

1 **TITLE**

2 High-content microscopy reveals a morphological signature of bortezomib resistance

3 **AUTHORS**

4 Kelley, M.E.¹, Berman, A.Y.¹, Stirling, D.R.², Cimini, B.A.², Han, Y.², Singh, S.^{2*}, Carpenter, A.E.^{2*}, Kapoor, T.M.^{1*}, Way, G.P.^{2,3*}

5
6 * co-senior authors

7
8 ¹Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA

9 ²Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA

10 ³Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA

11 **CORRESPONDENCE**

12 Gregory P. Way, gregory.way@cuanschutz.edu

13 Tarun M. Kapoor, kapoor@rockefeller.edu

14 Anne E. Carpenter, anne@broadinstitute.org

15 **ABSTRACT**

16 Drug resistance is a challenge in anticancer therapy, particularly with targeted therapeutics and cytotoxic compounds. In many
17 cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-
18 independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of
19 its cause. We hypothesized that cell morphology could provide an unbiased readout of drug sensitivity prior to treatment. We therefore
20 isolated clonal cell lines that were either sensitive or resistant to bortezomib, a well-characterized proteasome inhibitor and anticancer
21 drug to which many cancer cells possess intrinsic resistance. We then measured high-dimensional single-cell morphology profiles using
22 Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features
23 typically different between resistant and sensitive clones. These features were compiled to generate a morphological signature of
24 bortezomib resistance, which correctly predicted the bortezomib treatment response in seven of ten cell lines not included in the training
25 dataset. This signature of resistance was specific to bortezomib over other drugs targeting the ubiquitin-proteasome system. Our results
26 provide evidence that intrinsic morphological features of drug resistance exist and establish a framework for their identification.

27 **INTRODUCTION**

28 Targeted cancer therapies are often thwarted by drug resistance (Garraway and Jänne, 2012; Pisa and Kapoor, 2020). Resistance
29 is complex and can be categorized as acquired, manifesting in the context of prolonged treatment, or intrinsic, pre-existing in the cancer
30 cell population (Gottesman et al., 2016). Drug resistance often results in failed therapies and cancer relapse, which makes determining
31 the drug sensitivity of populations of cancer cells requisite for timely and effective treatment (Vasan et al., 2019). However, we currently
32 lack unbiased methods of identifying intrinsic drug resistance in cells prior to treatment.

33 Bortezomib is an anticancer drug commonly used to treat multiple myeloma and nearly half of multiple myeloma patients show no
34 initial response to bortezomib therapy, indicating intrinsic resistance (Chen et al., 2011; Gonzalez-Santamarta et al., 2020; Mitsiades et
35 al., 2004). Malignant plasma cells in multiple myeloma depend on the timely degradation of proteins by the proteasome to prevent
36 apoptosis (Gonzalez-Santamarta et al., 2020), making proteasome inhibitors such as bortezomib a standard of care for multiple
37 myeloma (Hideshima et al., 2001; Vincenz et al., 2013). However, multiple myeloma is invariably fatal due to the eventual development
38 of drug resistance (Hideshima et al., 2007).

39 Bortezomib resistance can be attributed to targeted mechanisms such as mutations in the bortezomib-binding pocket of the
40 targeted proteasome subunit (PSMB5) and overexpression of proteasome subunits (Barrio et al., 2019; Franke et al., 2012; Oerlemans
41

Figure 1. Experimental design for using Cell Painting to examine morphological profiles of drug-resistant cell lines

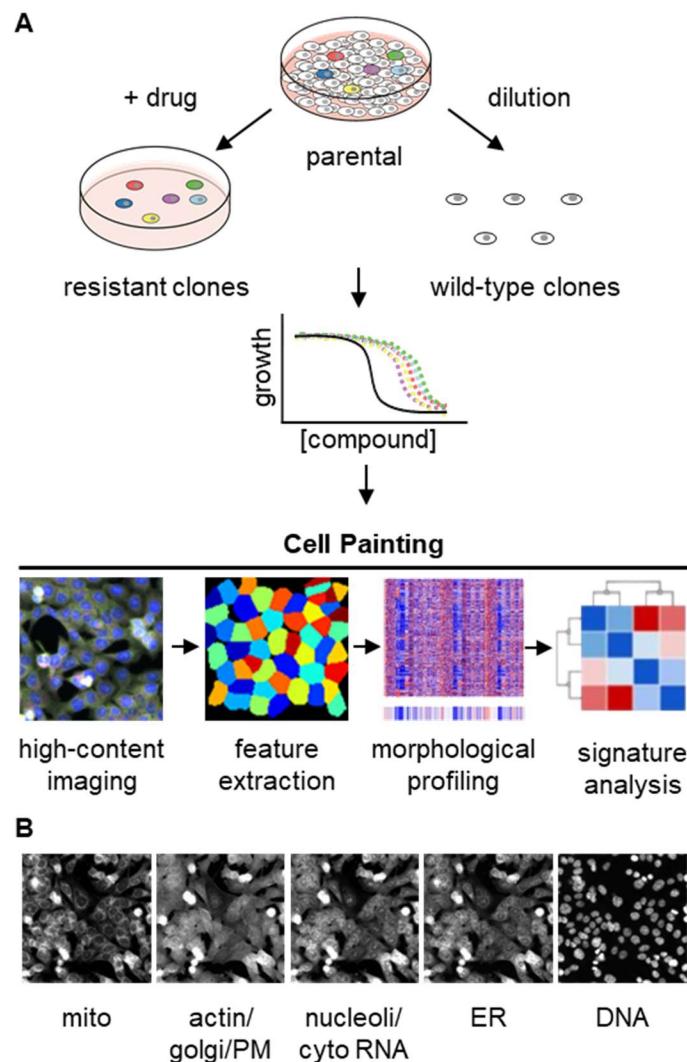


Figure 1. Experimental design for using Cell Painting to examine morphological profiles of drug-resistant cell lines. (A) Graphic of the experimental workflow for isolating and characterizing drug-resistant cell lines and then performing Cell Painting to search for morphological features of drug sensitivity. **(B)** One representative field of view of cells labeled with six fluorescent dyes and captured in five channels used for morphological profiling with Cell Painting. Each image is 230.43 x 230.43 μm .

45 et al., 2008) as well as non-specific mechanisms, such as upregulation of prosurvival or anti-apoptotic pathways and enhanced cell
46 adhesion to the extracellular matrix (Gonzalez-Santamarta et al., 2020; Hideshima et al., 2007). A priori knowledge of tumor cells'
47 susceptibility to candidate therapeutics could aid in identifying effective treatment options, resulting in fewer relapses and failed
48 treatments due to intrinsic resistance. However, current methods for determining resistance status depend on viability assays, which
49 take days to perform, or sequencing, which may be limited in its usefulness without knowledge of the full spectrum of resistance-
50 conferring mutations (Wheler et al., 2014) or knowing specific mutations or indels in the target that suppress drug activity (Kapoor and
51 Miller, 2017). Alternative methods for determining tumor cell susceptibility to therapy are therefore desirable.

52 A growing literature suggests that specific genetic alterations, treatment response, and prognosis can be predicted from
53 conventional hematoxylin and eosin tissue slides using machine learning (Cifci et al., 2022; Lee and Jang, 2022), indicating that image
54 data holds promise for predicting drug sensitivity. High-content screening, which uses cell-based automated microscopy to capture
55 information-rich images, has successfully categorized small molecule inhibitors by their mechanisms and targeted pathways (Ljosa et
56 al., 2013; Perlman et al., 2004) and shown a relationship between morphological profiles and genetic perturbations (Rohban et al.,
57 2017), including specific mutations associated with lung cancer when in an artificial overexpression system (Caicedo et al., 2022). This
58 screening method often uses high-throughput microscopy that generates a large amount of image data, from which thousands of
59 quantitative, single-cell morphological features can be extracted to characterize signals that could not be discovered using low-
60 throughput methods and would otherwise be impossible to study by eye. However, this has not been used to examine the features of
61 drug resistance in untreated cells.

