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Abstract 10 

High throughput field phenotyping techniques employing multispectral cameras allow to extract a 11 

variety of variables and features to predict yield and yield related traits, but little is known about which 12 

types of multispectral features may allow to forecast yield potential in the early growth phase. In this 13 

study, we hypothesized that the best features for predicting yield in an early stage might be different 14 

from the best predictors for the late growth stages. Based on a variety testing trial of 19 European 15 

wheat varieties in 2021, multispectral images were taken on 19 dates ranging from tillering to harvest 16 

by an unmanned aerial vehicle measuring reflectance in five bands, including visible bands, Red-edge 17 

and the near-infrared (NIR). Orthomosaic images were created, and then the single band reflectances, 18 

vegetation indices (VI) and texture features (TF) based on a gray level correlation matrix (GLCM) 19 

were extracted. We evaluated the performance of these three types of features for yield prediction and 20 

classification at different growth stages by, i) using features on each of the measurement dates, ii) 21 

smoothing features across the 19 dates, and iii) combining features across the directly adjacent dates, 22 

in combination with the random forest models. Our results showed that, for most features, 23 

measurements at the flowering stage showed the best performance and the Red reflectance was able to 24 

predict yield with a RMSE of 47.4 g m-2 (R2 = 0.63), the best VI was NDRE predicting yield with a 25 

RMSE of 47.9 g m-2 (R2 = 0.63), the best TF was contrast predicting yield with a RMSE of 57.2 g m-2 26 

(R2 = 0.46) at the booting stage. Combining dates improved yield prediction in all dates and made the 27 

prediction errors more stable across dates. Rather than the Red-edge band, visible bands especially the 28 

Red band enabled to distinguish between the high- and low-yielding varieties already in the tillering 29 

stage, with a total accuracy of 76.7%. The study confirms our hypothesis and further implies that, in 30 

the early stages, the visible bands may be more effective than Red-edge bands in assessing the yield 31 

potential in a range of testing varieties. 32 
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1 Introduction 39 

Improving crop yields in the face of climate change is a significant challenge for plant breeding (Ray 40 

et al., 2013). To achieve efficient phenotyping for breeding, it is essential to quickly and accurately 41 

identify high-yielding genotypes from a large pool of genotypes (Araus & Cairns, 2014). While 42 

traditional phenotyping for variety selection is highly dependent on breeder’s eyes and experiences, 43 

high-throughput phenotyping (HTP) emerged in recent years as a more standardizable approach of 44 

characterizing plant structure and function and assessing their interactions with the environment by 45 

employing various technologies such as imaging, remote sensing, and artificial intelligence (Hund et 46 

al., 2019; Watt et al., 2020). HTP-generated high-dimensional phenotypic data embrace the spectral 47 

(frequency), spatial, and temporal domains, leading to challenges of analyzing the high dimensional 48 

data before they can aid in identifying the genotypes (Bowman et al., 2015; Prey et al., 2022). In 49 

particular, field-based HTP including the phenotypic data handling and analysis remain the most 50 

significant challenge and requires further development to be fully effective (Kirchgessner et al., 2017; 51 

Walter et al., 2015). 52 

Field-based HTP techniques are expected to be fast, cost-effective, and non-destructive (Cabrera-53 

Bosquet et al., 2012). Unmanned aerial systems (UAS-) based remote sensing techniques are 54 

increasingly used for HTP of plant traits and yield. Among these sensing techniques, canopy spectral 55 

reflectance is highly promising and has been successfully utilized to estimate a diverse range of traits 56 

in wheat such as leaf area index (Bukowiecki et al., 2020; Zhang et al., 2021), biomass (Yue et al., 57 

2019), leaf nitrogen and chlorophyll in wheat (Pan et al., 2023) to more general traits such as grain 58 

yield and quality (Duan et al., 2017; Prey et al., 2020; Vatter et al., 2022). There are several sensors 59 

available for measuring yield under field conditions, such as RGB cameras (Fernandez-Gallego et al., 60 

2019), as well as thermal sensors (Elsayed et al., 2017) and active sensors such as LiDAR (Li et al., 61 

2022). The use of multispectral cameras mounted on unmanned aerial systems (UAS) has proven to be 62 

a practical, easy-to-use, and cost-effective approach (Araus et al., 2022). 63 

Multispectral images allow for extracting a variety of features that can be used to predict yield in 64 

wheat. Generally, these features can be grouped three categories. Firstly, single band reflectance in 65 

specific wavelengths can be directly extracted from multispectral data. Secondly, the reflectance of 66 

single bands can be combined to calculate vegetation indices (VIs), which are often more sensitive to 67 

specific traits and less affected by environmental conditions during measurement (Tucker, 1979). 68 

However, both single band reflectance and VIs may suffer from saturation, particularly for closed 69 

canopies (Rischbeck et al., 2016). Thirdly, texture features (TFs) can be extracted to describe the 70 

distribution of pixels within a region of interest (ROI). Although TFs can be extracted from any 71 

reflectance and VI raster, they often perform less effectively than single band reflectance or VIs in 72 

predicting yield in wheat (J. Li et al., 2019). Also, TFs are frequently used in combination with VIs to 73 

predict plant traits, e.g., leaf area and biomass in wheat (Zhang et al., 2021). While canopy height 74 

often follows a clear temporal dynamics, multispectral features show different dynamics, depending 75 

on their sensitivity to a given trait or canopy properties. Also, research indicates that TFs depend 76 

heavily on the phenological stage and are therefore their dynamics might interesting to be studied 77 

(Culbert et al., 2009). Yet, only limited research focuses on the dynamics of different features in 78 

phenotyping, especially the TFs. Among the TF algorithms, one of the mostly used is based on the 79 

grey level co-occurrence matrices (GLCMs). In order to calculate GLCMs different parameters such 80 

as the level of quantization, the size of the moving window, the moving distance and direction 81 

