

1 **β -ionone regulates *Arabidopsis thaliana* transcriptome and increases its resistance against**
2 ***Botrytis cinerea***

3 Abrar Felemban^{1,2*}, Juan C. Moreno^{1,2*}, Jianing Mi^{1,2}, Shawkat Ali³, Arjun Sham⁴, Synan F.
4 AbuQamar^{4#}, Salim Al-Babili^{1,2#}

5
6 ¹ The Bioactives Laboratory, Center for Desert Agriculture, 4700 King Abdullah University of
7 Science and Technology, Thuwal, 23955, Saudi Arabia

8 ² Plant Science Program, Biological and Environmental Science and Engineering Division, 4700
9 King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia

10 ³ Kentville Research and Development Center, Agriculture and Agri-Food Canada, Kentville,
11 Nova Scotia B4N 1J5, Canada

12 ⁴ Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551,
13 United Arab Emirates

14 * Equal contribution

15 # Corresponding authors: Synan F. AbuQamar and Salim Al-Babili

16 Email: sabuqamar@uaeu.ac.ae; Salim.Babili@kaust.edu.sa

17 **Head tittle: β -ionone enhances plant defense against *B. cinerea***

18
19 **Abstract**
20 Carotenoids are isoprenoid pigments vital for photosynthesis. Moreover, they are the precursor
21 of apocarotenoids that include the phytohormones abscisic acid (ABA) and strigolactones (SLs),
22 and retrograde signaling molecules and growth regulators, such as β -cyclocitral and zaxinone.
23 The apocarotenoid β -ionone (β -I) was previously reported to exert antimicrobial effects. Here,
24 we showed that the application of this scent to *Arabidopsis* plants at micromolar concentrations
25 caused a global reprogramming of gene expression, affecting thousands of transcripts involved in
26 stress tolerance, growth, hormone metabolism, pathogen defense and photosynthesis. These
27 changes, along with modulating the levels of the phytohormones ABA, jasmonic acid and
28 salicylic acid, led to enhanced *Arabidopsis* resistance to *Botrytis cinerea* (*B.c.*), one of the most
29 aggressive and widespread pathogenic fungi affecting numerous plant hosts and causing severe
30 losses of postharvest fruits. Pre-treatment of tobacco and tomato plants with β -I followed by
31 inoculation with *B.c.* confirms the conserved effect of β -I and induced immune responses in
32 leaves and fruits. Moreover, there was reduced susceptibility to *B.c.* in *LYCOPENE β -CYCLASE*-
33 expressing tomato fruits possessing elevated levels of the endogenous β -I, indicating beneficial
34 biological activities of this compound *in planta*. Our work unraveled β -I as a further carotenoid-
35 derived regulatory metabolite and opens up new possibilities to control *B.c.* infection by
36 establishing this natural volatile as an environmentally friendly bio-fungicide.

37 **Introduction**

38 Carotenoids are a large group of isoprenoid pigments that include more than 1000 distinct
39 compounds (Yabuzaki, 2017). The conjugated double bond of carotenoids, which is responsible
40 for their color and functions in photosynthesis, makes them prone to oxidative cleavage caused
41 by attacks of reactive oxygen species (ROS) or through enzymatic reactions catalyzed by
42 CAROTENOID CLEAVAGE DIOXYGENASES (CCDs) (Giuliano et al., 2003; Beltran and
43 Stange, 2016; Hou et al., 2016; Moreno et al., 2021). This metabolic process gives rise to a
44 family of important metabolites called apocarotenoids, which includes the precursors of abscisic
45 acid (ABA) and strigolactones (SLs), two plant hormones with diverse biological functions
46 ranging from rhizospheric communications and regulating seed dormancy to biotic and abiotic
47 stress response (Al-Babili and Bouwmeester, 2015; Moreno et al., 2021). Moreover, some
48 apocarotenoids, such as β -cyclocitral (β -cc), β -cyclocitric acid, zaxinone, anchorene and iso-
49 anchorene, are retrograde signals in the plastid-nucleus communication, acting as growth
50 regulators and mediating plant response to oxidative stress (Ramel et al., 2012; D'Alessandro et
51 al., 2018; D'Alessandro et al., 2019; Dickinson et al., 2019; Jia et al., 2019; Wang et al., 2019;
52 Jia et al., 2021).

53 β -ionone (β -I) is a C_{13} volatile compound formed from β -carotene by ROS (Fig. S1A) during
54 photosynthesis, particularly under high light conditions (Ramel et al., 2012). In addition, it is
55 produced by several carotenoid cleavage dioxygenases (CCDs) that cleave the C9-C10 and/or
56 C9'-C10' double bond(s) in β -carotene (Fig. S1B-D) (Auldrige et al., 2006; Alder et al., 2012;
57 Bruno et al., 2015). CCD1 targets these two double bonds, producing two C_{13} volatile
58 compounds β -I and a C_{14} dialdehyde (Fig. S1B) (Wei et al., 2011), while *Arabidopsis* CCD4
59 mediates a single cleavage reaction in β -carotene, leading to all-*trans*- β -apo-10'-carotenal (C_{27})
60 and one molecule of β -I (Fig. S1C) (Rubio-Moraga et al., 2014; Bruno et al., 2015; Bruno et al.,
61 2016). CCD7 is a stereospecific enzyme that cleaves 9-*cis*- β -carotene into 9-*cis*- β -apo-10'-
62 carotenal (C_{27}) and β -I (Fig. S1D) (Alder et al., 2012; Bruno et al., 2014; Bruno et al., 2016;
63 Haider et al., 2018). β -I has been implicated in biotic stress response against herbivores (Griffin
64 et al., 1999; Wei et al., 2011). Moreover, it was reported to be an insect repellent and to have
65 antibacterial and fungicidal properties (Giuliano et al., 2003; Caceres et al., 2016; Aloum et al.,
66 2020), inhibiting growth of *Peronospora tabacina* (Salt et al., 1986), *Candida albicans* (Griffin

67 et al., 1999), *Aspergillus niger* (Hassan and Bakhet, 2017), and *Colletotrichum musae* (Utama et
68 al., 2002).

69 *Botrytis cinerea* (*B.c.*), the causal agent of gray mold disease, is considered one of the most
70 destructive fungal pathogens due to its capability of infecting over 200 different plant species
71 (Govrin and Levine, 2000; Shlezinger et al., 2011; Valeri et al., 2021). Despite the employment
72 of chemical management for many years, the capacity of *B.c.* to quickly adapt to chemical
73 pesticides has made it a recurrent issue (Rosslenbroich and Stuebler, 2000; Zhao et al., 2010;
74 Panebianco et al., 2015). This phenomenon and the ecological impact of chemical fungicides
75 have proposed novel alternatives of disease management, including bio-fungicides. Interestingly,
76 several natural compounds can activate plant defense response, by inducing a physiological
77 condition that activates defense response upon subsequent stress (Conrath, 2009; Aranega-Bou et
78 al., 2014; Li et al., 2022). Therefore, finding natural compounds effective on plants to better cope
79 with abiotic or biotic stresses appears a promising, sustainable strategy for disease control and/or
80 alleviating the damage caused by abiotic stress.

81 In this study, we set out to explore if β -I acts as a regulatory metabolite, similarly to β -cc that
82 arises from the same precursor and under similar conditions (Ramel et al., 2012), and to
83 investigate whether it is involved in plant defense against the necrotrophic pathogen, *B.c.* By
84 combining phenotypic, transcriptomic, and metabolomic analyses, we showed that β -I is a
85 regulatory metabolite in *Arabidopsis*, which enhances the resistance to *B.c.* by provoking a
86 transcriptional response overlapping with that triggered upon *B.c.* infection, and modulating
87 different defense pathways, including those of ABA, salicylic acid (SA) ethylene (ET), and
88 jasmonic acid (JA). The inhibitory effect of β -I against *B.c.* on leaf and fruit tissues was found to
89 be conserved in dicotyledonous crops *i.e.*, tobacco and tomato. Moreover, transgenic tomato
90 fruits with enhanced β -I content showed increased resistance to *B.c.*, suggesting a potential
91 application of β -I in crop production with a focus on reducing disease and pest incidence for
92 achieving agricultural sustainability and food security.

93

94 **Results**

95 **Exogenous β -ionone application modulated the expression level of defense- and growth-
96 related genes.** To get insights into the biological functions of β -I, we employed an RNAseq
97 approach to explore possible transcriptional changes upon its application. For this purpose, we

98 sprayed Arabidopsis plants twice with β -I and collected RNA samples at 3 and 24 hours post
99 treatment (hpt; Fig. S2A), covering short and middle term transcriptional changes. Subsequent
100 RNAseq analysis revealed a significant change in the transcript level of a striking number of
101 genes (Dataset S1-S2), which was more pronounced at 24 hpt. Venn diagrams showed the
102 upregulation of 1239 differentially expressed genes (DEGs) in response to β -I at early and late
103 time points (common to both time points), and 684 and 5148 DEGs that were upregulated only at
104 3 and 24 hpt, respectively (Fig. 1A; see extended and full list in Figs. S4 and S5 and Dataset S3
105 and S5). We also detected a total of 907 downregulated DEGs at early and late time points, and
106 485 and 5301 DEGs that were downregulated only at 3 and 24 hpt, respectively (Fig. 1A; see
107 extended and full list in Figs. S4 and S6 and Dataset S4 and S6). To understand the primary
108 functions of these DEGs, we performed a gene ontology (GO) enrichment analysis
109 (https://www.arabidopsis.org/tools/go_term_enrichment) to determine biological processes
110 enriched in our dataset (Fisher's exact test with FDR correction $p < 0.05$). Our analysis revealed a
111 high number of biological processes associated with the 1239 upregulated DEGs (Fig. S5;
112 Dataset S3 and S5), including defense and response to fungal pathogens and to ABA/JA/ET/SA
113 (Fig. 1A and Figs. S4 and S5). Part of the downregulated genes, at both time points, were
114 involved in growth, development, and photosynthetic processes (Figs. S4 and S6; Dataset S4 and
115 S6). Next, we used SUBA4 (Hooper et al., 2014; Hooper et al., 2017) to predict the localization
116 of the proteins encoded by DEGs upon β -I treatment. Compared to the protein localization in
117 non-treated Arabidopsis, the relative compartment distribution of proteins encoded by β -I up-
118 regulated genes was high in the nucleus and cytosol, and lower in chloroplasts, with ratios of
119 32%, 21% and 8%, compared to 28%, 18% and 14%, respectively (Fig. 1B; Dataset S7-S9). The
120 subcellular distribution of proteins encoded by the downregulated genes showed opposite
121 patterns *i.e.*, they were less present in the nucleus (from 28% to 24%) and cytosol (from 18% to
122 16%), but more frequent in chloroplasts (from 14% to 21%) and mitochondria (from 9% to
123 12%), than that in the normal distribution. Then, we performed a MapMan analysis (Thimm et
124 al., 2004) to unveil major changes induced by β -I. We observed that 34 out of 35 MapMan Bins
125 were affected by β -I treatment (Dataset S10). The majority of these changes occurred in
126 processes such as photosynthesis (128 genes), cell wall biosynthesis (185 genes), secondary
127 metabolism (176 genes), hormone metabolism (253 genes), biotic stress (407 genes), RNA
128 metabolism (1393 genes), DNA metabolism (322 genes), and signaling (598 genes) (Fig. 1C;

129 Figs. S7-S8 and Dataset S10). We observed a clear pattern of repressing processes contributing
130 to plant growth, such as photosynthesis, tetrapyrrole, chlorophyll, and isoprenoid biosynthesis
131 (Fig. S9A-B). For instance, β -I decreased the expression of 97 out of 128 genes involved in
132 photosynthesis, including light harvesting complexes (LHCs) genes, such as *LHCAs* and *LHCBs*
133 (1.63 to 67-fold), *RuBisCO small subunit 1A/RBCS1A* and *RBCS1-3B* (2.7 to 46-fold).
134 Moreover, it repressed genes of photosystem subunits, such as *PSAG* (5.1-fold), *PSB28* (20-
135 fold), *PSBQ* (73-fold), *PSBS* (27-fold), and subunits of the plastoquinone dehydrogenase and
136 ATPase complexes, such as *NDH-M* (57-fold) and *ATPD* (6.9-fold) (Fig. 1C; Fig. S9B). Out of
137 35 genes, the transcript of 29 genes involved in tetrapyrrole and chlorophyll biosynthesis,
138 including *glutamyl-tRNA reductase/HEMA3* (30-fold), *protochlorophyllide
139 oxidoreductase/PORC* (18.3-fold), and *chlorophyll synthetase* (11.7-fold), *genomes
140 uncoupled4/GUN4* (2.94-fold) and *GUN5* (4.6-fold) were also reduced when plants were treated
141 with β -I (Dataset S10). The majority of genes involved in the methylerythritol phosphate (MEP)
142 pathway, which provides the precursor for chlorophylls and carotenoids, were also
143 downregulated (2.1-5.4-fold; Fig. S9A and Dataset S10). By contrast, genes related to plant
144 defense comprising processes, such as hormone metabolism, biotic stress response, RNA
145 metabolism, and signaling showed high increases upon β -I treatment (Fig. 1C). For instance, we
146 observed an induction of *PROTEASE INHIBITOR* (*PI*; *at4g12470*; 13.4-fold), *PLANT
147 DEFENSIN1.4* (*PDF1.4*; 14.1-fold), *NIMIN-1-related* (2.5-fold), *RECEPTOR LIKE PROTEIN
148 (RLP22*; 854-fold), and *DEFENSIN-LIKE PROTEINS* (*DEFLs*; 5 to 204-fold). Moreover,
149 representatives of several transcription factor families, such as *WRKYs* (2.1-1585-fold), *ANACs*
150 (34.5-43.7-fold), *ERFs* (1.5-27-fold), and *RAPs* (1.4-82.2-fold) were upregulated. We observed
151 enhanced gene expression for genes involved in signaling such as *MPKs* (1.8-2.8-fold),
152 *ENHANCED DISEASE RESISTANCE1* (*EDR1*; 2-fold), and *RESPONSIVE TO DESICCATION
153 20* (*RD20*; 18.44-fold).

