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ABSTRACT 18 

 Drug resistance is a challenge in anticancer therapy, particularly with targeted therapeutics and cytotoxic compounds. In many 19 

cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-20 

independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of 21 

its cause. We hypothesized that cell morphology could provide an unbiased readout of drug sensitivity prior to treatment. We therefore 22 

isolated clonal cell lines that were either sensitive or resistant to bortezomib, a well-characterized proteasome inhibitor and anticancer 23 

drug to which many cancer cells possess intrinsic resistance. We then measured high-dimensional single-cell morphology profiles using 24 

Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features 25 

typically different between resistant and sensitive clones. These features were compiled to generate a morphological signature of 26 

bortezomib resistance, which correctly predicted the bortezomib treatment response in seven of ten cell lines not included in the training 27 

dataset. This signature of resistance was specific to bortezomib over other drugs targeting the ubiquitin-proteasome system. Our results 28 

provide evidence that intrinsic morphological features of drug resistance exist and establish a framework for their identification.  29 

 30 

INTRODUCTION 31 

 Targeted cancer therapies are often thwarted by drug resistance (Garraway and Jänne, 2012; Pisa and Kapoor, 2020). Resistance 32 

is complex and can be categorized as acquired, manifesting in the context of prolonged treatment, or intrinsic, pre-existing in the cancer 33 

cell population (Gottesman et al., 2016). Drug resistance often results in failed therapies and cancer relapse, which makes determining 34 

the drug sensitivity of populations of cancer cells requisite for timely and effective treatment (Vasan et al., 2019). However, we currently 35 

lack unbiased methods of identifying intrinsic drug resistance in cells prior to treatment. 36 

 Bortezomib is an anticancer drug commonly used to treat multiple myeloma and nearly half of multiple myeloma patients show no 37 

initial response to bortezomib therapy, indicating intrinsic resistance (Chen et al., 2011; Gonzalez-Santamarta et al., 2020; Mitsiades et 38 

al., 2004). Malignant plasma cells in multiple myeloma depend on the timely degradation of proteins by the proteasome to prevent 39 

apoptosis (Gonzalez-Santamarta et al., 2020), making proteasome inhibitors such as bortezomib a standard of care for multiple 40 

myeloma (Hideshima et al., 2001; Vincenz et al., 2013). However, multiple myeloma is invariably fatal due to the eventual development 41 

of drug resistance (Hideshima et al., 2007).  42 

 Bortezomib resistance can be attributed to targeted mechanisms such as mutations in the bortezomib-binding pocket of the 43 

targeted proteasome subunit (PSMB5) and overexpression of proteasome subunits (Barrio et al., 2019; Franke et al., 2012; Oerlemans  44 
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et al., 2008) as well as non-specific mechanisms, such as upregulation of prosurvival or anti-apoptotic pathways and enhanced cell 45 

adhesion to the extracellular matrix (Gonzalez-Santamarta et al., 2020; Hideshima et al., 2007). A priori knowledge of tumor cells’ 46 

susceptibility to candidate therapeutics could aid in identifying effective treatment options, resulting in fewer relapses and failed 47 

treatments due to intrinsic resistance. However, current methods for determining resistance status depend on viability assays, which 48 

take days to perform, or sequencing, which may be limited in its usefulness without knowledge of the full spectrum of resistance-49 

conferring mutations (Wheler et al., 2014) or knowing specific mutations or indels in the target that suppress drug activity (Kapoor and 50 

Miller, 2017). Alternative methods for determining tumor cell susceptibility to therapy are therefore desirable.  51 

 

Figure 1. Experimental design for using Cell Painting to examine morphological profiles of drug-resistant cell lines. (A) 

Graphic of the experimental workflow for isolating and characterizing drug-resistant cell lines and then performing Cell Painting to 

search for morphological features of drug sensitivity. (B) One representative field of view of cells labeled with six fluorescent dyes and 

captured in five channels used for morphological profiling with Cell Painting. Each image is 230.43 x 230.43 μm.  
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 A growing literature suggests that specific genetic alterations, treatment response, and prognosis can be predicted from 52 

conventional hematoxylin and eosin tissue slides using machine learning (Cifci et al., 2022; Lee and Jang, 2022), indicating that image 53 

data holds promise for predicting drug sensitivity. High-content screening, which uses cell-based automated microscopy to capture 54 

information-rich images, has successfully categorized small molecule inhibitors by their mechanisms and targeted pathways (Ljosa et 55 

al., 2013; Perlman et al., 2004) and shown a relationship between morphological profiles and genetic perturbations (Rohban et al., 56 