(Haralick et al., 1973). They can be calculated on all available images or rasters of individual bands 82 

and VIs. Further, TFs are highly dependent on the GSD and the size of the observed object; and 83 

therefore on the camera and the flight height. Zhang et al. (2021) found the best performing TFs for 84 

yield prediction were based on the RED as well as the NIR bands. In contrast, Zheng et al. (2019) 85 

found that GLCM-based TFs were poorly correlated to above ground biomass (AGB) in rice and 86 

calculated normalized difference texture indices that showed a higher correlation with AGB. Further, 87 

the phenology has a big influence on the relationship between AGB and the normalized difference 88 
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texture features (S. Li et al., 2019). Despite that combing feature (e.g., TFs, VIs) and models often 89 

improve the prediction, the more reliable performance of yield prediction has been reported in only a 90 

few growth stages from the booting to early grain filling (Bowman et al., 2015; Vatter et al., 2022).  91 

Accurately predicting yield using canopy multi-/hyperspectral reflectance further requires careful 92 

consideration of the phenological stage of the crop. The anthesis stage or the grain filling stage are 93 

often identified as the most suitable stages for yield prediction in wheat (Bowman et al., 2015; Duan et 94 

al., 2017; Hassan et al., 2019). In contrast, canopy spectral-based yield prediction has been often 95 

reported with a lower accuracy (Prey et al., 2022). Multispectral cameras mounted on UAS enable 96 

breeders and researchers to assess the aforementioned spectral and texture features at a high temporal 97 

frequency and precision. Within a proper time-window, using a time series for yield prediction allows 98 

for the extraction of dynamic canopy traits that could potentially be useful for yield prediction. For 99 

instance, Pinter et al. (1981) suggested summing measurement dates after heading to improve yield 100 

prediction in wheat and barley. Raun et al. (2001) suggested to take two spectral measurements after 101 

dormancy. Time series are further often used to extract information for canopy height, and Taniguchi 102 

et al. (2022) used a time-series canopy height model to predict several yield-related traits after the 103 

heeding stage. During the stem elongation stage in wheat, Kronenberg et al. (2020) used laser 104 

scanning to capture the time series of plant height development and identified quantitative trait loci 105 

that accounted for the variability in height dynamic. 106 

Collectively, despite these successes, little is known about which types of multispectral features may 107 

allow us to forecast yield potential in the early growth phase. Therefore, this study aims (1) to identify 108 

the best performing multispectral traits for yield prediction and classification in wheat (2) to research, 109 

if yield types can be classified in relatively early stages and finally (3) to investigate, how traits 110 

measured at different time points can be combined to predict yield more accurately. 111 

2 Methods 112 

2.1 Study site and Environmental monitoring 113 

A trial consisting of 19 diverse European winter wheat elite varieties (Triticum aestivum). was grown 114 

in plots with a size of 10 m x 1.85 m. The plots were placed in a randomized complete block design 115 

with four replicates, resulting in 76 plots totally. The trial took place at the research station of the 116 

Technical University of Munich in Dürnast, Freising (48.40630° N, 11.69535° E). The soil at this 117 

location can be characterized by a homogeneous Cambisol with 20.8 % clay, 61.5 % silt and 16.6 % 118 

sand. All plots were fertilized by applying 180 kg N ha- in three equal splits at BBCH 25, 32 and 65. 119 

Plant protection was carried out according to local practice. Sowing took place on the 10.11.2020 and 120 

all plots were harvested at full maturity on the 03.08.2021. Precipitation during this period was 1020 121 

mm, the average temperature was 8.2 °C. Climate data was collected from a weather station (Station id 122 

5404) and operated by the Climate Data Center of the German Weather Service. The temperature was 123 

aggregated to phenologically meaningful growing degree-days (GDD): 124 

������ �  ∑ ��	��,� 
 �����,�2 
 �����24  

��� �  � ������

�

���

 

where Tmeand is the mean temperature for day d after sowing, maxTd,h and minTd,h are hourly 125 

maximum and minimum temperatures for day d and baseT is the base temperature, which was set to 0 126 

°C. 127 
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2.2 Grain yield, Phenology assessment and Leaf area index measurements 128 

The entire plots were harvested using a combined harvester. The water content of the grains was 129 

determined by weighing the grains after harvest, drying them at 65 °C until constant weight was 130 

reached and weighing them again. The final yield was normalized to a moisture content of 14 %. The 131 

three varieties with the lowest average yield were classified as low yielding and the three varieties 132 

with the highest average yield as high yielding. The phenology of each plot was visually rated using 133 

the BBCH scale (Meier et al., 2009) on a plot level. Leaf area index (LAI) was measured using a Licor 134 

2000 leaf area meter (LI-COR Biosciences Lincoln, U.S.A.) with a 45° view cap to minimize operator 135 

influence. Three measurements were taken at the top of the canopy and four measurements were taken 136 

under the canopy at three different locations per plot, which were then averaged. 137 

2.3 Multispectral image acquisition and processing 138 

Spectral measurements were aquired using a Phantom 4 Multispectral RTK (DJI, Shenzhen, China). 139 

The UAV captures reflectance in wavelengths of 450, 560, 668, 717 and 840 nm and measures the 140 

incoming sunlight by a sensor on top of the UAV. Flight height was set to 10 m AGL resulting in a 141 

ground sampling distance of 0.7 cm. Overlap in both directions was set to 90 %, the UAV stopped for 142 

each image acquisition. Before and after each flight, images of a panel with a known reflectance were 143 

taken. Flights were carried out twice per week during heading and flowering stages and once per week 144 

at other stages. First flight was carried out on the 25.03.2021 and the last flight on the 20.07.2021, 145 

which resulted in 19 flights totally. Images were taken around the solar noon and under sunny 146 

conditions, if possible. 147 

 148 

The images from each flight were mosaicked using the Agisoft Metashape Professional 1.8.4 (Agisoft, 149 

St. Petersburg, Russia) structure-from-motion software. The images were radiometrically calibrated 150 

using the reflectance panels on the ground and the incident light sensor on the UAV, with a uniform 151 

set of processing parameters used for all flight dates (Figure 1). The point cloud was georeferenced 152 

using the real-time kinetic global positioning system (RTK-GPS) integrated into the UAS, with the 153 

