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Abstract 19 
Carotenoids are isoprenoid pigments vital for photosynthesis. Moreover, they are the precursor 20 
of apocarotenoids that include the phytohormones abscisic acid (ABA) and strigolactones (SLs), 21 
and retrograde signaling molecules and growth regulators, such as β-cyclocitral and zaxinone. 22 
The apocarotenoid β-ionone (β-I) was previously reported to exert antimicrobial effects. Here, 23 
we showed that the application of this scent to Arabidopsis plants at micromolar concentrations 24 
caused a global reprogramming of gene expression, affecting thousands of transcripts involved in 25 
stress tolerance, growth, hormone metabolism, pathogen defense and photosynthesis. These 26 
changes, along with modulating the levels of the phytohormones ABA, jasmonic acid and 27 
salicylic acid, led to enhanced Arabidopsis resistance to Botrytis cinerea (B.c.), one of the most 28 
aggressive and widespread pathogenic fungi affecting numerous plant hosts and causing severe 29 
losses of postharvest fruits. Pre-treatment of tobacco and tomato plants with β-I followed by 30 
inoculation with B.c. confirms the conserved effect of β-I and induced immune responses in 31 
leaves and fruits. Moreover, there was reduced susceptibility to B.c. in LYCOPENE β-CYCLASE-32 
expressing tomato fruits possessing elevated levels of the endogenous β-I, indicating beneficial 33 
biological activities of this compound in planta. Our work unraveled β-I as a further carotenoid-34 
derived regulatory metabolite and opens up new possibilities to control B.c. infection by 35 
establishing this natural volatile as an environmentally friendly bio-fungicide.  36 
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Introduction  37 

Carotenoids are a large group of isoprenoid pigments that include more than 1000 distinct 38 

compounds (Yabuzaki, 2017). The conjugated double bond of carotenoids, which is responsible 39 

for their color and functions in photosynthesis, makes them prone to oxidative cleavage caused 40 

by attacks of reactive oxygen species (ROS) or through enzymatic reactions catalyzed by 41 

CAROTENOID CLEAVAGE DIOXYGENASES (CCDs) (Giuliano et al., 2003; Beltran and 42 

Stange, 2016; Hou et al., 2016; Moreno et al., 2021). This metabolic process gives rise to a 43 

family of important metabolites called apocarotenoids, which includes the precursors of abscisic 44 

acid (ABA) and strigolactones (SLs), two plant hormones with diverse biological functions 45 

ranging from rhizospheric communications and regulating seed dormancy to biotic and abiotic 46 

stress response (Al-Babili and Bouwmeester, 2015; Moreno et al., 2021). Moreover, some 47 

apocarotenoids, such as β-cyclocitral (β-cc), β-cyclocitric acid, zaxinone, anchorene and iso-48 

anchorene, are retrograde signals in the plastid-nucleus communication, acting as growth 49 

regulators and mediating plant response to oxidative stress (Ramel et al., 2012; D'Alessandro et 50 

al., 2018; D'Alessandro et al., 2019; Dickinson et al., 2019; Jia et al., 2019; Wang et al., 2019; 51 

Jia et al., 2021).  52 

β-ionone (β-I) is a C13 volatile compound formed from β-carotene by ROS (Fig. S1A) during 53 

photosynthesis, particularly under high light conditions (Ramel et al., 2012). In addition, it is 54 

produced by several carotenoid cleavage dioxygenases (CCDs) that cleave the C9-C10 and/or 55 

C9′-C10′ double bond(s) in β-carotene (Fig. S1B-D) (Auldridge et al., 2006; Alder et al., 2012; 56 

Bruno et al., 2015). CCD1 targets these two double bonds, producing two C13 volatile 57 

compounds β-I and a C14 dialdehyde (Fig. S1B) (Wei et al., 2011), while Arabidopsis CCD4 58 

mediates a single cleavage reaction in β-carotene, leading to all-trans-β-apo-10’-carotenal (C27) 59 

and one molecule of β-I (Fig. S1C) (Rubio-Moraga et al., 2014; Bruno et al., 2015; Bruno et al., 60 

2016). CCD7 is a stereospecific enzyme that cleaves 9-cis-β-carotene into 9-cis-β-apo-10′-61 

carotenal (C27) and β-I (Fig. S1D) (Alder et al., 2012; Bruno et al., 2014; Bruno et al., 2016; 62 

Haider et al., 2018). β-I has been implicated in biotic stress response against herbivores (Griffin 63 

et al., 1999; Wei et al., 2011). Moreover, it was reported to be an insect repellant and to have 64 

antibacterial and fungicidal properties (Giuliano et al., 2003; Caceres et al., 2016; Aloum et al., 65 

2020), inhibiting growth of Peronospora tabacina (Salt et al., 1986), Candida albicans (Griffin 66 
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et al., 1999), Aspergillus niger (Hassan and Bakhiet, 2017), and Colletotrichum musae (Utama et 67 

al., 2002).  68 

Botrytis cinerea (B.c.), the causal agent of gray mold disease, is considered one of the most 69 

destructive fungal pathogens due to its capability of infecting over 200 different plant species 70 

(Govrin and Levine, 2000; Shlezinger et al., 2011; Valeri et al., 2021). Despite the employment 71 

of chemical management for many years, the capacity of B.c. to quickly adapt to chemical 72 

pesticides has made it a recurrent issue (Rosslenbroich and Stuebler, 2000; Zhao et al., 2010; 73 

Panebianco et al., 2015). This phenomenon and the ecological impact of chemical fungicides 74 

have proposed novel alternatives of disease management, including bio-fungicides. Interestingly, 75 

several natural compounds can activate plant defense response, by inducing a physiological 76 

condition that activates defense response upon subsequent stress (Conrath, 2009; Aranega-Bou et 77 

al., 2014; Li et al., 2022). Therefore, finding natural compounds effective on plants to better cope 78 

with abiotic or biotic stresses appears a promising, sustainable strategy for disease control and/or 79 

alleviating the damage caused by abiotic stress.   80 

In this study, we set out to explore if β-I acts as a regulatory metabolite, similarly to β-cc that 81 

arises from the same precursor and under similar conditions (Ramel et al., 2012), and to 82 

investigate whether it is involved in plant defense against the necrotrophic pathogen, B.c. By 83 

combining phenotypic, transcriptomic, and metabolomic analyses, we showed that β-I is a 84 

regulatory metabolite in Arabidopsis, which enhances the resistance to B.c. by provoking a 85 

transcriptional response overlapping with that triggered upon B.c. infection, and modulating 86 

different defense pathways, including those of ABA, salicylic acid (SA) ethylene (ET), and 87 

jasmonic acid (JA). The inhibitory effect of β-I against B.c. on leaf and fruit tissues was found to 88 

be conserved in dicotyledonous crops i.e., tobacco and tomato. Moreover, transgenic tomato 89 

fruits with enhanced β-I content showed increased resistance to B.c, suggesting a potential 90 

application of β-I in crop production with a focus on reducing disease and pest incidence for 91 

achieving agricultural sustainability and food security. 92 

 93 

Results 94 

Exogenous β-ionone application modulated the expression level of defense- and growth-95 

related genes. To get insights into the biological functions of β-I, we employed an RNAseq 96 

approach to explore possible transcriptional changes upon its application. For this purpose, we 97 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.02.539130doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.02.539130
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

sprayed Arabidopsis plants twice with β-I and collected RNA samples at 3 and 24 hours post 98 

treatment (hpt; Fig. S2A), covering short and middle term transcriptional changes. Subsequent 99 

