

1 **Collection of Biospecimens from the Inspiration4 Mission Establishes the Standards for the**
2 **Space Omics and Medical Atlas (SOMA)**

3 Eliah G. Overbey^{1,2,3}, Krista Ryon¹, JangKeun Kim^{1,2}, Braden Tierney^{1,2}, Remi Klotz⁴, Veronica
4 Ortiz⁴, Sean Mullane⁵, Julian C. Schmidt^{6,7}, Matthew MacKay¹, Namita Damle¹, Deena Najjar¹,
5 Irina Matei^{8,9}, Laura Patras^{8,10}, J. Sebastian Garcia Medina¹, Ashley Kleinman¹, Jeremy Wain
6 Hirschberg¹, Jacqueline Proszynski¹, S. Anand Narayanan¹¹, Caleb M. Schmidt^{6,7,12}, Evan E.
7 Afshin¹, Lucinda Innes¹, Mateo Mejia Saldarriaga¹³, Michael A. Schmidt^{6,7}, Richard D.
8 Granstein¹⁴, Bader Shirah¹⁵, Min Yu⁴, David Lyden^{8,9}, Jaime Mateus⁵, Christopher E.
9 Mason^{1,2,3,16,17*}

10

11 ¹Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New
12 York, NY, USA

13 ²The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational
14 Biomedicine, Weill Cornell Medicine, New York, NY, USA

15 ³BioAstra, Inc, New York, NY, USA

16 ⁴Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine,
17 University of Southern California, Los Angeles, CA, USA

18 ⁵Space Exploration Technologies Corporation, Hawthorne, CA, USA.

19 ⁶Sovaris Aerospace, Boulder, Colorado, USA

20 ⁷Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA

21 ⁸Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and
22 Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill
23 Cornell Medicine, New York, NY

24 ⁹Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
25 ¹⁰Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity
26 and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca,
27 Romania
28 ¹¹Florida State University College of Medicine, Tallahassee, Florida
29 ¹²Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
30 ¹³Hematology and Oncology Division, Weill Cornell Medicine, NY
31 ¹⁴Department of Dermatology, Weill Cornell Medicine, New York, NY
32 ¹⁵Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi
33 Arabia
34 ¹⁶The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
35 ¹⁷WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY
36 10021, USA
37 *Corresponding author: chm2042@med.cornell.edu

38 **Abstract**
39
40 The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of
41 spaceflight on the human body. Biospecimen samples were collected from the crew at different
42 stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and
43 after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample set. The
44 collection process included samples such as venous blood, capillary dried blood spot cards,
45 saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin
46 biopsies, which were processed to obtain aliquots of serum, plasma, extracellular vesicles, and

47 peripheral blood mononuclear cells. All samples were then processed in clinical and research
48 laboratories for optimal isolation and testing of DNA, RNA, proteins, metabolites, and other
49 biomolecules. This paper describes the complete set of collected biospecimens, their processing
50 steps, and long-term biobanking methods, which enable future molecular assays and testing. As
51 such, this study details a robust framework for obtaining and preserving high-quality human,
52 microbial, and environmental samples for aerospace medicine in the Space Omics and Medical
53 Atlas (SOMA) initiative, which can also aid future experiments in human spaceflight and space
54 biology.

55

56 **Introduction**

57

58 Our human space exploration efforts are at a unique transition point in history, with more
59 crewed launches and human presence in space than ever before¹. We can attribute this to the
60 commercial spaceflight sector entering an industrial renaissance, with multiple companies
61 forming collaboration and competition networks to send commercial astronauts into space. This
62 recent evolution of human space exploration endeavors presents a valuable opportunity to
63 accumulate more biological research specimens and improve our understanding of the impact of
64 spaceflight on human health. This is critical since there is still much to learn about the varied
65 biological responses to the spaceflight environment, characterized by microgravity and space
66 radiation landscape². The impact of spaceflight on human health includes musculoskeletal
67 deconditioning³, cardiovascular adaptations⁴, vision changes⁵, space motion sickness⁶,
68 neurovestibular changes⁷, immune dysfunction⁸, and increased risk of rare cancers⁹, among other

69 changes². However, we are still at the very beginning of the work to catalog biological responses
70 to spaceflight exposure at the molecular resolution.

