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10 Abstract

11  High throughput field phenotyping techniques employing multispectral cameras alow to extract a
12 variety of variablesand featuresto predict yield and yield related traits, but little is known about which
13 types of multispectral features may allow to forecast yield potential in the early growth phase. In this
14 study, we hypothesized that the best features for predicting yield in an early stage might be different
15  from the best predictors for the late growth stages. Based on a variety testing trial of 19 European
16  wheat varieties in 2021, multispectral images were taken on 19 dates ranging from tillering to harvest
17 by an unmanned aerial vehicle measuring reflectance in five bands, including visible bands, Red-edge
18  and the near-infrared (NIR). Orthomosaic images were created, and then the single band reflectances,
19  vegetation indices (V1) and texture features (TF) based on a gray level correlation matrix (GLCM)
20  were extracted. We evaluated the performance of these three types of features for yield prediction and
21  classfication at different growth stages by, i) using features on each of the measurement dates, ii)
22 smoothing features across the 19 dates, and iii) combining features across the directly adjacent dates,
23 in combination with the random forest models. Our results showed that, for most features,
24  measurements at the flowering stage showed the best performance and the Red reflectance was able to
25  predict yield with a RMSE of 47.4 g m* (R* = 0.63), the best VI was NDRE predicting yield with a
26 RMSE of 47.9 g m?(R? = 0.63), the best TF was contrast predicting yield with a RMSE of 57.2 g m*
27  (R?=0.46) at the booting stage. Combining dates improved yield prediction in all dates and made the
28  prediction errors more stable across dates. Rather than the Red-edge band, visible bands especially the
29  Red band enabled to distinguish between the high- and low-yielding varieties already in the tillering
30 stage, with atotal accuracy of 76.7%. The study confirms our hypothesis and further implies that, in
31 the early stages, the visible bands may be more effective than Red-edge bands in assessing the yield
32  potential inarange of testing varieties.
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39 1 Introduction

40  Improving crop yields in the face of climate change is a significant challenge for plant breeding (Ray
41 et a., 2013). To achieve efficient phenotyping for breeding, it is essential to quickly and accurately
42  identify high-yielding genotypes from a large pool of genotypes (Araus & Cairns, 2014). While
43  traditional phenotyping for variety selection is highly dependent on breeder’s eyes and experiences,
44  high-throughput phenotyping (HTP) emerged in recent years as a more standardizable approach of
45  characterizing plant structure and function and assessing their interactions with the environment by
46  employing various technologies such as imaging, remote sensing, and artificial intelligence (Hund et
47  a., 2019; Watt et al., 2020). HTP-generated high-dimensional phenotypic data embrace the spectral
48  (frequency), spatial, and temporal domains, leading to challenges of analyzing the high dimensional
49  data before they can aid in identifying the genotypes (Bowman et al., 2015; Prey et al., 2022). In
50 particular, field-based HTP including the phenotypic data handling and analysis remain the most
51  significant challenge and requires further development to be fully effective (Kirchgessner et al., 2017;
52  Walter et al., 2015).

53  Field-based HTP techniques are expected to be fast, cost-effective, and non-destructive (Cabrera-
54  Bosguet et al., 2012). Unmanned aerial systems (UAS-) based remote sensing techniques are
55 increasingly used for HTP of plant traits and yield. Among these sensing techniques, canopy spectral
56  reflectance is highly promising and has been successfully utilized to estimate a diverse range of traits
57  in wheat such as leaf area index (Bukowiecki et al., 2020; Zhang et al., 2021), biomass (Yue et a.,
58  2019), leaf nitrogen and chlorophyll in wheat (Pan et al., 2023) to more general traits such as grain
59  vyield and quality (Duan et al., 2017; Prey et a., 2020; Vatter et a., 2022). There are several sensors
60 available for measuring yield under field conditions, such as RGB cameras (Fernandez-Gallego et dl .,
61  2019), as well as thermal sensors (Elsayed et al., 2017) and active sensors such as LiDAR (Li et al.,
62  2022). The use of multispectral cameras mounted on unmanned aerial systems (UAS) has proven to be
63  apractical, easy-to-use, and cost-effective approach (Arauset al., 2022).

64  Multispectral images alow for extracting a variety of features that can be used to predict yield in
65  whesat. Generally, these features can be grouped three categories. Firgtly, single band reflectance in
66  gpecific wavelengths can be directly extracted from multispectral data. Secondly, the reflectance of
67  single bands can be combined to calculate vegetation indices (VIs), which are often more sensitive to
68  gpecific traits and less affected by environmental conditions during measurement (Tucker, 1979).
69  However, both single band reflectance and VIs may suffer from saturation, particularly for closed
70  canopies (Rischbeck et al., 2016). Thirdly, texture features (TFs) can be extracted to describe the
71  digtribution of pixels within a region of interest (ROI). Although TFs can be extracted from any
72 reflectance and VI raster, they often perform less effectively than single band reflectance or VIs in
73  predicting yield in wheat (J. Li et al., 2019). Also, TFs are frequently used in combination with VIsto
74  predict plant traits, e.g., leaf area and biomass in wheat (Zhang et a., 2021). While canopy height
75  often follows a clear tempora dynamics, multispectral features show different dynamics, depending
76  on their sensitivity to a given trait or canopy properties. Also, research indicates that TFs depend
77  heavily on the phenological stage and are therefore their dynamics might interesting to be studied
78  (Culbert et al., 2009). Yet, only limited research focuses on the dynamics of different features in
79  phenotyping, especially the TFs. Among the TF algorithms, one of the mostly used is based on the
80  grey level co-occurrence matrices (GLCMSs). In order to calculate GLCMs different parameters such
81 as the level of quantization, the size of the moving window, the moving distance and direction
82  (Hardlick et a., 1973). They can be calculated on all available images or rasters of individual bands
83 and VIs. Further, TFs are highly dependent on the GSD and the size of the observed object; and
84  therefore on the camera and the flight height. Zhang et al. (2021) found the best performing TFs for
85  yield prediction were based on the RED as well as the NIR bands. In contrast, Zheng et a. (2019)
86 found that GLCM-based TFs were poorly correlated to above ground biomass (AGB) in rice and
87  caculated normalized difference texture indices that showed a higher correlation with AGB. Further,
88  the phenology has a big influence on the relationship between AGB and the normalized difference
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89  texture features (S. Li et al., 2019). Despite that combing feature (e.g., TFs, VIs) and models often
90 improve the prediction, the more reliable performance of yield prediction has been reported in only a
91  few growth stages from the booting to early grain filling (Bowman et al., 2015; Vatter et a., 2022).