154

155 **β -ionone enhanced *Arabidopsis* resistance against the necrotrophic fungus *Botrytis cinerea*.**

156 In our RNAseq analysis, we noticed that β -I induced the expression of genes involved in plant
157 defense and repressed those required for growth, indicating the possibility that this apocarotenoid
158 may contribute to the plant defense against pathogens. This hypothesis is supported by previous
159 studies reporting on anti-microbial and anti-fungal properties of β -I; although at very high

160 concentrations of millimolar ranges (Ozaki et al., 2008; Harada et al., 2009). Taking into
161 consideration the importance of the necrotrophic fungus *B.c.* for basic science and agriculture,
162 we tested the effect of β -I on the response of Arabidopsis to this pathogen. For this purpose, we
163 pre-treated Arabidopsis plants with β -I, followed by inoculation with *B.c.* Application of low (10
164 μ M) or mid (50 μ M) β -I concentrations did not negatively impact treated leaves on plants, while
165 relatively high concentration of 1 mM β -I was toxic and led to necrosis (Fig. S10A). We also
166 evaluated the effect of β -I (50 μ M) on detached leaves of Arabidopsis plants infected with *B.c.*
167 (Fig. 2A). We pre-treated the Arabidopsis plants twice (eight hours apart) with 50 μ M β -I for 24
168 hours, which was followed by drop (5 μ L) or spray inoculation with *B.c.* (2.5×10^5 spores ml⁻¹).
169 Leaves treated with β -I were indistinguishable from the mock, however, they showed
170 substantially reduced infection symptoms upon infection with *B.c.* (β -I+*B.c.*; Fig. 2A-B),
171 compared to non-treated/non-infected controls (β -I or *B.c.*; Fig. 2A-B). This was evident from
172 the measurement of the lesion size of infected leaves (Fig. 2C) and by qPCR quantification of
173 *B.c.* infection, in which we determined by the quantification of fungal *Actin in planta* (Fig. 2D).
174 We obtained similar results when we spray-inoculated Arabidopsis plants with *B.c.* (Fig. 2E).
175 Taken together, these results indicate that pre-treatment of β -I can alleviate the effect of *B.c.*
176 infection, leading to substantially reduced symptoms; thus, indicating a positive impact on plant
177 response against this pathogen. To rule out that the observed reduction in infection is not caused
178 by a direct inhibition of *B.c.* growth and general antifungal activity of β -I, we assessed fungal
179 growth on agar plates supplemented with different concentrations of β -I. Our results
180 demonstrated that *B.c.* growth was not affected at micromolar concentrations of β -I, but reduced
181 the fungal growth at millimolar levels (Fig. S11), suggesting a plant-immunity triggering
182 mechanism for increased resistance.

183

184 **β -ionone treatment caused metabolic changes that enhances plant resistance to *Botrytis***
185 ***cinerea*.** To determine the role of ABA, JA and SA in pathogen infection, we measured the
186 content of these phytohormones in a time-resolved manner (Fig. 3A-C), following the same
187 experimental design for β -I application and *B.c.* infection with minor modifications (Fig. S12).
188 We also included a time point 0 which in fact represents ~10-15 minutes after treatments due to
189 the high amount of samples and treatments. This time point 0 was included to better dissect the
190 pre-treatment with β -I in both β -I and β -I+*B.c.*, considering that β -I was sprayed 24 h before the

191 time point 0 (see materials and methods and Fig. S12). Treatment with β -I reduced ABA content
192 (but not other hormones) in *Arabidopsis* plants at early time points, most likely delaying the
193 spreading of the infection. Similarly, ABA content was reduced at early time points in treated-
194 plants with *B.c.* However, at the late time point (72 hours post infection (hpi)), when the
195 infection is spreading throughout the whole plant and high amounts of ABA are needed, its
196 content was ~5-fold higher than in plants treated with the mock (Fig. 3A). By contrast, ABA
197 content in β -I+*B.c.* treated-plants was ~10-fold lower than in the *B.c.* treated-plants, suggesting a
198 negative role of ABA in plant resistance to *B.c.*. Another key hormone, JA, was also increased at
199 72 hpi in *B.c.* infected plants, and, to a lower extent, in β -I+*B.c.* treated-plants, confirming the
200 delayed infectious process in the β -I pre-treated plants (Fig. 3B). Interestingly, SA content was
201 enhanced at 24 and 48 hpi in plants treated with either *B.c.* or β -I+*B.c.*, showing the highest
202 increase (~2-fold) at 72 h only in plants treated with β -I+*B.c.* (Fig. 3C). Additional evidence for
203 the delayed infection was the production of camalexin which was 5- to 6-fold higher in *B.c.*
204 treated-plants than in those treated with β -I+*B.c.* (Fig. S13) at 48 hpi. However, this difference is
205 less pronounced (~1.75-fold) at 72 hpi.

206

207 Plant defense against necrotrophs is orchestrated by crosstalk among plant hormones, such as JA,
208 SA, ET, ABA, and brassinosteroids (BRs), which play a central role in plant defense against *B.c.*
209 (Thomma et al., 1998; Audenaert et al., 2002; Lorenzo et al., 2003; Belkhadir et al., 2012;
210 Denance et al., 2013; Kazan and Manners, 2013; He et al., 2017). To get a deeper insight into the
211 role of JA, ET, and ABA (Fig. 3D), and to dissect the genetic components involved in the
212 increased tolerance upon β -I application, we used the *Arabidopsis* mutant lines *coil* (JA
213 pathway), *ora59* (ET pathway) and *wrky33* (ET-ABA related) (Zheng et al., 2006; Sham et al.,
214 2017), which were reported to show increased susceptibility to *B.c.* infection. In addition, *nced3*
215 and *nced5* (ABA biosynthesis) mutants, which showed increased resistance to *B.c.* (Liu et al.,
216 2015), were tested and compared to the wild-type. As expected, the latter mutants, containing
217 lower ABA content compared with the wild type plants, showed increased resistance to the
218 tested necrotrophic pathogen. However, the level of resistance did not increase upon β -I
219 treatment (Fig. 3E-F). Application of β -I to the *coil*, *ora59*, and *wrky33* mutants clearly
220 increased their resistance to *B.c.*, as demonstrated by the significantly smaller size of the lesions
221 (Fig. 3E-F).

222

223 **Transcriptome analysis of *Arabidopsis* plants upon β -ionone treatment and/or *Botrytis* 224 *cinerea* infection.** Based on our RNAseq analysis, phenotyping and hormone quantification, β -I 225 enhances the resistance to *B.c.* most likely by affecting different defense pathways. Therefore, 226 we performed RNAseq analysis on *Arabidopsis* plants pre-treated with β -I followed by *B.c.* 227 infection (Datasets S11-S13). We compared the DEGs in *Arabidopsis* plants treated with β -I or 228 infected with *B.c.* to determine the overlapping or specificities of gene expression. Interestingly, 229 36% (905) of the upregulated genes at 24 hpi with *B.c.* were also induced upon 24 hpt with β -I 230 (Datasets S11-S12). These DEGs included defense response to fungus, immune response, 231 immune system process and response to ABA stimulus (Fig. 4A; see the extended and full list in 232 Fig. S14 and Dataset S14). Moreover, 44% (1138) of the downregulated genes after 24h of *B.c.* 233 infection were repressed upon β -I treatment. Thus, there downregulated genes were related to 234 biological processes, such as developmental process and photosynthesis (Fig. 4A; see the 235 extended and full list in Fig. S15 and Dataset S15). These results suggest that β -I provokes a 236 transcriptional response that overlaps with that triggered by *B.c.*, by reprogramming the 237 expression of ~2000 common DEGs. Thus, a pre-treatment with this compound would prepare 238 the plant to respond in a better manner to the pathogen infection (Fig. 2). We also used MapMan 239 software to depict these differences at the transcriptome level (Figs. S16-S17). Then, we 240 characterized the kinetics of the changes at the transcript level for those plants that were pre- 241 treated with β -I and then infected with *B.c.* at 24 and 48 hpi. In this case, 1412 and 1828 DEGs 242 were commonly up- and down-regulated in *Arabidopsis* plants upon the treatment of β -I+*B.c.* at 243 24 and 48 hpi, respectively (Fig. 4A). The upregulated DEGs were grouped in GO biological 244 processes such as defense response by callose deposition and cell wall thickening, defense 245 response to fungus, and response to ABA/JA/SA (Fig. S18). By contrast, downregulated genes 246 comprised GO biological processes such as cell growth, cell morphogenesis, development and 247 photosynthesis (Fig. 4A; Fig. S19). In addition, we depicted changes in metabolic processes 248 (metabolism overview) and stress response (biotic stress) using the software MapMan (Figs. 249 S20-S21). We noticed that the upregulated genes were predicted to localize in the nucleus (24%), 250 cytosol (19%), plasma membrane (17%) and chloroplast (11%); while for the downregulated 251 ones were in the nucleus (24%), chloroplast (17%), plasma membrane (16%) and extracellular 252 space (13%; Fig. 4B and Datasets S16-S17). Next, we analyzed the expression pattern of 49 key

253 genes related to plant defense/response to *B.c.*. These genes are involved in signaling, cell wall,
254 hormone metabolism, biotic stress, and encode transcription factors (Fig. 4C). Interestingly, β -I,
255 *B.c.* and β -I+*B.c.* treatments caused the relatively similar effect on the expression of 29 of these
256 genes (26 induced and 3 repressed) (Fig. 4C). The remaining 20 genes showed an opposite
257 response to β -I treatment, compared to *B.c.* or β -I+*B.c.* infection (Fig. 4C). Thus, genes that
258 respond similarly to all treatments *i.e.*, β -I, *B.c.* and β -I+*B.c.*, are possibly involved in plant's
259 defense response against *B.c.*, suggesting that β -I mimics *B.c.* infection.

260 Genes with the opposite response to β -I treatment, compared with *B.c.* and β -I+*B.c.* infection
261 may be needed for proper *B.c.* infection. Genes with the similar expression pattern are involved
262 in cell wall synthesis (e.g., *CELLULOSE SYNTHASE LIKE G2 (CSLG2)*), signaling pathways
263 (e.g., *MPK3*), hormone metabolism (e.g., *CAROTENOID CLEAVAGE DIOXYGENASES 7*
264 (*CCD7*) and *CCD8*), and biotic stress (*CHITINASE A (CHIA)*), or encode transcription factors
265 (e.g., *WRKYs* and *ERFs*). β -I treatment upregulated *Arabidopsis* genes that are associated with
266 cell wall defense response and loosening (e.g., *EXP3*), signaling pathways (e.g., *CALCIUM-*
267 *DEPENDENT PROTEIN KINASE 31 (CPK31)*), transcription factors encoding genes (e.g.,
268 *MYBs*), hormone metabolism (*PIN-FORMED 2 (PIN2)*), and biotic stress-related genes (e.g.,
269 *DEFENSIN-LIKE PROTEIN (DEFL)*), while they were downregulated in response to *B.c.* and β -
270 I+*B.c.*-treated plants (Fig. 4C). Moreover, β -I treatment caused downregulation of genes coding
271 for transcription factors (e.g., *WRKY70* and *WRKY18*), or that were involved in hormone
272 metabolism (*2-OXOPHYTODIENOATE REDUCTASE 1 (OPR1)* and *CYP707A3*), and biotic
273 stress response (*PHYTOALEXIN DEFICIENT 4 (PAD4)* and *HEAT SHOCK PROTEIN 70-7*
274 (*HSC70-7*)), while they were upregulated in response to *B.c.* and β -I+*B.c.* treatment (Fig. 4C).

275
276 **β -ionone effect is conserved in crop plants.** We evaluated whether β -I can also increase
277 resistance to *B.c.* in other dicotyledonous crops, considering the large yield losses and economic
278 impact of this pathogen. Therefore, we evaluated the protective role of β -I in several cultivars of
279 the cash crop, tobacco (*Nicotiana tabacum*), and the edible crop, tomato (*Solanum*
280 *lycopersicum*). We followed an experimental setup designed for β -I treatment and *B.c.* infection
281 as described in Fig. S3. First, we tested the effect on detached leaves of two tomato cultivars
282 (IPA6+ and MaxiFort). Our results showed larger lesions in the *B.c.* infected leaves than in β -
283 I+*B.c.*-treated leaves in both cultivars (Fig. 5A, B), indicating less severity in tissue maceration

284 by *B.c.* upon β -I treatment. In tomato, *B.c.* infection in β -I+*B.c.*-treated leaves was lower than in
285 leaves infested with *B.c.* without β -I treatment (Fig. 5C). In order to rule out any biological
286 response that could interfere with our assay after cutting the tomato leaves, we also treated intact
287 tomato and tobacco plants and observed similar response (Fig. S3). On one hand, control plants
288 that were sprayed with mock exhibited a normal green phenotype, while the *B.c.* infected plants
289 showed a severe gray mold infection including necrotic lesions and tissue maceration. On the
290 other hand, plants treated with β -I+*B.c.* looked healthy and showed only few and small necrotic
291 lesions on leaves (Fig. 5D). This phenotypic difference mirrored \sim 100-fold lower presence of
292 *B.c.* in β -I+*B.c.* plants compared to *B.c.* treated-plants (Fig. 5D). Similarly, tomato plants
293 inoculated with *B.c.* looked weaker than control plants, showing bent branches with a sever
294 necrotic lesions. By contrast, β -I+*B.c.*-treated plants looked more vigorous and developed only
295 few necrotic lesions on their leaves (Fig. 5E). We also evaluated the effect of β -I on tomato fruits
296 using the Micro-Tom variety due to its smaller size and much shorter life cycle than the
297 previously used cultivars (Fig. S3). After 7 days post harvesting (dph), non-treated tomato fruits
298 were normally red colored and had a smooth skin, while fruits infected with *B.c.* showed fungal
299 growth in the sepals and in the skin at 7 dpi (Fig. 5F). Surprisingly, tomato fruits pre-treated with
300 β -I did not develop disease symptoms and showed extremely reduced levels of fungal growth
301 (Fig. 5F). To confirm the effect of endogenous β -I on *B.c.* infection, we used fruits of two
302 transgenic tomato lines of the varieties Red Setter/R.S. and IPA6+, which express the
303 *LYCOPENE β -CYCLASE (LCYB)* gene from tomato (H.C.) or daffodil (pNLyc#2) and contain
304 60% and 100% higher β -I content, compared to their respective wild type (Mi et al., 2022).
305 Tomato wild type R.S. and IPA6+ plants showed red-colored fruits and smooth and firm skin
306 after 7 dpi. Infection with *B.c.* led to damaged skin with necrotic lesions (Fig. 5G). Fruits of
307 *LCYB*-expressing tomato plants were orange-colored with smooth skin (upper panel). Upon *B.c.*
308 infection, these fruits showed small necrotic lesions in H.C. and pNLyc#2, but maintained their
309 firmness (Fig. 5G). This indicates a biological role of endogenous β -I in alleviating the effect of
310 *B.c.* infection in plants.

311

312 **Discussion**

313 *B.c.* is a necrotrophic fungus that causes gray mold disease on a wide range of plant species. It is
314 responsible for pre- and post-harvest decay of fruits and vegetables in greenhouses, open fields,

315 and during storage (Dean et al., 2012; AbuQamar et al., 2017). *B.c.* infests economically
316 important crops, such as tomato, and ornamental flowers, causing losses in the range of 15-40%
317 due to postharvest spoilage (Legard et al., 2000). So far, the only mean to manage gray mold
318 disease is the application of synthetic fungicides; however, *B.c.* has developed resistance to these
319 chemicals. In addition, chemical fungicides may affect human health and have negative impact
320 on the environment. Here, we identified the scent apocarotenoid β -I as a signaling molecule that
321 provokes *Arabidopsis* biotic stress response and enhances plant defense against *B.c.*. But, how
322 does β -I trigger these effects at molecular and phenotypic level?

