

1 **Extreme mitochondrial reduction in a novel group of free-living metamonads.**

2 Shelby K. Williams^{1,2}, Jon Jerlström Hultqvist^{1,3}, Yana Eglit^{1,4}, Dayana E. Salas-Leiva^{1,5}, Bruce
3 Curtis^{1,2}, Russell J. S. Orr⁶, Courtney W. Stairs⁷, Tuğba N. Atalay^{1,2}, Naomi MacMillan^{1,2},
4 Alastair G. B. Simpson^{1,4} and Andrew J. Roger^{1,2*}

5

6 1 - Institute for Comparative Genomics, Dalhousie University, Nova Scotia, Canada

7 2 – Department of Biochemistry and Molecular Biology, Dalhousie University

8 3 – Department of Cell and Molecular Biology, Uppsala University, Sweden

9 4 - Department of Biology, Dalhousie University

10 5 – Department of Biochemistry, Cambridge University, UK

11 6 - Section for Genetics and Evolutionary Biology, Department of Biosciences, University of
12 Oslo, Norway

13 7 – Department of Biology, Lund University, Sweden

14

15 *Corresponding author: andrew.roger@dal.ca

17

18 **Summary**

19 Metamonads are a diverse group of heterotrophic microbial eukaryotes adapted to living in
20 hypoxic environments. All metamonads but one harbour metabolically altered ‘mitochondrion-
21 related organelles’ (MROs) with reduced functions relative to aerobic mitochondria, however the
22 degree of reduction varies markedly over the metamonad tree. To further investigate metamonad
23 MRO diversity, we generated high quality draft genomes, transcriptomes, and predicted
24 proteomes for five recently discovered free-living metamonads. Phylogenomic analyses placed
25 these organisms in a group we informally named the ‘BaSk’ (Barthelonids+Skoliomonads) clade,
26 which emerges as a deeply branching sister group to the Fornicata, a metamonad phylum that
27 includes parasitic and free-living flagellates. Extensive bioinformatic analyses of the manually
28 curated gene models showed that these organisms are predicted to have extremely reduced MRO
29 proteomes in comparison to other free-living metamonads. Loss of the mitochondrial iron-sulfur
30 cluster (ISC) assembly system in some organisms in this group appears to be linked to the
31 acquisition in their common ancestral lineage of a SUF-like minimal system (SMS) Fe/S cluster
32 pathway through lateral gene transfer (LGT). One of the isolates, *Skoliomonas litria*, appears to
33 have undergone further mitochondrial reduction having lost all other known MRO pathways. No
34 proteins were confidently assigned to the predicted MRO proteome of this organism suggesting
35 that the organelle has been lost. The extreme mitochondrial reduction observed within this free-
36 living anaerobic protistan clade is unprecedented and demonstrates that mitochondrial functions,
37 under some conditions, may be completely lost even in free-living organisms.

39 **Introduction**

40 Many unicellular eukaryote (protist) lineages have independently adapted to low-oxygen
41 conditions. One of their most conspicuous adaptations are highly modified mitochondria referred
42 to as “mitochondrion-related organelles” (MROs) that can function without oxygen. MROs have
43 been best studied in the Metamonada, a supergroup of anaerobic protists with varied lifestyles
44 including parasites, commensals, and free-living marine or freshwater flagellates and amoebae.
45 All metamonad MROs studied to date are functionally reduced compared to aerobic
46 mitochondria with their properties varying markedly across the group (Leger et al., 2017).

47 The best studied metamonad MROs are hydrogenosomes that occur in the urogenital tract
48 parasite *Trichomonas vaginalis*. The ‘hydrogenosomal’ ATP-producing pathway uses enzymes
49 typically not found in aerobic mitochondria such as pyruvate:ferredoxin oxidoreductase (PFO) to
50 oxidatively decarboxylate pyruvate to acetyl-CoA and reduce ferredoxin, an acetate:succinate
51 CoA transferase that catalyzes the transfer of CoA onto succinate to produce succinyl-CoA, and
52 an iron-only [FeFe]-hydrogenase that reduces protons to hydrogen gas by re-oxidizing the
53 ferredoxin. ATP is produced from ADP and P_i by the Krebs cycle enzyme succinyl-CoA
54 synthetase by substrate-level phosphorylation, converting succinyl-CoA to succinate in the
55 process. Trichomonad hydrogenosomes also house a variety of other pathways including a
56 mitochondrial-type iron-sulfur cluster (ISC) biogenesis system, amino acid metabolism, and
57 oxygen detoxification (Schneider et al., 2011; Stairs et al., 2015). Even more highly-reduced
58 MROs called ‘mitosomes’ are found in the metamonad gut parasite *Giardia intestinalis*. These
59 organelles appear to lack any capacity to generate ATP; instead they participate in Fe/S cluster
60 biogenesis via the mitochondrial-type ISC system (Jedelský et al., 2011). Like trichomonads,
61 *Giardia intestinalis* catalyzes acetyl-CoA production from pyruvate using PFO. However, this
62 occurs in the cytoplasm. Acetyl-CoA is converted to acetate and ATP is produced by substrate-
63 level phosphorylation catalyzed by the enzyme ADP-forming acetyl-CoA synthetase (ACS; EC
64 6.2.1.13) (Sánchez et al., 2000). The most extreme form of MRO reduction in Metamonada can
65 be found in the oxymonad gut commensal *Monocercomonoides exilis* that has lost all traces of
66 the organelle, making it the first truly amitochondriate eukaryote discovered (Karkowska et al.,
67 2016).

68 More recent investigations of newly discovered free-living metamonads have revealed novel
69 configurations of MRO functions that do not fit into traditionally-defined organelle classes
70 (Müller et al., 2012). For example, the free-living metamonad *Dysnectes brevis* encodes MRO
71 targeted [FeFe]-hydrogenases and associated proteins but lacks organelle-targeted enzymes for
72 substrate-level phosphorylation, suggesting that while the MRO is capable of hydrogen
73 metabolism, ATP is most likely produced in the cytosol (Leger et al., 2017). A similar hydrogen-
74 producing organelle and predicted cytosolic ATP production was reported in a transcriptomic
75 investigation of the free-living metamonad *Barthelona* sp. PAP020 (Yazaki et al., 2020).
76 Recently, the enigmatic *Anaeramoeba* species – recently-discovered distant relatives to
77 parabasalids like *Trichomonas* – were predicted to possess hydrogenosomes that have retained
78 more mitochondrial systems than any other metamonad studied to date (Stairs et al., 2021). The
79 MRO of the freshwater flagellate *Paratrimastix pyriformis* was recently investigated using

80 spatial proteomic techniques which revealed that the organelle does not participate in either ATP
81 production through extended glycolysis or Fe/S cluster production, and instead produces
82 essential intermediates for the methionine cycle (Zítek et al., 2022). These studies of newly
83 discovered free-living metamonads have provided important insights into the steps by which
84 dramatically distinct MRO-types evolved within the Metamonada.

85 The multiple independent transitions from aerobically respiring mitochondria to MROs in the
86 eukaryote tree in most cases have involved the complete loss of the mitochondrial genome itself,
87 the loss of aerobic metabolism genes encoded in the nucleus, and the gain of genes encoding
88 novel biochemical pathways by lateral gene transfer (LGT) from bacteria, archaea or other
89 anaerobic protists (Roger et al. 2017). For example, the 'hydrogenosomal' metabolism enzymes
90 (Leger et al., 2016; Stairs et al., 2011, 2021), the ability to synthesize rhodoquinone (Stairs et al.,
91 2018) and oxygen defense enzymes (Jiménez-González et al., 2019) all appear to have been
92 acquired by LGT in multiple distinct lineages from bacteria or other protists (Gawryluk & Stairs,
93 2021; Roger et al., 2017). The most striking examples of the remodeling of mitochondrial
94 functions in anaerobic protists involve the wholesale replacement of the highly-conserved
95 essential mitochondrial ISC system by laterally acquired prokaryotic Fe/S cluster biogenesis
96 systems. In the Archamoebae, a two-protein Fe/S biosynthesis pathway (recently classified as the
97 minimal iron sulfur system (MIS) related to the nitrogen fixation system (Garcia et al., 2022))
98 was acquired from bacteria and, in free-living members of the group, was subsequently
99 duplicated into cytosolic and MRO-functioning versions (Nývllová et al., 2015; Záhonová et al.,
100 2022). A completely independent replacement of the mitochondrial ISC system occurred in the
101 ancestors of the breviate flagellate *Pygsuia biforma* that acquired an archaeal-type SUF system
102 (Stairs et al., 2014), recently classified as the SUF-like minimal system (SMS) pathway (Garcia
103 et al., 2022). This breviate SmsCB gene (referred to as SufCB in Stairs et al. 2014) in *Pygsuia*
104 *biforma* was then duplicated to create cytosolic and MRO-targeted SmsCB proteins. In the
105 oxymonads, yet another replacement of the ISC system occurred independently by the lateral
106 acquisition of genes encoding a more complex multi-protein SUF pathway (Karnkowska et al.,
107 2016; Vacek et al., 2018). This enabled the ancestral oxymonad to produce Fe/S clusters in the
108 cytosol, easing the evolutionary pressure to keep the canonical ISC system, paving the way for
109 the complete loss of MROs in *Monocercomonoides* (Karnkowska et al., 2016). Phylogenetic
110 analyses revealed that this SUF system is shared by a variety of preaxostylans and is likely
111 bacterial in origin (Vacek et al., 2018).

112 To further investigate the patterns and process of genome and MRO evolution in metamonads,
113 we sequenced the genomes of five recently-isolated free-living bacterivorous flagellates. Three
114 of these organisms, the 'skoliomonads' *Skoliomonas litria*, *Skoliomonas* sp. GEM-RC (GEMRC)
115 and *Skoliomonas* sp. TZLM3-RCL (RCL) were isolated from sediments of alkaline hypersaline
116 soda lakes (for detailed descriptions see Egli et al., 2024) (Figure 1A-C). The other two are
117 shallow marine-sediment dwelling 'barthelonids' (Yazaki et al. 2020): *Barthelona* sp. strain PCE
118 (Figure 1D) and *Barthelona* sp. PAP020 (Yazaki et al., 2020). Unlike most previous studies of
119 this kind that rely on incomplete transcriptomic data, we generated high quality contiguous
120 genome assemblies, transcriptomes, and predicted proteomes from four of these five organisms.
121 Our phylogenomic analyses demonstrate that these five metamonads form a highly supported

122 clade, referred to as ‘BaSk’ (short for ‘Barthelonids+Skoliomonads’), that emerges as a sister
123 group to Fornicata *sensu stricto* (diplomonads, retortamonads and *Carpediemonas*-like
124 organisms (CLOs)). Genome size and coding capacity varies considerably across these
125 organisms, with one possessing the smallest genome of a free-living eukaryote currently known.
126 Their anaerobic metabolisms and MRO functional capacities also vary considerably.
127 Unexpectedly, we found yet another instance of the horizontal acquisition of the SmsCB gene in
128 their common ancestor. While several barthelonids possess both the SmsCB gene and core parts
129 of a mitochondrial-type ISC system, all traces of the ISC system have been lost in the
130 skoliomonads. For *Skoliomonas litria*, no MRO proteins could be confidently identified,
131 suggesting it may lack the organelle altogether.

132 **Results & Discussion**

133 **Near-complete draft genomes of four novel metamonads**

134 Near-complete genome assemblies of *Barthelona* sp. PCE, *Skoliomonas litria*, *Skoliomonas* sp.
135 RCL and *Skoliomonas* sp. GEMRC were generated using a combination of Oxford Nanopore
136 long-read sequencing for assembly and Illumina short-read sequencing for error-correction post-
137 assembly. These assemblies were thoroughly decontaminated using the Eukfinder workflow
138 (Zhao et al., 2023).

139 To assess the quality of these assemblies we used Merqury, a k-mer counting tool that using
140 genomic Illumina reads, assesses the completeness of the four *de novo* long-read assemblies
141 (Rhie et al., 2020). Based on the Merqury analyses, all four assemblies exceeded 98%
142 completion. Genome completeness was further supported by the fact that, for each of the four
143 organisms, >99% of their respective eukaryotic-classified RNAseq reads mapped to the
144 corresponding genome assembly. The combination of long and short-read data afforded
145 assemblies that were high coverage and comprised of a few relatively large contigs (see Table 1).
146 A draft genome assembly of *Barthelona* sp. PAP020 was also generated using only Illumina
147 reads (Table 1). This relatively fragmented assembly was included with other metamonads
148 considered in this study to supplement our analyses concerning MRO reconstruction, metabolic
149 pathway inventory, and phylogenomic inference, discussed below.

150 Gene predictions for these assemblies were generated by an in-house pipeline. To compare the
151 qualities of the various gene predictions, BUSCO analyses were conducted based on the whole
152 genomes themselves, the gene predictions and the transcriptome assemblies (Table 2). To assess
153 potential improvement of the predicted protein set after curation, the gene predictions for
154 *Skoliomonas litria* were further manually curated (Table 2). The percent of BUSCO genes
155 identified amongst the gene predictions (i.e. predicted protein set) ranged from 63.7%
156 (complete+fragmented) for *Barthelona* sp. PCE to 77.9% (complete+fragmented) for
157 *Skoliomonas* sp. RCL. In general, the BUSCO scores of the gene predictions are very similar to
158 those from the transcriptomes but the BUSCO genes of the former are less fragmented. The
159 manual curation of *Skoliomonas litria* predicted proteins increased the reported BUSCO number
160 by only one, indicating that the manual curation did not substantially improve the gene models.
161 Note that these relatively low BUSCO scores are comparable to other well-characterized

162 metamonads assemblies which tend to have highly divergent or missing orthologs relative to
163 most other eukaryotes (Salas-Leiva et al., 2021; Stairs et al., 2021).

164 The sizes of the draft genomes and the number of proteins predicted differ markedly between
165 taxa (Table 1). Notably, at 10.2 Mbp, *Barthelona* sp. PCE appears to possess the smallest
166 genome for a free-living eukaryote currently known. It is smaller than the compact genomes of
167 the acidophilic alga *Galdieria sulphuraria* (13.7 Mbp, see Schönknecht et al., 2013),
168 *Saccharomyces cerevisiae* (12.07 Mbp, see Goffeau et al., 1996), and the genome of the smallest
169 known free-living eukaryote, the marine alga *Ostreococcus tauri* (12.56 Mbp, see Derelle et al.,
170 2006). Genome reduction is well known to occur in parasitic and endosymbiotic microbes
171 (Manzano-Marín & Latorre, 2016; Xu et al., 2020), as well as in free-living organisms, where it
172 is thought that compact genomes are an efficiency adaptation to nutrient-poor environments
173 (Giovannoni et al., 2014). However, for heterotrophic phagotrophic protists, like *Barthelona* sp.
174 PCE, nutrients are obtained predominantly from their bacterial prey. It is unclear whether the
175 foregoing generalizations hold in this case or what other forces led to genome reduction in the
176 barthelonid lineage.

177 Two of the genome assemblies have apparent telomeric repeats on the ends of some contigs.
178 *Barthelona* sp. PCE possesses two contigs with what appear to be telomeres at one end of the
179 contig with an unusual telomere repeat sequence of 5'-TATATGGTCT-3'. Although this
180 telomeric sequence is quite different from the eukaryotic 'consensus' repeat, other protists across
181 the eukaryote tree of life have also been reported to have highly divergent telomeric repeats (see
182 Fulnečková et al., 2013); the significance of these unusual telomeres is unknown. The
183 *Skoliomonas* sp. GEMRC assembly has six telomere-to-telomere assembled chromosomes and
184 an additional nine contigs with telomeres at only one end of the contig. The latter telomeres
185 have the canonical 5'-TTAGGG-3' repeating sequences.

186

187 **The BaSk taxa are the sister group to known members of Fornicata.**

188 To determine the phylogenetic affinities of the BaSks within the metamonads, we added
189 orthologs from the five draft assemblies to a previously constructed phylogenomic data set of
190 orthologous proteins (Brown et al., 2018; S. Kang et al., 2017). After single-protein alignment
191 manual curation to remove contaminants and paralogs, the final dataset of 174 highly conserved
192 proteins was analyzed by maximum likelihood under the site-heterogeneous model LG+C60+F+
193 Γ (see Figure 1E). The resulting tree confirms the placement of *Barthelona* sp. PAP020 as
194 previously reported (Yazaki et al., 2020) and placed barthelonid strain *Barthelona* sp. PCE as its
195 immediate sister. The skoliomonads form a clade with the barthelonid group, with *Skoliomonas*
196 *litria* and *Skoliomonas* sp. GEMRC branching together to the exclusion of *Skoliomonas* sp. RCL.
197 The 'BaSk clade' (Barthelonids + Skoliomonads) are sister to fornicates with maximum support
198 (i.e. both the fornicate group and the fornicate + BaSk clade are supported with 100% non-
199 parametric bootstrapping support, aBayes support, and approximate likelihood-ratio test support,
200 all evaluated under the PMSF model).

201 Members of Fornicata possess a particular cytoskeletal feature, a distinct fibrous arch, that
202 defines the group (Simpson, 2003). As there are no ultrastructural data for the flagellar apparatus
203 cytoskeleton of any BaSk member to date, it is unclear whether they should be classified within
204 the Fornicata or remain as a distinct sister group. Regardless, the BaSks 'deep' phylogenetic
205 placement within the metamonads make them a key group for investigations into the origins and
206 evolutionary trajectories of genes involved in parasitism and MRO reduction within the
207 Metamonada supergroup.

208 **BaSks all possess highly reduced MROs and share the same core anaerobic metabolism.**

209 We searched the genomes, transcriptomes, and predicted protein sets of all four BaSks using a
210 variety of bioinformatic approaches (see Materials and Methods) to recover proteins related to
211 MRO function and anaerobic metabolism. We also utilized a draft short-read Illumina genome
212 assembly of *Barthelona* sp. PAP020 in these searches to supplement our comparisons. Several
213 mitochondrial targeting sequence prediction programs were used to estimate the probability of
214 mitochondrial localization of each predicted protein in each of the five genomes. We used these
215 predicted proteins as queries against the nr database using BLAST and looked for outputs
216 relating to mitochondrial localizing proteins. The predicted proteins from the BaSk genomes
217 were also used as queries in a BLAST search of a database comprised of mitochondrial
218 proteomes from six diverse eukaryote lineages and the best hits from each query were retained
219 and inspected. Next, we utilized datasets of known metamonad MRO proteins to query the
220 predicted protein sets from the BaSk genomes, as well as directly investigate the genomes and
221 transcriptomes. This was done through both BLAST search and HMM profile searching. In cases
222 where search results were ambiguous, we utilized appropriate Pfam profiles to search for protein
223 domain information. Finally, we assessed candidate proteins by constructing phylogenetic trees
224 of corresponding MRO proteins with additional cytosolic homologs, to further verify the
225 probable localization of BaSk proteins. A summary of the results of all of these searches can be
226 found as Figure 2. Below we discuss the systems we investigated in detail by first highlighting
227 the pathways that, when present, function exclusively in MROs and are therefore strong
228 indicators of the presence of the organelle.