92  Accurately predicting yield using canopy multi-/hyperspectral reflectance further requires careful
93  consideration of the phenological stage of the crop. The anthesis stage or the grain filling stage are
94  oftenidentified as the most suitable stages for yield prediction in wheat (Bowman et al., 2015; Duan et
95 ., 2017; Hassan et a., 2019). In contrast, canopy spectral-based yield prediction has been often
96  reported with a lower accuracy (Prey et a., 2022). Multispectral cameras mounted on UAS enable
97  breeders and researchers to assess the aforementioned spectral and texture features at a high temporal
98  frequency and precision. Within a proper time-window, using atime series for yield prediction allows
99  for the extraction of dynamic canopy traits that could potentially be useful for yield prediction. For
100 instance, Pinter et al. (1981) suggested summing measurement dates after heading to improve yield
101  prediction in wheat and barley. Raun et a. (2001) suggested to take two spectral measurements after
102 dormancy. Time series are further often used to extract information for canopy height, and Taniguchi
103 et a. (2022) used a time-series canopy height model to predict several yield-related traits after the
104  heeding stage. During the stem elongation stage in wheat, Kronenberg et al. (2020) used laser
105  scanning to capture the time series of plant height development and identified quantitative trait loci
106  that accounted for the variability in height dynamic.

107  Collectively, despite these successes, little is known about which types of multispectral features may
108  alow usto forecast yield potential in the early growth phase. Therefore, this study aims (1) to identify
109  the best performing multispectral traits for yield prediction and classification in whesat (2) to research,
110 if yield types can be classified in relatively early stages and finally (3) to investigate, how traits
111 measured at different time points can be combined to predict yield more accurately.

112 2 Methods

113 2.1 Study siteand Environmental monitoring

114 A trial consisting of 19 diverse European winter wheat elite varieties (Triticum aestivum). was grown
115 in plots with a size of 10 m x 1.85 m. The plots were placed in a randomized complete block design
116 with four replicates, resulting in 76 plots totally. The trial took place at the research station of the
117  Technical University of Munich in Dirnast, Freising (48.40630° N, 11.69535° E). The soil at this
118  location can be characterized by a homogeneous Cambisol with 20.8 % clay, 61.5 % silt and 16.6 %
119  sand. All plots were fertilized by applying 180 kg N ha in three equal splits at BBCH 25, 32 and 65.
120  Plant protection was carried out according to local practice. Sowing took place on the 10.11.2020 and
121 all plots were harvested at full maturity on the 03.08.2021. Precipitation during this period was 1020
122 mm, the average temperature was 8.2 °C. Climate data was collected from a weather station (Station id
123 5404) and operated by the Climate Data Center of the German Weather Service. The temperature was
124  aggregated to phenologically meaningful growing degree-days (GDD):

Ty + minT,
Z max d,h > mn dh baseT

24

Tmean, =

n
GDD = Z Tmeang,
d=1
125  where Tmeany is the mean temperature for day d after sowing, maxTy, and minTy, are hourly

126 maximum and minimum temperatures for day d and baseT is the base temperature, which was set to 0
127 °C.
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128 2.2 Grainyield, Phenology assessment and L eaf area index measur ements

129  The entire plots were harvested using a combined harvester. The water content of the grains was
130 determined by weighing the grains after harvest, drying them at 65 °C until constant weight was
131 reached and weighing them again. The final yield was normalized to a moisture content of 14 %. The
132 three varieties with the lowest average yield were classified as low yielding and the three varieties
133 with the highest average yield as high yielding. The phenology of each plot was visually rated using
134  the BBCH scae (Meier et al., 2009) on aplot level. Leaf areaindex (LAI) was measured using a Licor
135 2000 leaf area meter (LI-COR Biosciences Lincoln, U.S.A.) with a 45° view cap to minimize operator
136  influence. Three measurements were taken at the top of the canopy and four measurements were taken
137  under the canopy at three different locations per plot, which were then averaged.

138 2.3 Multispectral image acquisition and processing

139  Spectral measurements were aguired using a Phantom 4 Multispectral RTK (DJI, Shenzhen, China).
140 The UAV captures reflectance in wavelengths of 450, 560, 668, 717 and 840 nm and measures the
141 incoming sunlight by a sensor on top of the UAV. Flight height was set to 10 m AGL resulting in a
142 ground sampling distance of 0.7 cm. Overlap in both directions was set to 90 %, the UAV stopped for
143 each image acquisition. Before and after each flight, images of a panel with a known reflectance were
144  taken. Flights were carried out twice per week during heading and flowering stages and once per week
145  at other gtages. First flight was carried out on the 25.03.2021 and the last flight on the 20.07.2021,
146 which resulted in 19 flights totally. Images were taken around the solar noon and under sunny
147  conditions, if possible.
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REDEDGE
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Figure 1: Workflow applied.
148
149  Theimages from each flight were mosaicked using the Agisoft Metashape Professional 1.8.4 (Agisoft,

150  St. Petersburg, Russia) structure-from-motion software. The images were radiometrically calibrated
151  using the reflectance panels on the ground and the incident light sensor on the UAV, with a uniform
152  set of processing parameters used for all flight dates (Figure 1). The point cloud was georeferenced
153  using the real-time kinetic global positioning system (RTK-GPS) integrated into the UAS, with the
154  RTK correction signal provided by SAPOS (Deutsche Landesvermessung). Reflectance of individual
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155  bands was extracted by calculating the median of a specific region of interest (ROI) representing a plot
156  using acustom Python 3.7 script (Python Software Foundation, https://www.python.org/).