RNAseq analysis revealed a significant change in the transcript level of a striking number of 100 

genes (Dataset S1-S2), which was more pronounced at 24 hpt. Venn diagrams showed the 101 

upregulation of 1239 differentially expressed genes (DEGs) in response to β-I at early and late 102 

time points (common to both time points), and 684 and 5148 DEGs that were upregulated only at 103 

3 and 24 hpt, respectively (Fig. 1A; see extended and full list in Figs. S4 and S5 and Dataset S3 104 

and S5). We also detected a total of 907 downregulated DEGs at early and late time points, and 105 

485 and 5301 DEGs that were downregulated only at 3 and 24 hpt, respectively (Fig. 1A; see 106 

extended and full list in Figs. S4 and S6 and Dataset S4 and S6). To understand the primary 107 

functions of these DEGs, we performed a gene ontology (GO) enrichment analysis 108 

(https://www.arabidopsis.org/tools/go_term_enrichment) to determine biological processes 109 

enriched in our dataset (Fisher’s exact test with FDR correction p<0.05). Our analysis revealed a 110 

high number of biological processes associated with the 1239 upregulated DEGs (Fig. S5; 111 

Dataset S3 and S5), including defense and response to fungal pathogens and to ABA/JA/ET/SA 112 

(Fig. 1A and Figs. S4 and S5). Part of the downregulated genes, at both time points, were 113 

involved in growth, development, and photosynthetic processes (Figs. S4 and S6; Dataset S4 and 114 

S6). Next, we used SUBA4 (Hooper et al., 2014; Hooper et al., 2017) to predict the localization 115 

of the proteins encoded by DEGs upon β-I treatment. Compared to the protein localization in 116 

non-treated Arabidopsis, the relative compartment distribution of proteins encoded by β-I up-117 

regulated genes was high in the nucleus and cytosol, and lower in chloroplasts, with ratios of 118 

32%, 21% and 8%, compared to 28%, 18% and 14%, respectively (Fig. 1B; Dataset S7-S9). The 119 

subcellular distribution of proteins encoded by the downregulated genes showed opposite 120 

patterns i.e., they were less present in the nucleus (from 28% to 24%) and cytosol (from 18% to 121 

16%), but more frequent in chloroplasts (from 14% to 21%) and mitochondria (from 9% to 122 

12%), than that in the normal distribution. Then, we performed a MapMan analysis (Thimm et 123 

al., 2004) to unveil major changes induced by β-I. We observed that 34 out of 35 MapMan Bins 124 

were affected by β-I treatment (Dataset S10). The majority of these changes occurred in 125 

processes such as photosynthesis (128 genes), cell wall biosynthesis (185 genes), secondary 126 

metabolism (176 genes), hormone metabolism (253 genes), biotic stress (407 genes), RNA 127 

metabolism (1393 genes), DNA metabolism (322 genes), and signaling (598 genes) (Fig. 1C; 128 
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Figs. S7-S8 and Dataset S10). We observed a clear pattern of repressing processes contributing 129 

to plant growth, such as photosynthesis, tetrapyrrole, chlorophyll, and isoprenoid biosynthesis 130 

(Fig. S9A-B). For instance, β-I decreased the expression of 97 out of 128 genes involved in 131 

photosynthesis, including light harvesting complexes (LHCs) genes, such as LHCAs and LHCBs 132 

(1.63 to 67-fold), RuBisCO small subunit 1A/RBCS1A and RBCS1-3B (2.7 to 46-fold). 133 

Moreover, it repressed genes of photosystem subunits, such as PSAG (5.1-fold), PSB28 (20-134 

fold), PSBQ (73-fold), PSBS (27-fold), and subunits of the plastoquinone dehydrogenase and 135 

ATPase complexes, such as NDH-M (57-fold) and ATPD (6.9-fold) (Fig. 1C; Fig. S9B). Out of 136 

35 genes, the transcript of 29 genes involved in tetrapyrrole and chlorophyll biosynthesis, 137 

including glutamyl-tRNA reductase/HEMA3 (30-fold), protochlorophyllide 138 

oxidoreductase/PORC (18.3-fold), and chlorophyll synthetase (11.7-fold), genomes 139 

uncoupled4/GUN4 (2.94-fold) and GUN5 (4.6-fold) were also reduced when plants were treated 140 

with β-I (Dataset S10). The majority of genes involved in the methylerythritol phosphate (MEP) 141 

pathway, which provides the precursor for chlorophylls and carotenoids, were also 142 

downregulated (2.1-5.4-fold; Fig. S9A and Dataset S10). By contrast, genes related to plant 143 

defense comprising processes, such as hormone metabolism, biotic stress response, RNA 144 

metabolism, and signaling showed high increases upon β-I treatment (Fig. 1C). For instance, we 145 

observed an induction of PROTEASE INHIBITOR (PI; at4g12470; 13.4-fold), PLANT 146 

DEFENSIN1.4 (PDF1.4; 14.1-fold), NIMIN-1-related (2.5-fold), RECEPTOR LIKE PROTEIN 147 

(RLP22; 854-fold), and DEFENSIN-LIKE PROTEINs (DEFLs; 5 to 204-fold). Moreover, 148 

representatives of several transcription factor families, such as WRKYs (2.1-1585-fold), ANACs 149 

(34.5-43.7-fold), ERFs (1.5-27-fold), and RAPs (1.4-82.2-fold) were upregulated. We observed 150 

enhanced gene expression for genes involved in signaling such as MPKs (1.8-2.8-fold), 151 

ENHANCED DISEASE RESISTANCE1 (EDR1; 2-fold), and RESPONSIVE TO DESICCATION 152 

20 (RD20; 18.44-fold). 153 

 154 

β-ionone enhanced Arabidopsis resistance against the necrotrophic fungus Botrytis cinerea. 155 

In our RNAseq analysis, we noticed that β-I induced the expression of genes involved in plant 156 

defense and repressed those required for growth, indicating the possibility that this apocarotenoid 157 

may contribute to the plant defense against pathogens. This hypothesis is supported by previous 158 

studies reporting on anti-microbial and anti-fungal properties of β-I; although at very high 159 
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concentrations of millimolar ranges (Ozaki et al., 2008; Harada et al., 2009). Taking into 160 

consideration the importance of the necrotrophic fungus B.c. for basic science and agriculture, 161 

we tested the effect of β-I on the response of Arabidopsis to this pathogen. For this purpose, we 162 

pre-treated Arabidopsis plants with β-I, followed by inoculation with B.c. Application of low (10 163 

µM) or mid (50 µM) β-I concentrations did not negatively impact treated leaves on plants, while 164 

relatively high concentration of 1 mM β-I was toxic and led to necrosis (Fig. S10A). We also 165 

evaluated the effect of β-I (50 µM) on detached leaves of Arabidopsis plants infected with B.c. 166 

(Fig. 2A). We pre-treated the Arabidopsis plants twice (eight hours apart) with 50 µM β-I for 24 167 

hours, which was followed by drop (5 µL) or spray inoculation with B.c. (2.5 x 105 spores ml-1). 168 