323 β -I is naturally produced in plastids through the non-enzymatic oxidation of β -carotene or CCD-
324 catalyzed cleavage. Interestingly, β -I shares many features with another plastid volatile signaling
325 molecule, the apocarotenoid β -cc, which triggers the expression of hundreds of nuclear-encoded
326 genes (Ramel et al., 2012; D'Alessandro et al., 2018); thus, resulting in enhanced plant tolerance
327 to high light-induced oxidative stress (Ramel et al., 2012) and abiotic stresses (D'Alessandro et
328 al., 2019). The two compounds differ in their chain-lengths and the nature of the carbonyl group,
329 but both of them i) are volatiles synthesized in plastids, ii) share the same precursor (β -carotene),
330 iii) can be produced enzymatically or non-enzymatically induced by high light. Therefore, we
331 hypothesized that β -I might be also a bioactive apocarotenoid. Our results showed that β -I
332 triggered the expression of thousands of nuclear-genes, suggesting that β -I is a signaling
333 molecule. Plastids rely on signals from the nucleus to coordinate their gene expression and adjust
334 their biochemical and other biological processes to the status of the cell. Depending on their
335 needs, plastids, however, also generate retrograde signals that regulate nuclear gene expression
336 (Nott et al., 2006; Woodson and Chory, 2008; Chan et al., 2016; de Souza et al., 2017). Because
337 β -I is produced in plastids and modulates the expression of nuclear genes, it can be considered as
338 a novel retrograde signal. Here, we showed that β -I-induced genes are involved in plant defense
339 to pathogens, and repressed genes involved in the biosynthesis of tetrapyrroles, chlorophylls, and
340 isoprenoids, and in photosynthesis (Fig. 1A, C; Fig. S9; Dataset S2). The reduction in the
341 biosynthesis of photosynthetic pigments and the perturbation of plastid gene expression initiate a
342 retrograde control of the expression of photosynthesis-associated nuclear genes (*PhANGs*)
343 (Barajas-Lopez et al., 2013; Chan et al., 2016; Hernandez-Verdeja and Strand, 2018; Wu and
344 Bock, 2021). Prominent *PhANGs* responsive to retrograde signals are genes encoding LHCBS
345 and RBCS. In addition, *GUN* genes are involved in retrograde signaling control of gene

346 expression in the nucleus (Wu and Bock, 2021). In line with these findings, we observed a
347 massive reduction in the transcript levels of all *LHCBs* and *RBCS*, as well as in *GUN4* and
348 *GUN5* genes upon the application of β -I (Fig. 1C; Fig. S9B; Dataset S2), thus, supporting the
349 retrograde signaling function of β -I. Recently, Mitra *et al.* (54) reported on the involvement of β -
350 cc in plant defense against herbivores. Upon herbivory attack or exogenous treatments, β -cc
351 binds to the key MEP pathway enzyme Deoxxyxylulose 5-phosphate synthase (DXS), reducing its
352 activity and, hence, the MEP pathway flux and the biosynthesis of isopentenyl diphosphate (IPP)
353 and dimethylallyl diphosphate (DMAPP) and thereof derived isoprenoids. Indeed, this decrease
354 was reflected in lower chlorophyll and carotenoid contents. In addition, β -cc increment enhanced
355 the content of the 2-C-methyl-D-erythritol-2, 4-cyclodiphosphate intermediary in the cytosol,
356 which was reported to be a signaling molecule that upregulates SA signaling (Lemos *et al.*, 2016;
357 Onkokesung *et al.*, 2019) and enhances plant defense (56). In the current study, exogenous
358 application of β -I reprogrammed the transcriptome from growth to defense mode. However, it
359 remains unclear if *B.c.* infection causes an increase in the formation of β -I. Nevertheless, the
360 high ROS levels arising in cells upon *B.c.* penetration and infection (Heller and Tudzynski, 2011;
361 Torres *et al.*, 2013; Rossi *et al.*, 2017) could break β -carotene into β -I, arguing in favor of the
362 production of this compound upon infection.

363 Arabidopsis defense mechanisms against *B.c.* occur at several cellular levels in distinct cellular
364 compartments including the cell wall, plasma membrane, cytoplasm, and the nucleus (Fig. 6)
365 (AbuQamar *et al.*, 2017). We found 24 genes in our transcriptome, which overexpression or
366 downregulation were previously reported to confer full immunity against *B.c.* (Fig. 6; Table S2).
367 These genes encode different types of proteins, including lipid transfer proteins (LTP),
368 peroxidases (PER), proteinase inhibitors (PIs), plasma membrane receptors, polygalacturonase
369 inhibiting proteins (PGIPs), and map kinases (MAPKs; Table S2). The encoded proteins are
370 involved in cuticle permeability (e.g., BODYGUARD/BDG) (Sieber *et al.*, 2000; Kurdyukov *et*
371 *al.*, 2006; Chassot *et al.*, 2007; Serrano *et al.*, 2014), induced systemic resistance (TLPs)
372 (Arondel *et al.*, 2000), response to (oxidative) stress (PERs) (Tognoli *et al.*, 2002), response to
373 fungus and wounding (PIs) (Dunaevskii Ia *et al.*, 2005), plasma membrane receptors (BAK1 and
374 SOBIR1) (Zhang *et al.*, 2013), inhibition of polygalacturonases (PGs) (De Lorenzo *et al.*, 2011),
375 and signal transduction (MAPKs) (Ren *et al.*, 2008; Pieterse *et al.*, 2009; Fiil and Petersen, 2011;
376 Galletti *et al.*, 2011; AbuQamar *et al.*, 2017) (Table S2). Surprisingly, the increase/decrease in

377 expression of all these genes in our transcriptome was in line with the previously reported
378 Arabidopsis enhanced resistance to *B.c.* in the respective mutants (Table S2), suggesting their
379 contribution to the observed tolerance against *B.c.* upon β -I application (Fig. 2B, E).
380 Interestingly, we also observed very high expression of other members of PER (PER32, 42-fold;
381 PER50, 6.4-fold), PI (*KT1/At1g73260*, 1303-fold), and LTP (*At4g12520*, 485-fold;
382 *AZI5/At4g12510*, 1006-fold; *At1g18280*, 168.4-fold; *At4g12500*, 196-fold; LTP2, 284-fold)
383 families (Fig. 6; Table S3), indicating that the overexpression of these genes might also
384 contribute to the β -I-induced resistance against *B.c.*

385 Pathogen attack stimulates the synthesis of phytohormones such as SA, JA and ET that regulate
386 specific immune responses (Glazebrook, 2005; Pieterse et al., 2009). Both SA and JA/ET
387 pathways are involved in response to biotrophic and necrotrophic pathogens, respectively
388 (Antico et al., 2012; Toth et al., 2016). Other phytohormones, such as ABA and brassinosteroids,
389 regulate plant immunity, mainly by interacting with transcription factors, or through camalexin
390 biosynthesis and callose deposition (Audenaert et al., 2002; Denance et al., 2013). ABA has a
391 negative effect on defense against *B.c.* (Audenaert et al., 2002; Windram et al., 2012), and it is
392 needed for fungal colonization and for spreading the infection across the plant (Audenaert et al.,
393 2002; Schmidt et al., 2008). We observed a decrease (up to 24 hpi) and an increase (72 hpi) in
394 ABA content at early and late time points, respectively, in response to *B.c.* These changes are in
395 line with previous data showing the highest ABA accumulation at later time points (more than 40
396 hpi) and a slight reduction at early time points (12-18 h) in Arabidopsis (Liu et al., 2015; Liu et
397 al., 2017). Our results showed a decrease in ABA content upon β -I treatment at early time points
398 and a constantly reduced ABA content across all time points in the β -I+*B.c.* treatment (Fig. 3A).
399 Interestingly, the ABA content remained ~10-fold lower in β -I+*B.c.*-treated plants than in those
400 infected with *B.c.* at 72 hpi; thus, enhancing resistance against *B.c.* In previous studies using
401 Arabidopsis and tomato ABA-deficient mutants, several mechanisms have been proposed for the
402 higher resistance against *B.c.*, including induction of ROS and nitric oxide (NO) and increase
403 permeability of the cuticle (Asselbergh et al., 2007; L'Haridon et al., 2011; Sivakumaran et al.,
404 2016). In Arabidopsis, NO induces ET biosynthetic genes and ET production in response to *B.c.*
405 (Mur et al., 2012). Therefore, ABA reduces plant resistance to *B.c.* probably through the
406 reduction of NO levels and suppression of both ROS and ET production (AbuQamar et al.,
407 2017). In the present study, reduced ABA might have caused enhanced NO, ROS and ET levels

allowing the activation of defense genes (Fig. 6). In addition, ABA deficiency increases cuticular permeability and resistance to *B.c.* as observed in the tomato *sitiens* and the *Arabidopsis abi2* and *abi3* mutants (Curvers et al., 2010; L'Haridon et al., 2011). In line with these findings, we did not observe an increase in *B.c.* resistance upon β -I treatment in the ABA-deficient *nced3* and *nced5* mutants, while β -I treatment of *ora59* (ET), *coi1* (JA), and *wrky33* (ET/JA, ABA, and other responses) restored the susceptibility of these mutants to the wild-type level (Fig. 3D-F). This suggests that β -I might interfere with the ABA biosynthesis to lower ABA content. In addition, several studies highlighted the crosstalk of SA, JA, and ET with ABA in regulating plant defense against *B.c.* (De Bruyne et al., 2014; Jiang et al., 2016). Although we did not observe an increase in their content upon β -I application, enhanced JA and SA level at later time points in β -I+*B.c* treatment might also contribute to defense against *B.c.*.

We also evaluated if the effect of β -I is conserved in other model plants. Infection experiments in wild type cultivars of tobacco and tomato revealed a similar positive effect on resistance against *B.c.*. Moreover, transgenic tomato fruits with enhanced β -I content exhibited increased resistance to *B.c.*. These results point to a fairly conserved mechanism in *Brassicaceae* and *Solanaceae*, both dicotyledonous species and main targets of *B.c.*. In addition, time-course infection experiments in two tobacco cultivars (*Xanthi* and *Petit havana*) revealed that β -I treatment might delay plant decay by 6-9 dpi (Fig. S22).

Taken together, our results showed that β -I is a signaling molecule that provokes a transcriptional response overlapping with that caused by *B.c.* and following a defense-growth trade-off. Moreover, we demonstrated that this apocarotenoid could enhance *Arabidopsis* resistance to *B.c.*, likely via modulating hormonal contents and regulating the expression of genes involved in plant defense, which is also conserved in tobacco and tomato. These findings uncover a new member of the apocarotenoid family of hormones and regulatory metabolites and open up the possibility of developing a bio-fungicide that could replace the heavy use of chemical fungicides in field and post-harvesting.

Materials and Methods

Plant genotype and growth conditions

Arabidopsis thaliana Col-0 seeds and other mutant genotypes were grown on Jiffy soil (Jiffy Product International AS, Norway). They were placed at 4°C for three days before being

438 transferred to a growth chamber with 16 h light/8 h dark and 180 umol/m s illumination at 21°C
439 day/18°C night for four weeks. Tobacco (*Nicotiana tabacum* cv. *Xanthi NN* and *N. tabacum* cv.
440 *Petit Havana*) and tomato (*Solanum Lycopersicum L.* cv. IPA6+) wild type plants were grown
441 under greenhouse conditions with 16 h light/8 h dark and 180 umol/m s at 28°C. For *B. cinerea*
442 assays, Arabidopsis, tobacco and tomato wild type seeds were sown in individual pots and grown
443 for 4-6 weeks depending on the species. *B. cinerea* infection in detached tomato leaves was
444 performed using 10-week-old F1 plants of the interspecific hybrid 'Maxifort' (*Solanum*
445 *lycopersicum* L. × *Solanum habrochaites* S. De Ruiter, Bergshenhoek, The Netherlands). For
446 fruit infection experiments, we used greenhouse-harvested tomato fruits from cultivars Micro-
447 Tom and transgenic pNLyc#2 (cv. IPA6+) and H.C. lines (cv. Red Setter) (Apel and Bock, 2009;
448 Mi et al., 2022). All tomato plants were grown under greenhouse conditions, with scheduled 20-
449 20-20 fertilization once a week.

450 ***B. cinerea* inoculation of Arabidopsis plants**

451 For pathogen assays, detached leaves from four-week-old Arabidopsis plants were used to
452 perform infection experiments using *B. cinerea*. In addition, intact plant infection experiments
453 were also performed to avoid any hormonal perturbation in plants. First, detached leaves were
454 sprayed twice within 24 hours (at 16 and 24 h prior *B. cinerea* infection) with 1% acetone
455 (mock) or β-ionone (50 μM; dissolved in 1% acetone). These plants were drop-inoculated with 5
456 μl *B. cinerea* conidial suspension containing 2.5×10^5 spores ml⁻¹ or spray-inoculated with *B.*
457 *cinerea* (2.5×10^5 spores ml⁻¹) on the whole plants. Arabidopsis plants sprayed twice with β-
458 ionone within 24 hours with 1% acetone or β-ionone (50 μM; dissolved in 1% acetone and
459 0.05% tween 20) were used as the control. To establish the disease for drop inoculation, detached
460 leaves were placed together with moist Whatman filter paper on 245 mm square bioassay dishes
461 and sealed with parafilm. Treated/infected plants were covered with a plastic dome and sealed
462 with tape to maintain high humidity. All the experimental groups were kept under the same
463 conditions for 3-4 days at room temperature under dark conditions. For Arabidopsis metabolites
464 and LC-MS based hormone quantification, samples were collected at 0, 12, 24, 48, and 72 hours.
465 Five biological replicates were used and each sample contained ~250 mg of tissue (fresh weight).

466 **Lesion size measurements**

467 Arabidopsis Col-0 seeds were sown in Jiffy soil and grown in a growth chamber under controlled
468 climate conditions as described above. Mature rosette leaves were detached from four-week-old

469 plants and subjected to treatments or infection as described above. Three to four days post-
470 inoculation (dpi), lesion size was measured. Photographs of the infected plants with the lesions
471 were taken and lesion size measurements were quantified using ImageJ 1. x software (Schneider
472 et al., 2012).

473 **RNA extraction**

474 Total RNA was prepared from *Arabidopsis*, tobacco and tomato plant material. Plant samples
475 were collected from leaf tissue and placed in 2 ml microcentrifuge tubes together with three steel
476 beads (2.3-mm diameter), further frozen in liquid nitrogen and grounded for 30 seconds (Mini-
477 Beadbeater-96, #1001, Biospec Products). For the RNAseq experiment, plant material was
478 collected following the experimental design described in Fig. S2. Total RNA was extracted using
479 the Direct-zol RNA Miniprep Plus Kit (Zymo Research according to the manufacturer's
480 instructions; see Methods S1).

481 **RNAseq analysis of Differentially Expressed Genes (DEGs)**

482 The analysis of DEGs was performed between two conditions, β -ionone treated *Arabidopsis*
483 plants at 3 h vs. 24 h, β -ionone at 24 h vs. *B. cinerea* at 24 h, and β -ionone + *B. cinerea* treated
484 plants at 24 h vs. 48 h (three biological replicates per control) was performed using DESeq2 R
485 package (Yu et al., 2012). DESeq2 provides statistical routines for determining differential
486 expression in digital gene expression data using a model based on the negative binomial
487 distribution (Dai et al., 2021). The resulting *p* values were adjusted using the Benjamini and
488 Hochberg's approach for controlling the False Discovery Rate (FDR). Genes with an adjusted *p*
489 < 0.05 found by DESeq2 and at least an increase of 20% and a reduction of 35% were assigned
490 as differentially expressed.

491 **Gene expression analysis by qPCR**

492 cDNA was synthesized from 1 μ g of the total RNA using iScript Kit (BIO-RAD Laboratories,
493 Inc, 2000 Alfred Nobel Drive, Hercules, CA; USA) according to the manufacturer's instructions.
494 The *B. cinerea* DNA was quantified in infected plants by qPCR analysis, based on the relative
495 expression of *B. cinerea ActinA* (*BcActinA*) to the *Arabidopsis* (*Actin*), tobacco (*Ubiquitin*) and
496 tomato (*GADPH*) housekeeping genes (Table S1). Expression analysis was analyzed using gene-
497 specific primers (Table S1). The statistical significance was determined via Student's unpaired,
498 two-tailed *t*-test using GraphPad Prism software. The data are shown as means and the error bars

499 representing the \pm standard deviation (SD) of four independent biological replicates. The mean
500 values showing asterisks are significantly different from the corresponding control ($P<0.05$).