157 2.3.1 Selection and calculation of spectral indices

158  To compare our approach across a range of vegetation indices (V1s), we classified them into five main
159  groups based on their calculation method and selected a representative VI for each group. The five
160  groups were differential-type, simple-ratio type, normalized differential type, three-band type, and
161  combination of two spectral indices type (Table 1). We calculated the indices using a custom Python
162 3.7 script (Python Software Foundation, https://www.python.org/) and computed the median value for
163  eachindex over the regions of interest (ROISs) corresponding to the plots.

164 Table 1: Vegetation indices (VIs) calculated.

Index type Index Formula Reference
Difference DVI 840 — 668 (Shibayama et al.,
1999)
Ratio RVI 840 (Shibayama et al.,
668 1999)
Normalized NDRE 840 — 717 (Barnes et al.,
840 + 717 2000)
ThreeBand MCARI ((717-668) — 0.2 * (717 — 560))  (Daughtry et al.,
717 2000)
* (668’
Combination of CCII TCARI
indices OSAVI
TCARI 3% [(717 — 668) —7(1).72 * (717 — 550) (Haboudane et al.,
] (_)] 2002)
670
OSAVI (840 — 668)
(1+1.16) *(

840+ 717 + 0.16

165

166 2.3.2 Selection and calculation of texture features

167 To generate a manageable number of TFs, we focused on calculating TFs for the RED reflectance
168  band only as it had the best performance for yield prediction when using single bands. A 5 x 5 kernel
169  size was used to calculate the GLCM features over the entire raster. This small kernel size was chosen
170  because whest leaf sizes are relatively small compared to our GSD. A quantization level of 32 was
171 used, with the lowest level corresponding to the first percentile of the respective raster and the highest
172 level corresponding to the 99th percentile. This ensured that we could ill capture the variation in our
173 image. GLCMs were congtructed with a moving distance of 1 pixel and moving directions of 0°, 45°
174  and 90° to eliminate possible effects of direction. The Contrast, Correlation, Dissimilarity, Energy, and
175  Homogeneity features were extracted from each GLCM (Haralick et al., 1973) and saved as the center
176  pixel in a raster. From these ragters, the final value per plot was extracted by averaging all values
177  within the ROI. All calculations were performed using a cusom Python 3.7 script (Python Software
178  Foundation, https://www.python.org/). The extracted features are listed in (Table 2).
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179 Table 2: Calculation of grey correlation matrix features according to Haralick et al. (1973).

Texture feature calculated on Formula Explanation
RED raster
Contrast N-1 o Amount of local variation
zijzopij(‘_f) in pixel values
Correlation N-1 (i— G- Linear dependency of
z Pjj———— grey level values in the
Lj=0 g GLCM
Dissimilarity N-1 o Local roughness of the
Zii:opi'ill_fl pixel values
Energy N-1 2 Local steadiness of the
Z J_O(Pij) gray levels
Homogeneity z"’ -1 P;; Homogeneity of the pixel
=01+ (—/)? values

180

181 2.3.3 Temporal processing of the extracted features

182  Three temporal feature selection strategies were evaluated (Figure 1). The firgt strategy involved
183  selecting data from individual dates, resulting in one feature per observation. The second Strategy
184  involved smoothing the values per plot using splines, implemented in the statgenHTP package, with
185  the default settings (Millet et al., 2022). Summed GDD from harvest were used as the time axis.
186  Finally, features were selected using a moving time window with a width of 3. For each recorded date,
187  the mode included features from the current date and the previous as well as the following date,
188  resulting in atotal of three features per observation. This strategy isreferred to as the moving window
189  model.

190 2.4 Yield prediction model and yield potential classification model

191  To predict yield on a plot level and classify yield performance groups, we employed Random Forest
192  (RF) machine learning models in R 4.2 (R Core Team, 2021). We optimized the number of trees per
193  forest to 500 and used the R package caret (Kuhn, 2008). The number of trees per forest was set to
194 500 and the number of features per node was optimized by minimizing the root mean square error for
195  theregression models and the accuracy for the classification models.

196 2.5 Statistical analysis

197  Pearson correlation coefficient between yield and spectral features was calculated using measurements
198  taken on the 25.06.2021. At this date, most varieties were in the mid to end flowering and the
199  correlation of VIsand yield was maximal for most Vls. The performances of the regression RF models
200  were assessed by the coefficient of determination (R?) as well as the root mean square error (RMSE)
201  using a10-fold cross validation that was repeated 3 times and averaged:

202
n =3\2 =\2
R? = Yie1 (g — %) * (vi— ¥i)
Vi (= X)2* Yo, (v — 37i)2
203
RMSE = 2= O — yi)?
n
204

205  Where x and y; represent the observed and the predicted yield, x; and y; represent the mean of the
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206  observed and the predicted yield, respectively. n represents the number of samples. The performances
207  of the classification RF models were assessed by the accuracy of the prediction using a 10-fold cross
208  validation that was repeated 3 times and averaged:

True positive + True negative

A =
COUracY = Total number of classified objects

200 3 Results

210 3.1 Yield LAI and phenology

211  Substantial grain yield (GY) variation was observed between experimental plots (Table 3). The highest
212 yield was observed in the variety RGT-Reform (411.4 g m?), the highest yield in the variety Skyfall
213 (642.7 g m?). The high yielding varieties showed a significantly higher LAl during the stem
214  elongation, the booting and at the late grain filling stage than the low yielding varieties (Figure 2).
215  Phenology showed only few significant differences between the high and low yield groups, namely at
216  the sem elongation and the flowering stage (p < 0.05). Still, it can be observed that the high yielding
217  varieties were generally advanced in their phenology (Figure 2).