229 We first investigated whether the BaSk genomes encoded homologs of the glycine cleavage
230 system (GCS), an exclusively mitochondrial pathway which converts glycine to ammonia and
231 carbon dioxide while also reducing NAD⁺ to NADH and generating 5,10-methylene-
232 tetrahydrofolate (5,10-CH₂-THF) (Kikuchi, 1973). This pathway is commonly retained in MROs
233 of free-living anaerobic protists including some metamonads (Leger et al., 2017), but is
234 sometimes missing in parasitic lineages (reviewed in Roger et al., 2017). Except for *Skoliomonas*
235 *litria*, all BaSks encode the complete GCS (i.e. the T-, P-, L- and H-proteins). Additionally, all
236 BaSks possessing the GCS also have a single serine hydroxymethyltransferase (SHMT) gene.
237 This enzyme produces serine using both glycine and the 5,10-CH₂-THF produced by the GCS.
238 GCS and SHMT are found in the MROs of a variety of diverse free-living metamonads including
239 *Paratrimastix pyriformis* (Zítek et al., 2022; Zubáčová et al., 2013) and all of the non-
240 diplomonad fornicates (i.e. CLOs and *Chilomastix cuspidata*; see Leger et al., 2017). Complete
241 absence of the GCS in metamonads is seen in the parasitic diplomonads *Giardia intestinalis* and

242 *Spironucleus salmonicida* (Jerlström-Hultqvist et al., 2013; Leger et al., 2017). Other parasitic
243 metamonads such as *Trichomonas vaginalis* retain some of the GCS subunits (Mukherjee et al.,
244 2006), but have repurposed them to function in a peroxide detoxification pathway (Nývllová et
245 al., 2016). It was particularly unexpected, therefore, that we found neither genes encoding GCS
246 or SHMT in *Skoliomonas litria*, making it the only known free-living metamonad completely
247 lacking this pathway, and the only BaSk member to have no detectable MRO amino acid
248 metabolism. The MROs within the BaSks are therefore key to understanding the reduction of
249 amino acid metabolism that is usually only ever seen in parasitic metamonads. As previously
250 reported (Yazaki et al., 2020), *Barthelona* sp. PAP020 contains a OsmC homolog, but we were
251 unable to detect this enzyme in any of the other BaSk data, including the *Barthelona* sp. PAP020
252 genome. Because this enzyme lacks a mitochondrial targeting sequence (MTS), it is unclear
253 where this protein localizes in *Barthelona* sp. PAP020, and if it participates in peroxide
254 detoxification in the *Barthelona* sp. PAP020 MRO, as it does in the MRO of *Trichomonas*
255 (Nývllová et al., 2016).

256 Next, we investigated the highly conserved mitochondrial Fe/S cluster (ISC) pathway that is also
257 exclusively found within mitochondria or MROs. Unexpectedly, amongst all the BaSks, only the
258 barthelonid PCE and PAP020 assemblies encoded *any* detectable ISC system components. These
259 two genomes encode cysteine desulfurase NFS1 (also known as ISCS), the scaffold protein
260 ISCU and a ferredoxin. Notably, they also encode Fe/S cluster containing NuoE and NuoF
261 subunits of complex I, which, like core ISC components, are homologs which are only known to
262 function in mitochondria and the MROs of other organisms. Surprisingly, with the exceptions of
263 mitochondrial Hsp70 (discussed further below) and ferredoxin, no other genes encoding ISC
264 pathway components were detected in the barthelonids or any other of the BaSks (see
265 Supplementary Table 1 for ISC proteins queried). The absence of some of these proteins, like
266 Isd11 and ferredoxin reductase (Arh1), is not unexpected as they have not been detected in most
267 metamonads (Motyčková et al., 2023). The absence of other early ISC pathway proteins
268 implicated in [2Fe-2S] cluster synthesis (e.g. frataxin, Jac1 (HscB) and Mge1 (GrpE)) is more
269 puzzling as these components are usually detected in metamonads (Motyčková et al., 2023).
270 Similarly, some late ISC pathway components implicated in [4Fe-4S] cluster synthesis (Lill &
271 Freibert, 2020) are found in other metamonads (e.g Grx5, Isa2, NFU1 and BolA; Motyčková et
272 al., 2023), but were not detected in any BaSks (Supplementary Table 1). This is strange given
273 that the barthelonids possess mitochondrial NuoF subunits that typically house an [4Fe-4S]
274 cluster (Ohnishi, 1998). This means that if these NuoF subunits are indeed found within the
275 MROs of the barthelonids, as they are with other eukaryotes, their [4Fe-4S] clusters are being
276 produced by an unknown mechanism.

277 Despite the lack of ISC system proteins in most BaSks, all BaSk members appear to encode a
278 similar partial cytosolic CIA system that includes apoprotein targeting components CIA1, CIA2,
279 and NAR1, the NBP35 scaffold protein, and TAH18, which aids in maturation of Fe/S cluster
280 proteins. This reduced CIA pathway is not unlike the CIA pathway found within *Giardia*
281 *intestinalis* (Pyrih et al., 2016).

282 **BaSks possess simple archaeal-type SUF-like minimal system (SMS) fusion proteins.**

283 We investigated the possibility that the lack of ISC system components in BaSk members may
284 be complemented by the presence of an alternative Fe/S cluster system such as the minimal Fe/S
285 (MIS) or sulfur mobilization (SUF) systems found in a number of other anaerobic protists
286 (Anwar et al., 2014; Garcia et al., 2022; Stairs et al., 2014; Vacek et al., 2018; Žárský et al.,
287 2021). In all of the BaSk genomes, we were able to identify a simple archaeal-type SUF-like
288 minimal system (SMS) consisting of a gene encoding an SmsCB fusion protein that was most
289 similar to the simple archaeal-type SmsCB systems found in the breviate *Pygsuia biforma* (Stairs
290 et al., 2014), the anaerobic jakobid *Stygiella incarcerata* (Leger et al., 2016) and gut commensal
291 opilinatan stramenopile *Blastocystis* (Tsaousis et al., 2012; Yubuki et al., 2020). To investigate
292 the origin of this protein, we performed phylogenetic analysis separately for the SmsC and SmsB
293 domains (Supplementary Figures 1 & 2) before concatenating the domains together for the final
294 tree (Figure 3). The BaSk SmsCB proteins form a strongly supported clade that is sister group to
295 all archaeal-type SmsCB fusion proteins from anaerobic protists. Consistent with previous
296 reports, the anaerobic protistan clade of SmsCB fusion proteins is sister group to the orthologs
297 from members of the Methanomicrobiales order of Archaea (Tsaousis et al., 2012). This
298 phylogenetic pattern is most easily explained if there were an original transfer and fusion of
299 SmsCB to an anaerobic protist from a methanomicrobiales donor, followed by a series of
300 eukaryote-to-eukaryote LGT events amongst disparate lineages of anaerobic eukaryote lineages.
301 The deeply branching position of the BaSk clade amongst the anaerobic protists suggests it is
302 possible that an ancestral BaSk was the first recipient of these genes and an early offshoot from
303 the BaSk lineage passed the fusion gene to other anaerobic protists, although it is impossible to
304 rule out alternative scenarios. Regardless, this SMS system is phylogenetically distinct, and has a
305 separate origin from, the more complex SUF system found within the metamonad preaxostylans
306 (i.e. oxymonads and *Paratrimastix pyriformis*) (Vacek et al., 2018) and therefore represents an
307 interesting case of convergence by LGT within the Metamonada. The resulting reduction and
308 loss of the ISC system following acquisition of a SMS system is also similar between these two
309 lineages and the breviate *Pygsuia biforma*. The gain of an alternate Fe/S cluster synthesis system
310 in these cases likely ‘preadapts’ the ancestral organism to the loss of the ISC system in some of
311 the lineages (e.g. an ancestor of *Skoliomonas* sp. GEMRC, *Skoliomonas* sp. RCL and
312 *Skoliomonas litria*). Unlike *Pygsuia biforma* and the preaxostylans, *Barthelona* sp. PCE and
313 *Barthelona* sp. PAP020 retain a few core components of the early ISC system in addition to
314 possessing the novel SMS system, suggesting that their MRO ISC system is at least partially
315 functional. This retention of the ISC proteins may be related to the possession of Fe/S cluster-
316 containing proteins such as the NuoE and NuoF complex I proteins that are predicted to function
317 in the MRO. Although we cannot definitively determine the subcellular localization of the
318 SmsCB in BaSks bioinformatically, it is likely that this system is cytosolic as in other anaerobic
319 protists such as *Blastocystis* spp. (Tsaousis et al., 2012). If it is indeed cytosolic, it is unclear
320 whether it would function in coordination with the cytosolic CIA Fe/S biogenesis system. One
321 possibility is that the CIA system and the SmsCB system may function in parallel with each
322 responsible for the assembly of Fe/S clusters for different specific subpopulations of apoproteins.
323 Alternatively, the two systems may work together, similar to how the ISC system coordinates
324 with the CIA pathway (Pyrih et al., 2016). In the latter scenario, the SmsCB fusion protein would

325 provide the CIA pathway with a sulfur-containing intermediate, which the CIA pathway would
326 then use to assemble Fe/S clusters and insert them into recipient apoproteins.

327 In any case, the skoliomonads completely lack any dedicated ISC components and do not
328 possess proteins with identifiable cysteine desulfurase domains as assessed by HMM profile
329 searches and phylogenetic analysis (see Supplementary Figure 3). This is surprising because for
330 most Fe/S cluster synthesis systems, cysteine is the source of sulfur and a cysteine desulfurase is
331 the key enzyme involved in mobilizing it. We suspect that the SmsCB system of these organisms
332 may directly utilize sulfide from the environment as the sulfur source for Fe/S clusters, as
333 previously suggested for *Pygsuia biforma* (Stairs et al., 2014). Indeed, direct sulfide utilization
334 has been demonstrated for methanogenic archaea that possess a simple cysteine-desulfurase-
335 lacking SMS pathway and which also live in sulfidic conditions (Liu et al., 2010). The exact
336 mechanism by which such organisms construct Fe/S clusters is unknown and more work needs to
337 be done to understand their biogenesis in these organisms.

338 **Presence or absence of other conserved mitochondrial proteins in the BaSk taxa.**

339 The next highly conserved mitochondrion/MRO proteins that we investigated were the
340 mitochondrial orthologs of the molecular chaperones chaperonin-60 (Cpn60) and hsp70. To
341 distinguish cytosolic Chaperonin Containing TCP-1 (CCT) subunits from mitochondrial Cpn60
342 (GroEL) homologs and cytosolic and endoplasmic reticulum (ER) paralogs of hsp70 from their
343 mitochondrial Hsp70 (i.e. dnaK orthologs), we used phylogenetic analyses. For *Skoliomonas*
344 *litria* and *Skoliomonas* sp. RCL, all Cpn60 candidates identified distinctly branched with CCT
345 subunit clades (See Supplementary Figure 4); no bona fide mitochondrial Cpn60s could be
346 identified from these species. *Skoliomonas* sp. GEMRC, *Barthelona* sp. PCE, and *Barthelona* sp.
347 PAP020 appear to have both CCTs and mitochondrial Cpn60. Phylogenetic analysis of Hsp70
348 proved more difficult, due in part to a greater degree of similarity between paralogous copies of
349 the chaperone. To supplement this analysis, signature insertion-deletions in the multiple
350 alignments were identified that were used in conjunction with well-annotated Hsp70 yeast
351 homologs (Nelson et al., 1992) to group sequences into cytosolic/ER versus mitochondrial type
352 Hsp70 groups (see Supplementary Figure 5). This information was then checked against the
353 phylogeny for subcellular localization predictions of BaSk Hsp70 candidates. From this analysis,
354 mitochondrial-type Hsp70s were identified in all BaSks except *Skoliomonas litria*. Within
355 MROs, Cpn60 and Hsp70 aid in protein translocation into the matrix and help newly translocated
356 proteins adopt their native structure. These chaperones are ubiquitously predicted to function in a
357 variety of MROs, so it is notable that they are missing in some of the BaSks data. For
358 *Skoliomonas litria*, we did not detect any genes encoding MRO chaperones, while *Skoliomonas*
359 sp. RCL appears to contain Hsp70 but lacks Cpn60. This further highlights the highly reduced
360 nature of the MROs found within these protists, especially within *Skoliomonas litria*.

361 All mitochondria and MROs have membrane associated proteins, including the TIM/TOM
362 complex proteins involved in protein translocation into the organelle. To search for these, we
363 used HMM profiles as many of these sequences are highly divergent and not detectable by
364 pairwise alignment-based search algorithms. The main channel forming protein in the TOM
365 complex, Tom40, was only identifiable in *Skoliomonas* sp. RCL and *Skoliomonas* sp. GEMRC,

366 while the receptor Tom70 was identified in *Barthelona* sp. PCE, *Barthelona* sp. PAP020, and
367 *Skoliomonas* sp. RCL. TIM subunits were generally absent except for Tim17 that was identified
368 in *Barthelona* sp. PCE only. Except for *Skoliomonas litria*, all BaSk members appeared to have
369 the co-chaperone Pam18 subunit of the presequence translocase-associated motor (PAM)
370 complex in addition to the core mtHsp70 subunit. Pam16 was only identified in *Skoliomonas* sp.
371 GEMRC and Pam17 appeared to be absent.

372 In mitochondria, mitochondrial processing peptidases (MPPs) and presequence proteases (PreP)
373 remove the MTS after protein import into the organelles (Garrido et al., 2022). We identified
374 MPP/PreP homologs only in *Skoliomonas litria*, *Skoliomonas* sp. GEMRC, and *Skoliomonas* sp.
375 RCL and none had predicted MTSs. We further investigated their domain structures and
376 phylogenetic position amongst MPP/PreP-related protein families in eukaryotes and prokaryotes.
377 For our phylogenetic analysis we used a recently published multiple alignment of all major
378 families of M16 proteases (Garrido et al., 2022) supplemented with top 20 BLAST hits in the nr
379 database to each of the *Skoliomonas litria* sequences. Our phylogenetic analyses (Supplementary
380 Figure 6A) showed that skoliomonad sequences branch in multiple different positions in the tree,
381 but none are closely related to eukaryote mitochondrial MPPs or PrePs. All but one of these
382 proteins have a four-domain structure that is characteristic of PreP and SPPs but distinct from the
383 two domain structure of the MPP family (Garrido et al., 2022). One *Skoliomonas* sp. RCL
384 sequence has two domains that appear to have evolved separately from the MPP group
385 (Supplementary Figure 6B). Notably, the two *Skoliomonas litria* M16 homologs branch with
386 skoliomonad orthologs in two distinct clades. One of these branches from within a group of
387 entirely bacterial PreP or MAG peptidase sequences and the other is a sister group of
388 uncharacterized homologs from invertebrates (Metazoa) which lack predicted MTSs (except for
389 one homolog in *Branchiostoma* that is the result of a recent duplication). This analysis suggests
390 that none of the M16-related proteases in skoliomonads are orthologs of mitochondrial MPP or
391 PreP; they are likely M16 proteases with separate cytosolic functions.

392 A candidate mitochondrial carrier protein (MCP) was identified in *Skoliomonas litria* but its
393 substrate specificity could not be determined by phylogenetic analysis (Supplementary Figure 7).
394 Whether this protein functions in the MRO membrane is unclear as MCPs are also known to
395 function in peroxisomes or other subcellular organelles (Mazurek et al., 2010). Finally, a
396 candidate homolog of Sam50 was identified in *Skoliomonas litria* and *Skoliomonas* sp. GEMRC.
397 However, in phylogenetic analyses these proteins did not emerge within the clade of
398 mitochondrial Sam50 orthologs, but instead formed an independent group emerging half-way
399 between mitochondrial Sam50 and bacterial BamA clades (Supplementary Figure 8A).
400 Orthologs of this Sam50/BamA-like protein were not detectable in any of the other BaSk
401 genomes, even when this sequence was included in the HMM profile used for searching. To
402 determine if this Sam50/BamA-like protein folded into a structure resembling the mitochondrial
403 orthologs, we used AlphaFold 2.0 (Jumper et al., 2021) to predict its structure. The resulting
404 structures (Supplementary Figure 8B, C) show that while these candidate Sam50 proteins
405 possess what could be a intermembrane POTRA domain, the beta-barrels are smaller and adopt a
406 different confirmation compared to Sam50 homologs of yeast (Supplementary Figure 9) and
407 other well characterized examples (Takeda et al., 2021).

408 Among the five MRO predicted proteomes we present here, *Skoliomonas* sp. GEMRC and
409 *Skoliomonas* sp. RCL contain the most candidate MRO translocon proteins, which is similar to
410 the repertoire found in *Giardia intestinalis* (Leger et al., 2017) with the notable exception of the
411 absence of GrpE in all members of BaSk. *Barthelona* sp. PCE, *Barthelona* sp. PAP020 and
412 *Skoliomonas litria* possess a remarkably reduced MRO translocon complex by comparison. This
413 may be due to the highly divergent nature of membrane bound MRO proteins, which makes
414 detecting such proteins challenging (Pyrihová et al., 2018). Alternatively, in the case of
415 *Skoliomonas litria* which lacks all the highly conserved GCS, ISC, protein import/refolding
416 proteins of MROs, it is unclear if the Sam50/BamA-like protein, the MCP and MPP/M16
417 metalloprotease homologs are targeted to an organelle at all. It is possible that *Skoliomonas*
418 *litria*, like the distantly related *Monocercomonoides exilis*, might completely lack a
419 mitochondrial compartment and these proteins have taken on roles elsewhere in the cell. Further
420 work needs to be undertaken to determine the cellular localization of these proteins and, if it
421 exists, the function *Skoliomonas litria*'s MRO would carry out in the absence of all known
422 conserved mitochondrial pathways and systems.

423 MTS prediction is a known challenge in inferring MRO function in anaerobic protists, including
424 metamonads (Jerlström-Hultqvist et al., 2013; Schneider et al., 2011; Tanifuji et al., 2018), due
425 to highly divergent or missing MTSs in these organisms. It has been suggested that the lack of a
426 long positively charged MTS in metamonads is due to the loss of the proton gradient in the
427 organelles (Garg et al., 2015), though recent analysis of canonical MTSs found in the
428 Anaeramoebae – deep-branching metamonads – suggest that this may not always be the case
429 (Stairs et al., 2021). Previous work has shown that some MRO proteins rely on cryptic internal
430 signals to target proteins to the organelle with high fidelity (Garg et al., 2015; Mentel et al.,
431 2008). Furthermore, most available MTS prediction software tools were trained on
432 experimentally validated datasets of targeted proteins that are lacking for most protists. For these
433 reasons, making accurate MTS predictions in metamonads is exceedingly difficult. Here, we
434 employed several different MTS prediction software tools to find and annotate these signals in
435 BaSks (see Supplementary Table 1). We found several examples of false positives in
436 *Skoliomonas litria* and *Skoliomonas* sp. GEMRC, as homologs of transposons and nuclear
437 targeting proteins were predicted to possess an MTS by some targeting prediction software with
438 high confidence. Because of this, we considered proteins with MTS predictions from two or
439 more MTS prediction software to be “strongly supported” targeting signals. Based on this
440 criterion, *Skoliomonas litria* lacked any strongly supported targeting signals, while strongly
441 supported targeting signals were rare in all other BaSk members. *Barthelona* sp. PCE contains
442 strongly supported MTSs predicted on three proteins: an [FeFe]-hydrogenase, the T-protein of
443 the glycine cleavage system (GCST), and on the IscU scaffold protein. *Barthelona* sp. PAP020
444 also contained a strongly supported MTS on its ortholog of IscU, as well as a different
445 component of the glycine cleavage system (GCSP2). Another MTS detected was found on pre-
446 sequence translocated-associated motor protein PAM18 in *Skoliomonas* sp. GEMRC.
447 Interestingly, in *Skoliomonas* sp. RCL we find that a cytosolic CCT-gamma subunit contains a
448 strongly predicted MTS, where in other BaSks, all cytosolic CCT subunits appear to be missing a
449 MTS. However, when aligned to other BaSk CCT-gamma subunits, it does not appear to have an
450 obvious N-terminal extension. As *Skoliomonas* sp. RCL has no mitochondrial Cpn60 homolog

451 but does contain proteins which are homologous to MRO-localized proteins in other
452 metamonads, it is possible (but unprecedented) that this CCT subunit has replaced the
453 mitochondrial homolog in this species by acquiring an MTS. *Skoliomonas* sp. RCL does not have
454 an additional copy of the gamma subunit of CCT. Follow up localization experiments are needed
455 to deduce the subcellular localization of this particular CCT subunit.