62 Here, we used Cell Painting (Bray et al., 2016), a multiplex, fluorescence microscopy assay that labels eight cellular components
63 using six stains imaged in five fluorescent channels, as an unbiased method to characterize the morphological differences between
64 untreated bortezomib-resistant and -sensitive cancer cell lines. We applied a reproducible imaging- and computation-based profiling
65 pipeline to process the images and identify a high-dimensional cell morphology signature to predict bortezomib resistance that we
66 evaluated using machine learning best practices. This morphological signature correctly predicted the bortezomib treatment response in
67 seven out of ten cell lines not included in the training data and was highly specific; the signature had limited ability to identify cells
68 resistant to other drugs targeting the ubiquitin-proteasome system (UPS) such as ixazomib, another proteasome inhibitor, or CB-5083,
69 which targets p97 upstream of the proteasome. These results suggest that this method can specifically identify bortezomib-resistant cell
70 lines better than random chance and establish a framework for identifying morphological signatures of drug resistance. The ability to
71 identify drug-resistant cell lines based on intrinsic morphological features supports using microscopy to guide therapy and provides a
72 valuable orthogonal method for characterizing drug resistance.

73 74 RESULTS

75 Isolating and capturing Cell Painting profiles for HCT116-based bortezomib-resistant clones

76 We first isolated and characterized drug-resistant cell lines (Fig. 1 A). We based our method on our previous work, growing a
77 parental polyclonal cell line in the presence of the desired drug to isolate drug-resistant clones (Kasap et al., 2014; Wacker et al., 2012).
78 To efficiently isolate drug-resistant clones, we used HCT116 parental cells that have low levels of multidrug resistance pumps and are
79 mismatch repair deficient, providing a genetically heterogeneous polyclonal population of cells (Papadopoulos et al., 1994; Teraishi et
80 al., 2005; Umar et al., 1994). To approximate the conditions of intrinsic resistance, we cultured these polyclonal parental HCT116 cells
81 in a high enough concentration of a drug of interest to kill the majority of cells within days leaving a few isolated, surviving single cells in
82 a time frame consistent with these cells harboring intrinsic resistance (Wacker et al., 2012).

83 To determine the appropriate drug concentrations to use in order to produce only a few surviving drug-resistant cells, we performed
84 proliferation assays on HCT116 parental cells with our drugs of interest: bortezomib (proteasome inhibitor), ixazomib (proteasome
85 inhibitor), or CB-5083 (p97 inhibitor) (Fig. 1-Supplement 1 A-D). Although our proliferation assays could not distinguish between cell
86 death and cytostatic effects, we qualitatively confirmed cell death using brightfield microscopy. We then treated parental HCT116 cells
87 with drug concentrations at and around the calculated LD90 for each of these small molecules to isolate drug-resistant single cells and
88 expanded them into clonal cell lines for further experiments (Wacker et al., 2012). In addition to these drug-resistant clonal cell lines, we
89 isolated wild-type clones by dilution of the parental line and acquired two previously isolated bortezomib-resistant cell lines (BZ clones A
90 and E) with mutations in PSMB5 confirmed by RNA sequencing (Fig. 1-Supplement 1 E) (Wacker et al., 2012).

91 To screen for multidrug resistance, which might convolute any specific signature of bortezomib resistance, we measured
92 proliferation of our clones in the presence of drugs that target disparate pathways: bortezomib (a proteasome inhibitor), taxol (a
93 microtubule poison), and mitoxantrone (a topoisomerase inhibitor) (Liu, 1989). As multidrug resistance leads to non-specific reductions
94 in drug sensitivity, due to drug efflux for example (Gottesman et al., 2016), we expected multidrug resistant cells to be less sensitive to
95 bortezomib, taxol, and mitoxantrone.

Figure 2. Cell morphology reveals a signature of bortezomib resistance

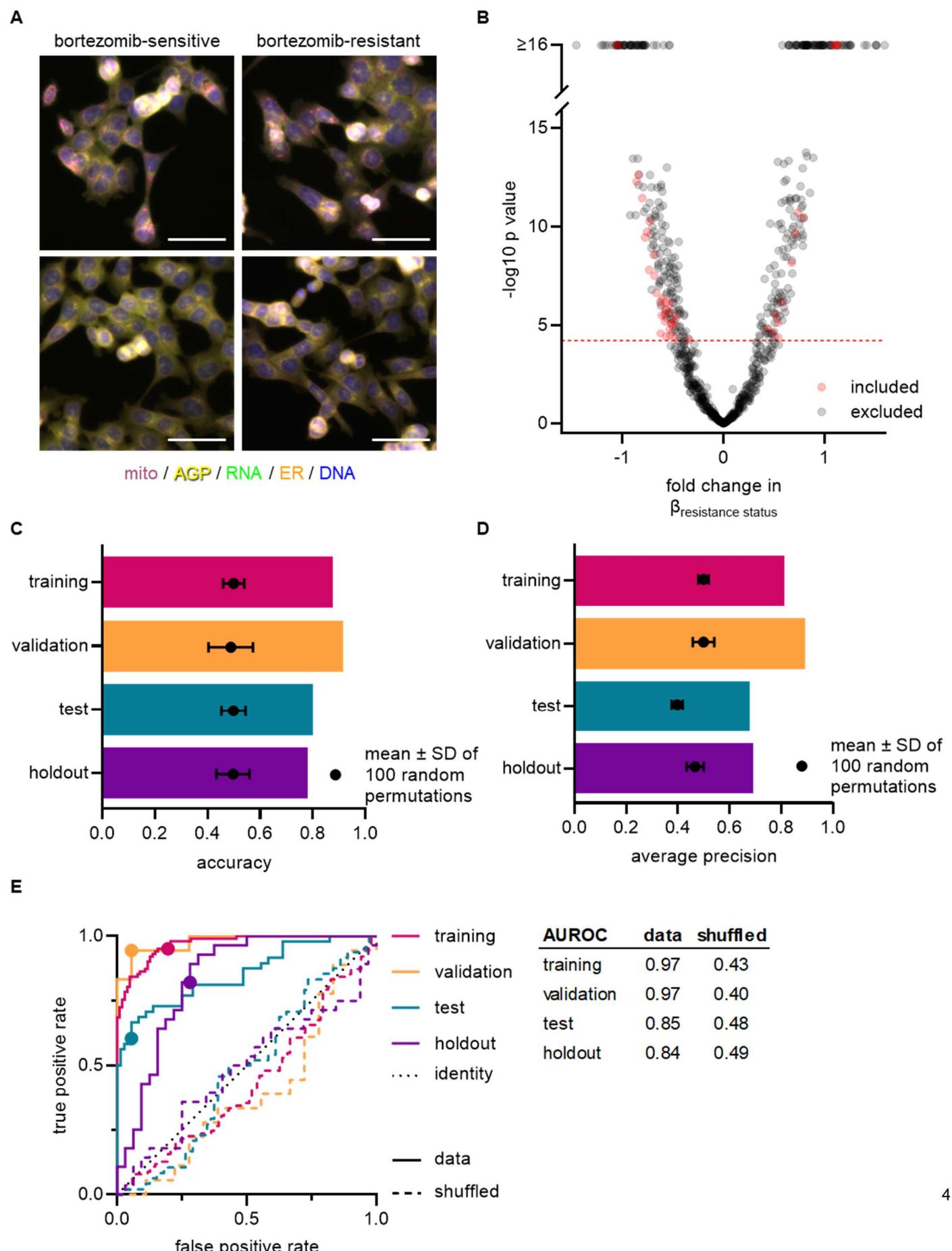


Figure 2. Cell morphology reveals a signature of bortezomib resistance. **(A)** Representative fixed fluorescence microscopy images of two bortezomib-sensitive (WT02 and WT03) and two bortezomib-resistant (BZ02 and BZ03) clones stained and imaged as per the Cell Painting protocol. Channels are labeled as mito (mitochondria; magenta), AGP (actin, golgi, plasma membrane; yellow), RNA (ribonucleic acid; green), ER (endoplasmic reticulum; orange), and DNA (deoxyribonucleic acid; blue). See Figure 2-Supplement 1 for single channel images. Scale bars, 50 μ m. **(B)** Volcano plot of the variability of morphological features (β) by resistance status. Y-axis $-\log_{10}p$ values are from Tukey's HSD (see Methods). Red circles are features included in the final signature of resistance and gray circles are features excluded from the final signature. Features above the red dashed line ($-\log_{10}[0.05/\text{number of unique features}]$) were considered significantly varying and those that had not been excluded as technical variables (Fig. 2-Supplement 3) were included in the signature of bortezomib resistance. **(C)-(E)** Evaluations of the Bortezomib Signature on the training (magenta), validation (orange), test (teal), and holdout (purple) datasets. Bar graphs showing the (C) accuracy and (D) average precision of the Bortezomib Signature when characterizing the resistance status of cell lines. Symbols and error bars are the means of the shuffled data \pm SD. (E) ROC curves for the performance of the Bortezomib Signature on the indicated dataset (solid line) or its shuffled counterpart (dashed line). Colored points are the corresponding false positive and true positive rates at the absolute minimum thresholds for each respective dataset. Black dotted line is the identity line where false positive rate = true positive rate. AUROC values reported for data and shuffled data. See Fig. 2-Supplement 8 for breakdown of profiles and experiments per dataset.