2017), including specific mutations associated with lung cancer when in an artificial overexpression system (Caicedo et al., 2022). This 57 

screening method often uses high-throughput microscopy that generates a large amount of image data, from which thousands of 58 

quantitative, single-cell morphological features can be extracted to characterize signals that could not be discovered using low-59 

throughput methods and would otherwise be impossible to study by eye. However, this has not been used to examine the features of 60 

drug resistance in untreated cells. 61 

 Here, we used Cell Painting (Bray et al., 2016), a multiplex, fluorescence microscopy assay that labels eight cellular components 62 

using six stains imaged in five fluorescent channels, as an unbiased method to characterize the morphological differences between 63 

untreated bortezomib-resistant and -sensitive cancer cell lines. We applied a reproducible imaging- and computation-based profiling 64 

pipeline to process the images and identify a high-dimensional cell morphology signature to predict bortezomib resistance that we 65 

evaluated using machine learning best practices. This morphological signature correctly predicted the bortezomib treatment response in 66 

seven out of ten cell lines not included in the training data and was highly specific; the signature had limited ability to identify cells 67 

resistant to other drugs targeting the ubiquitin-proteasome system (UPS) such as ixazomib, another proteasome inhibitor, or CB-5083, 68 

which targets p97 upstream of the proteasome. These results suggest that this method can specifically identify bortezomib-resistant cell 69 

lines better than random chance and establish a framework for identifying morphological signatures of drug resistance. The ability to 70 

identify drug-resistant cell lines based on intrinsic morphological features supports using microscopy to guide therapy and provides a 71 

valuable orthogonal method for characterizing drug resistance. 72 

 73 

RESULTS 74 

Isolating and capturing Cell Painting profiles for HCT116-based bortezomib-resistant clones 75 

 We first isolated and characterized drug-resistant cell lines (Fig. 1 A). We based our method on our previous work, growing a 76 

parental polyclonal cell line in the presence of the desired drug to isolate drug-resistant clones (Kasap et al., 2014; Wacker et al., 2012). 77 

To efficiently isolate drug-resistant clones, we used HCT116 parental cells that have low levels of multidrug resistance pumps and are 78 

mismatch repair deficient, providing a genetically heterogeneous polyclonal population of cells (Papadopoulos et al., 1994; Teraishi et 79 

al., 2005; Umar et al., 1994). To approximate the conditions of intrinsic resistance, we cultured these polyclonal parental HCT116 cells 80 

in a high enough concentration of a drug of interest to kill the majority of cells within days leaving a few isolated, surviving single cells in 81 

a time frame consistent with these cells harboring intrinsic resistance (Wacker et al., 2012).  82 

 To determine the appropriate drug concentrations to use in order to produce only a few surviving drug-resistant cells, we performed 83 

proliferation assays on HCT116 parental cells with our drugs of interest: bortezomib (proteasome inhibitor), ixazomib (proteasome 84 

inhibitor), or CB-5083 (p97 inhibitor) (Fig. 1-Supplement 1 A-D). Although our proliferation assays could not distinguish between cell 85 

death and cytostatic effects, we qualitatively confirmed cell death using brightfield microscopy. We then treated parental HCT116 cells 86 

with drug concentrations at and around the calculated LD90 for each of these small molecules to isolate drug-resistant single cells and 87 

expanded them into clonal cell lines for further experiments (Wacker et al., 2012). In addition to these drug-resistant clonal cell lines, we 88 

isolated wild-type clones by dilution of the parental line and acquired two previously isolated bortezomib-resistant cell lines (BZ clones A 89 

and E) with mutations in PSMB5 confirmed by RNA sequencing (Fig. 1-Supplement 1 E) (Wacker et al., 2012). 90 

 To screen for multidrug resistance, which might convolute any specific signature of bortezomib resistance, we measured 91 

proliferation of our clones in the presence of drugs that target disparate pathways: bortezomib (a proteasome inhibitor), taxol (a 92 

microtubule poison), and mitoxantrone (a topoisomerase inhibitor) (Liu, 1989). As multidrug resistance leads to non-specific reductions 93 

in drug sensitivity, due to drug efflux for example (Gottesman et al., 2016), we expected multidrug resistant cells to be less sensitive to 94 

bortezomib, taxol, and mitoxantrone. 95 
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Figure 2. Cell morphology reveals a signature of bortezomib resistance. (A) Representative fixed fluorescence microscopy 

images of two bortezomib-sensitive (WT02 and WT03) and two bortezomib-resistant (BZ02 and BZ03) clones stained and imaged as 

per the Cell Painting protocol. Channels are labeled as mito (mitochondria; magenta), AGP (actin, golgi, plasma membrane; yellow), 

RNA (ribonucleic acid; green), ER (endoplasmic reticulum; orange), and DNA (deoxyribonucleic acid; blue). See Figure 2-

Supplement 1 for single channel images. Scale bars, 50 μm. (B) Volcano plot of the variability of morphological features (β) by 

resistance status. Y-axis -log10p values are from Tukey’s HSD (see Methods). Red circles are features included in the final signature 

of resistance and gray circles are features excluded from the final signature. Features above the red dashed line (-log10[0.05/number 

of unique features]) were considered significantly varying and those that had not been excluded as technical variables (Fig. 2-

Supplement 3) were included in the signature of bortezomib resistance. (C)-(E) Evaluations of the Bortezomib Signature on the 

training (magenta), validation (orange), test (teal), and holdout (purple) datasets. Bar graphs showing the (C) accuracy and (D) 

average precision of the Bortezomib Signature when characterizing the resistance status of cell lines. Symbols and error bars are the 

means of the shuffled data ± SD. (E) ROC curves for the performance of the Bortezomib Signature on the indicated dataset (solid 

line) or its shuffled counterpart (dashed line). Colored points are the corresponding false positive and true positive rates at the 

absolute minimum thresholds for each respective dataset. Black dotted line is the identity line where false positive rate = true positive 

rate. AUROC values reported for data and shuffled data. See Fig. 2-Supplement 8 for breakdown of profiles and experiments per 

dataset.  