456 **The BaSks share a core ATP generation pathway.**

457 All BaSk members share a similar hypothetical ATP production pathway that is reminiscent of
458 the pathway found in *Giardia intestinalis* (Jedelský et al., 2011; Sanchez & Müller, 1996). In this
459 pathway, pyruvate:ferredoxin oxidoreductase (PFO) catalyzes the oxidation of pyruvate in the
460 presence of ferredoxin and CoA to produce acetyl-CoA, CO₂ and reduced ferredoxin. Acetyl-
461 CoA is then transformed to acetate by ACS and, in the process, converts ADP to ATP.
462 Ferredoxin is reoxidized by [FeFe]-hydrogenase (HydA) that passes electrons to protons creating
463 H₂ gas. Notably, pyruvate-formate lyase (PFL) was also detected in all BaSk members, allowing
464 an alternative pathway of acetyl-CoA production from pyruvate (Stairs et al., 2011; see
465 Supplementary Figure 10). Note that there are multiple copies of both HydA and PFO in each
466 BaSk member, some of which possess additional domains encoding ferredoxin or flavodoxin-
467 like proteins (see Supplementary Table 2). No components of typical ATP production pathways
468 found in trichomonad hydrogenosomes, such as acetate:succinyl-CoA transferase or succinyl-
469 CoA synthase (Lahti et al., 1992; Van Grinsven et al., 2008), were detected in any of the BaSks.
470 Though [FeFe]-hydrogenase is present in each BaSk member, none of the [FeFe]-hydrogenase
471 maturase proteins (HydG, E or F) were detected. This is notable because these maturases, when
472 present, are always targeted to mitochondria or MROs. This, combined with the lack of MTS
473 detected in any of the proteins from the above pathway, leads us to assume that ATP and H₂ gas
474 are likely produced in the cytosol of the skoliomonads.

475 However, the pathways in the barthelonids appear to be slightly different in function and likely
476 localization. Both *Barthelona* sp. PCE and *Barthelona* sp. PAP020 encode NuoE and NuoF
477 NADH-dehydrogenase subunits of complex I that are known to function in the
478 mitochondrial/MRO matrix in eukaryotes. It is widely thought that in the anaerobic protists that
479 possess them, NuoE and NuoF likely form a complex with an MRO-localized HydA to perform
480 simultaneous NADH and ferredoxin (Fd⁺) oxidation by an electron confurcating reaction that
481 produces H₂ gas, NAD⁺ and Fd (Dyall et al., 2004; Stairs et al., 2015). For this reason, and the
482 fact that one of the HydA proteins of *Barthelona* sp. PCE and *Barthelona* sp. PAP020 have a
483 predicted MTS, we infer that both barthelonids likely have MRO-associated hydrogenase
484 activity, as recently suggested for *Barthelona* sp. PAP020 by Yazaki et al. (2019). However,
485 unlike the hypothesis of Yazaki and colleagues (see Fig. 4b in Yazaki et al. 2019), we suggest
486 that the reduced ferredoxin may, in fact, get produced within their MROs by PFO activity. If so,
487 it is also possible that at least one of the two ACS homologs in each of these organisms is also
488 MRO-localized and produces ATP within the organelle, though no MTSs are predicted on any of
489 the ACS homologs. Further localization experiments in these barthelonids are needed to test
490 these hypotheses.

491 Previous studies have shown that some of the enzymes involved in ATP synthesis found within
492 metamonads have a complex phylogenetic history. In particular, ACS is thought to have been
493 transferred into the metamonads multiple times through LGT (Leger et al., 2017). To determine
494 the evolutionary histories of the BaSk ACSs, we constructed a phylogenetic tree containing
495 ACSs from a variety of metamonads, which can be found as Supplementary Figure 11. Our
496 results show that, as in previous studies, most metamonad ACSs branch in one of two clades,
497 known as ACS1 and ACS2. The ACS homologs found in the BaSks also form two distinct
498 groups; one appears to be related to ACS2 found within *Carpediemonas membranifera*,
499 *Ergobibamus cyprinoides*, and *Trimastix*. Additional ACS2 homologs from *Monocercomonoides*
500 and *Paratrimastix pyriformis* were also identified, which also branch with the metamonad ACS2
501 group. This suggests that ACS2 was inherited in the last common ancestor of Preaxostyla and the
502 fornicates + BaSk. The BaSk also possess a second ACS homolog which branches separately
503 from other metamonad ACSs. This enzyme seems to be most closely related to ACS found
504 within *Streblomastix*, *Monocercomonoides* and *Blastocystis*, and is distinct from other types of
505 ACS in the tree. As previously reported by Yazaki et al. (2019) in their analysis of the
506 *Barthelona* sp. PAP020 transcriptome, this is likely to be a novel homolog of ACS (ACS3) and
507 was probably transferred into metamonads through a LGT event distinct from the event that gave
508 rise to ACS1 and ACS2. Our analysis also suggests that the ACS found within *Spironucleus*
509 *salmonicida* MROs may not be ACS2, as previously reported (Leger et al., 2017) because, in our
510 analyses, the *S. salmonicida* ortholog (denoted ACS* in Figure 4 and Supplementary Figure 11)
511 did not form a clade with other metamonad ACS2 sequences but instead grouped with several
512 TACK archaea, although the support values for this relationship are low. A diagram
513 summarizing the gains and losses of these proteins, along with other key metabolic processes and
514 proteins mentioned above, can be found as Figure 4. These patterns suggest that there have been
515 at least three, and possibly four, independent transfers of ACS into the metamonads. These
516 transfers occurred at very different points in time along the evolution of various metamonad
517 groups and highlights the role of LGT in the evolution of anaerobic metabolism.

518 To investigate the expression level of these key metabolic enzymes, we mapped RNASeq reads
519 to each gene model, then normalized read counts and compared the fragments per kilobase of
520 transcript per million mapped reads (FPKM) value amongst these gene models (see
521 Supplementary Table 1). We found that some enzymes relating to anaerobic metabolism were
522 amongst the top 100 most highly expressed genes in all four of the BaSk queried, though the
523 specific anaerobic enzymes in this top 100 list differed between each species (see Supplementary
524 Table 3). For *Skoliomonas litria*, *Skoliomonas* sp. GEMRC, and *Skoliomonas* sp. RCL this
525 included two or more copies of genes encoding PFL. For *Skoliomonas litria* and *Skoliomonas* sp.
526 RCL, this also included one copy each of a gene encoding PFO. *Skoliomonas litria*, in addition
527 to PFL, had a copy of an ACS and a malic enzyme gene in its top 100 most highly expressed
528 gene set. *Skoliomonas* sp. GEMRC was the only organism with a SmsCB gene represented its
529 top 100 expressed list; other BaSk members have comparatively lower expression levels of this
530 gene.

531

532 **Implications for the evolution of MROs within the Metamonada supergroup.**

533 Based on our reconstructions of MRO properties on the metamonad tree, we suggest that the last
534 common ancestor of BaSk possessed an already highly reduced MRO compared to the common
535 ancestor of fornicates + BaSk (Figure 4). The barthelonids PCE and PAP020 seem to have
536 functionally reduced MROs, but their predicted MRO proteomes retain similar functions to other
537 free-living metamonads such as the GCS and serine metabolism, hydrogen production and Fe/S
538 cluster biogenesis by a simple ISC system. On the other hand, the MROs of *Skoliomonas* sp.
539 RCL and *Skoliomonas* sp. GEMRC appear to be unique amongst metamonads, as we predict that
540 the organelles only function in glycine and serine metabolism and are unlikely to produce H₂.
541 For *Skoliomonas litria*, the only proteins typically associated with mitochondria and MROs
542 detected were a candidate MCP and a homolog of Sam50; of these, only the latter is exclusively
543 associated with mitochondrial organelles in eukaryotes. The complete lack of all other proteins
544 homologous to common MRO-localizing proteins could indicate that an MRO may not even
545 exist in this organism. In any case, this extreme reductive evolutionary path may relate to the
546 acquisition of a simple fused SmsCB gene that was acquired by LGT in a common ancestor of
547 BaSk. This acquisition then led to the simplification of the ISC system in the *Barthelona* clade,
548 and the outright loss of the ISC system in the skoliomonads, as Fe/S proteins for organellar
549 functions were no longer needed.

550 Regardless of the evolutionary forces involved, the BaSks demonstrate reduction in MRO
551 function that is independent of the loss seen in other metamonad groups, such as diplomonads
552 and oxymonads (Karnkowska et al., 2016; Leger et al., 2017). This is remarkable given that
553 many metamonads that display a similar loss of MRO functions are parasitic or commensalistic
554 and the nutrient-rich endobiotic lifestyle has often been assumed to be part of the explanation for
555 extreme MRO proteome streamlining (Karnkowska et al., 2016; Stairs et al., 2015). Instead, in
556 the case of the free-living BaSk members, it appears that gain of a simple SMS system was
557 amongst the first triggers leading to the extreme reductive MRO evolution in this group.

558

559 **Conclusions**

560 We have generated high quality draft genomes, transcriptomes, and curated predicted proteome
561 sets for a novel group of free-living metamonads. The placement of BaSk within the tree of
562 Metamonada as the sister group to the Fornicata make them a key group to study in terms of
563 genome evolution, LGT events, and adaptation to various environmental niches. These data
564 place us several steps forward towards the goal of representing diverse and historically under-
565 sampled microbial eukaryotes in the tree of eukaryotic life.

566 Our findings demonstrate the diversity of MRO configuration and function amongst the
567 metamonads. As a group, BaSks display a level of MRO reduction not typically seen in free-
568 living metamonads and which is independent of the reduction displayed in the parasitic
569 diplomonads. BaSk members share many interesting parallels with the MRO reduction and loss
570 seen in other metamonads, as all BaSks possess a SMS Fe/S cluster system that has, in some

571 cases, replaced the canonical ISC system. This is the second discovered instance of an LGT
572 event that has replaced the ISC system in metamonads with a SUF-like system and serves to
573 highlight the role of adaptive LGTs in MRO evolution. Based on these findings, we speculate
574 that the last common ancestor of the BaSks possessed both a compact, streamlined genome with
575 a highly reduced MRO, and was markedly different from the last common ancestor of the
576 fornicates. In many of the BaSk taxa, further work is needed to elucidate the exact subcellular
577 localization of several candidate MRO proteins including enzymes in the anaerobic ATP
578 synthesis pathway and to determine the breadth of functions carried out by the MROs in this
579 newly discovered group. For *Skoliomonas litria*, which lacks all known mitochondrial pathways,
580 it will be especially important to investigate the localization of its anaerobic ATP synthesis
581 pathway, its MCP, and the Sam50/BamA-like protein to determine whether this free-living
582 flagellate has completely dispensed with the organelle.

583

584 **Materials and Methods**

585 **Cell cultivation & microscopy**

586 Established cultures of isolates *Skoliomonas litria*, *Skoliomonas* sp. RCL and *Skoliomonas* sp.
587 GEMRC (Eglit et al. 2024) were maintained in variants of CR media (Gigeroff et al., 2023);
588 *Skoliomonas litria* in 50 mL of 40 ppt CR with 3% LB, *Skoliomonas* sp. GEMRC in 50 mL of 40
589 ppt CR with 1% LB and 3 sterile wheat grains, *Skoliomonas* sp. RCL in 50 mL of 25 ppt CR
590 with 1% LB and 3 sterile wheat grains. All were inoculated into fresh media every 7-10 days
591 based on culture density, with a second inoculation after 24 hours. Cultures of isolate
592 'Barthelona' sp.' PCE (Yazaki et al. 2019) were maintained in sterile filtered seawater
593 (Northwest Arm, Halifax, Nova Scotia) supplemented with 3% LB, and kept at 16°C. Cell growth
594 was monitored weekly, and subculturing was done every 3-4 weeks depending on cell density by
595 transferring around 20% of the old culture into the new culture.

596 Cells were imaged with differential interference contrast optics on a Zeiss Axiovert 200M
597 microscope fitted with a AxioCam M5 camera (Carl Zeiss AG).

598 **Nucleic acid extraction & sequencing**

599 For *Skoliomonas litria*, *Skoliomonas* sp. GEMRC, *Skoliomonas* sp. RCL, and *Barthelona* sp.
600 PCE: cell material for DNA and RNA extraction was harvested from 1-2 L of dense cell culture.
601 The cells were collected by centrifugation in 50 mL tubes for 8 min at 2000×g and at 4°C. The
602 pellets were then combined into two 15 mL tubes that were spun again as before. The recovered
603 pellets were resuspended in sterile filtered (0.2 µm) spent culture media and layered over
604 Histopaque-1077, and then subjected to centrifugation at 2000×g for 20 min at room
605 temperature. The protist-containing layer between the Histopaque and the top media was
606 collected, and the procedure was repeated for a total of two rounds of Histopaque separation.
607 Finally, the cells were diluted by 5 mL (10 volumes) of sterile spent-media and pelleted for 8
608 min, at 2000×g, 4°C. The cells were then resuspended in 2 mL of fresh media.

609 Genomic DNA was purified using a variety of techniques including traditional phenol-
610 chloroform extraction, CTAB extraction, the QIAGEN Genomic-tip kit, and the QIAGEN
611 MagAttract HMW DNA kit. RNA was extracted using Trizol according to Invitrogen
612 specifications. RNA and DNA were sent to Genome Quebec for library construction and
613 NovaSeq 6000 Illumina sequencing. In the case of the RNA, poly-A selection was performed to
614 enrich for eukaryotic reads. High molecular weight DNA from each species was used to
615 construct a 1D ligation Nanopore library (LSK108 for *Barthelona* sp. PCE, LSK109 - EXP-
616 NBD104 for *Skoliomonas litria* and *Skoliomonas* sp. GEMRC, and LSK308 for *Skoliomonas* sp.
617 RCL) and was sequenced using a MinION flowcell (FLO-MIN106 (R9.4) for *Skoliomonas litria*
618 and *Skoliomonas* sp. GEMRC, and FLO-MIN107 (R9.5) for *Skoliomonas* sp. RCL and
619 *Barthelona* sp. PCE).

620 For *Barthelona* sp. PAP020, cells were cultured as described in Yazaki et al. (2019). Cells were
621 harvested by pelleting at 1500 rpm for 5 minutes at 4°C and were washed with PBS prior to

622 phenol chloroform DNA extraction. The purified DNA was sequenced on an Illumina Hiseq
623 2500 PE using the Truseq library prep.

624 **Genome/transcriptome assembly, & gene annotation**

625 For *Skoliomonas litria*, *Skoliomonas* sp. GEMRC, *Skoliomonas* sp. RCL, and *Barthelona* sp.
626 PCE, Illumina NovaSeq reads were trimmed using Trimmomatic v0.36 (Bolger et al., 2014).
627 RNASeq reads were assembled using Trinity v2.6.6 (Haas et al., 2013) and checked for
628 multiplexing contamination using WinstonCleaner
629 (<https://github.com/kolecko007/WinstonCleaner>). Bacterial contamination was removed from the
630 Trinity assemblies using Anvi'o v5 (Eren et al., 2021).

631 Raw MinION sequencing data was basecalled using Albacore v2.1.3 (Albacore has since been
632 replaced by Guppy – see Wick et al., 2019). These data were assembled using Flye v2.3
633 (Kolmogorov et al., 2019), Raven v0 (Vaser & Šikić, 2021) Canu v1.7 (Koren et al., 2017) and
634 ABruijn v2.2b (Lin et al., 2016). The resulting assemblies were evaluated for completeness and
635 contiguity by comparing assembly size, contig number, N50 and L50 values, and ALE scores
636 (Clark et al., 2013). The ABruijn assembly was chosen moving forward for *Skoliomonas litria*,
637 *Skoliomonas* sp. RCL and *Barthelona* sp. PCE. For *Skoliomonas* sp. GEMRC, the Canu
638 assembly was used. Raw MinION output was used to improve the base-call accuracy of these
639 assemblies using Nanopolish version 0.8.4 (Loman et al., 2015) and Illumina reads were used to
640 error-correct the assemblies using Unicycler version 0.4.3 (Wick et al., 2016). Bacterial
641 contamination was assessed and removed from the resulting contigs using read coverage, GC
642 content, and BLAST search results (Altschul et al., 1990). The Eukfinder workflow was used to
643 remove prokaryotic contaminants from the BaSk genome assemblies (Zhao et al., 2023)

644 Gene prediction utilized a pipeline described in Salas-Leiva et al. (2021). Briefly, RepeatMasker
645 (Flynn et al., 2020) was first used to mask the repetitive regions of the genome. RNA-seq reads
646 were then mapped to the genome using HISAT2 (Kim et al., 2019). GeneMark-ET (Lomsadze et
647 al., 2014) then utilized this mapping information to generate gene coordinates and intron splice
648 sites, creating a training set of genes. This training set was then used to train AUGUSTUS
649 (Stanke et al., 2004), which generated the gene predictions. PASA (Haas et al., 2003) was then
650 used to validate the coordinates of these gene models. The predicted protein set was checked for
651 completeness using the obd9 BUSCO v3.0.1 database (Simao et al., 2015).

652 To estimate genome completeness we used Merqury v.1.0 (Rhee et al., 2020) with a kmer size of
653 17 (estimated using Merqury). The Illumina reads used for the Merqury analysis were
654 decontaminated using the Eukfinder workflow (Zhao et al., 2023) before genome completeness
655 estimation. Additionally, RNA-seq mapping was used as a measure of genome completeness,
656 and RNA-seq reads were decontaminated using the same method mentioned used for the DNA
657 Illumina reads.

658 To construct the *Barthelona* sp. PAP020 genome, Illumina reads were assembled using Spades
659 (Prjibelski et al., 2020) with default parameters. Bacterial reads were identified by metaBAT
660 (Kang et al., 2015) and CheckM (Parks et al., 2015). Once the identified bacterial reads were
661 removed, the remaining Illumina reads were then used to assemble a new genome. This process

662 was repeated until no bacterial contamination was detected. The final contigs were verified by
663 checking kmer content and were also checked against the *Barthelona* sp. PAP020 transcriptome
664 (Yazaki et al., 2020).

665 **Gene expression analysis**

666 Expression of predicted protein-coding genes was quantified by mapping RNASeq reads to their
667 respective long-read genome using HISAT2 (Kim et al., 2019). Using this mapping information
668 and gene model coordinates, the expression level was normalized using Cufflinks (Cuffquant and
669 Cuffnorm with default settings)(Trapnell et al., 2010) to compute a FPKM value for each gene.

670 **Phylogenomic analysis**

671 The phylogenomic dataset was constructed based on a previously published set of 351 highly
672 conserved protein orthologs (Brown et al., 2018), with 177 orthologs excluded due to deep
673 paralogies or insufficient coverage across pertinent species in the analysis. Each of the 174
674 remaining ortholog alignments were used to construct single-protein phylogenies, and were used
675 to screen out non-orthologous data. The final 174 alignments were realigned using mafft v7.310
676 einsi, trimmed using BMGE v1.0 (default settings) (Criscuolo & Gribaldo, 2010), and were
677 concatenated together and used to infer a maximum-likelihood tree under the
678 LG+C60+F+gamma model of evolution with IQTree v1.5.5 (Nguyen et al., 2015). A PMSF
679 model based on this tree and mixture model (Wang et al., 2018) was estimated and used to
680 calculate branch supports using non-parametric bootstrapping, approximate Bayes (aBayes;
681 Anisimova et al., 2011) and approximate likelihood-ratio support (aLRT; Guindon et al., 2010).

682 **Inventory of MRO and anaerobic metabolism proteins**

683 Proteins of interest were searched for in the predicted proteome, transcriptome, and genome of
684 each species using both NCBI BLAST (using blastp, tblastn and blastx) and HMM profile
685 searching using Hmmer v3.1b2 (hmmer.org). For each search, queries included both orthologous
686 sequences from closely related metamonads and, once identified by these methods, the orthologs
687 from other BaSks. The protein sets of the BaSk taxa were also used as queries in BLAST
688 searches against the mitochondrial proteomes from *Andalucia godoyi* (Genbank accession
689 VRVR00000000; see Gray et al., 2019), *Tetrahymena thermophila* (predicted protein Genbank
690 accession EAR80512 to EAS07932, see Eisen et al., 2006; Smith et al., 2007), *Arabidopsis*
691 *thaliana* (NCBI Bioproject PRJNA10719 and SAMN03081427; see Cheng et al., 2017; The
692 Arabidopsis Genome Initiative, 2000), *Homo sapiens* (International Human Genome Sequencing
693 Consortium, 2001; mitochondrial proteins from UniProt (GO:0005739)), *Acanthamoeba*
694 *castellanii* (NCBI Bioproject PRJNA599339 and PRJNA487265; see Gawryluk et al., 2014;
695 Matthey-Doret et al., 2022), and *Saccharomyces cerevisiae* (<https://www.yeastgenome.org/>; see
696 Engel et al., 2014). The top five hits for each query sequence were examined manually. Proteins
697 relating to mitochondrial protein translocation were searched for using both general HMM
698 profiles (Leger et al., 2017) and profiles tailored for searching in metamonads. The latter profiles
699 were created by retrieving the profiles from Pfam for each protein of interest and then retrieving
700 the best hits using the Pfam profile against the several publicly available metamonad sequencing
701 data databases with hmmsearch. Using an evalue cutoff of <0.01, metamonad sequences were

702 added to the corresponding Pfam seed alignment using the mafft –add function. If there were
703 more than two detected sequences from metamonads, an alignment was made with these
704 sequences and was then used to build a profile to search for more hits. Each candidate protein
705 identified was used to reciprocally search the BLAST database to confirm protein identity. In
706 ambiguous cases, the Pfam and InterPro databases were searched to analyze protein domain
707 structure.