Leaves treated with β-I were indistinguishable from the mock, however, they showed 169 

substantially reduced infection symptoms upon infection with B.c. (β-I+B.c.; Fig. 2A-B), 170 

compared to non-treated/non-infected controls (β-I or B.c.; Fig. 2A-B). This was evident from 171 

the measurement of the lesion size of infected leaves (Fig. 2C) and by qPCR quantification of 172 

B.c. infection, in which we determined by the quantification of fungal Actin in planta (Fig. 2D). 173 

We obtained similar results when we spray-inoculated Arabidopsis plants with B.c. (Fig. 2E). 174 

Taken together, these results indicate that pre-treatment of β-I can alleviate the effect of B.c. 175 

infection, leading to substantially reduced symptoms; thus, indicating a positive impact on plant 176 

response against this pathogen. To rule out that the observed reduction in infection is not caused 177 

by a direct inhibition of B.c. growth and general antifungal activity of β-I, we assessed fungal 178 

growth on agar plates supplemented with different concentrations of β-I. Our results 179 

demonstrated that B.c. growth was not affected at micromolar concentrations of β-I, but reduced 180 

the fungal growth at millimolar levels (Fig. S11), suggesting a plant-immunity triggering 181 

mechanism for increased resistance.  182 

 183 

β-ionone treatment caused metabolic changes that enhances plant resistance to Botrytis 184 

cinerea. To determine the role of ABA, JA and SA in pathogen infection, we measured the 185 

content of these phytohormones in a time-resolved manner (Fig. 3A-C), following the same 186 

experimental design for β-I application and B.c. infection with minor modifications (Fig. S12). 187 

We also included a time point 0 which in fact represents ~10-15 minutes after treatments due to 188 

the high amount of samples and treatments. This time point 0 was included to better dissect the 189 

pre-treatment with β-I in both β-I and β-I+B.c., considering that β-I was sprayed 24 h before the 190 
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time point 0 (see materials and methods and Fig. S12). Treatment with β-I reduced ABA content 191 

(but not other hormones) in Arabidopsis plants at early time points, most likely delaying the 192 

spreading of the infection. Similarly, ABA content was reduced at early time points in treated-193 

plants with B.c. However, at the late time point (72 hours post infection (hpi)), when the 194 

infection is spreading throughout the whole plant and high amounts of ABA are needed, its 195 

content was ~5-fold higher than in plants treated with the mock (Fig. 3A). By contrast, ABA 196 

content in β-I+B.c. treated-plants was ~10-fold lower than in the B.c. treated-plants, suggesting a 197 

negative role of ABA in plant resistance to B.c.. Another key hormone, JA, was also increased at 198 

72 hpi in B.c. infected plants, and, to a lower extent, in β-I+B.c. treated-plants, confirming the 199 

delayed infectious process in the β-I pre-treated plants (Fig. 3B). Interestingly, SA content was 200 

enhanced at 24 and 48 hpi in plants treated with either B.c. or β-I+B.c., showing the highest 201 

increase (~2-fold) at 72 h only in plants treated with β-I+B.c. (Fig. 3C). Additional evidence for 202 

the delayed infection was the production of camalexin which was 5- to 6-fold higher in B.c. 203 

treated-plants than in those treated with β-I+B.c. (Fig. S13) at 48 hpi. However, this difference is 204 

less pronounced (~1.75-fold) at 72 hpi. 205 

 206 

Plant defense against necrotrophs is orchestrated by crosstalk among plant hormones, such as JA, 207 

SA, ET, ABA, and brassinosteroids (BRs), which play a central role in plant defense against B.c. 208 

(Thomma et al., 1998; Audenaert et al., 2002; Lorenzo et al., 2003; Belkhadir et al., 2012; 209 

Denance et al., 2013; Kazan and Manners, 2013; He et al., 2017). To get a deeper insight into the 210 

role of JA, ET, and ABA (Fig. 3D), and to dissect the genetic components involved in the 211 

increased tolerance upon β-I application, we used the Arabidopsis mutant lines coi1 (JA 212 

pathway), ora59 (ET pathway) and wrky33 (ET-ABA related) (Zheng et al., 2006; Sham et al., 213 

2017), which were reported to show increased susceptibility to B.c. infection. In addition, nced3 214 

and nced5 (ABA biosynthesis) mutants, which showed increased resistance to B.c. (Liu et al., 215 

2015), were tested and compared to the wild-type. As expected, the latter mutants, containing 216 

lower ABA content compared with the wild type plants, showed increased resistance to the 217 

tested necrotrophic pathogen. However, the level of resistance did not increase upon β-I 218 

treatment (Fig. 3E-F). Application of β-I to the coi1, ora59, and wrky33 mutants clearly 219 

increased their resistance to B.c., as demonstrated by the significantly smaller size of the lesions 220 

(Fig. 3E-F).  221 
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 222 

Transcriptome analysis of Arabidopsis plants upon β-ionone treatment and/or Botrytis 223 

cinerea infection. Based on our RNAseq analysis, phenotyping and hormone quantification, β-I 224 

enhances the resistance to B.c. most likely by affecting different defense pathways. Therefore, 225 

we performed RNAseq analysis on Arabidopsis plants pre-treated with β-I followed by B.c. 226 

infection (Datasets S11-S13). We compared the DEGs in Arabidopsis plants treated with β-I or 227 

infected with B.c. to determine the overlapping or specificities of gene expression. Interestingly, 228 

36% (905) of the upregulated genes at 24 hpi with B.c. were also induced upon 24 hpt with β-I 229 

(Datasets S11-S12). These DEGs included defense response to fungus, immune response, 230 

immune system process and response to ABA stimulus (Fig. 4A; see the extended and full list in 231 

Fig. S14 and Dataset S14). Moreover, 44% (1138) of the downregulated genes after 24h of B.c. 232 

infection were repressed upon β-I treatment. Thus, there downregulated genes were related to 233 

biological processes, such as developmental process and photosynthesis (Fig. 4A; see the 234 

extended and full list in Fig. S15 and Dataset S15). These results suggest that β-I provokes a 235 

transcriptional response that overlaps with that triggered by B.c., by reprogramming the 236 

expression of ~2000 common DEGs. Thus, a pre-treatment with this compound would prepare 237 

the plant to respond in a better manner to the pathogen infection (Fig. 2). We also used MapMan 238 

software to depict these differences at the transcriptome level (Figs. S16-S17). Then, we 239 

characterized the kinetics of the changes at the transcript level for those plants that were pre-240 

treated with β-I and then infected with B.c. at 24 and 48 hpi. In this case, 1412 and 1828 DEGs 241 

were commonly up- and down-regulated in Arabidopsis plants upon the treatment of β-I+B.c. at 242 

24 and 48 hpi, respectively (Fig. 4A). The upregulated DEGs were grouped in GO biological 243 

processes such as defense response by callose deposition and cell wall thickening, defense 244 

response to fungus, and response to ABA/JA/SA (Fig. S18). By contrast, downregulated genes 245 

comprised GO biological processes such as cell growth, cell morphogenesis, development and 246 

photosynthesis (Fig. 4A; Fig. S19). In addition, we depicted changes in metabolic processes 247 