71
72 Prior work has characterized molecular changes that occur during spaceflight in
73 astronauts. These include changes in cytokine profiles^{8,10,11}, urinary albumin abundance¹², and
74 hemolysis¹³. Furthermore, multi-omic assays have provided genomic maps of structural changes
75 in DNA¹⁴⁻¹⁶, RNA expression profiles^{11,17,18}, sample-wide protein measurements^{17,19,20}, and
76 metabolomic status¹⁷. Additionally, International Space Station (ISS) surfaces have been studied
77 with longitudinal microbial profiles to track microbial pathogenicity and evolution to assess their
78 potential influence on crew health^{21,22}. To better improve our understanding of both human and
79 microbial biology in space, it is critical that these analyses continue and expand as more
80 spacecraft and stations are built and flown.

81
82 Combining and comparing work from prior missions in these new spacecraft and stations
83 is especially important to overcome the small sample sizes and highlights a need for
84 standardization between missions. In addition, recruiting large cohorts of astronauts is difficult,
85 as the ISS typically can only house up to six astronauts at a time. As of the time of writing, only
86 647 humans have been to space, starting with the launch of Yuri Gagarin in 1961. Studies have
87 spanned the Vostok program, Project Mercury, the Voskhod program, Project Gemini, Project
88 Apollo, the Soyuz program, the Salyut space stations, MIR, the Space Shuttle Program, SkyLab,
89 Tiangong Space Station, and the ISS. From the breadth of experiments that have been performed
90 on the ISS, only a minority have specifically been human research-oriented²³, and just a subset
91 involve omics studies. The NASA Twin Study created the most in-depth multi-omic study of

92 astronauts prior to Inspiration4, but was limited to one astronaut and one ground control¹⁷. All of
93 these factors have limited the statistical power of astronaut omic experiments and increase the
94 difficulty of providing robust scientific conclusions. Standardizing biospecimen collections
95 across multiple missions will create larger sample-sets needed to draw these conclusions.

96

97 Here, we establish the standard biospecimen sample collection and banking procedures
98 for the Space Omics and Medical Atlas (SOMA). A key goal of SOMA is to standardize
99 biospecimen collection and processing for spaceflight, to generate high-quality multi-omics data
100 across spaceflight investigations. This paper provides sample collection methods built for
101 standardized collections across different crews and missions. These can generate harmonized
102 datasets with greater statistical power and thus increase our scientific return yields from
103 spaceflight investigations. We also present metrics on sample collection yields, instances of prior
104 astronaut sample collection in scientific literature, and considerations for improvement of sample
105 collection on future missions based on crew feedback. In its inaugural use case, these samples
106 were collected from the Inspiration4 (I4) astronaut cohort and are currently in use for several
107 other missions (Polaris Dawn, Axiom-2), which will enable continued utilization for future
108 crewed space missions.

109

110 **Results**

111

112 **Biospecimen Collection Overview**

113 We formulated and executed a sampling plan that spans a wide range of biospecimen samples:
114 venous blood, capillary dried blood spots (DBSs), saliva, urine, stool, skin swabs, skin biopsies,
115 and environmental swabs (**Fig 1a**). The collection of various types of samples covered the scope

116 of previous assays on astronaut samples (**Table 1**), but also enabled newer omics technologies,
117 such as spatially resolved, single-molecule, and single-cell assays.

118

119

Sample(s)	Measure(s)	Number of Subjects (n)	Duration Range (days)	Collection Time points	Study (citation)
Plasma	mtDNA, Long Non-coding RNA, Exosomes	3-14	5-13	L-10, R-0, R+3	^{24,25}
Plasma, Saliva	Cytokines	13	140-290	L-180, L-45, L-10, FD15, FD30, FD60, FD120, FD180, R+0, and R+30	¹⁰
Plasma	Cytokines	28	~180	L-180, L-45, L-10, FD15,30,60,120,180; R+0, R+30	²⁶
Plasma	Proteomics	13-18	169-199	L-30, R+0, R+7	^{20,27-29}

Plasma	sRNAseq (miRNA from sEV)	14	12 (median)	L-10, R+0, R+3	³⁰
PBMCs	Peripheral Leukocyte Distribution, T- cell Function, Virus-specific Immunity, and Mitogen- stimulated Cytokine Production profiles	23	<60 days (n=2), >100 days (n=5), 6 months (n=16)	L-180, L-45, FD14, FD 2-4 mn, FD6 mn, R+0, R + 30	³¹
plasma, PBMCs	snoRNA Expression Levels	n=5 (plasma), n=6 (PBMCs)	14 (median)	L-10, R+3	³²
Whole blood, serum	Hematology	14	167 ± 31 days (mean±sd)	L-100, FD5, FD11, FD64, FD157, R+4, R+14, R+41, R+184< R+365	¹³
Whole blood	Transcriptome	6	10-13	L-10, R+0 (2-3 hour after return)	³³