218 3.2 Correlations between grain yield, the UAV based reflectance, vegetative

219 indices and texture features

220  During booting, most extracted features show a high correlation with each other as well as with yield
221 (Figure 2). The GREEN and RED reflectance showed an equally high correlation with yield (r = -0.75)
222 at the booting stage, which was similar for RED at the early grain filling stage but significantly lower
223 for the GREEN reflectance (r = -0.42). Among single band reflectance, the REDEDGE region
224  expressed the lowest correlation with yield (r = -0.33) and was generally low correlated to other
225  features.

226 Among Vs, the NDRE showed the highest correlation with yield during the booting stage (r = 0.79),
227  followed by the RVI (r = 0.73), the CCIl was negatively correlated to yield (r = -0.67) The correlations
228  of VIsto yield do not change significantly at the early grain filling stage. TFs showed a moderate
229 correlation with yield, and the DISSIMILARITY and ENERGY were found to be best two,
230  respectively, with r values of -0.69 and 0.65 at the booting stage. Correlation of the TFs to yield
231 changed dragtically at the early grain filling stage, when the highest correlated feature
232  CORRELATION showed an R of -0.34. The feature ENERGY was not correlated to yield at this stage
233 anymore. Generally, Vs were the feature type that showed the highest correlation to yield at the
234 booting as well as at the early grain filling dage.
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Table 3: Grain yield and phenology of the single varieties. Values represent the mean of the four replicates; the values in brackets represent the standard deviation of the four replicates.

s
7]

3

8

Variety GrainYield Stem Elongation Booting Heading Flowering Early Grain Filling Late Grain Filling f_?:
Absalon 532,0 (32,8) 635,0 (27,7) 9175 (37,3) 1046,5 (23,6) 1153,3 (38,7) 1397,0 (59,2) 1653,3 (79,2) g
Aurelius 541,9 (56,4) 609,3 (3,5) 9635 (52,6) 1069,3 (17,6) 1109,0 (0,0) 1368,8 (62,5) 1673,3 (63,9) ?3
Axioma 473,0 (41,8) 607,5 (4,0) 950,3 (31,7) 1042,8 (23,8) 11215 (11,2) 1350,0 (51,8) 1636,5 (57,7) 3
Bernstein 522,3 (33,7) 626,8 (16,6) 9815 (6,9) 1091,0 (30,2) 1201,0 (70,6) 14348 (27,3) 1684,8 (93,6) s
Bologna 490,7 (33,3) 6255 (16,7) 926,8 (61,1) 1038,5 (30,0) 1109,0 (0,0) 1363,0 (69,7) 1651,5 (64,4) <
CH-Nara 559,4 (30,2) 635,0 (27,7) 921,3 (16,7) 1042,0 (16,2) 1137,0 (30,9) 1356,3 (47,8) 1601,5 (23,7) A
Chevignon 598,5 (63,5) 615,5 (30,6) 9118 (17,7) 1050,8 (25,4) 11448 (21,1) 1358,3 (45,9) 1579,3 (13,0) %g
Costello 478,6 (38,8) 6355 (22,3) 959,0 (31,2) 1103,0 (38,0) 1207,8 (67,8) 1411,8 (39,7) 1739,8 (2,5 g_)é
Dagmar 617,1 (45/4) 611,0 (0,0) 969,0 (41,6) 1052,0 (22,3) 1114,0 (16,0) 1345,3 (53,3) 1653,5 (74,5) g%
Elixer 5404 (76,2) 643,0 (27,7) 9530 (43,2) 1118,3 (34,7) 12195 (87,4) 1444.0 (20,8) 1742,0 (5,8) c5
Hyvento 576,2 (51,1) 641,3 (21,0) 956,0 (34,8) 1121,8 (6,0) 1181,8 (41,7) 1418,5 (23,7) 1756,0 (1196) &=
Julie 544,2 (95,9) 635,0 (27,7) 9153 (21,8) 1057,3 (15,8) 11428 (16,8) 1347,3 (44,6) 16485 (657) 2%
Julius 4433 (14,6) 639,0 (17,3) 962,0 (26,9) 1092,0 (40,1) 1201,3 (65,4) 1442,8 (28,5) 1782,0 (62,2) 8:_—;
Montalbano 584,1 (68,8) 612,8 (3,5) 954,0 (29,5) 1104,0 (14,6) 1192,0 (24,0) 1428,0 (18,9) 17205 (785) <2
Mv Nador 552,4 (45,0) 643,0 (27,7) 962,3 (62,6) 1084,3 (40,4) 1157,3 (76,5) 1343,8 (47,7) 16245 (74,4) (Z@
Nogal 504,2 (81,6) 633,3 (29,9 9728 (51,7) 1058,8 (27,3) 1084,0 (7,7) 12815 (26,4) 1602,0 (16,9 3%
RGT-Reform 4114 (60,2) 629,0 (20,8) 941,0 (14,3) 1105,0 (9,9) 1179,0 (48,3) 1426,8 (18,9) 1641,3 (69,7) ~Z
Rumor 543,9 (15,5) 623,0 (24,0 926,8 (22,5) 1045,3 (14,5) 1124,8 (23,2) 1403,8 (10,5) 16355 (67,6) =2
Skyfall 642,7 (49,6) 658,7 (82,6) 909,0 (41,2) 1067,8 (34,2 11575 (32,8) 14248 (21,0) 16428 (84,7) 23
All 535,5 (73.8) 6285 (26.4) 9451 (39.3) 1073,2 (35.8) 11546 (54.3) 1386,6 (56.6) 16668 (80,1) &7
52
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Figure 2:Leaf area index (a) and phenology (b) at different growth stages for the two high and low yield groups. Numbers

above the boxplot pairs show the p-value of a t-test. Correlation of yield and indices on a single date at 949 GDD after

sowing at the booting stage (c) and 1389 GDD after sowing at the beginning of the early grain filling stage (d). The numbers
236 disolav the Pearson correlation coefficients.