RTK correction signal provided by SAPOS (Deutsche Landesvermessung). Reflectance of individual 154 

Figure 1: Workflow applied. 
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bands was extracted by calculating the median of a specific region of interest (ROI) representing a plot 155 

using a custom Python 3.7 script (Python Software Foundation, https://www.python.org/). 156 

2.3.1 Selection and calculation of spectral indices 157 

To compare our approach across a range of vegetation indices (VIs), we classified them into five main 158 

groups based on their calculation method and selected a representative VI for each group. The five 159 

groups were differential-type, simple-ratio type, normalized differential type, three-band type, and 160 

combination of two spectral indices type (Table 1). We calculated the indices using a custom Python 161 

3.7 script (Python Software Foundation, https://www.python.org/) and computed the median value for 162 

each index over the regions of interest (ROIs) corresponding to the plots. 163 

Table 1: Vegetation indices (VIs) calculated. 164 

Index type Index Formula Reference 
Difference DVI 840 
 668 (Shibayama et al., 

1999) 
Ratio RVI 840668 

(Shibayama et al., 
1999) 

Normalized NDRE 840 
 717840 
 717 
(Barnes et al., 
2000) 

Three Band MCARI ��717 
 668� 
 0.2 � �717 
 560��
� �717668� 

(Daughtry et al., 
2000) 

Combination of 
indices 

CCII � !"#$%!&# 

(Haboudane et al., 
2002) 

 TCARI 3 � (�717 
 668� 
 0.2 � �717 
 550�
� )717670*+ 

 OSAVI �1 
 1.16� � � �840 
 668�840 
 717 
 0.16 

 165 

2.3.2 Selection and calculation of texture features 166 

To generate a manageable number of TFs, we focused on calculating TFs for the RED reflectance 167 

band only as it had the best performance for yield prediction when using single bands. A 5 x 5 kernel 168 

size was used to calculate the GLCM features over the entire raster. This small kernel size was chosen 169 

because wheat leaf sizes are relatively small compared to our GSD. A quantization level of 32 was 170 

used, with the lowest level corresponding to the first percentile of the respective raster and the highest 171 

level corresponding to the 99th percentile. This ensured that we could still capture the variation in our 172 

image. GLCMs were constructed with a moving distance of 1 pixel and moving directions of 0°, 45° 173 

and 90° to eliminate possible effects of direction. The Contrast, Correlation, Dissimilarity, Energy, and 174 

Homogeneity features were extracted from each GLCM (Haralick et al., 1973) and saved as the center 175 

pixel in a raster. From these rasters, the final value per plot was extracted by averaging all values 176 

within the ROI. All calculations were performed using a custom Python 3.7 script (Python Software 177 

Foundation, https://www.python.org/). The extracted features are listed in (Table 2). 178 
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Table 2: Calculation of grey correlation matrix features according to Haralick et al. (1973). 179 

Texture feature calculated on 
RED raster 

Formula Explanation 

Contrast � ,���� 
 -�	
��

�,���

 
Amount of local variation 
in pixel values 

Correlation � ,�� �� 
  .��- 
 .�/	


��

�,���

 
Linear dependency of 
grey level values in the 
GLCM 

Dissimilarity � ,�,�|� 
 -|
��

�,���

 
Local roughness of the 
pixel values 

Energy � �,���	
��

�,���

 
Local steadiness of the 
gray levels 

Homogeneity � ,��1 
 �� 
 -�	
��

�,���

 
Homogeneity of the pixel 
values 

 180 

2.3.3 Temporal processing of the extracted features 181 

Three temporal feature selection strategies were evaluated (Figure 1). The first strategy involved 182 

selecting data from individual dates, resulting in one feature per observation. The second strategy 183 

involved smoothing the values per plot using splines, implemented in the statgenHTP package, with 184 

the default settings (Millet et al., 2022). Summed GDD from harvest were used as the time axis. 185 

Finally, features were selected using a moving time window with a width of 3. For each recorded date, 186 

the model included features from the current date and the previous as well as the following date, 187 

resulting in a total of three features per observation. This strategy is referred to as the moving window 188 

model. 189 

2.4 Yield prediction model and yield potential classification model  190 

To predict yield on a plot level and classify yield performance groups, we employed Random Forest 191 

(RF) machine learning models in R 4.2 (R Core Team, 2021). We optimized the number of trees per 192 

forest to 500 and used the R  package caret (Kuhn, 2008). The number of trees per forest was set to 193 

500 and the number of features per node was optimized by minimizing the root mean square error for 194 

the regression models and the accuracy for the classification models. 195 

2.5 Statistical analysis 196 

Pearson correlation coefficient between yield and spectral features was calculated using measurements 197 

taken on the 25.06.2021. At this date, most varieties were in the mid to end flowering and the 198 

correlation of VIs and yield was maximal for most VIs. The performances of the regression RF models 199 

were assessed by the coefficient of determination (R2) as well as the root mean square error (RMSE) 200 

using a 10-fold cross validation that was repeated 3 times and averaged: 201 

 202 

"	 �  ∑ �	� 
 	1��	 � �2� 
 23��	�
���∑ �	� 
 	1��	 � ∑ �2� 
 23���

���
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 203 

"4%5 �  6∑ �	� 
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 204 

Where xi and yi represent the observed and the predicted yield, 	1� and 23� represent the mean of the 205 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539198doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.03.539198
http://creativecommons.org/licenses/by-nc-nd/4.0/


observed and the predicted yield, respectively. n represents the number of samples. The performances 206 

of the classification RF models were assessed by the accuracy of the prediction using a 10-fold cross 207 

validation that was repeated 3 times and averaged: 208 

!7789�72 �  �98� :;��<�=� 
 �98� ��>�<�=��;<�? �8���9 ;@ 7?����@��A ;�-�7<� 

3 Results 209 

3.1 Yield LAI and phenology  210 

Substantial grain yield (GY) variation was observed between experimental plots (Table 3). The highest 211 

yield was observed in the variety RGT-Reform (411.4 g m-2), the highest yield in the variety Skyfall 212 