96 When we treated our cell lines with bortezomib, only the cell lines isolated following high-dose bortezomib treatment (BZ01-10 and
97 BZ clones A and E) had reduced bortezomib sensitivity, with LD50s ranging \sim 2.8- to \sim 9-fold that of the wild-type parental cell line (Fig.
98 1-Supplement 2 B). In contrast, the wild-type clones (WT01-05, 10, and 12-15) had LD50s ranging from \sim 0.7- to \sim 1.2-fold that of the
99 parental cell line (Fig. 1-Supplement 2 A). Wild-type clones and bortezomib-resistant cell lines treated with taxol had LD50s ranging
100 from \sim 0.6- to \sim 1.9-fold that of the parental cell line (Fig. 1-Supplement 2 C and D). Finally, treating cells with mitoxantrone, we found
101 that the wild-type clones had LD50s \sim 0.6- to \sim 3.1-fold that of the parental line (Fig. 1-Supplement 2 E) and most of the bortezomib-
102 resistant clones had similar LD50s (\sim 0.7- to \sim 2.7-fold that of the parental line) (Fig. 1-Supplement 2 F). The exception was BZ06, which
103 had an LD50 nearly 14-fold higher than the wild-type parental line. Since BZ06 did not have reduced sensitivity to taxol (\sim 0.6-fold that
104 of the parental line) we do not suspect multidrug resistance to be the source of this mitoxantrone resistance. Together, these data
105 indicate that while there is variability in the responses to different treatments, none of the tested cell lines had the expected features of
106 multidrug resistance.

107 We next applied the Cell Painting assay to these drug-sensitive and -resistant cell lines. Cell Painting captures signal in five
108 imaging channels from six fluorescent dyes that stain cells for eight cellular components including mitochondria, actin, Golgi, plasma
109 membrane, cytoplasmic RNA, nucleoli, endoplasmic reticulum, and DNA (Fig. 1 B) (Bray et al., 2016). With these images, we used
110 CellProfiler (Stirling et al., 2021) to extract single-cell morphological features from individual cells. The signal from each of the five
111 channels was analyzed in the nucleus, cytoplasm, and total cell and characterized based on features (object parameters) such as
112 signal intensity, shape of the object, texture of the staining pattern, etc. yielding a total of \sim 3500 features. These cellular features were
113 combined and analyzed on a per well basis and then compared across cell lines and experimental conditions to determine whether
114 morphological features of drug sensitivity could be reliably detected in untreated cells.

115 of the parental line) we do not suspect multidrug resistance to be the source of this mitoxantrone resistance. Together, these data
116 indicate that while there is variability in the responses to different treatments, none of the tested cell lines had the expected features of
117 multidrug resistance.

118 We next applied the Cell Painting assay to these drug-sensitive and -resistant cell lines. Cell Painting captures signal in five
119 imaging channels from six fluorescent dyes that stain cells for eight cellular components including mitochondria, actin, Golgi, plasma
120 membrane, cytoplasmic RNA, nucleoli, endoplasmic reticulum, and DNA (Fig. 1 B) (Bray et al., 2016). With these images, we used
121 CellProfiler (Stirling et al., 2021) to extract single-cell morphological features from individual cells. The signal from each of the five
122 channels was analyzed in the nucleus, cytoplasm, and total cell and characterized based on features (object parameters) such as

123 signal intensity, shape of the object, texture of the staining pattern, etc. yielding a total of ~3500 features. These cellular features were
124 combined and analyzed on a per well basis and then compared across cell lines and experimental conditions to determine whether
125 morphological features of drug sensitivity could be reliably detected in untreated cells.

126

127 **Morphology signature of bortezomib resistance distinguishes multiple sensitive versus resistant clones**

128 We first examined whether there were any clear qualitative morphological differences between wild-type and bortezomib-resistant
129 cell lines and chose the wild-type polyclonal parental cell line, wild-type clones WT01-WT05, and bortezomib-resistant clones A, E, and
130 BZ01-BZ05 for these initial studies. We treated cells with 0.1% DMSO (to allow for comparison with future experiments using drug-
131 treated cells) and performed Cell Painting, staining fixed HCT116 cells and imaging as per the published protocol (Bray et al., 2016).
132 Imaging revealed cellular heterogeneity within each cell line as well as between cell lines with similar bortezomib sensitivities (Fig. 2 A
133 and Fig. 2-Supplement 1). This heterogeneity obscured any potential differences between bortezomib-sensitive and -resistant cell lines
134 and prevented us from qualitatively distinguishing wild-type from bortezomib-resistant clones by eye, confirming the need for high-
135 content quantitative analysis.

136 We then pre-processed profiles to remove low-variance and highly correlated features, and population-averaged single cell
137 measurements at the well level (see Methods). The morphological profiles of wild-type and bortezomib-resistant cells did not cleanly
138 distinguish cell lines based on bortezomib sensitivity (Fig. 2-Supplement 2 A). This was the case even for a short, 4-hour treatment with
139 7 nM bortezomib (Fig. 2-Supplement 2 B), further indicating the subtlety of any morphological difference between bortezomib-sensitive
140 and -resistant cells and the need for further feature refinement.

141 Each observed morphological measurement results from a combination of both technical and biological variables. It is therefore
142 important to control and test for technical variables as these can confound subtle signatures that would otherwise dominate the
143 morphological profiles of the cells being analyzed. Using wild-type clones WT01-05 and bortezomib-resistant clones BZ01-05 to
144 quantify and reduce the impact of technical variables, we fit a linear model to each morphological feature adjusting for technical
145 variables (experimental run/batch, incubation time, cell count/density, clone ID) and biological variables (resistance status) (see
146 Methods). We then discarded morphological features with variances that correlated with experimental run (batch), incubation time (4 or
147 13 hours with 0.1% DMSO), cell density, or those features that varied between two or more pairs of wild-type clones (clone ID) (Fig. 2-
148 Supplement 3 A-E). Of the remaining morphological features, we only considered those that varied based on the resistance status of a
149 cell line (Fig. 2 B). This resulted in 45 morphological features that significantly contributed to cells' bortezomib drug sensitivity (Fig. 2-
150 Supplement 4). We used these 45 features to compute a resistance score or "Bortezomib Signature" for each cell line based on the
151 direction-sensitive ranking method for phenotype analysis, singscore (Foroutan et al., 2018). With the exception of some texture-based
152 features, the Bortezomib Signature features were largely independent, displaying low pairwise correlation, which may implicate a more
153 nuanced phenotype of drug resistance and explain why detecting resistance by eye was so challenging (Fig. 2-Supplement 5).

154 Anticipating well location as a possible technical artifact, we plated our cells in a repeating serpentine pattern, ensuring that each
155 cell line would be imaged in multiple locations across each plate (Fig. 2-Supplement 6 A). We found that the pattern of Bortezomib
156 Signatures corresponded to the cell identity plate layout (Fig. 2-Supplement 6 B), indicating that the well position for each cell line was
157 not strongly contributing to its Bortezomib Signature. In addition, we found that the Bortezomib Signature correlated with resistance
158 status of cell lines and not technical variables (Fig. 2-Supplement 7). These data suggest that our analysis pipeline and signature
159 building process minimized technical artifacts.