237 3.3 Timeseriesof UAV based reflectance, vegetative indices, textur e features
238  Reflectance of the BLUE, GREEN and the RED band decreased with plant growth during tillering and
239  stem elongation stages and increase with senescence, yielding a minimal reflectance around booting
240  and flowering stages (Figure 3). The reflectance of the REDEDGE band was characterized by an
241  increase in the first four measurement dates during tillering, a decrease during stem elongation, an
242  increase at flowering and again a decrease with early grain filling stage. The reflectance of the NIR
243 band increases with time to a maximum at late flowering stage and decreases again until full maturity.
244  Significant differences were found for al reflectance bands, except REDEDGE, from the tillering to
245  theearly grainfilling stage.

246  All Vis showed significant differences between yield groups for all dates, except the first two and the
247  lagt dates. DVI, RVI and NDRE even show significant differences between groups for all dates, except
248  thefirgt one (Figure 3).

249  The TFs CONTRAST, CORRELATION and DISSIMILARITY decreased during the ssem elongation
250  stage, reached a minimum around flowering stage and increase afterwards (Figure 3). ENERGY and


https://doi.org/10.1101/2023.05.03.539198
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.03.539198; this version posted May 4, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

251 HOMOGENEITY showed an increase until heading stage and a steady decreased from then.
252  Significant differences in the TFs between yield groups were mainly found from the tillering to the
253  flowering stages but not later (Figure 3).
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Figure 3: Dynamics of single band reflectances (l€ft), vegetation indices (middie) and texture features (right) for different
dates. The solid line shows the high yield group, the dashed line the mean value for the low yield group. The asterisks
display significant differences after a t-test (p < 0.05) in the respective values and dates between the two yield groups.

254

255 3.4 RF regression model for yield prediction using individual flights and time

256 seriesof UAV traits
257  Significant effects on yield prediction model performance were found among the features chosen as
258  well asthetime points selected (Figure 4, Table 1).

259  Based on reflectance measurements on a single date, the RED band showed the best performance in
260 yield, with an RMSE of 47.4 g m? when taking the measurement at flowering stage, followed by the
261  NDRE predicting yield with a RMSE of 47.9 g m* at the early grain filling stage. The performance of
262  the prediction fluctuates significantly for single dates especially for single bands such as GREEN and
263  BLUE, much less fluctuation can be observed for VIs. The best TF on a single day is CONTRAST
264  predicting yield with an RMSE of 57.2 g m? at the booting stage. The performances of prediction
265 models using TFs single dates are changing not only with phenology but also show big differences
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266 between two adjoining flights. For all TFs are affected in a similar way of single flights with eg. the
267  measurement between the booting and the heading stage showed a better performance in yield
268  prediction compared to the two adjacent dates (Figure 4).

269  Predicting yield from single dates that were previously smoothed on a plot level, was generally worse
270  than predictions from non-smoothed single dates (Table 4). The RED band predicted yield with an
271 RMSE of 49.0 g m? at heading stage. The best performing date for a single band often changed
272 substantially after smoothing. Optimal time point for yield prediction using the NIR band was at stem
273 elongation if the data is not smoothed and at early grain filling if the data is smoothed. Prediction of
274  yield using the NIR band is dlightly more accurate when using the smoothed data (RMSE of 59.9 g m’
275  ?) compared to using the original data (RMSE of 63.9 g m?). The performance or optimal time points
276  of Visfor yield prediction do not change significantly when smoothing the data. Smoothing of TFs
277  improves or worsens the prediction of yield. It improves the prediction slightly for HOMOGENEITY
278  but also worsens the prediction for ENERGY from an RMSE of 59.3 g m? to 67.7 g m?. The
279  fluctuations between dates became much less compared to non-smoothed single dates, especially in
280  thehighly fluctuating TFs.

281  Based on reflectance measurements across several dates, using each of the individual bands improved
282  theyield prediction. The RED band, which already showed the best performance for single date yields
283  an RMSE of 42.7 g m? when selecting three dates around flowering. The prediction of yield using VIs
284  aso improved for al bands but to less extent as for the single reflectance bands. The prediction using
285  NDRE improved dlightly to an RMSE of 47.0 g m*. TFs were the feature class that improved most
286  when using several time points for yield prediction and all features were better able to prediction yield
287  compared to single dates. A substantial improvement was found in the ENERGY feature that was able
288  to predict yield with an RMSE of 48.7 g m” when using measurements around flowering stage (Table
289 4). Using a time window lead to predictions that were much less fluctuating compared to
290  measurements on single flights (Figure 4). Predictions using the RED band show am underestimation
291  of yields higher than 630 g m™? (Figure 6).
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Figure 4: Root mean square errors of yield prediction modes built using single band reflectionsreflectances (top), vegetation
indices (middle) and texture features (bottom). The models were built using measurements from single dates (left), smoothing
features on single plots (middle) and choosing a window of three adjacent time points (right).
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293 Table 4: Display of the time points yielding the lowest RMSE for yield prediction for all reflectance bands, vegetation indices
294 and texture features. Valuesin bold highlight the best model for a given spectral and temporal feature type combination.