708 Phylogenies for key proteins identified were constructed to aid in identification in cases with
709 deep paralogy (Hsp70 and Cpn60). Phylogenies were also made to identify the origin of enzymes
710 that act in anaerobic metabolism. Alignments from Leger et al. 2017 or Tsousis et al., 2014
711 were utilized as a starting point, and we added the corresponding BaSk sequences. Where
712 relevant, the protein sequences of the top 10 BLAST hits from each BaSk homolog were also
713 added to the appropriate alignments. In cases where no starting alignments were available, a
714 preliminary alignment was created by retrieving the top 1000 blast hits and reducing the
715 sequences to 100-120 sequences using CD-HIT v.4.6 with recommended word sizes. These
716 sequences were aligned using mafft einsi with default settings and were trimmed using trimal
717 v1.4.rev15 (Capella-Gutiérrez et al., 2009) with the -gappyout setting. These phylogenies were
718 inferred using the LG+C20+F+gamma model of evolution with IQ-TREE.

719 **Mitochondrion-related organelle protein localization predictions**

720 Putative mitochondrial targeted proteins and mitochondrial targeting sequences (MTS) were
721 predicted using the following mitochondrial targeting peptide prediction programs: TargetP
722 v1.1b (Emanuelsson et al., 2007), MitoProt II v1.101 (Claros & Vincens, 1996), and MitoFates
723 v1.1 (Fukasawa et al., 2015)). Additionally, the predicted proteins were used to search both the
724 nr database and a custom database of known mitochondrial proteins.

725 **Protein structure prediction and alignment**

726 The structure of candidate Sam50/BamA-like proteins in *Skoliomonas litria* and *Skoliomonas* sp.
727 GEMRC were predicted using the ColabFold v1.5.2 server (Mirdita et al., 2022). The β-barrel
728 portion of the *Skoliomonas litria* Sam50/BamA-like protein was aligned to the yeast Sam50
729 protein structure (Takeda et al., 2021) using the PyMOL “cealign” function.

730 **SMSCB (SUFCB) phylogeny**

731 The SmsCB fusion protein identified in each BaSk member was added to previously constructed
732 alignments (Leger et al., 2016) of SmsC and SmsBD. This dataset was aligned using mafft einsi
733 with default settings and was trimmed by hand. The dataset was then concatenated together, and
734 the phylogeny was inferred using the same methods as the single protein phylogenies mentioned
735 above.

736 **M16 protease phylogeny**

737 The MPP candidate proteins identified in the skoliomonads were added to the previously
738 constructed alignments of M16 proteases (Garrido et al., 2022), which include SPP, PreP, MPP-
739 alpha and MPP-beta sequences. In addition, we used the protein sequences of the two MPP

740 candidates of *Skoliomonas litria* to BLAST search nr, and added the top 20 hits for each
741 candidate to the alignments. This dataset was aligned using mafft einsi with default settings and
742 was trimmed by trimal as above. After trimming, we removed the duplicated protease domains in
743 four domain proteins, relative to their position when aligned to two domain proteins. This
744 alignment was then inferred using the same methods as the single protein phylogenies described
745 above. The domain structures displayed to the right of the phylogeny represents the predicted
746 protein domains of the skoliomonads (in red) and other major clades within the tree (in grey) as
747 predicted by the InterProScan online tool (see <https://www.ebi.ac.uk/interpro/>), which utilizes the
748 InterPro 98.0 database (Paysan-Lafosse et al., 2023).

749 **Data availability**

750 Genomes and gene annotations (where applicable) can be found under NBCI BioProject ID
751 PRJNA949547.

752

753 **Acknowledgments**

754 The majority of work was supported by Foundation grant (FRN-142349) from the Canadian
755 Institutes for Health Research (CIHR) awarded to Andrew J. Roger. Shelby K. Williams was
756 supported by a graduate scholarship from the Killam Foundation.

757

758

759

760

761 **Citations**

762 Anisimova, M., Gil, M., Dufayard, J. F., Dessimoz, C., & Gascuel, O. (2011). Survey of branch
763 support methods demonstrates accuracy, power, and robustness of fast likelihood-based
764 approximation schemes. *Systematic Biology*, 60(5), 685–699.
765 <https://doi.org/10.1093/sysbio/syr041>

766 Anwar, S., Dikhit, M. R., Singh, K. P., Kar, R. K., Zaidi, A., Sahoo, G. C., Roy, A. K., Nozaki,
767 T., Das, P., & Ali, V. (2014). Interaction between Nbp35 and Cfd1 proteins of cytosolic Fe-
768 S cluster assembly reveals a stable complex formation in *Entamoeba histolytica*. *PLoS ONE*, 9(10), 12–14. <https://doi.org/10.1371/journal.pone.0108971>

770 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina
771 sequence data. *Bioinformatics*, 30(15), 2114–2120.
772 <https://doi.org/10.1093/bioinformatics/btu170>

773 Brown, M. W., Heiss, A. A., Kamikawa, R., Inagaki, Y., Yabuki, A., Tice, A. K., Shiratori, T.,
774 Ishida, K. I., Hashimoto, T., Simpson, A. G. B., & Roger, A. J. (2018). Phylogenomics
775 Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group. *Genome Biology and*
776 *Evolution*, 10(2), 427–433. <https://doi.org/10.1093/gbe/evy014>

777 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for
778 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*, 25(15),
779 1972–1973. <https://doi.org/10.1093/bioinformatics/btp348>

780 Cheng, C. Y., Krishnakumar, V., Chan, A. P., Thibaud-Nissen, F., Schobel, S., & Town, C. D.
781 (2017). Araport11: a complete reannotation of the *Arabidopsis thaliana* reference genome.
782 *Plant Journal*, 89(4), 789–804. <https://doi.org/10.1111/tpj.13415>

783 Criscuolo, A., & Gribaldo, S. (2010). BMGE (Block Mapping and Gathering with Entropy): A
784 new software for selection of phylogenetic informative regions from multiple sequence
785 alignments. *BMC Evolutionary Biology*, 10(1). <https://doi.org/10.1186/1471-2148-10-210>

786 Derelle, E., Ferraz, C., Rombauts, S., Rouzé, P., Worden, A. Z., Robbens, S., Partensky, F.,
787 Degroeve, S., Echevnyié, S., Cooke, R., Saeys, Y., Wuyts, J., Jabbari, K., Bowler, C.,
788 Panaud, O., Piégu, B., Ball, S. G., Ral, J. P., Bouget, F. Y., ... Moreau, H. (2006). Genome
789 analysis of the smallest free-living eukaryote *Ostreococcus tauri* unveils many unique
790 features. *Proceedings of the National Academy of Sciences of the United States of America*,
791 103(31), 11647–11652. <https://doi.org/10.1073/pnas.0604795103>

792 Dyall, S. D., Yan, W., Delgadillo-Correa, M. G., Lunceford, A., Loo, J. A., Clarke, C. F., &
793 Johnson, P. J. (2004). Non-mitochondrial complex I proteins in a hydrogenosomal
794 oxidoreductase complex. *Nature*, 431(7012), 1103–1107.
795 <https://doi.org/10.1038/nature02990>

796 Eglit, Y., Williams, S. K., Roger, A. J., & Simpson, A. G. B. (2024). Characterisation of
797 *Skoliomonas* gen. nov., a haloalkaliphilic anaerobe related to barthelonids (Metamonada).
798 <https://doi.org/10.1101/2024.03.12.584707>

799 Eisen, J. A., Coyne, R. S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J. R., Badger, J. H., Ren,
800 Q., Amedeo, P., Jones, K. M., Tallon, L. J., Delcher, A. L., Salzberg, S. L., Silva, J. C.,

801 Haas, B. J., Majoros, W. H., Farzad, M., Carlton, J. M., Smith, R. K., ... Orias, E. (2006).
802 Macronuclear genome sequence of the ciliate *Tetrahymena thermophila*, a model eukaryote.
803 *PLoS Biology*, 4(9), 1620–1642. <https://doi.org/10.1371/journal.pbio.0040286>

804 Engel, S. R., Dietrich, F. S., Fisk, D. G., Binkley, G., Balakrishnan, R., Costanzo, M. C., Dwight,
805 S. S., Hitz, B. C., Karra, K., Nash, R. S., Weng, S., Wong, E. D., Lloyd, P., Skrzypek, M.
806 S., Miyasato, S. R., Simison, M., & Cherry, J. M. (2014). The Reference Genome Sequence
807 of *Saccharomyces cerevisiae*: Then and Now. *G3: Genes, Genomes, Genetics*, 4(3), 389–
808 398. <https://doi.org/10.1534/g3.113.008995>

809 Eren, A. M., Kiefl, E., Shaiber, A., Veseli, I., Miller, S. E., Schechter, M. S., Fink, I., Pan, J. N.,
810 Yousef, M., Fogarty, E. C., Trigodet, F., Watson, A. R., Esen, Ö. C., Moore, R. M.,
811 Clayssen, Q., Lee, M. D., Kivenson, V., Graham, E. D., Merrill, B. D., ... Willis, A. D.
812 (2021). Community-led, integrated, reproducible multi-omics with anvi'o. *Nature
813 Microbiology*, 6(1), 3–6. <https://doi.org/10.1038/s41564-020-00834-3>

814 Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F.
815 (2020). RepeatModeler2 for automated genomic discovery of transposable element families.
816 *Proceedings of the National Academy of Sciences of the United States of America*, 117(17),
817 9451–9457. <https://doi.org/10.1073/pnas.1921046117>

818 Fulnečková, J., Ševčíková, T., Fajkus, J., Lukešová, A., Lukeš, M., Vlček, Č., Lang, B. F., Kim,
819 E., Eliáš, M., & Sýkorová, E. (2013). A broad phylogenetic survey unveils the diversity and
820 evolution of telomeres in eukaryotes. *Genome Biology and Evolution*, 5(3), 468–483.
821 <https://doi.org/10.1093/gbe/evt019>

822 Garcia, P. S., D'Angelo, F., Ollagnier de Choudens, S., Dussouchaud, M., Bouveret, E.,
823 Gribaldo, S., & Barras, F. (2022). An early origin of iron–sulfur cluster biosynthesis
824 machineries before Earth oxygenation. *Nature Ecology and Evolution*, 6(10), 1564–1572.
825 <https://doi.org/10.1038/s41559-022-01857-1>

826 Garg, S., Stölting, J., Zimorski, V., Rada, P., Tachezy, J., Martin, W. F., & Gould, S. B. (2015).
827 Conservation of transit peptide-Independent protein import into the mitochondrial and
828 hydrogenosomal matrix. *Genome Biology and Evolution*, 7(9), 2716–2726.
829 <https://doi.org/10.1093/gbe/evv175>

830 Garrido, C., Wollman, F. A., & Lafontaine, I. (2022). The Evolutionary History of Peptidases
831 Involved in the Processing of Organelle-Targeting Peptides. *Genome Biology and
832 Evolution*, 14(7), 1–18. <https://doi.org/10.1093/gbe/evac101>

833 Gawryluk, R. M. R., Chisholm, K. A., Pinto, D. M., & Gray, M. W. (2014). Compositional
834 complexity of the mitochondrial proteome of a unicellular eukaryote (*Acanthamoeba
835 castellanii*, supergroup Amoebozoa) rivals that of animals, fungi, and plants. *Journal of
836 Proteomics*, 109, 400–416. <https://doi.org/10.1016/j.jprot.2014.07.005>

837 Gawryluk, R. M. R., & Stairs, C. W. (2021). Diversity of electron transport chains in anaerobic
838 protists. *Biochimica et Biophysica Acta - Bioenergetics*, 1862(1), 148334.
839 <https://doi.org/10.1016/j.bbabi.2020.148334>

840 Gigeroff, A. S., Eglit, Y., & Simpson, A. G. B. (2023). Characterisation and Cultivation of New
841 Lineages of Colponemids, a Critical Assemblage for Inferring Alveolate Evolution. *Protist*,

842 174(2), 125949. <https://doi.org/10.1016/j.protis.2023.125949>

843 Giovannoni, S. J., Cameron Thrash, J., & Temperton, B. (2014). Implications of streamlining
844 theory for microbial ecology. *ISME Journal*, 8(8), 1553–1565.
845 <https://doi.org/10.1038/ismej.2014.60>

846 Goffeau, A. A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Hoheisel, J.
847 D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippson, P.,
848 Tettelin, H., & Oliver, S. G. (1996). Life with 6000 Genes. *Science*, 274(5287).
849 10.1126/science.274.5287.546

850 Gray, M. W., Burger, G., Derelle, R., Klimes, V., Leger, M. M., Sarrasin, M., Vlcek, C., Roger,
851 A. J., Elias, M., & Franz Lang, B. (2019). The draft nuclear genome sequence and predicted
852 mitochondrial proteome of *Andalucia godoyi*, a protist with the most gene-rich and
853 bacteria-like mitochondrial genome. *Current Biology*, 3(20), 1–35. doi.org/10.1186/s12915-
854 020-0741-6

855 Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010).
856 New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the
857 performance of PhyML 3.0. *Systematic Biology*, 59(3), 307–321.
858 <https://doi.org/10.1093/sysbio/syq010>

859 Haas, B. J., Delcher, A. L., Mount, S. M., Wortman, J. R., Smith, R. K., Hannick, L. I., Maiti, R.,
860 Ronning, C. M., Rusch, D. B., Town, C. D., Salzberg, S. L., & White, O. (2003). Improving
861 the *Arabidopsis* genome annotation using maximal transcript alignment assemblies. *Nucleic
862 Acids Research*, 31(19), 5654–5666. <https://doi.org/10.1093/nar/gkg770>

863 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Philip, D., Bowden, J., Couger, M. B.,
864 Eccles, D., Li, B., Macmanes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N.,
865 Westerman, R., William, T., Dewey, C. N., Henschel, R., ... Regev, A. (2013). De novo
866 transcript sequence reconstruction from RNA-Seq: reference generation and analysis with
867 Trinity. In *Nature protocols* (Vol. 8, Issue 8).
868 <https://doi.org/doi.org/10.1038/nprot.2013.084>

869 International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of
870 the human genome. *Nature*, 412(6846), 565–566. <https://doi.org/10.1038/35087627>

871 Jedelský, P. L., Doležal, P., Rada, P., Pyrih, J., Šmíd, O., Hrdý, I., Šedinová, M., Marcinčíková,
872 M., Voleman, L., Perry, A. J., Beltrán, N. C., Lithgow, T., & Tachezy, J. (2011). The
873 minimal proteome in the reduced mitochondrion of the parasitic protist *Giardia intestinalis*.
874 *PLoS ONE*, 6(2), 15–21. <https://doi.org/10.1371/journal.pone.0017285>

875 Jerlström-Hultqvist, J., Einarsson, E., Xu, F., Hjort, K., Ek, B., Steinhäuf, D., Hultenby, K.,
876 Bergquist, J., Andersson, J. O., & Svärd, S. G. (2013). Hydrogenosomes in the diplomonad
877 *Spiرونucleus salmonicida*. *Nature Communications*, 4, 1–9.
878 <https://doi.org/10.1038/ncomms3493>

879 Jiménez-González, A., Xu, F., & Andersson, J. O. (2019). Lateral Acquisitions Repeatedly
880 Remodel the Oxygen Detoxification Pathway in Diplomonads and Relatives. *Genome
881 Biology and Evolution*, 11(9), 2542–2556. <https://doi.org/10.1093/gbe/evz188>

882 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
883 K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard,
884 A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., ... Hassabis, D.
885 (2021). Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873),
886 583–589. <https://doi.org/10.1038/s41586-021-03819-2>

887 Kang, D. D., Froula, J., Egan, R., & Wang, Z. (2015). MetaBAT, an efficient tool for accurately
888 reconstructing single genomes from complex microbial communities. *PeerJ*, 2015(8), 1–15.
889 <https://doi.org/10.7717/peerj.1165>

890 Kang, S., Tice, A. K., Spiegel, F. W., Silberman, J. D., Pánek, T., Cepicka, I., Kostka, M.,
891 Kosakyan, A., Alcántara, D. M. C., Roger, A. J., Shadwick, L. L., Smirnov, A.,
892 Kudryavtsev, A., Lahr, D. J. G., & Brown, M. W. (2017). Between a Pod and a Hard Test:
893 The Deep Evolution of Amoebeae. *Molecular Biology and Evolution*, 34(9), 2258–2270.
894 <https://doi.org/10.1093/molbev/msx162>

895 Karnkowska, A., Vacek, V., Zubáčová, Z., Treitli, S. C., Petrželková, R., Eme, L., Novák, L.,
896 Žáráský, V., Barlow, L. D., Herman, E. K., Soukal, P., Hroudová, M., Doležal, P., Stairs, C.
897 W., Roger, A. J., Eliáš, M., Dacks, J. B., Vlček, Č., & Hampl, V. (2016). A eukaryote
898 without a mitochondrial organelle. *Current Biology*, 26(1), 1274–1284.
899 <https://doi.org/10.1016/j.cub.2016.03.053>

900 Kikuchi, G. (1973). The Glycine Cleavage System: Composition, Reaction Mechanism, And
901 Physiological Significance. *Molecular and Cellular Biochemistry*, 21(July), 1154–1157.