160 To evaluate the performance of our Bortezomib Signature, we used machine learning best practices, separating our data into
161 training, validation, test, and holdout datasets (Fig. 2-Supplement 8; see Methods). The data used to create the Bortezomib Signature,
162 which included well-based morphological profiles from clones WT01-05 and BZ01-05, was designated as the training dataset, which we
163 used to build the Bortezomib Signature initially. The validation dataset was composed of profiles from clones WT01-05 and BZ01-05
164 that were not used to generate the Bortezomib Signature but were collected on the same plates as the profiles used for the training
165 dataset. The test dataset was composed of profiles from the wild-type parental cell line and bortezomib-resistant clones A and E (none
166 of these lines were included in training), and these profiles were also collected on the same plates as those used for the training

Figure 3. Signature of bortezomib resistance is specific to bortezomib

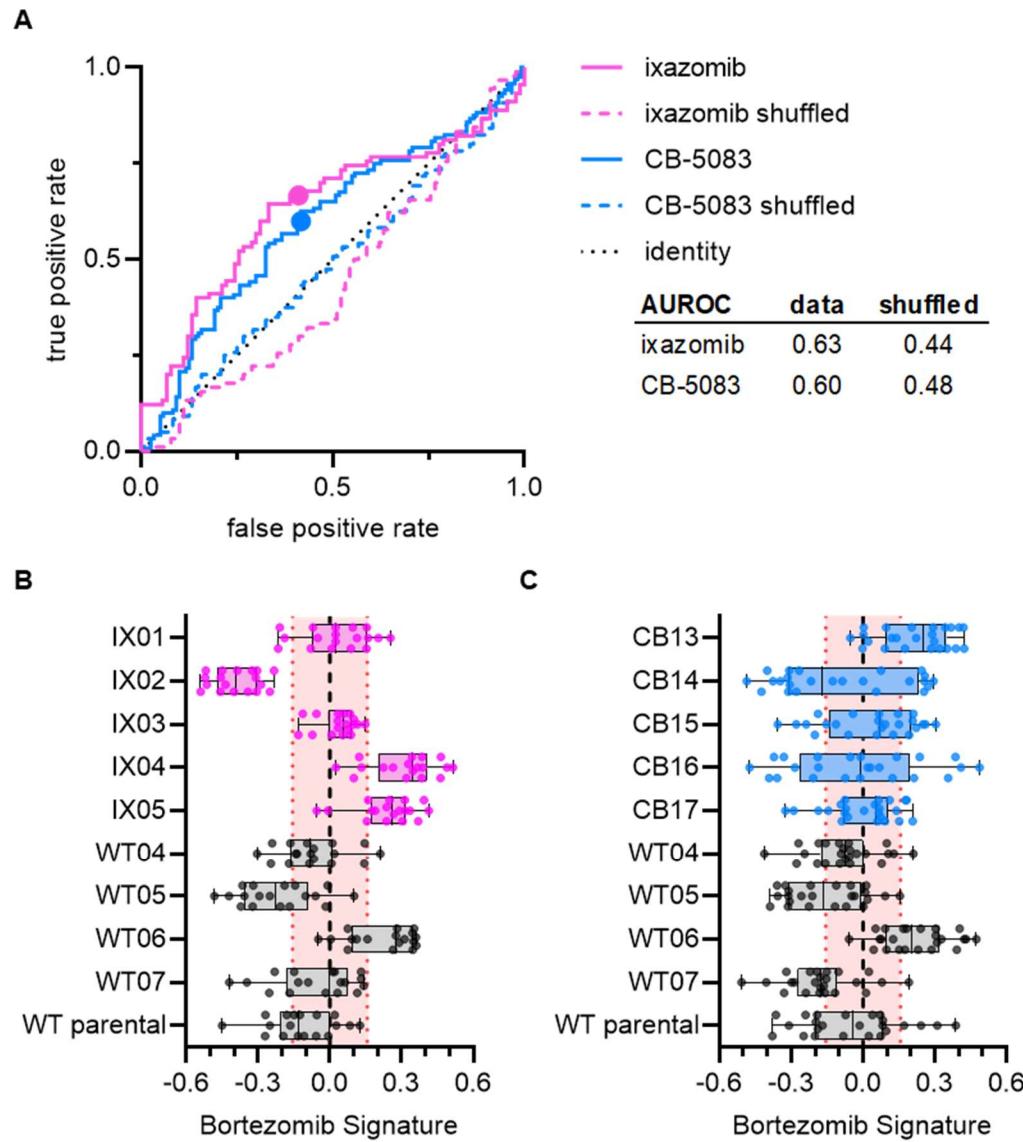


Figure 3. Signature of bortezomib resistance is specific to drug and pathway. (A) ROC curves for ixazomib-resistant (magenta) and CB-5083-resistant (blue) experimental data. Colored solid lines are the actual data while colored dashed lines are the shuffled data for each set of clones. Colored points are the corresponding false positive and true positive rates at the absolute minimum thresholds for each respective cell type. Black dotted line is the identity line where false positive rate = true positive rate. AUROC reported for the data and shuffled data. Box plots of Bortezomib Signatures for (B) ixazomib-resistant and wild-type cell lines ($n = 18$ profiles, 3 independent experiments) and (C) CB-5083-resistant and wild-type cell lines ($n = 24$ profiles, 4 independent experiments). Plots show individual points, range (error bars), 25th and 75th percentiles (box boundaries), and median. Dashed vertical black line is Bortezomib Signature = 0, dashed vertical red lines are the 95% confidence interval for Bortezomib Signatures of 1000 random permutations of the data.

168 dataset. The holdout dataset was a separate plate and contained wild-type parental cells, clones WT01-05, and bortezomib-resistant
169 clones A, E, and BZ01-05. These datasets allowed us to test generalizability across clones and plates for the trained Bortezomib
170 Signature.

171 We found the Bortezomib Signature could predict whether a cell line was bortezomib-resistant or bortezomib-sensitive (Fig. 2
172 C and D and Fig. 2-Supplement 9 A-D). We called the prediction bortezomib-resistant if the Bortezomib Signature was greater than
173 zero and bortezomib-sensitive for a Bortezomib Signature less than zero. In the training dataset, the Bortezomib Signature correctly
174 characterized cell lines as either sensitive or resistant to bortezomib 88% of the time with an average precision of 81%. The signature
175 performed similarly well in the validation dataset (wells not included in the training dataset), with an accuracy of 92% and an average
176 precision of 89%, as would be expected given that the validation dataset included the same clones and same plates used for the
177 training dataset. In the test dataset, composed solely of wild-type parental cells and bortezomib-resistant clones A and E, the
178 Bortezomib Signature had an accuracy of 80% and an average precision of 68%. Similarly, in the holdout dataset the Bortezomib
179 Signature had an accuracy of 78% and an average precision of 69%. Although the Bortezomib Signature did not perform as well in the
180 test and holdout datasets as it did in the training and validation datasets, this was expected given that the test dataset included the
181 polyclonal wild-type parental cell line and two previously isolated bortezomib-resistant clones while the holdout dataset was collected on
182 a single, unique plate. However, the Bortezomib Signature performed better than random chance in all testing conditions, as
183 demonstrated by comparison with the mean values for the randomly shuffled data, and as reflected in receiver operating characteristic
184 (ROC) curves, which describe the classification trade-off between true positive and false positive rates in predicting bortezomib-
185 resistance (Fig. 2 E).

186 187 **Bortezomib Signature is specific to bortezomib over other ubiquitin-proteasome system inhibitors**

188 We next tested whether the Bortezomib Signature is specific to the drug bortezomib or more broadly to the UPS. To test this, we
189 performed Cell Painting on HCT116 cell lines that were resistant to either ixazomib (another proteasome inhibitor that targets the
190 PSMB5 subunit) or CB-5083 (a p97 inhibitor that acts upstream of the proteasome). If our Bortezomib Signature was a general
191 signature of UPS-targeting drug resistance, we would expect our signature to perform equally well at characterizing the drug sensitivity
192 of bortezomib-, ixazomib-, and CB-5083-resistant cell lines. Our Bortezomib Signature performed better than chance at identifying
193 ixazomib-resistant and CB-5083-resistant cell lines (Fig. 3 A), correctly identifying four of five ixazomib-resistant clones (Fig. 3 B) and
194 three of five CB-5083-resistant clones (Fig. 3 C). However, the areas under the ROC curves for these clones (0.63 and 0.60,
195 respectively) were lower than those observed for any of our bortezomib-resistant datasets and many of these Bortezomib Signatures,
196 particularly those for CB-5083-resistant clones, landed within the range of randomly permuted data. These results suggest that our
197 Bortezomib Signature is not a general signature of UPS-targeting and is relatively specific to bortezomib or the proteasome.

