thank Richard Lenski
440 for sending us the LTEE-derived strains and populations, along with experimental advice and feedback. Research reported in
441 this publication was supported by a National Science Foundation CAREER Award (1555330). This work was supported by the
442 National Institute of General Medical Sciences of the NIH under award R01GM115851 and by a Humboldt Professorship of
443 the Alexander von Humboldt Foundation. JAA acknowledges support from an NSF graduate research fellowship, a Berkeley
444 fellowship (from UC Berkeley), and Lloyd and Brodie scholarships (from UC Berkeley Dept of Bioengineering). We thank
445 Mary West of the Cell and Tissue Analysis Facility (CTAF) at UC Berkeley. This work was performed in part in the QB3 CTAF,
446 that provided the ThermoFisher Attune Flow Cytometer (2017 model). RNA sequencing and processing was performed by

447 SeqCenter, LLC. Nanopore library preparation and genomic sequencing along with Illumina sequencing was performed by the
448 Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 OD018174 Instrumentation Grant.

449 References

- 450 1. Benton, M. J. Diversification and extinction in the history of life. *Science* **268**, 52–58 (1995).
- 451 2. Wellborn, G. A. & Langerhans, R. B. Ecological opportunity and the adaptive diversification of lineages. *Ecol. evolution* **5**,
452 176–95, DOI: [10.1002/ece3.1347](https://doi.org/10.1002/ece3.1347) (2015).
- 453 3. Burress, E. D. Cichlid fishes as models of ecological diversification: patterns, mechanisms, and consequences. *Hydrobiologia* **748**, 7–27, DOI: [10.1007/s10750-014-1960-z](https://doi.org/10.1007/s10750-014-1960-z) (2015).
- 454 4. Rabosky, D. L. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. *Annu. Rev. Ecol. Evol. Syst.* **44**, 481–502, DOI: [10.1146/annurev-ecolsys-110512-135800](https://doi.org/10.1146/annurev-ecolsys-110512-135800) (2013).
- 455 5. Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism: American society of naturalists eo
456 wilson award address. *The Am. Nat.* **175**, 623–639 (2010).
- 457 6. Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. *Annu. Rev. Ecol. Evol. Syst* **47**, 507–532 (2016).
- 458 7. Whittaker, R. H. Evolution and measurement of species diversity. *Taxon* **21**, 213–251 (1972).
- 459 8. Helling, R. B., Vargas, C. N. & Adams, J. Evolution of escherichia coli during growth in a constant environment. *Genetics*
460 **116**, 349–358 (1987).
- 461 9. Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. *Nature* **394**, 69–72 (1998).
- 462 10. Rozen, D. E. & Lenski, R. E. Long-term experimental evolution in escherichia coli. viii. dynamics of a balanced
463 polymorphism. *The Am. Nat.* **155**, 24–35 (2000).
- 464 11. Brockhurst, M. A., Colegrave, N., Hodgson, D. J. & Buckling, A. Niche occupation limits adaptive radiation in experimental
465 microcosms. *PLoS One* **2**, e193 (2007).
- 466 12. Gómez, P. & Buckling, A. Real-time microbial adaptive diversification in soil. *Ecol. Lett.* **16**, 650–655 (2013).
- 467 13. Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in escherichia coli. *PLoS biology*
468 **11**, e1001490 (2013).
- 469 14. Schick, A. & Kassen, R. Rapid diversification of pseudomonas aeruginosa in cystic fibrosis lung-like conditions. *Proc. Natl. Acad. Sci.* **115**, 10714–10719 (2018).
- 470 15. Estrela, S., Diaz-Colunga, J., Vila, J. C., Sanchez-Gorostiaga, A. & Sanchez, A. Diversity begets diversity under microbial
471 niche construction. *bioRxiv* (2022).
- 472 16. Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial microcosms follows simple assembly
473 rules at evolutionary timescales. *Nat. communications* **12**, 1–9 (2021).
- 474 17. Schlüter, D. *The ecology of adaptive radiation* (OUP Oxford, 2000).
- 475 18. Madi, N., Vos, M., Murall, C. L., Legendre, P. & Shapiro, B. J. Does diversity beget diversity in microbiomes? *eLife* **9**,
476 1–83, DOI: [10.7554/ELIFE.58999](https://doi.org/10.7554/ELIFE.58999) (2020).
- 477 19. Friesen, M. L., Säxer, G., Travisano, M. & Doebeli, M. Experimental evidence for sympatric ecological diversification due
478 to frequency-dependent competition in escherichia coli. *Evolution* **58**, 245–260 (2004).
- 479 20. Spencer, C. C., Bertrand, M., Travisano, M. & Doebeli, M. Adaptive diversification in genes that regulate resource use in
480 escherichia coli. *PLoS genetics* **3**, e15 (2007).
- 481 21. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. *Nature* **400**, 354–357 (1999).
- 482 22. San Roman, M. & Wagner, A. Diversity begets diversity during community assembly until ecological limits impose a
483 diversity ceiling. *Mol. Ecol.* **30**, 5874–5887 (2021).
- 484 23. Fink, J. W. & Manhart, M. How do microbes grow in nature? The role of population dynamics in microbial ecology and
485 evolution. *EcoEvoRxiv* DOI: [10.32942/X2488N](https://doi.org/10.32942/X2488N) (2023).
- 486 24. Doebeli, M. A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms. *Popul. Ecol.* **44**,
487 59–70, DOI: [10.1007/s101440200008](https://doi.org/10.1007/s101440200008) (2002).
- 488 25. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. *Nature* **400**, 354–357, DOI: [10.1038/22521](https://doi.org/10.1038/22521)
489 (1999).
- 490 492