(642.7 g m-2). The high yielding varieties showed a significantly higher LAI during the stem 213 

elongation, the booting and at the late grain filling stage than the low yielding varieties (Figure 2). 214 

Phenology showed only few significant differences between the high and low yield groups, namely at 215 

the stem elongation and the flowering stage (p < 0.05). Still, it can be observed that the high yielding 216 

varieties were generally advanced in their phenology (Figure 2). 217 

3.2 Correlations between grain yield, the UAV based reflectance, vegetative 218 

indices and texture features  219 

During booting, most extracted features show a high correlation with each other as well as with yield 220 

(Figure 2). The GREEN and RED reflectance showed an equally high correlation with yield (r = -0.75) 221 

at the booting stage, which was similar for RED at the early grain filling stage but significantly lower 222 

for the GREEN reflectance (r = -0.42). Among single band reflectance, the REDEDGE region 223 

expressed the lowest correlation with yield (r = -0.33) and was generally low correlated to other 224 

features.  225 

Among VIs, the NDRE showed the highest correlation with yield during the booting stage (r = 0.79), 226 

followed by the RVI (r = 0.73), the CCII was negatively correlated to yield (r = -0.67) The correlations 227 

of VIs to yield do not change significantly at the early grain filling stage. TFs showed a moderate 228 

correlation with yield, and the DISSIMILARITY and ENERGY were found to be best two, 229 

respectively, with r values of -0.69 and 0.65 at the booting stage. Correlation of the TFs to yield 230 

changed drastically at the early grain filling stage, when the highest correlated feature 231 

CORRELATION showed an R of -0.34. The feature ENERGY was not correlated to yield at this stage 232 

anymore. Generally, VIs were the feature type that showed the highest correlation to yield at the 233 

booting as well as at the early grain filling stage.234 
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Table 3: Grain yield and phenology of the single varieties. Values represent the mean of the four replicates; the values in brackets represent the standard deviation of the four replicates. 235 

Variety Grain Yield Stem Elongation Booting Heading Flowering Early Grain Filling Late Grain Filling 
Absalon 532,0   (32,8) 635,0   (27,7) 917,5   (37,3) 1046,5   (23,6) 1153,3   (38,7) 1397,0   (59,2) 1653,3   (79,2) 
Aurelius 541,9   (56,4) 609,3   (3,5) 963,5   (52,6) 1069,3   (17,6) 1109,0   (0,0) 1368,8   (62,5) 1673,3   (63,9) 
Axioma 473,0   (41,8) 607,5   (4,0) 950,3   (31,7) 1042,8   (23,8) 1121,5   (11,2) 1350,0   (51,8) 1636,5   (57,7) 
Bernstein 522,3   (33,7) 626,8   (16,6) 981,5   (6,9) 1091,0   (30,2) 1201,0   (70,6) 1434,8   (27,3) 1684,8   (93,6) 
Bologna 490,7   (33,3) 625,5   (16,7) 926,8   (61,1) 1038,5   (30,0) 1109,0   (0,0) 1363,0   (69,7) 1651,5   (64,4) 
CH-Nara 559,4   (30,2) 635,0   (27,7) 921,3   (16,7) 1042,0   (16,2) 1137,0   (30,9) 1356,3   (47,8) 1601,5   (23,7) 
Chevignon 598,5   (63,5) 615,5   (30,6) 911,8   (17,7) 1050,8   (25,4) 1144,8   (21,1) 1358,3   (45,9) 1579,3   (13,0) 
Costello 478,6   (38,8) 635,5   (22,3) 959,0   (31,2) 1103,0   (38,0) 1207,8   (67,8) 1411,8   (39,7) 1739,8   (2,5) 
Dagmar 617,1   (45,4) 611,0   (0,0) 969,0   (41,6) 1052,0   (22,3) 1114,0   (16,0) 1345,3   (53,3) 1653,5   (74,5) 
Elixer 540,4   (76,2) 643,0   (27,7) 953,0   (43,2) 1118,3   (34,7) 1219,5   (87,4) 1444,0   (20,8) 1742,0   (5,8) 
Hyvento 576,2   (51,1) 641,3   (21,0) 956,0   (34,8) 1121,8   (6,0) 1181,8   (41,7) 1418,5   (23,7) 1756,0   (119,6) 
Julie 544,2   (95,9) 635,0   (27,7) 915,3   (21,8) 1057,3   (15,8) 1142,8   (16,8) 1347,3   (44,6) 1648,5   (65,7) 
Julius 443,3   (14,6) 639,0   (17,3) 962,0   (26,9) 1092,0   (40,1) 1201,3   (65,4) 1442,8   (28,5) 1782,0   (62,2) 
Montalbano 584,1   (68,8) 612,8   (3,5) 954,0   (29,5) 1104,0   (14,6) 1192,0   (24,0) 1428,0   (18,9) 1720,5   (78,5) 
Mv Nador 552,4   (45,0) 643,0   (27,7) 962,3   (62,6) 1084,3   (40,4) 1157,3   (76,5) 1343,8   (47,7) 1624,5   (74,4) 
Nogal 504,2   (81,6) 633,3   (29,9) 972,8   (51,7) 1058,8   (27,3) 1084,0   (7,7) 1281,5   (26,4) 1602,0   (16,9) 
RGT-Reform 411,4   (60,2) 629,0   (20,8) 941,0   (14,3) 1105,0   (9,9) 1179,0   (48,3) 1426,8   (18,9) 1641,3   (69,7) 
Rumor 543,9   (15,5) 623,0   (24,0) 926,8   (22,5) 1045,3   (14,5) 1124,8   (23,2) 1403,8   (10,5) 1635,5   (67,6) 
Skyfall 642,7   (49,6) 658,7   (82,6) 909,0   (41,2) 1067,8   (34,2) 1157,5   (32,8) 1424,8   (21,0) 1642,8   (84,7) 
All 535,5   (73.8) 628,5   (26.4) 945,1   (39.3) 1073,2   (35.8) 1154,6   (54.3) 1386,6   (56.6) 1666,8   (80,1) 
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 236 