 

 When we treated our cell lines with bortezomib, only the cell lines isolated following high-dose bortezomib treatment (BZ01-10 and 96 

BZ clones A and E) had reduced bortezomib sensitivity, with LD50s ranging ~2.8- to ~9-fold that of the wild-type parental cell line (Fig. 97 

1-Supplement 2 B). In contrast, the wild-type clones (WT01-05, 10, and 12-15) had LD50s ranging from ~0.7- to ~1.2-fold that of the 98 

parental cell line (Fig. 1-Supplement 2 A). Wild-type clones and bortezomib-resistant cell lines treated with taxol had LD50s ranging 99 

from ~0.6- to ~1.9-fold that of the parental cell line (Fig. 1-Supplement 2 C and D). Finally, treating cells with mitoxantrone, we found 100 

that the wild-type clones had LD50s ~0.6- to ~3.1-fold that of the parental line (Fig. 1-Supplement 2 E) and most of the bortezomib-101 

resistant clones had similar LD50s (~0.7- to ~2.7-fold that of the parental line) (Fig. 1-Supplement 2 F). The exception was BZ06, which 102 

had an LD50 nearly 14-fold higher than the wild-type parental line. Since BZ06 did not have reduced sensitivity to taxol (~0.6-fold that 103 

of the parental line) we do not suspect multidrug resistance to be the source of this mitoxantrone resistance. Together, these data 104 

indicate that while there is variability in the responses to different treatments, none of the tested cell lines had the expected features of 105 

multidrug resistance.  106 

 We next applied the Cell Painting assay to these drug-sensitive and -resistant cell lines. Cell Painting captures signal in five 107 

imaging channels from six fluorescent dyes that stain cells for eight cellular components including mitochondria, actin, Golgi, plasma 108 

membrane, cytoplasmic RNA, nucleoli, endoplasmic reticulum, and DNA (Fig. 1 B) (Bray et al., 2016). With these images, we used 109 

CellProfiler (Stirling et al., 2021) to extract single-cell morphological features from individual cells. The signal from each of the five 110 

channels was analyzed in the nucleus, cytoplasm, and total cell and characterized based on features (object parameters) such as 111 

signal intensity, shape of the object, texture of the staining pattern, etc. yielding a total of ~3500 features. These cellular features were 112 

combined and analyzed on a per well basis and then compared across cell lines and experimental conditions to determine whether 113 

morphological features of drug sensitivity could be reliably detected in untreated cells. 114 

of the parental line) we do not suspect multidrug resistance to be the source of this mitoxantrone resistance. Together, these data 115 

indicate that while there is variability in the responses to different treatments, none of the tested cell lines had the expected features of 116 

multidrug resistance.  117 

 We next applied the Cell Painting assay to these drug-sensitive and -resistant cell lines. Cell Painting captures signal in five 118 

imaging channels from six fluorescent dyes that stain cells for eight cellular components including mitochondria, actin, Golgi, plasma 119 

membrane, cytoplasmic RNA, nucleoli, endoplasmic reticulum, and DNA (Fig. 1 B) (Bray et al., 2016). With these images, we used 120 

CellProfiler (Stirling et al., 2021) to extract single-cell morphological features from individual cells. The signal from each of the five 121 

channels was analyzed in the nucleus, cytoplasm, and total cell and characterized based on features (object parameters) such as 122 
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signal intensity, shape of the object, texture of the staining pattern, etc. yielding a total of ~3500 features. These cellular features were 123 

combined and analyzed on a per well basis and then compared across cell lines and experimental conditions to determine whether 124 

morphological features of drug sensitivity could be reliably detected in untreated cells. 125 

 126 

Morphology signature of bortezomib resistance distinguishes multiple sensitive versus resistant clones 127 

 We first examined whether there were any clear qualitative morphological differences between wild-type and bortezomib-resistant 128 

cell lines and chose the wild-type polyclonal parental cell line, wild-type clones WT01-WT05, and bortezomib-resistant clones A, E, and 129 

BZ01-BZ05 for these initial studies. We treated cells with 0.1% DMSO (to allow for comparison with future experiments using drug-130 

treated cells) and performed Cell Painting, staining fixed HCT116 cells and imaging as per the published protocol (Bray et al., 2016). 131 

Imaging revealed cellular heterogeneity within each cell line as well as between cell lines with similar bortezomib sensitivities (Fig. 2 A 132 

and Fig. 2-Supplement 1). This heterogeneity obscured any potential differences between bortezomib-sensitive and -resistant cell lines 133 

and prevented us from qualitatively distinguishing wild-type from bortezomib-resistant clones by eye, confirming the need for high-134 

content quantitative analysis.  135 

 We then pre-processed profiles to remove low-variance and highly correlated features, and population-averaged single cell 136 

measurements at the well level (see Methods). The morphological profiles of wild-type and bortezomib-resistant cells did not cleanly 137 

distinguish cell lines based on bortezomib sensitivity (Fig. 2-Supplement 2 A). This was the case even for a short, 4-hour treatment with 138 