(metabolism overview) and stress response (biotic stress) using the software MapMan (Figs. 248 

S20-S21). We noticed that the upregulated genes were predicted to localize in the nucleus (24%), 249 

cytosol (19%), plasma membrane (17%) and chloroplast (11%); while for the downregulated 250 

ones were in the nucleus (24%), chloroplast (17%), plasma membrane (16%) and extracellular 251 

space (13%; Fig. 4B and Datasets S16-S17). Next, we analyzed the expression pattern of 49 key 252 
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genes related to plant defense/response to B.c.. These genes are involved in signaling, cell wall, 253 

hormone metabolism, biotic stress, and encode transcription factors (Fig. 4C). Interestingly, β-I, 254 

B.c. and β-I+B.c. treatments caused the relatively similar effect on the expression of 29 of these 255 

genes (26 induced and 3 repressed) (Fig. 4C). The remaining 20 genes showed an opposite 256 

response to β-I treatment, compared to B.c. or β-I+B.c. infection (Fig. 4C). Thus, genes that 257 

respond similarly to all treatments i.e., β-I, B.c. and β-I+B.c., are possibly involved in plant’s 258 

defense response against B.c., suggesting that β-I mimics B.c. infection.  259 

Genes with the opposite response to β-I treatment, compared with B.c. and β-I+B.c. infection 260 

may be needed for proper B.c. infection. Genes with the similar expression pattern are involved 261 

in cell wall synthesis (e.g., CELLULOSE SYNTHASE LIKE G2 (CSLG2)), signaling pathways 262 

(e.g., MPK3), hormone metabolism (e.g., CAROTENOID CLEAVAGE DIOXYGENASES 7 263 

(CCD7) and CCD8), and biotic stress (CHITINASE A (CHIA)), or encode transcription factors 264 

(e.g., WRKYs and ERFs). β-I treatment upregulated Arabidopsis genes that are associated with 265 

cell wall defense response and loosening (e.g., EXP3), signaling pathways (e.g., CALCIUM-266 

DEPENDENT PROTEIN KINASE 31 (CPK31)), transcription factors encoding genes (e.g., 267 

MYBs), hormone metabolism (PIN-FORMED 2 (PIN2)), and biotic stress-related genes (e.g., 268 

DEFENSIN-LIKE PROTEIN (DEFL)), while they were downregulated in response to B.c. and β-269 

I+B.c.-treated plants (Fig. 4C). Moreover, β-I treatment caused downregulation of genes coding 270 

for transcription factors (e.g., WRKY70 and WRKY18), or that were involved in hormone 271 

metabolism (2-OXOPHYTODIENOATE REDUCTASE 1 (OPR1) and CYP707A3), and biotic 272 

stress response (PHYTOALEXIN DEFICIENT 4 (PAD4) and HEAT SHOCK PROTEIN 70-7 273 

(HSC70-7)), while they were upregulated in response to B.c. and β-I+B.c. treatment (Fig. 4C).  274 

 275 

β-ionone effect is conserved in crop plants. We evaluated whether β-I can also increase 276 

resistance to B.c. in other dicotyledonous crops, considering the large yield losses and economic 277 

impact of this pathogen. Therefore, we evaluated the protective role of β-I in several cultivars of 278 

the cash crop, tobacco (Nicotiana tabacum), and the edible crop, tomato (Solanum 279 

lycopersicum). We followed an experimental setup designed for β-I treatment and B.c. infection 280 

as described in Fig. S3. First, we tested the effect on detached leaves of two tomato cultivars 281 

(IPA6+ and MaxiFort). Our results showed larger lesions in the B.c. infected leaves than in β-282 

I+B.c.-treated leaves in both cultivars (Fig. 5A, B), indicating less severity in tissue maceration 283 
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by B.c. upon β-I treatment. In tomato, B.c. infection in β-I+B.c.-treated leaves was lower than in 284 

leaves infested with B.c. without β-I treatment (Fig. 5C). In order to rule out any biological 285 

response that could interfere with our assay after cutting the tomato leaves, we also treated intact 286 

tomato and tobacco plants and observed similar response (Fig. S3). On one hand, control plants 287 

that were sprayed with mock exhibited a normal green phenotype, while the B.c. infected plants 288 

showed a severe gray mold infection including necrotic lesions and tissue maceration. On the 289 

other hand, plants treated with β-I+B.c. looked healthy and showed only few and small necrotic 290 

lesions on leaves (Fig. 5D). This phenotypic difference mirrored ~100-fold lower presence of 291 

B.c. in β-I+B.c. plants compared to B.c. treated-plants (Fig. 5D). Similarly, tomato plants 292 

inoculated with B.c. looked weaker than control plants, showing bent branches with a sever 293 

necrotic lesions. By contrast, β-I+B.c-treated plants looked more vigorous and developed only 294 

few necrotic lesions on their leaves (Fig. 5E). We also evaluated the effect of β-I on tomato fruits 295 

using the Micro-Tom variety due to its smaller size and much shorter life cycle than the 296 

previously used cultivars (Fig. S3). After 7 days post harvesting (dph), non-treated tomato fruits 297 

were normally red colored and had a smooth skin, while fruits infected with B.c. showed fungal 298 

growth in the sepals and in the skin at 7 dpi (Fig. 5F). Surprisingly, tomato fruits pre-treated with 299 

β-I did not develop disease symptoms and showed extremely reduced levels of fungal growth 300 

(Fig. 5F). To confirm the effect of endogenous β-I on B.c. infection, we used fruits of two 301 

transgenic tomato lines of the varieties Red Setter/R.S. and IPA6+, which express the 302 

LYCOPENE β-CYCLASE (LCYB) gene from tomato (H.C.) or daffodil (pNLYC#2) and contain 303 

60% and 100% higher β-I content, compared to their respective wild type (Mi et al., 2022). 304 

Tomato wild type R.S. and IPA6+ plants showed red-colored fruits and smooth and firm skin 305 

after 7 dpi. Infection with B.c. led to damaged skin with necrotic lesions (Fig. 5G). Fruits of 306 

LCYB-expressing tomato plants were orange-colored with smooth skin (upper panel). Upon B.c. 307 

infection, these fruits showed small necrotic lesions in H.C. and pNLyc#2, but maintained their 308 

firmness (Fig. 5G). This indicates a biological role of endogenous β-I in alleviating the effect of 309 