3.3 Time series of UAV based reflectance, vegetative indices, texture features  237 

Reflectance of the BLUE, GREEN and the RED band decreased with plant growth during tillering and 238 

stem elongation stages and increase with senescence, yielding a minimal reflectance around booting 239 

and flowering stages (Figure 3). The reflectance of the REDEDGE band was characterized by an 240 

increase in the first four measurement dates during tillering, a decrease during stem elongation, an 241 

increase at flowering and again a decrease with early grain filling stage. The reflectance of the NIR 242 

band increases with time to a maximum at late flowering stage and decreases again until full maturity. 243 

Significant differences were found for all reflectance bands, except REDEDGE, from the tillering to 244 

the early grain filling stage.  245 

All VIs showed significant differences between yield groups for all dates, except the first two and the 246 

last dates. DVI, RVI and NDRE even show significant differences between groups for all dates, except 247 

the first one (Figure 3). 248 

The TFs CONTRAST, CORRELATION and DISSIMILARITY decreased during the stem elongation 249 

stage, reached a minimum around flowering stage and increase afterwards (Figure 3). ENERGY and 250 

Figure 2:Leaf area index (a) and phenology (b) at different growth stages for the two high and low yield groups. Numbers 
above the boxplot  pairs show the p-value of a t-test. Correlation of yield and indices on a single date at 949 GDD after 
sowing at the booting stage (c) and 1389 GDD after sowing at the beginning of the early grain filling stage (d). The numbers 
display the Pearson correlation coefficients. 
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HOMOGENEITY showed an increase until heading stage and a steady decreased from then. 251 

Significant differences in the TFs between yield groups were mainly found from the tillering to the 252 

flowering stages but not later (Figure 3). 253 

  254 

3.4 RF regression model for yield prediction using individual flights and time 255 

series of UAV traits 256 

Significant effects on yield prediction model performance were found among the features chosen as 257 

well as the time points selected (Figure 4, Table 1). 258 

Based on reflectance measurements on a single date, the RED band showed the best performance in 259 

yield, with an RMSE of 47.4 g m-2 when taking the measurement at flowering stage, followed by the 260 

NDRE predicting yield with a RMSE of 47.9 g m-2 at the early grain filling stage. The performance of 261 

the prediction fluctuates significantly for single dates especially for single bands such as GREEN and 262 

BLUE, much less fluctuation can be observed for VIs. The best TF on a single day is CONTRAST 263 

predicting yield with an RMSE of 57.2 g m-2 at the booting stage. The performances of prediction 264 

models using TFs single dates are changing not only with phenology but also show big differences 265 

Figure 3: Dynamics of single band reflectances (left), vegetation indices (middle) and texture features (right) for different 
dates. The solid line shows the high yield group, the dashed line the mean value for the low yield group. The asterisks 
display significant differences after a t-test (p < 0.05) in the respective values and dates between the two yield groups. 
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between two adjoining flights. For all TFs are affected in a similar way of single flights with eg. the 266 

measurement between the booting and the heading stage showed a better performance in yield 267 

prediction compared to the two adjacent dates (Figure 4).  268 

Predicting yield from single dates that were previously smoothed on a plot level, was generally worse 269 

than predictions from non-smoothed single dates (Table 4). The RED band predicted yield with an 270 

RMSE of 49.0 g m-2 at heading stage. The best performing date for a single band often changed 271 

substantially after smoothing. Optimal time point for yield prediction using the NIR band was at stem 272 

elongation if the data is not smoothed and at early grain filling if the data is smoothed. Prediction of 273 

yield using the NIR band is slightly more accurate when using the smoothed data (RMSE of 59.9 g m-
274 

2) compared to using the original data (RMSE of 63.9 g m-2). The performance or optimal time points 275 

of VIs for yield prediction do not change significantly when smoothing the data. Smoothing of TFs 276 

improves or worsens the prediction of yield. It improves the prediction slightly for HOMOGENEITY 277 

but also worsens the prediction for ENERGY from an RMSE of 59.3 g m-2 to 67.7 g m-2. The 278 

fluctuations between dates became much less compared to non-smoothed single dates, especially in 279 

the highly fluctuating TFs. 280 

Based on reflectance measurements across several dates, using each of the individual bands improved 281 

the yield prediction. The RED band, which already showed the best performance for single date yields 282 

an RMSE of 42.7 g m-2 when selecting three dates around flowering. The prediction of yield using VIs 283 

also improved for all bands but to less extent as for the single reflectance bands. The prediction using 284 

NDRE improved slightly to an RMSE of 47.0 g m-2. TFs were the feature class that improved most 285 

when using several time points for yield prediction and all features were better able to prediction yield 286 

compared to single dates. A substantial improvement was found in the ENERGY feature that was able 287 

to predict yield with an RMSE of 48.7 g m-2 when using measurements around flowering stage (Table 288 

4). Using a time window lead to predictions that were much less fluctuating compared to 289 

measurements on single flights (Figure 4). Predictions using the RED band show am underestimation 290 

of yields higher than 630 g m-2 (Figure 6). 291 

 292 

Figure 4: Root mean square errors of yield prediction modes built using single band reflectionsreflectances (top), vegetation 
indices (middle) and texture features (bottom). The models were built using measurements from single dates (left), smoothing 
features on single plots (middle) and choosing a window of three adjacent time points (right). 
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Table 4: Display of the time points yielding the lowest RMSE for yield prediction for all reflectance bands, vegetation indices 293 

and texture features. Values in bold highlight the best model for a given spectral and temporal feature type combination. 294 

Raster R2 RMSE Date PS VI R2 RMSE Date PS TF  R2 RMSE Date PS 
 
Single time points 

  