493 26. F. P. *et al.* Effects of Beneficial Mutations in *pykF* Gene Vary over Time and across Replicate Populations in a Long-Term
494 Experiment with Bacteria. *Mol. biology evolution* **35**, 202–210, DOI: [10.1093/MOLBEV/MSX279](https://doi.org/10.1093/MOLBEV/MSX279) (2018).

495 27. Good, B. H., Martis, S. & Hallatschek, O. Adaptation limits ecological diversification and promotes ecological tinkering
496 during the competition for substitutable resources. *Proc. Natl. Acad. Sci. United States Am.* **115**, E10407–E10416, DOI:
497 [10.1073/pnas.1807530115](https://doi.org/10.1073/pnas.1807530115) (2018).

498 28. Lenski, R. E. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.
499 *ISME J.* **11**, 2181–2194, DOI: [10.1038/ismej.2017.69](https://doi.org/10.1038/ismej.2017.69) (2017).

500 29. Rozen, D. E. & Lenski, R. E. Long-Term Experimental Evolution in *Escherichia coli*. VIII. Dynamics of a Balanced
501 Polymorphism. *The Am. naturalist* **155**, 24–35, DOI: [10.1086/303299](https://doi.org/10.1086/303299) (2000).

502 30. Rozen, D. E., Philippe, N., Arjan de Visser, J., Lenski, R. E. & Schneider, D. Death and cannibalism in a seasonal
503 environment facilitate bacterial coexistence. *Ecol. Lett.* **12**, 34–44, DOI: [10.1111/j.1461-0248.2008.01257.x](https://doi.org/10.1111/j.1461-0248.2008.01257.x) (2009).

504 31. Großkopf, T. *et al.* Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria
505 in a long-term evolution experiment. *BMC Evol. Biol.* **16**, 163, DOI: [10.1186/s12862-016-0733-x](https://doi.org/10.1186/s12862-016-0733-x) (2016).

506 32. Rozen, D. E., Schneider, D. & Lenski, R. E. Long-Term Experimental Evolution in *Escherichia coli*. XIII. Phylogenetic
507 History of a Balanced Polymorphism. *J. Mol. Evol.* **61**, 171–180, DOI: [10.1007/s00239-004-0322-2](https://doi.org/10.1007/s00239-004-0322-2) (2005).

508 33. Le Gac, M., Plucain, J., Hindré, T., Lenski, R. E. & Schneider, D. Ecological and evolutionary dynamics of coexisting
509 lineages during a long-term experiment with *Escherichia coli*. *Proc. Natl. Acad. Sci. United States Am.* **96**, 10242–7, DOI:
510 [10.1073/pnas.96.18.10242](https://doi.org/10.1073/pnas.96.18.10242) (2012).