7 nM bortezomib (Fig. 2-Supplement 2 B), further indicating the subtlety of any morphological difference between bortezomib-sensitive 139 

and -resistant cells and the need for further feature refinement. 140 

 Each observed morphological measurement results from a combination of both technical and biological variables. It is therefore 141 

important to control and test for technical variables as these can confound subtle signatures that would otherwise dominate the 142 

morphological profiles of the cells being analyzed. Using wild-type clones WT01-05 and bortezomib-resistant clones BZ01-05 to 143 

quantify and reduce the impact of technical variables, we fit a linear model to each morphological feature adjusting for technical 144 

variables (experimental run/batch, incubation time, cell count/density, clone ID) and biological variables (resistance status) (see 145 

Methods). We then discarded morphological features with variances that correlated with experimental run (batch), incubation time (4 or 146 

13 hours with 0.1% DMSO), cell density, or those features that varied between two or more pairs of wild-type clones (clone ID) (Fig. 2-147 

Supplement 3 A-E). Of the remaining morphological features, we only considered those that varied based on the resistance status of a 148 

cell line (Fig. 2 B). This resulted in 45 morphological features that significantly contributed to cells’ bortezomib drug sensitivity (Fig. 2-149 

Supplement 4). We used these 45 features to compute a resistance score or “Bortezomib Signature” for each cell line based on the 150 

direction-sensitive ranking method for phenotype analysis, singscore (Foroutan et al., 2018). With the exception of some texture-based 151 

features, the Bortezomib Signature features were largely independent, displaying low pairwise correlation, which may implicate a more 152 

nuanced phenotype of drug resistance and explain why detecting resistance by eye was so challenging (Fig. 2-Supplement 5). 153 

 Anticipating well location as a possible technical artifact, we plated our cells in a repeating serpentine pattern, ensuring that each 154 

cell line would be imaged in multiple locations across each plate (Fig. 2-Supplement 6 A). We found that the pattern of Bortezomib 155 

Signatures corresponded to the cell identity plate layout (Fig. 2-Supplement 6 B), indicating that the well position for each cell line was 156 

not strongly contributing to its Bortezomib Signature. In addition, we found that the Bortezomib Signature correlated with resistance 157 

status of cell lines and not technical variables (Fig. 2-Supplement 7). These data suggest that our analysis pipeline and signature 158 

building process minimized technical artifacts. 159 

 To evaluate the performance of our Bortezomib Signature, we used machine learning best practices, separating our data into 160 

training, validation, test, and holdout datasets (Fig. 2-Supplement 8; see Methods). The data used to create the Bortezomib Signature, 161 

which included well-based morphological profiles from clones WT01-05 and BZ01-05, was designated as the training dataset, which we 162 

used to build the Bortezomib Signature initially. The validation dataset was composed of profiles from clones WT01-05 and BZ01-05 163 

that were not used to generate the Bortezomib Signature but were collected on the same plates as the profiles used for the training 164 

dataset. The test dataset was composed of profiles from the wild-type parental cell line and bortezomib-resistant clones A and E (none 165 

of these lines were included in training), and these profiles were also collected on the same plates as those used for the training  166 
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 167 

 

Figure 3. Signature of bortezomib resistance is specific to drug and pathway. (A) ROC curves for ixazomib-resistant (magenta) 

and CB-5083-resistant (blue) experimental data. Colored solid lines are the actual data while colored dashed lines are the shuffled 

data for each set of clones. Colored points are the corresponding false positive and true positive rates at the absolute minimum 

thresholds for each respective cell type. Black dotted line is the identity line where false positive rate = true positive rate. AUROC 

reported for the data and shuffled data. Box plots of Bortezomib Signatures for (B) ixazomib-resistant and wild-type cell lines (n = 18 

profiles, 3 independent experiments) and (C) CB-5083-resistant and wild-type cell lines (n = 24 profiles, 4 independent experiments). 

Plots show individual points, range (error bars), 25th and 75th percentiles (box boundaries), and median. Dashed vertical black line 

is Bortezomib Signature = 0, dashed vertical red lines are the 95% confidence interval for Bortezomib Signatures of 1000 random 

permutations of the data. 
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dataset. The holdout dataset was a separate plate and contained wild-type parental cells, clones WT01-05, and bortezomib-resistant 168 

clones A, E, and BZ01-05. These datasets allowed us to test generalizability across clones and plates for the trained Bortezomib 169 

Signature. 170 

 We found the Bortezomib Signature could predict whether a cell line was bortezomib-resistant or bortezomib-sensitive (Fig. 2 171 

C and D and Fig. 2-Supplement 9 A-D). We called the prediction bortezomib-resistant if the Bortezomib Signature was greater than 172 

zero and bortezomib-sensitive for a Bortezomib Signature less than zero. In the training dataset, the Bortezomib Signature correctly 173 

characterized cell lines as either sensitive or resistant to bortezomib 88% of the time with an average precision of 81%. The signature 174 

performed similarly well in the validation dataset (wells not included in the training dataset), with an accuracy of 92% and an average 175 

precision of 89%, as would be expected given that the validation dataset included the same clones and same plates used for the 176 

training dataset. In the test dataset, composed solely of wild-type parental cells and bortezomib-resistant clones A and E, the 177 

Bortezomib Signature had an accuracy of 80% and an average precision of 68%. Similarly, in the holdout dataset the Bortezomib 178 

