

1 How environmental drivers of spatial synchrony interact

2 Daniel C. Reuman^{a,*}, Max C.N. Castorani^b, Kyle C. Cavanaugh^c, Lawrence
3 W. Sheppard^d, Jonathan A. Walter^{b,e}, and Tom W. Bell^{f,g}

4 ^aDepartment of Ecology and Evolutionary Biology and Center for
5 Ecological Research, University of Kansas

6 ^bDepartment of Environmental Sciences, University of Virginia

7 ^cDepartment of Geography, University of California, Los Angeles

8 ^dMarine Biological Association of the United Kingdom

9 ^eCenter for Watershed Sciences, University of California, Davis

10 ^fDepartment of Applied Ocean Physics and Engineering, Woods Hole
11 Oceanographic Institution

12 ^gEarth Research Institute, University of California, Santa Barbara

13 ^{*}Corresponding author, reuman@ku.edu

14 How environmental drivers of spatial synchrony interact

15 Abstract

16 Spatial synchrony, the tendency for populations across space to show correlated fluc-
17 tuations, is a fundamental feature of population dynamics, linked to central topics of
18 ecology such as population cycling, extinction risk, and ecosystem stability. A common
19 mechanism of spatial synchrony is the Moran effect, whereby spatially synchronized en-
20 vironmental signals drive population dynamics and hence induce population synchrony.
21 After reviewing recent progress in understanding Moran effects, we here elaborate a
22 general theory of how Moran effects of different environmental drivers acting on the
23 same populations can interact, either synergistically or destructively, to produce either
24 substantially more or markedly less population synchrony than would otherwise occur.
25 We provide intuition for how this newly recognized mechanism works through theoret-
26 ical case studies and application of our theory to California populations of giant kelp.
27 We argue that Moran interactions should be common. Our theory and analysis ex-
28 plain an important new aspect of a fundamental feature of spatiotemporal population
29 dynamics.

30 **Keywords**— Fourier, interactions, kelp, *Macrocystis pyrifera*, Moran effects, nutrients, syn-
31 chrony, waves

32 1 Introduction

33 Spatial synchrony, the tendency for geographically disjunct populations to show correlated fluctu-
34 ations through time, is a fundamental feature of population dynamics, linked to important topics
35 such as population cycling (Anderson *et al.*, 2021), extinction risk (Ghosh *et al.*, 2020c), and the
36 stability of regional populations and ecosystem functioning (Wilcox *et al.*, 2017). Though spatial
37 synchrony (henceforth, *synchrony*) has been studied for decades in a wide variety of species ranging
38 from viruses and plants to mammals, and at spatial scales ranging from centimeters to over 1000
39 km (Liebhold *et al.*, 2004), recent advances in statistical methods and improvements in data avail-
40 ability have led to several major advances in our understanding of synchrony and its causes and

41 consequences. For instance, the timescale structure of synchrony is now known to be important
42 [Sheppard *et al.* (2016); Desharnais *et al.* (2018); Sheppard *et al.* (2019), see also Keitt (2008)], syn-
43 chrony is now known to have a complex and pronounced geography (Defriez & Reuman, 2017a,b;
44 Walter *et al.*, 2017, 2020), and patterns of synchrony are now known to be asymmetric in distri-
45 bution tails in a way that is important for system stability (Ghosh *et al.*, 2020a,b; Walter *et al.*,
46 2022). Our ability to infer the causes of synchrony is much improved in recent years (Sheppard
47 *et al.*, 2016; Defriez & Reuman, 2017b; Walter *et al.*, 2017; Anderson *et al.*, 2018; Sheppard *et al.*,
48 2019), and there is also growing evidence that synchrony is changing as a newly recognized compo-
49 nent of climate change (Defriez *et al.*, 2016; Sheppard *et al.*, 2016; Hansen *et al.*, 2020). Distinct
50 viewpoints on synchrony from population and community ecology are becoming integrated, leading
51 to a more wholistic understanding of the importance of synchrony for ecosystem stability (Wang &
52 Loreau, 2014). These new developments have led to an increasingly central role of the phenomenon
53 of synchrony in many of the most important research topics in ecology.

54 Correlations between weather time series measured in different locations can induce synchrony
55 between populations in those locations if the weather variables influence population processes.
56 This mechanism, called the Moran effect, is now known to be one of the most important causes of
57 synchrony. But the mechanism was originally proposed theoretically (Moran, 1953), and decades
58 passed during which it was considered difficult to distinguish this potential cause of synchrony from
59 others in field systems. Synchrony has long been thought to have three causes: dispersal, and trophic
60 interactions with a synchronous or mobile species, in addition to the Moran effect (Liebhold *et al.*,
61 2004). However, using common past statistical approaches which focussed on declines in population
62 correlations with distance, patterns of synchrony produced by each of these mechanisms are quite
63 similar (Ranta *et al.*, 1999; Abbott, 2007; Liebhold *et al.*, 2004; Walter *et al.*, 2017); so examination
64 of such patterns provides little or no traction for inferring the causes of synchrony. Early papers
65 demonstrating the Moran effect mechanism resorted to special cases where dispersal was impossible
66 and predators were absent (Grenfell *et al.*, 1998; Tedesco *et al.*, 2004). Controlled experiments also
67 confirmed that all three theorized mechanisms could be involved in synchrony [e.g., Vasseur & Fox,
68 2009]. Nevertheless, the problem of inferring specific mechanisms of synchrony in field systems was
69 considered a challenge until recently.

70 Recent research has provided new statistical viewpoints which have, when sufficient data are
71 available, essentially solved the problem of inference of the causes of synchrony, and the research
72 has revealed the broad importance of Moran effects. Approaches based on formal statistical com-
73 parisons between population synchrony maps and maps of environmental correlations produced
74 inferences that precipitation and temperature Moran effects are important causes of synchrony of
75 terrestrial (Defriez & Reuman, 2017b) and marine (Defriez & Reuman, 2017a) primary productivity.
76 Another geographic approach, based on multiple regression of distance matrices (MRM), was used
77 in an early paper to infer that a precipitation Moran effect is a cause of synchrony for the spongy
78 moth (Haynes *et al.*, 2013), an invasive forest pest whose name was recently changed from “gypsy
79 moth.” Geographic approaches to identifying causes of synchrony, often MRM approaches specifi-
80 cally (Koenig *et al.*, 2017; Walter *et al.*, 2020; Bogdziewicz *et al.*, 2021), have become widespread,
81 and the geography of synchrony has become a mainstream area of study (Walter *et al.*, 2017).
82 The approach of Gouveia *et al.* (2016), called “noncentered local indicators of spatial association”
83 (ncLISA), is another geographic approach; as is the “fluvial synchrogram” of Larsen *et al.* (2021),
84 a tool for studying synchrony in river networks. MRM approaches have also been used to identify
85 dispersal as a cause of synchrony (Anderson *et al.*, 2018), sometimes combined with genetic meth-
86 ods (Haynes & Walter, 2022). Another class of methods exploit the time and timescale structure
87 of synchrony. Using a method that examined the match between temporal variations in population
88 and environmental synchrony, Allstadt *et al.* (2015) confirmed the importance of a precipitation
89 Moran effect for synchrony of spongy moth. A suite of wavelet and related Fourier techniques have
90 been developed that can comprehensively describe the time and timescale structure of synchrony,
91 identify Moran drivers of synchrony operating in distinct timescale bands, and apportion fractions
92 of observed synchrony to respective Moran drivers (Sheppard *et al.*, 2016, 2017; Desharnais *et al.*,
93 2018; Sheppard *et al.*, 2019; Reuman *et al.*, 2021; Anderson *et al.*, 2021). The methods have been
94 used, for instance, to provide one of the first clear demonstrations that changes in Moran effects
95 are another of the impacts of climatic changes (Sheppard *et al.*, 2016, 2019); and to illustrate the
96 importance of the timescale structure of environmental covariation for altering Moran effects (De-
97 sharnais *et al.*, 2018). These methods have since been used to identify Moran effects in several
98 additional systems (e.g., Anderson *et al.*, 2019; Walter *et al.*, 2019, 2020; García-Carreras *et al.*,

99 2022; Castorani *et al.*, 2022).

100 The techniques reviewed above have made it possible for several recent papers to identify cases
101 in which two or more distinct Moran drivers operate simultaneously on the same populations (e.g.,
102 Defriez & Reuman, 2017b; Haynes *et al.*, 2019; Walter *et al.*, 2019, 2020; Anderson *et al.*, 2021).
103 In fact, two recent papers have documented that Moran effects of distinct environmental drivers
104 can interact, either synergistically or antagonistically, so that total population synchrony can be
105 either greater than or less than what synchrony would be if the distinct Moran drivers operated
106 independently (Sheppard *et al.*, 2019; Castorani *et al.*, 2022). Sheppard *et al.* (2019) showed that
107 long-timescale (> 4 y period) synchrony in a chlorophyll density index in the seas around the United
108 Kingdom is substantially augmented by interactions between environmental drivers of synchrony
109 and drivers linked with consumption by a copepod consumer. Castorani *et al.* (2022) showed that
110 nutrient dynamics and wave disturbance, two Moran drivers of synchrony in giant kelp populations
111 on the California (CA) coast, interact either synergistically or destructively, depending on which
112 portion of the CA coast is examined and on the timescale of analysis.

113 The main purpose of this study is to establish a general theory of the mechanism of interacting
114 Moran effects and to use examples and applications of the theory to provide ecological intuition
115 for how the mechanism of interacting Moran effects works. Our goals are distinct from those of
116 Kendall *et al.* (2000), who examined interactions between Moran and dispersal causes of synchrony.

117 The basic fact that Moran drivers can interact, synergistically or destructively, can be demon-
118 strated with a very simple model which we now elaborate, though understanding the full nature
119 of the interaction mechanism will require the rest of this paper. Suppose $\epsilon_i^{(1)}(t)$ and $\epsilon_i^{(2)}(t)$ are
120 environmental random variables measured in locations $i = 1, 2$ at times t , and assume these are
121 independent through time and standard normally distributed for all i and t . If a population index
122 $w_i(t)$ follows the autoregressive process $w_i(t) = bw_i(t-1) + \epsilon_i^{(1)}(t)$ for $i = 1, 2$, then the classic Moran
123 theorem (Moran, 1953) implies that temporal population correlation equals temporal environmen-
124 tal correlation, i.e., $\text{cor}(w_1, w_2) = \text{cor}(\epsilon_1^{(1)}, \epsilon_2^{(1)})$. If, instead, $w_i(t) = bw_i(t-1) + \epsilon_i^{(1)}(t) + \epsilon_i^{(2)}(t)$,
125 so that both environmental variables influence populations, the Moran theorem then implies that
126 population synchrony is $\text{cor}(w_1, w_2) = \text{cor}(\epsilon_1^{(1)} + \epsilon_1^{(2)}, \epsilon_2^{(1)} + \epsilon_2^{(2)})$. As we show in detail in SI section
127 S1, it is straightforward to show that this quantity depends not only on the standard environ-

128 mental synchrony measures $\text{cov}(\epsilon_1^{(a)}, \epsilon_2^{(a)})$, for $a = 1, 2$, but also on the “cross synchrony” measures
129 $\text{cov}(\epsilon_1^{(a)}, \epsilon_2^{(b)})$ for $a \neq b$. Cross synchrony measures represent synchrony between an environmental
130 variable in one location and a different variable in another location. Fig. 1 illustrates, using this
131 model, how population synchrony can therefore differ from what synchrony would be if the envi-
132 ronmental processes $\epsilon^{(1)}$ and $\epsilon^{(2)}$ were unrelated, so that covariances between components of those
133 processes are zero. The difference is due to interactions between the two Moran effects, and can be
134 substantially positive or negative. This example was adapted from SI section S1 of Sheppard *et al.*
135 (2019). All notation and abbreviations used throughout the paper are summarized in Table 1.

136 Having demonstrated that interactions between Moran effects can occur, we now use a simple
137 analogy from common experience to begin to provide intuition. Consider N children, each riding on
138 their own playground swing and each being pushed both by their own mother and their own father.
139 Here, the children correspond to ecological populations and the parental pushing to environmental
140 influences on the populations. If the fathers from separate families were to synchronize their pushes,
141 they would act as a Moran-like influence, tending to synchronize the swinging motions of the
142 children. Likewise, if the mothers from separate families were to synchronize their pushes, it
143 would tend to have a separate synchronizing effect. If the pushes of the fathers were appropriately
144 coordinated with the pushes of the mothers (either happening at the same time, if the mothers
145 and fathers are standing on the same sides of the swinging children, or at opposite times in the
146 swing period if the parents are on opposite sides), the children would swing higher, and would also
147 swing more synchronously, demonstrating a synergistic interaction between synchronizing effects,
148 i.e., a tendency for the two synchronizing effects to reinforce each other. On the other hand, if the
149 maternal and paternal pushes were not appropriately coordinated, the children would swing more
150 or less randomly, with smaller amplitude, and would become asynchronous with each other. This
151 second case demonstrates an antagonistic interaction between synchronizing effects, i.e., a tendency
152 for the two synchronizing effects to cancel. As oscillators, children on swings are distinct in many
153 ways from populations, not least because swings oscillate on one frequency/timescale, whereas
154 populations typically oscillate simultaneously on many timescales. We will see that a key insight
155 is the use of a timescale-specific approach. By timescale-specific, we mean that fluctuations having
156 different characteristic periods, which are superimposed in actual population time series data, can

157 be understood separately. Timescale-specific approaches have been shown to be important to
158 understanding synchrony and other phenomena (e.g., Sheppard *et al.*, 2016; Anderson *et al.*, 2021;
159 Zhao *et al.*, 2020). In the approach used in this paper, environmental and population signals are
160 decomposed using Fourier analysis. The simple swing analogy turns out to supply, in much idealized
161 form, the basic intuition our formal theory will extend.