Whole blood	Hematology	31	Up to 180	L-180, L-45; FD-14, FD60-FD120, FD180, R+0, R+30	³⁴
Whole blood, Saliva	Immune Cell Counts, Cortisol	9	162	L-25, FD90, FD150, R+1, R+7, R+30	³⁵
body swabs, saliva	Metagenomics	4		L-180, L-45; FD-14, FD60-FD120, FD180, R+0, R+30, R+180	³⁶
ISS section swab	Metagenomics, Physiological Characterization of Microbes	Locations: Columbus (air, light cover, SSC laptop, handrails, RGSH); Node2 (sleeping unit, panel outside, ATU); Cupola (air, surface), Node3 (ARED, treadmill,		3 timepoints (session A, B, and C)	³⁷

		WHC); Node1 (panel inside, dining table)			
Saliva, Swab: mouth, ear, nostril, pooled skin 8 environmental locations	Microbiome	1; node1, node2, node3, US laboratory module, permanent multipurpose module	135 days	Before, During, After Spaceflight (L-180, L- 90; FD60, FD97, FD126, R+1, R+30, R+180)	³⁸
microbiome swabs, stool, saliva, plasma, environmental swabs	Metagenomics, Cytokine	9	180 (n=8) to 360 (n=1)	L-240, L-160, L-90, L- 60, FD7, FD90, FD126, R+0/3, R+30, R+60, R+180	³⁹
Blood, urine, saliva	Antiviral antibodies and viral load (DNA) were measured for Epstein-Barr virus (EBV), varicella- zoster virus (VZV), and cytomegalovirus	17	12-16 days	Saliva: L-180, L-10, every other day during flight, and every other day post flight until R+14 Blood/Urine: L-180, L- 10, R+0, R+14	⁴⁰

	(CM)				
Whole Blood, Plasma	Immunophenotyping, NK Cell cytotoxicity and conjugation, Degranulation, Plasma stimulation	9	6 mn to 340 days	L-180, L-60< FD90, FD180 (n=1), R-1, R+0, R+18, R+33, R+66	⁴¹
Whole Blood, Plasma	Leukocyte distribution, T cell Blastogenesis, and cytokine production profiles	19	10-15 days	L-180, L-10, in-flight (R-1), R+0, R+14	⁴²
Plasma, whole blood, saliva	B Cell Phenotyping Ig Analyses	Integral Immune Study (n=15) Salivary Markers Study (n=8)	6 months	Salivary: Plasma: L-180, L-45, FD10, FD90, FD180/R- 1, R+0, R+30 Salivary Marker Study: L-180, L-60, FD-10, FD-90, FD-180/R-1, R+0, R+18, R+33, and	⁴³

				R+66	
Saliva, Blood, Urine	Salivary Biomarkers, Stress biomarkers	8 ISS Crew, 7 control	6 months	L-180, L-60, FD10, FD90, R-1, R+0, R+18, R+33, R+66	⁴⁴
Saliva	Salivary Microbiome	10 (male)	2-9 months	L-180, L-90 FD 1-2 months FD 2-4 months FD (R-10) R+0, R+30, R+60, R+180	⁴⁵
Blood, Urine, Saliva	Antiviral Antibodies and Viral Load	17 (16 male, 1 female)	12-16 days	Blood, Urine: L-180, L-10, R+0, R+14 Saliva Dry: L-180, L-10, FD1, FD11, R+1, R+14 Saliva Liquid: L-180, L-10, FD1, FD3, FD5, FD7, FD9, FD11 R+0, R+2, R+4,	⁴⁶

				R+6, R+8, R+10, R+12, R+14	
Plasma, PBMCs, Urine	Thymopoiesis	16 (14 male, 2 female)	Median: 184 days	Regular Intervals (preflight, return, postflight)	⁴⁷
Core Body Temperature, Whole Blood	Core Body Temperature, IL- 1ra	11 (7 male, 4 female)	180 days	CBT: L-90, FD15, FD45, FD75, FD105, FD135, FD165, R+1, R+10, R+30 Blood: L-180, L-45, L- 10, FD15, FD30, FD60, FD120, FD180, R+0, R+30	⁴⁸
Plasma, Serum, Urine	Iron Status	23 (16 male, 7 female)	50-247 days (mean: 157)	L-180, L-45, L-10, FD15, FD30, FD60, FD120, FD180, R+0, R+30	⁴⁹
Blood, Urine	Bone Loss and Kidney Stone Risk	42	49-215 days	10-131 days before flight and after flight (R+0, R+0 and R+2)	⁵⁰