BLUE 0.45 58.8 1248 FL DVI 0.38 60.8 1580 EF CONTRAST 0.46 57.2 949 BO 

GREEN 0.57 51.8 1248 FL RVI 0.52 54.1 1389 EF CORRELATION 0.37 63.1 949 BO 

RED 0.63 47.4 1202 FL NDRE 0.63 47.9 1389 EF DISSIMILARITY 0.42 60.0 949 BO 

REDEDGE 0.39 61.3 697 SE MCARI 0.38 62.6 949 BO ENERGY 0.43 59.3 1248 FL 

NIR 0.36 63.9 896 SE CCII 0.48 56.1 896 SE HOMOGENEITY 0.28 70.4 1248 FL 

 
Smoothed single time points 

  

BLUE 0.37 67.4 696 SE DVI 0.30 63.7 1388 EF CONTRAST 0.41 58.7 949 BO 

GREEN 0.48 56.6 1055 BO RVI 0.50 52.3 1317 FL CORRELATION 0.21 69.8 1110 HE 

RED 0.58 49.0 1110 HE NDRE 0.57 49.6 1388 EF DISSIMILARITY 0.42 59.9 949 BO 

REDEDGE 0.32 69.9 696 SE MCARI 0.37 60.2 1317 FL ENERGY 0.26 67.7 696 SE 

NIR 0.41 59.9 1509 EF CCII 0.45 56.0 1509 EF HOMOGENEITY 0.29 67.2 600 TI 

 
Moving time window 

  

BLUE 0.54 53.3 1316 FL DVI 0.43 58.1 697 SE CONTRAST 0.51 53.2 1056 BO 

GREEN 0.58 50.7 1202 FL RVI 0.56 50.6 1316 FL CORRELATION 0.41 57.6 949 BO 

RED 0.69 42.7 1316 FL NDRE 0.64 47.0 1316 FL DISSIMILARITY 0.54 51.1 1056 BO 

REDEDGE 0.42 57.8 697 SE MCARI 0.44 57.2 1316 FL ENERGY 0.60 48.7 1316 FL 

NIR 0.42 59.1 697 SE CCII 0.56 51.7 949 BO HOMOGENEITY 0.36 61.1 1316 FL 

 295 

3.5 RF classification model for classifying the low and high yielding varieties 296 

using individual flights and time series of UAV traits 297 

Classification of yield groups using single bands was best with the RED band resulting in an accuracy 298 

of 0.962 followed by the BLUE band with an accuracy of 0.873, both at the flowering stage. The NIR 299 

band performed best during the booting stage. Classification using VIs was lower than accuracy for 300 

single bands and the highest accuracy was found for the RVI VI (0.875). All VIs show their best 301 

performance at the heading stage or later. The TFs showed a similar performance for yield type 302 

classification as the VIs. The best performing TF was CONTRAST with an accuracy of 0.898 when 303 

being measured during stem elongation stage. Fluctuations in accuracy between subsequent flights 304 

was relatively high for models built using single band reflectance as well as models using TFs on 305 

single dates (Figure 5). 306 

Smoothing reflectances did not change improve the accuracy for yield type classification for the RED 307 

band, yielding an accuracy of 0.963 on time point later at the early grain filling stage (Table 5). The 308 

accuracy of the GREEN improved substantially to 0.955 at the booting stage and the NIR band 309 

increase in accuracy as well, while a date on the tillering stage was found to be most suitable. 310 

Accuracies of the DVI and RVI VIs dropped whereas the accuracies increase slightly for the other VIs 311 

after smoothing. Eg. the accuracy of the CCII increased to 0.902 and was achieved during flowering 312 

stage. The best performing TF ENERGY decreased when smoothing to 0.787. CORRELATION 313 

however was better able to classify yield types with an accuracy of 0.845. DISSIMILARITY showed 314 

the best performance at the tillering stage after smoothing. Smoothing changed the fluctuations in 315 

accuracy between single flights slightly for the VIs and to a bigger extent for the single band 316 

reflectances and mainly for the TFs (Figure 5). 317 

The moving time window did not improve yield type classification but worsened for the RED band 318 

yielding an accuracy of 0.875 and did not change the accuracies of the other single bands significantly 319 

(Table 5). A similar result can be found for the moving window when applied to the VIs where the 320 

RVI yielded an accuracy of 0.765 at the flowering stage. A moving time window improved the 321 

classification for all VIs except DVI. However, these changes were only small for all VIs. The best VI 322 

for yield prediction using a moving window is the RVI with an accuracy of 0.856. Predictions by TFs 323 

worsen when using several time points as features compared to single dates. Using a time window, the 324 
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TF ENERGY and DISSIMILARITY show almost similar accuracies of 0.803 and 0.801, respectively. 325 

While the accuracies were not significantly improved by using a time window for prediction, the 326 

fluctuations between dates were reduced significantly and thus the performances of the predictions 327 

became much more stable among dates (Figure 5). 328 

 329 

Figure 5: Accuracy prediction models built using single band reflectances (top), vegetation indices (middle) and texture 330 

features (bottom). The models were built using measurements from single dates (left), cumulating features from the beginning 331 

(middle) and choosing a window of three time points (right). 332 

 333 

Table 5: Display of the classification accuracy of different yield groups using predictors for all reflectance bands, vegetation 334 

indices and texture features at all dates. 335 

Raster Accuracy Date PS VI Accuracy Date PS TF Accuracy Date PS 
 
Single time points 
BLUE 0.873 1714 LF DVI 0.868 1389 EF CONTRAST 0.882 792 SE 

GREEN 0.765 1389 EF RVI 0.875 1389 EF CORRELATION 0.763 1389 EF 

RED 0.962 1316 FL NDRE 0.732 1823 LF DISSIMILARITY 0.752 1248 FL 

REDEDGE 0.790 1109 HE MCARI 0.752 1580 EF ENERGY 0.923 1316 FL 

NIR 0.768 949 BO CCII 0.843 1202 FL HOMOGENEITY 0.727 949 BO 

 
Smoothed single time points 
BLUE 0.832 1316 FL DVI 0.712 1316 FL CONTRAST 0.755 949 BO 