162 Both Sheppard *et al.* (2019) and Castorani *et al.* (2022) argued that interactions between Moran
163 effects may be a general feature of many systems, because of the large number of interrelated
164 factors driving population fluctuations in most spatially extended systems. The same two studies
165 demonstrated that interaction effects can be strong. For these reasons and others, development of
166 a general theoretical and intuitive understanding of how interactions between Moran effects work
167 is an important research goal. We explore in the Discussion why climate change may also influence
168 Moran interactions, and we extend the arguments of Sheppard *et al.* (2019) and Castorani *et al.*
169 (2022) that interactions between Moran effects are likely to be common.

170 Our specific goals for this study are as follows. First, (G1) we will elaborate a general theory
171 of interacting Moran effects which allows a detailed understanding of how the mechanism works.
172 Second, (G2) we will consider theoretical case studies, which emerge as important special cases of
173 our general theory, and which illuminate the intuition behind how Moran effects may interact in
174 real systems. Third, (G3) we will apply our theory to populations of giant kelp off the CA coast.
175 Whereas Castorani *et al.* (2022) already carried out a detailed analysis of interacting Moran effects
176 in CA kelp populations and their importance for kelp ecology, we instead use a simplified subset of
177 the available kelp data. Our kelp analysis is intended to illuminate the inner workings of the general
178 mechanism we describe rather than being an exploration of kelp dynamics, specifically. Overall, this
179 study introduces a general theory of Moran interactions and uses it to conceptually illuminate this
180 newly observed but potentially quite important mechanism of spatiotemporal population dynamics.

181 2 General Theory

182 2.1 Building intuition for Moran interactions: a single timescale

183 Prior to presenting our formal theory, we extend and formalize the intuition behind it that began
184 with the swing analogy in the Introduction. We again focus on a single timescale of oscillation,
185 later combining timescales mathematically. Fig. 2a,b shows the period-20 Fourier components of
186 two hypothetical, spatially synchronous environmental variables measured in sampling locations
187 $i = 1, 2, 3$, and one way these can influence populations. The components are lagged, relative to
188 each other, in the timing of their peaks (l_n on the figure). They are also lagged in their effects
189 on populations, by the amounts l_{e1} and l_{e2} , respectively, i.e., peaks in the environmental signals
190 manifest as maximum positive influence on populations after delays of l_{e1} and l_{e2} , respectively.
191 Such delays can be due to a variety of biological mechanisms associated with the life history of the
192 organisms which comprise the populations. In this example, we assume for simplicity that larger
193 values of both environmental variables are beneficial to populations, though the general theory
194 described below does not require that assumption, and see also the next example which makes a
195 different assumption. If, as in Fig. 2a, b, $l_{e1} - l_{e2} + l_n = 0$ (or $l_{e1} - l_{e2} + l_n$ is any integer multiple of
196 $\sigma = 20$, the period), then the periodic maximal positive influences of the two environmental variables
197 coincide with each other as well as being spatial synchronous. This alignment of influences produces
198 additional synchrony in populations, beyond what would manifest if environmental fluctuations were
199 unrelated, because positive influences of variable 1 in location i will tend to coincide with positive
200 influences of variable 2 in location j . In contrast, Fig. 2c, d shows the opposite scenario, for which
201 $l_{e1} - l_{e2} + l_n = -\sigma/2$. Thus the periodic maximal positive influence of environmental variable
202 1 coincides with the periodic maximal negative influence of environmental variable 2, reducing
203 synchrony relative to the case of unrelated environmental variables. (The same outcome would occur
204 if $l_{e1} - l_{e2} + l_n$ were any integer multiple of σ plus or minus $\sigma/2$.) Intermediate scenarios between the
205 two scenarios of Fig. 2 are also possible, as will be revealed by the theory. We henceforth refer to the
206 quantity $l_{e1} - l_{e2} + l_n$ as the *environmental effect alignment measure*, because it measures the extent
207 to which the timing of the population influences of the two environmental variables are aligned.
208 If we replace the assumption that larger values of both environmental variables are beneficial to

209 populations with an assumption that larger values of the first variable and smaller values of the
210 second are beneficial, scenarios of synergistic versus antagonistic Moran interactions are reversed,
211 but with the same general concepts still operating (Fig. 3).

212 2.2 Formal theory

213 Our formal theory requires a conceptual understanding of the *spectrum* of an environmental or
214 population time series, as well as of the *cospectrum* and *cross spectrum* of two time series, so we
215 briefly introduce these concepts. If $w_i(t)$ is a stochastic process or time series measured at location
216 i (e.g., the population density time series of a species of interest in that location), the spectrum
217 $S_{w_i w_i}(f)$ is a function of frequency, f . For a periodic oscillation, f can be defined as one over the
218 timescale, or period, σ , of the oscillation. The spectrum $S_{w_i w_i}(f)$ is larger for frequencies at which
219 $w_i(t)$ oscillates more. So, for example, a population $w_i(t)$ that shows strong oscillatory dynamics
220 of 5-year period will have a large value of $S_{w_i w_i}(f)$ for $f = \frac{1}{5} \text{ y}^{-1}$. The spectrum separates the
221 overall variance of a time series into contributions which occur at different frequencies, in the sense
222 that an integral of $S_{w_i w_i}(f)$ across all frequencies equals $\text{var}(w_i)$. In a similar way, the cospectrum
223 of two time series, $w_i(t)$ and $w_j(t)$, is a function of f that takes large values at frequencies for
224 which oscillations in $w_i(t)$ and $w_j(t)$ are both strong and strongly correlated, i.e., they have the
225 same or similar phase. Here, j refers to another location where measurements were taken. The
226 cospectrum is the real part of the cross spectrum, $S_{w_i w_j}(f)$, which is a complex-valued function
227 of frequency. The cross-spectrum takes large-magnitude values at frequencies, f , for which the
228 oscillatory components of $w_i(t)$ and $w_j(t)$ are strong and in a consistent phase relationship to each
229 other; and the complex phase of the cross spectrum at f then quantifies that relationship. The
230 notation $S_{w w}(f)$ refers to the *spectral matrix*, which has ij^{th} entry $S_{w_i w_j}(f)$. Spectral methods
231 are standard [e.g., Vasseur & Gaedke (2007); Defriez & Reuman (2017a)], and many background
232 references are available [e.g., Brillinger (2001)].

233 Much prior work demonstrates the importance of a frequency- or timescale-specific approach to
234 synchrony [e.g., Vasseur & Gaedke (2007); Keitt (2008); Defriez *et al.* (2016); Sheppard *et al.* (2016);
235 Desharnais *et al.* (2018); Anderson *et al.* (2021); frequency- and timescale-specific approaches are
236 equivalent because frequency and timescale are reciprocal], and it will turn out (see below, and

237 Discussion) that a timescale-specific approach is essential to the development of our new theory.
 238 We therefore here define, using the spectral methods outlined above, a frequency/timescale-specific
 239 measure of synchrony, as well as a new concept of *cross-variable synchrony*. If time series data
 240 $w_i(t)$ for $t = 1, \dots, T$ were gathered at locations $i = 1, \dots, N$, our synchrony measure is simply
 241 $\rho_{ww} = \left(\sum_{i \neq j} S_{w_i w_j} \right) / (N^2 - N)$, the average of the cross spectra for all pairs of distinct locations.
 242 This is a real-valued function of frequency, an integral (across frequencies) of which is the classic,
 243 non-frequency-specific synchrony measure $\left(\sum_{i \neq j} \text{cov}(w_i, w_j) \right) / (N^2 - N)$ (see SI section S2 for
 244 details, here). If two time series $\epsilon_i^{(1)}(t)$ and $\epsilon_i^{(2)}(t)$ ($t = 1, \dots, T$ and $i = 1, \dots, N$) were measured
 245 at each sampling location (e.g., two environmental variables), cross-variable synchrony (or, simply,
 246 *cross synchrony*) between the variables is defined as $\rho_{\epsilon^{(1)} \epsilon^{(2)}} = \left(\sum_{i \neq j} S_{\epsilon_i^{(1)} \epsilon_j^{(2)}} \right) / (N^2 - N)$. This
 247 is interpretable as pertaining to spatial synchrony because it makes comparisons across distinct
 248 locations, i.e., $i \neq j$. It is interpretable as cross-variable synchrony because comparisons are between
 249 the two variables, i.e., cross spectra between time series components of $\epsilon^{(1)}$ and $\epsilon^{(2)}$ are used. The
 250 new index takes into account possible time lags. For instance, if both $\epsilon^{(1)}$ and $\epsilon^{(2)}$ show strong,
 251 spatially synchronous, 4-year-period oscillations, but peaks in the $\epsilon^{(2)}$ oscillations consistently lag
 252 peaks in the $\epsilon^{(1)}$ oscillations by a year, then $\rho_{\epsilon^{(1)} \epsilon^{(2)}}$, which is complex valued, will have high
 253 magnitude at timescale 4y, equivalent to frequency $f = \frac{1}{4} \text{ y}^{-1}$, and will have phase at that frequency
 254 equal to $\pi/2$, reflecting the one-year lag. See SI section S3 for detailed examples.

255 Our population model is

$$w_i(t) = b_1 w_i(t-1) + \dots + b_n w_i(t-n) \quad (1)$$

$$+ p_0^{(1)} \epsilon_i^{(1)}(t) + \dots + p_{m_1}^{(1)} \epsilon_i^{(1)}(t-m_1) \quad (2)$$

$$+ p_0^{(2)} \epsilon_i^{(2)}(t) + \dots + p_{m_2}^{(2)} \epsilon_i^{(2)}(t-m_2) \quad (3)$$

$$+ \delta_i(t), \quad (4)$$

256 where $w_i(t)$ is an index of the population in location $i = 1, \dots, N$ at time t , and $\epsilon^{(1)} = (\epsilon_1^{(1)}, \dots, \epsilon_N^{(1)})$,
 257 $\epsilon^{(2)} = (\epsilon_1^{(2)}, \dots, \epsilon_N^{(2)})$ and $\delta = (\delta_1, \dots, \delta_N)$ are environmental processes at the same locations. The
 258 processes $\epsilon^{(1)}$ and $\epsilon^{(2)}$ are taken to be measured, whereas δ represents the aggregate influence of
 259 unmeasured processes. We assume that the combined process $(\epsilon_1^{(1)}, \dots, \epsilon_N^{(1)}, \epsilon_1^{(2)}, \dots, \epsilon_N^{(2)}, \delta_1, \dots, \delta_N)$

260 is an ergodic second-order stationary stochastic process (Brillinger, 2001) with expected values of
 261 its components equal to 0. We make additional mild regularity assumptions for model stability (SI
 262 section S4). This model can be seen as a linearization of a very general dynamical model, influenced
 263 by “weak noise” [see, e.g., SI section S1.2 of Desharnais *et al.* (2018) and SI section S1 of Walter
 264 *et al.* (2017)]. Linearization and “weak noise” assumptions have been commonly adopted to make
 265 theoretical progress in ecology, and it has been demonstrated that results based on a weak noise
 266 assumption often hold for noise which is fairly strong (Nisbet *et al.*, 1977; Desharnais *et al.*, 2018).

267 See Brillinger (2001) for background on stochastic processes.

268 Fulfilling goal G1 of the Introduction (i.e., to elaborate theory of interacting Moran effects), the
 269 outcome of our theory is an equation which expresses population synchrony in terms of synchrony
 270 of the environmental processes $\epsilon^{(1)}$ and $\epsilon^{(2)}$, and cross synchrony between those processes:

$$\rho_{ww} = \frac{1}{|f_B|^2} [|f_{\mathcal{P}^{(1)}}|^2 \rho_{\epsilon^{(1)}\epsilon^{(1)}} + |f_{\mathcal{P}^{(2)}}|^2 \rho_{\epsilon^{(2)}\epsilon^{(2)}} + 2\text{Re} (f_{\mathcal{P}^{(1)}} \overline{f_{\mathcal{P}^{(2)}}} \rho_{\epsilon^{(1)}\epsilon^{(2)}})] \quad (5)$$

$$+ \text{other contributions.} \quad (6)$$

271 Here, $f_B = 1 - b_1\mu - b_2\mu^2 - \dots - b_n\mu^n$, $f_{\mathcal{P}^{(1)}} = p_0^{(1)} + p_1^{(1)}\mu + \dots + p_{m_1}^{(1)}\mu^{m_1}$, and $f_{\mathcal{P}^{(2)}} = p_0^{(2)} +$
 272 $p_1^{(2)}\mu + \dots + p_{m_2}^{(2)}\mu^{m_2}$, where $\mu = \exp(-2\pi\iota f)$, and where ι , the Greek letter iota, is the imaginary
 273 unit. The derivation of the theory is in SI section S5.