511 34. Plucain, J. *et al.* Epistasis and allele specificity in the emergence of a stable polymorphism in *Escherichia coli*. *Science*
512 **343**, 1366–1369, DOI: [10.1126/science.1248688](https://doi.org/10.1126/science.1248688) (2014).

513 35. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over
514 60,000 generations. *Nature* **551**, 45–50, DOI: [10.1038/nature24287](https://doi.org/10.1038/nature24287) (2017).

515 36. Ascensao, J. A., Wetmore, K. M., Good, B. H., Arkin, A. P. & Hallatschek, O. Quantifying the local adaptive landscape of
516 a nascent bacterial community. *Nat. Commun.* **2023** *14*:1 **14**, 1–19, DOI: [10.1038/s41467-022-35677-5](https://doi.org/10.1038/s41467-022-35677-5) (2023).

517 37. Großkopf, T. *et al.* Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria
518 in a long-term evolution experiment. *BMC evolutionary biology* **16**, 1–15 (2016).

519 38. Doebeli, M. A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms. *Popul. Ecol.* **44**,
520 59–70 (2002).

521 39. Vasi, F. K., Travisano, M. & Lenski, R. E. Long-term experimental evolution in *Escherichia coli*. ii. changes in life-history
522 traits during adaptation to a seasonal environment. *The Am. Nat.* **144**, 432–456, DOI: [10.1086/285685](https://doi.org/10.1086/285685) (1994).

523 40. Holms, H. Flux analysis and control of the central metabolic pathways in *Escherichia coli*. *MICROBIOLOGY REVIEWS*
524 *ELSEVIER FEMS Microbiol. Rev.* **19**, 85–116, DOI: [10.1111/j.1574-6976.1996.tb00255.x](https://doi.org/10.1111/j.1574-6976.1996.tb00255.x) (1996).

525 41. Le Gac, M., Plucain, J., Hindré, T., Lenski, R. E. & Schneider, D. Ecological and evolutionary dynamics of coexisting
526 lineages during a long-term experiment with *Escherichia coli*. *Proc. Natl. Acad. Sci.* **109**, 9487–9492 (2012).

527 42. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of *E. coli*.
528 *Nature* **387**, 703–705, DOI: [10.1038/42701](https://doi.org/10.1038/42701) (1997).

529 43. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res.* **28**, 27–30, DOI:
530 [10.1093/NAR/28.1.27](https://doi.org/10.1093/NAR/28.1.27) (2000).

531 44. Basan, M. *et al.* A universal trade-off between growth and lag in fluctuating environments. *Nature* **584**, 470–474, DOI:
532 [10.1038/s41586-020-2505-4](https://doi.org/10.1038/s41586-020-2505-4) (2020).

533 45. Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: Replaying life's tape. *Science* **362**,
534 DOI: [10.1126/science.aam5979](https://doi.org/10.1126/science.aam5979) (2018).

535 46. and, J. B. Replaying life's tape. *J. Philos.* **103**, 336–362, DOI: [10.5840/jphil2006103716](https://doi.org/10.5840/jphil2006103716) (2006).

536 47. Gould, S. J. *Wonderful life* (WW Norton, New York, NY, 1989).

537 48. Besnard, F., Picao-Osorio, J., Dubois, C. & Félix, M. A. A broad mutational target explains a fast rate of phenotypic
538 evolution. *eLife* **9**, 1–70, DOI: [10.7554/ELIFE.54928](https://doi.org/10.7554/ELIFE.54928) (2020).

539 49. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From Polygenic to Omnigenic. *Cell* **169**,
540 1177–1186, DOI: [10.1016/J.CELL.2017.05.038](https://doi.org/10.1016/J.CELL.2017.05.038) (2017).

541 50. Scott, M. & Hwa, T. Bacterial growth laws and their applications. *Curr. Opin. Biotechnol.* **22**, 559–565, DOI: [10.1016/j.copbio.2011.04.014](https://doi.org/10.1016/j.copbio.2011.04.014) (2011).

543 51. Erickson, D. W. *et al.* A global resource allocation strategy governs growth transition kinetics of *Escherichia coli*. *Nature* **551**, 119–123, DOI: [10.1038/nature24299](https://doi.org/10.1038/nature24299) (2017).