GREEN 0.955 1055 BO RVI 0.732 1509 EF CORRELATION 0.845 1109 HE 

RED 0.963 1389 EF NDRE 0.798 1822 LF DISSIMILARITY 0.813 484 TI 

REDEDGE 0.725 1109 HE MCARI 0.825 1109 HE ENERGY 0.787 1317 FL 

NIR 0.822 530 TI CCII 0.902 1316 FL HOMOGENEITY 0.713 1247 FL 

 
Moving time window 
BLUE 0.837 1389 EF DVI 0.817 1316 FL CONTRAST 0.793 1316 FL 

GREEN 0.808 1202 FL RVI 0.765 1109 HE CORRELATION 0.788 1109 HE 

RED 0.875 1248 FL NDRE 0.708 1109 HE DISSIMILARITY 0.790 1389 EF 

REDEDGE 0.753 1202 FL MCARI 0.795 484 TI ENERGY 0.870 1389 EF 

NIR 0.793 1316 FL CCII 0.833 1202 FL HOMOGENEITY 0.706 949 BO 

 336 
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 337 

4 Discussion 338 

4.1 Dynamic responses of individual bands 339 

The red edge bands have been widely studied for assessing crop performance and yield in various 340 

crops, including wheat (Horler et al., 1983). Canopy reflectance in the red edge wavelength range is 341 

influenced by two optical properties of canopies: chlorophyll absorption in the red region and multiple 342 

scattering effects on the near-infrared (NIR). Although red edge reflectance has been commonly used 343 

for yield prediction in previous studies, our findings suggest that this may not be a reliable indicator of 344 

yield in our specific case.  345 

The inter-variety variability in canopy reflectance in the red-edge region might be large and have 346 

overweight the subtle differences in canopy reflectance associated with yield, making the red edge 347 

reflectance less useful for yield prediction. In addition, the correlation of reflectance in the rededge 348 

region with yield is known to change quickly with the exact wavelength measured in the red edge 349 

region (Pavuluri et al., 2015). In contrast, visible bands (Blue, Green and Red) can be more sensitive 350 

to yield-related variations in chlorophyll, biomass accumulation during the tillering until the and the 351 

stem elongation stage until the beginning of the booting stage since they are known to be correlated to 352 

both, chlorophyll concentration and LAI (Daughtry et al., 2000). Accordingly, our results showed that 353 

the RED, GREEN, and BLUE bands were among the most effective spectral features for yield 354 

prediction, exhibiting significant differences between high and low yielding varieties at almost all 355 

measurement dates. These visible bands are highly sensitive to chlorophyll, with their reflectance 356 

decreasing during the transition from the stem elongation to the beginning of the booting stage, and 357 

increasing again from heading until harvest due to senescence and chlorophyll degradation. Therefore, 358 

our findings suggest that the flowering stage in which the chlorophyll content reaches the peak is 359 

crucial. 360 

Figure 6: Yield prediction based on the red band (a), the NDRE index (b) and the energy TF (c) from moving window 
features at the best performing dates (Table 4). Confusion matrices of yield type predictions based on data of the best 
performing single dates of the RED band (d), the CCII VI (e) and the energy TF (f). 
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The NIR region is known to be sensitive to leaf area and especially ground cover (Korobov & Railyan, 361 

1993), making it a useful band for predicting biomass and yield. Our results indicated that the NIR 362 

band performed best during the stem elongation stage for yield prediction and at the booting stage 363 

when there were significant differences in leaf area index (LAI) between the two yield groups. This 364 

aligns with the findings by Korobov and Railyan (1993), who reported a higher correlation of NIR 365 

reflectance with dry matter and ground cover during booting stage compared to later stages. Thus, 366 

normalizing the difference of the NIR and the REDEDGE reflectance in form of the NDRE index, 367 

showed a good performance for chlorophyll estimation (Barnes et al., 2000). Usually, VIs containing 368 

information from the red edge region of the spectrum are considered being more sensitive to 369 

chlorophyll absorption in dense canopies (Nguy-Robertson et al., 2012). It is expected that combining 370 

the highly LAI-sensitive NIR band with the red edge band containing more information about leaf 371 

pigments in the canopy and therefore improves the performance of our yield prediction model at the 372 

flowering to early grain filling stages. 373 

4.2 The influence of growth stage for yield prediction and classification 374 

The performance of yield prediction and classification depends highly on the growth stages of the 375 

crop. Our study found that the flowering stage and early grain filling stage are the most suitable for 376 

predicting yield in winter wheat. This is consistent with the findings of other studies (Hassan et al., 377 

2019; Prey et al., 2022; Prey et al., 2020; Wang et al., 2022). It is often argued that yield cannot be 378 

measured directly using remote sensing approaches, given the fact that yield formation in wheat 379 

involves several components, including ear density, kernel number per ear, and grain weight (Satorre 380 

& Slafer, 1999). Furthermore, these components form at different stages and are therefore not present 381 

at every phenological stage. Still, remotely sensed information and variations in canopy images and 382 

reflectance are often closely related to these yield components, such as vegetative biomass and 383 

chlorophyll content (Wu et al., 2008). Therefore, when these traits usually reach their peak levels 384 

around the flowering stage, i.e., the crop transitions from vegetative to generative growth, their 385 

associated variations in canopy reflectance also indicate the variability in yield 386 

Early differences in biomass and LAI dynamics between genotypes are well-documented (Grieder et 387 

al., 2015; Pang et al., 2014), and these differences can be useful for predicting yield and classifying 388 

varieties in early growth stages. While our study found that yield prediction at the tillering stage 389 

feasible, it remains to be challenging for excluding the poorly-performing varieties. From tillering to 390 

harvest, wheat is known to compensate for e.g. a low stand count by altering the number of yield 391 

components (Holen et al., 2001) complicating predictions at this stage. This might be the reason, that 392 

our classification models were more performant in detecting the high yielding varieties. It can be 393 

argued that our approach has a limitation that we cannot be certain whether the algorithm is sensitive 394 

to canopy traits that are yield-dependent or to variety-specific traits that do not influence yield 395 

performance. Therefore, the validation of our models in other varieties or environments will be 396 

critical. After flowering, the performance of our models then decreased with the onset of senescence. 397 