902 Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome
903 alignment and genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology*,
904 37(August). <https://doi.org/10.1038/s41587-019-0201-4>

905 Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone
906 reads using repeat graphs. *Nature Biotechnology*, 37(5), 540–546.
907 <https://doi.org/10.1038/s41587-019-0072-8>

908 Lahti, C. J., D’Oliveira, C. E., & Johnson, P. J. (1992). β -Succinyl-coenzyme A synthetase from
909 *Trichomonas vaginalis* is a soluble hydrogenosomal protein with an amino-terminal
910 sequence that resembles mitochondrial presequences. *Journal of Bacteriology*, 174(21),
911 6822–6830. <https://doi.org/10.1128/jb.174.21.6822-6830.1992>

912 Leger, M. M., Eme, L., Hug, L. A., & Roger, A. J. (2016). Novel Hydrogenosomes in the
913 Microaerophilic Jakobid *Stygiella incarcerata*. *Molecular Biology and Evolution*, 33(9),
914 2318–2336. <https://doi.org/10.1093/molbev/msw103>

915 Leger, M. M., Kolisko, M., Kamikawa, R., Stairs, C. W., Kume, K., Čepička, I., Silberman, J.,
916 D., Andersson, J. O., Xu, F., Yabuki, A., Eme, L., Zhang, Q., Takishita, K., Inagaki, Y.,
917 Simpson, A. G. B., Hashimoto, T., & Roger, A. J. (2017). Organelles that illuminate the
918 origins of *Trichomonas* hydrogenosomes and *Giardia* mitosomes. *Nature Ecology and
919 Evolution*, 1(4), 1–15. <https://doi.org/10.1038/s41559-017-0092>

920 Lill, R., & Freibert, S. A. (2020). Mechanisms of Mitochondrial Iron-Sulfur Protein Biogenesis.
921 *Annual Review of Biochemistry*, 89, 471–499. <https://doi.org/10.1146/annurev-biochem-013118-111540>

923 Liu, Y., Sieprawska-Lupa, M., Whitman, W. B., & White, R. H. (2010). Cysteine is not the
924 sulfur source for iron-sulfur cluster and methionine biosynthesis in the methanogenic
925 archaeon *Methanococcus maripaludis*. *Journal of Biological Chemistry*, 285(42), 31923–
926 31929. <https://doi.org/10.1074/jbc.M110.152447>

927 Lomsadze, A., Burns, P. D., & Borodovsky, M. (2014). Integration of mapped RNA-Seq reads
928 into automatic training of eukaryotic gene finding algorithm. *Nucleic Acids Research*,
929 42(15), 1–8. <https://doi.org/10.1093/nar/gku557>

930 Manzano-Marín, A., & Latorre, A. (2016). Snapshots of a shrinking partner: Genome reduction
931 in *Serratia symbiotica*. *Scientific Reports*, 6(June), 1–11. <https://doi.org/10.1038/srep32590>

932 Matthey-Doret, C., Colp, M. J., Escoll, P., Thierry, A., Moreau, P., Curtis, B., Sahr, T., Sarrasin,
933 M., Gray, M. W., Franz Lang, B., Archibald, J. M., Buchrieser, C., & Koszul, R. (2022).
934 Chromosome-scale assemblies of *Acanthamoeba castellanii* genomes provide insights into
935 *Legionella pneumophila* infection–related chromatin reorganization. *Genome Research*,
936 32(9), 1698–1710. <https://doi.org/10.1101/gr.276375.121>

937 Mazurek, M. P., Prasad, P. D., Gopal, E., Fraser, S. P., Bolt, L., Rizaner, N., Palmer, C. P.,
938 Foster, C. S., Palmieri, F., Ganapathy, V., Stühmer, W., Djamgoz, M. B. A., & Mycielska,
939 M. E. (2010). Molecular origin of plasma membrane citrate transporter in human prostate
940 epithelial cells. *EMBO Reports*, 11(6), 431–437. <https://doi.org/10.1038/embor.2010.51>

941 Mentel, M., Zimorski, V., Haferkamp, P., Martin, W., & Henze, K. (2008). Protein import into
942 hydrogenosomes of *Trichomonas vaginalis* involves both N-terminal and internal targeting
943 signals: A case study of thioredoxin reductases. *Eukaryotic Cell*, 7(10), 1750–1757.
944 <https://doi.org/10.1128/EC.00206-08>

945 Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022).
946 ColabFold: making protein folding accessible to all. *Nature Methods*, 19(6), 679–682.
947 <https://doi.org/10.1038/s41592-022-01488-1>

948 Motyčková, A., Voleman, L., Najdrová, V., Arbonová, L., Benda, M., Dohnálek, V., Janowicz,
949 N., Malych, R., Šuf'ák, R., Ettema, T. J. G., Svärd, S., Stairs, C. W., & Doležal, P. (2023).
950 Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of *Giardia*
951 *intestinalis*. *PLoS Pathogens*, 19(10 October), 1–24.
952 <https://doi.org/10.1371/journal.ppat.1010773>

953 Mukherjee, M., Brown, M. T., McArthur, A. G., & Johnson, P. J. (2006). Proteins of the glycine
954 decarboxylase complex in the hydrogenosome of *Trichomonas vaginalis*. *Eukaryotic Cell*,
955 5(12), 2062–2071. <https://doi.org/10.1128/EC.00205-06>

956 Müller, M., Mentel, M., van Hellemond, J. J., Henze, K., Woehle, C., Gould, S. B., Yu, R.-Y.,
957 van der Giezen, M., Tielens, A. G. M., & Martin, W. F. (2012). Biochemistry and Evolution
958 of Anaerobic Energy Metabolism in Eukaryotes. *Microbiology and Molecular Biology
959 Reviews*, 76(2), 444–495. <https://doi.org/10.1128/mmbr.05024-11>

960 Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M., & Craig, E. A. (1992). The
961 translation machinery and 70 kd heat shock protein cooperate in protein synthesis. *Cell*,
962 71(1), 97–105. [https://doi.org/10.1016/0092-8674\(92\)90269-I](https://doi.org/10.1016/0092-8674(92)90269-I)

963 Nývtová, E., Smutná, T., Tachezy, J., & Hrdý, I. (2016). OsmC and incomplete glycine
964 decarboxylase complex mediate reductive detoxification of peroxides in hydrogenosomes of
965 *Trichomonas vaginalis*. *Molecular and Biochemical Parasitology*, 206(1–2), 29–38.
966 <https://doi.org/10.1016/j.molbiopara.2016.01.006>

967 Nývtová, E., Stairs, C. W., Hrdý, I., Rídl, J., Mach, J., Pañes, J., Roger, A. J., & Tachezy, J.
968 (2015). Lateral gene transfer and gene duplication played a key role in the evolution of
969 mastigamoeba balamuthi hydrogenosomes. *Molecular Biology and Evolution*, 32(4), 1039–
970 1055. <https://doi.org/10.1093/molbev/msu408>

971 Ohnishi, T. (1998). Iron-sulfur clusters/semiquinones in Complex I. *Biochimica et Biophysica
972 Acta - Bioenergetics*, 1364(2), 186–206. [https://doi.org/10.1016/S0005-2728\(98\)00027-9](https://doi.org/10.1016/S0005-2728(98)00027-9)

973 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM:
974 Assessing the quality of microbial genomes recovered from isolates, single cells, and
975 metagenomes. *Genome Research*, 25(7), 1043–1055. <https://doi.org/10.1101/gr.186072.114>

976 Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi,
977 M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić, I., Marchler-Bauer,
978 A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., ... Bateman, A.
979 (2023). InterPro in 2022. *Nucleic Acids Research*, 51(D1), D418–D427.
980 <https://doi.org/10.1093/nar/gkac993>

981 Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using
982 SPAdes De Novo Assembler. *Current Protocols in Bioinformatics*, 70(1), 1–29.
983 <https://doi.org/10.1002/cpbi.102>

984 Pyrih, J., Pyrihová, E., Kolísko, M., Stojanovová, D., Basu, S., Harant, K., Haindrich, A. C.,
985 Doležal, P., Lukeš, J., Roger, A., & Tachezy, J. (2016). Minimal cytosolic iron-sulfur
986 cluster assembly machinery of *Giardia intestinalis* is partially associated with mitosomes.
987 *Molecular Microbiology*, 102(4), 701–714. <https://doi.org/10.1111/mmi.13487>

988 Pyrihová, E., Motyčková, A., Voleman, L., Wandyszewska, N., Fišer, R., Seydlová, G., Roger,
989 A., Kolísko, M., & Doležal, P. (2018). A single tim translocase in the mitosomes of *giardia
990 intestinalis* illustrates convergence of protein import machines in anaerobic eukaryotes.
991 *Genome Biology and Evolution*, 10(10), 2813–2822. <https://doi.org/10.1093/gbe/evy215>

992 Rhie, A., Walenz, B. P., Koren, S., & Phillippy, A. M. (2020). Merqury: Reference-free quality,
993 completeness, and phasing assessment for genome assemblies. *Genome Biology*, 21(1), 1–
994 27. <https://doi.org/10.1186/s13059-020-02134-9>

995 Roger, A. J., Muñoz-Gómez, S. A., & Kamikawa, R. (2017). The Origin and Diversification of
996 Mitochondria. In *Current Biology*. <https://doi.org/10.1016/j.cub.2017.09.015>

997 Salas-Leiva, D. E., Tromer, E. C., Curtis, B. A., Jerlström-hultqvist, J., Kolisko, M., Yi, Z.,
998 Salas-leiva, J. S., Gallot-lavallée, L., Williams, S. K., Kops, G. J. P. L., Archibald, J. M.,
999 Simpson, A. G. B., & Roger, A. J. (2021). Genomic analysis finds no evidence of canonical
1000 eukaryotic DNA processing complexes in a free-living protist. *Nature Communications*, 1–
1001 13. <https://doi.org/10.1038/s41467-021-26077-2>

1002 Sánchez, L. B., Galperin, M. Y., & Müller, M. (2000). Acetyl-CoA synthetase from the

1003 amitochondriate eukaryote *Giardia lamblia* belongs to the newly recognized superfamily of
1004 acyl-CoA synthetases (nucleoside diphosphate-forming). *Journal of Biological Chemistry*,
1005 275(8), 5794–5803. <https://doi.org/10.1074/jbc.275.8.5794>

1006 Sanchez, L. B., & Müller, M. (1996). Purification and characterization of the acetate forming
1007 enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, *Giardia*
1008 *lamblia*. *FEBS Letters*, 378(3), 240–244. [https://doi.org/10.1016/0014-5793\(95\)01463-2](https://doi.org/10.1016/0014-5793(95)01463-2)

1009 Schneider, R. E., Brown, M. T., Shiflett, A. M., Dyall, S. D., Hayes, R. D., Xie, Y., Loo, J. A., &
1010 Johnson, P. J. (2011). The *Trichomonas vaginalis* hydrogenosome proteome is highly
1011 reduced relative to mitochondria, yet complex compared with mitosomes. *International*
1012 *Journal for Parasitology*, 41(13–14), 1421–1434.
1013 <https://doi.org/10.1016/j.ijpara.2011.10.001>

1014 Schöönknecht, G., Chen, W. H., Ternes, C. M., Barbier, G. G., Shrestha, R. P., Stanke, M.,
1015 Bräutigam, A., Baker, B. J., Banfield, J. F., Garavito, R. M., Carr, K., Wilkerson, C.,
1016 Rensing, S. A., Gagneul, D., Dickenson, N. E., Oesterhelt, C., Lercher, M. J., & Weber, A.
1017 P. M. (2013). Gene transfer from bacteria and archaea facilitated evolution of an
1018 extremophilic eukaryote. *Science*, 339(6124), 1207–1210.
1019 <https://doi.org/10.1126/science.1231707>

1020 Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015).
1021 Genome analysis BUSCO: assessing genome assembly and annotation completeness with
1022 single-copy orthologs. *Bioinformatics*, 31(June), 3210–3212.
1023 <https://doi.org/10.1093/bioinformatics/btv351>

1024 Simpson, A. G. B. (2003). Cytoskeletal organization, phylogenetic affinities and systematics in
1025 the contentious taxon Excavata (Eukaryota). *International Journal of Systematic and*
1026 *Evolutionary Microbiology*, 53(6), 1759–1777. <https://doi.org/10.1099/ijss.0.02578-0>

1027 Smith, D. G. S., Gawryluk, R. M. R., Spencer, D. F., Pearlman, R. E., Siu, K. W. M., & Gray, M.
1028 W. (2007). Exploring the Mitochondrial Proteome of the Ciliate Protozoon *Tetrahymena*
1029 *thermophila*: Direct Analysis by Tandem Mass Spectrometry. *Journal of Molecular*
1030 *Biology*, 374(3), 837–863. <https://doi.org/10.1016/j.jmb.2007.09.051>

1031 Stairs, C. W., Eme, L., Brown, M. W., Mutsaers, C., Susko, E., Dellaire, G., Soanes, D. M., Van
1032 Der Giezen, M., & Roger, A. J. (2014). A SUF Fe-S cluster biogenesis system in the
1033 mitochondrion-related organelles of the anaerobic protist *Pygsuia*. *Current Biology*, 24(11),
1034 1176–1186. <https://doi.org/10.1016/j.cub.2014.04.033>

1035 Stairs, C. W., Eme, L., Muñoz-Gómez, S. A., Cohen, A., Dellaire, G., Shepherd, J. N., Fawcett,
1036 J. P., & Roger, A. J. (2018). Microbial eukaryotes have adapted to hypoxia by horizontal
1037 acquisitions of a gene involved in rhodoquinone biosynthesis. *eLife*, 7, 1–23.
1038 <https://doi.org/10.7554/eLife.34292>

1039 Stairs, C. W., Leger, M. M., & Roger, A. J. (2015). Diversity and origins of anaerobic
1040 metabolism in mitochondria and related organelles. *Philosophical Transactions of the Royal*
1041 *Society B: Biological Sciences*, 370(1678). <https://doi.org/10.1098/rstb.2014.0326>

1042 Stairs, C. W., Roger, A. J., & Hampl, V. (2011). Eukaryotic pyruvate formate lyase and its
1043 activating enzyme were acquired laterally from a firmicute. *Molecular Biology and*

1044 144 *Evolution*, 28(7), 2087–2099. <https://doi.org/10.1093/molbev/msr032>

1045 145 Stairs, C. W., Táborský, P., Salomaki, E. D., Kolisko, M., Pánek, T., Eme, L., Hradilová, M.,
1046 146 Vlček, Č., Jerlström-Hultqvist, J., Roger, A. J., & Čepička, I. (2021). Anaeramoebae are a
1047 147 divergent lineage of eukaryotes that shed light on the transition from anaerobic
1048 148 mitochondria to hydrogenosomes. *Current Biology*, 31(24), 5605–5612.e5.
1049 149 <https://doi.org/10.1016/j.cub.2021.10.010>

1050 150 Stanke, M., Steinkamp, R., Waack, S., & Morgenstern, B. (2004). AUGUSTUS: A web server
1051 151 for gene finding in eukaryotes. *Nucleic Acids Research*, 32(WEB SERVER ISS.), 309–312.
1052 152 <https://doi.org/10.1093/nar/gkh379>

1053 153 Takeda, H., Tsutsumi, A., Nishizawa, T., Lindau, C., Bustos, J. V., Wenz, L. S., Ellenrieder, L.,
1054 154 Imai, K., Straub, S. P., Mossmann, W., Qiu, J., Yamamori, Y., Tomii, K., Suzuki, J.,
1055 155 Murata, T., Ogasawara, S., Nureki, O., Becker, T., Pfanner, N., ... Endo, T. (2021).
1056 156 Mitochondrial sorting and assembly machinery operates by β -barrel switching. In *Nature*
1057 157 (Vol. 590, Issue 7844). Springer US. <https://doi.org/10.1038/s41586-020-03113-7>

1058 158 Tanifuji, G., Takabayashi, S., Kume, K., Takagi, M., Nakayama, T., Kamikawa, R., Inagaki, Y.,
1059 159 & Hashimoto, T. (2018). The draft genome of Kipferlia bialata reveals reductive genome
1060 160 evolution in fornicate parasites. *PLoS ONE*, 13(3), 1–18.
1061 161 <https://doi.org/10.1371/journal.pone.0194487>

1062 162 The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the Flowering
1063 163 plant *Arabidopsis thaliana*. *Nature*, 408, 796–815.
1064 164 <https://doi.org/10.1134/S1022795411020074>

1065 165 Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., Salzberg,
1066 166 S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-
1067 167 Seq reveals unannotated transcripts and isoform switching during cell differentiation.
1068 168 *Nature Biotechnology*, 28(5), 511–515. <https://doi.org/10.1038/nbt.1621>

1069 169 Tsaousis, A. D., De Choudens, S. O., Gentekaki, E., Long, S., Gaston, D., Stechmann, A.,
1070 170 Vinella, D., Py, B., Fontecave, M., Barras, F., Lukeš, J., & Roger, A. J. (2012). Evolution of
1071 171 Fe/S cluster biogenesis in the anaerobic parasite *Blastocystis*. *Proceedings of the National
1072 172 Academy of Sciences of the United States of America*, 109(26), 10426–10431.
1073 173 <https://doi.org/10.1073/pnas.1116067109>

1074 174 Tsaousis, A. D., Gentekaki, E., Eme, L., Gaston, D., & Roger, A. J. (2014). Evolution of the
1075 175 cytosolic iron-sulfur cluster assembly machinery in *Blastocystis* species and other microbial
1076 176 eukaryotes. *Eukaryotic Cell*, 13(1), 143–153. <https://doi.org/10.1128/EC.00158-13>

1077 177 Vacek, V., Novák, L. V. F., Treitli, S. C., Táborský, P., Čepička, I., Kolísko, M., Keeling, P. J.,
1078 178 & Hampl, V. (2018). Fe-S cluster assembly in oxymonads and related protists. *Molecular
1079 179 Biology and Evolution*, 35(11), 2712–2718. <https://doi.org/10.1093/molbev/msy168>

1080 180 Van Grinsven, K. W. A., Rosnowsky, S., Van Weelden, S. W. H., Pütz, S., Van Der Giezen, M.,
1081 181 Martin, W., Van Hellemond, J. J., Tielens, A. G. M., & Henze, K. (2008). Acetate:succinate
1082 182 CoA-transferase in the hydrogenosomes of *Trichomonas vaginalis*: Identification and
1083 183 characterization. *Journal of Biological Chemistry*, 283(3), 1411–1418.
1084 184 <https://doi.org/10.1074/jbc.M702528200>

1085 Vaser, R., & Šikić, M. (2021). Time- and memory-efficient genome assembly with Raven.
1086 *Nature Computational Science*, 1(5), 332–336. <https://doi.org/10.1038/s43588-021-00073-4>

1087 Wick, R. R., Judd, L. M., & Holt, K. E. (2019). Performance of neural network basecalling tools
1088 for Oxford Nanopore sequencing. *Genome Biology*, 20(1), 1–10.
1089 <https://doi.org/10.1186/s13059-019-1727-y>

1090 Xu, F., Jex, A., & Svärd, S. G. (2020). A chromosome-scale reference genome for *Giardia*
1091 *intestinalis* WB. *Scientific Data*, 7(1), 1–8. <https://doi.org/10.1038/s41597-020-0377-y>

1092 Yazaki, E., Kume, K., Shiratori, T., Eglit, Y., Tanifuji, G., Harada, R., Simpson, A., Ishida, K.,
1093 Hashimoto, T., & Inagaki, Y. (2020). Bartheloniids represent a deep-branching Metamonad
1094 clade with mitochondrion-related organelles generating no ATP. *Proc. R. Soc.*
1095 <https://doi.org/10.1101/805762>

1096 Yubuki, N., Galindo, L. J., Reboul, G., López-García, P., Brown, M. W., Pollet, N., & Moreira,
1097 D. (2020). Ancient Adaptive Lateral Gene Transfers in the Symbiotic Opalina-Blastocystis
1098 Stramenopile Lineage. *Molecular Biology and Evolution*, 37(3), 651–659.
1099 <https://doi.org/10.1093/molbev/msz250>

1100 Záhonová, K., Treitli, S. C., Le, T., Škodová-Sveráková, I., Hanousková, P., Čepička, I.,
1101 Tachezy, J., & Hampl, V. (2022). Anaerobic derivates of mitochondria and peroxisomes in
1102 the free-living amoeba *Pelomyxa schiedti* revealed by single-cell genomics. *BMC Biology*,
1103 20(1), 1–16. <https://doi.org/10.1186/s12915-022-01247-w>

1104 Žářský, V., Klimeš, V., Pačes, J., Vlček, Č., Hradilová, M., Beneš, V., Nývltová, E., Hrdý, I.,
1105 Pyrih, J., Mach, J., Barlow, L., Stairs, C. W., Eme, L., Hall, N., Eliáš, M., Dacks, J. B.,
1106 Roger, A., & Tachezy, J. (2021). The Mastigamoeba balamuthi Genome and the Nature of
1107 the Free-Living Ancestor of Entamoeba. *Molecular Biology and Evolution*, 38(6), 2240–
1108 2259. <https://doi.org/10.1093/molbev/msab020>

1109 Zhao, D., Salas-leiva, D. E., Williams, S. K., & Dunn, K. A. (2023). Eukfinder□: a pipeline to
1110 retrieve microbial eukaryote genomes from metagenomic sequencing data. *BioRxiv*.
1111 <https://doi.org/https://doi.org/10.1101/2023.12.28.573569>

1112 Zítek, J., Füssy, Z., Treitli, S. C., Peña-Diaz, P., Vaitová, Z., Zavadská, D., Harant, K., & Hampl,
1113 V. (2022). Reduced mitochondria provide an essential function for the cytosolic methionine
1114 cycle. *Current Biology*, 5057–5068. <https://doi.org/10.1016/j.cub.2022.10.028>

1115 Zubáčová, Z., Novák, L., Bublíková, J., Vacek, V., Fousek, J., Rídl, J., Tachezy, J., Doležal, P.,
1116 Vlček, Č., & Hampl, V. (2013). The Mitochondrion-Like Organelle of *Trimastix pyriformis*
1117 Contains the Complete Glycine Cleavage System. *PLoS ONE*, 8(3), 1–9.
1118 <https://doi.org/10.1371/journal.pone.0055417>

1119

1120

1121 **Tables & Figures**

1122 **Table 1. Summary statistics for the genomes, transcriptomes, and predicted proteomes of the**
1123 **BaSk clade.**