B.c. infection in plants. 310 

 311 

Discussion 312 

B.c. is a necrotrophic fungus that causes gray mold disease on a wide range of plant species. It is 313 

responsible for pre- and post-harvest decay of fruits and vegetables in greenhouses, open fields, 314 
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and during storage (Dean et al., 2012; AbuQamar et al., 2017). B.c. infests economically 315 

important crops, such as tomato, and ornamental flowers, causing losses in the range of 15-40% 316 

due to postharvest spoilage (Legard et al., 2000). So far, the only mean to manage gray mold 317 

disease is the application of synthetic fungicides; however, B.c. has developed resistance to these 318 

chemicals. In addition, chemical fungicides may affect human health and have negative impact 319 

on the environment. Here, we identified the scent apocarotenoid β-I as a signaling molecule that 320 

provokes Arabidopsis biotic stress response and enhances plant defense against B.c.. But, how 321 

does β-I trigger these effects at molecular and phenotypic level? 322 

β-I is naturally produced in plastids through the non-enzymatic oxidation of β-carotene or CCD-323 

catalyzed cleavage. Interestingly, β-I shares many features with another plastid volatile signaling 324 

molecule, the apocarotenoid β-cc, which triggers the expression of hundreds of nuclear-encoded 325 

genes (Ramel et al., 2012; D'Alessandro et al., 2018); thus, resulting in enhanced plant tolerance 326 

to high light-induced oxidative stress (Ramel et al., 2012) and abiotic stresses (D'Alessandro et 327 

al., 2019). The two compounds differ in their chain-lengths and the nature of the carbonyl group, 328 

but both of them i) are volatiles synthesized in plastids, ii) share the same precursor (β-carotene), 329 

iii) can be produced enzymatically or non-enzymatically induced by high light. Therefore, we 330 

hypothesized that β-I might be also a bioactive apocarotenoid. Our results showed that β-I 331 

triggered the expression of thousands of nuclear-genes, suggesting that β-I is a signaling 332 

molecule. Plastids rely on signals from the nucleus to coordinate their gene expression and adjust 333 

their biochemical and other biological processes to the status of the cell. Depending on their 334 

needs, plastids, however, also generate retrograde signals that regulate nuclear gene expression 335 

(Nott et al., 2006; Woodson and Chory, 2008; Chan et al., 2016; de Souza et al., 2017). Because 336 

β-I is produced in plastids and modulates the expression of nuclear genes, it can be considered as 337 

a novel retrograde signal. Here, we showed that β-I-induced genes are involved in plant defense 338 

to pathogens, and repressed genes involved in the biosynthesis of tetrapyrroles, chlorophylls, and 339 

isoprenoids, and in photosynthesis (Fig. 1A, C; Fig. S9; Dataset S2). The reduction in the 340 

biosynthesis of photosynthetic pigments and the perturbation of plastid gene expression initiate a 341 

retrograde control of the expression of photosynthesis-associated nuclear genes (PhANGs) 342 

(Barajas-Lopez et al., 2013; Chan et al., 2016; Hernandez-Verdeja and Strand, 2018; Wu and 343 

Bock, 2021). Prominent PhANGs responsive to retrograde signals are genes encoding LHCBs 344 

and RBCS. In addition, GUN genes are involved in retrograde signaling control of gene 345 
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expression in the nucleus (Wu and Bock, 2021). In line with these findings, we observed a 346 

massive reduction in the transcript levels of all LHCBs and RBCS, as well as in GUN4 and 347 

GUN5 genes upon the application of β-I (Fig. 1C; Fig. S9B; Dataset S2), thus, supporting the 348 

retrograde signaling function of β-I. Recently, Mitra et al. (54) reported on the involvement of β-349 

cc in plant defense against herbivores. Upon herbivory attack or exogenous treatments, β-cc 350 

binds to the key MEP pathway enzyme Deoxyxylulose 5-phosphate synthase (DXS), reducing its 351 

activity and, hence, the MEP pathway flux and the biosynthesis of isopentenyl diphosphate (IPP) 352 

and dimethylallyl diphosphate (DMAPP) and thereof derived isoprenoids. Indeed, this decrease 353 

was reflected in lower chlorophyll and carotenoid contents. In addition, β-cc increment enhanced 354 

the content of the 2-C-methyl-D-erythritol-2, 4-cyclodiphosphate intermediary in the cytosol, 355 

which was reported to be a signaling molecule that upregulates SA signaling (Lemos et al., 2016; 356 

Onkokesung et al., 2019) and enhances plant defense (56). In the current study, exogenous 357 

application of β-I reprogrammed the transcriptome from growth to defense mode. However, it 358 

remains unclear if B.c. infection causes an increase in the formation of β-I. Nevertheless, the 359 

high ROS levels arising in cells upon B.c. penetration and infection (Heller and Tudzynski, 2011; 360 

Torres et al., 2013; Rossi et al., 2017) could break β-carotene into β-I, arguing in favor of the 361 

production of this compound upon infection. 362 

Arabidopsis defense mechanisms against B.c. occur at several cellular levels in distinct cellular 363 

compartments including the cell wall, plasma membrane, cytoplasm, and the nucleus (Fig. 6) 364 

(AbuQamar et al., 2017). We found 24 genes in our transcriptome, which overexpression or 365 

downregulation were previously reported to confer full immunity against B.c. (Fig. 6; Table S2). 366 

These genes encode different types of proteins, including lipid transfer proteins (LTP), 367 

peroxidases (PER), proteinase inhibitors (PIs), plasma membrane receptors, polygalacturonase 368 

inhibiting proteins (PGIPs), and map kinases (MAPKs; Table S2). The encoded proteins are 369 

involved in cuticle permeability (e.g., BODYGUARD/BDG) (Sieber et al., 2000; Kurdyukov et 370 

al., 2006; Chassot et al., 2007; Serrano et al., 2014), induced systemic resistance (TLPs) 371 

(Arondel et al., 2000), response to (oxidative) stress (PERs) (Tognolli et al., 2002), response to 372 

fungus and wounding (PIs) (Dunaevskii Ia et al., 2005), plasma membrane receptors (BAK1 and 373 

SOBIR1) (Zhang et al., 2013), inhibition of polygalacturonases (PGs) (De Lorenzo et al., 2011), 374 

and signal transduction (MAPKs) (Ren et al., 2008; Pieterse et al., 2009; Fiil and Petersen, 2011; 375 

Galletti et al., 2011; AbuQamar et al., 2017) (Table S2). Surprisingly, the increase/decrease in 376 
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expression of all these genes in our transcriptome was in line with the previously reported 377 

Arabidopsis enhanced resistance to B.c. in the respective mutants (Table S2), suggesting their 378 

contribution to the observed tolerance against B.c. upon β-I application (Fig. 2B, E). 379 

Interestingly, we also observed very high expression of other members of PER (PER32, 42-fold; 380 

PER50, 6.4-fold), PI (KTI/At1g73260, 1303-fold), and LTP (At4g12520, 485-fold; 381 

AZI5/At4g12510, 1006-fold; At1g18280, 168.4-fold; At4g12500, 196-fold; LTP2, 284-fold) 382 

families (Fig. 6; Table S3), indicating that the overexpression of these genes might also 383 

contribute to the β-I-induced resistance against B.c.  384 

Pathogen attack stimulates the synthesis of phytohormones such as SA, JA and ET that regulate 385 

specific immune responses (Glazebrook, 2005; Pieterse et al., 2009). Both SA and JA/ET 386 

pathways are involved in response to biotrophic and necrotrophic pathogens, respectively 387 

(Antico et al., 2012; Toth et al., 2016). Other phytohormones, such as ABA and brassinosteroids, 388 

regulate plant immunity, mainly by interacting with transcription factors, or through camalexin 389 

biosynthesis and callose deposition (Audenaert et al., 2002; Denance et al., 2013). ABA has a 390 

negative effect on defense against B.c. (Audenaert et al., 2002; Windram et al., 2012), and it is 391 

needed for fungal colonization and for spreading the infection across the plant (Audenaert et al., 392 

2002; Schmidt et al., 2008). We observed a decrease (up to 24 hpi) and an increase (72 hpi) in 393 