198 199 **Bortezomib Signature characterizes bortezomib sensitivity of cell lines not included in the training dataset**

200 To test whether our Bortezomib Signature could correctly characterize the bortezomib sensitivity of cell lines not included in the
201 training dataset, we imaged an entirely new set of wild-type (WT10, WT12-WT15) and bortezomib-resistant clones (BZ06-BZ10) using
202 the Cell Painting protocol. Overall, the Bortezomib Signature performed well, with an AUROC of 0.75, compared to 0.55 for the shuffled
203 data (Fig. 4 A). Our Bortezomib Signature correctly characterized the bortezomib sensitivity of our wild-type bortezomib-sensitive
204 parental line and our bortezomib-resistant clones A and E, which we included as controls (Fig. 4 B), as well as four of five bortezomib-
205 resistant clones and three of five wild-type clones not included in the training dataset (Fig. 4 C). In addition, the majority of these
206 Bortezomib Signatures landed outside the range of randomly permuted data. These results indicate the drug-specificity of our signature
207 and suggest that this Bortezomib Signature has the potential to identify bortezomib-resistant cell lines based on the intrinsic
208 morphological features of untreated cells.

Figure 4. Bortezomib Signature correctly predicts bortezomib sensitivity of cell lines not included in the training dataset

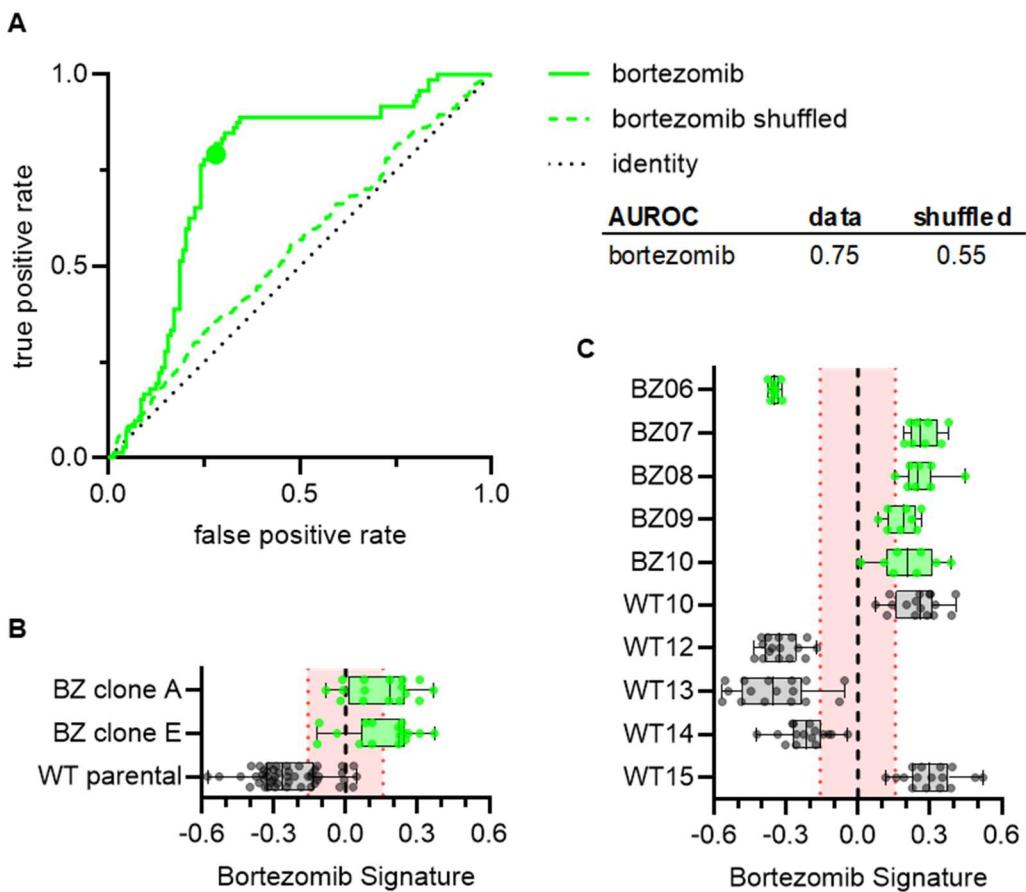


Figure 4. Bortezomib Signature correctly predicts bortezomib sensitivity of cell lines not included in the training dataset.

(A) ROC curve for the performance of the Bortezomib Signature on the cell lines in (B) and (C) (solid line) and shuffled data (dashed line). Colored point is the corresponding false positive and true positive rate at the absolute minimum threshold. Black dashed line is the identity line where false positive rate = true positive rate. AUROC reported for the data and shuffled data. (B) Box plots of Bortezomib Signatures for bortezomib-resistant clones A and E ($n = 16$ profiles each) and wild-type parental cells ($n = 48$ profiles). (C) Box plots of Bortezomib Signatures for wild-type clones WT10, WT12-15 ($n = 16$ profiles each) and bortezomib-resistant clones BZ06-BZ10 ($n = 8$ profiles each). Plots show individual points, range (error bars), 25th and 75th percentiles (box boundaries), and median. Dashed vertical black line is Bortezomib Signature = 0, dashed vertical red lines are the 95% confidence interval for Bortezomib Signatures of 1000 random permutations of the data.

DISCUSSION

We used Cell Painting, a high-throughput and high-content image acquisition and analysis assay, as a target-independent method to capture the morphological profiles of untreated cells that were either sensitive or resistant to the ubiquitin-proteasome system (UPS)-targeting anticancer drug, bortezomib. After processing profiles to reduce the impact of technical variables, we generated a signature of bortezomib resistance and characterized the performance of this signature using machine learning best practices. This Bortezomib Signature correctly predicted the bortezomib treatment response of seven out of ten cell lines not included in the training dataset and was specific to the drug under investigation, in this case bortezomib, even as compared to cells that were resistant to other drugs

216 targeting the UPS. Our work demonstrates that there are intrinsic morphological features of drug resistance in cells that can be
217 identified using Cell Painting and provides a reproducible pipeline for generating morphological signatures of drug resistance.

218 The Bortezomib Signature's performance was not perfect; it mischaracterized three clones not included in the training dataset.
219 Interestingly, one of the misidentified clones (BZ06) had reduced sensitivity to mitoxantrone as well as bortezomib. Given the
220 considerable genetic heterogeneity in this mismatch repair-deficient HCT116 cell line (Glaab and Tindall, 1997; Umar et al., 1994), it is
221 possible that these mischaracterized cell lines have orthogonal mechanisms of resistance or unrelated mutations contributing to their
222 morphological profiles. Targeted sequencing of the PSMB5 proteasome subunit in bortezomib-resistant clones may yield clues to the
223 origins of these misidentifications, as multiple mutations have been identified in bortezomib-resistant cell lines (Wacker et al., 2012).
224 Determining the underlying reason for the misidentification of wild-type cell lines would require more comprehensive sequencing.

225 Our Bortezomib Signature performed better at identifying bortezomib-resistant cell lines compared to ixazomib-resistant cell lines,
226 and better at identifying ixazomib-resistant cell lines compared to CB-5083-resistant cell lines. All three drugs broadly target the UPS,
227 however bortezomib and ixazomib both target the same subunit of the proteasome, albeit with different potentially non-overlapping
228 spectrums of off-targets (Kupperman et al., 2010). Our data therefore suggest that the Bortezomib Signature is specific to the drug
229 bortezomib, and not proteasome inhibition broadly or simply a general signature of UPS-targeting drug resistance.

230 This work has shown potential for morphological profiling with Cell Painting to characterize drug sensitivity in untreated cells,
231 having generated a robust signature of resistance to bortezomib, a drug with a high failure rate in treating cancer. Our results indicate
232 that different mechanisms of bortezomib resistance may be generating distinct morphological profiles; with larger and broader training
233 data, it may be possible to identify signatures for multiple mechanisms of bortezomib resistance as well as signatures of resistance to
234 other drugs. An important step will be determining whether this method can be extended to patient samples where identifying intrinsic
235 drug resistance in cells prior to treatment has the potential to improve targeted cancer therapy. We expect that further refinement might
236 develop Cell Painting as a tool for identifying drug-resistant cells, perhaps even guiding therapeutic strategies to overcome intrinsic
237 resistance.