Signature had an accuracy of 78% and an average precision of 69%. Although the Bortezomib Signature did not perform as well in the 179 

test and holdout datasets as it did in the training and validation datasets, this was expected given that the test dataset included the 180 

polyclonal wild-type parental cell line and two previously isolated bortezomib-resistant clones while the holdout dataset was collected on 181 

a single, unique plate. However, the Bortezomib Signature performed better than random chance in all testing conditions, as 182 

demonstrated by comparison with the mean values for the randomly shuffled data, and as reflected in receiver operating characteristic 183 

(ROC) curves, which describe the classification trade-off between true positive and false positive rates in predicting bortezomib-184 

resistance (Fig. 2 E). 185 

 186 

Bortezomib Signature is specific to bortezomib over other ubiquitin-proteasome system inhibitors 187 

 We next tested whether the Bortezomib Signature is specific to the drug bortezomib or more broadly to the UPS. To test this, we 188 

performed Cell Painting on HCT116 cell lines that were resistant to either ixazomib (another proteasome inhibitor that targets the 189 

PSMB5 subunit) or CB-5083 (a p97 inhibitor that acts upstream of the proteasome). If our Bortezomib Signature was a general 190 

signature of UPS-targeting drug resistance, we would expect our signature to perform equally well at characterizing the drug sensitivity 191 

of bortezomib-, ixazomib-, and CB-5083-resistant cell lines. Our Bortezomib Signature performed better than chance at identifying 192 

ixazomib-resistant and CB-5083-resistant cell lines (Fig. 3 A), correctly identifying four of five ixazomib-resistant clones (Fig. 3 B) and 193 

three of five CB-5083-resistant clones (Fig. 3 C). However, the areas under the ROC curves for these clones (0.63 and 0.60, 194 

respectively) were lower than those observed for any of our bortezomib-resistant datasets and many of these Bortezomib Signatures, 195 

particularly those for CB-5083-resistant clones, landed within the range of randomly permuted data. These results suggest that our 196 

Bortezomib Signature is not a general signature of UPS-targeting and is relatively specific to bortezomib or the proteasome.   197 

 198 

Bortezomib Signature characterizes bortezomib sensitivity of cell lines not included in the training dataset 199 

 To test whether our Bortezomib Signature could correctly characterize the bortezomib sensitivity of cell lines not included in the 200 

training dataset, we imaged an entirely new set of wild-type (WT10, WT12-WT15) and bortezomib-resistant clones (BZ06-BZ10) using 201 

the Cell Painting protocol. Overall, the Bortezomib Signature performed well, with an AUROC of 0.75, compared to 0.55 for the shuffled 202 

data (Fig. 4 A). Our Bortezomib Signature correctly characterized the bortezomib sensitivity of our wild-type bortezomib-sensitive 203 

parental line and our bortezomib-resistant clones A and E, which we included as controls (Fig. 4 B), as well as four of five bortezomib-204 

resistant clones and three of five wild-type clones not included in the training dataset (Fig. 4 C). In addition, the majority of these 205 

Bortezomib Signatures landed outside the range of randomly permuted data. These results indicate the drug-specificity of our signature 206 

and suggest that this Bortezomib Signature has the potential to identify bortezomib-resistant cell lines based on the intrinsic 207 

morphological features of untreated cells. 208 
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Figure 4. Bortezomib Signature correctly predicts bortezomib sensitivity of cell lines not included in the training dataset. 

(A) ROC curve for the performance of the Bortezomib Signature on the cell lines in (B) and (C) (solid line) and shuffled data (dashed 

line). Colored point is the corresponding false positive and true positive rate at the absolute minimum threshold. Black dashed line is 

the identity line where false positive rate = true positive rate. AUROC reported for the data and shuffled data. (B) Box plots of 

Bortezomib Signatures for bortezomib-resistant clones A and E (n = 16 profiles each) and wild-type parental cells (n = 48 profiles). 

(C) Box plots of Bortezomib Signatures for wild-type clones WT10, WT12-15 (n = 16 profiles each) and bortezomib-resistant clones 

BZ06-BZ10 (n = 8 profiles each). Plots show individual points, range (error bars), 25th and 75th percentiles (box boundaries), and 

median. Dashed vertical black line is Bortezomib Signature = 0, dashed vertical red lines are the 95% confidence interval for 

Bortezomib Signatures of 1000 random permutations of the data. 

 

DISCUSSION 209 

 We used Cell Painting, a high-throughput and high-content image acquisition and analysis assay, as a target-independent method 210 

to capture the morphological profiles of untreated cells that were either sensitive or resistant to the ubiquitin-proteasome system (UPS)-211 

targeting anticancer drug, bortezomib. After processing profiles to reduce the impact of technical variables, we generated a signature of 212 

bortezomib resistance and characterized the performance of this signature using machine learning best practices. This Bortezomib 213 

Signature correctly predicted the bortezomib treatment response of seven out of ten cell lines not included in the training dataset and 214 

was specific to the drug under investigation, in this case bortezomib, even as compared to cells that were resistant to other drugs 215 
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targeting the UPS. Our work demonstrates that there are intrinsic morphological features of drug resistance in cells that can be 216 

identified using Cell Painting and provides a reproducible pipeline for generating morphological signatures of drug resistance. 217 

 The Bortezomib Signature’s performance was not perfect; it mischaracterized three clones not included in the training dataset. 218 