274 Comparing the terms on the right of (5) gives the relative contributions of direct Moran effects
 275 and interactions between Moran effects. The first term on the right of (5) is the component of
 276 population synchrony due to the direct Moran effects of $\epsilon^{(1)}$, the second term is the component due
 277 to the direct Moran effects of $\epsilon^{(2)}$, and the third term is the component due to interactions between
 278 the Moran effects of the two drivers. The “other contributions” above correspond to synchronizing
 279 influences of δ and of interactions between δ and the $\epsilon^{(i)}$. Such contributions would be difficult to
 280 assess because δ was unmeasured.

281 The way direct Moran effects in our theory are interpreted is fairly straightforward. The mag-
 282 nitudes of the quantities $f_{\mathcal{P}^{(1)}}$ and $f_{\mathcal{P}^{(2)}}$ quantify the strength of influence of $\epsilon^{(1)}$ and $\epsilon^{(2)}$ on popula-
 283 tions at the timescale $\sigma = 1/f$. The direct Moran effect term in (5) for $\epsilon^{(1)}$, i.e., $|f_{\mathcal{P}^{(1)}}|^2 \rho_{\epsilon^{(1)}\epsilon^{(1)}} / |f_B|^2$,
 284 equals the synchrony of the $\epsilon^{(1)}$ time series themselves, $\rho_{\epsilon^{(1)}\epsilon^{(1)}}$, times the timescale-specific strength

285 of influence of $\epsilon^{(1)}$ on the populations, $|f_{\mathcal{P}^{(1)}}|^2$, and modulated by the autoregressive nature of pop-
286 ulation dynamics, $1/|f_{\mathcal{B}}|^2$. The term for the direct Moran effects of $\epsilon^{(2)}$ is interpreted similarly.

287 The components of the interacting Moran effects term in our theory are also interpretable.
288 The phases of the quantities $f_{\mathcal{P}^{(1)}}$ and $f_{\mathcal{P}^{(2)}}$ quantify the lags in the population influences of $\epsilon^{(1)}$
289 and $\epsilon^{(2)}$, represented on Fig. 2 by l_{e1} and l_{e2} , relative to the timescale $\sigma = 1/f$. The lag l_n on
290 Fig. 2 manifests in the theory through the phase of $\rho_{\epsilon^{(1)}\epsilon^{(2)}}$. The environmental effect alignment
291 measure, $l_{e1} - l_{e2} + l_n$, corresponds to the phase of the expression $f_{\mathcal{P}^{(1)}}\overline{f_{\mathcal{P}^{(2)}}\rho_{\epsilon^{(1)}\epsilon^{(2)}}}$, because the
292 phase of this product equals the phase of $f_{\mathcal{P}^{(1)}}$ (which corresponds to l_{e1}), minus the phase of
293 $f_{\mathcal{P}^{(2)}}$ (which corresponds to l_{e2}), plus the phase of $\rho_{\epsilon^{(1)}\epsilon^{(2)}}$ (which corresponds to l_n). The real
294 part of $f_{\mathcal{P}^{(1)}}\overline{f_{\mathcal{P}^{(2)}}\rho_{\epsilon^{(1)}\epsilon^{(2)}}}$ is positive whenever the phase of this quantity is close to zero, e.g., when
295 environmental influences are positive and $l_{e1} - l_{e2} + l_n$ is close to 0 (Fig. 2a, b); and is increasingly
296 negative as the phase of $f_{\mathcal{P}^{(1)}}\overline{f_{\mathcal{P}^{(2)}}\rho_{\epsilon^{(1)}\epsilon^{(2)}}}$ gets close to π , e.g., when $l_{e1} - l_{e2} + l_n$ is close to $-\sigma/2$
297 (Fig. 2c, d). The factor $1/|f_{\mathcal{B}}|^2$ again captures how the intrinsic nature of population dynamics
298 modulates Moran influences.

299 3 Methods

300 3.1 Theoretical case studies

301 We now describe how we pursue goal G2 of the Introduction, to develop three theoretical case
302 studies that illuminate the intuition of interacting Moran effects. For all cases, the model time step
303 was assumed to be one quarter (q), i.e., four time steps per year. This makes no real mathematical
304 difference, but was done to facilitate later comparisons with results for kelp data, which were
305 sampled quarterly. For case study A (henceforth CaseA), the environmental variable $\epsilon^{(1)}$ is assumed
306 to have a simple positive effect on populations, but lagged by one model time step (1q), i.e., $p_1^{(1)} > 0$,
307 and $p_i^{(1)} = 0$ for $i \neq 1$. For case study B (henceforth CaseB), $\epsilon^{(1)}$ is again assumed to have a simple
308 positive effect on populations, but now lagged by 3q, so that $p_3^{(1)} > 0$ while $p_i^{(1)} = 0$ for $i \neq 3$. For
309 both CaseA and CaseB, the effects of $\epsilon^{(2)}$ are assumed to be un-lagged and positive, i.e., $p_0^{(2)} > 0$
310 and $p_i^{(2)} = 0$ for $i > 0$. For case study C (CaseC), the effects of $\epsilon^{(1)}$ are positive and lagged by 1q

and the effects of $\epsilon^{(2)}$ are unlagged and negative, i.e., $p_1^{(1)} > 0$ while $p_i^{(1)} = 0$ for $i \neq 1$, and $p_0^{(2)} < 0$ while $p_i^{(2)} = 0$ for $i \neq 0$. The noise process $(\epsilon^{(1)}, \epsilon^{(2)})$ is assumed to be a Gaussian white-noise process for both CaseA and CaseB. So the random variables $(\epsilon^{(1)}(t), \epsilon^{(2)}(t))$ are independent and identically distributed (iid) for distinct times, t . Noise was positively correlated across space, and the components of $\epsilon^{(1)}(t)$ were positively correlated with those of $\epsilon^{(2)}(t)$. For CaseC, the noise processes $\epsilon^{(1)}$ and $\epsilon^{(2)}$ are each assumed to exhibit spatially synchronous periodic oscillations of period one year, i.e., four model time steps, but with different phases. Peaks in $\epsilon^{(1)}$ are assumed to either lead or lag peaks in $\epsilon^{(2)}$ by 1q (we consider two sub-cases, CaseC1 and CaseC2). Such a situation could be realized by annually periodic environmental fluctuations sampled quarterly, e.g., wave action in central CA peaks annually in the winter, whereas surface-water nitrate concentrations also fluctuate with period one year, but peak in the spring, a delay of 1q compared to the wave peak. Details of the noise processes are in SI section S3. For all case studies, the autoregressive order of population dynamics is assumed, for simplicity, to be 1, i.e., $b_1 \neq 0$ but $b_i = 0$ for $i > 1$. Case studies do not cover the full range of possible scenarios which can be illuminated by our general theory; they were selected for the intuition they provide, and for the correspondence of some of the cases to the kelp examples we later discuss.

3.2 Kelp examples

To help illustrate our theory, for goal G3 of the Introduction, we also apply the theory to an exceptional dataset on giant kelp (*Macrocystis pyrifera*) dynamics off the CA coast, and associated environmental measurements. The data are based on a subset of those used by Castorani *et al.* (2022) and Walter *et al.* (2022), and data details are given in those papers and in SI section S6; Castorani *et al.* (2022) and Walter *et al.* (2022) also provide an introduction to kelp ecology, and information on why giant kelp is an excellent species for studies of synchrony. We here summarize the format of the data after a preparation and cleaning process was implemented. After preparation, kelp data consisted of 224 quarterly kelp abundance time series from locations along the CA coast, each time series spanning from quarter 1 of 1987 to quarter 4 of 2019. Time series were grouped into three regions which were analyzed separately: a more northerly central CA group of 82 locations (called CCA1); a more southerly central CA group of 82 locations (CCA2); and a group of 60

339 locations from southern CA, close to Santa Barbara (called SB; see Fig. 4). Each kelp measurement
340 is an estimate of mean quarterly kelp canopy biomass (kg wet) per unit useable habitat (m^2) along a
341 500m stretch of coastline. We used coastline segments where kelp was persistent through essentially
342 all of the 1987-2019 period (SI section S6). We also had estimates of maximum wave height and
343 mean nitrate concentration for each quarter and location. Both waves and nutrients influence kelp
344 dynamics and synchrony (Cavanaugh *et al.*, 2013; Castorani *et al.*, 2022).

345 Coefficients of the model (1)-(4) were separately selected for each of our three regions using
346 linear regression methods and building on extensive prior work on the drivers of kelp dynamics.
347 A no-intercept regression model of kelp at time t in location i , i.e., $w_i(t)$ in (1), against lagged
348 values of kelp ($w_i(t-l)$ for $l = 1, \dots, n$ in (1)), lagged and unlagged values of nitrates ($\epsilon_i^{(1)}(t-l)$
349 for $l = 0, \dots, m_1$ in (2)), and values of waves ($\epsilon_i^{(2)}(t-l)$ for $l = 0, \dots, m_2$ in (3)) was fitted using
350 standard regression methods. The same regression coefficients were used for all locations within
351 a region. Here, the w_i represent linearly detrended kelp time series in one of our regions, $\epsilon_i^{(1)}$
352 were detrended nitrate time series in the region, and $\epsilon_i^{(2)}$ were detrended wave disturbance time
353 series. Waves influence kelp dynamics through direct disturbance events which can damage kelp
354 or extirpate kelp locally when waves are large (Cavanaugh *et al.*, 2011; Bell *et al.*, 2015; Schiel &
355 Foster, 2015). Thus wave effects are immediate and $m_2 = 0$ was used. Nitrates are known to fuel
356 rapid kelp growth, though in some areas effects appear delayed by about 1q because our kelp data
357 quantify canopy (surface) biomass, and it can take time for subsurface kelp to grow back to the
358 surface (Cavanaugh *et al.*, 2011; Bell *et al.*, 2015; Schiel & Foster, 2015). Therefore $m_1 = 1$ was
359 used. Kelp holdfasts on the sea floor can last for multiple years, so kelp lag effects were considered:
360 we used $n = 4, 8, 12q$ in separate analyses, with this choice making no substantive difference to
361 results (see Results). Fitted regression coefficients determined the quantities $b_1, \dots, b_n, p_0^{(1)}, p_1^{(1)}$,
362 and $p_0^{(2)}$ in (1)-(3), and therefore $f_B, f_{\mathcal{P}^{(1)}}$ and $f_{\mathcal{P}^{(2)}}$ in (5), for each of our three regions.

363 To estimate the components $\rho_{ww}, \rho_{\epsilon^{(1)}\epsilon^{(1)}}, \rho_{\epsilon^{(2)}\epsilon^{(2)}}$ and $\rho_{\epsilon^{(1)}\epsilon^{(2)}}$ in (5), we applied the definitions
364 of these quantities (General Theory), which required estimation from data of the spectra and cross
365 spectra $S_{w_i w_j}$ and $S_{\epsilon_i^{(a)} \epsilon_j^{(b)}}$ for $i, j = 1, \dots, N$ and $a, b = 1, 2$, where N is the number of locations
366 in the region being considered. Spectral quantities were computed using the consistent estimator
367 of section 7.4 of Brillinger (2001). The estimator is a smoothed periodogram, with the width of

368 the smoothing kernel selected to increase with the square root of time series length. Theory was
369 interpreted in relation to kelp ecology and theoretical case studies by plotting the components of
370 (5) for each of our regions.

371 Data for the project are publicly archived (Bell *et al.*, 2021). All computations were done in R
372 version 3.6.3 on a laptop running Ubuntu Linux 16.04. Complete codes for the project workflow
373 are at <https://github.com/reumandc/InteractingMoranEffects.git>.