238 MATERIALS AND METHODS

239 Cell culture

240 HCT116 cells (CCL-247; ATCC), also referred to as HCT116 wild-type parental cells, were maintained in McCoy's 5A Medium (Gibco)
241 supplemented with 10% (v/v) FBS (Sigma) and cultured at 5% CO₂ and 37°C. Bortezomib-resistant, ixazomib-resistant, and CB-5083-
242 resistant clonal cell lines were isolated as previously described (Wacker et al., 2012). Briefly, cells were plated in 150mm dishes and
243 grown in the presence of approximately the LD₉₀ of the desired drug until the majority of cells died. The locations of single surviving
244 cells were marked and the colonies that expanded were isolated using cloning rings. HCT116 wild-type clonal cell lines were isolated by
245 dilution into 96-well plates and wells containing single cells that expanded into colonies were selected. Bortezomib-resistant clones A
246 and E were provided by the Kapoor laboratory having been previously published (Wacker et al., 2012).

247 Proliferation assays

248 Cell proliferation was evaluated using an Alamar Blue assay (O'Brien et al., 2000). Briefly, cell lines were plated in duplicate or triplicate
249 in sterile 96-well Clear Microplates (Falcon) under described culture conditions, with 1000 cells in 100 µL per well and allowed to
250 adhere overnight. After cells attached to the plate, 50 µL of media containing drug was added to each well. The final DMSO
251 concentration was 0.1% for all wells, including three wells with media only as background measurements. Plates were incubated for 72
252 hours at 5% CO₂ and 37°C before adding Alamar Blue (resazurin sodium salt, final concentration 50 µM). Cells were incubated with
253 Alamar Blue for 3-4 hours and then imaged with a Synergy Neo plate reader using excitation: 550 nm and emission: 590 nm (Agilent).
254 The average plate background (media only with 0.1% DMSO) was subtracted from the average fluorescence for each condition and the
255 resulting value was normalized by dividing by the background-subtracted value for each condition's control (cells treated with 0.1%
256 DMSO). With the data from our proliferation assays, we calculated the median lethal dose (LD₅₀) for each of our drugs of interest by

259 fitting data of normalized growth vs. log[drug concentration] to a sigmoidal dose-response curve using GraphPad Prism (v.9.2.0) (Fig. 1-
260 Supplement 1 D) and then determined the dose at which 90% of cells would be expected to die (LD90).

261 **Cell Painting**

262 High-throughput imaging was performed according to the published Cell Painting protocol (Bray et al., 2016). HCT116 cells were plated
263 at concentrations of 2.5 or 5 \times 10³ cells/mL in 96-well glass-bottomed tissue culture dishes (Greiner Bio-One) and allowed to adhere for
264 48-72 hours prior to fixation. At either 4 or 13 hours prior to fixation, cells were treated with either 0.1% DMSO or 7 nM bortezomib and
265 30 min prior to fixation cells were treated with MitoTracker Deep Red (500 nM, Invitrogen). 16 % paraformaldehyde (EMS) was added
266 to each well for a final concentration of 3.2% and cells were fixed in the dark at room temperature for 20 minutes. Wells were washed
267 with HBSS (Invitrogen), permeabilized with 0.1% Triton-X for 15 minutes, and then washed twice with HBSS before incubating with
268 staining solution (5 U/mL phalloidin AF568 [Invitrogen], 100 μ g/mL concanavalin A AF488 [Invitrogen], 5 μ g/mL Hoechst 33342
269 [ThermoFisher or Invitrogen], 1.5 μ g/mL wheat-germ agglutinin AF555 [Invitrogen], 3 μ M SYTO14 Green [Invitrogen], and 1% bovine
270 serum albumin [BioWorld] in HBSS) in the dark for 30 minutes. Wells were then washed twice with HBSS and imaged using an
271 ImageXpress high-content imaging system (Molecular Devices) with a 20x 0.45 NA S Plan Fluor ELWD objective (Nikon) and captured
272 with a Zyla 5.5 sCMOS detector (Andor Technology). Each well was imaged at 12-17 non-overlapping sites in five channels using
273 Semrock filters (mito: Cy5-4040B-NTE-ZERO, AGP: TxRed-4040C-NTE-ZERO, RNA: Cy3-4040C-NTE-ZERO, ER: FITC-3540C-NTE-
274 ZERO, and DNA: DAPI-5060C-NTE-ZERO).

275 **Image data processing**

276 We used CellProfiler versions 3.1.8 and 3.1.9 (McQuin et al., 2018) to perform the standard processing pipeline of illumination
277 correction, single cell segmentation, and morphology feature extraction. We performed per-plate illumination correction to adjust for
278 uneven background intensity that commonly impacts microscopy images. We also developed per-plate analysis pipelines for single cell
279 segmentation and feature extraction. We extracted 3,528 total cell morphology features from all 25,331,572 cells we generated in this
280 experiment. The 3,528 features represent stain intensities, stain co-localization, textures, areas, and other patterns extracted from all
281 five imaging channels and different segmentation objects (nuclei, cytoplasm, total cells). Feature details are described in the
282 documentation for CellProfiler (https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.1.9/help/output_measurements.html).

283 Following feature extraction, we applied an image-based analysis pipeline to generate our final analytical set of treatment profiles
284 (Caicedo et al., 2017). We first used cytominer-database to ingest all single-cell, per-compartment CellProfiler output files (comma
285 separated) to clean column names, confirm integrity of CellProfiler output CSVs, and output single-cell SQLite files for downstream
286 processing. Next, we used pycytominer (github hash c1aa34b641b4e07eb5cbd424166f31355abdbd4d) for all image-based profiling
287 pipeline steps. In the first step, we median aggregated all single cells to form well-level profiles (Way et al., 2022). Next, we performed a
288 step called annotation, which merges the consistent platemap metadata with the well-level profiles. Third, we performed standard z-
289 score normalization to ensure all features are measured on the same scale with zero mean and unit variance. Lastly, we performed
290 feature selection, which removed features with low variance, high correlation (>0.9 Pearson correlation), features with missing values,
291 features on our blocklist (Way, 2020), and features with outliers greater than 15 standard deviations, which we suspected were
292 measured in error. For developing our final analytical datasets (see next section) we performed normalization within each plate but
293 performed a combined feature selection across all plates per analytical dataset using the same procedures described previously, which
294 resulted in 782 features. We applied the same pipeline uniformly across all plates. We did not detect large differences in variance that
295 could be attributed to well position and batch and therefore did not apply batch effect correction. Our full image data processing pipeline
296 is publicly available at <https://github.com/broadinstitute/profiling-resistance-mechanisms> (Way et al., 2023).

301 **Constructing the resistance signature**

302 After processing all images and forming normalized and feature selected profiles per well, we performed several additional analyses to
303 explore the results and discover a morphology profile of bortezomib resistance. We performed initial comparisons of morphological
304 profiles using Morpheus (<https://software.broadinstitute.org/morpheus>) to create similarity matrix heatmaps.

305
306 We aimed to discover a generalizable signature of bortezomib resistance from the normalized profiles. Our approach was to identify
307 features that were significantly different by resistance status and not significantly impacted by technical covariates. To do so, we
308 carefully constructed datasets for training and evaluating signature performance (Fig. 2-Supplement 8). To generate our training
309 dataset, we selected a set of six plates consisting of five wild-type and five bortezomib-resistant clones that we collected on three
310 different days, which showed high within-replicate reproducibility (data not shown). A seventh plate was held-out from signature
311 generation in order to analyze generalizability between plates (holdout dataset). We evaluated the signature in five scenarios: 1) clones
312 held-out on the same plates used to generate the training dataset (validation dataset, Fig. 2-Supplement 9 B), 2) wild-type parental cells
313 and clones with confirmed PSMB5 mutations known to confer resistance to bortezomib (test dataset, Fig. 2-Supplement 9 C) (Wacker
314 et al., 2012), 3) clones held-out on a separate plate (holdout dataset, Fig. 2-Supplement 9 D), 4) clones selected to be resistant to other
315 drugs (ixazomib and CB-5083, Fig. 4), and 5) bortezomib-resistant clones not included in the training dataset (Fig. 3). All cells on these
316 plates were incubated with 0.1% DMSO for either 4 or 13 hours.