	<i>Skoliomonas litria</i>	<i>Skoliomonas</i> sp. GEMRC	<i>Skoliomonas</i> sp. RCL	<i>Barthelona</i> sp. PCE	<i>Barthelona</i> sp. PAP020
*Genome Coverage (Nanopore)	41x	119x	34x	66x	Illumina only
*Genome Coverage (Illumina)	206x	116x	93x	308x	29x
# of Illumina Reads Generated	53.7 M	26.8 M	85.9 M	75.4 M	70.0 M
% RNAseq reads mapping	99.4	99.9	99.6	99.3	-
Mercury Completeness (%)	98.7	98.6	98.4	98.4	-
Genome Size	31.9 Mbp	33.5 Mbp	21.1 Mbp	10.2 Mbp	13.2 Mbp
Contigs (#)	16	21	18	8	1,035
N50	3,724,615	2,551,763	2,069,101	1,587,787	24,218
L50	4	6	4	3	156
% GC	35.8	36.9	36.0	40.3	30.5
% Repetitive	55.4	48.0	28.1	4.46	-
Predicted Proteins (#)	15,224	14,268	9,198	5,064	6,305

1124 *Median contig coverage

1125

1126

1127

1128 Table 2. BUSCO scores for members of the BaSk clade.

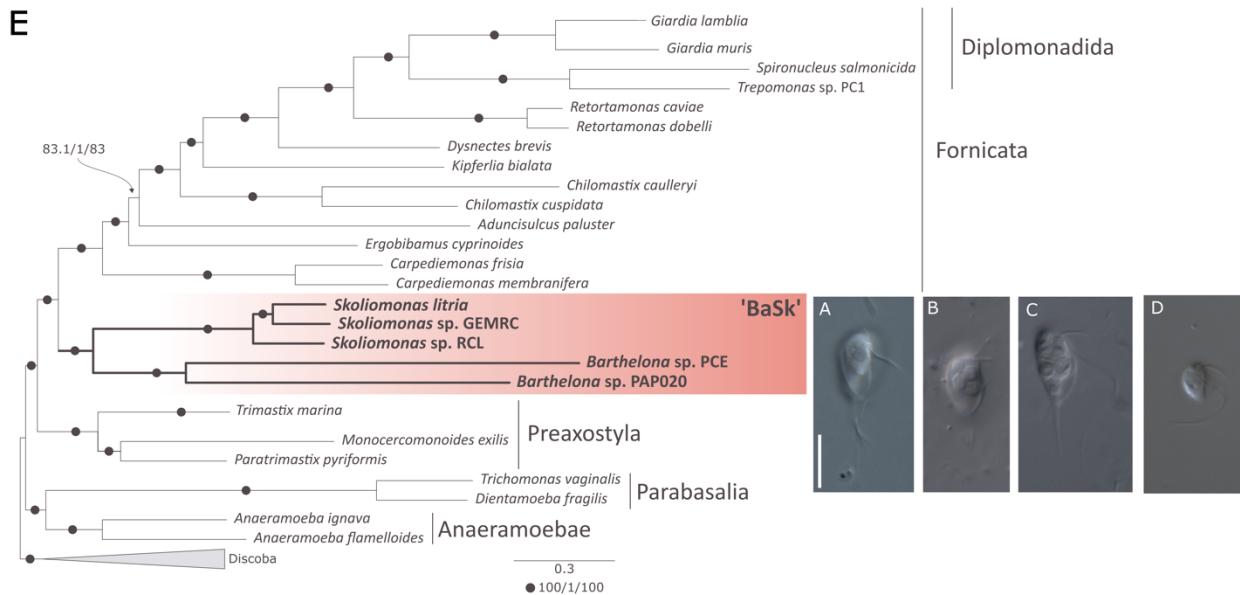
	Complete Single Copy	Complete Duplicated	Total Complete	Fragmented	Missing
<i>S. litria</i> - Genome	178	4	182 (60.1%)	15 (4.9%)	106 (35.0%)
<i>S. litria</i> - Prediction	215	9	224 (73.9%)	7 (2.3%)	72 (23.8%)
<i>S. litria</i> - Transcriptome	190	24	214 (70.6%)	16 (5.3%)	73 (24.1%)
<i>S. litria</i> – Curated Predictions	208	17	225 (74.3%)	7 (2.3%)	71 (23.4%)
<i>S. sp. GEMRC</i> - Genome	168	9	177 (58.4%)	27 (8.9%)	99 (32.7%)
<i>S. sp. GEMRC</i> - Prediction	183	14	197 (65.0%)	29 (9.6%)	77 (25.4%)
<i>S. sp. GEMRC</i> - Transcriptome	139	77	216 (71.3%)	9 (3.0%)	78 (25.7%)
<i>S. sp. RCL</i> - Genome	182	4	186 (61.4%)	16 (5.3%)	101 (33.3%)
<i>S. sp. RCL</i> - Prediction	212	10	222 (73.3%)	14 (4.6%)	67 (22.1%)
<i>S. sp. RCL</i> - Transcriptome	193	27	220 (72.6%)	14 (4.6%)	69 (22.8%)
<i>B. sp. PCE</i> - Genome	142	3	145 (47.9%)	15 (4.9%)	143 (47.2%)
<i>B. sp. PCE</i> – Prediction	161	7	168 (55.4%)	25 (8.3%)	110 (36.3%)
<i>B. sp. PCE</i> - Transcriptome	5	157	162 (53.5%)	31 (10.2%)	110 (36.3%)

1129

1130

1131

1132

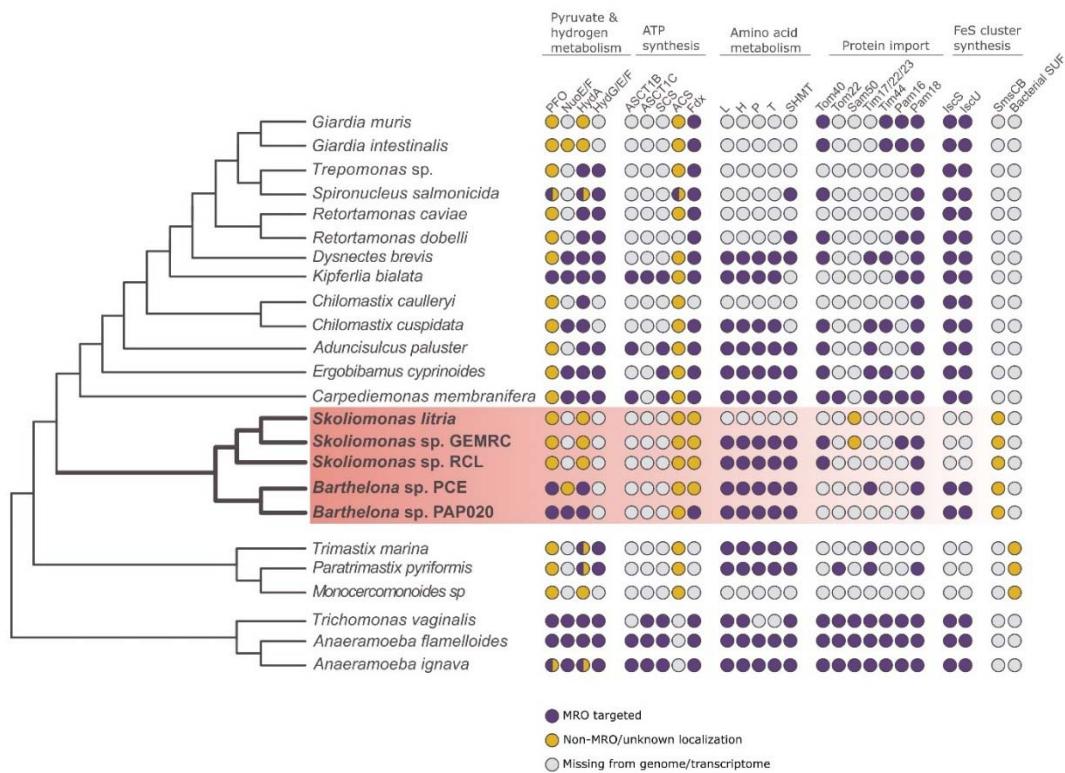

1133

1134

1135

1136

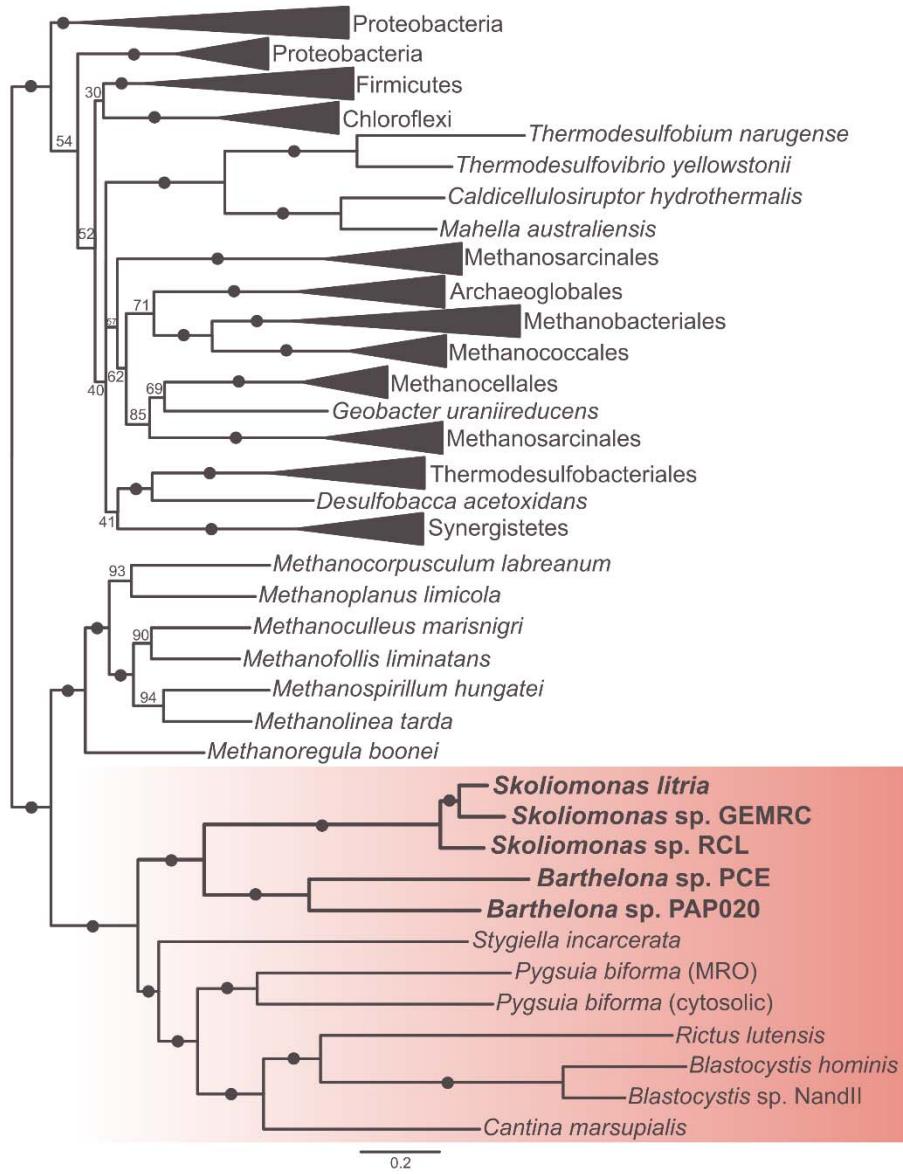
1137


1138

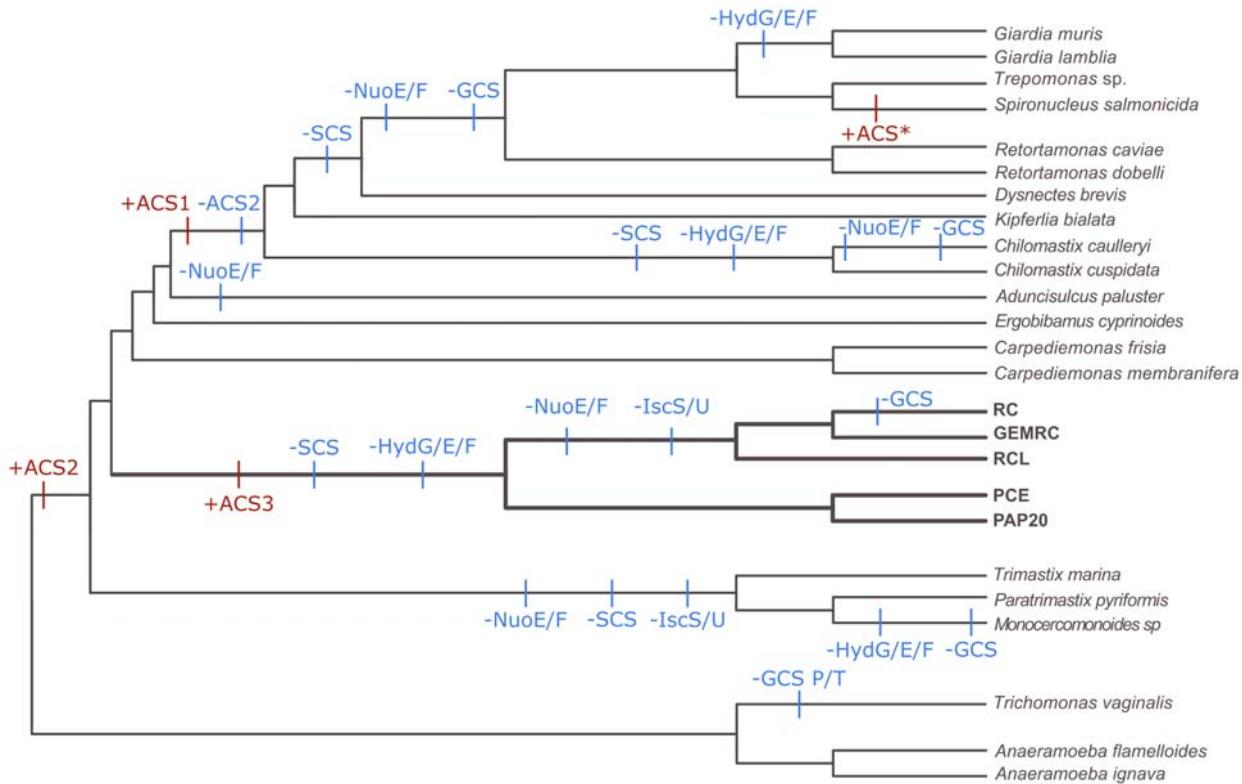
1139 **Figure 1. 'BaSk' is a clade of anaerobic protists that branches as sister to all known Fornicata**
1140 **within the Metamonada.** Panels A-D) Differential interference contrast light micrographs of
1141 skoliomonad lineages *Skoliomonas litria* (A), *Skoliomonas* sp. GEMRC (B), and *Skoliomonas* sp.
1142 RCL (C), as well as *Barthelona* sp. PCE (D) showing overall morphology (imaging and methods
1143 described in Egli et al. 2024). Scale bars indicate a length of 10 μ m. (E) A maximum likelihood
1144 (ML) phylogeny based on 174 concatenated aligned proteins encompassing 46,113 sites. The
1145 depicted topology was estimated using IQ-TREE under the LG+C60+F+ Γ model and was used as
1146 a guide tree for estimating the LG+PMSF(C60)+F+ Γ model. Support under the latter model was
1147 evaluated by SH-aLRT support percentage, aBayes support and nonparametric bootstrap
1148 percentage based on 100 nonparametric bootstrap replicates. The scale bar indicates the
1149 expected number of amino acid substitutions per site under the PMSF model. When at least
1150 one support value was less than maximal, all three are shown on the branch in the order SH-
1151 aLRT support percentage/aBayes/nonparametric bootstrap percentage. A black dot on the
1152 branch indicates all three approaches yielded full (i.e. 100/1/100) support. The BaSk clade is
1153 highlighted in red.

1154

1155


1156

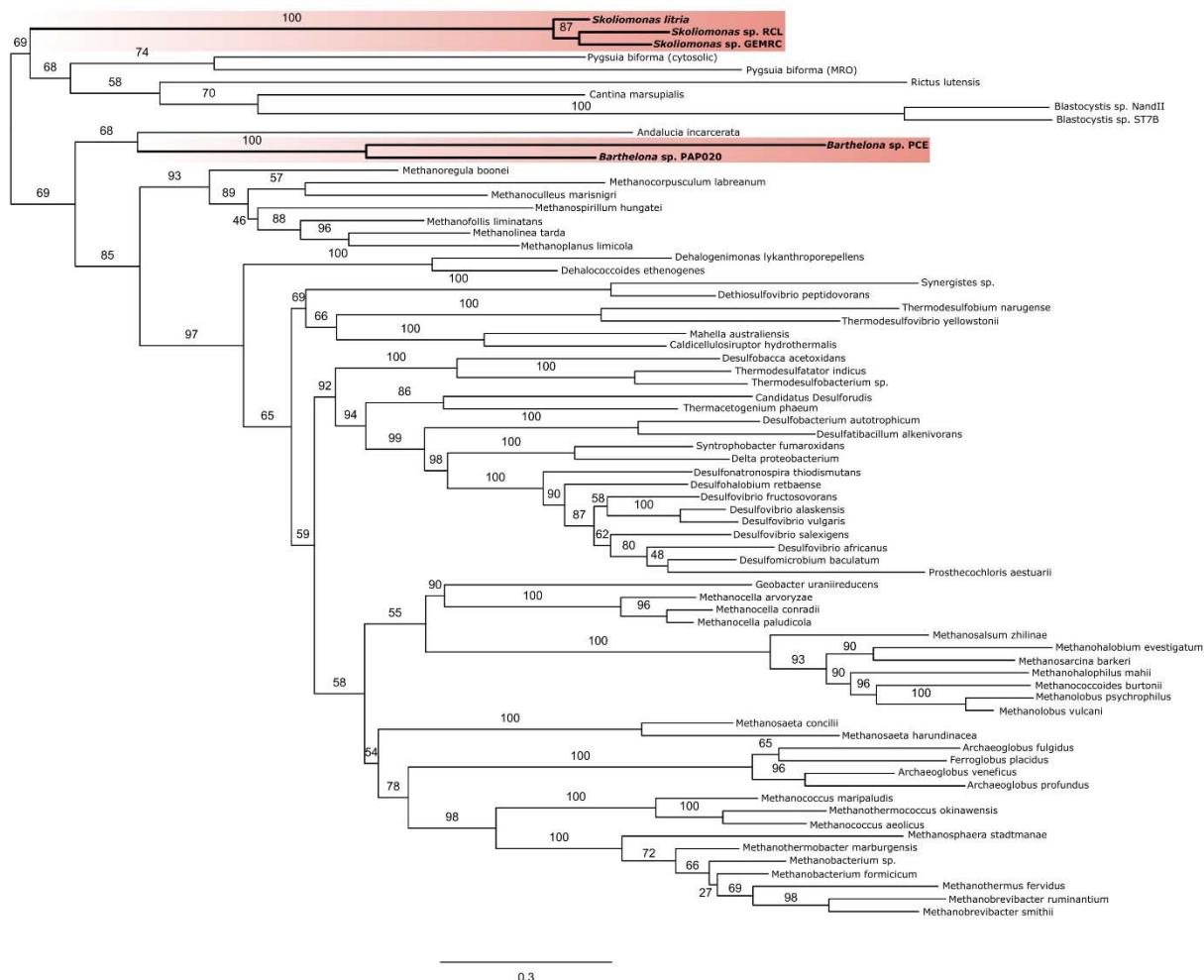
1157


1158 **Figure 2. Presence, absence and predicted localization of key MRO and energy metabolism**
1159 **enzymes in ‘BaSks’ and other metamonads.** A schematic phylogeny of the Metamonada is
1160 shown on the left based on Fig. 1, with the BaSk clade highlighted in red. The pathways
1161 depicted include anaerobic extended glycolysis/energy metabolism enzymes, conserved MRO
1162 proteins, MRO protein targeting machinery components, and the SmsCB fusion protein.
1163 Coloured versus grey circles indicate presence/absence of the protein from predicted
1164 proteomes and/or transcriptome data and the colours indicate probable localization. Circles
1165 split in half indicate that more than one paralog was present with different predicted
1166 localizations. Protein abbreviations: PFO - Pyruvate:ferredoxin oxidoreductase; NuoE/F - Respiratory-chain
1167 NADH dehydrogenase 24/51 kDa subunit; HydA – Iron-only hydrogenase; ASCT1B – Acetate:succinyl-CoA
1168 transferase B; ASCT1C - Acetate:succinyl-CoA transferase C; SCS - Succinyl-CoA synthase; ACS - Acetyl-CoA
1169 synthase; Fdx – Ferredoxin; L – Glycine cleavage system subunit L; H - Glycine cleavage system subunit H; P -
1170 Glycine cleavage system subunit P; T - Glycine cleavage system subunit T; SHMT - Serine
1171 hydroxymethyltransferase; Tom40 - Translocase of outer mitochondrial membrane 40; Tom22 - Translocase of
1172 outer mitochondrial membrane 22; Sam50 – Sorting and assembly machinery 50; Tim17/22/23 - Translocase of the
1173 inner membrane 17/22/23; Tim44 - Translocase of the inner membrane 44; Pam16 - Presequence translocase-
1174 associated motor 16; Pam18 - Presequence translocase-associated motor 18; IscS - Iron-sulfur cluster assembly
1175 enzyme cysteine desulfurase; IscU - Iron-sulfur cluster assembly enzyme scaffold; SufCB - Sulfur formation CB
1176 fusion protein.