Blood, Urine	Bone Metabolism and Renal Stone Risk	23	4-6 months	L-180, L-45, L-10, FD15, FD30, FD60, FD120, FD180	⁵¹
Serum, Urine, Epithelial cells (sublingual mucosa)	Magnesium	43	4-6 months	Serum/Urine: L-180, L-45, FD15, FD30, FD60, FD120, FD180, R+0, R+30 Tissue: L-180, L-45, R+0, R+30	⁵²
Serum, Urine	Bone Metabolism	17 (13 male, 4 female)	160 +/-20 days	L-180, L-45, FD15, FD30, FD60, FD120, FD180	⁵³
Blood	Natriuretic Peptide, Creatinine, Aldosterone, Sodium	8	Long Duration	Not specified	⁵⁴
Blood, Urine, Ultrasound	Arterial Structure and Function	13 (10 male, 3 female)	126-340 days	L-180, L-60, FD15, FD60, FD160, R+5	⁵⁵

Blood, Urine, quantitative CT	Bone Metabolism, Bone Density, Bone Strength	17 (14 male, 3 female)	3.5-7 months (mean: 170 days)	Blood/Urine: L-180, L- 45, FD15, FD30, FD60, FD120, FD180, R+0	⁵⁶
Stool, Saliva, Skin, Urine, Blood, Plasma, PBMCs	Metabolomics, Proteomics, Cognition, Microbiome, Telomeres, Epigenomics, Biochemical Profile, Gene Expression, Integrative Omics, Immunome	2	1-Year (340 days)	Before, during, and after spaceflight	¹⁷
Blood, Urine	Multi-omics	59	4-6 months	L-180, L-45, FD15, FD30, FD60, FD120, FD180, R+0, R+30	⁵⁷
Plasma	Cell-free DNA, Exosome	2	340 days	Before, during, and after spaceflight (12 timepoints from twin on earth and 11 from twin in space)	⁵⁸

Plasma, Urine	Multi-omic, Single-Cell, Biochemical Measures	2	340 days	Before, during, and after spaceflight	¹¹
Blood, Urine	Telomere Length	3	1 Year (n=1), 6 months (n=2)	Blood: L-270, L-180, L-60, FD45, FD90, FD140, FD260, R+1, R+180, R+270 Urine: L-180, L-45, FD15, FD240, FD330, R+1, R+60 Biochemistry: L-80, L- 45, FD15, FD30, FD60, FD120, FD180, R+0, R+30	⁵⁹
PBMCs, Lymphocyte- depleted Cells	Circulating miRNA	2	340 days	Before, during, and after flight	¹⁸
Blood	Clonal Hematopoiesis Panel, Whole Genome Sequencing, RNA-seq	Astronauts: n=2	340 days	Before, during, and after spaceflight	¹⁵

Blood	Multi-omic, Untargeted RNA-seq	2	340 days	Before, During, and After Spaceflight	⁶⁰
Blood	Uremic Toxin <i>p</i> -Cresol	2	340 days	Before, During, and After Spaceflight	⁶¹
Blood	Metabolic Profile	51	4-6 months	L-45, L-10, FD15, FD30, FD60, FD120, FD180, R+0, R+30	⁶²

120 **Table 1: Prior Biospecimen Collections from Astronauts.** Listed studies are limited to the past decade.

121
122 For the Inspiration4 mission, sample collection spanned three time points pre-launch (L-92, L-
123 44, L-3 days), three time points during flight (Flight Day 1 (FD1), FD2, FD3), and four time
124 points post-return (R+1, R+45, R+82, R+194 days). Venous blood, urine, stool, and skin biopsies
125 were collected during ground timepoints only, while capillary DBSs, saliva, and skin swabs were
126 collected both on the ground and during flight (**Fig 1b**). Environmental swabs of the Dragon
127 capsule were collected pre-flight in the crew training capsule and during flight in the spacecraft
128 launched from Cape Canaveral (**Fig 1b**).
129

130 Samples were collected across a variety of locations based on the crew's training and travel
131 schedule. L-92 and L-44 were collected in Hawthorne, CA at SpaceX Headquarters, L-3 and
132 R+1 were collected at Cape Canaveral, FL at a facility near the launch-site. FD1, FD2, and FD3
133 were collected inside the Dragon capsule while in orbit. R+45 was collected at the crew
134 members' individual locations (which spanned the US States NY, NJ, TN, and WA), R+82 was
135 collected at Weill Cornell Medicine, NY and R+194 was collected at Baylor College of
136 Medicine, TX (**Fig 1c**).