While yield formation does continue during senescence (Anderegg et al., 2020; Spano et al., 2003), 398 

our results showed that this stage is less correlated with grain yield than the earlier stages. Further, no 399 

significant differences in phenology were detected between the yield groups, suggesting that the yield 400 

differences between the high- and low yield groups are not likely due to their senescence dynamics. 401 

Unlike in our study employing an identical/moderate fertilization rate, even under high N conditions, 402 

differences in the onset of senescence were not found to be significantly correlated to grain yield per 403 

unit crop N uptake at harvest (Gaju et al., 2011) making classification at this time point difficult. 404 

Nevertheless, our study confirms that the tillering stage is an already promising time for variety 405 

classification, as evidenced by the strong performance of our classification models at this stage. 406 

4.3 Comparison of variable- and feature types for yield prediction and 407 

classification 408 

Our study found that single-band reflectance, such as the RED band, were as effective as or even more 409 

effective than vegetation indices (VIs) for predicting yield. The RED band is known to be related to 410 
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leaf area index (LAI), although this relationship is often nonlinear (Hinzman et al., 1984) and therefore 411 

requires non-linear methods such as RF to perform well for yield prediction. Pavuluri et al. (2015) 412 

found a saturation of RED reflectance when predicting yield, which can also be found in our 413 

prediction models. In contrast, VIs typically show good linear correlations with grain yield, with 414 

NDVI being widely used for yield prediction (Hassan et al., 2019). Many VIs have been screened by 415 

Prey et al. (2020) and few have been showing a consistent performance over the years, which makes a 416 

general selection difficult. Further, VIs narrow down the information that is accessible and Vatter et al. 417 

(2022) found good performances for yield prediction when using 11 wavebands from a multispectral 418 

camera that were fed to a deep learning model. Machine learning approaches based on reflectance 419 

were found to not improve the accuracy yield prediction but showed great potential in predicting grain 420 

protein (Zhou et al., 2021). Machine learning models, however, often require a big amount of training 421 

data, which can be challenging to gather. 422 

TFs are complex in their calculation and they offer a variety of possible ways of calculation, possible 423 

combination with underlying rasters and ways to be calculated. Detailed information on how TFs are 424 

calculated is often lacking (Wang et al., 2021; Zhang et al., 2021; Zheng et al., 2019). Therefore, TFs 425 

still have to be examined in detail and their parameters optimized under different experimental 426 

conditions and scenarios of sensing data collection. We calculated TFs in a standardized way, but still 427 

found a high variability between dates. TFs are further known to be highly dependent on the GSD and 428 

therefore the flight height (Zheng et al., 2019). Therefore, smoothing benefitted the yield prediction by 429 

making the performance more stable but not better. A novel approach is presented by Herrero-Huerta 430 

et al. (2020) who calculated so-called canopy roughness directly on the point cloud from the structure 431 

from motion processing and showed its correlation to biomass. TFs are further often used in 432 

combination because there might be additional information (Liu et al., 2022; Wang et al., 2021), 433 

especially in the later stage, when they are not strongly correlated to single band reflectances and VIs 434 

anymore as indicate by our results. 435 

4.4 Limitations and outlook 436 

The red-edge position and its shape is often used estimate the stress status of field crops (Boochs et al., 437 

1990; Guyot et al., 1988). However, it is obvious that the dynamics (time series) of the Red-edge band 438 

is difficult to interpret compared to the visible bands. During the early stages of tillering, the red-edge 439 

reflectance increased, possibly due to an increase of ground cover, whereas later it decreased again, 440 

when the canopy height increased during the SE stage. At the beginning of heading another increase in 441 

the Red-edge reflectance can be observed, accompanied with the increase of reflectance in the visible 442 

bands. However, in contrast to other bands, the Red-edge reflectance decreases with the onset of 443 

senescence at the early grain filling stage, possibly due to a reduction in chlorophyll and shrinking 444 

canopy structure (Wang et al., 2022). However, fluctuation also occurs during the mentioned stable 445 

period. These fluctuations can be of various origins. For instance, the appearance of the canopy might 446 

change significantly due to the emergence of the spikes. Although this study was unable to exploit the 447 

entire shape of the red-edge reflectance, due to limitations in our multispectral camera having one 448 

band in the red edge region, future work should further advance the understanding of the dynamics of 449 

red-edge reflectance and responsible canopy characteristics.  450 

Also, features should in addition to their performance for yield prediction be assessed regarding their 451 

heritability (h2) since breeders are interested in knowing the genetic variation underlying a trait or in 452 

our case a spectral feature. Generally, this study shows that a trait time series followed by smoothing 453 

and a moving window allow for more stable predictions when also not better predictions. 454 

5 Conclusions 455 

Most spectral and texture features derived from the canopy multispectral images were related to 456 

variations in yield, but they-  delivered the best predictions of yield only between the booting and end 457 

of the flowering stage. However, in earlier stages, the visible (Red, Green, Blue) bands can accurately 458 

predict yields and distinguish between the low- and high-yielding genotypes. Single-band reflectance, 459 
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particularly the red band, is a reliable predictor of yield. Combining additional bands, such as the red-460 

edge and NIR, into VIs like NDRE, improves performance significantly, but it limits the machine 461 

learning algorithm's ability to build a strong model. Texture features generally performed poorly for 462 

yield prediction, and their performances were inconsistent across dates in this study, suggesting that 463 

further research is still needed to better understand the applicability of different texture features for 464 

yield- and traits predictions and methods to optimize texture feature extraction. Smoothing or 465 

combining data across a time series can enhance the performance of yield prediction and classification 466 

models, particularly in the early growth stages. Future studies should combine different feature types 467 

to leverage complementary information captured by different types of multispectral features and 468 

variables.  469 
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