374 4 Results

375 4.1 Illustrating properties of Moran interactions: case studies

376 To begin fulfilling goal G2 of the Introduction, our theoretical case studies demonstrate that inter-
377 action effects between Moran drivers: 1) can be comparable in strength to direct Moran effects; 2)
378 can be either synergistic or destructive; and 3) can depend strongly on timescale. First, for all of our
379 case studies, the magnitude of interaction effects was comparable to that of direct Moran effects
380 (Fig. 5, compare the dashed and solid lines). Thus interactions can contribute substantially to
381 overall synchrony. Second, in contrast to direct Moran effects, which are positive, interactions can
382 be negative or positive. CaseA and CaseB showed negative interaction effects on short timescales
383 (Fig. 5a,c); CaseC1 showed negative interactions on long timescales (Fig. 5e); and CaseC2 showed
384 negative interactions on all timescales (Fig. 5g). Thus interaction effects can either augment or
385 reduce synchrony. Finally, interaction effects depended strongly on timescale for all case studies.
386 This result complements earlier studies that showed direct Moran effects can depend on timescale
387 (Defriez *et al.*, 2016; Sheppard *et al.*, 2016; Desharnais *et al.*, 2018; Anderson *et al.*, 2021). The
388 results of this paragraph also follow from Sheppard *et al.* (2019) and Castorani *et al.* (2022), though
389 not straightforwardly, and those papers are case studies, whereas our results provide general theory.

390 4.2 Building intuition for Moran interactions: case studies

391 CaseA helps provide an intuitive understanding about how lags in Moran drivers can produce
392 contrasting interactions between Moran effects on different timescales, and how our theory captures

393 that contrast. For CaseA, $\epsilon^{(1)}$ effects on populations were lagged by 1q but $\epsilon^{(2)}$ effects were unlagged
394 (Methods). So, in the language of Fig. 2, $l_{e1} = 1q$ and $l_{e2} = 0q$. The between-noise lag, l_n , of
395 Fig. 2 is 0q because $(\epsilon^{(1)}, \epsilon^{(2)})$ was taken to be a white noise process (see SI section S3 for details).
396 Thus, the environmental effect alignment measure, $l_{e1} - l_{e2} + l_n$, equals 1q. What determines the
397 sign of interactions between Moran effects for this example is how this measure compares to the
398 timescale/period, σ , being considered. On the shortest timescales ($\sigma = 0.5y = 2q$; Fig. 5a, left side
399 of panel), 1q is half the period, so interaction effects are negative. On long timescales (e.g., $\sigma > 8y$),
400 1q is a negligible portion of the period, so $l_{e1} - l_{e2} + l_n$ is close to zero, relative to that period,
401 and interaction effects are positive: relative to long timescales, $\epsilon^{(1)}$ and $\epsilon^{(2)}$ effects happen close to
402 simultaneously, so the two noise variables reinforce each other. Comparing Fig. 5a and b shows the
403 additional influence of autoregressive population effects, which simply multiply all Moran influences
404 by the same timescale-dependent non-negative quantity, not altering their relative importance or
405 sign [see (5)].

406 CaseB reveals how Moran effects can interact when lags are longer than 1 model time step.
407 For CaseB, recall that $\epsilon^{(1)}$ effects on populations were lagged by 3q but $\epsilon^{(2)}$ effects were unlagged
408 (Methods), so $l_{e1} = 3q$ and $l_{e2} = 0q$ in the language of Fig. 2. As for CaseA, because $(\epsilon^{(1)}, \epsilon^{(2)})$
409 was a white noise process for CaseB, $l_n = 0$, so the environmental effect alignment measure is 3q.
410 Interaction effects were again negative on short timescales ($\sigma = 0.5y = 2q$; Fig. 5c, far left side of
411 panel) because $l_{e1} - l_{e2} + l_n = 3q$ was 1.5σ on that timescale, and so effects of $\epsilon^{(1)}$ and $\epsilon^{(2)}$ were
412 in a half-phase relationship and counteracted each other. Similar to CaseA, $l_{e1} - l_{e2} + l_n = 3q$ was
413 again negligible compared to long timescales, so interaction effects were positive on long timescales
414 (Fig. 5c, right side of panel), though timescales had to be a bit longer than in CaseA for this
415 approximation to be as good (compare the rates at which the dashed lines level off in Fig. 5a, c).
416 The quantity $l_{e1} - l_{e2} + l_n = 3q$ exactly equaled the timescale for $\sigma = 3q = 0.75y$ and equaled half
417 the timescale for $\sigma = 6q = 1.5y$, hence interactions effect were, respectively, positive and negative
418 for these timescales (Fig. 5c).

419 CaseA and CaseB assumed white noise processes, and therefore l_n was 0. But CaseC illustrates
420 what can happen when noise processes have lagged associations, e.g., both processes oscillate with
421 annual periodicity and distinct phenology, an important scenario because seasonality is common.

422 Recall that, for CaseC, $\epsilon^{(1)}$ effects on populations were positive and lagged by 1q, i.e., $l_{e1} = 1$ in
423 the language of Fig. 3; whereas $\epsilon^{(2)}$ effects were unlagged and negative, i.e., $l_{e2} = 0$ (Methods).
424 We compare CaseC to the Fig. 3 β scenarios instead of the Fig. 2 α scenarios because $\epsilon^{(2)}$ effects
425 were negative for CaseC, the situation considered by the β scenarios. For CaseC1, peaks in the
426 periodic noise process $\epsilon^{(1)}$ were set up to lag peaks in the periodic process $\epsilon^{(2)}$ by 1q (Methods, SI
427 section S3), so that $l_n = 1$. Thus the environmental effect alignment measure, $l_{e1} - l_{e2} + l_n$, equals
428 $2q = 0.5y$, and, on annual timescales, lags compounded, similar to Fig. 3c, d: the annual positive
429 population effects of $\epsilon^{(1)}$ were exactly $2q$ offset from the annual negative effects of $\epsilon^{(2)}$, one quarter
430 because of the lag of $\epsilon^{(1)}$ peaks behind $\epsilon^{(2)}$ peaks, and one additional quarter because of the delayed
431 influence of $\epsilon^{(1)}$ peaks on populations. This produced reinforcing interactions between the Moran
432 effects of $\epsilon^{(1)}$ and $\epsilon^{(2)}$ on annual timescales, as reflected by our theory (Fig. 5e,f). Contrastingly,
433 for CaseC2, peaks in the periodic noise process $\epsilon^{(2)}$ were set up to lag peaks in the periodic process
434 $\epsilon^{(1)}$ by 1q, so that $l_n = -1$. Thus $l_{e1} - l_{e2} + l_n = 0$ and, on annual timescales, lags cancelled, similar
435 to Fig. 3a, b: the annual positive population effects of $\epsilon^{(1)}$ coincided with the negative effects of
436 $\epsilon^{(2)}$ every year, because $\epsilon^{(1)}$ peaks came 1q ahead of $\epsilon^{(2)}$ peaks each year, but population influences
437 of $\epsilon^{(1)}$ were delayed by 1q. This produced negative interactions between the Moran influences of
438 $\epsilon^{(1)}$ and $\epsilon^{(2)}$ on annual timescales, as also reflected by our theory (Fig. 5g,h). On long timescales,
439 interactions were the same for C1 and C2, and were negative, because, on those timescales, sub-
440 annual lags make negligible difference, and the effects of $\epsilon^{(1)}$ on populations were positive and those
441 of $\epsilon^{(2)}$ were negative.

442 4.3 Illustrating properties of Moran interactions: kelp examples

443 We now apply our theory to kelp, fulfilling goal G3 of the Introduction. Kelp results confirm the
444 earlier theoretical results, based on our case studies (text above and Fig. 5), that interaction effects
445 between Moran drivers: 1) can be comparable in strength to direct Moran effects; 2) can be either
446 synergistic or destructive; and 3) can depend strongly on timescale. First, for all of our regions and
447 for essentially all timescales, the magnitude of interaction effects was comparable to that of direct
448 Moran effects (Fig. 6 for the CCA1 and SB regions and Fig. S2 for the CCA2 region). Second,
449 interaction effects could be positive (e.g., annual timescales, CCA1 region on Fig. 6a), or negative

450 (e.g., annual timescales, SB region on Fig. 6d; or long timescales $> 8y$ for either region, Fig. 6c,f).
451 Finally, interactions depended on timescale, e.g., for CCA1 they were positive on annual timescales
452 (Fig. 6a) and negative on timescales $> 8y$ (Fig. 6c).

453 4.4 Direct Moran effects in the kelp examples

454 Direct Moran effects for kelp and how they manifest in our theory are fairly straightforward. Ni-
455 trates are henceforth identified with $\epsilon^{(1)}$ and waves with $\epsilon^{(2)}$. Both nitrates and waves fluctuate
456 seasonally in CA (Schiel & Foster, 2015). Thus nitrate and wave synchrony had a strong annual
457 component (Fig. 7a,b,j,k for the CCA1 and SB regions, Fig. S5 for CCA2), which produced some
458 of the annual synchrony observed in kelp (Fig. 6a,d, green and blue lines). Nitrates and waves are
459 also synchronous on long timescales $> 8y$ (Fig. 7g,h,p,q for the CCA1 and SB regions, Fig. S5 for
460 CCA2), possibly due to the North Pacific Gyre Oscillation (Castorani *et al.*, 2022; DiLorenzo *et al.*,
461 2008). The long-timescale synchrony in nitrates and waves produced some of the long-timescale
462 synchrony in kelp (Fig. 6c,f, green and blue lines). Kelp synchrony was stronger in CCA1 than in
463 SB (Fig. 6a-c v. d-f, black lines) in part because the synchrony of nitrates, and of waves, was more
464 pronounced in CCA1 than in SB (Fig. 7), and also because waves had a stronger influence on kelp
465 in central California than in SB: regression coefficients determining $f_{\mathcal{P}^{(1)}}$, $f_{\mathcal{P}^{(2)}}$ and $f_{\mathcal{B}}$ are in Table
466 S1.

467 4.5 Building intuition for Moran interactions: kelp examples

468 Interactions between Moran effects in CCA1 were parallel to one of the theoretical case studies,
469 CaseC1. In CCA1, nitrates had 1q-delayed positive effects on observed kelp populations and waves
470 had immediate negative effects (Cavanaugh *et al.*, 2011; Bell *et al.*, 2015; Schiel & Foster, 2015),
471 just as $\epsilon^{(1)}$ effects in CaseC1 were positive and delayed by 1q and $\epsilon^{(2)}$ effects were negative and
472 immediate. The delayed effects of nitrates in CCA1 are reflected in Table S1, where regression
473 results for $p_0^{(1)}$ are close to 0 and those for $p_1^{(1)}$ are positive. Immediate negative effects of waves in
474 CCA1 are also reflected in Table S1, where entries for $p_0^{(2)}$ are negative. Nitrate effects on kelp are
475 probably delayed by a quarter in central CA because winter waves commonly remove kelp, and it

476 takes time for kelp to grow to the surface and become detectable by satellite, only then revealing
477 the effects of elevated nitrates (Cavanaugh *et al.*, 2011; Bell *et al.*, 2015; Schiel & Foster, 2015). In
478 CCA1, annual peak nitrates tend to come in spring, whereas annual peak waves tend to come in
479 winter (Schiel & Foster, 2015; Bell *et al.*, 2015). Thus annual nitrate peaks tend to lag annual wave
480 peaks by 1q, just as $\epsilon^{(1)}$ peaks lagged $\epsilon^{(2)}$ peaks by 1q in CaseC1. For CCA1, this is reflected in Fig.
481 7c, which shows that $\rho_{\epsilon^{(1)}\epsilon^{(2)}}$ has a phase of about $-\pi/2$ at the annual timescale. Thus $l_{e1} = 1q$,
482 $l_{e2} = 0q$, $l_n = 1q$, and so the environmental effect alignment measure is $l_{e1} - l_{e2} + l_n = 2q$. Lags
483 compound on the annual timescale, in the CCA1 case as in CaseC1: the annual positive effects of
484 nitrates on kelp tend to come in summer, and the annual negative effects of waves come in winter,
485 producing reinforcing interactions between Moran effects. Interactions between Moran effects on
486 long-timescales ($> 8y$) were also similar for both CCA1 and CaseC1 (compare Figs 5e and 6c),
487 and for the same reason in both cases: on long timescales, sub-annual lags are inconsequential, and
488 the positive effects of nitrates/ $\epsilon^{(1)}$ and the negative effects of waves/ $\epsilon^{(2)}$ therefore lead to negative
489 interactions. Interactions between Moran effects in CCA2 operated similarly to CCA1 (Fig. S8).