Raster R®° RMSE Dae PS VI R® RMSE Dae PS TF R® RMSE Dae PS

Single time points

BLUE 045 1588 1248 FL  DVI 038 @08 1580 EF CONTRAST 046 572 949 BO
GREEN 057 518 1248 FL  RVI 052 41 1389 EF  CORRELATION 037 631 949 BO
RED 0.63 474 1202 FL NDRE 063 479 1389 EF  DISSIMILARITY 042 600 949 BO
REDEDGE 039 613 697 SE MCARI 038 g5 949 BO ENERGY 043 593 1248 FL
NIR 036 639 896 SE CCll 048 51 896 SE  HOMOGENEITY 028 704 1248 FL

Smoothed single time points

BLUE 037 674 696 SE DvI 030 637 1388 EF  CONTRAST 041 587 949 BO
GREEN 048 56.6 1055 BO RVI 050 523 1317 FL  CORRELATION 021 698 1110 HE
RED 058 49,0 1110 HE NDRE 057 496 1388 EF DISSIMILARITY 042 599 949 BO
REDEDGE 032 699 696 SE MCARI 037 go2 1317 FL ENERGY 026 677 696 SE
NIR 041 599 1509 EF CCll 045 560 1509 EF HOMOGENEITY 029 672 600 TI
Moving time window

BLUE 054 533 1316 FL DVI 043 &5g1 697 SE  CONTRAST 051 532 1056 BO
GREEN 058 1507 1202 FL RVI 056 gop 1316 FL CORRELATION 041 576 949 BO
RED 069 427 1316 FL NDRE 064 470 1316 FL DISSIMILARITY 054 511 1056 BO
REDEDGE 042 578 697 SE  MCARI 044 575 1316 FL  ENERGY 0.60 487 1316 FL
NIR 042 591 697 SE CCll 056 517 949 BO HOMOGENEITY 036 611 1316 FL

295

296 3.5 RF classification model for classifying the low and high yielding varieties

297 using individual flights and time series of UAV traits

298  Classification of yield groups using single bands was best with the RED band resulting in an accuracy
299  of 0.962 followed by the BLUE band with an accuracy of 0.873, both at the flowering stage. The NIR
300 band performed best during the booting stage. Classification using VIs was lower than accuracy for
301 single bands and the highest accuracy was found for the RVI VI (0.875). All VIs show their best
302 performance at the heading stage or later. The TFs showed a similar performance for yield type
303 classification as the VIs. The best performing TF was CONTRAST with an accuracy of 0.898 when
304 being measured during stem elongation stage. Fluctuations in accuracy between subsequent flights
305 was relatively high for models built using single band reflectance as well as models using TFs on
306  singledates (Figure 5).

307  Smoothing reflectances did not change improve the accuracy for yield type classification for the RED
308  band, yielding an accuracy of 0.963 on time point later at the early grain filling stage (Table 5). The
309 accuracy of the GREEN improved substantially to 0.955 at the booting stage and the NIR band
310 increase in accuracy as well, while a date on the tillering stage was found to be most suitable.
311  Accuracies of the DVI and RVI VIsdropped whereas the accuracies increase dightly for the other Vis
312  after smoothing. Eg. the accuracy of the CCII increased to 0.902 and was achieved during flowering
313  stage. The best performing TF ENERGY decreased when smoothing to 0.787. CORRELATION
314  however was better able to classify yield types with an accuracy of 0.845. DISSIMILARITY showed
315  the best performance at the tillering stage after smoothing. Smoothing changed the fluctuations in
316  accuracy between single flights dightly for the VIs and to a bigger extent for the single band
317  reflectances and mainly for the TFs (Figure 5).

318  The moving time window did not improve yield type classification but worsened for the RED band
319  yielding an accuracy of 0.875 and did not change the accuracies of the other single bands significantly
320 (Table 5). A similar result can be found for the moving window when applied to the VIs where the
321 RVI yielded an accuracy of 0.765 at the flowering stage. A moving time window improved the
322  clasdfication for al Vs except DVI. However, these changes were only small for all VIs. The best VI
323  for yield prediction using a moving window is the RV with an accuracy of 0.856. Predictions by TFs
324  worsen when using several time points as features compared to single dates. Using a time window, the
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TF ENERGY and DISSIMILARITY show almost similar accuracies of 0.803 and 0.801, respectively.
While the accuracies were not significantly improved by using a time window for prediction, the
fluctuations between dates were reduced significantly and thus the performances of the predictions
became much more stable among dates (Figure 5).
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Figure 5: Accuracy prediction models built using single band reflectances (top), vegetation indices (middle) and texture
features (bottom). The models were built using measurements from single dates (left), cumulating features from the beginning
(middle) and choosing a window of three time points (right).

Table5: Display of the classification accuracy of different yield groups using predictors for all reflectance bands, vegetation
indices and texture features at all dates.

Raster Accuracy Date PS VI Accuracy Dae PS TF Accuracy Date PS

Single time points

BLUE 0.873 1714 LF  DvVI 0.868 1389 EF CONTRAST 0.882 792 SE
GREEN 0.765 1389 EF  RVI 0.875 1389 EF CORRELATION 0.763 1389 EF
RED 0.962 1316 FL NDRE (732 1823 LF DISSIMILARITY 0752 1248 FL
REDEDGE  0.790 1109 HE MCARI 752 1580 EF ENERGY 0.923 1316 FL
NIR 0.768 949 BO Ccll 0.843 1202 FL HOMOGENEITY  0.727 949 BO
Smoothed single time points

BLUE 0.832 1316 FL DVI 0.712 1316 FL  CONTRAST 0.755 949 BO
GREEN 0.955 1055 BO RvI 0.732 1509 EF CORRELATION 0.845 1109 HE
RED 0.963 1389 EF NDRE 0.798 1822 LF DISSIMILARITY 0.813 484 Tl