137

138 **Blood Collection and Derivatives**

139

140 Blood was collected using a combination of venipuncture tubes to collect venous blood and
141 contact-activated lancets to collect capillary blood from the fingertip. Each crew member
142 provided blood samples, collected into one blood RNA tube (bRNA), four K2 EDTA tubes, two
143 cell preparation tubes (CPTs), one cell-free DNA tube (cfDNA BCT), one serum separator tube
144 (SST), and one dried blood spot (DBS) card per time point. From these tubes, whole blood,
145 plasma, PBMCs, serum, and cell pellet samples were collected (**Table 2**). Sample yields are
146 reported below. Samples were aliquoted for long-term storage and biobanking (**Table 3**).

147

148

Sample Type	Tube Source	Assay Allocation(s)
Whole Blood	bRNA	Total RNA Extraction
Plasma	CPT	Proteomics, Metabolomics; Biobanking

PBMCs	CPT	Biobanking
Red Blood Cell Pellet	CPT	gDNA; Biobanking
Serum	SST	Immune and Cardiovascular Disease Panel, Metabolic Panel; Biobanking
Red Blood Cell Pellet	SST	gDNA; Biobanking
Plasma	cfDNA BCT	cfDNA; Biobanking
Red Blood Cell Pellet	cfDNA BCT	gDNA; Biobanking
PBMCs	K2 EDTA	Single-Cell Multiome GEX+ATAC and BCR/TCR Immune Repertoire Profiling
Plasma	K2 EDTA	EVPs
Whole Blood	K2 EDTA	Complete Blood Count

149 **Table 2: Blood Derivative Allocations.** Samples types collected, their tube type of origin, and assay allocation.

150 Samples collected in excess were biobanked to enable additional experiments as new assays are developed.

151

152

Sample Type	Tube Source	Aliquot Sizes	Freezing Condition
Plasma	cfDNA BCT	500 uL	-80°C Freezer
Plasma	CPT	500 uL	-80°C Freezer
Serum	SST	500 uL	-80°C Freezer
PBMCs	CPT	□ tube yield	-196°C Liquid Nitrogen

153 **Table 3: Blood Derivative Aliquot Parameters.** Plasma, serum, and PBMCs aliquots were created for downstream
154 assays that only require a portion of the total sample collected in order to minimize freeze-thaw cycles.

155
156
157 bRNA tubes were collected in order to isolate total RNA using the PAXgene blood RNA kit (**Fig**
158 **2a**). Yield ranged from 3.04-14.04 µg/tube of total RNA across all samples and the RNA
159 integrity number (RIN) ranged from 3.2-8.5 (mean: 6.95) (**Fig 2b**). RNA was stored at -80°C
160 after extraction. The collection of total RNA enables a variety of downstream RNA profiling
161 methods. It will allow comparative studies to prior RNA-sequencing performed on astronauts,
162 particularly snoRNA & lncRNA biomarkers analyzed from Space Shuttle era blood^{25,32}, mRNA
163 & miRNA measured during the NASA Twin Study^{17,18}, and whole blood RNA arrays from the
164 ISS³³. Additionally, RNA yields are more than sufficient to perform direct-RNA sequencing
165 using Oxford Nanopore Technologies (ONT) platforms, which require 500 ng of total RNA per
166 library (Manufacturer's protocol, ONT kit SQK-RNA002). This enables the study of RNA
167 modification changes during spaceflight to create epitranscriptomic profiles for the first time in
168 astronauts.

169
170 Four K2 EDTA tubes were drawn at each timepoint from each crew member (**Fig 2c**). One K2
171 EDTA tube was submitted to Quest Diagnostics to perform a complete blood count (CBC, Quest
172 Test Code: 6399). One tube was used to isolate extracellular vesicles and particles (EVPs) for
173 proteomic quantification (**Fig 3a**). Total EVP quantities varied from 2.71-28.27 ug (**Fig 2d**).
174 Two K2 EDTA tubes were used to isolate PBMCs for single-cell sequencing (10X Chromium
175 Single Cell Multiome ATAC + Gene Expression and Chromium Single Cell Immune Profiling
176 workflows). After collection, a Ficoll separation was performed to isolate PBMCs, which ranged

177 from 340,000-975,000 cells per mL of blood (**Fig 2e**). One prior single-cell gene expression
178 experiment, NASA Twin study, was performed on astronauts, which found immune cell
179 population specific gene expression changes and a correlation with microRNA signatures^{11,18}.