490 Due to different nitrate effects on observable kelp growth in SB compared to CCA1, interactions
491 between Moran effects followed a different mechanism in SB compared to CCA1, leading to the
492 slightly negative versus positive interactions already documented on annual timescales for the two
493 regions (Fig. 6d v. a). Whereas in CCA1, nitrate effects on observed kelp density were delayed by
494 1q, in SB nitrate effects were observable within the same quarter: see Table S1, where $p_0^{(1)}$ terms
495 were close to zero for CCA1 and positive for SB, whereas $p_1^{(1)}$ terms were positive for CCA1 and
496 close to zero for SB. Wave effects were negative and immediate in both regions, i.e., $p_0^{(2)} < 0$ in
497 Table S1. In southern CA, kelp are less likely to be completely removed by winter waves (Reed
498 *et al.*, 2011). Effects of elevated nitrates on the growth of kelp stands already reaching the surface
499 can be observed within the quarter (Cavanaugh *et al.*, 2011; Bell *et al.*, 2015; Schiel & Foster,
500 2015). Annual peaks in nitrates still tended to lag annual peaks in waves by 1q in SB, as in CCA1,
501 though the seasonal periodicity of both variables was reduced in SB compared to CCA1 (Fig. 7l
502 v. c). Thus, in SB, the environment effect alignment measure was 1q, contrasting with its value
503 of 2q in CCA1. Whereas in CCA1, the tendency of nitrate annual peaks to follow wave annual
504 peaks by 1q, together with the tendency of nitrate effects on kelp to be delayed by 1q, resulted

505 in summer positive nitrate effects and winter negative wave effects which reinforced synchrony; in
506 SB nitrate instead both peaked and had its positive effects on kelp in spring, while waves still had
507 negative effects on kelp in winter. Thus the effects of nitrates and waves in SB were approximately
508 a quarter-cycle separated from each other with respect to the annual timescale, and so produced
509 neither much reinforcement nor much destructive interference of synchrony on annual timescales
510 (Fig. 6d). Slightly negative interactions were observed (Fig. 6d) because of slight deviations
511 from the approximate phase alignments described above. On long timescales, interactions between
512 Moran effects were analogous in CCA1 and SB (though weaker in SB; Fig. 6c v. f) because,
513 again, sub-annual lags are inconsequential on long timescales and what mattered instead was the
514 oppositely signed influences of the two environmental variables.

515 5 Discussion

516 We provided a general mathematical theory of the new mechanism of interactions between Moran
517 effects. When two related spatially synchronous environmental drivers both influence a set of popu-
518 lations across a landscape, interactions can make synchrony in the populations either substantially
519 stronger or markedly weaker than would otherwise be expected. Our general theory illuminates
520 precisely how timings of influences of the drivers on populations can interact with relationships be-
521 tween the drivers to alter Moran effects. Interactions may vary by timescale in both their strength
522 and sign. We used our theory and several case studies based on models and kelp populations to
523 provide intuition about the new mechanism. Because Moran effects are ubiquitous and interac-
524 tions between Moran effects were detected on both of the two occasions they have been tested
525 for (Sheppard *et al.*, 2019; Castorani *et al.*, 2022), interactions may be common (also see below).
526 Moran interactions are therefore a newly recognized and potentially widespread aspect of a funda-
527 mental means (Moran effects) by which environmental factors influence populations and diverse,
528 synchrony-related phenomena such as ecosystem stability (Wilcox *et al.*, 2017), population cycling
529 (Anderson *et al.*, 2021), and extinction (Ghosh *et al.*, 2020c). Climate change is altering many
530 aspects of environmental variables, including their means, variances and spatial correlations (Lyon
531 *et al.*, 2019; Keelings & Moradkhani, 2020), as well as relationships between environmental vari-

532 ables and the nature of their influences on populations. There is therefore also potential for climate
533 change to alter interactions between Moran effects, in ways our new theory may help researchers to
534 understand. The augmented fundamental understanding of Moran effects which we have provided
535 may substantially benefit both basic (Liebhold *et al.*, 2004) and applied (Hansen *et al.*, 2020; Larsen
536 *et al.*, 2021; Herfindal *et al.*, 2022) ecological research.

537 We argue that it is likely that interactions between Moran effect are common. Most species are
538 influenced by more than one environmental driver. Drivers are frequently spatially autocorrelated,
539 and are also often related to each other because of their common origin in underlying climatic
540 phenomena such as the North Pacific Gyre Oscillation (NPGO) or El Niño Southern Oscillation
541 (ENSO). Driver pairs which may commonly produce interacting Moran effects include instances
542 where the same quantity is measured in distinct parts of the year (e.g., spring and summer temper-
543 atures, or March and April rainfall); or when distinct variables are measured in the same part of the
544 year (e.g., spring temperature and precipitation). Such scenarios involving seasonality of effects,
545 which were recently explored by Walter *et al.* (In review), can produce specific manifestations of
546 the general mechanisms explored here. Walter *et al.* (In review) found interactions and cross syn-
547 chrony to be important. Future work should systematically investigate cross synchrony ($\rho_{\epsilon^{(1)}\epsilon^{(2)}}$)
548 of environmental variables. Temperature and precipitation variables measured in the same season
549 may be particularly important candidates for interactions because of the well known joint influence
550 of these variables on plants.

551 We again revisit the intuition behind interacting Moran effects using the central CA kelp ex-
552 ample as a vehicle. Large winter waves have immediate negative effects on kelp in central CA,
553 whereas the positive effects of spring nitrates manifest in summer. So nutrient and wave effects
554 can reinforce each other in producing annual oscillations: large kelp increases in summer due to
555 abundant nutrients can be followed by big crashes in winter due to waves, both factors combining to
556 accentuate the annual cycle. Thus positive interactions between Moran effects on annual timescales
557 occur whenever years with above-average waves coincide with years with plentiful nutrients in other
558 locations: if a large-wave year in location A coincides with a high-nutrient year in location B, both
559 locations will tend to have bigger annual fluctuations that year, accentuating annual-timescale syn-
560 chrony between the locations (Castorani *et al.*, 2022). Sub-annual lags and delays make essentially

561 no difference, however, on long timescales. On long timescales, large-wave and abundant-nutrient
562 years counteract each other: if a multi-year period of large waves in location A coincides with a
563 multi-year period of abundant nutrients in location B, the multi-year-average kelp abundance in
564 A will tend to be reduced, whereas the multi-year-average kelp abundance in B will tend to be
565 augmented, reducing long-timescale synchrony. Lags and interactions between drivers must always
566 be compared to the timescale of interest to determine interaction effects, as in Figs 2 and 3, and
567 as captured formally in our theory. Thus interactions between Moran effects provide yet another
568 reason, among many reasons previous work has already documented (e.g., Vasseur & Gaedke, 2007;
569 Keitt, 2008; Vasseur *et al.*, 2014; Sheppard *et al.*, 2016; Defriez *et al.*, 2016; Defriez & Reuman,
570 2017a,b; Desharnais *et al.*, 2018; Walter *et al.*, 2017; Anderson *et al.*, 2021; Zhao *et al.*, 2020), that
571 patterns of synchrony must be considered from a timescale-specific viewpoint for full understanding.

572 Our results about kelp were consistent with those of Castorani *et al.* (2022), though that study
573 uses distinct methods; our results complement the results of Castorani *et al.* (2022) in important
574 ways. In spite of numerous methodological choices which differed between the two studies, both our
575 results and Castorani *et al.* (2022) show positive effects of both nutrients and waves on synchrony
576 on both annual and long (> 4y) timescales in both central and southern CA. And both studies show
577 positive interactions between nutrient and wave Moran effects on annual timescales in central CA,
578 but negative interactions in southern CA on annual timescales and in both central and southern
579 CA on long timescales. The Fourier approach of our study was designed to facilitate mathematical
580 examination of interactions between Moran effect as a general mechanism, and development of
581 general theory; whereas the wavelet approach of Castorani *et al.* (2022) was instead optimized for
582 detecting interactions and identifying Moran mechanisms in data, in spite of non-stationarity and
583 other complicating features which are present in many ecological datasets. The study of Sheppard
584 *et al.* (2019) developed the wavelet methods applied by Castorani *et al.* (2022); an open-source
585 implementation of these methods (Reuman *et al.*, 2021) can facilitate future work. The modelling
586 approach of this study relates indirectly to the approach of Anderson *et al.* (2021), though that
587 study concerned different research questions.

588 It has been a frequent topic of research why populations are often less synchronous, or sy-
589 chronous over a smaller spatial extent, than might be expected given the strength and extent of

590 synchrony of an environmental driver (Herfindal *et al.*, 2022). Our new mechanism of interacting
591 Moran effects provides both a new means by which populations may be less synchronous than
592 population drivers; and also a new means by which populations can be more synchronous than en-
593 vironmental drivers. Previously known mechanisms by which populations can be less synchronous
594 than environmental drivers include demographic stochasticity and measurement error. Antagonis-
595 tic interactions between Moran drivers may be a common and previously unrecognized additional
596 mechanism contributing to this discrepancy. On the other hand, two recent papers described “en-
597 hanced Moran effects” by which specific patterns of temporal autocorrelation in Moran drivers can
598 theoretically cause greater synchrony in populations than in drivers (Massie *et al.*, 2015; Deshar-
599 nais *et al.*, 2018). Synergistic interaction between Moran drivers are another mechanism by which
600 populations can be more synchronous than expected.

601 Climate change has the potential to influence interactions between Moran effects in two specific
602 ways which can be illuminated by our theory, and this potential should be investigated in future
603 work. Examining the third term of (5), climate change could alter interaction effects if it: 1)
604 alters the term $\rho_{\epsilon^{(1)}\epsilon^{(2)}}$ quantifying cross synchrony between Moran drivers; or 2) alters one of the
605 terms $f_{\mathcal{P}^{(1)}}$ or $f_{\mathcal{P}^{(2)}}$ specifying the nature of the influence of the environmental variables $\epsilon^{(1)}$ and
606 $\epsilon^{(2)}$, respectively, on populations. As advocated above, the term $\rho_{\epsilon^{(1)}\epsilon^{(2)}}$ should be systematically
607 computed in future work, for a variety of environmental variables, to assess whether interactions
608 between Moran effects are likely to be general. As part of that process, the potential for changes
609 in $\rho_{\epsilon^{(1)}\epsilon^{(2)}}$ could also be assessed, by using either time-windowed versions or wavelet adaptations of
610 this statistic, applied to either long-term climate records or future climate scenarios. Differences
611 in $f_{\mathcal{P}^{(1)}}$ were responsible for differences in the nature of Moran interactions between central CA
612 and southern CA (Results), specifically differences between the two regions in the lag of nitrate
613 effects on kelp populations. If climate change modifies environmental effects on populations in a
614 related way it would be expected to produce similarly large changes in Moran interactions. Climate
615 change may alter lags and delays associated with environmental effects on populations in at least
616 two ways: 1) by altering species phenology; and 2) by increasing or decreasing growth rates and
617 thereby decreasing or increasing delays. Though it is too early to conclude that effects on Moran
618 interactions are among the most important impacts of climate change, we feel the mechanisms

619 outlined above are sufficient to warrant further investigation.

620 We have focussed on interactions between two Moran drivers, but synchrony in most systems
621 may be a phenomenon with multiple (more than two) interacting causes. Kendall *et al.* (2000)
622 considered interactions between dispersal and a Moran mechanism of synchrony. Their research
623 questions were therefore distinct from ours, but combining their viewpoints and ours may lead to
624 future work about interactions between dispersal and more than one Moran driver of synchrony.
625 Although we considered only two Moran drivers in our theory and examples, essentially all pop-
626 ulation systems are influenced by multiple environmental drivers, and environmental drivers very
627 commonly are associated with large scale climatic phenomena such as ENSO, and hence are asso-
628 ciated with each other. Thus it may be quite common for synchrony to simultaneously be caused
629 by dispersal and multiple distinct Moran effects, and these influences may interact in multifarious
630 combinations. It may be necessary in future work to consider interactions between dispersal and
631 two Moran drivers. It may be useful to consider cases for which multiple related Moran drivers all
632 interact. Dispersal can readily be added to our modelling framework: Desharnais *et al.* (2018) per-
633 formed a spectral analysis on a model similar to ours which included dispersal. Future work should
634 consider whether and when scenarios of multi-driver interactions between causes of synchrony can
635 lead to synchrony patterns which differ fundamentally from what one would expect from one or two
636 mechanisms. Potential interactions increase as the square of the number of drivers, so interactions
637 seem likely to become more important as our viewpoint of synchrony expands.

638 6 Acknowledgments

639 This study was partly funded by the U.S. National Science Foundation (NSF) through linked NSF-
640 OCE awards 2023555, 2023523, 2140335, and 2023474 to M.C.N.C, K.C.C., T.W.B, and D.C.R.,
641 respectively; and by NSF-Math Bio award 1714195 to D.C.R.; and by support to D.C.R. from the
642 James S. McDonnell Foundation, the Humboldt Foundation, and the California Department of Fish
643 and Wildlife Delta Science Program. This project used data developed through the Santa Barbara
644 Coastal Long Term Ecological Research project, funded through NSF-OCE award 1831937. The
645 authors thank Vadim Karataev, Maowei Liang, Kyle Emery, Nat Coombs, Adeola Adeboje and

646 Ethan Kadiyala for helpful discussions.

647 References

648 Abbott, K. (2007). Does the pattern of population synchrony through space reveal if the Moran
649 effect is acting? *Oikos*, 199, 903–912.