ABA content at early and late time points, respectively, in response to B.c. These changes are in 394 

line with previous data showing the highest ABA accumulation at later time points (more than 40 395 

hpi) and a slight reduction at early time points (12-18 h) in Arabidopsis (Liu et al., 2015; Liu et 396 

al., 2017). Our results showed a decrease in ABA content upon β-I treatment at early time points 397 

and a constantly reduced ABA content across all time points in the β-I+B.c. treatment (Fig. 3A). 398 

Interestingly, the ABA content remained ~10-fold lower in β-I+B.c.-treated plants than in those 399 

infected with B.c. at 72 hpi; thus, enhancing resistance against B.c. In previous studies using 400 

Arabidopsis and tomato ABA-deficient mutants, several mechanisms have been proposed for the 401 

higher resistance against B.c., including induction of ROS and nitric oxide (NO) and increase 402 

permeability of the cuticle (Asselbergh et al., 2007; L'Haridon et al., 2011; Sivakumaran et al., 403 

2016). In Arabidopsis, NO induces ET biosynthetic genes and ET production in response to B.c. 404 

(Mur et al., 2012). Therefore, ABA reduces plant resistance to B.c. probably through the 405 

reduction of NO levels and suppression of both ROS and ET production (AbuQamar et al., 406 

2017). In the present study, reduced ABA might have caused enhanced NO, ROS and ET levels 407 
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allowing the activation of defense genes (Fig. 6). In addition, ABA deficiency increases cuticular 408 

permeability and resistance to B.c. as observed in the tomato sitiens and the Arabidopsis abi2 409 

and abi3 mutants (Curvers et al., 2010; L'Haridon et al., 2011). In line with these findings, we 410 

did not observe an increase in B.c. resistance upon β-I treatment in the ABA-deficient nced3 and 411 

nced5 mutants, while β-I treatment of ora59 (ET), coi1 (JA), and wrky33 (ET/JA, ABA, and 412 

other responses) restored the susceptibility of these mutants to the wild-type level (Fig. 3D-F). 413 

This suggests that β-I might interfere with the ABA biosynthesis to lower ABA content. In 414 

addition, several studies highlighted the crosstalk of SA, JA, and ET with ABA in regulating 415 

plant defense against B.c. (De Bruyne et al., 2014; Jiang et al., 2016). Although we did not 416 

observe an increase in their content upon β-I application, enhanced JA and SA level at later time 417 

points in β-I+B.c treatment might also contribute to defense against B.c..   418 

We also evaluated if the effect of β-I is conserved in other model plants. Infection experiments in 419 

wild type cultivars of tobacco and tomato revealed a similar positive effect on resistance against 420 

B.c.. Moreover, transgenic tomato fruits with enhanced β-I content exhibited increased resistance 421 

to B.c.. These results point to a fairly conserved mechanism in Brassicaceae and Solanaceae, 422 

both dicotyledonous species and main targets of B.c.. In addition, time-course infection 423 

experiments in two tobacco cultivars (Xanthi and Petit havana) revealed that β-I treatment might 424 

delay plant decay by 6-9 dpi (Fig. S22). 425 

Taken together, our results showed that β-I is a signaling molecule that provokes a 426 

transcriptional response overlapping with that caused by B.c. and following a defense-growth 427 

trade-off. Moreover, we demonstrated that this apocarotenoid could enhance Arabidopsis 428 

resistance to B.c, likely via modulating hormonal contents and regulating the expression of genes 429 

involved in plant defense, which is also conserved in tobacco and tomato. These findings 430 

uncover a new member of the apocarotenoid family of hormones and regulatory metabolites and 431 

open up the possibility of developing a bio-fungicide that could replace the heavy use of 432 

chemical fungicides in field and post-harvesting. 433 

Materials and Methods 434 

Plant genotype and growth conditions 435 

Arabidopsis thaliana Col-0 seeds and other mutant genotypes were grown on Jiffy soil (Jiffy 436 

Product International AS, Norway). They were placed at 4oC for three days before being 437 
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transferred to a growth chamber with 16 h light/8 h dark and 180 umol/m s illumination at 21oC 438 

day/18oC night for four weeks. Tobacco (Nicotiana tabacum cv. Xanthi NN and N. tabacum cv. 439 

Petit Havana) and tomato (Solanum Lycopersicum L. cv. IPA6+) wild type plants were grown 440 

under greenhouse conditions with 16 h light/8 h dark and 180 umol/m s at 28oC. For B. cinerea 441 

assays, Arabidopsis, tobacco and tomato wild type seeds were sown in individual pots and grown 442 

for 4-6 weeks depending on the species. B. cinerea infection in detached tomato leaves was 443 

performed using 10-week-old F1 plants of the interspecific hybrid ‘Maxifort’ (Solanum 444 

lycopersicum L. × Solanum habrochaites S. De Ruiter, Bergshenhoek, The Netherlands). For 445 

fruit infection experiments, we used greenhouse-harvested tomato fruits from cultivars Micro-446 

Tom and transgenic pNLyc#2 (cv. IPA6+) and H.C. lines (cv. Red Setter) (Apel and Bock, 2009; 447 

Mi et al., 2022). All tomato plants were grown under greenhouse conditions, with scheduled 20-448 

20-20 fertilization once a week. 449 

B. cinerea inoculation of Arabidopsis plants 450 

For pathogen assays, detached leaves from four-week-old Arabidopsis plants were used to 451 

perform infection experiments using B. cinerea. In addition, intact plant infection experiments 452 

were also performed to avoid any hormonal perturbation in plants. First, detached leaves were 453 

sprayed twice within 24 hours (at 16 and 24 h prior B. cinerea infection) with 1% acetone 454 

(mock) or β-ionone (50 μM; dissolved in 1% acetone). These plants were drop-inoculated with 5 455 

µl B. cinerea conidial suspension containing 2.5x105 spores ml-1 or spray-inoculated with B. 456 

cinerea (2.5x105 spores ml-1) on the whole plants. Arabidopsis plants sprayed twice with β-457 

ionone within 24 hours with 1% acetone or β-ionone (50 μM; dissolved in 1% acetone and 458 

0.05% tween 20) were used as the control. To establish the disease for drop inoculation, detached 459 

leaves were placed together with moist Whatman filter paper on 245 mm square bioassay dishes 460 

and sealed with parafilm. Treated/infected plants were covered with a plastic dome and sealed 461 

with tape to maintain high humidity. All the experimental groups were kept under the same 462 

conditions for 3-4 days at room temperature under dark conditions. For Arabidopsis metabolites 463 

and LC-MS based hormone quantification, samples were collected at 0, 12, 24, 48, and 72 hours. 464 

Five biological replicates were used and each sample contained ~250 mg of tissue (fresh weight).  465 

Lesion size measurements 466 

Arabidopsis Col-0 seeds were sown in Jiffy soil and grown in a growth chamber under controlled 467 

climate conditions as described above. Mature rosette leaves were detached from four-week-old 468 
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plants and subjected to treatments or infection as described above. Three to four days post-469 

inoculation (dpi), lesion size was measured. Photographs of the infected plants with the lesions 470 

were taken and lesion size measurements were quantified using ImageJ 1. x software (Schneider 471 

et al., 2012). 472 

RNA extraction 473 

Total RNA was prepared from Arabidopsis, tobacco and tomato plant material. Plant samples 474 

were collected from leaf tissue and placed in 2 ml microcentrifuge tubes together with three steel 475 

beads (2.3-mm diameter), further frozen in liquid nitrogen and grounded for 30 seconds (Mini-476 