REDEDGE 0.725 1109 HE MCARI (g5 1109 HE ENERGY 0.787 1317 FL
NIR 0.822 530 T CcCl 0.902 1316 FL  HOMOGENEITY 0713 1247 FL
Moving time window

BLUE 0.837 1389 EF DVI 0.817 1316 FL  CONTRAST 0.793 1316 FL
GREEN 0.808 1202 FL RVI 0.765 11090 HE CORRELATION 0.788 1109 HE
RED 0.875 1248 FL  NDRE 0.708 1109 HE DISSIMILARITY  0.790 1389 EF
REDEDGE  0.753 1202 FL  MCARI 0795 484 Tl ENERGY 0.870 1389 EF
NIR 0.793 1316 FL Ccll 0.833 1202 FL  HOMOGENEITY 0.706 949 BO
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Figure 6: Yield prediction based on the red band (a), the NDRE index (b) and the energy TF (c) from moving window
features at the best performing dates (Table 4). Confusion matrices of yield type predictions based on data of the best
performing single dates of the RED band (d), the CCII VI (e) and the energy TF (f).

337

333 4 Discussion

339 4.1 Dynamicresponses of individual bands

340  The red edge bands have been widely studied for assessing crop performance and yield in various
341  crops, including wheat (Horler et al., 1983). Canopy reflectance in the red edge wavelength range is
342  influenced by two optical properties of canopies. chlorophyll absorption in the red region and multiple
343  scattering effects on the near-infrared (NIR). Although red edge reflectance has been commonly used
344  for yield prediction in previous studies, our findings suggest that this may not be areliable indicator of
345  vyieldinour specific case.

346 The inter-variety variability in canopy reflectance in the red-edge region might be large and have
347  overweight the subtle differences in canopy reflectance associated with yield, making the red edge
348  reflectance less useful for yield prediction. In addition, the correlation of reflectance in the rededge
349  region with yield is known to change quickly with the exact wavelength measured in the red edge
350  region (Pavuluri et al., 2015). In contragt, visible bands (Blue, Green and Red) can be more sensitive
351 to yield-related variations in chlorophyll, biomass accumulation during the tillering until the and the
352  stem elongation stage until the beginning of the booting stage since they are known to be correlated to
353  both, chlorophyll concentration and LAl (Daughtry et al., 2000). Accordingly, our results showed that
354 the RED, GREEN, and BLUE bands were among the most effective spectral features for yield
355  prediction, exhibiting significant differences between high and low yielding varieties at almost all
356  measurement dates. These visible bands are highly sensitive to chlorophyll, with their reflectance
357  decreasing during the transition from the stem elongation to the beginning of the booting stage, and
358 increasing again from heading until harvest due to senescence and chlorophyll degradation. Therefore,
359  our findings suggest that the flowering stage in which the chlorophyll content reaches the peak is
360  crucial.
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361 TheNIR region is known to be sensitive to leaf area and especially ground cover (Korobov & Railyan,
362  1993), making it a useful band for predicting biomass and yield. Our results indicated that the NIR
363  band performed best during the stem elongation stage for yield prediction and at the booting stage
364  when there were significant differences in leaf area index (LAI) between the two yield groups. This
365  aligns with the findings by Korobov and Railyan (1993), who reported a higher correlation of NIR
366  reflectance with dry matter and ground cover during booting stage compared to later stages. Thus,
367 normalizing the difference of the NIR and the REDEDGE reflectance in form of the NDRE index,
368  showed a good performance for chlorophyll estimation (Barnes et al., 2000). Usually, VIs containing
369 information from the red edge region of the spectrum are considered being more sensitive to
370  chlorophyll absorption in dense canopies (Nguy-Robertson et al., 2012). It is expected that combining
371  the highly LAI-sensitive NIR band with the red edge band containing more information about |eaf
372 pigments in the canopy and therefore improves the performance of our yield prediction model at the
373  flowering to early grain filling stages.

374 4.2 Theinfluence of growth stage for yield prediction and classification

375  The performance of yield prediction and classification depends highly on the growth stages of the
376  crop. Our study found that the flowering stage and early grain filling stage are the most suitable for
377  predicting yield in winter wheat. This is consistent with the findings of other studies (Hassan et al.,
378  2019; Prey et al., 2022; Prey et al., 2020; Wang et al., 2022). It is often argued that yield cannot be
379 measured directly using remote sensing approaches, given the fact that yield formation in wheat
380 involves several components, including ear density, kernel number per ear, and grain weight (Satorre
381 & Safer, 1999). Furthermore, these components form at different stages and are therefore not present
382  at every phenological stage. Still, remotely sensed information and variations in canopy images and
383  reflectance are often closely related to these yield components, such as vegetative biomass and
384  chlorophyll content (Wu et al., 2008). Therefore, when these traits usually reach their peak levels
385 around the flowering stage, i.e., the crop transitions from vegetative to generative growth, their
386  associated variations in canopy reflectance also indicate the variability in yield