501 **Quantification of plant metabolites and hormones**

502 For the quantification of endogenous metabolites and hormones, about 250 mg (fresh weight) of
503 grounded *Arabidopsis* leaves, spiked with internal standards, i.e., 1 ng of D₃- β -ionone, 1 ng of
504 D₆-ABA, and 10 ng of D₄-SA, were extracted with 1.5 mL of methanol containing 0.1% BHT in
505 an ultrasound bath for 15 minutes. After centrifugation at 13000 rpm and 4°C for 8 minutes. The
506 supernatant was collected and kept at -20 °C. The residue was re-extracted with 1 mL of 10 %
507 methanol with 1% acetic acid in an ultrasound bath for 5 minutes, followed by incubation on ice
508 under shaking at 500 rpm for 45 minutes. After centrifugation at 4000 rpm at 4 °C for 8 minutes,
509 the two supernatants were combined and filtered by using a 0.22 μ m filter. UHPLC-MS/MS
510 analysis of plant metabolites and hormones was performed on a Dionex Ultimate 3000 UHPLC
511 system coupled with a Q-Orbitrap-MS (Q-Exactive plus MS, Thermo Scientific) with a heated-
512 electrospray ionization source according to (Mi et al., 2019; Jia et al., 2021).

513 ***B. cinerea* infection of tobacco and tomato plants**

514 For infection experiments in tobacco and tomato we followed the same protocol as for
515 *Arabidopsis* but with slight modifications for leaves and fruits (see Methods S1).

516 **Statistical Analyses**

517 The statistical analyses were performed in “R” (RNAseq) or with the software GraphPad Prism
518 9.0 employing *t*-test or ANOVA test depending on the experimental design of each experiment.
519 The tests are described within Materials and Methods section for each experiment and also in the
520 legend of each figure.

521

522 **Acknowledgements**

523 We are grateful to Kit Xi Liew for his assistance in the quantification of hormones and
524 metabolites, Dr. Justine Braguy, Dr. Jian You Wang for their advice and discussions, Lamis
525 Berqdar for her technical support. Funding for this work was provided by Khalifa Center for
526 Genetic Engineering (KCGEB) (31R286 to Sy. A.) and baseline BAS/1/1039-01-01 given to Sa.
527 A. from King Abdullah University of Science and Technology (KAUST).

528 **Author Contributions**

529 Sy. A. and Sa. A. conceived the project; A. F., J.C.M., Sh. A., A.S. performed the Arabidopsis
530 inoculation studies. J.C.M conceived the tomato and tobacco study and performed it with A.F.
531 J.M. quantified the hormones. A.F. and J.C.M. performed the expression analysis and the
532 RNAseq experiments. A. F. and J.C.M. analyzed the data. J.C.M. and A. F. wrote the paper. Sh.
533 A., Sy. A., and Sa. A. revised the paper.

534 **Data availability**

535 All data is included in the main body or supplemental information.

536 **Competing interest**

537 Authors declare there is not competing interest.

538

539 **References**

540 **AbuQamar S, Moustafa K, Tran LSP** (2017) Mechanisms and strategies of plant defense against
541 Botrytis cinerea. *Critical Reviews in Biotechnology* **37**: 262-274
542 **Al-Babili S, Bouwmeester HJ** (2015) Strigolactones, a novel carotenoid-derived plant hormone. *Annu
543 Rev Plant Biol* **66**: 161-186
544 **Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H,
545 Beyer P, Al-Babili S** (2012) The Path from beta-Carotene to Carlactone, a Strigolactone-Like
546 Plant Hormone. *Science* **335**: 1348-1351
547 **Aloum L, Alefishat E, Adem A, Petroianu G** (2020) Ionone Is More than a Violet's Fragrance: A
548 Review. *Molecules* **25**
549 **Antico CJ, Colon C, Banks T, Ramonell KM** (2012) Insights into the role of jasmonic acid-mediated
550 defenses against necrotrophic and biotrophic fungal pathogens. *Frontiers in Biology* **7**: 48-56
551 **Apel W, Bock R** (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced
552 lycopene-to-provitamin A conversion. *Plant Physiol* **151**: 59-66
553 **Aranega-Bou P, Leyva MD, Finiti I, Garcia-Agustin P, Gonzalez-Bosch C** (2014) Priming of plant
554 resistance by natural compounds. Hexanoic acid as a model. *Frontiers in Plant Science* **5**
555 **Arondel VV, Vergnolle C, Cantrel C, Kader J** (2000) Lipid transfer proteins are encoded by a small
556 multigene family in *Arabidopsis thaliana*. *Plant Sci* **157**: 1-12
557 **Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F, Hofte M**
558 (2007) Resistance to *Botrytis cinerea* in *sitiens*, an abscisic acid-deficient tomato mutant, involves
559 timely production of hydrogen peroxide and cell wall modifications in the epidermis. *Plant
560 Physiol* **144**: 1863-1877
561 **Audenaert K, De Meyer GB, Hofte MM** (2002) Abscisic acid determines basal susceptibility of tomato
562 to *Botrytis cinerea* and suppresses salicylic acid-dependent signaling mechanisms. *Plant
563 Physiology* **128**: 491-501
564 **Auldrige ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback
565 M, DellaPenna D, McCarty DR, Klee HJ** (2006) Characterization of three members of the
566 *Arabidopsis* carotenoid cleavage dioxygenase family demonstrates the divergent roles of this
567 multifunctional enzyme family. *Plant J* **45**: 982-993
568 **Barajas-Lopez JD, Blanco NE, Strand A** (2013) Plastid-to-nucleus communication, signals controlling
569 the running of the plant cell. *Biochimica Et Biophysica Acta-Molecular Cell Research* **1833**: 425-
570 437

571 **Belkhadir Y, Jaillais Y, Epple P, Balsemao-Pires E, Dangl JL, Chory J** (2012) Brassinosteroids
572 modulate the efficiency of plant immune responses to microbe-associated molecular patterns.
573 Proceedings of the National Academy of Sciences of the United States of America **109**: 297-302

574 **Beltran JC, Stange C** (2016) Apocarotenoids: A New Carotenoid-Derived Pathway. *Subcell Biochem*
575 **79**: 239-272

576 **Bruno M, Beyer P, Al-Babili S** (2015) The potato carotenoid cleavage dioxygenase 4 catalyzes a single
577 cleavage of beta-ionone ring-containing carotenes and non-epoxidated xanthophylls. *Archives of*
578 *Biochemistry and Biophysics* **572**: 126-133

579 **Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S** (2014) On the substrate- and
580 stereospecificity of the plant carotenoid cleavage dioxygenase 7. *FEBS Lett* **588**: 1802-1807

581 **Bruno M, Koschmieder J, Wuest F, Schaub P, Fehling-Kaschek M, Timmer J, Beyer P, Al-Babili S**
582 (2016) Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory
583 metabolites. *J Exp Bot* **67**: 5993-6005

584 **Caceres LA, Lakshminarayan S, Yeung KK, McGarvey BD, Hannoufa A, Sumarah MW, Benitez**
585 **X, Scott IM** (2016) Repellent and Attractive Effects of alpha-, beta-, and Dihydro-beta- Ionone to
586 Generalist and Specialist Herbivores. *J Chem Ecol* **42**: 107-117

587 **Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ** (2016) Learning the Languages of the
588 Chloroplast: Retrograde Signaling and Beyond. *Annu Rev Plant Biol* **67**: 25-53

589 **Chassot C, Nawrath C, Metraux JP** (2007) Cuticular defects lead to full immunity to a major plant
590 pathogen. *Plant J* **49**: 972-980

591 **Conrath U** (2009) Priming of Induced Plant Defense Responses. *Plant Innate Immunity* **51**: 361-395

592 **Curvers K, Seifi H, Mouille G, de Rycke R, Asselbergh B, Van Hecke A, Vanderschaeghe D, Hofte**
593 **H, Callewaert N, Van Breusegem F, Hofte M** (2010) Abscisic acid deficiency causes changes
594 in cuticle permeability and pectin composition that influence tomato resistance to *Botrytis*
595 *cinerea*. *Plant Physiol* **154**: 847-860

596 **D'Alessandro S, Ksas B, Havaux M** (2018) Decoding beta-Cyclocitral-Mediated Retrograde Signaling
597 Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress. *Plant*
598 *Cell* **30**: 2495-2511

599 **D'Alessandro S, Mizokami Y, Legeret B, Havaux M** (2019) The Apocarotenoid beta-Cyclocitric Acid
600 Elicits Drought Tolerance in Plants. *iScience* **19**: 461-473

601 **De Bruyne L, Hofte M, De Vleesschauwer D** (2014) Connecting growth and defense: the emerging
602 roles of brassinosteroids and gibberellins in plant innate immunity. *Mol Plant* **7**: 943-959

603 **De Lorenzo G, Brutus A, Savatin DV, Sicilia F, Cervone F** (2011) Engineering plant resistance by
604 constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs).
605 *FEBS Lett* **585**: 1521-1528

606 **de Souza A, Wang JZ, Dehesh K** (2017) Retrograde Signals: Integrators of Interorganellar
607 Communication and Orchestrators of Plant Development. *Annu Rev Plant Biol* **68**: 85-108

608 **Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ,**
609 **Dickman M, Kahmann R, Ellis J, Foster GD** (2012) The Top 10 fungal pathogens in molecular
610 plant pathology. *Molecular Plant Pathology* **13**: 414-430

611 **Denance N, Sanchez-Vallet A, Goffner D, Molina A** (2013) Disease resistance or growth: the role of
612 plant hormones in balancing immune responses and fitness costs. *Frontiers in Plant Science* **4**

613 **Dickinson AJ, Lehner K, Mi J, Jia KP, Mijar M, Dinneny J, Al-Babili S, Benfey PN** (2019) beta-
614 Cyclocitral is a conserved root growth regulator. *Proc Natl Acad Sci U S A* **116**: 10563-10567

615 **Dunaevskii Ia E, Tsybina TA, Beliakova GA, Domash VI, Shapno TP, Zabreiko SA, Belozerskii**
616 **MA** (2005) [Proteinase inhibitors as antistress proteins in higher plants]. *Prikl Biokhim Mikrobiol*
617 **41**: 392-396

618 **Fiil BK, Petersen M** (2011) Constitutive expression of MKS1 confers susceptibility to *Botrytis cinerea*
619 infection independent of PAD3 expression. *Plant Signal Behav* **6**: 1425-1427

620 **Galletti R, Ferrari S, De Lorenzo G** (2011) Arabidopsis MPK3 and MPK6 play different roles in basal
621 and oligogalacturonide- or flagellin-induced resistance against *Botrytis cinerea*. *Plant Physiol*
622 **157**: 804-814

623 **Giuliano G, Al-Babili S, von Lintig J** (2003) Carotenoid oxygenases: cleave it or leave it. *Trends in*
624 *plant science* **8**: 145-149

625 **Glazebrook J** (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.
626 *Annu Rev Phytopathol* **43**: 205-227

627 **Govrin EM, Levine A** (2000) The hypersensitive response facilitates plant infection by the necrotrophic
628 pathogen *Botrytis cinerea*. *Curr Biol* **10**: 751-757

629 **Griffin SG, Wyllie SG, Markham JL, Leach DN** (1999) The role of structure and molecular properties
630 of terpenoids in determining their antimicrobial activity. *Flavour and Fragrance Journal* **14**: 322-
631 332

632 **Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Flokova K, Abuauf H, Ntui VO, Guo XJ,**
633 **Charnikhova T, Al-Babili S, Bouwmeester HJ, Ruyter-Spira C** (2018) The interaction of
634 strigolactones with abscisic acid during the drought response in rice. *Journal of Experimental*
635 *Botany* **69**: 2403-2414

636 **Harada K, Ozaki K, Tsuzuki S, Kato H, Hasegawa M, Kuroda EK, Arii S, Tsuji K** (2009) Blue color
637 formation of cyanobacteria with beta-cyclocitral. *J Chem Ecol* **35**: 1295-1301

638 **Hassan SAA, Bakhiet SA** (2017) Optimization of Antibacterial Compounds Production by *Aspergillus*
639 *fumigatus* Isolated from Sudanese Indigenous Soil. *International Biological and Biomedical*
640 *Journal* **3**: 203-208

641 **He X, Jiang J, Wang CQ, Dehesh K** (2017) ORA59 and EIN3 interaction couples jasmonate-ethylene
642 synergistic action to antagonistic salicylic acid regulation of PDF expression. *J Integr Plant Biol*
643 **59**: 275-287

644 **Heller J, Tudzynski P** (2011) Reactive oxygen species in phytopathogenic fungi: signaling,
645 development, and disease. *Annu Rev Phytopathol* **49**: 369-390

646 **Hernandez-Verdeja T, Strand A** (2018) Retrograde Signals Navigate the Path to Chloroplast
647 Development. *Plant Physiology* **176**: 967-976

648 **Hooper CM, Castleden IR, Tanz SK, Aryamanesh N, Millar AH** (2017) SUBA4: the interactive data
649 analysis centre for *Arabidopsis* subcellular protein locations. *Nucleic Acids Res* **45**: D1064-
650 D1074

651 **Hooper CM, Tanz SK, Castleden IR, Vacher MA, Small ID, Millar AH** (2014) SUBACon: a
652 consensus algorithm for unifying the subcellular localization data of the *Arabidopsis* proteome.
653 *Bioinformatics* **30**: 3356-3364

654 **Hou X, Rivers J, Leon P, McQuinn RP, Pogson BJ** (2016) Synthesis and Function of Apocarotenoid
655 Signals in Plants. *Trends Plant Sci* **21**: 792-803

656 **Jia KP, Dickinson AJ, Mi J, Cui G, Xiao TT, Kharbatia NM, Guo X, Sugiono E, Aranda M, Blilou**
657 **I, Rueping M, Benfey PN, Al-Babili S** (2019) Anchorene is a carotenoid-derived regulatory
658 metabolite required for anchor root formation in *Arabidopsis*. *Sci Adv* **5**: eaaw6787

659 **Jia KP, Mi J, Ablazov A, Ali S, Yang Y, Balakrishna A, Berqdar L, Feng Q, Blilou I, Al-Babili S**
660 (2021) Iso-anchorene is an endogenous metabolite that inhibits primary root growth in
661 *Arabidopsis*. *Plant J* **107**: 54-66

662 **Jiang Z, Dong X, Zhang Z** (2016) Network-Based Comparative Analysis of *Arabidopsis* Immune
663 Responses to *Golovinomyces orontii* and *Botrytis cinerea* Infections. *Sci Rep* **6**: 19149

664 **Kazan K, Manners JM** (2013) MYC2: the master in action. *Mol Plant* **6**: 686-703

665 **Kurdyukov S, Faust A, Nawrath C, Bar S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler**
666 **H, Metraux JP, Yephremov A** (2006) The epidermis-specific extracellular BODYGUARD
667 controls cuticle development and morphogenesis in *Arabidopsis*. *Plant Cell* **18**: 321-339

668 **L'Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek HJ,**
669 **Hess S, Mir R, Leon J, Lamotte O, Metraux JP** (2011) A permeable cuticle is associated with