650 Allstadt, A., Liebhold, A., Johnson, D., Davis, R. & Haynes, K. (2015). Temporal variation in the
651 synchrony of weather and its consequences for spatiotemporal population dynamics. *Ecology*, 96,
652 2935–2946.

653 Anderson, T., Sheppard, L., Walter, J., Hendricks, S., Levine, T., White, D. & Reuman, D. (2019).
654 The dependence of synchrony on timescale and geography in freshwater plankton. *Limnology*
655 and *Oceanography*, 64, 483–502.

656 Anderson, T., Sheppard, L., Walter, J., Rolley, R. & Reuman, D. (2021). Synchronous effects
657 produce cycles in deer populations and deer-vehicle collisions. *Ecology Letters*, 24, 337–347.

658 Anderson, T., Walter, J., Levine, T., Hendricks, S., Johnston, K., White, D. & Reuman, D. (2018).
659 Using geography to infer the importance of dispersal for the synchrony of freshwater plankton.
660 *Oikos*, 127, 403–414.

661 Bell, T., Cavanaugh, K., Reed, D. & Siegel, D. (2015). Geographical variability in the controls of
662 giant kelp biomass dynamics. *Journal of Biogeography*, 42, 2010–2021.

663 Bell, T., Cavanaugh, K., Reuman, D., Castorani, M., Sheppard, L. & Walter, J. (2021). SBC
664 LTER: REEF: *Macrocystis pyrifera* biomass and environmental drivers in southern and central
665 California ver 1. <https://doi.org/10.6073/pasta/27e795dee803493140d6a7cdc3d23379>.

666 Bogdziewicz, M., Hacket-Pain, A., Ascoli, D. & Szymkowiak, J. (2021). Environmental variation
667 drives continental-scale synchrony of european beech reproduction. *Ecology*, 102, e03384.

668 Brillinger, D. (2001). *Time series: Data analysis and theory*. Classics edn. Society for Industrial
669 and Applied Mathematics, Philadelphia.

670 Castorani, M., Bell, T., Walter, J., Reuman, D., Cavanaugh, K. & Sheppard, L. (2022). Disturbance
671 and nutrients synchronize kelp forests across scales through interacting Moran effects. *Ecology
Letters*, 25, 1854–1868.

673 Cavanaugh, K., Kendall, B., Siegel, D., Reed, D., Alberto, F. & Assis, J. (2013). Synchrony in
674 dynamics of giant kelp forests is driven by both local recruitment and regional environmental
675 controls. *Ecology*, 94, 499–509.

676 Cavanaugh, K., Siegel, D., Reed, D. & Dennison, P. (2011). Environmental controls of giant kelp
677 biomass in the Santa Barbara Channel, California. *Marine Ecology Progress Series*, 429, 1–17.

678 Defriez, E. & Reuman, D. (2017a). A global geography of synchrony for marine phytoplankton.
679 *Global Ecology and Biogeography*, 26, 867–877.

680 Defriez, E. & Reuman, D. (2017b). A global geography of synchrony for terrestrial vegetation.
681 *Global Ecology and Biogeography*, 26, 878–888.

682 Defriez, E., Sheppard, L., Reid, P. & Reuman, D. (2016). Climate-change-related regime shifts
683 have altered spatial synchrony of plankton dynamics in the north sea. *Global Change Biology*,
684 22, 2069–2080.

685 Desharnais, R., Reuman, D., Costantino, R. & Cohen, J. (2018). Temporal scale of environmental
686 correlations affects ecological synchrony. *Ecology Letters*, 21, 1800–1811.

687 DiLorenzo, E., Schneider, N., Cobb, C., Franks, P., Chhak, K., Miller, A., McWilliams, J., Bograd,
688 S., Arango, H., Curchitser, E. & Powell, T. (2008). North Pacific gyre oscillation links ocean
689 climate and ecosystem change. *Geophysical Research Letters*, 35, L08607.

690 García-Carreras, B., Yang, B., Grabowski, M., Sheppard, L., Huang, A., Salje, H., Clapham, H.,
691 Iamsirithaworn, S., Doung-Ngern, P., Lessler, J. & Cummings, D. (2022). Periodic synchroniza-
692 tion of Dengue epidemics in Thailand over the last 5 decades driven by temperature and
693 immunity. *Plos Biology*, 20, e3001160.

694 Ghosh, S., Sheppard, L., Holder, M., Loecke, T., Reid, P., Bever, J. & Reuman, D. (2020a). Copulas
695 and their potential for ecology. *Advances in Ecological Research*, 62, 409–468.

696 Ghosh, S., Sheppard, L., Reid, P. & Reuman, D. (2020b). A new approach to interspecific synchrony
697 in population ecology. *Ecology and Evolution*, 10, 12764–12776.

698 Ghosh, S., Sheppard, L. & Reuman, D. (2020c). Tail associations in ecological variables and their
699 impact on extinction risk. *Ecosphere*, 11, e03132.

700 Gouveia, A. R., Bjørnstad, O. N. & Tkadlec, E. (2016). Dissecting geographic variation in popula-
701 tion synchrony using the common vole in central europe as a test bed. *Ecology and Evolution*,
702 6, 212–218.

703 Grenfell, B., Wilson, K., Finkenstädt, B., Coulson, T., Murray, S., Albon, S., Pemberton, J.,
704 Clutton-Brock, T. & Crawley, M. (1998). Noise and determinism in synchronized sheep dynamics.
705 *Nature*, 394, 674–677.

706 Hansen, B., Grotan, V., Herfindal, I. & Lee, A. (2020). The Moran effect revisited: spatial popu-
707 lation synchrony under global warming. *Ecography*, 43, 1591–1602.

708 Haynes, K., Bjørnstad, O., Allstadt, A. & Liebhold, A. (2013). Geographical variation in the
709 spatial synchrony of a forest-defoliating insect: isolation of environmental and spatial drivers.
710 *Proceedings of the Royal Society B*, 280, 20122373.

711 Haynes, K. & Walter, J. (2022). Advances in understanding the drivers of population spatial
712 synchrony. *Current Opinion in Insect Science*, 53, 100959.

713 Haynes, K., Walter, J. & Liebhold, A. (2019). Population spatial synchrony enhanced by periodicity
714 and low detuning with environmental forcing. *Proceedings of the Royal Society B*, 286, 20182828.

715 Herfindal, I., Lee, A., Marquez, J., LeMoulec, M., Peeters, B., Hansen, B., Henden, J.-A. & Saether,
716 B.-E. (2022). Environmental effects on spatial population dynamics and synchrony: lessons from
717 northern ecosystems. *Climate Research*, 86, 113–123.

718 Keelings, D. & Moradkhani, H. (2020). Spatiotemporal evolution of heat wave severity and coverage
719 across the United States. *Geophysical Research Letters*, 47, e2020GL087097.

720 Keitt, T. (2008). Coherent ecological dynamics induced by large-scale disturbance. *Nature*, 454,
721 331–334.

722 Kendall, B. E., Bjørnstad, O. N., Bascompte, J., Keitt, T. H. & Fagan, W. F. (2000). Disper-
723 sal, environmental correlation, and spatial synchrony in population dynamics. *The American
724 Naturalist*, 155, 628–636.

725 Koenig, W., Knops, J., Pesendorfer, M., Zaya, D. & Ashley, M. (2017). Drivers of acorn production
726 in the valley oak (*Quercus lobata*) at two spatial scales. *Ecology*, 98, 3056–3062.

727 Larsen, S., Comte, L., Filipe, A., Fortin, M.-J., Jacquet, C., Ryser, R., Tedesco, P., Brose, U.,
728 Eros, T., Giam, X., Irving, K., Ruhi, A., Sharma, S. & Olden, J. (2021). The geography of
729 metapopulation synchrony in dendritic river networks. *Ecology Letters*, 24, 791–801.

730 Liebhold, A., Koenig, W. D. & Bjornstad, O. N. (2004). Spatial synchrony in population dynamics.
731 *Annual Review of Ecology, Evolution, and Systematics*, 35, 467–490.

732 Lyon, B., Barnston, A., Coffel, E. & Horton, R. (2019). Projected increase in the spatial extent of
733 contiguous US summer heat waves and associated attributes. *Environmental Research Letters*,
734 14, 114029.

735 Massie, T., Weithoff, G., Kucklander, N., Gaedke, U. & Blasius, B. (2015). Enhanced Moran effect
736 by spatial variation in environmental autocorrelation. *Nature Communications*, 6, 5993.

737 Moran, P. (1953). The statistical analysis of the Canadian lynx cycle. ii Synchronization and
738 meteorology. *Australian Journal of Zoology*, 1, 291–298.

739 Nisbet, R., Gurney, W. & Pettipher, M. (1977). An evaluation of linear models of population
740 fluctuations. *Journal of Theoretical Biology*, 68, 143–160.

741 Ranta, E., Kaitala, V. & Lindstrom, J. (1999). Spatially autocorrelated disturbances and patterns
742 in population synchrony. *Proceedings of the Royal Society of London, B*, 266, 1851–1856.

743 Reed, D., Rassweiler, A., Carr, M., Cavanaugh, K., Malone, D. & Siegel, D. (2011). Wave dis-
744 turbance overwhelms top-down and bottom-up control of primary production in California kelp
745 forests. *Ecology*, 92, 2108–2116.

746 Reuman, D., Anderson, T., Walter, J., Zhao, L. & Sheppard, L. (2021). wsyn: Wavelet approaches
747 to studies of synchrony in ecology and other fields. URL <https://cran.r-project.org/web/packages/wsyn/index.html>.

749 Schiel, D. & Foster, M. (2015). *The Biology and Ecology of Giant Kelp Forests*. University of
750 California Press, Berkeley, California, USA.

751 Sheppard, L., Bell, J., Harrington, R. & DC, R. (2016). Changes in large-scale climate alter spatial
752 synchrony of aphid pests. *Nature Climate Change*, 6, 610–613.

753 Sheppard, L., Defriex, E., Reid, P. & Reuman, D. (2019). Synchrony is more than its top-down and
754 climatic parts: interacting moran effects on phytoplankton in british seas. *Plos Computational
755 Biology*, 15, e1006744.

756 Sheppard, L., Reid, P. & Reuman, D. (2017). Rapid surrogate testing of wavelet coherences.
757 *European Physical Journal, Nonlinear and Biomedical Sciences*, 5, 1.

758 Tedesco, P., Hugueny, B., Paugy, D. & Fermon, Y. (2004). Spatial synchrony in population dynamics
759 of West African fishes: a demonstration of an intraspecific and interspecific Moran effect. *Journal
760 of Animal Ecology*, 73, 693–705.

761 Vasseur, D. & Fox, J. (2009). Phase-locking and environmental fluctuations generate synchrony in
762 a predator-prey community. *Nature*, 460, 1007–1010.

763 Vasseur, D., Fox, J., Gonzalez, A., Adrian, R., Beisner, B., Helmus, M., Johnson, C., Kratina, P.,
764 Kremer, C., de Mazancourt, C., Miller, E., Nelson, W., Paterson, M., Rusak, J., Shurin, J. &
765 Steiner, C. (2014). Synchronous dynamics of zooplankton competitors prevail in temperate lake
766 ecosystems. *Proceedings of the Royal Society B*, 281, 20140633.

767 Vasseur, D. & Gaedke, U. (2007). Spectral analysis unmasks synchronous and compensatory dy-
768 namics in plankton communities. *Ecology*, 88, 2058–2071.

769 Walter, J., Castorani, M., Bell, T., Sheppard, L., Cavanaugh, K. & Reuman, D. (2022). Tail-
770 dependent spatial synchrony arises from nonlinear driver-response relationships. *Ecology Letters*,
771 25, 1189–1201.

772 Walter, J., Hallett, L., Sheppard, L., Anderson, T., Zhao, L., Hobbs, R., Suding, K. & Reuman, D.
773 (2020). Micro-scale geography of synchrony in a serpentine plant community. *Journal of Ecology*,
774 109, 750–762.

775 Walter, J., Reuman, D., Hall, K., Shugart, H. & Shoemaker, L. (In review). Seasonality in envi-
776 ronmental and population processes alter population spatial synchrony. *American Naturalist*, In
777 review, In review.

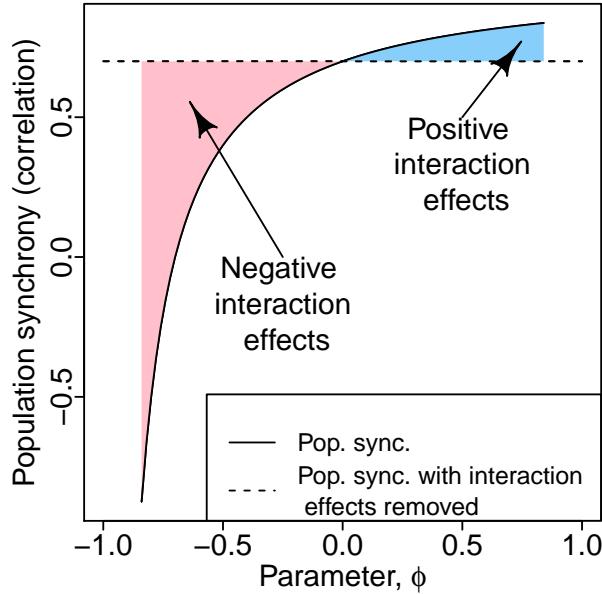
778 Walter, J., Sheppard, L., Anderson, T., Kastens, J., Bjornstad, O., Liebhold, A. & Reuman, D.
779 (2017). The geography of spatial synchrony. *Ecology Letters*, 20, 801–814.