Interestingly, one of the misidentified clones (BZ06) had reduced sensitivity to mitoxantrone as well as bortezomib. Given the 219 

considerable genetic heterogeneity in this mismatch repair-deficient HCT116 cell line (Glaab and Tindall, 1997; Umar et al., 1994), it is 220 

possible that these mischaracterized cell lines have orthogonal mechanisms of resistance or unrelated mutations contributing to their 221 

morphological profiles. Targeted sequencing of the PSMB5 proteasome subunit in bortezomib-resistant clones may yield clues to the 222 

origins of these misidentifications, as multiple mutations have been identified in bortezomib-resistant cell lines (Wacker et al., 2012). 223 

Determining the underlying reason for the misidentification of wild-type cell lines would require more comprehensive sequencing.  224 

 Our Bortezomib Signature performed better at identifying bortezomib-resistant cell lines compared to ixazomib-resistant cell lines, 225 

and better at identifying ixazomib-resistant cell lines compared to CB-5083-resistant cell lines. All three drugs broadly target the UPS, 226 

however bortezomib and ixazomib both target the same subunit of the proteasome, albeit with different potentially non-overlapping 227 

spectrums of off-targets (Kupperman et al., 2010). Our data therefore suggest that the Bortezomib Signature is specific to the drug 228 

bortezomib, and not proteasome inhibition broadly or simply a general signature of UPS-targeting drug resistance. 229 

 This work has shown potential for morphological profiling with Cell Painting to characterize drug sensitivity in untreated cells, 230 

having generated a robust signature of resistance to bortezomib, a drug with a high failure rate in treating cancer. Our results indicate 231 

that different mechanisms of bortezomib resistance may be generating distinct morphological profiles; with larger and broader training 232 

data, it may be possible to identify signatures for multiple mechanisms of bortezomib resistance as well as signatures of resistance to 233 

other drugs. An important step will be determining whether this method can be extended to patient samples where identifying intrinsic 234 

drug resistance in cells prior to treatment has the potential to improve targeted cancer therapy. We expect that further refinement might 235 

develop Cell Painting as a tool for identifying drug-resistant cells, perhaps even guiding therapeutic strategies to overcome intrinsic 236 

resistance.  237 

 238 

MATERIALS AND METHODS 239 

Cell culture 240 

HCT116 cells (CCL-247; ATCC), also referred to as HCT116 wild-type parental cells, were maintained in McCoy’s 5A Medium (Gibco) 241 

supplemented with 10% (v/v) FBS (Sigma) and cultured at 5% CO2 and 37°C. Bortezomib-resistant, ixazomib-resistant, and CB-5083-242 

resistant clonal cell lines were isolated as previously described (Wacker et al., 2012). Briefly, cells were plated in 150mm dishes and 243 

grown in the presence of approximately the LD90 of the desired drug until the majority of cells died. The locations of single surviving 244 

cells were marked and the colonies that expanded were isolated using cloning rings. HCT116 wild-type clonal cell lines were isolated by 245 

dilution into 96-well plates and wells containing single cells that expanded into colonies were selected. Bortezomib-resistant clones A 246 

and E were provided by the Kapoor laboratory having been previously published (Wacker et al., 2012). 247 

 248 

Proliferation assays 249 

Cell proliferation was evaluated using an Alamar Blue assay (O’Brien et al., 2000). Briefly, cell lines were plated in duplicate or triplicate 250 

in sterile 96-well Clear Microplates (Falcon) under described culture conditions, with 1000 cells in 100 μL per well and allowed to 251 

adhere overnight. After cells attached to the plate, 50 μL of media containing drug was added to each well. The final DMSO 252 

concentration was 0.1% for all wells, including three wells with media only as background measurements. Plates were incubated for 72 253 

hours at 5% CO2 and 37°C before adding Alamar Blue (resazurin sodium salt, final concentration 50 μM). Cells were incubated with 254 

Alamar Blue for 3-4 hours and then imaged with a Synergy Neo plate reader using excitation: 550 nm and emission: 590 nm (Agilent). 255 

The average plate background (media only with 0.1% DMSO) was subtracted from the average fluorescence for each condition and the 256 

resulting value was normalized by dividing by the background-subtracted value for each condition’s control (cells treated with 0.1% 257 

DMSO). With the data from our proliferation assays, we calculated the median lethal dose (LD50) for each of our drugs of interest by 258 
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fitting data of normalized growth vs. log[drug concentration] to a sigmoidal dose-response curve using GraphPad Prism (v.9.2.0) (Fig. 1-259 

Supplement 1 D) and then determined the dose at which 90% of cells would be expected to die (LD90). 260 

 261 

Cell Painting 262 

High-throughput imaging was performed according to the published Cell Painting protocol (Bray et al., 2016). HCT116 cells were plated 263 

at concentrations of 2.5 or 5 x 103 cells/mL in 96-well glass-bottomed tissue culture dishes (Greiner Bio-One) and allowed to adhere for 264 

48-72 hours prior to fixation. At either 4 or 13 hours prior to fixation, cells were treated with either 0.1% DMSO or 7 nM bortezomib and 265 