670 the release of reactive oxygen species and induction of innate immunity. *PLoS Pathog* **7**:
671 e1002148

672 **Legard DE, Xiao CL, Mertely JC, Chandler CK** (2000) Effects of Plant Spacing and Cultivar on
673 Incidence of Botrytis Fruit Rot in Annual Strawberry. *Plant Dis* **84**: 531-538

674 **Lemos M, Xiao Y, Bjornson M, Wang JZ, Hicks D, Souza A, Wang CQ, Yang P, Ma S, Dinesh-
675 Kumar S, Dehesh K** (2016) The plastidial retrograde signal methyl erythritol
676 cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk. *J Exp Bot* **67**:
677 1557-1566

678 **Li LL, Li Z, Lou Y, Meiners SJ, Kong CH** (2022) (-)-Loliolide is a general signal of plant stress that
679 activates jasmonate-related responses. *New Phytol*

680 **Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE** (2015) Negative regulation of ABA signaling
681 by WRKY33 is critical for *Arabidopsis* immunity towards *Botrytis cinerea* 2100. *Elife* **4**: e07295

682 **Liu S, Ziegler J, Zeier J, Birkenbihl RP, Somssich IE** (2017) *Botrytis cinerea* B05.10 promotes disease
683 development in *Arabidopsis* by suppressing WRKY33-mediated host immunity. *Plant Cell
684 Environ* **40**: 2189-2206

685 **Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R** (2003) ETHYLENE RESPONSE FACTOR1
686 integrates signals from ethylene and jasmonate pathways in plant defense. *Plant Cell* **15**: 165-178

687 **Mi J, Jia KP, Balakrishna A, Wang JY, Al-Babili S** (2019) An LC-MS profiling method reveals a
688 route for apocarotene glycosylation and shows its induction by high light stress in *Arabidopsis*.
689 *Analyst* **144**: 1197-1204

690 **Mi J, Vallarino JG, Petrik I, Novak O, Correa SM, Chodasiewicz M, Havaux M, Rodriguez-
691 Concepcion M, Al-Babili S, Fernie AR, Skirycz A, Moreno JC** (2022) A manipulation of
692 carotenoid metabolism influence biomass partitioning and fitness in tomato. *Metab Eng* **70**: 166-
693 180

694 **Moreno JC, Mi J, Alagoz Y, Al-Babili S** (2021) Plant apocarotenoids: from retrograde signaling to
695 interspecific communication. *Plant J* **105**: 351-375

696 **Mur LAJ, Sivakumaran A, Mandon J, Cristescu SM, Harren FJM, Hebelstrup KH** (2012) Haemoglobin
697 modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms
698 against pathogens. *Journal of Experimental Botany* **63**: 4375-4387

699 **Nott A, Jung HS, Koussevitzky S, Chory J** (2006) Plastid-to-nucleus retrograde signaling. *Annu Rev
700 Plant Biol* **57**: 739-759

701 **Onkokesung N, Reichelt M, Wright LP, Phillips MA, Gershenson J, Dicke M** (2019) The plastidial
702 metabolite 2-C-methyl-D-erythritol-2,4-cyclodiphosphate modulates defence responses against
703 aphids. *Plant Cell Environ* **42**: 2309-2323

704 **Ozaki K, Ohta A, Iwata C, Horikawa A, Tsuji K, Ito E, Ikai Y, Harada K** (2008) Lysis of
705 cyanobacteria with volatile organic compounds. *Chemosphere* **71**: 1531-1538

706 **Panebianco A, Castello I, Cirvilleri G, Perrone G, Epifani F, Ferrara M, Polizzi G, Walters DR,
707 Vitale A** (2015) Detection of *Botrytis cinerea* field isolates with multiple fungicide resistance
708 from table grape in Sicily. *Crop Protection* **77**: 65-73

709 **Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC** (2009) Networking by small-molecule
710 hormones in plant immunity. *Nat Chem Biol* **5**: 308-316

711 **Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M** (2012) Carotenoid
712 oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. *Proc
713 Natl Acad Sci U S A* **109**: 5535-5540

714 **Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J, Zhang S** (2008) A fungal-responsive MAPK
715 cascade regulates phytoalexin biosynthesis in *Arabidopsis*. *Proc Natl Acad Sci U S A* **105**: 5638-
716 5643

717 **Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N** (2017) Reactive oxygen
718 species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus
719 *Botrytis cinerea*. *Plant J* **92**: 761-773

720 **Rosslenbroich HJ, Stuebler D** (2000) Botrytis cinerea - history of chemical control and novel fungicides
721 for its management. *Crop Protection* **19**: 557-561

722 **Rubio-Moraga A, Rambla JL, Fernandez-de-Carmen A, Trapero-Mozos A, Ahrazem O, Orzaez D, Granell A, Gomez-Gomez L** (2014) New target carotenoids for CCD4 enzymes are revealed
723 with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from
724 *Crocus sativus*. *Plant Mol Biol* **86**: 555-569

725 **Salt SD, Tuzun S, Kuc J** (1986) Effects of Beta-Ionone and Abscisic-Acid on the Growth of Tobacco
726 and Resistance to Blue Mold - Mimicry of Effects of Stem Infection by *Peronospora-Tabacina*
727 Adam. *Physiological and Molecular Plant Pathology* **28**: 287-297

728 **Schmidt K, Pflugmacher M, Klages S, Maser A, Mock A, Stahl DJ** (2008) Accumulation of the
729 hormone abscisic acid (ABA) at the infection site of the fungus *Cercospora beticola* supports the
730 role of ABA as a repressor of plant defence in sugar beet. *Mol Plant Pathol* **9**: 661-673

731 **Schneider CA, Rasband WS, Eliceiri KW** (2012) NIH Image to ImageJ: 25 years of image analysis.
732 *Nat Methods* **9**: 671-675

733 **Serrano M, Coluccia F, Torres M, L'Haridon F, Metraux JP** (2014) The cuticle and plant defense to
734 pathogens. *Front Plant Sci* **5**: 274

735 **Sham A, Moustafa K, Al-Shamisi S, Alyan S, Iratni R, AbuQamar S** (2017) Microarray analysis of
736 *Arabidopsis* WRKY33 mutants in response to the necrotrophic fungus *Botrytis cinerea*. *PLoS*
737 *One* **12**: e0172343

738 **Shlezinger N, Minz A, Gur Y, Hatam I, Dagdas YF, Talbot NJ, Sharon A** (2011) Anti-apoptotic
739 machinery protects the necrotrophic fungus *Botrytis cinerea* from host-induced apoptotic-like cell
740 death during plant infection. *PLoS Pathog* **7**: e1002185

741 **Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Metraux JP, Nawrath C** (2000) Transgenic
742 *Arabidopsis* plants expressing a fungal cutinase show alterations in the structure and
743 properties of the cuticle and postgenital organ fusions. *Plant Cell* **12**: 721-738

744 **Sivakumaran A, Akinyemi A, Mandon J, Cristescu SM, Hall MA, Harren FJ, Mur LA** (2016) ABA
745 Suppresses *Botrytis cinerea* Elicited NO Production in Tomato to Influence H₂O₂ Generation and
746 Increase Host Susceptibility. *Front Plant Sci* **7**: 709

747 **Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M**
748 (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic
749 pathways and other biological processes. *Plant J* **37**: 914-939

750 **Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert
751 WF** (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways
752 in *Arabidopsis* are essential for resistance to distinct microbial pathogens. *Proc Natl Acad Sci U S
753 A* **95**: 15107-15111

754 **Tognolli M, Penel C, Greppin H, Simon P** (2002) Analysis and expression of the class III peroxidase
755 large gene family in *Arabidopsis thaliana*. *Gene* **288**: 129-138

756 **Torres MA, Morales J, Sanchez-Rodriguez C, Molina A, Dangl JL** (2013) Functional interplay
757 between *Arabidopsis* NADPH oxidases and heterotrimeric G protein. *Mol Plant Microbe Interact*
758 **26**: 686-694

759 **Toth Z, Winterhagen P, Kalapos B, Su Y, Kovacs L, Kiss E** (2016) Expression of a Grapevine NAC
760 Transcription Factor Gene Is Induced in Response to Powdery Mildew Colonization in Salicylic
761 Acid-Independent Manner. *Scientific Reports* **6**: 30825

762 **Utama IM, Wills RB, Ben-Yehoshua S, Kuek C** (2002) In vitro efficacy of plant volatiles for inhibiting
763 the growth of fruit and vegetable decay microorganisms. *J Agric Food Chem* **50**: 6371-6377

764 **Valeri MC, Novi G, Weits DA, Mensuali A, Perata P, Loret E** (2021) *Botrytis cinerea* induces local
765 hypoxia in *Arabidopsis* leaves. *New Phytol* **229**: 173-185

766 **Wang JY, Haider I, Jamil M, Fiorilli V, Saito Y, Mi J, Baz L, Kountche BA, Jia KP, Guo X,
767 Balakrishna A, Ntui VO, Reinke B, Volpe V, Gojobori T, Blilou I, Lanfranco L, Bonfante P,
768 Al-Babili S** (2019) The apocarotenoid metabolite zaxinone regulates growth and strigolactone
769 biosynthesis in rice. *Nat Commun* **10**: 810

770

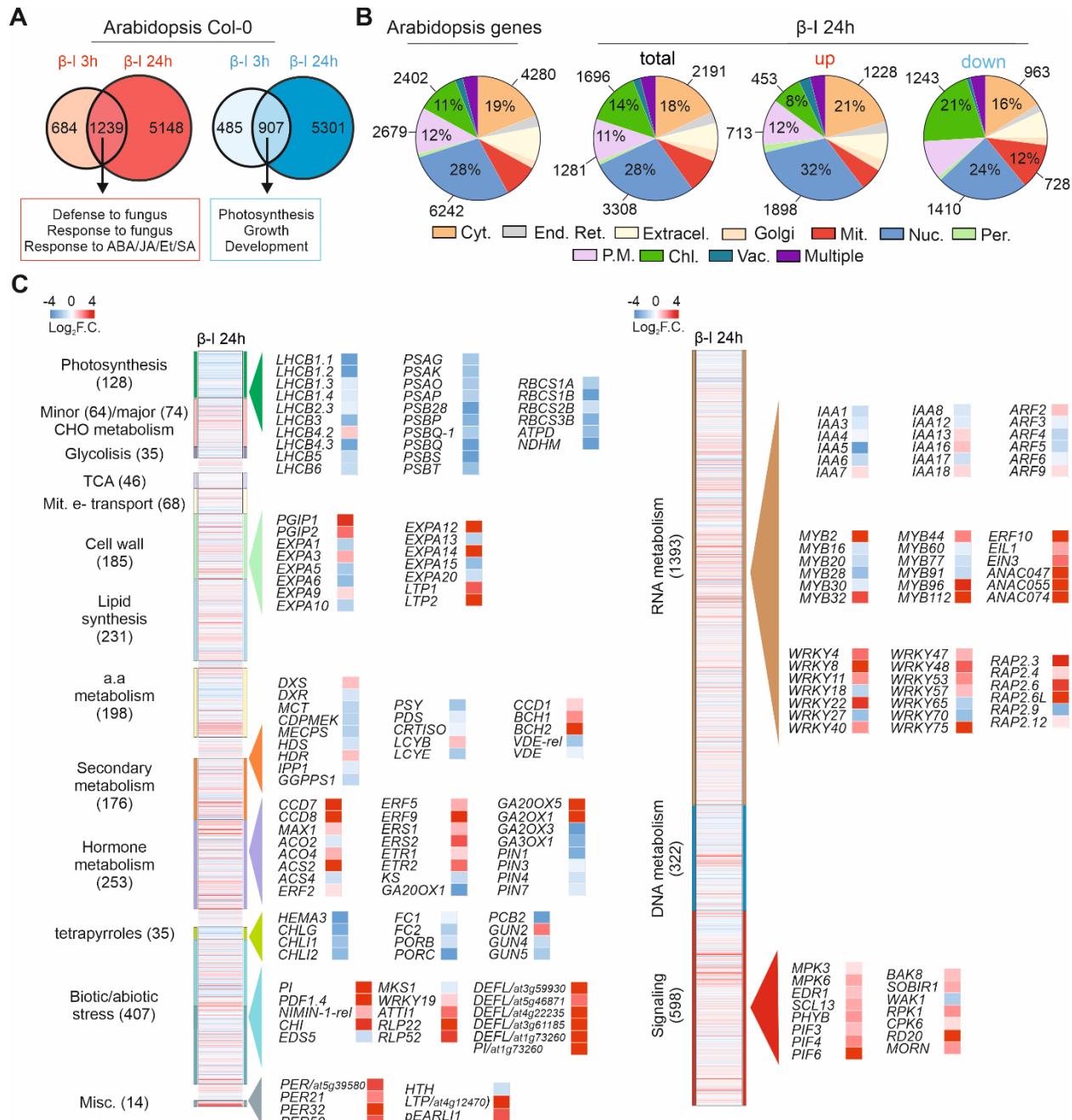
771 **Wei S, Hannoufa A, Soroka J, Xu N, Li X, Zebarjadi A, Gruber M** (2011) Enhanced beta-ionone
772 Emission in Arabidopsis Over-expressing AtCCD1 Reduces Feeding Damage in vivo by the
773 Crucifer Flea Beetle. *Environmental Entomology* **40**: 1622-1630

774 **Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter**
775 **L, Breeze E, Kiddle SJ, Rhodes J, Atwell S, Kliebenstein DJ, Kim YS, Stegle O, Borgwardt**
776 **K, Zhang C, Tabrett A, Legaie R, Moore J, Finkenstadt B, Wild DL, Mead A, Rand D,**
777 **Beynon J, Ott S, Buchanan-Wollaston V, Denby KJ** (2012) Arabidopsis defense against
778 Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal
779 transcriptomic analysis. *Plant Cell* **24**: 3530-3557

780 **Woodson JD, Chory J** (2008) Coordination of gene expression between organellar and nuclear genomes.
781 *Nat Rev Genet* **9**: 383-395