317
318 Using data from the ten clones in our training dataset (20-21 replicates per clone, see Fig. 2-Supplement 8), we fit two linear models for
319 all 782 CellProfiler features (post normalization and feature selection) to discover features that varied strongly with technical variants
320 (batch, cell count, incubation time, or clone ID) and features that varied strongly with resistance status (wild-type or resistant). In the
321 first linear model, we quantified the per feature variance contribution of resistance status ($\beta_{\text{resistance status}}$), batch (β_{batch}), incubation time
322 ($\beta_{\text{incubation time}}$), and clone ($\beta_{\text{clone ID}}$) to each CellProfiler feature (Y_j) where ε is the error term:

$$324 \quad Y_j = \beta_{\text{intercept}} + \beta_{\text{resistance status}} X_{\text{resistance status}} + \beta_{\text{batch}} X_{\text{batch}} + \beta_{\text{incubation time}} X_{\text{incubation time}} + \beta_{\text{clone ID}} X_{\text{clone ID}} + \varepsilon$$

325
326 Fitting this model produced a goodness of fit R^2 value per feature and individual beta coefficients per covariate. Furthermore, we
327 calculated a Tukey's Honestly Significant Difference (Tukey's HSD) post hoc test per model to determine which specific categorical
328 covariate comparison contributed to a significant finding and to control for within-covariate-group multiple comparisons through a family-
329 wise error rate (FWER) adjustment that accounts for different within-group sizes (e.g. three different batches in the comparison, two
330 different resistance statuses, etc.)(Tukey, 1949).

331
332 Separately, we fit another linear model on continuous features to adjust for features that were significantly impacted by well confluence
333 ($\beta_{\text{cell count}}$) as it is expected that dense wells will impact certain morphology features, which we want to avoid in our resistance signature:

$$335 \quad Y_j = \beta_{\text{intercept}} + \beta_{\text{resistance status}} X_{\text{resistance status}} + \beta_{\text{cell count}} X_{\text{cell count}} + \varepsilon$$

336
337 By fitting these models, we quantified the variance contribution of four technical covariates (incubation time, batch, clone ID, and cell
338 count) and our biological variable of interest (resistance status), and, based on the first linear model, we have knowledge of which
339 specific group comparisons were significant in each category (via Tukey's HSD). We further refined the signature by filtering features
340 that did not pass a Bonferroni adjusted alpha threshold calculated across all 782 features ($0.05 / 782 = 6.4 \times 10^{-6}$).

341
342 We next applied a specific exclusion criterion to specifically isolate features that contributed to resistance status. We excluded features
343 that were significantly different across incubation times, batches, and cell counts. We also excluded features that were different within
344 clone type (features varying between two or more wild-type clones) to reduce the contribution of features that may mark generic inter-

345 cell line differences nonspecific to resistance status. This procedure resulted in a total of 45 features that were significantly different by
346 resistance status and not significantly impacted by any of the technical covariates we considered. Of the 45 features, 14 had higher
347 values in resistant clones and 31 had lower values in resistant clones (Fig. 2-Supplement 4).

349 **Applying the signature**

350 We used the *singscore* method (Foroutan et al., 2018) to characterize individual profiles of different cell lines as either bortezomib-
351 sensitive or bortezomib-resistant. *Singscore* is a rank-based method that was originally developed to analyze the direction and
352 significance of previously defined molecular signatures on transcriptomic data. The method calculates a two-part signature for each
353 direction list (14 up and 31 down) and calculates an internal rank per profile of how highly ranked and lowly ranked each of the up and
354 down features are, respectively. The method then adds the up and down rank scores to form a total *singscore* per sample, which
355 ranges between -1 and 1 and represents a rank-based normalized concordance score that can be directly compared across profiles
356 that may have been normalized differently. Therefore, the score is robust to outliers and different normalization procedures. In addition
357 to calculating the *singscore* per sample, we also calculated *singscore* with 1,000 random permutations, in which we randomly shuffled
358 feature rankings to derive a range in which a sample may be scored by chance.

359 **Signature evaluation**

360 We used several metrics to evaluate signature quality across five different evaluation scenarios (validation, test, holdout, other UPS-
361 targeting drugs, and clones not included in the training dataset). Because we are measuring a binary decision in a balanced dataset
362 (roughly the same amount of positive as negative classes), we used accuracy (total correct / total chances) to quantify performance.
363 We also calculated mean average precision using sci-kit learn, averaging over samples along the precision recall curve (Pedregosa et
364 al., 2011), which is a measure of separation between the two resistance classes (higher being more separation). We also calculated
365 receiver operating characteristic (ROC) curves and area under the ROC curve (AUROC) using sci-kit learn. AUROC compares the
366 ability to distinguish positive samples across signatures.

368 **AUTHOR CONTRIBUTIONS**

369 Conceptualization: MEK, AYB, SS, AEC, TMK, GPW
370 Data curation: MEK, AYB, DRS, BAC, GPW
371 Formal analysis: MEK, AYB, DRS, YH, GPW
372 Funding acquisition: AEC, TMK
373 Investigation: MEK, AYB, DRS, BAC, YH, SS, AEC, TMK, GPW
374 Methodology: MEK, AYB, DRS, GPW
375 Project administration: BAC, SS, AEC, TMK, GPW
376 Resources: SS, AEC, TMK
377 Software: DRS, BAC, YH, GPW
378 Supervision: BAC, SS, AEC, TMK, GPW
379 Validation: MEK, AYB, DRS, GPW
380 Writing - original draft: MEK, GPW
381 Writing - review and editing: MEK, AYB, DSR, BAC, YH, SS, AEC, TMK, GPW

383 **ACKNOWLEDGEMENTS**

384 The authors gratefully acknowledge funding from the Starr Cancer Consortium (112-0039 to TK and AEC), the National Institutes of
385 Health (NIH MIRA R35 GM122547 to AEC, NIH MIRA R35 GM130234 to TMK, NIH NRSA T32 GM066699 to MEK, NIH T32
386 GM115327 Chemistry-Biology Interface Training Grant to the Tri-Institutional PhD Program in Chemical Biology to AYB), and the
387 National Science Foundation (NSF GRFP 2019272977 to AYB).

389

390 REFERENCES

391 Barrio S, Stühmer T, Da-Viá M, Barrio-Garcia C, Lehners N, Besse A, Cuenca I, Garitano-Trojaola A, Fink S, Leich E, Chatterjee M,
392 Driessen C, Martinez-Lopez J, Rosenwald A, Beckmann R, Bargou RC, Braggio E, Stewart AK, Raab MS, Einsele H, Kortüm KM.
393 2019. Spectrum and functional validation of PSMB5 mutations in multiple myeloma. *Leukemia* **33**:447–456. doi:10.1038/s41375-
394 018-0216-8

395 Bray M-A, Singh S, Han H, Davis CT, Borgeson B, Hartland C, Kost-Alimova M, Gustafsdottir SM, Gibson CC, Carpenter AE. 2016.
396 Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. *Nat Protoc*
397 **11**:1757–1774. doi:10.1038/nprot.2016.105

398 Caicedo JC, Arevalo J, Piccioni F, Bray MA, Hartland CL, Wu X, Brooks AN, Berger AH, Boehm JS, Carpenter AE, Singh S. 2022. Cell
399 Painting predicts impact of lung cancer variants. *Mol Biol Cell* **33**. doi:10.1091/mbc.E21-11-0538

400 Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, Vasilevich AS, Barry JD, Bansal HS, Kraus O, Wawer M, Paavolainen
401 L, Herrmann MD, Rohban M, Hung J, Hennig H, Concannon J, Smith I, Clemons PA, Singh S, Rees P, Horvath P, Linington RG,
402 Carpenter AE. 2017. Data-analysis strategies for image-based cell profiling. *Nat Methods* **14**:849–863. doi:10.1038/nmeth.4397

403 Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP. 2011. Bortezomib as the first proteasome inhibitor anticancer drug: current status
404 and future perspectives. *Curr Cancer Drug Targets* **11**:239–253. doi:10.2174/156800911794519752

405 Cifci D, Foersch S, Kather JN. 2022. Artificial intelligence to identify genetic alterations in conventional histopathology. *J Pathol*
406 **257**:430–444. doi:10.1002/path.5898

407 Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. 2018. Single sample scoring of molecular phenotypes. *BMC
408 Bioinformatics* **19**:404. doi:10.1186/s12859-018-2435-4

409 Franke NE, Niewerth D, Assaraf YG, van Meerloo J, Vojtekova K, van Zantwijk CH, Zweegman S, Chan ET, Kirk CJ, Geerke DP,
410 Schimmer AD, Kaspers GJL, Jansen G, Cloos J. 2012. Impaired bortezomib binding to mutant β 5 subunit of the proteasome is the
411 underlying basis for bortezomib resistance in leukemia cells. *Leukemia* **26**:757–768. doi:10.1038/leu.2011.256