30 min prior to fixation cells were treated with MitoTracker Deep Red (500 nM, Invitrogen). 16 % paraformaldehyde (EMS) was added 266 

to each well for a final concentration of 3.2% and cells were fixed in the dark at room temperature for 20 minutes. Wells were washed 267 

with HBSS (Invitrogen), permeabilized with 0.1% Triton-X for 15 minutes, and then washed twice with HBSS before incubating with 268 

staining solution (5 U/mL phalloidin AF568 [Invitrogen], 100 μg/mL concanavalin A AF488 [Invitrogen], 5 μg/mL Hoechst 33342 269 

[ThermoFisher or Invitrogen], 1.5 μg/mL wheat-germ agglutinin AF555 [Invitrogen], 3 μM SYTO14 Green [Invitrogen], and 1% bovine 270 

serum albumin [BioWorld] in HBSS) in the dark for 30 minutes. Wells were then washed twice with HBSS and imaged using an 271 

ImageXpress high-content imaging system (Molecular Devices) with a 20x 0.45 NA S Plan Fluor ELWD objective (Nikon) and captured 272 

with a Zyla 5.5 sCMOS detector (Andor Technology). Each well was imaged at 12-17 non-overlapping sites in five channels using 273 

Semrock filters (mito: Cy5-4040B-NTE-ZERO, AGP: TxRed-4040C-NTE-ZERO, RNA: Cy3-4040C-NTE-ZERO, ER: FITC-3540C-NTE-274 

ZERO, and DNA: DAPI-5060C-NTE-ZERO).  275 

 276 

Image data processing 277 

We used CellProfiler versions 3.1.8 and 3.1.9 (McQuin et al., 2018) to perform the standard processing pipeline of illumination 278 

correction, single cell segmentation, and morphology feature extraction. We performed per-plate illumination correction to adjust for 279 

uneven background intensity that commonly impacts microscopy images. We also developed per-plate analysis pipelines for single cell 280 

segmentation and feature extraction. We extracted 3,528 total cell morphology features from all 25,331,572 cells we generated in this 281 

experiment. The 3,528 features represent stain intensities, stain co-localization, textures, areas, and other patterns extracted from all 282 

five imaging channels and different segmentation objects (nuclei, cytoplasm, total cells). Feature details are described in the 283 

documentation for CellProfiler (https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.1.9/help/output_measurements.html). 284 

 285 

Following feature extraction, we applied an image-based analysis pipeline to generate our final analytical set of treatment profiles 286 

(Caicedo et al., 2017). We first used cytominer-database to ingest all single-cell, per-compartment CellProfiler output files (comma 287 

separated) to clean column names, confirm integrity of CellProfiler output CSVs, and output single-cell SQLite files for downstream 288 

processing. Next, we used pycytominer (github hash c1aa34b641b4e07eb5cbd424166f31355abdbd4d) for all image-based profiling 289 

pipeline steps. In the first step, we median aggregated all single cells to form well-level profiles (Way et al., 2022). Next, we performed a 290 

step called annotation, which merges the consistent platemap metadata with the well-level profiles. Third, we performed standard z-291 

score normalization to ensure all features are measured on the same scale with zero mean and unit variance. Lastly, we performed 292 

feature selection, which removed features with low variance, high correlation (>0.9 Pearson correlation), features with missing values, 293 

features on our blocklist (Way, 2020), and features with outliers greater than 15 standard deviations, which we suspected were 294 

measured in error. For developing our final analytical datasets (see next section) we performed normalization within each plate but 295 

performed a combined feature selection across all plates per analytical dataset using the same procedures described previously, which 296 

resulted in 782 features. We applied the same pipeline uniformly across all plates. We did not detect large differences in variance that 297 

could be attributed to well position and batch and therefore did not apply batch effect correction. Our full image data processing pipeline 298 

is publicly available at https://github.com/broadinstitute/profiling-resistance-mechanisms (Way et al., 2023). 299 

 300 
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Constructing the resistance signature 301 

After processing all images and forming normalized and feature selected profiles per well, we performed several additional analyses to 302 

explore the results and discover a morphology profile of bortezomib resistance. We performed initial comparisons of morphological 303 

profiles using Morpheus (https://software.broadinstitute.org/morpheus) to create similarity matrix heatmaps.  304 

 305 

We aimed to discover a generalizable signature of bortezomib resistance from the normalized profiles. Our approach was to identify 306 

features that were significantly different by resistance status and not significantly impacted by technical covariates. To do so, we 307 

carefully constructed datasets for training and evaluating signature performance (Fig. 2-Supplement 8). To generate our training 308 

dataset, we selected a set of six plates consisting of five wild-type and five bortezomib-resistant clones that we collected on three 309 

different days, which showed high within-replicate reproducibility (data not shown). A seventh plate was held-out from signature 310 

generation in order to analyze generalizability between plates (holdout dataset). We evaluated the signature in five scenarios: 1) clones 311 

held-out on the same plates used to generate the training dataset (validation dataset, Fig. 2-Supplement 9 B), 2) wild-type parental cells 312 

and clones with confirmed PSMB5 mutations known to confer resistance to bortezomib (test dataset, Fig. 2-Supplement 9 C) (Wacker 313 

et al., 2012), 3) clones held-out on a separate plate (holdout dataset, Fig. 2-Supplement 9 D), 4) clones selected to be resistant to other 314 

drugs (ixazomib and CB-5083, Fig. 4), and 5) bortezomib-resistant clones not included in the training dataset (Fig. 3). All cells on these 315 

plates were incubated with 0.1% DMSO for either 4 or 13 hours.  316 

 317 

Using data from the ten clones in our training dataset (20-21 replicates per clone, see Fig. 2-Supplement 8), we fit two linear models for 318 

all 782 CellProfiler features (post normalization and feature selection) to discover features that varied strongly with technical variants 319 