180

181 Additional PBMCs, plasma, and serum were collected from CPTs (**Fig 4a**), cfDNA BCTs (**Fig**
182 **4d**), SSTs (**Fig 4c**), as well as red blood cell pellets. CPTs were spun and aliquoted according to
183 the manufacturer's instructions (**Fig 3b**). Plasma volume per tube ranged from 3000-14,000 uL
184 per tube (**Fig 4d**). There were a few instances were CPT tubes shattered in the centrifuge and
185 plasma could not be salvaged. Plasma can be used to validate or refute previous studies,
186 including cytokine panel^{10,26}, exosomal RNA-seq^{25,32}, extracellular vesicle microRNA³⁰, and
187 proteomic^{20,27-29} results. PBMCs were also collected, aliquoted into 6 cryovials per CPT, and
188 stored in liquid nitrogen after slowly cooled in a Mr. Frosty to -80°C. These can be used to
189 follow-up on previous studies on adaptive immunity, cell function, and immune
190 dysregulation^{8,31,41-43}. The remaining red blood cell pellet mixtures from below the gel plug in
191 each CPT Tube were stored at -20°C.

192

193 cfDNA BCT tubes were collected to isolate high-quality cfDNA from plasma. cfDNA BCTs
194 were spun and aliquoted according to the manufacturer's instructions (**Fig 3c**). The remaining
195 cell pellet mixture was frozen at -20°C. Plasma volume per timepoint ranged from 1500-5000 uL
196 (**Fig 4e**). 500 uL aliquots were frozen at -80°C. cfDNA extracted from these tubes can be
197 analyzed for fragment length, mitochondrial or nuclear origin, and cell type or tissue of
198 origin^{24,58}.

199

200 The SST was spun and aliquoted according to the manufacturer's instructions (**Fig 3d**). Serum
201 volume ranged from 2000-8000 uL per timepoint (**Fig 4f**). Similar to plasma, serum can be
202 allocated for cytokine analysis and can also be used to perform comprehensive metabolic panels,
203 including one we used at Quest (CMP, Quest Test Code: 10231) for metrics on alkaline
204 phosphatase, calcium, glucose, potassium, and sodium, among other metabolic markers. The
205 remaining cell pellet mixture from each SST tube was stored at -20°C.

206

207 In addition to venous blood, capillary blood was collected onto a DBS card using a contact-
208 activated lancet pressed against the fingertip (**Fig 5a**). Capillary blood was collected onto a dried
209 blood spot (DBS) card to preserve nucleic acids and proteins. The amount of capillary blood
210 collected across timepoints varied (**Fig 5b, 5c**) according to how much blood could be collected
211 before the puncture wound closed.

212

213 **Saliva Collection**

214 Saliva was collected at the L-92, L-44, L-3, FD1, FD2, FD3, R+1, R+45, and R+82 timepoints
215 using two methods. First, saliva was collected using the OMNIgene Oral Kit, which preserves
216 nucleic acids (**Fig 6a**) during the ground timepoints. From these samples, DNA, RNA, and
217 protein were extracted. DNA yield ranged from 28.1 to 3,187.8 ng, RNA yield from 396.0 to
218 3544.2 ng (less the two samples had concentrations too low for measurement), and protein
219 concentration from 92.97 - 93.15 ng.

220

221 Second, crude saliva (i.e. saliva with no preservative added) was collected into a 5mL
222 DNase/RNase-free screw top tube during the ground and flight timepoints. Saliva volume varied

223 from 150 - 4,000 uL per tube (**Fig 6b**). Crude saliva was also collected during flight (FD2 and
224 FD3), in addition to the ground timepoints.

225

226 Saliva collections have been conducted throughout spaceflight studies for assessing the immune
227 state, particularly in the context of viral reactivation. Previously identified viruses that reactivate
228 during spaceflight include Epstein–Barr, varicella-zoster, and cytomegalovirus ⁴⁶. Responses to
229 reactivation of these viruses can be asymptomatic, debilitating, or even life-threatening, thus
230 assessing these adaptations is beneficial in understanding viral spaceflight activity as well as
231 crew health. In addition to viral nucleic acid quantification, numerous biochemical assays can
232 also be performed, including measurements of C-reactive protein (CRP), cortisol,
233 dehydroepiandrosterone (DHEA), and cytokines, among others ^{10,35,44,46}.