780 Walter, J., Sheppard, L., Venugopal, P., Reuman, D., Dively, G., Tooker, J. & Johnson, D. (2019).
781 Weather and regional crop composition variation drive spatial synchrony of lepidopteran agri-
782 cultural pests. *Ecological Entomology*, 45, 573–582.

783 Wang, S. & Loreau, M. (2014). Ecosystem stability in space: α , β and γ variability. *Ecology letters*,
784 17, 891–901.

785 Wilcox, K., Tredennick, A., Koerner, S., Grman, E., Hallett, L., Avolio, M., La Pierre, K., House-
786 man, G., Isbell, F., Johnson, D., Alatalo, J., Baldwin, A., Bork, E., Boughton, E., Bowman,
787 W., Britton, A., Cahill, J., Collins, S., Du, G., Eskelinen, A., Gough, L., Jentsch, A., Kern, C.,
788 Klanderud, K., Knapp, A., Kreyling, J., Luo, Y., McLaren, J., Megonigal, P., Onipchenko, V.,
789 Prevey, J., JN, P., Robinson, C., Sala, O., Smith, M., Soudzilovskaia, N., Souza, L., Tilman,
790 D., White, S., Xu, Z., Yahdjian, L., Yu, Q., Zhang, P. & Y, Z. (2017). Asynchrony among local
791 communities stabilises ecosystem function of metacommunities. *Ecology Letters*, 20, 1534–1545.

792 Zhao, L., Wang, S., Hallett, L., Rypel, A., Sheppard, L., Castorani, M., Shoemaker, L., Cottingham,
793 K., Suding, K. & Reuman, D. (2020). A new variance ratio metric to detect the timescale of
794 compensatory dynamics. *Ecosphere*, 11, e03114.



795 Figure 1: Example of interacting Moran effects. The example, which is based on the very
796 simple model described in the Introduction, shows that interaction effects are possible, and
797 can be substantially positive or negative. We used $\text{cov}(\epsilon_1^{(1)}, \epsilon_2^{(1)}) = \text{cov}(\epsilon_1^{(2)}, \epsilon_2^{(2)}) = 0.7$, and
798 the values $\text{cov}(\epsilon_i^{(1)}, \epsilon_j^{(2)})$, for $i, j = 1, 2$, were all set equal to each other and to a parameter, φ ,
799 which appears on the horizontal axis and which characterizes the strength of cross synchrony
800 of the environmental variables. See the online version for color renderings of all figures.

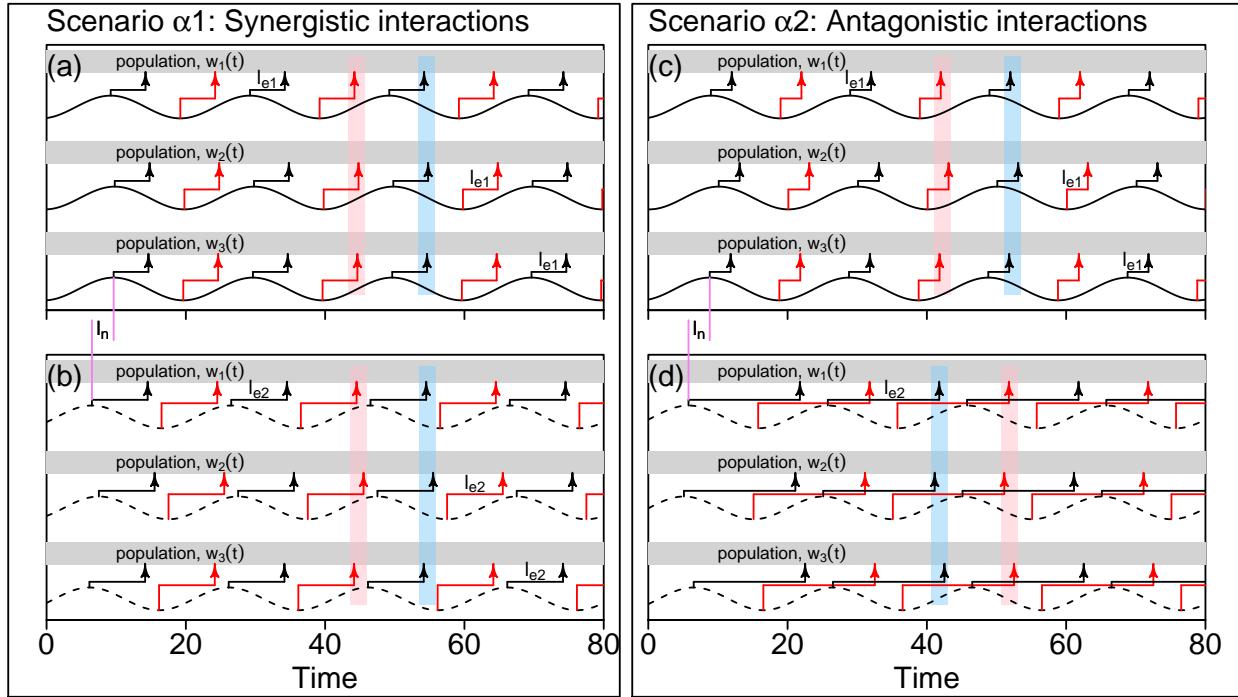


Figure 2: Illustration of the main concept of synergistically or antagonistically interacting Moran effects. Interactions require that each environmental variable itself be spatially synchronous; and then the alignment or misalignment of three types of lag determine the sign and strength of the interactions. Solid-line sinusoids represent the period-20 components of an environmental variable in three locations ($\epsilon_i^{(1)}$ for $i = 1, 2, 3$) and dashed-line sinusoids represent the period-20 components of a different environmental variable in the same locations ($\epsilon_i^{(2)}$ for $i = 1, 2, 3$). Black arrows represent peak positive influences of environmental variables on populations, which are lagged by an amount l_{e1} for $\epsilon_i^{(1)}$ and by an amount l_{e2} for $\epsilon_i^{(2)}$, where these lags differ across the scenarios $\alpha 1$ and $\alpha 2$, but are the same in all locations within one of these scenarios. Analogously, red arrows represent maximally negative effects. Due to environmental synchrony, peak positive population effects of the same variable occur at similar times across locations, and likewise for peak negative effects, illustrated with blue and pink rectangles. In the synergistic scenario ($\alpha 1$), the lag between the environmental variables (l_n) and the lags of the population effects of the variables (l_{e1} and l_{e2}) are aligned, i.e., the *environmental effect alignment measure*, $l_n + l_{e1} - l_{e2}$ (see main text), equals 0. So peak positive effects of $\epsilon_i^{(1)}$ coincide with peak positive effects of $\epsilon_i^{(2)}$ (the pink rectangles are aligned on a, b), augmenting synchrony. Likewise negative effects are aligned (blue rectangles). In the antagonistic scenario ($\alpha 2$), lags are misaligned, i.e., $l_n + l_{e1} - l_{e2} = -\sigma/2$, where $\sigma = 20$ is the period. So peak positive effects of $\epsilon_i^{(1)}$ coincide with maximally negative effects of $\epsilon_i^{(2)}$, and maximally negative effects of $\epsilon_i^{(1)}$ coincide with peak positive effects of $\epsilon_i^{(2)}$ (pink rectangles on c are aligned with blue ones on d, and vice versa), reducing synchrony. See the online version for color renderings of all figures.

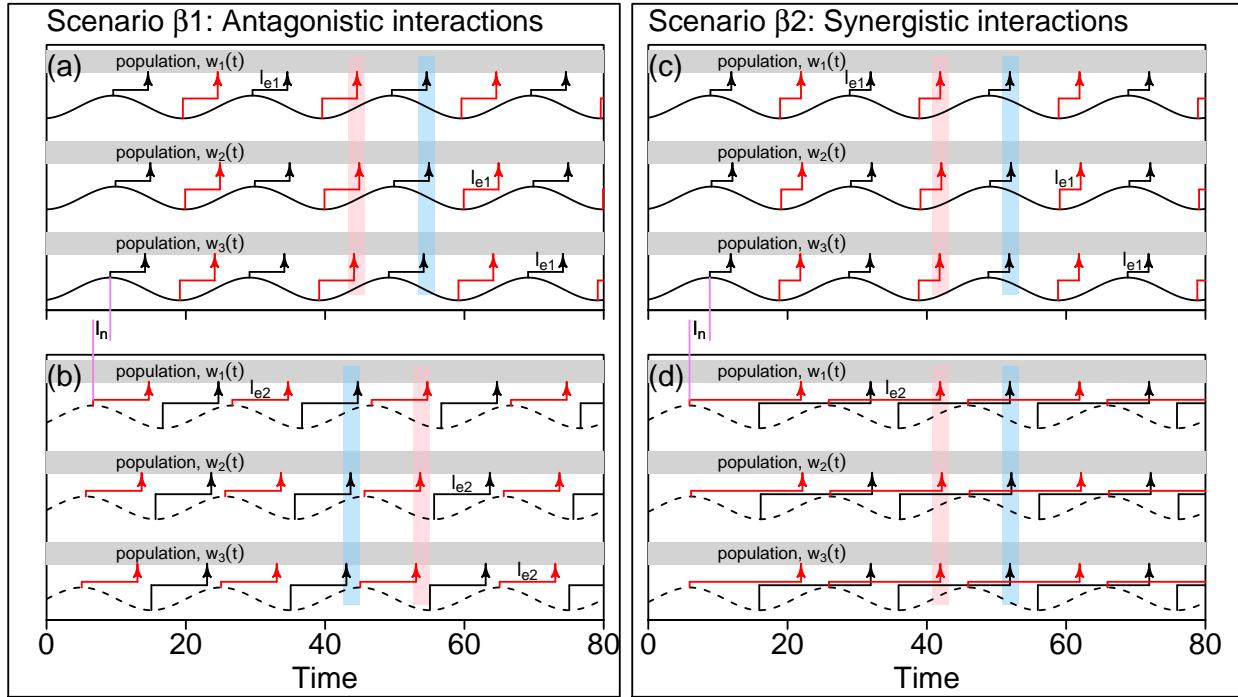
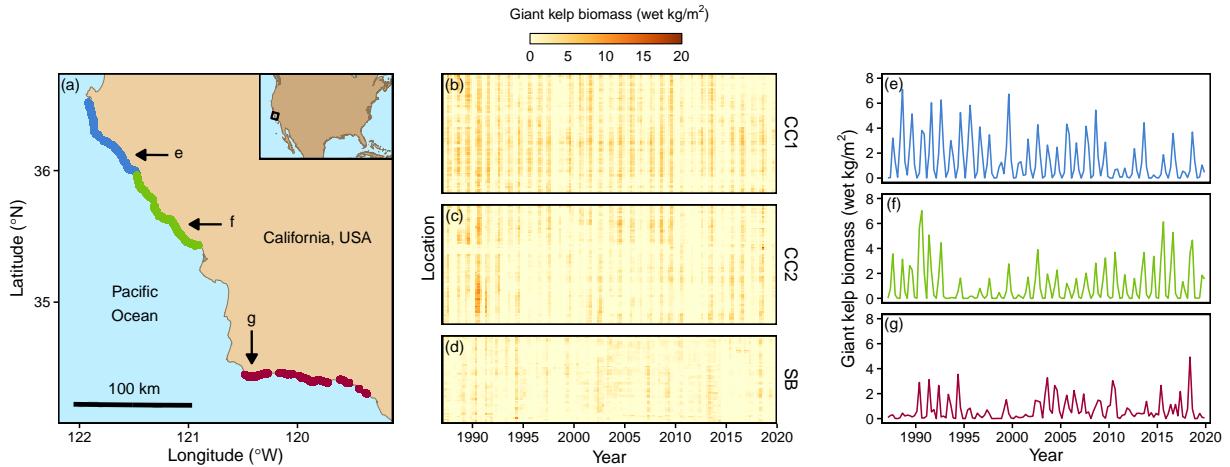


Figure 3: Similar to Fig. 2, but for slightly altered scenarios. For Fig. 2, for simplicity, we assumed that larger values of environmental variables had more positive influences on populations. We here assume that larger values of $\epsilon_i^{(1)}$ have more positive population influences (as in Fig. 2), but that larger values of $\epsilon_i^{(2)}$ have more negative population influences (contrasting with Fig. 2). In scenario $\beta 1$, $l_n + l_{e1} = l_{e2}$, as in $\alpha 1$; but Moran interactions are nonetheless antagonistic because the negative effects of $\epsilon_i^{(2)}$ means that the peak positive effects of that variable correspond to the peak negative effects of $\epsilon_i^{(1)}$. In scenario $\beta 2$, as in $\alpha 2$, the environmental effect alignment measure, $l_n + l_{e1} - l_{e2}$, equals $-\sigma/2$ for $\sigma = 20$ the period. But Moran interactions are synergistic because the negative effects of $\epsilon_i^{(2)}$ means that the peak positive effects of that variable correspond to the peak positive effects of $\epsilon_i^{(1)}$. See the online version for color renderings of all figures.