1177

1200 **Figure 3. A phylogeny of the SmsCB fusion protein in a variety of anaerobic eukaryotes (red)**
1201 **and their closest bacterial and archaeal homologs.** The alignment contains the SmsCB fusion
1202 protein from the eukaryotes and concatenated SmsC and SmsB proteins from the prokaryotes.
1203 This ML tree was estimated under the LG+C60+F+Γ model using IQ-TREE. Ultrafast bootstrap
1204 values are displayed on the branches, with dots indicating UFBOOT value over 95%.

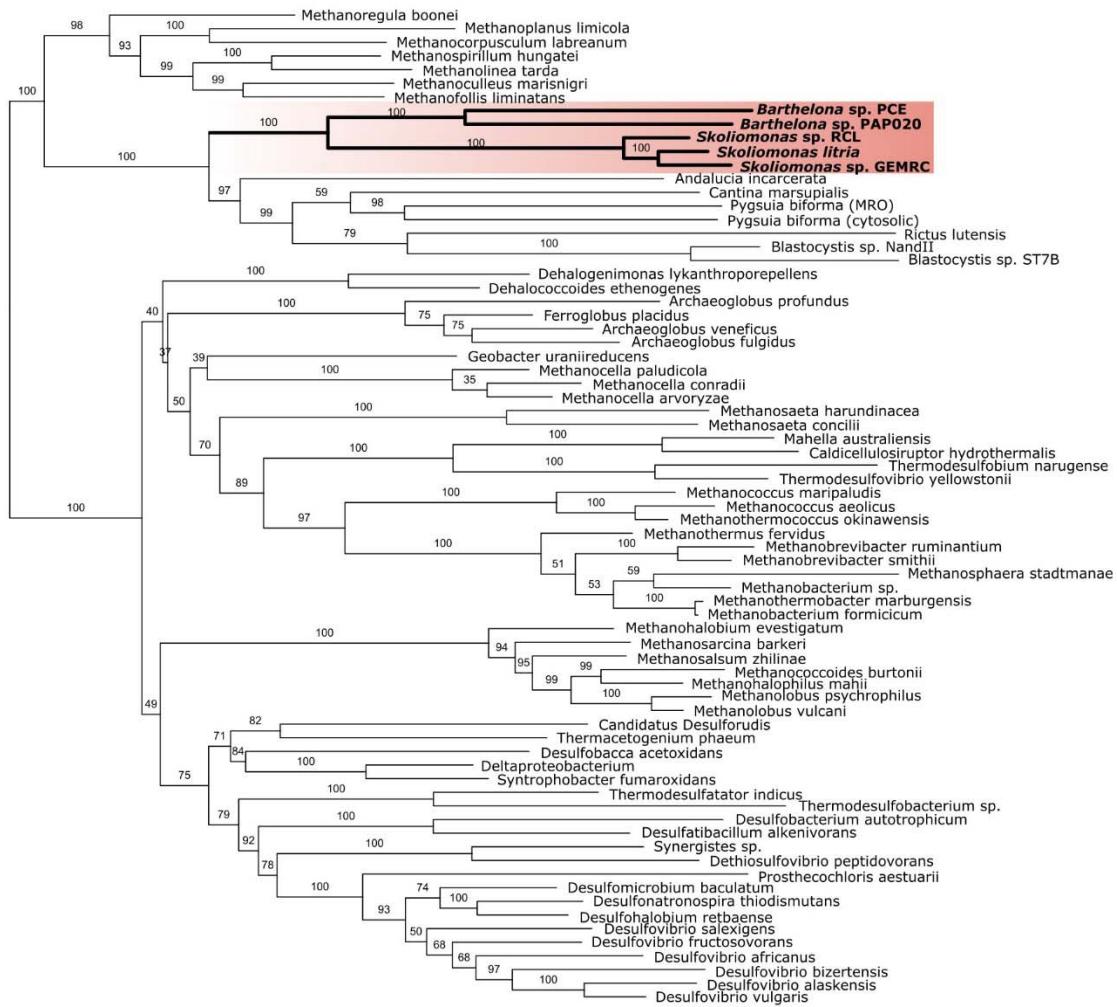
1205


1206

1207 **Figure 4. Gain and loss of anaerobic enzymes and MRO proteins over the tree of**
1208 **Metamonada.** Gains (red) and losses (blue) of key metabolic pathway components discussed
1209 throughout this paper are mapped on a schematic phylogeny of Metamonada (based on Figure
1210 1). Protein abbreviations are: HydG/E/F – Iron hydrogenase maturase G/E/F; ACS - Acetyl-CoA synthase;
1211 NuoE/F - Respiratory-chain NADH dehydrogenase 24/51 kDa subunit; GCS – Glycine cleavage system; SCS -
1212 Succinyl-CoA synthase; IscS/U - Iron-sulfur cluster assembly enzyme system. The *Spironucleus* ACS is denoted as
1213 ACS* as an ACS “type” could not be confidently assigned.

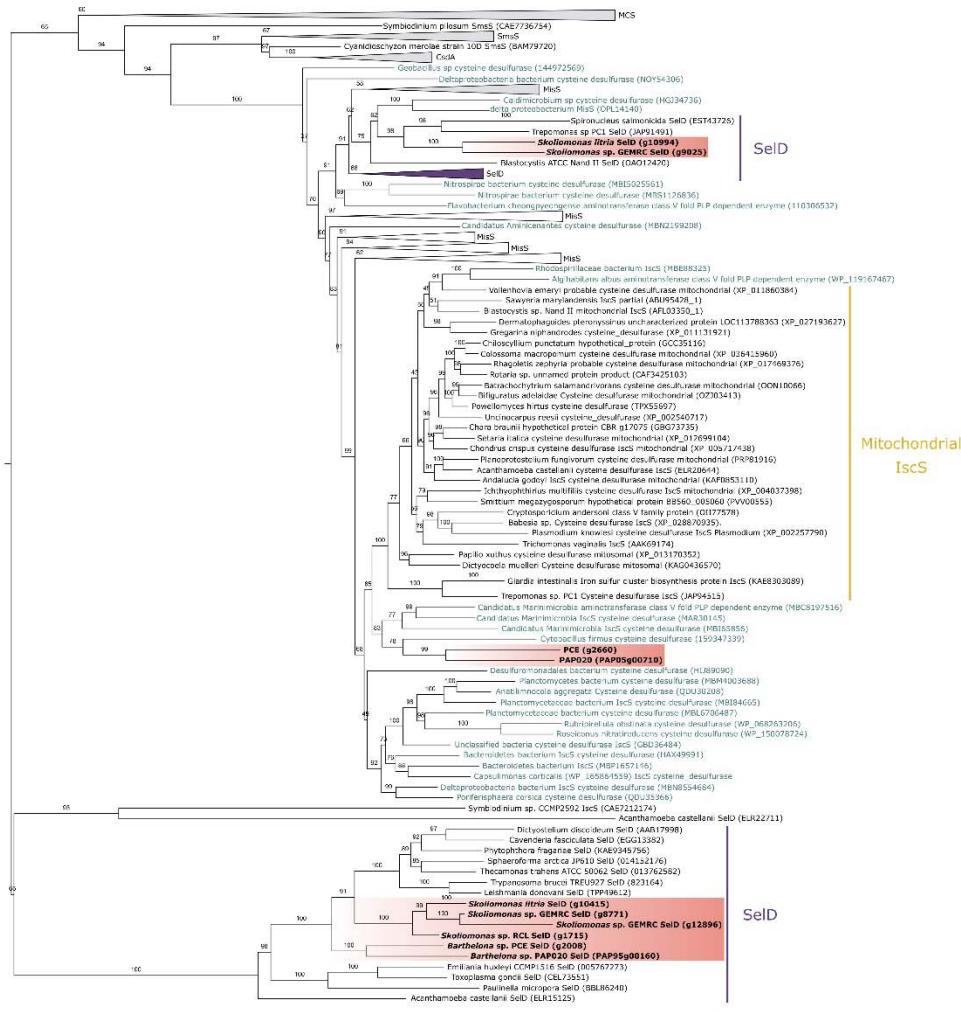
1214

1215 Supplementary tables 1-3: Available for download from Dryad
1216 https://datadryad.org/stash/share/SNhoYuY19An041SeN194bwM_K3WIqqOO4TwltqK1mn0
1217
1218

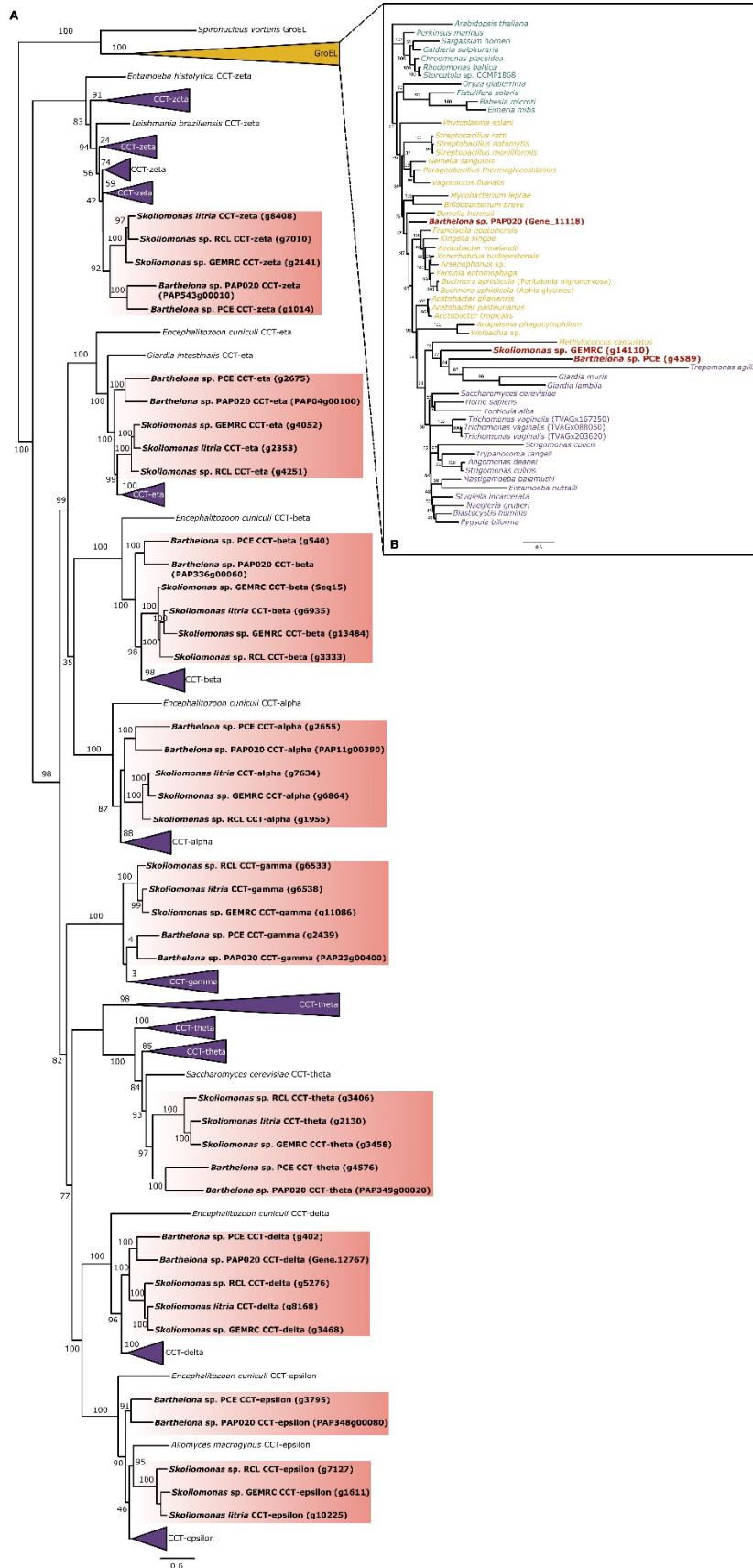

1219 Supplementary figures:

1220

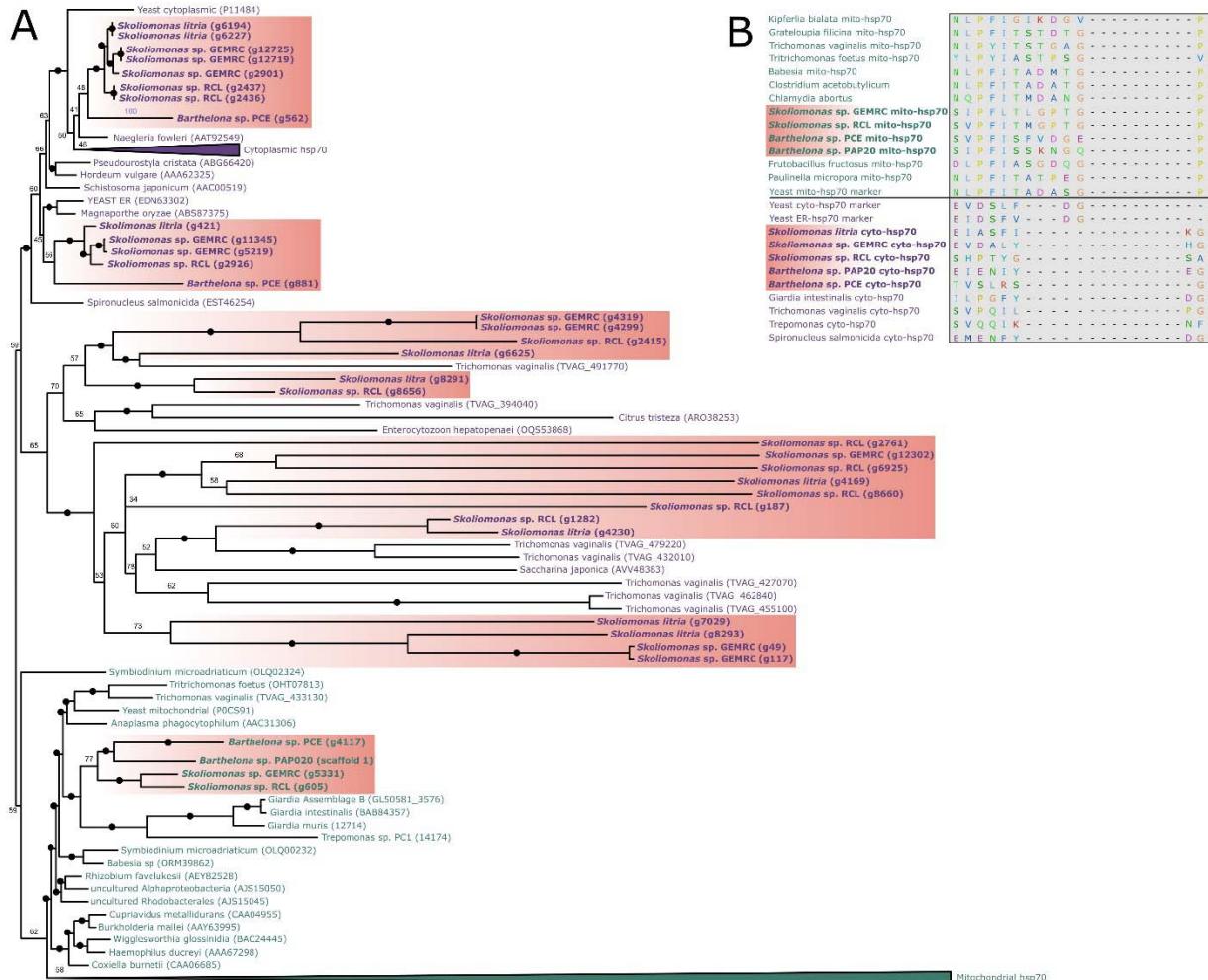
0.3


1221 **Supp. Figure 1. A phylogeny of the SmsC protein from eukaryotes, bacteria, and archaea.**
1222 The ML tree was estimated using IQ-TREE under the LG+C60+F+Γ model of evolution.
1223 Ultrafast bootstrap values are displayed on the branches. For eukaryotic homologs, the N-
1224 terminal portion of the protein of the eukaryote SmsCB fusion that aligned with prokaryotic
1225 SmsC was used in the alignment. BaSk sequences are bolded and highlighted in red.

1226

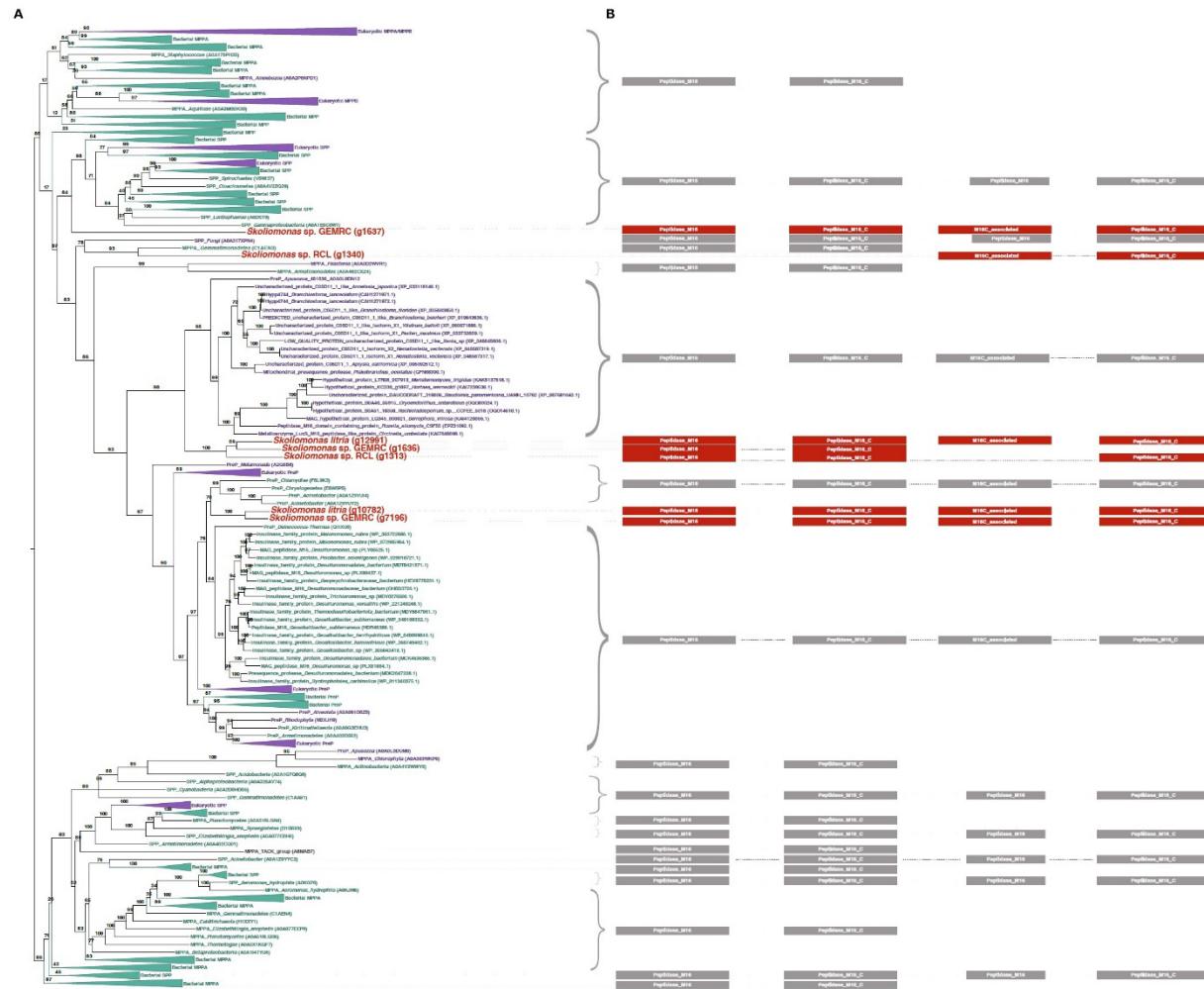

0.2

1227 **Supp. Figure 2. A phylogeny of SmsBD protein from eukaryotes, bacteria, and archaea.** The
1228 ML tree was estimated using IQ-TREE under the LG+C20+F+Γ model of evolution. Ultrafast
1229 bootstrap values are displayed on the branches. For eukaryotic homologs, the C-terminal portion
1230 of the protein of the eukaryote SmsCB fusion that aligned with prokaryotic SmsB was used in
1231 the alignment. BaSk sequences are bolded and highlighted in red.