234

235 **Urine Collection**

236

237 Urine was collected in sterile specimen cups at the L-92, L-44, L-3, R+1, R+45, and R+82
238 timepoints. Specimen cups were collected 1-2 times per day. For preservation, urine was
239 aliquoted and stored at -80°C. Half the urine had Zymo Urine Conditioning Buffer (UCB) added
240 before freezing, to preserve nucleic acids. Samples yielded 23 - 155.5 mL of crude urine and 21 -
241 112 mL of UCB urine per specimen cup (**Fig 7a**). Urine was split into 1 mL - 15 mL aliquots
242 before freezing at -80°C.

243

244 A wide variety of assays can be performed on urine samples. Previous studies have included
245 viral reactivation^{40,44,46}, urinary cortisol^{47,55}, iron and magnesium measurements^{49,52}, bone

246 status^{50,51,53,56}, kidney stones^{50,51}, proteomics¹¹, telomere measurements⁵⁹, and various
247 biomarkers and metabolites^{17,55}.

248

249 **Stool Collection**

250 Stool was collected at the L-92, L-44, R+1, R+45, and R+82 timepoints. Stool samples were
251 stored into two collection containers at each timepoint, one DNA Genotek OMNIgene Gut
252 (OMR-200) kit with a preservative for metagenomics and another (ME-200) with a preservative
253 for metabolomics (**Fig 7b**). Stool was the least consistent sample collected due to the limited
254 windows available for sampling during collection timeframes. DNA and RNA were extracted
255 from aliquots of the OMNIgene Gut (OMR-200) tubes for downstream microbiome analysis.
256 DNA yield ranged from 358.5 - 16,660 ng, RNA from 690 - 2010 ng (**Fig 7c**). Large variations
257 in yield are attributable to variable stool mass collected between kits.

258

259 Stool samples enable various biochemical, immune, and microbiome changes studies. Previous
260 metagenomic assays have found that shannon alpha diversity and richness during long duration
261 missions to the ISS³⁹.

262

263 **Skin Swabs**

264

265 Body swabs were collected at all timepoints. Samples were collected by swabbing the body
266 region of interest for 30 seconds, then placing the swab in a sterile 2D matrix tube (Thermo
267 Scientific #3710) with Zymo DNA/RNA shield preservative. For the first two swab locations,
268 the oral and nasal cavity, the swab was placed directly on the body after removal from its sterile
269 packaging (dry-swab method; **Fig 8a**). For the remaining body locations, the swab was briefly

270 dipped in nuclease-free, DNA/RNA-free water before proceeding (wet-swab method). Eight
271 distinct sites were swabbed with the wet-swab method: post-auricular, axillary vault, volar
272 forearm, occiput, umbilicus, gluteal crease, glabella, and the toe-web space (**Fig 8b**). The
273 astronaut microbiome has previously been studied in the forehead, forearm, nasal, armpit, navel,
274 postauricular, and tongue body locations, and changes have been documented during flight.
275 Changes in alpha diversity and beta diversity were documented, as well as shifts in microbial
276 genera³⁹. However, the impact of these changes on skin health and immunological health are not
277 well understood.

278

279 Acquiring extensive swab samples from the crew skin allows for characterization of the habitat
280 environment, crew skin microbiome adaptations, and interactions with potential human health
281 adaptations resulting from spaceflight exposure. This is very relevant for crew health,
282 considering astronauts become more susceptible to infections during spaceflight missions⁶³, with
283 the relationship between microbe-host interactions from spaceflight exposure, which may be a
284 causative factor of astronauts immune dysfunction, which is still not well understood.

285

286 **Skin Biopsies**

287

288 A skin biopsy on the deltoid was obtained from the L-44 and R+1 timepoint. Biopsies were also
289 collected in advance of a flight to ensure the biopsy site is fully healed before the flight so there
290 is no risk of complication. The wet-swab method was used to collect the skin microbiome before
291 the skin biopsy. The skin biopsies were three millimeters in diameter and were collected for
292 histology and spatially resolved transcriptomics (SRT) (**Fig 8c**). One-third of the sample was
293 stored in formalin and kept at room temperature to perform histology. The remaining two-thirds

294 of the sample was stored in a cryovial and placed at -80°C for SRT (**Fig 8c**). This is the first
295 sample collected from astronauts for spatially resolved transcriptomics. The skin is of high
296 interest due to the inflammation-related cytokine markers such as IL-12p40, IL-10, IL-17A, and
297 IL-18^{10,17} and skin rash's status as the most frequent clinical symptom reported during
298 spaceflight⁶⁴.