545 52. Forchhammer, J. & Lindahl, L. Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of *Escherichia coli* 15. *J. Mol. Biol.* **55**, 563–568, DOI: [10.1016/0022-2836\(71\)90337-8](https://doi.org/10.1016/0022-2836(71)90337-8) (1971).

547 53. Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: *Origins and consequences*. *Science* **330**, 1099–1102, DOI: [10.1126/science.1192588](https://doi.org/10.1126/science.1192588) (2010).

549 54. Levy, S. F. *et al.* Quantitative evolutionary dynamics using high-resolution lineage tracking. *Nature* **519**, 181–186, DOI: [10.1038/nature14279](https://doi.org/10.1038/nature14279) (2015).

551 55. Schlechter, R. O. *et al.* Chromatic Bacteria - A Broad Host-Range Plasmid and Chromosomal Insertion Toolbox for *Fluorescent Protein Expression in Bacteria*. *Front. microbiology* **9**, DOI: [10.3389/FMICB.2018.03052](https://doi.org/10.3389/FMICB.2018.03052) (2018).

553 56. Kremers, G. J., Goedhart, J., Van Munster, E. B. & Gadella, T. W. Cyan and yellow super fluorescent proteins with *improved brightness, protein folding, and FRET Förster radius*. *Biochemistry* **45**, 6570–6580, DOI: [10.1021/BI0516273](https://doi.org/10.1021/BI0516273) (2006).

556 57. Ai, H. W., Shaner, N. C., Cheng, Z., Tsien, R. Y. & Campbell, R. E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. *Biochemistry* **46**, 5904–5910, DOI: [10.1021/BI700199G](https://doi.org/10.1021/BI700199G) (2007).

558 58. Part:BBa J23119 - parts.igem.org.

559 59. Reis, A. C. & Salis, H. M. An automated model test system for systematic development and improvement of gene expression models. *ACS Synth. Biol.* **9**, 3145–3156, DOI: [10.1021/ACSSYNBIO.0C00394/SUPPL_{ }FILE/SB0C00394_{ }SI{ }006.XLSX](https://doi.org/10.1021/ACSSYNBIO.0C00394/SUPPL_{ }FILE/SB0C00394_{ }SI{ }006.XLSX) (2020).

562 60. Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. *Methods molecular biology (Clifton, N.J.)* **1151**, 165–188, DOI: [10.1007/978-1-4939-0554-6_{ }12](https://doi.org/10.1007/978-1-4939-0554-6_{ }12) (2014).

565 61. Jeong, H. *et al.* Genome Sequences of *Escherichia coli* B strains REL606 and BL21(DE3). *J. Mol. Biol.* **394**, 644–652, DOI: [10.1016/J.JMB.2009.09.052](https://doi.org/10.1016/J.JMB.2009.09.052) (2009).

567 62. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–3100, DOI: [10.1093/bioinformatics/bty191](https://doi.org/10.1093/bioinformatics/bty191) (2018).

569 63. Sedlazeck, F. J. *et al.* Accurate detection of complex structural variations using single-molecule sequencing. *Nat. Methods* **15**, 461–468, DOI: [10.1038/s41592-018-0001-7](https://doi.org/10.1038/s41592-018-0001-7) (2018).

571 64. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. biotechnology* **37**, 907–915, DOI: [10.1038/S41587-019-0201-4](https://doi.org/10.1038/S41587-019-0201-4) (2019).

573 65. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinforma. (Oxford, England)* **30**, 923–930, DOI: [10.1093/BIOINFORMATICS/BTT656](https://doi.org/10.1093/BIOINFORMATICS/BTT656) (2014).

575 66. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550, DOI: [10.1186/s13059-014-0550-8](https://doi.org/10.1186/s13059-014-0550-8) (2014).

577 67. Stephens, M. False discovery rates: a new deal. *Biostatistics* **18**, 275–294, DOI: [10.1093/BIOSTATISTICS/KXW041](https://doi.org/10.1093/BIOSTATISTICS/KXW041) (2017).

579 68. Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The Innov.* **2**, 100141, DOI: [10.1016/J.XINN.2021.100141](https://doi.org/10.1016/J.XINN.2021.100141) (2021).