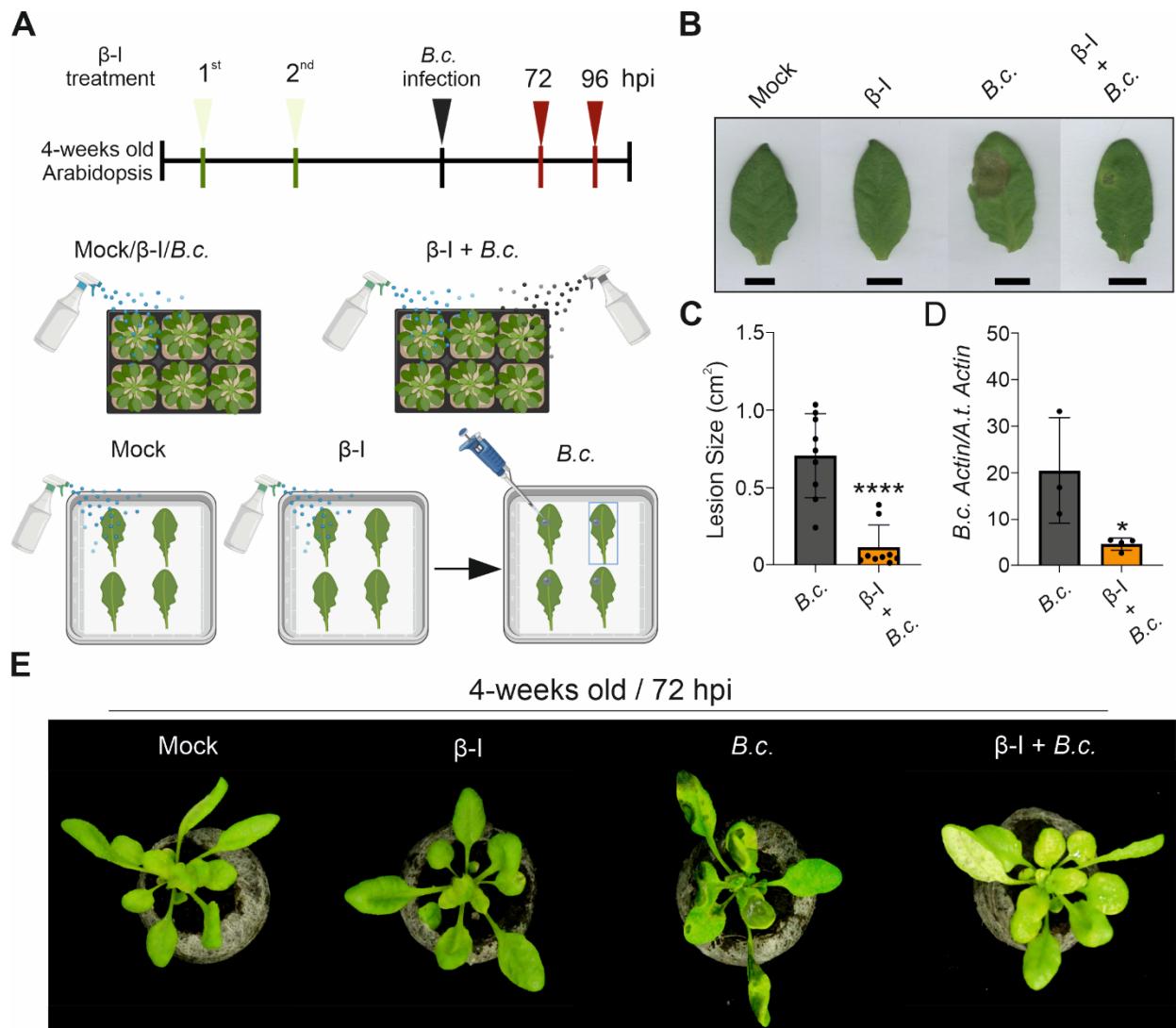
782 **Wu GZ, Bock R** (2021) GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins
783 adjust nuclear gene expression to plastid biogenesis. *Plant Cell* **33**: 457-474

784 **Yabuzaki J** (2017) Carotenoids Database: structures, chemical fingerprints and distribution among
785 organisms. *Database-the Journal of Biological Databases and Curation*


786 **Zhang W, Fraiture M, Kolb D, Loffelhardt B, Desaki Y, Boutrot FF, Tor M, Zipfel C, Gust AA,**
787 **Brunner F** (2013) Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of
788 BIR1-1/EVERSHEd mediate innate immunity to necrotrophic fungi. *Plant Cell* **25**: 4227-4241

789 **Zhao H, Kim YK, Huang L, Xiao CL** (2010) Resistance to thiabendazole and baseline sensitivity to
790 fludioxonil and pyrimethanil in Botrytis cinerea populations from apple and pear in Washington
791 State. *Postharvest Biology and Technology* **56**: 12-18

792 **Zheng Z, Qamar SA, Chen Z, Mengiste T** (2006) Arabidopsis WRKY33 transcription factor is required
793 for resistance to necrotrophic fungal pathogens. *Plant J* **48**: 592-605


794

Figures

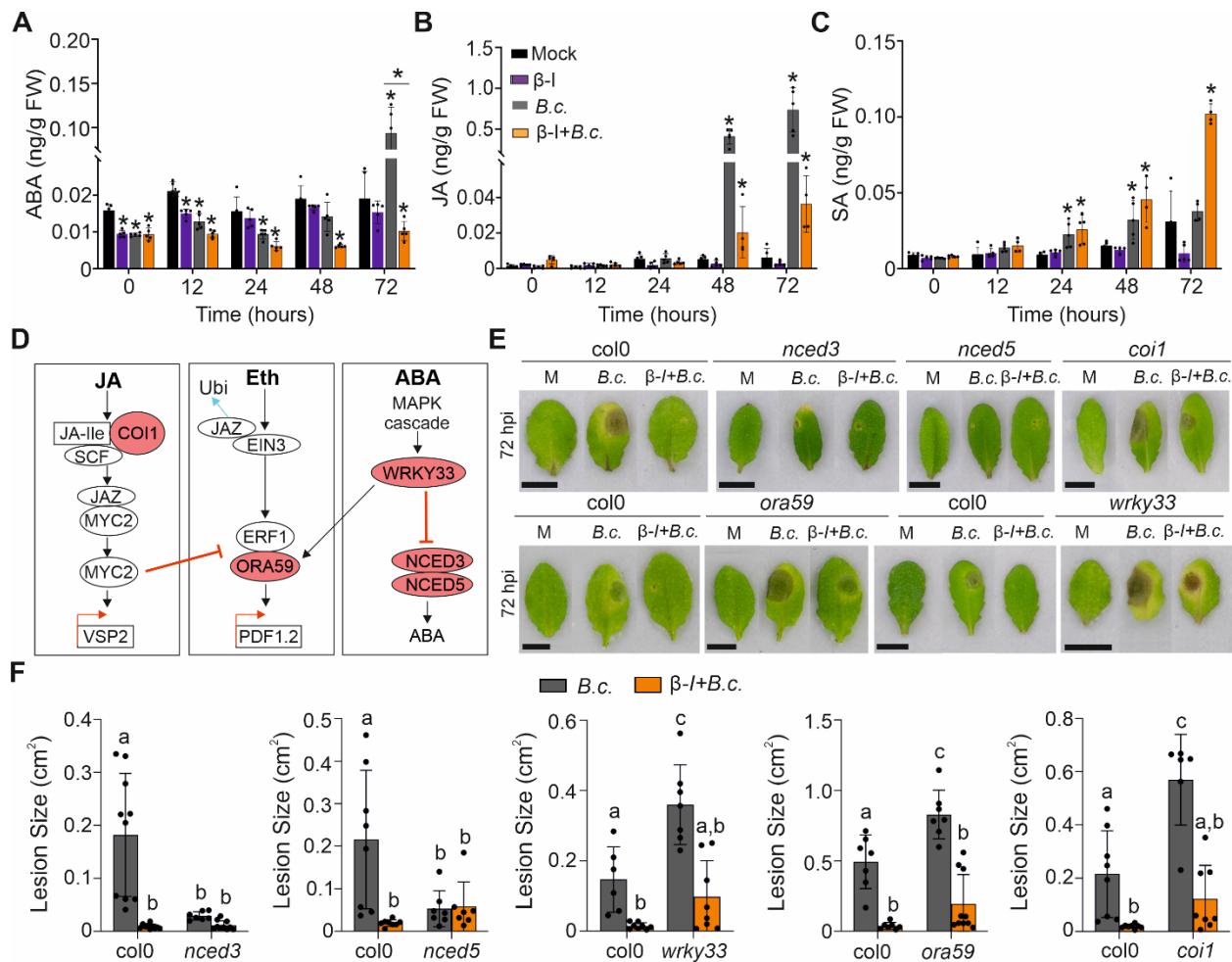


Fig. 1. Differentially expressed genes (DEGs) of plants treated with β -ionone. (A) Venn diagrams of DEGs identified through RNAseq in *Arabidopsis* plants treated with β -I at 3 and 24 hpt. Venn diagrams representing up- and downregulated genes are shown in red and blue, respectively. Some of the most important GO biological processes enriched in the overlapping genes are shown (Table S1; Fig. S4). (B) Distribution of cellular compartments for genes present in the reference *Arabidopsis* genome (TAIR) and DEGs in the β -I treatment at 3 and 24 hours post treatment (hpt). Subcellular localization analysis was performed in SUBA4 online software (<https://suba.live/>) (Dataset S7-S9 for full subcellular localization list). Genes encoding proteins with 2 or more localizations were grouped in the “multiple” category. Each color in the pie chart represents a cellular compartment. (C) Heatmap representation of transcriptional

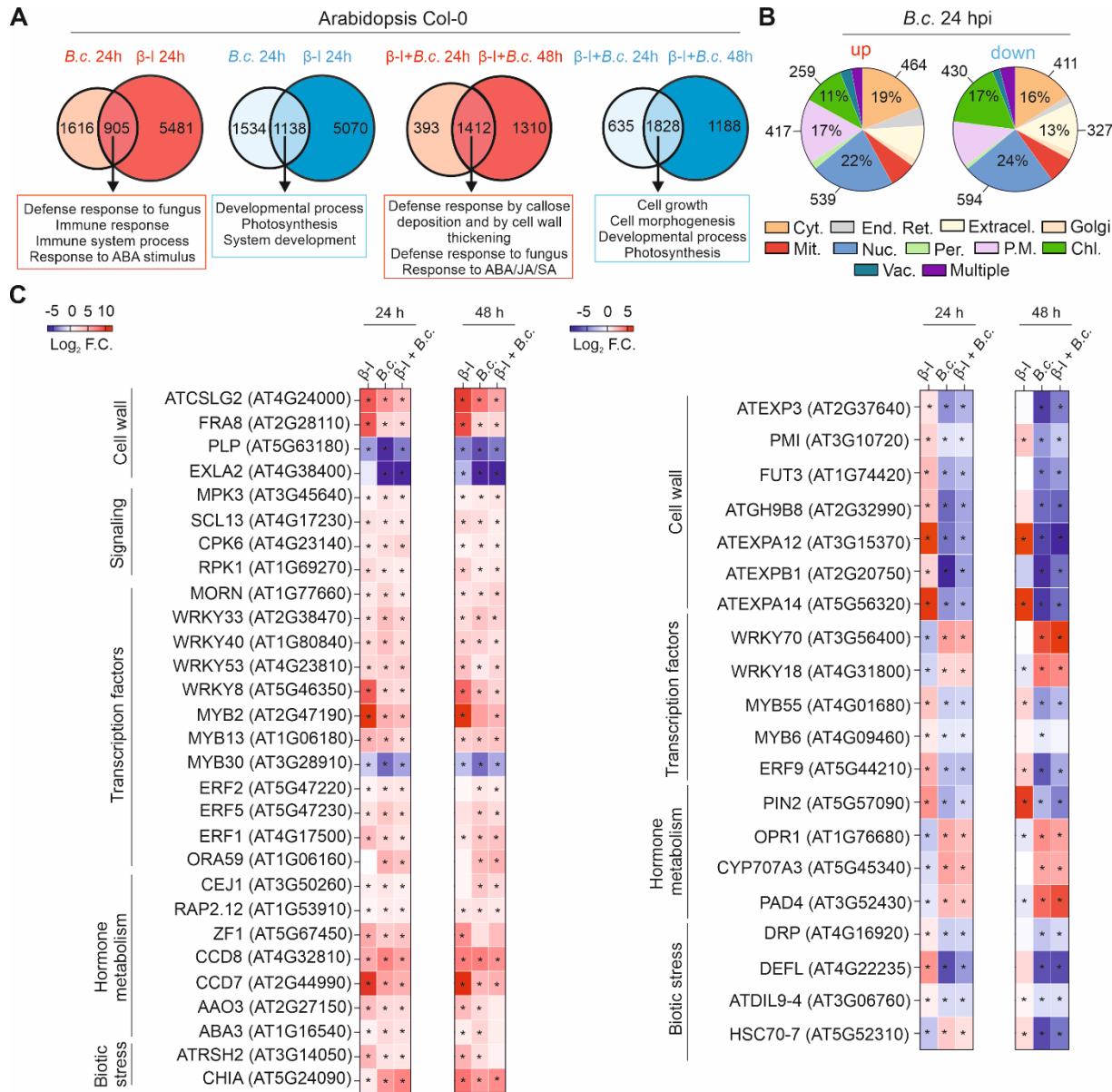

changes in *Arabidopsis* plants treated with β -I at 24 hpt. Heatmaps show 15 MapMan bins with profound transcriptional changes (Dataset S10 for full list and description of each gene). Statistical analysis for the RNAseq was performed using DESeq2 with Benjamini and Hochberg's approach for controlling False Discovery Rate (FDR). Genes were adjusted Log_2 fold change expression ($\text{padj} < 0.05$). Cyt: cytoplasm; End. Ret.: Endoplasmic reticulum; Extracel.: extracellular; Mit.: mitochondria; Nuc.: nucleus; Per.: peroxisome; P.M.: plasma membrane; Chl.: chloroplast; Vac.: vacuole.

Fig. 2. Application of β -ionone enhances resistance of Arabidopsis plants to *B. cinerea* infection. (A) Schematic representation of the experimental design for β -ionone (β -I) application and *B. cinerea* (*B.c.*) infection in detached leaves and intact plants. (B) Detached leaf assay of Arabidopsis wild type (Col-0) plants were treated with 1 % acetone (mock), 50 μ M β -I, 5 μ l drop inoculation with *B.c.*, or pre-treated with 50 μ M β -I followed by 5 μ l of *B.c.* drop inoculation (β -I + *B. cinerea*). β -I treatment was performed during the first 24 hours (with eight hours apart) prior to 5 μ l drop inoculation with *B.c.* (2.5×10^5 spores ml^{-1}). (C) Lesion size quantification of detached leaves at 4 hours post inoculation (hpi) with 5 μ l of *B.c.*. (D) qPCR quantification of *B. cinerea* *ActinA* gene relative to Arabidopsis *Actin* gene after β -I treatment and *B.c.* spray inoculation. (E) Photograph of Arabidopsis plants treated with 1 % acetone (mock), 50 μ M β -ionone, spray inoculation with *B.c.* (2.5×10^5 spores ml^{-1}), and β -I + *B. cinerea*. The whole plant samples were pre-treated twice with 50 μ M β -ionone followed by *B.c.* spray inoculation. Images were taken at 4 dpi. In (B-C), 10 rosette leaves were collected from 10 plants that were used for each experimental condition ($n = 10$). In (D), four biological replicates were used ($n=4$), and each sample was a pool of three leaves. Data represent single measurements, while bars and error bars represent the mean and \pm SD. These experiments were repeated at least three times. Significance was calculated via an unpaired two-tailed Student's *t*-test ($*p < 0.05$; $****p < 0.0001$). Figure (A) was prepared using Biorender.