Beadbeater-96, #1001, Biospec Products). For the RNAseq experiment, plant material was 477 

collected following the experimental design described in Fig. S2. Total RNA was extracted using 478 

the Direct-zol RNA Miniprep Plus Kit (Zymo Research according to the manufacturer’s 479 

instructions; see Methods S1).  480 

RNAseq analysis of Differentially Expressed Genes (DEGs)  481 

The analysis of DEGs was performed between two conditions, β-ionone treated Arabidopsis 482 

plants at 3 h vs. 24 h, β-ionone at 24 h vs. B. cinerea at 24 h, and β-ionone + B. cinerea treated 483 

plants at 24 h vs. 48 h (three biological replicates per control) was performed using DESeq2 R 484 

package (Yu et al., 2012). DESeq2 provides statistical routines for determining differential 485 

expression in digital gene expression data using a model based on the negative binomial 486 

distribution (Dai et al., 2021). The resulting p values were adjusted using the Benjamini and 487 

Hochberg’s approach for controlling the False Discovery Rate (FDR). Genes with an adjusted p 488 

< 0.05 found by DESeq2 and at least an increase of 20% and a reduction of 35% were assigned 489 

as differentially expressed.  490 

Gene expression analysis by qPCR 491 

cDNA was synthesized from 1 µg of the total RNA using iScript Kit (BIO-RAD Laboratories, 492 

Inc, 2000 Alfred Nobel Drive, Hercules, CA; USA) according to the manufacturer’s instructions. 493 

The B. cinerea DNA was quantified in infected plants by qPCR analysis, based on the relative 494 

expression of B. cinerea ActinA (BcActinA) to the Arabidopsis (Actin), tobacco (Ubiquitin) and 495 

tomato (GADPH) housekeeping genes (Table S1). Expression analysis was analyzed using gene-496 

specific primers (Table S1). The statistical significance was determined via Student’s unpaired, 497 

two-tailed t-test using GraphPad Prism software. The data are shown as means and the error bars 498 
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representing the ± standard deviation (SD) of four independent biological replicates. The mean 499 

values showing asterisks are significantly different from the corresponding control (P<0.05). 500 

Quantification of plant metabolites and hormones 501 

For the quantification of endogenous metabolites and hormones, about 250 mg (fresh weight) of 502 

grounded Arabidopsis leaves, spiked with internal standards, i.e., 1 ng of D3-β-ionone, 1 ng of 503 

D6-ABA, and 10 ng of D4-SA, were extracted with 1.5 mL of methanol containing 0.1% BHT in 504 

an ultrasound bath for 15 minutes. After centrifugation at 13000 rpm and 4ºC for 8 minutes. The 505 

supernatant was collected and kept at -20 ºC. The residue was re-extracted with 1 mL of 10 % 506 

methanol with 1% acetic acid in an ultrasound bath for 5 minutes, followed by incubation on ice 507 

under shaking at 500 rpm for 45 minutes. After centrifugation at 4000 rpm at 4 ºC for 8 minutes, 508 

the two supernatants were combined and filtered by using a 0.22 µm filter. UHPLC-MS/MS 509 

analysis of plant metabolites and hormones was performed on a Dionex Ultimate 3000 UHPLC 510 

system coupled with a Q-Orbitrap-MS (Q-Exactive plus MS, Thermo Scientific) with a heated-511 

electrospray ionization source according to (Mi et al., 2019; Jia et al., 2021).  512 

B. cinerea infection of tobacco and tomato plants  513 

For infection experiments in tobacco and tomato we followed the same protocol as for 514 

Arabidopsis but with slight modifications for leaves and fruits (see Methods S1).  515 

Statistical Analyses 516 

The statistical analyses were performed in “R” (RNAseq) or with the software GraphPad Prism 517 

9.0 employing t-test or ANOVA test depending on the experimental design of each experiment. 518 

The tests are described within Materials and Methods section for each experiment and also in the 519 