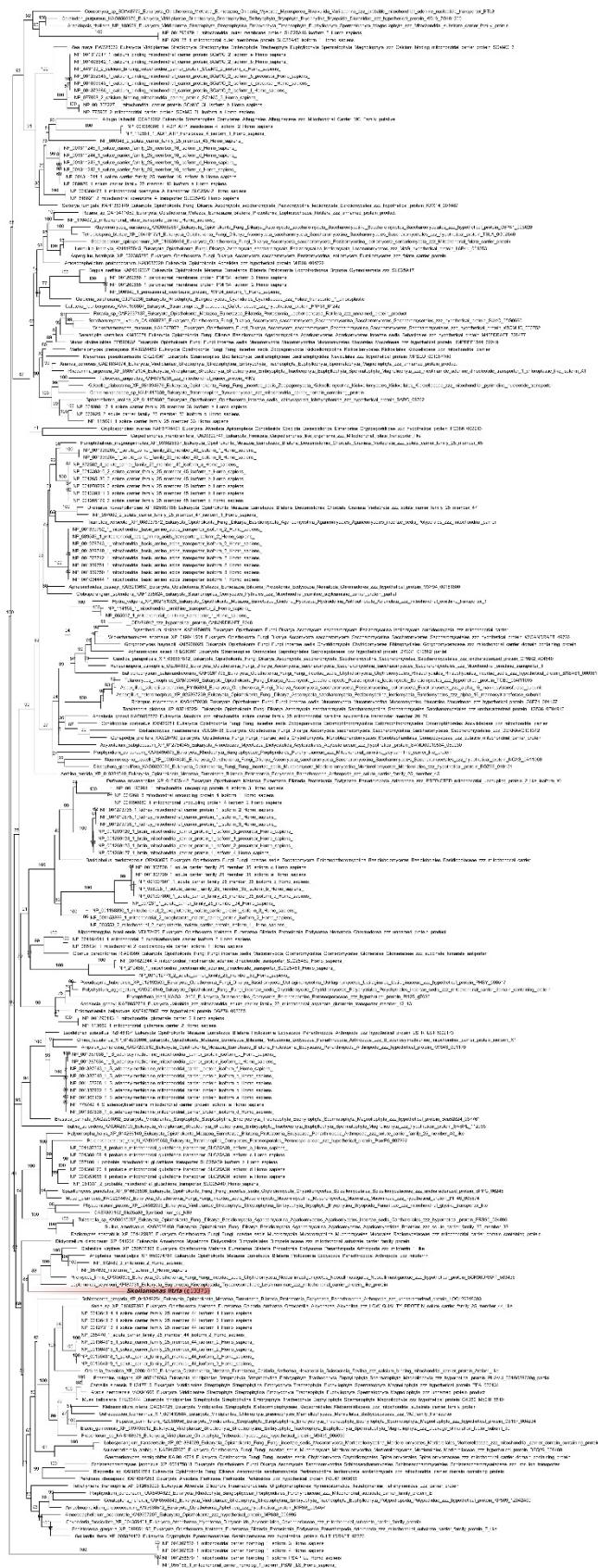
1232

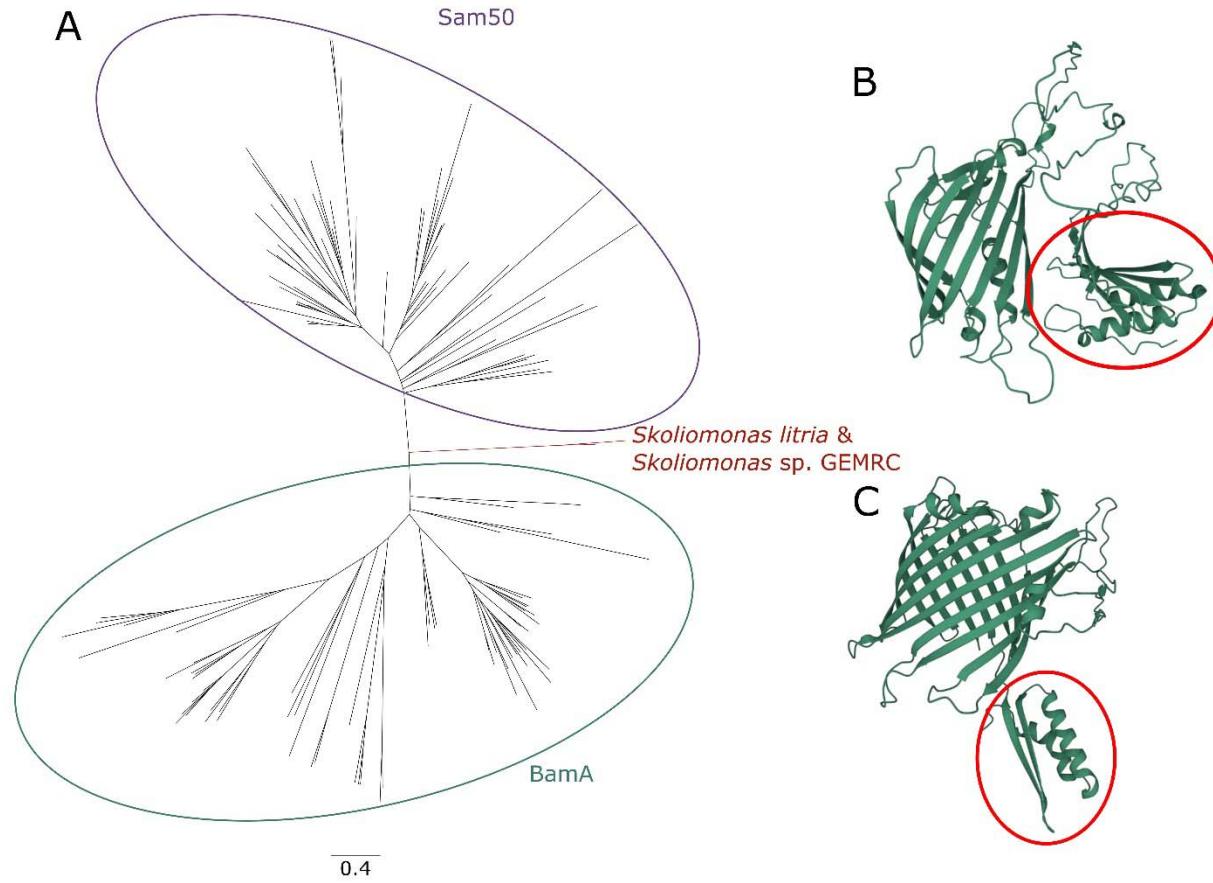
1233 **Supp. Figure 3. Phylogenetic relationships amongst several different types of cysteine**
 1234 **desulfurase enzymes and several enzymes that share structural similarities with them.** The
 1235 ML tree was estimated using IQ-TREE with the LG+C20+F+Γ evolutionary model. Ultrafast
 1236 bootstrap values are displayed on the branches. Several families of related proteins have been
 1237 collapsed into wedges. BaSk sequences are bolded and highlighted in red. Abbreviations are:
 1238 MCS – Molybdenum cofactor sulfurase; SmsS – SUF-like minimal system; CsdA - Cysteine sulfinate desulfinate
 1239 A; MisS - Minimal iron-sulfur system; IscS - Iron-sulfur cluster assembly enzyme; SelD – Selenide water dikinase



Supp. Figure 4.
Phylogenetic relationships amongst chaperonin 60 (cpn60) homologs in eukaryotes. These ML trees were estimated using IQ-TREE with the LG+C20+F+G evolutionary model. Ultrafast bootstrap values are displayed on the branches. BaSk sequences are bolded and highlighted in red. (A) Both cytosolic (purple) and mitochondrial (orange) homologs are included in this tree. The major groups of proteins are displayed as wedges. (B) A reconstruction of the mitochondrial (purple), bacterial (orange), and chloroplastic (green) Cpn60 subunit GroEL.

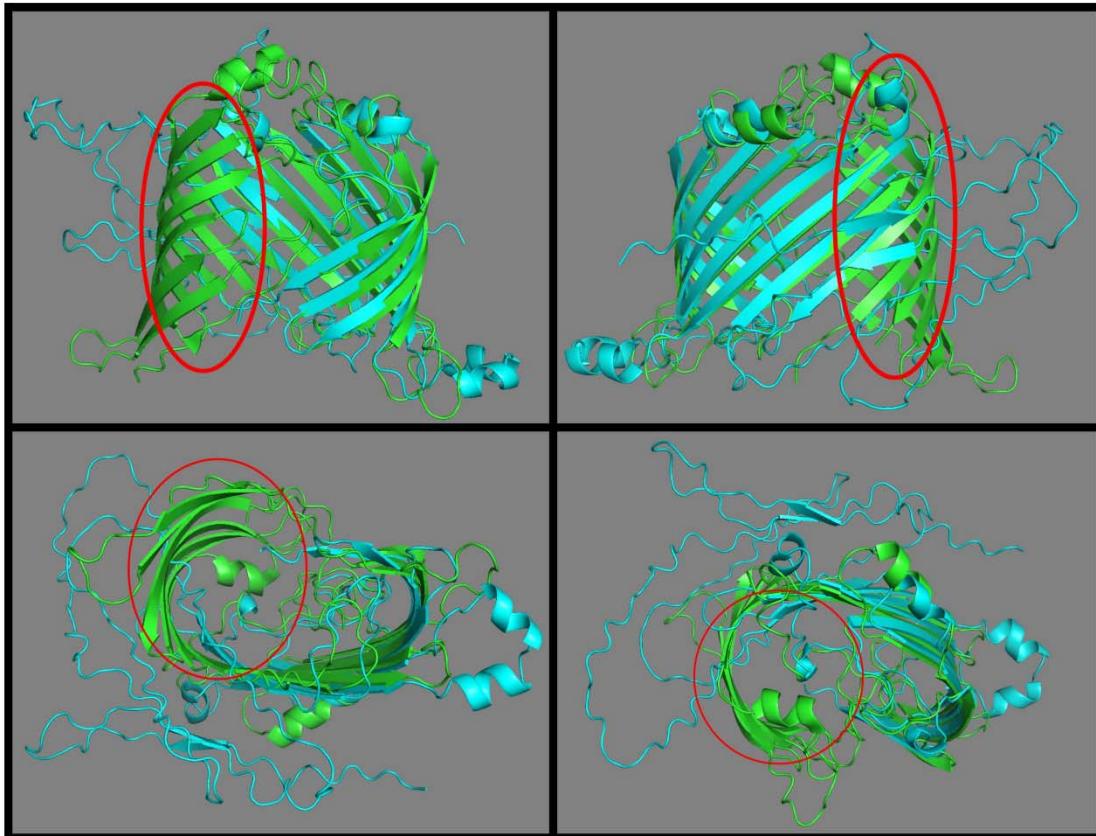
1272


1273 Supp. Figure 5. **Phylogenetic relationships amongst heat shock protein 70 (hsp70) paralogs**
1274 **in eukaryotes and prokaryotes.** (A) The ML tree was estimated using IQ-TREE with the
1275 LG+C20+F+Γ evolutionary model. Ultrafast bootstrap values are displayed on the branches.
1276 Cytoplasmic and ER (purple) and mitochondrial (green) homologs are labeled according to indel
1277 mapping patterns in the alignment. BaSk sequences are bolded and highlighted in red. (B) An
1278 example of indel patterns within the alignment used to assign probable localizations of hsp70
1279 homologs in the tree. Amino acid residues are colour coded.


1280

1281

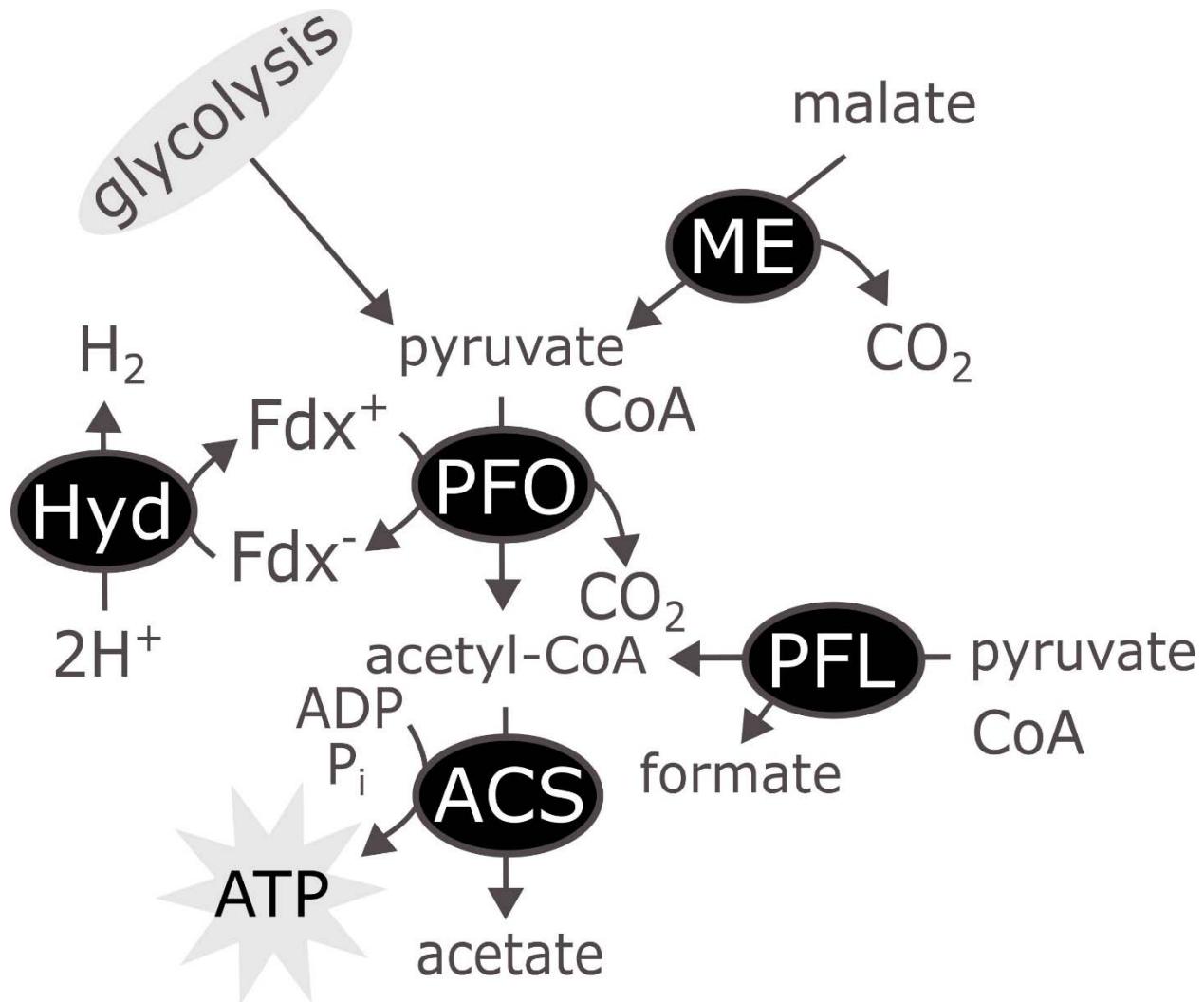
1282 **Supp. Figure 6. Estimated phylogenetic relationships amongst a variety of M16**
1283 **metallopeptidases.** This tree was estimated using the M16 peptidase database previously
1284 constructed by Garrido and colleagues (2022) and was estimated using IQ-TREE under the
1285 LG+C20+F+Γ evolutionary model. Ultrafast bootstrap values are displayed on the branches.
1286 Major groups of proteins have been collapsed into wedges. To the right of the tree, the domain
1287 structure of each protein/protein group is displayed, as annotated by InterPro. Eukaryotes – purple;
1288 bacteria – green; skoliomonads – red.


Supp. Figure 7. Estimated phylogenetic relationships between members of the mitochondrial carrier family (MCP) with candidate MCP sequences from ‘BaSks’. Where possible, MCP sequences are labeled with their family subtype designation according to the NCBI nr database. This phylogenetic tree was constructed using IQ-TREE and the LG+C20+F+Γ model of evolution. The *Skoliomonas litria* candidate MCP is highlighted in red. Values on the branches represent ultrafast bootstrap values.

1306

1307

1308 **Supp. Figure 8. The phylogeny of Sam50/BamA family in eukaryotes and prokaryotes and**
1309 **predicted structures of the BaSk homolog.** (A) A phylogenetic reconstruction of the Sam50
1310 candidate proteins in *Skoliomonas litria* and *Skoliomonas* sp. GEMRC, and their relationship to
1311 Sam50 (purple) and BamA (green) homolog proteins in eukaryotes and prokaryotes. (B)
1312 Alphafold2 structure prediction using the sequence of the candidate Sam50 protein found in
1313 *Skoliomonas litria* (C) Alphafold2 structure prediction using the sequence of the candidate
1314 Sam50 protein found in *Skoliomonas* sp. GEMRC. The protein regions resembling “POTRA”
1315 domains in other Sam50 proteins are highlighted with a red circle in each candidate.



1316

1317

1318 **Supp. Figure 9. A structural alignment of the β -barrel portions of the *Skoliomonas litria***
1319 **candidate Sam50 protein and Sam50 from yeast.** The *Skoliomonas litria* protein is shown in
1320 blue, aligned to the β -barrel domain of the yeast Sam50, which is shown in green. The missing
1321 sections of the β -barrel in *Skoliomonas litria*, when compared to the yeast model, is highlighted
1322 by a red circle. This structural alignment was produced using the PyMOL “cealign” function.

1323

1324

1325

1326

1327 **Supp. Figure 10. A schematic of the hypothesized ATP production pathway in the BaSk**
1328 **clade.** Hyd – Iron-only hydrogenase; ME – Malic enzyme; PFO – Pyruvate:ferredoxin oxidoreductase; ACS –
1329 Acetyl-CoA synthase; Fdx – Ferredoxin; PFL – pyruvate-formate lyase.

1330

0.8

1331

1332

1333 **Supp. Figure 11. A phylogenetic estimation of the relationship amongst ACS protein**
 1334 **sequences in a variety of prokaryotes and eukaryotes, including metamonads.** ACS1 is
 1335 represented in orange, ACS2 in green, and the newly detected 'ACS3' in purple. BaSk sequences
 1336 are bolded and highlighted in red. Major groupings of each ortholog are collapsed into wedges.
 1337 This phylogeny was constructed using IQ-TREE and the LG+C20+F+Γ model of evolution.
 1338 Ultrafast bootstrap values are indicated on the branches.

1339