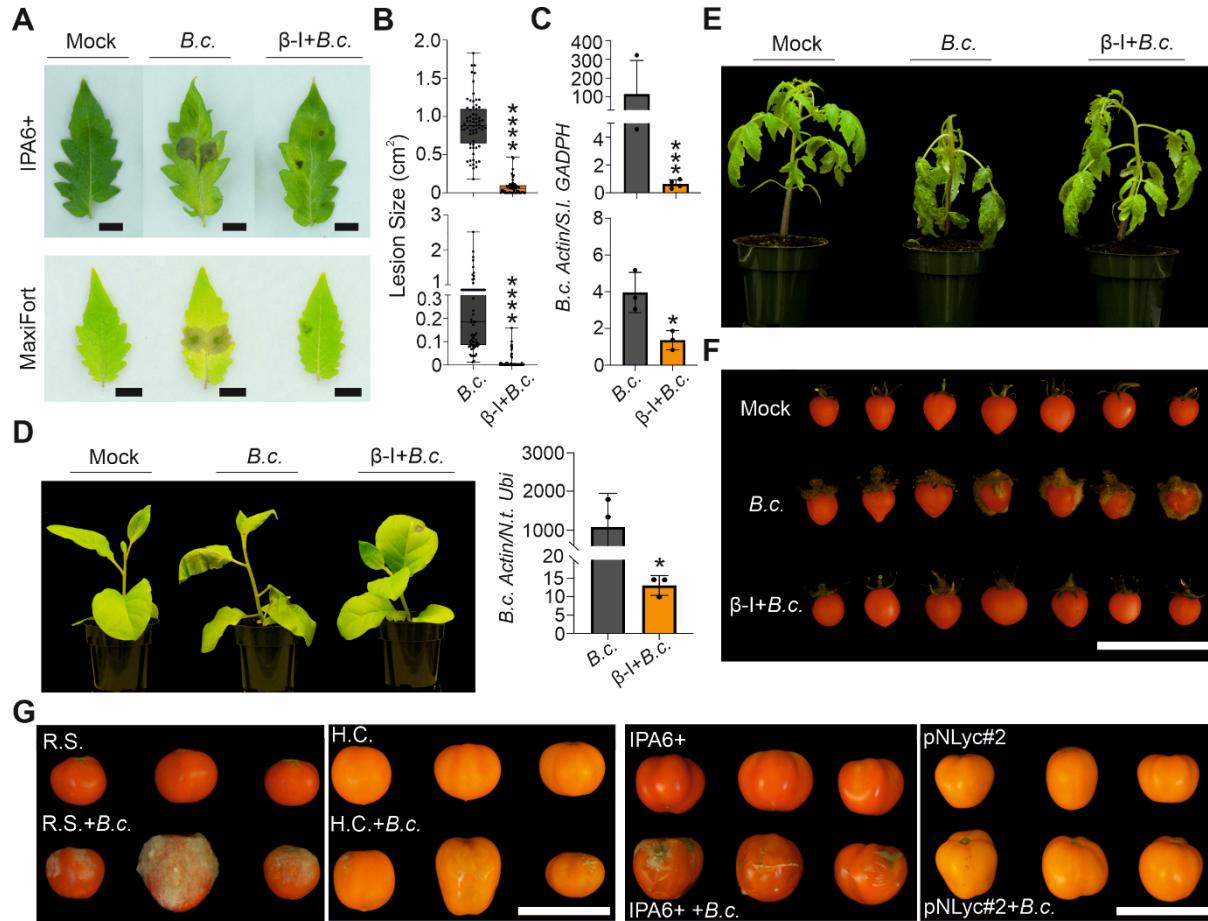
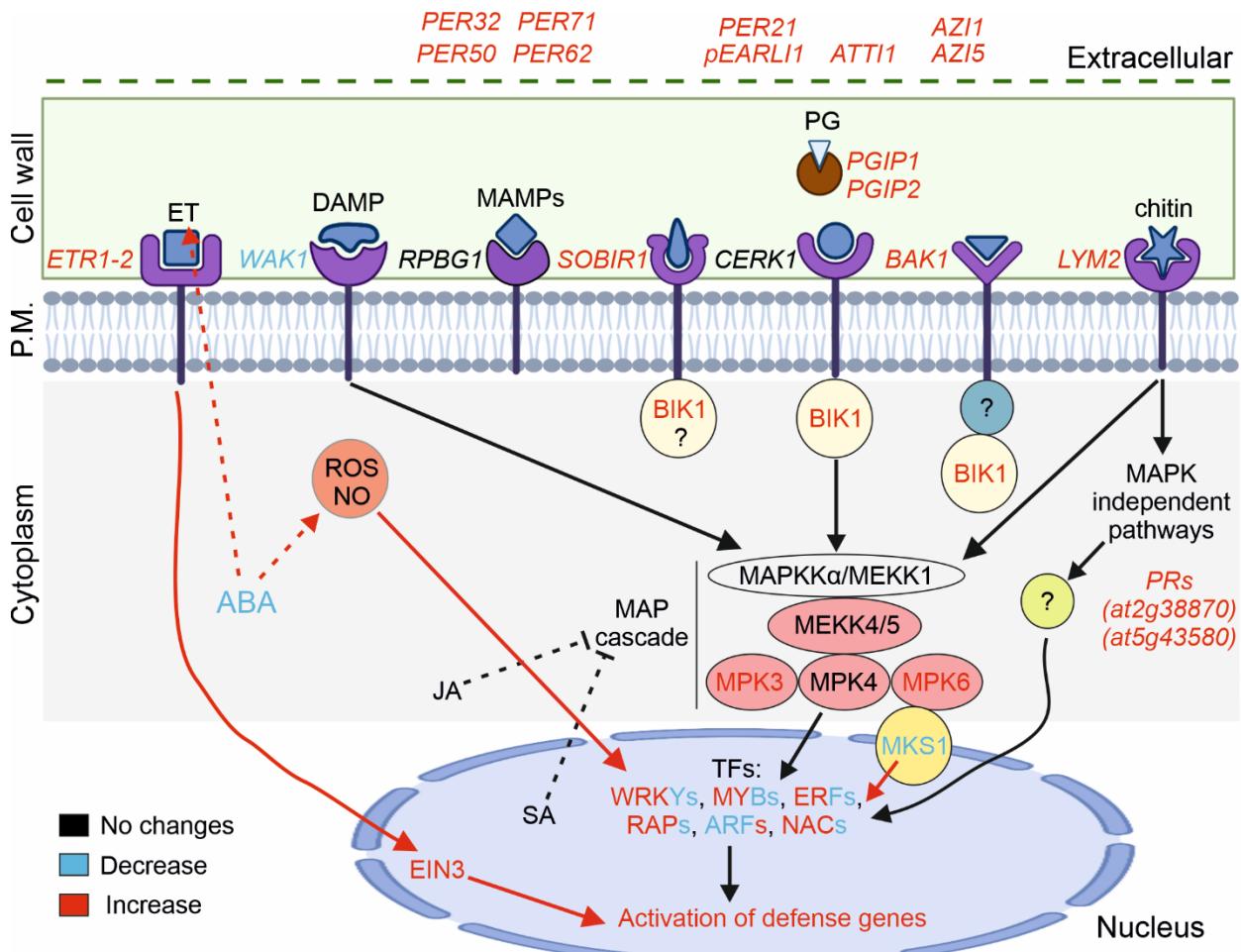


Fig. 3. Involvement in hormonal signaling and general defense responses against *Botrytis cinerea*. (A-C) Time-resolved metabolic analysis of hormone (A) abscisic acid (ABA), (B) jasmonic acid (JA), and (C) salicylic acid (SA) contents in plants treated with β -ionone (β -I) and/or infected with *B. cinerea* (*B.c.*). Samples were collected at (0, 12, 24, 48, 72 h). Data points represent single measurements, while bars and error bars represent the mean and \pm SD ($n=5$) for each treatment in each time point. Significance was calculated via Student's unpaired, two-tailed t-test ($*p < 0.05$). Hormone quantification was performed once. (D) Simplified schemes depicting plant defense pathways against *Botrytis cinerea*. The scheme was prepared using previously published data (44-46, 80). (E) Detached leaf assay on 4-week-old plants of *Arabidopsis* from wild type (Col-0) and mutants altered in JA (*coi1*), Eth (*ora59*), ABA (*nced3* and *nced5*) and Eth-ABA-related (*wrky33*) pathways were treated with 1 % acetone mock (M), β -ionone (β -I), *B. cinerea* (*B.c.*), or β -ionone (β -I) prior to *B.c.* infection (β -I+*B.c.*). The 5 drop-inoculation of *B.c.* (2.5×10^5 spores ml⁻¹) method was used to infect plants while 50 μ M β -ionone was sprayed. Col0, *nced3*, *nced5*, and *coi1* mutant leaves were treated and infected in the same plate, while *ora59* and *wrky33* were treated in separated plates, each of them with the respective wild type. (F) Lesion size of *B.c.* infection in detached leaves of Col-0 wild type and mutant plants. Data points represent single measurements, while bars and error bars represent the mean and \pm SD ($n=6-10$). These experiments were repeated twice. Significance was calculated via ANOVA test with multiple comparisons (different letters represent significance, $p < 0.05$). Quantification of lesion size was performed using ImageJ software. Scale bar: 1 cm.


Fig. 4. RNA sequencing (RNAseq) analysis of plants pre-treated with β -ionone and infected with *B. cinerea*. (A) Venn diagrams of DEGs identified through RNAseq in *Arabidopsis* plants infected with *B. cinerea* (*B.c.*) and pretreated with β -ionone followed by *B. cinerea* infection (β -I+*B.c.*) at 24 and 48 hpi. Venn diagrams representing up- and downregulated genes are shown in red and blue, respectively. Some of the most important GO biological processes enriched in the overlapping genes are shown (for full enriched GO list see Table S1 and Fig. S4). (B) Distribution of cellular compartments for differentially expressed genes (DEGs, up and down) present after 24 h of *B.c.* treatment. Subcellular localization analysis was performed in SUBA4 online software (<https://suba.live/>). Genes encoding proteins with 2 or more localizations were grouped in the “multiple” category. Each color in the pie chart represents a cellular compartment. (C) Heatmap representation of changes at transcript level of *Arabidopsis* plants treated with β -I, *B.c.*, and β -I + *B.c.* at 24 and 48 hpi. Heatmaps show the common up- and downregulated genes involved in biological processes such as cell wall biosynthesis and defense mechanisms, signaling

pathways, transcription factors, hormone metabolism, and biotic stress. Statistical analysis for the RNAseq was performed using DESeq2 with Benjamini and Hochberg's approach for controlling False Discovery Rate (FDR). Genes were adjusted Log2 fold change expression ($p_{adj} < 0.05$). Cyt: cytoplasm; End. Ret.: Endoplasmic reticulum; Extracel.: extracellular; Mit.: mitochondria; Nuc.: nucleus; Per.: peroxisome; P.M.: plasma membrane; Chl.: chloroplast; Vac.: vacuole.

Fig. 5. Effect of β -ionone on tomato and tobacco plants. (A) detached leaves of tomato plants (cv. IPA6+ and Maxifort) that were treated with 1% acetone (mock), 5 μ l drop inoculation of *B. cinerea* (*B.c.*) using 2.5×10^5 spores ml^{-1} , and 50 μM β -ionone ($\beta\text{-I}$) application twice during 24 h (eight hours apart) followed by 5 μ l drop inoculation *B. cinerea* ($\beta\text{-I}+\text{B.c.}$). (B) Lesion size and (C) fungal content in detached leaves of tomato (cv. IPA6+ and Maxifort) in $\beta\text{-I}$ and/or *B.c.* treatments. Amplification of *B. cinerea* *ActinA* relative to tomato housekeeping gene *GADPH* was quantified in leaves treated with *B.c.* or $\beta\text{-I}+\text{B.c.}$ at 72 hours post inoculation (hpi). (D) Phenotyping and *B.c.* quantification in *Nicotiana tabacum* (cv. Xanthi) in *B.c.* and in $\beta\text{-I}+\text{B.c.}$ treated plants (72 hpi). Transcript levels of *B.c. ActinA* relative to the *Nicotiana tabacum* *Ubiquitin* (*N.t. Ubi*) gene were quantified in *B.c.* and $\beta\text{-I}+\text{B.c.}$ treated plants. Significance in B-D was calculated using an unpaired two-tailed Student's *t*-test (* $p < 0.05$, *** $p < 0.001$, **** $p < 0.0001$). (E) Disease symptoms in tomato plants (cv. IPA6+) treated with *B.c.*, or $\beta\text{-I}+\text{B.c.}$. Photos were taken at 72 hpi. (F) Tomato fruits (cv Micro-Tom) treated with 1% acetone (Mock), 5 μ l of drop inoculation with *B.c.*, or 50 μM $\beta\text{-I}$ application twice during 24 h (eight hours apart) followed by 5 μ l of drop inoculation with *B.c.* ($\beta\text{-I}+\text{B.c.}$). Red fruits and green sepals were observed in the mock treatment; while fungal growth was observed on fruits inoculated with *B.c.*. In $\beta\text{-I}+\text{B.c.}$ treatment, fungal growth was limited on tomato fruits at 7 days post inoculation (dpi). (G) Tomato fruits of wild type (IPA6+ or Red Setter) and transgenic plants overexpressing lycopene β -cyclase with and without spray inoculation with *B.c.*. Fruits that were not inoculated with *B.c.* remained healthy and showing no symptoms of gray mold disease at 7

dpi. Tomato wild type plants cv. Red Setter (RS) and IPA6+ inoculated with *B.c.* showed fungal hyphal growth on their fruits. On the other hand, the orange-colored fruits in plants expressing *LCYB* gene that produced 60 and 100% higher β -I content in H.C. and pNLyc#2 transgenic plants, respectively, than in their corresponding wild type plants showed small necrotic lesions on their skin. Scale bar: 10 cm.

Fig. 6. Schematic representation of β -ionone effect at molecular and metabolic level in Arabidopsis. Schematic model depicting molecular processes required to activate plant defense against *B.c.* Genes that were up- and down-regulated upon β -I treatment (24hpt) which contribute to enhanced *B.c.* resistance are shown in red and blue, respectively. Arabidopsis transgenic lines with higher/lower transcript level of these genes were previously reported to positively contribute with enhanced resistance against *B. cinerea*. Question marks represent unknown proteins or steps upon *Botrytis* infection. P.M.: plasma membrane; PRs: pathogenesis related proteins; MAPK: mitogen activated protein kinase; TFs: transcription factors (adapted from AbuQamar *et al.*, 2017). The figure was prepared using Biorender.