387  Early differences in biomass and LAI dynamics between genotypes are well-documented (Grieder et
388  a., 2015; Pang et al., 2014), and these differences can be useful for predicting yield and classifying
389  varieties in early growth stages. While our study found that yield prediction at the tillering stage
390 feasible, it remains to be challenging for excluding the poorly-performing varieties. From tillering to
391  harvest, wheat is known to compensate for e.g. a low stand count by altering the number of yield
392  components (Holen et al., 2001) complicating predictions at this stage. This might be the reason, that
393  our classification models were more performant in detecting the high yielding varieties. It can be
394  argued that our approach has a limitation that we cannot be certain whether the algorithm is sensitive
395 to canopy traits that are yield-dependent or to variety-specific traits that do not influence yield
396 performance. Therefore, the validation of our models in other varieties or environments will be
397  critical. After flowering, the performance of our models then decreased with the onset of senescence.
398  While yield formation does continue during senescence (Anderegg et al., 2020; Spano et al., 2003),
399  our results showed that this stage is less correlated with grain yield than the earlier stages. Further, no
400  significant differences in phenology were detected between the yield groups, suggesting that the yield
401  differences between the high- and low yield groups are not likely due to their senescence dynamics.
402  Unlike in our study employing an identical/moderate fertilization rate, even under high N conditions,
403  differences in the onset of senescence were not found to be significantly correlated to grain yield per
404  unit crop N uptake at harvest (Gaju et al., 2011) making classification at this time point difficult.
405  Nevertheless, our study confirms that the tillering stage is an aready promising time for variety
406  classfication, asevidenced by the strong performance of our classification models at this stage.

407 4.3 Comparison of variable- and feature types for yield prediction and

408 classification
409  Our study found that single-band reflectance, such asthe RED band, were as effective as or even more
410  effective than vegetation indices (VIs) for predicting yield. The RED band is known to be related to
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411  leaf areaindex (LALI), athough this relationship is often nonlinear (Hinzman et al., 1984) and therefore
412  requires non-linear methods such as RF to perform well for yield prediction. Pavuluri et al. (2015)
413 found a saturation of RED reflectance when predicting yield, which can aso be found in our
414  prediction models. In contrast, VIs typically show good linear correlations with grain yield, with
415  NDVI being widely used for yield prediction (Hassan et al., 2019). Many Vs have been screened by
416  Prey et a. (2020) and few have been showing a consistent performance over the years, which makes a
417 general selection difficult. Further, VIs narrow down the information that is accessible and Vatter et al.
418  (2022) found good performances for yield prediction when using 11 wavebands from a multispectral
419  camera that were fed to a deep learning model. Machine learning approaches based on reflectance
420  werefound to not improve the accuracy yield prediction but showed great potentia in predicting grain
421  protein (Zhou et al., 2021). Machine learning models, however, often require a big amount of training
422  data, which can be challenging to gather.

423  TFsare complex in their calculation and they offer a variety of possible ways of caculation, possible
424  combination with underlying rasters and ways to be calculated. Detailed information on how TFs are
425 calculated is often lacking (Wang et a., 2021; Zhang et al., 2021; Zheng et al., 2019). Therefore, TFs
426  ill have to be examined in detail and their parameters optimized under different experimental
427  conditions and scenarios of sensing data collection. We calculated TFs in a standardized way, but ill
428  found a high variability between dates. TFs are further known to be highly dependent on the GSD and
429  therefore the flight height (Zheng et al., 2019). Therefore, smoothing benefitted the yield prediction by
430  making the performance more stable but not better. A novel approach is presented by Herrero-Huerta
431 et d. (2020) who calculated so-called canopy roughness directly on the point cloud from the structure
432  from motion processing and showed its correlation to biomass. TFs are further often used in
433  combination because there might be additional information (Liu et al., 2022; Wang et al., 2021),
434  especially in the later stage, when they are not strongly correlated to single band reflectances and VIs
435  anymore asindicate by our results.

436 4.4 Limitationsand outlook

437  Thered-edge position and its shape is often used estimate the stress status of field crops (Boochset al.,
438  1990; Guyot et al., 1988). However, it is obvious that the dynamics (time series) of the Red-edge band
439 isdifficult to interpret compared to the visible bands. During the early stages of tillering, the red-edge
440  reflectance increased, possibly due to an increase of ground cover, whereas later it decreased again,
441  when the canopy height increased during the SE stage. At the beginning of heading another increasein
442  the Red-edge reflectance can be observed, accompanied with the increase of reflectance in the visible
443  bands. However, in contrast to other bands, the Red-edge reflectance decreases with the onset of
444  senescence at the early grain filling stage, possibly due to a reduction in chlorophyll and shrinking
445  canopy structure (Wang et al., 2022). However, fluctuation also occurs during the mentioned stable
446  period. These fluctuations can be of various origins. For instance, the appearance of the canopy might
447  change significantly due to the emergence of the spikes. Although this study was unable to exploit the
448  entire shape of the red-edge reflectance, due to limitations in our multispectral camera having one
449  band in the red edge region, future work should further advance the understanding of the dynamics of
450  red-edge reflectance and responsible canopy characteristics.

451  Also, features should in addition to their performance for yield prediction be assessed regarding their
452  heritability (h?) since breeders are interested in knowing the genetic variation underlying a trait or in
453  our case a spectral feature. Generally, this study shows that a trait time series followed by smoothing
454  and amoving window allow for more stable predictions when also not better predictions.

a55 5 Conclusions

456  Most spectral and texture features derived from the canopy multispectral images were related to
457  variationsin yield, but they- delivered the best predictions of yield only between the booting and end
458  of the flowering stage. However, in earlier stages, the visible (Red, Green, Blue) bands can accurately
459  predict yields and distinguish between the low- and high-yielding genotypes. Single-band reflectance,
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460  particularly the red band, is areliable predictor of yield. Combining additional bands, such as the red-
461 edge and NIR, into VIs like NDRE, improves performance significantly, but it limits the machine
462  learning algorithm's ability to build a strong model. Texture features generally performed poorly for
463  vyield prediction, and their performances were inconsistent across dates in this study, suggesting that
464  further research is still needed to better understand the applicability of different texture features for
465  yield- and traits predictions and methods to optimize texture feature extraction. Smoothing or
466  combining data across a time series can enhance the performance of yield prediction and classification
467  models, particularly in the early growth stages. Future studies should combine different feature types
468  to leverage complementary information captured by different types of multispectral features and
469  variables.
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