legend of each figure.   520 
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Fig. 1. Differentially expressed genes (DEGs) of plants treated with β-ionone. (A) Venn diagrams of 
DEGs identified through RNAseq in Arabidopsis plants treated with β-I at 3 and 24 hpt. Venn diagrams 
representing up- and downregulated genes are shown in red and blue, respectively. Some of the most 
important GO biological processes enriched in the overlapping genes are shown (Table S1; Fig. S4). (B) 
Distribution of cellular compartments for genes present in the reference Arabidopsis genome (TAIR) and 
DEGs in the β-I treatment at 3 and 24 hours post treatment (hpt). Subcellular localization analysis was 
performed in SUBA4 online software (https://suba.live/) (Dataset S7-S9 for full subcellular localization 
list). Genes encoding proteins with 2 or more localizations were grouped in the “multiple” category. Each 
color in the pie chart represents a cellular compartment. (C) Heatmap representation of transcriptional 
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changes in Arabidopsis plants treated with β-I at 24 hpt. Heatmaps show 15 MapMan bins with profound 
transcriptional changes (Dataset S10 for full list and description of each gene). Statistical analysis for the 
RNAseq was performed using DESeq2 with Benjamini and Hochberg’s approach for controlling False 
Discovery Rate (FDR). Genes were adjusted Log2 fold change expression (padj<0.05). Cyt: cytoplasm; 
End. Ret.: Endoplasmic reticulum; Extracel.: extracellular; Mit.: mitochondria; Nuc.: nucleus; Per.: 
peroxisome; P.M.: plasma membrane; Chl.: chloroplast; Vac.: vacuole.  
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Fig. 2. Application of β-ionone enhances resistance of Arabidopsis plants to B. cinerea infection. (A) 
Schematic representation of the experimental design for β-ionone (β-I) application and B.cinerea (B.c.) 
infection in detached leaves and intact plants. (B) Detached leaf assay of Arabidopsis wild type (Col-0) 
plants were treated with 1 % acetone (mock), 50 μM β-I, 5 μl drop inoculation with B.c., or pre-treated 
with 50 μM β-I followed by 5 μl of B.c. drop inoculation (β-I + B. cinerea). β-I treatment was performed 
during the first 24 hours (with eight hours apart) prior to 5 μl drop inoculation with B.c. (2.5x105 spores 
ml-1). (C) Lesion size quantification of detached leaves at 4 hours post inoculation (hpi) with 5 μl of B.c.. 
(D) qPCR quantification of B. cinerea ActinA gene relative to Arabidopsis Actin gene after β-I treatment 
and B.c. spray inoculation. (E) Photograph of Arabidopsis plants treated with 1 % acetone (mock), 50 μM 
β-ionone, spray inoculation with B.c. (2.5x105 spores ml-1), and β-I + B. cinerea. The whole plant samples 
were pre-treated twice with 50 μM β-ionone followed by B.c. spray inoculation. Images were taken at 4 
dpi. In (B-C), 10 rosette leaves were collected from 10 plants that were used for each experimental 
condition (n = 10). In (D), four biological replicates were used (n=4), and each sample was a pool of three 
leaves. Data represent single measurements, while bars and error bars represent the mean and ± SD. 
These experiments were repeated at least three times. Significance was calculated via an unpaired two-
tailed Student’s t-test (*p < 0.05; ****p < 0.0001). Figure (A) was prepared using Biorender. 
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Fig. 3. Involvement in hormonal signaling and general defense responses against Botrytis cinerea. (A-C) 
Time-resolved metabolic analysis of hormone (A) abscisic acid (ABA), (B) jasmonic acid (JA), and (C) 
salicylic acid (SA) contents in plants treated with β-ionone (β-I) and/or infected with B. cinerea (B.c.). 
Samples were collected at (0, 12, 24, 48, 72 h). Data points represent single measurements, while bars and 
error bars represent the mean and ± SD (n=5) for each treatment in each time point. Significance was 
calculated via Student’s unpaired, two-tailed t-test (*p < 0.05). Hormone quantification was performed 
once. (D) Simplified schemes depicting plant defense pathways against Botrytis cinerea. The scheme was 
prepared using previously published data (44-46, 80). (E) Detached leaf assay on 4-week-old plants of 
Arabidopsis from wild type (Col-0) and mutants altered in JA (coi1), Eth (ora59), ABA (nced3 and 
nced5) and Eth-ABA-related (wrky33) pathways were treated with 1 % acetone mock (M), β-ionone (β-I), 
B. cinerea (B.c.), or β-ionone (β-I) prior to B.c. infection (β-I+B.c.). The 5 drop-inoculation of B.c. 
(2.5x105 spores ml-1) method was used to infect plants while 50 μM β-ionone was sprayed. Col0, nced3, 
nced5, and coi1 mutant leaves were treated and infected in the same plate, while ora59 and wrky33 were 
treated in separated plates, each of them with the respective wild type. (F) Lesion size of B.c. infection in 
detached leaves of Col-0 wild type and mutant plants. Data points represent single measurements, while 
bars and error bars represent the mean and ± SD (n=6-10). These experiments were repeated twice. 
Significance was calculated via ANOVA test with multiple comparisons (different letters represent 
significance, p < 0.05). Quantification of lesion size was performed using ImageJ software. Scale bar: 1 
cm.        
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Fig. 4. RNA sequencing (RNAseq) analysis of plants pre-treated with β-ionone and infected with B. 
cinerea. (A) Venn diagrams of DEGs identified through RNAseq in Arabidopsis plants infected with B. 
cinerea (B.c.) and pretreated with β-ionone followed by B. cinerea infection (β-I+B.c.) at 24 and 48 hpi. 
Venn diagrams representing up- and downregulated genes are shown in red and blue, respectively. Some 
of the most important GO biological processes enriched in the overlapping genes are shown (for full 
enriched GO list see Table S1 and Fig. S4). (B) Distribution of cellular compartments for differentially 
expressed genes (DEGs, up and down) present after 24 h of B.c. treatment. Subcellular localization 
analysis was performed in SUBA4 online software (https://suba.live/). Genes encoding proteins with 2 or 
more localizations were grouped in the “multiple” category. Each color in the pie chart represents a 
cellular compartment. (C) Heatmap representation of changes at transcript level of Arabidopsis plants 
treated with β-I, B.c., and β-I + B.c. at 24 and 48 hpi. Heatmaps show the common up- and downregulated 
genes involved in biological processes such as cell wall biosynthesis and defense mechanisms, signaling 
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pathways, transcription factors, hormone metabolism, and biotic stress. Statistical analysis for the 
RNAseq was performed using DESeq2 with Benjamini and Hochberg’s approach for controlling False 
Discovery Rate (FDR). Genes were adjusted Log2 fold change expression (padj<0.05). Cyt: cytoplasm; 
End. Ret.: Endoplasmic reticulum; Extracel.: extracellular; Mit.: mitochondria; Nuc.: nucleus; Per.: 
peroxisome; P.M.: plasma membrane; Chl.: chloroplast; Vac.: vacuole.  
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Fig. 5. Effect of β-ionone on tomato and tobacco plants. (A) detached leaves of tomato plants (cv. IPA6+ 
and Maxifort) that were treated with 1% acetone (mock), 5 μl drop inoculation of B. cinerea (B.c.) using 
2.5x105 spores ml-1, and 50 μM β-ionone (β-I) application twice during 24 h (eight hours apart) followed 
by 5 μl drop inoculation B. cinerea (β-I+B.c.). (B) Lesion size and (C) fungal content in detached leaves 
of tomato (cv. IPA6+ and Maxifort) in β-I and/or B.c. treatments. Amplification of B. cinerea ActinA 
relative to tomato housekeeping gene GADPH was quantified in leaves treated with B.c. or β-I+B.c. at 72 
hours post inoculation (hpi). (D) Phenotyping and B.c. quantification in Nicotiana tabacum (cv. Xanthi) 
in B.c. and in β-I+B.c. treated plants (72 hpi). Transcript levels of B.c. ActinA relative to the Nicotiana 
tabacum Ubiquitin (N.t. Ubi) gene were quantified in B.c. and β-I+B.c. treated plants. Significance in B-D 
was calculated using an unpaired two-tailed Student’s t-test (*p < 0.05, ***p < 0.001, **** p < 0.0001). (E) 
Disease symptoms in tomato plants (cv. IPA6+) treated with B.c., or β-I+B.c.. Photos were taken at 72 
hpi. (F) Tomato fruits (cv Micro-Tom) treated with 1% acetone (Mock), 5 μl of drop inoculation with 
B.c., or 50 μM β-I application twice during 24 h (eight hours apart) followed by 5 μl of drop inoculation 
with B.c. (β-I+B.c.). Red fruits and green sepals were observed in the mock treatment; while fungal 
growth was observed on fruits inoculated with B.c.. In β-I+B.c. treatment, fungal growth was limited on 
tomato fruits at 7 days post inoculation (dpi). (G) Tomato fruits of wild type (IPA6+ or Red Setter) and 
transgenic plants overexpressing lycopene β-cyclase with and without spray inoculation with B.c.. Fruits 
that were not inoculated with B.c. remained healthy and showing no symptoms of gray mold disease at 7 
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dpi. Tomato wild type plants cv. Red Setter (RS) and IPA6+ inoculated with B.c. showed fungal hyphal 
growth on their fruits. On the other hand, the orange-colored fruits in plants expressing LCYB gene that 
produced 60 and 100% higher β-I content in H.C. and pNLyc#2 transgenic plants, respectively, than in 
their corresponding wild type plants showed small necrotic lesions on their skin. Scale bar: 10 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Schematic representation of β-ionone effect at molecular and metabolic level in Arabidopsis. 
Schematic model depicting molecular processes required to activate plant defense against B.c. Genes that 
were up- and down-regulated upon β-I treatment (24hpt) which contribute to enhanced B.c. resistance are 
shown in red and blue, respectively. Arabidopsis transgenic lines with higher/lower transcript level of 
these genes were previously reported to positively contribute with enhanced resistance against B. cinerea. 
Question marks represent unknown proteins or steps upon Botrytis infection. P.M.: plasma membrane; 
PRs: pathogenesis related proteins; MAPK: mitogen activated protein kinase; TFs: transcription factors 
(adapted from AbuQamar et al., 2017). The figure was prepared using Biorender. 
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