Parsed Citations

AbuQamar S, Moustafa K, Tran LSP (2017) Mechanisms and strategies of plant defense against *Botrytis cinerea*. Critical Reviews in Biotechnology 37: 262-274

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66: 161-186

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The Path from beta-Carotene to Carlactone, a Strigolactone-Like Plant Hormone. Science 335: 1348-1351

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Aloum L, Alefishat E, Adem A, Petroianu G (2020) Ionone Is More than a Violet's Fragrance: A Review. Molecules 25

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Frontiers in Biology 7: 48-56

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151: 59-66

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Aranega-Bou P, Leyva MD, Finiti I, Garcia-Agustin P, Gonzalez-Bosch C (2014) Priming of plant resistance by natural compounds. Hexanoic acid as a model. Frontiers in Plant Science 5

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Arondel WV, Vergnolle C, Cantrel C, Kader J (2000) Lipid transfer proteins are encoded by a small multigene family in *Arabidopsis thaliana*. Plant Sci 157: 1-12

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F, Hofte M (2007) Resistance to *Botrytis cinerea* in *sitiens*, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144: 1863-1877

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to *Botrytis cinerea* and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiology 128: 491-501

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Auldrige ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006) Characterization of three members of the *Arabidopsis* carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45: 982-993

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barajas-Lopez JD, Blanco NE, Strand A (2013) Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochimica Et Biophysica Acta-Molecular Cell Research 1833: 425-437

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Belkhadir Y, Jaillais Y, Epple P, Balsemao-Pires E, Dangl JL, Chory J (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America 109: 297-302

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Beltran JC, Stange C (2016) Apocarotenoids: A New Carotenoid-Derived Pathway. Subcell Biochem 79: 239-272

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bruno M, Beyer P, Al-Babili S (2015) The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of beta-ionone ring-containing carotenes and non-epoxidated xanthophylls. Archives of Biochemistry and Biophysics 572: 126-133

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S (2014) On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett 588: 1802-1807

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bruno M, Koschnieder J, Wuest F, Schaub P, Fehling-Kaschek M, Timmer J, Beyer P, Al-Babili S (2016) Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites. J Exp Bot 67: 5993-6005

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Caceres LA, Lakshminarayan S, Yeung KK, McGarvey BD, Hannoufa A, Sumarah MW, Benitez X, Scott IM (2016) Repellent and Attractive Effects of alpha-, beta-, and Dihydro-beta- Ionone to Generalist and Specialist Herbivores. *J Chem Ecol* 42: 107-117
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ (2016) Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond. *Annu Rev Plant Biol* 67: 25-53
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chassot C, Nawrath C, Metraux JP (2007) Cuticular defects lead to full immunity to a major plant pathogen. *Plant J* 49: 972-980
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Conrath U (2009) Priming of Induced Plant Defense Responses. *Plant Innate Immunity* 51: 361-395
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Curvers K, Seifi H, Mouille G, de Ryck R, Asselbergh B, Van Hecke A, Vanderschaeghe D, Hofte H, Callewaert N, Van Breusegem F, Hofte M (2010) Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to *Botrytis cinerea*. *Plant Physiol* 154: 847-860
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

D'Alessandro S, Ksas B, Havaux M (2018) Decoding beta-Cyclocitral-Mediated Retrograde Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress. *Plant Cell* 30: 2495-2511
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

D'Alessandro S, Mizokami Y, Legeret B, Havaux M (2019) The Apocarotenoid beta-Cyclocitric Acid Elicits Drought Tolerance in Plants. *iScience* 19: 461-473
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

De Bruyne L, Hofte M, De Vleesschauwer D (2014) Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. *Mol Plant* 7: 943-959
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

De Lorenzo G, Brutus A, Savatin DV, Sicilia F, Cervone F (2011) Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). *FEBS Lett* 585: 1521-1528
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

de Souza A, Wang JZ, Dehesh K (2017) Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development. *Annu Rev Plant Biol* 68: 85-108
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. *Molecular Plant Pathology* 13: 414-430
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Denance N, Sanchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. *Frontiers in Plant Science* 4
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dickinson AJ, Lehner K, Mi J, Jia KP, Mijar M, Dinneny J, Al-Babili S, Benfey PN (2019) beta-Cyclocitral is a conserved root growth regulator. *Proc Natl Acad Sci U S A* 116: 10563-10567
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dunaevskii Ia E, Tsybina TA, Beliakova GA, Domash VI, Shapno TP, Zabreiko SA, Belozerskii MA (2005) [Proteinase inhibitors as antistress proteins in higher plants]. *Prikl Biokhim Mikrobiol* 41: 392-396
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Filii BK, Petersen M (2011) Constitutive expression of MKS1 confers susceptibility to *Botrytis cinerea* infection independent of PAD3 expression. *Plant Signal Behav* 6: 1425-1427
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against *Botrytis cinerea*. *Plant Physiol* 157: 804-814
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Giuliano G, Al-Babili S, von Lintig J (2003) Carotenoid oxygenases: cleave it or leave it. *Trends in plant science* 8: 145-149
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. *Annu Rev Phytopathol* 43: 205-227
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen *Botrytis*

cinerea. *Curr Biol* 10: 751-757

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Griffin SG, Wyllie SG, Markham JL, Leach DN (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. *Flavour and Fragrance Journal* 14: 322-332

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Flokova K, Abuaf H, Ntui VO, Guo XJ, Charnikhova T, Al-Babili S, Bouwmeester HJ, Ruyter-Spira C (2018) The interaction of strigolactones with abscisic acid during the drought response in rice. *Journal of Experimental Botany* 69: 2403-2414

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Harada K, Ozaki K, Tsuzuki S, Kato H, Hasegawa M, Kuroda EK, Arii S, Tsuji K (2009) Blue color formation of cyanobacteria with beta-cyclocitral. *J Chem Ecol* 35: 1295-1301

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hassan SAA, Bakhet SA (2017) Optimization of Antibacterial Compounds Production by *Aspergillus fumigatus* Isolated from Sudanese Indigenous Soil. *International Biological and Biomedical Journal* 3: 203-208

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

He X, Jiang J, Wang CQ, Dehesh K (2017) ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression. *J Integr Plant Biol* 59: 275-287

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Heller J, Tudzynski P (2011) Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. *Annu Rev Phytopathol* 49: 369-390

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hernandez-Verdeja T, Strand A (2018) Retrograde Signals Navigate the Path to Chloroplast Development. *Plant Physiology* 176: 967-976

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hooper CM, Castleden IR, Tanz SK, Aryamanesh N, Millar AH (2017) SUBA4: the interactive data analysis centre for *Arabidopsis* subcellular protein locations. *Nucleic Acids Res* 45: D1064-D1074

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hooper CM, Tanz SK, Castleden IR, Vacher MA, Small ID, Millar AH (2014) SUBAcon: a consensus algorithm for unifying the subcellular localization data of the *Arabidopsis* proteome. *Bioinformatics* 30: 3356-3364

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hou X, Rivers J, Leon P, McQuinn RP, Pogson BJ (2016) Synthesis and Function of Apocarotenoid Signals in Plants. *Trends Plant Sci* 21: 792-803

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jia KP, Dickinson AJ, Mi J, Cui G, Xiao TT, Kharbatia NM, Guo X, Sugiono E, Aranda M, Blilou I, Rueping M, Benfey PN, Al-Babili S (2019) Anchorene is a carotenoid-derived regulatory metabolite required for anchor root formation in *Arabidopsis*. *Sci Adv* 5: eaaw6787

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jia KP, Mi J, Ablazov A, Ali S, Yang Y, Balakrishna A, Berqdar L, Feng Q, Blilou I, Al-Babili S (2021) Iso-anchorene is an endogenous metabolite that inhibits primary root growth in *Arabidopsis*. *Plant J* 107: 54-66

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jiang Z, Dong X, Zhang Z (2016) Network-Based Comparative Analysis of *Arabidopsis* Immune Responses to *Golovinomyces* orontii and *Botrytis cinerea* Infections. *Sci Rep* 6: 19149

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kazan K, Manners JM (2013) MYC2: the master in action. *Mol Plant* 6: 686-703

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kurdyukov S, Faust A, Nawrath C, Bar S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Metraux JP, Yephremov A (2006) The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in *Arabidopsis*. *Plant Cell* 18: 321-339

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

L'Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek HJ, Hess S, Mir R, Leon J, Lamotte O, Metraux JP (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. *PLoS Pathog* 7: e1002148

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Legard DE, Xiao CL, Mertely JC, Chandler CK (2000) Effects of Plant Spacing and Cultivar on Incidence of Botrytis Fruit Rot in Annual Strawberry. *Plant Dis* 84: 531-538

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lemos M, Xiao Y, Bjornson M, Wang JZ, Hicks D, Souza A, Wang CQ, Yang P, Ma S, Dinesh-Kumar S, Dehesh K (2016) The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk. *J Exp Bot* 67: 1557-1566

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li LL, Li Z, Lou Y, Meiners SJ, Kong CH (2022) (-)-Loliolide is a general signal of plant stress that activates jasmonate-related responses. *New Phytol*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE (2015) Negative regulation of ABA signaling by WRKY33 is critical for *Arabidopsis* immunity towards *Botrytis cinerea* 2100. *Elife* 4: e07295

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu S, Ziegler J, Zeier J, Birkenbihl RP, Somssich IE (2017) *Botrytis cinerea* B05.10 promotes disease development in *Arabidopsis* by suppressing WRKY33-mediated host immunity. *Plant Cell Environ* 40: 2189-2206

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. *Plant Cell* 15: 165-178

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mi J, Jia KP, Balakrishna A, Wang JY, Al-Babili S (2019) An LC-MS profiling method reveals a route for apocarotene glycosylation and shows its induction by high light stress in *Arabidopsis*. *Analyst* 144: 1197-1204

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mi J, Vallarino JG, Petrik I, Novak O, Correa SM, Chodasiewicz M, Havaux M, Rodriguez-Concepcion M, Al-Babili S, Fernie AR, Skirycz A, Moreno JC (2022) A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato. *Metab Eng* 70: 166-180

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moreno JC, Mi J, Alagoz Y, Al-Babili S (2021) Plant apocarotenoids: from retrograde signaling to interspecific communication. *Plant J* 105: 351-375

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mur LAJ, Sivakumaran A, Mandon J, Cristescu SM, Harren FJM, Hebelstrup KH (2012) Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. *Journal of Experimental Botany* 63: 4375-4387

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. *Annu Rev Plant Biol* 57: 739-759

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Onkokesung N, Reichelt M, Wright LP, Phillips MA, Gershenson J, Dicke M (2019) The plastidial metabolite 2-C-methyl-D-erythritol-2,4-cyclodiphosphate modulates defence responses against aphids. *Plant Cell Environ* 42: 2309-2323

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ozaki K, Ohta A, Iwata C, Horikawa A, Tsuji K, Ito E, Ikai Y, Harada K (2008) Lysis of cyanobacteria with volatile organic compounds. *Chemosphere* 71: 1531-1538

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Panebianco A, Castello I, Cirvilleri G, Perrone G, Epifani F, Ferrara M, Polizzi G, Walters DR, Vitale A (2015) Detection of *Botrytis cinerea* field isolates with multiple fungicide resistance from table grape in Sicily. *Crop Protection* 77: 65-73

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. *Nat Chem Biol* 5: 308-316

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. *Proc Natl Acad Sci U S A* 109: 5535-5540

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in *Arabidopsis*. *Proc Natl Acad Sci U S A* 105: 5638-5643

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N (2017) Reactive oxygen species generated in chloroplasts

contribute to tobacco leaf infection by the necrotrophic fungus *Botrytis cinerea*. *Plant J* 92: 761-773

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rosslenbroich HJ, Stuebler D (2000) *Botrytis cinerea* - history of chemical control and novel fungicides for its management. *Crop Protection* 19: 557-561

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rubio-Moraga A, Rambla JL, Fernandez-de-Carmen A, Trapero-Mozos A, Ahrazem O, Orzaez D, Granell A, Gomez-Gomez L (2014) New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from *Crocus sativus*. *Plant Mol Biol* 86: 555-569

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Salt SD, Tuzun S, Kuc J (1986) Effects of Beta-Ionone and Abscisic-Acid on the Growth of Tobacco and Resistance to Blue Mold - Mimicry of Effects of Stem Infection by *Peronospora-Tabacina* Adam. *Physiological and Molecular Plant Pathology* 28: 287-297

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schmidt K, Pflugmacher M, Klages S, Maser A, Mock A, Stahl DJ (2008) Accumulation of the hormone abscisic acid (ABA) at the infection site of the fungus *Cercospora beticola* supports the role of ABA as a repressor of plant defence in sugar beet. *Mol Plant Pathol* 9: 661-673

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. *Nat Methods* 9: 671-675

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Serrano M, Coluccia F, Torres M, L'Haridon F, Metraux JP (2014) The cuticle and plant defense to pathogens. *Front Plant Sci* 5: 274

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sham A, Moustafa K, Al-Sharnisi S, Alyan S, Iratni R, AbuQamar S (2017) Microarray analysis of *Arabidopsis* WRKY33 mutants in response to the necrotrophic fungus *Botrytis cinerea*. *PLoS One* 12: e0172343

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shlezinger N, Minz A, Gur Y, Hatami I, Daggas YF, Talbot NJ, Sharon A (2011) Anti-apoptotic machinery protects the necrotrophic fungus *Botrytis cinerea* from host-induced apoptotic-like cell death during plant infection. *PLoS Pathog* 7: e1002185

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Metraux JP, Nawrath C (2000) Transgenic *Arabidopsis* plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. *Plant Cell* 12: 721-738

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sivakumaran A, Akinyemi A, Mandon J, Cristescu SM, Hall MA, Harren FJ, Mur LA (2016) ABA Suppresses *Botrytis cinerea* Elicited NO Production in Tomato to Influence H₂O₂ Generation and Increase Host Susceptibility. *Front Plant Sci* 7: 709

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. *Plant J* 37: 914-939

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in *Arabidopsis* are essential for resistance to distinct microbial pathogens. *Proc Natl Acad Sci U S A* 95: 15107-15111

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in *Arabidopsis thaliana*. *Gene* 288: 129-138

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Torres MA, Morales J, Sanchez-Rodriguez C, Molina A, Dangl JL (2013) Functional interplay between *Arabidopsis* NADPH oxidases and heterotrimeric G protein. *Mol Plant Microbe Interact* 26: 686-694

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Toth Z, Winterhagen P, Kalapos B, Su Y, Kovacs L, Kiss E (2016) Expression of a Grapevine NAC Transcription Factor Gene Is Induced in Response to Powdery Mildew Colonization in Salicylic Acid-Independent Manner. *Scientific Reports* 6: 30825

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Utama IM, Wills RB, Ben-Yehoshua S, Kuek C (2002) In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. *J Agric Food Chem* 50: 6371-6377

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Valeri MC, Novi G, Weits DA, Mensuali A, Perata P, Loret E (2021) *Botrytis cinerea* induces local hypoxia in *Arabidopsis* leaves. *New Phytol* 229: 173-185

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang JY, Haider I, Jamil M, Fiorilli V, Saito Y, Mi J, Baz L, Kountche BA, Jia KP, Guo X, Balakrishna A, Ntui VO, Reinke B, Volpe V, Gojobori T, Blilou I, Lanfranco L, Bonfante P, Al-Babili S (2019) The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. *Nat Commun* 10: 810

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wei S, Hannoufa A, Soroka J, Xu N, Li X, Zebarjadi A, Gruber M (2011) Enhanced beta-ionone Emission in *Arabidopsis* Over-expressing AtCCD1 Reduces Feeding Damage in vivo by the Crucifer Flea Beetle. *Environmental Entomology* 40: 1622-1630

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E, Kiddie SJ, Rhodes J, Atwell S, Kliebenstein DJ, Kim YS, Stegle O, Borgwardt K, Zhang C, Tabrett A, Legaie R, Moore J, Finkenstadt B, Wild DL, Mead A, Rand D, Beynon J, Ott S, Buchanan-Wollaston V, Denby KJ (2012) *Arabidopsis* defense against *Botrytis cinerea*: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. *Plant Cell* 24: 3530-3557

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. *Nat Rev Genet* 9: 383-395

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu GZ, Bock R (2021) GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. *Plant Cell* 33: 457-474

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yabuzaki J (2017) Carotenoids Database: structures, chemical fingerprints and distribution among organisms. Database-the Journal of Biological Databases and Curation

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang W, Fraiture M, Kolb D, Loffelhardt B, Desaki Y, Boutrot FF, Tor M, Zipfel C, Gust AA, Brunner F (2013) *Arabidopsis* receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHEd mediate innate immunity to necrotrophic fungi. *Plant Cell* 25: 4227-4241

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao H, Kim YK, Huang L, Xiao CL (2010) Resistance to thiabendazole and baseline sensitivity to fludioxonil and pyrimethanil in *Botrytis cinerea* populations from apple and pear in Washington State. *Postharvest Biology and Technology* 56: 12-18

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) *Arabidopsis* WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. *Plant J* 48: 592-605

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)