(batch, cell count, incubation time, or clone ID) and features that varied strongly with resistance status (wild-type or resistant). In the 320 

first linear model, we quantified the per feature variance contribution of resistance status (βresistance status), batch (βbatch), incubation time 321 

(βincubation time), and clone (βclone ID) to each CellProfiler feature (Yj) where 𝜀 is the error term: 322 

 323 

𝑌௝  = 𝛽௜௡௧௘௥௖௘௣௧ + 𝛽௥௘௦௜௦௧௔௡௖௘ ௦௧௔௧௨௦𝑋௥௘௦௜௦௧௔௡௖௘ ௦௧௔௧௨௦ + 𝛽௕௔௧௖ 𝑋௕௔௧௖௛ + 𝛽௜௡௖௨௕௔௧௜௢௡ ௧௜௠௘𝑋௜௡௖௨௕௔௧௜௢௡ ௧௜௠௘ + 𝛽௖௟௢௡௘ ூ஽𝑋௖௟௢௡௘ ூ஽  + 𝜀  324 

 325 

Fitting this model produced a goodness of fit R2 value per feature and individual beta coefficients per covariate. Furthermore, we 326 

calculated a Tukey’s Honestly Significant Difference (Tukey’s HSD) post hoc test per model to determine which specific categorical 327 

covariate comparison contributed to a significant finding and to control for within-covariate-group multiple comparisons through a family-328 

wise error rate (FWER) adjustment that accounts for different within-group sizes (e.g. three different batches in the comparison, two 329 

different resistance statuses, etc.)(Tukey, 1949). 330 

 331 

Separately, we fit another linear model on continuous features to adjust for features that were significantly impacted by well confluence 332 

(βcell count) as it is expected that dense wells will impact certain morphology features, which we want to avoid in our resistance signature: 333 

 334 

𝑌௝  = 𝛽௜௡௧௘௥௖௘௣௧ + 𝛽௥௘௦௜௦௧௔௡௖௘ ௦௧௔௧௨௦𝑋௥௘௦௜௦௧௔௡௖௘ ௦௧௔௧௨௦ + 𝛽௖௘௟௟ ௖௢௨௡௧𝑋௖௘௟௟ ௖௢௨௡௧ + 𝜀  335 

 336 

By fitting these models, we quantified the variance contribution of four technical covariates (incubation time, batch, clone ID, and cell 337 

count) and our biological variable of interest (resistance status), and, based on the first linear model, we have knowledge of which 338 

specific group comparisons were significant in each category (via Tukey’s HSD). We further refined the signature by filtering features 339 

that did not pass a Bonferonni adjusted alpha threshold calculated across all 782 features (0.05 / 782 = 6.4x10-6).  340 

 341 

We next applied a specific exclusion criterion to specifically isolate features that contributed to resistance status. We excluded features 342 

that were significantly different across incubation times, batches, and cell counts. We also excluded features that were different within 343 

clone type (features varying between two or more wild-type clones) to reduce the contribution of features that may mark generic inter-344 
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cell line differences nonspecific to resistance status. This procedure resulted in a total of 45 features that were significantly different by 345 

resistance status and not significantly impacted by any of the technical covariates we considered. Of the 45 features, 14 had higher 346 

values in resistant clones and 31 had lower values in resistant clones (Fig. 2-Supplement 4). 347 

 348 

Applying the signature 349 

We used the singscore method (Foroutan et al., 2018) to characterize individual profiles of different cell lines as either bortezomib-350 

sensitive or bortezomib-resistant. Singscore is a rank-based method that was originally developed to analyze the direction and 351 

significance of previously defined molecular signatures on transcriptomic data. The method calculates a two-part signature for each 352 

direction list (14 up and 31 down) and calculates an internal rank per profile of how highly ranked and lowly ranked each of the up and 353 

down features are, respectively. The method then adds the up and down rank scores to form a total singscore per sample, which 354 

ranges between -1 and 1 and represents a rank-based normalized concordance score that can be directly compared across profiles 355 

that may have been normalized differently. Therefore, the score is robust to outliers and different normalization procedures. In addition 356 

to calculating the singscore per sample, we also calculated singscore with 1,000 random permutations, in which we randomly shuffled 357 

feature rankings to derive a range in which a sample may be scored by chance. 358 

 359 

Signature evaluation 360 

We used several metrics to evaluate signature quality across five different evaluation scenarios (validation, test, holdout, other UPS-361 

targeting drugs, and clones not included in the training dataset). Because we are measuring a binary decision in a balanced dataset 362 

(roughly the same amount of positive as negative classes), we used accuracy (total correct / total chances) to quantify performance. 363 

We also calculated mean average precision using sci-kit learn, averaging over samples along the precision recall curve (Pedregosa et 364 

al., 2011), which is a measure of separation between the two resistance classes (higher being more separation). We also calculated 365 

receiver operating characteristic (ROC) curves and area under the ROC curve (AUROC) using sci-kit learn. AUROC compares the 366 

ability to distinguish positive samples across signatures. 367 

 368 
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