412 Garraway LA, Jänne PA. 2012. Circumventing cancer drug resistance in the era of personalized medicine. *Cancer Discov* **2**:214–226.
413 doi:10.1158/2159-8290.CD-12-0012

414 Glaab WE, Tindall KR. 1997. Mutation rate at the hprt locus in human cancer cell lines with specific mismatch repair-gene defects.
415 *Carcinogenesis* **18**:1–8. doi:10.1093/carcin/18.1.1

416 Gonzalez-Santamarta M, Quinet G, Reyes-Garau D, Sola B, Roué G, Rodriguez MS. 2020. Resistance to the Proteasome Inhibitors:
417 Lessons from Multiple Myeloma and Mantle Cell Lymphoma. *Adv Exp Med Biol* **1233**:153–174. doi:10.1007/978-3-030-38266-7_6

418 Gottesman MM, Lavi O, Hall MD, Gillet J-P. 2016. Toward a Better Understanding of the Complexity of Cancer Drug Resistance.
419 *Annual Review of Pharmacology and Toxicology*. doi:10.1146/annurev-pharmtox-010715-103111

420 Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. 2007. Understanding multiple myeloma pathogenesis in the bone
421 marrow to identify new therapeutic targets. *Nat Rev Cancer* **7**:585–598. doi:10.1038/nrc2189

422 Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC. 2001. The proteasome inhibitor PS-341
423 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. *Cancer Res* **61**:3071–3076.

424 Kapoor TM, Miller RM. 2017. Leveraging Chemotype-Specific Resistance for Drug Target Identification and Chemical Biology. *Trends
425 Pharmacol Sci* **38**:1100–1109. doi:10.1016/j.tips.2017.09.003

426 Kasap C, Elemento O, Kapoor TM. 2014. DrugTargetSeqR: a genomics- and CRISPR-Cas9-based method to analyze drug targets. *Nat
427 Chem Biol* **10**:626–628. doi:10.1038/nchembio.1551

428 Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M, Berger A, Yu J, Yang Y, Hales P, Bruzzese F, Liu J, Blank J, Garcia K, Tsu
429 C, Dick L, Fleming P, Yu L, Manfredi M, Rolfe M, Bolen J. 2010. Evaluation of the proteasome inhibitor MLN9708 in preclinical
430 models of human cancer. *Cancer Res* **70**:1970–1980. doi:10.1158/0008-5472.CAN-09-2766

431 Lee SH, Jang H-J. 2022. Deep learning-based prediction of molecular cancer biomarkers from tissue slides: A new tool for precision

432 oncology. *Clin Mol Hepatol* **28**:754–772. doi:10.3350/cmh.2021.0394

433 Liu LF. 1989. DNA topoisomerase poisons as antitumor drugs. *Annu Rev Biochem* **58**:351–375.
434 doi:10.1146/annurev.bi.58.070189.002031

435 Ljosa V, Caie PD, Ter Horst R, Sokolnicki KL, Jenkins EL, Daya S, Roberts ME, Jones TR, Singh S, Genovesio A, Clemons PA,
436 Carragher NO, Carpenter AE. 2013. Comparison of methods for image-based profiling of cellular morphological responses to
437 small-molecule treatment. *J Biomol Screen* **18**:1321–1329. doi:10.1177/1087057113503553

438 McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, Wiegraebe
439 W, Singh S, Becker T, Caicedo JC, Carpenter AE. 2018. CellProfiler 3.0: Next-generation image processing for biology. *PLoS Biol*
440 **16**:e2005970. doi:10.1371/journal.pbio.2005970

441 Mitsiades CS, Mitsiades N, Munshi NC, Anderson KC. 2004. Focus on multiple myeloma. *Cancer Cell* **6**:439–444.
442 doi:10.1016/j.ccr.2004.10.020

443 O'Brien J, Wilson I, Orton T, Pognan F. 2000. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of
444 mammalian cell cytotoxicity. *Eur J Biochem* **267**:5421–5426. doi:10.1046/j.1432-1327.2000.01606.x

445 Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR, Scheffer GL, Debiprasad K, Vojtekova K, Lemos C, van
446 der Heijden JW, Ylstra B, Peters GJ, Kaspers GL, Dijkmans BAC, Schepers RJ, Jansen G. 2008. Molecular basis of bortezomib
447 resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. *Blood* **112**:2489–2499.
448 doi:10.1182/blood-2007-08-104950

449 Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD.
450 1994. Mutation of a mutL homolog in hereditary colon cancer. *Science* **263**:1625–1629. doi:10.1126/science.8128251

451 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J,
452 Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. 2011. Scikit-learn: Machine Learning in Python. *J Mach Learn Res*
453 **12**:2825–2830.

454 Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ. 2004. Multidimensional drug profiling by automated microscopy.
455 *Science* **306**:1194–1198. doi:10.1126/science.1100709

456 Pisa R, Kapoor TM. 2020. Chemical strategies to overcome resistance against targeted anticancer therapeutics. *Nat Chem Biol*
457 **16**:817–825. doi:10.1038/s41589-020-0596-8

458 Rohban MH, Singh S, Wu X, Berthet JB, Bray M-A, Shrestha Y, Varelas X, Boehm JS, Carpenter AE. 2017. Systematic morphological
459 profiling of human gene and allele function via Cell Painting. *eLife* **6**. doi:10.7554/eLife.24060

460 Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A. 2021. CellProfiler 4: improvements in speed, utility
461 and usability. *BMC Bioinformatics* **22**:433. doi:10.1186/s12859-021-04344-9

462 Teraishi F, Wu S, Zhang L, Guo W, Davis JJ, Dong F, Fang B. 2005. Identification of a novel synthetic thiazolidin compound capable of
463 inducing c-Jun NH₂-terminal kinase-dependent apoptosis in human colon cancer cells. *Cancer Res* **65**:6380–6387.
464 doi:10.1158/0008-5472.CAN-05-0575

465 Tukey JW. 1949. Comparing individual means in the analysis of variance. *Biometrics* **5**:99–114. doi:10.2307/3001913

466 Umar A, Boyer JC, Thomas DC, Nguyen DC, Risinger JI, Boyd J, Ionov Y, Perucho M, Kunkel TA. 1994. Defective mismatch repair in
467 extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability. *J Biol Chem* **269**:14367–14370.
468 doi:10.1016/s0021-9258(17)36630-9

469 Vasan N, Baselga J, Hyman DM. 2019. A view on drug resistance in cancer. *Nature* **575**:299–309. doi:10.1038/s41586-019-1730-1

470 Vincenz L, Jäger R, O'Dwyer M, Samali A. 2013. Endoplasmic reticulum stress and the unfolded protein response: targeting the
471 Achilles heel of multiple myeloma. *Mol Cancer Ther* **12**:831–843. doi:10.1158/1535-7163.MCT-12-0782

472 Wacker SA, Houghtaling BR, Elemento O, Kapoor TM. 2012. Using transcriptome sequencing to identify mechanisms of drug action
473 and resistance. *Nat Chem Biol* **8**:235–237. doi:10.1038/nchembio.779

474 Way G. 2020. Blocklist Features - Cell Profiler. doi:10.6084/m9.figshare.10255811.v3

475 Way G, Han Y, Stirling D, Singh S. 2023. broadinstitute/profiling-resistance-mechanisms: Analysis for preprint.

476 doi:10.5281/zenodo.7803787

477 Way GP, Natoli T, Adeboye A, Litichevskiy L, Yang A, Lu X, Caicedo JC, Cimini BA, Karhohs K, Logan DJ, Rohban MH, Kost-Alimova
478 M, Hartland K, Bornholdt M, Chandrasekaran SN, Haghghi M, Weisbart E, Singh S, Subramanian A, Carpenter AE. 2022.
479 Morphology and gene expression profiling provide complementary information for mapping cell state. *Cell Systems* **13**:911–923.e9.
480 doi:10.1016/j.cels.2022.10.001

481 Wheler J, Lee JJ, Kurzrock R. 2014. Unique molecular landscapes in cancer: implications for individualized, curated drug combinations.
482 *Cancer Res* **74**:7181–7184. doi:10.1158/0008-5472.CAN-14-2329

483