834 Figure 4: Kelp sampling sites and example time series. Sampling sites (a) were from three re-
835 gions, central California 1 (CCA1, blue points), central California 2 (CCA2, green points) and
836 the region around Santa Barbara (SB, red points). Kelp density in 500m coastline segments
837 is shown with color intensity in (b)-(d), and those panels correspond to the regions. One
838 example time series from each region is shown in (e)-(g), with locations at which these time
839 series were measured labeled on panels (a)-(d). See the online version for color renderings of
840 all figures.

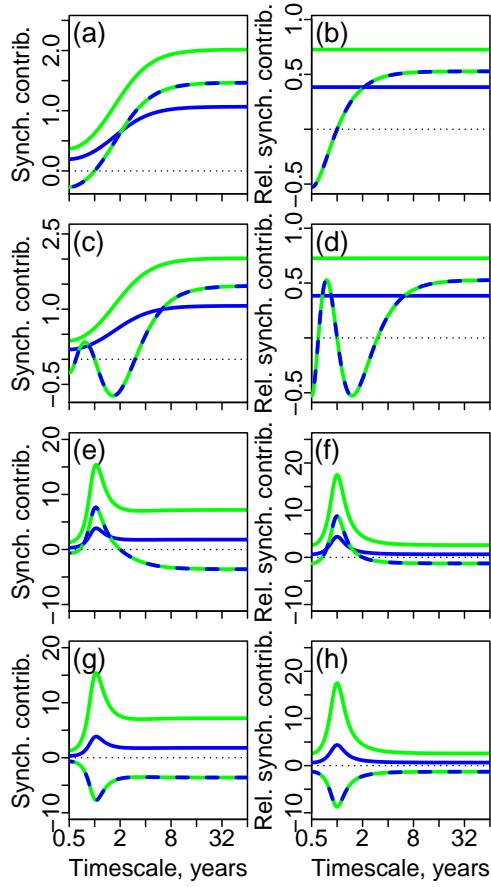


Figure 5: Theoretical case studies A (panels a-b), B (c-d), C1 (e-f) and C2 (g-h). Left panels (a, c, e, g) show the terms on the right side of (5). On those panels, the green line is $\frac{|f_{\mathcal{P}(1)}|^2}{|f_B|^2} \rho_{\epsilon^{(1)} \epsilon^{(1)}}$, quantifying population synchrony due to the direct Moran effects of $\epsilon^{(1)}$. The blue line is $\frac{|f_{\mathcal{P}(2)}|^2}{|f_B|^2} \rho_{\epsilon^{(2)} \epsilon^{(2)}}$, quantifying population synchrony due to the direct Moran effects of $\epsilon^{(2)}$. The dashed line is $\frac{2\text{Re}(f_{\mathcal{P}(1)} \overline{f_{\mathcal{P}(2)}} \rho_{\epsilon^{(1)} \epsilon^{(2)}})}{|f_B|^2}$, quantifying population synchrony due to interacting Moran effects. The functions plotted on b, d, f, h are those on a, c, e, g, respectively, times $|f_B|^2$, plotted to illustrate how autoregressive population effects modulate synchrony [see (5)]. Model parameters were: $N = 5$ and $b_1 = 0.4$ for all case studies; $p_1^{(1)} = 1.1$ and $p_0^{(2)} = 0.8$ for case study A; $p_3^{(1)} = 1.1$ and $p_0^{(2)} = 0.8$ for case study B; $p_1^{(1)} = 3$, $p_0^{(2)} = -1.5$ for case study C. For C1, peaks in the periodic noise process $\epsilon^{(2)}$ lagged peaks in the periodic process $\epsilon^{(1)}$ by 1 quarter (e-f), and for C2, $\epsilon^{(1)}$ lagged $\epsilon^{(2)}$ by the same amount (g-h). See SI section S3 and Fig. S1 for parameters associated with the noise for each case study, and see Methods and SI section S7 for additional details. Synch. contrib. = Synchrony contribution refers to contributions to synchrony of the individual terms in our theory; Rel. synch. contrib. = Relative synchrony contribution refers to contributions expressed without accounting for the influence of autoregressive population effects. See the online version for color renderings of all figures.

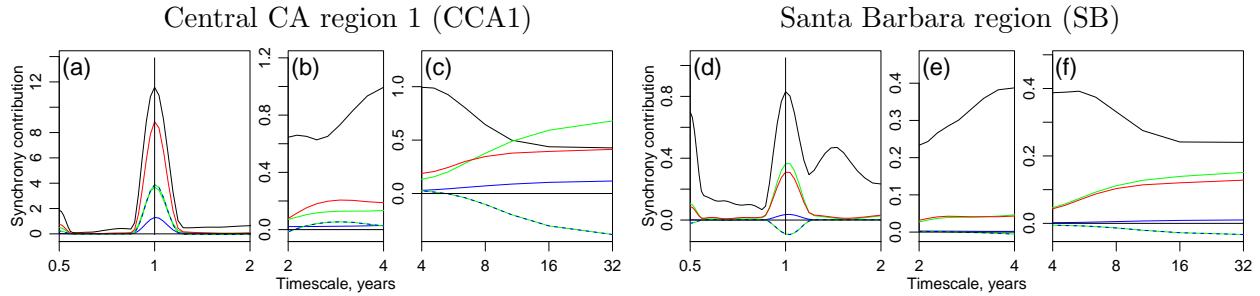
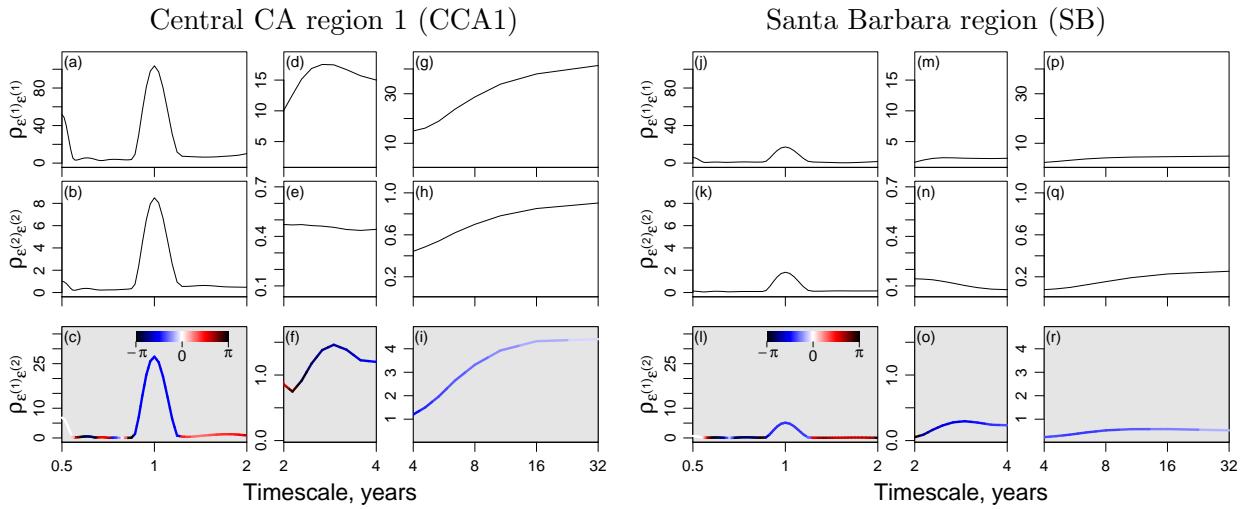


Figure 6: The new theory as applied to kelp, central CA 1 (CCA1) region (a-c) and Santa Barbara (SB) region (d-f). Panels show the terms on the right side of (5). Green lines show $\frac{|f_{\mathcal{P}(1)}|^2}{|f_{\mathcal{B}}|^2} \rho_{\epsilon^{(1)} \epsilon^{(1)}}$, quantifying kelp population synchrony due to the direct Moran effects of $\epsilon^{(1)}$, which, in this context, is nitrates. The blue line is $\frac{|f_{\mathcal{P}(2)}|^2}{|f_{\mathcal{B}}|^2} \rho_{\epsilon^{(2)} \epsilon^{(2)}}$, quantifying kelp population synchrony due to the direct Moran effects of $\epsilon^{(2)}$, which, in this context, is waves. The dashed green-blue line is $\frac{2\text{Re}(f_{\mathcal{P}(1)} \overline{f_{\mathcal{P}(2)}} \rho_{\epsilon^{(1)} \epsilon^{(2)}})}{|f_{\mathcal{B}}|^2}$, which is population synchrony due to interacting Moran effects. The red line is the sum of the green, blue and green-blue lines, and is the portion of synchrony explained by nitrates, waves, and their interactions. Explained synchrony does not equal total kelp synchrony (black line) because other, unmeasured factors also help synchronize kelp dynamics. The timescale bands $0.5 - 2$, $2 - 4$ and > 4 are separated on different panels because of the very different y -axis ranges. The CCA1 results approximately parallel the results for theoretical case study C scenario 1 (Fig. 5e; see text for details). See Fig. S2 for the central CA 2 (CCA2) region, for which results were substantially the same as for CCA1. This figure used kelp lag $n = 4$ [see (1)]; see Figs S3 and S4 for $n = 8, 12$, respectively. See the online version for color renderings of all figures.



873 Figure 7: Synchrony (top two rows of panels) and cross synchrony (bottom panels) between
874 environmental variables influencing kelp for CCA1 (a-i) and SB (j-r). Nitrates are identified
875 with $\epsilon^{(1)}$ and waves with $\epsilon^{(2)}$. Vertical axis extents are the same for corresponding panels
876 for the two regions, to facilitate comparisons. Cross synchrony is complex valued, with
877 magnitude plotted on the vertical axis and phase displayed using color. See Figs S5 and S8
878 for CCA2, for which results were similar to CCA1. This figure used kelp lag $n = 4$; see Figs
879 S6, S9, S7 and S10 for $n = 8$ and 12. See the online version for color renderings of all figures.

Table 1: Summary of notation and abbreviations.

Notation	Meaning
$i = 1, \dots, N$	Locations of population sampling
$t = 1, \dots, T$	Times of population sampling
$w_i(t)$	A population index at location i and time t
$\epsilon_i^{(a)}(t)$	Environmental variable a measured at location i and time t
l_{ek}	Lag of the effects of environmental variable k on populations
l_n	A lag between two environmental variables
$l_{e1} - l_{e2} + l_n$	The <i>environmental effect alignment measure</i>
σ	A timescale
$f = 1/\sigma$	Frequency
$S_{w_i w_i}$	The power spectrum of the process w_i
$S_{w_i w_j}$	The cross spectrum of the processes w_i and w_j
S_{ww}	The spectral matrix of the N -dimensional process w
ρ_{ww}	Synchrony of the process w
$\rho_{\epsilon^{(1)} \epsilon^{(2)}}$	Cross synchrony of the processes $\epsilon^{(1)}$ and $\epsilon^{(2)}$
b_1, \dots, b_n	Autoregressive coefficients in the population model
$p_0^{(k)}, \dots, p_{m_k}^{(k)}$	Coefficients for the lagged effects of $\epsilon^{(k)}$ on populations
δ	Effects of unmeasured environmental variables
μ	$\exp(-2\pi\iota f)$ for ι the imaginary unit
$f_{\mathcal{B}}$	$1 - b_1\mu - b_2\mu^2 - \dots - b_n\mu^n$
$f_{\mathcal{P}^{(k)}}$	$p_0^{(k)} + p_1^{(k)}\mu + \dots + p_{m_k}^{(k)}\mu^{m_k}$
$\frac{ f_{\mathcal{P}^{(k)}} ^2}{ f_{\mathcal{B}} ^2} \rho_{\epsilon^{(k)} \epsilon^{(k)}}$	Direct Moran effects of variable k in the theory
$2\text{Re}(f_{\mathcal{P}^{(1)}} \overline{f_{\mathcal{P}^{(2)}}} \epsilon^{(1)} \epsilon^{(2)})$	Moran interactions
CaseA, CaseB, CaseC1, CaseC2	Names of theoretical case studies
CCA1	Region 1 of central California (Fig. 4)
CCA2	Region 2 of central California (Fig. 4)
SB	Region around Santa Barbara (Fig. 4)