299

300 **Environmental Swabs and HEPA Filter**

301

302 Environmental swabs were collected in flight during the F1 and F2 timepoint. Additionally,
303 environmental swabs were collected from the flight simulation capsule at SpaceX headquarters
304 after days of crew training during the L-92 and L-44 timepoints. Environmental swabs were
305 collected using the wet-swab method. Ten environmental swabs were collected per time point at
306 the following locations in the capsule: an ambient air/control swab, the execute button, the
307 viewing dome, the side hatch mobility aid, the lid of the waste locker, the head section of one of
308 the seats, the commode panel, the right and left sides of the control screen, and the g-meter
309 button (**Fig 9a-d**). Additionally, the spacecraft's high-efficiency particulate absorbing (HEPA)
310 filter was acquired post-flight (**Fig 10a**). This filter was cut into 127 rectangular pieces (1.2" x
311 1.6" x 4") and stored at -20°C (**Fig 10b, Fig 10c**).

312

313 Previous microbial profiling of spacecraft environments has revealed that equipment sterilized
314 on the ground becomes coated in microbial life in space due to interactions with crew and the
315 introduction of equipment that has not undergone sterilization⁶⁵. Subsequent microbial
316 monitoring assays performed on the ISS have detected novel, spaceflight-specific species on the

317 ISS⁶⁶. Once in space, surface microbes are subject to the unique microgravity and radiation
318 environment of flight, which will influence evolutionary trajectory. The potential impact of this
319 influence on pathogenesis is a concern for long-duration space missions, especially given that
320 changes in host-pathogen interactions may also be affected during spaceflight⁶⁷.

321

322 **Discussion**

323

324 We report here on biospecimen samples collected from the SpaceX I4 Mission, the most
325 comprehensive human biological specimen collection effort performed on an astronaut cohort to
326 date. The extensive archive of biospecimens included venous blood, dried blood spot cards,
327 saliva, urine, stool, microbiome body swabs, skin biopsies, and environmental capsule swabs.
328 The study objective was to establish a foundational set of methods for biospecimen collection
329 and banking on commercial spaceflight missions suitable for multi-omic and molecular analysis.
330 Biospecimens were collected to enable comprehensive, multi-omic profiles, which can then be
331 used to develop molecular catalogs with higher resolution of human responses to spaceflight.
332 Select, targeted measures in clinical labs (CLIA) were also performed immediately after sample
333 collection (CBC, CMP), and samples and viable cells were preserved in a long-term Cornell
334 Aerospace Medicine Biobank, such that additional assays and measures can be conducted in the
335 future.

336

337 There are several reasons why rigorous biospecimen collection methods for commercial and
338 private spaceflight missions must be developed, which are scalable and translational across
339 populations, missions, and mission parameters. First, little is known about the biological and
340 clinical responses that occur in civilians during and after space travel. While professional

341 astronauts are generally young, healthy, and extensively trained, civilian astronauts have been,
342 and likely will be, far more heterogeneous. They will possess a variety of phenotypes, including
343 older ages, different health backgrounds, and greater medication use, and may experience
344 different medical conditions, risks, and comorbidities. Careful molecular characterization will be
345 beneficial for the development of appropriate baseline metrics and countermeasures and,
346 therefore, beneficial for the individual spaceflight experience. In the future, such analyses may
347 enable precision medicine applications aimed at optimizing countermeasures for each individual
348 astronaut who enters and returns safely from space^{68,69}.

349

350 Second, multi-omic studies inherently present a large number of measurements within a small set
351 of subjects. These high-dimensional datasets present numerous potential challenges with regard
352 to amplification of noise, risk of overfitting, and false discoveries⁷⁰. At all times, scientists
353 engaged in multi-omic analyses must take special care that true biological variance is what has
354 been measured. The introduction of experimental variance through the progression from sample
355 collection, transport, storage, to sequencing and analysis can introduce artifacts of variance that
356 render the detection of true biological variance and interpretation of results more difficult. For
357 this reason, tight adherence to experimental controls or annotation at every step of the
358 experimental condition is crucial. Careful annotation allows for the assignment of class variables
359 in post hoc analysis. Among such applications are the attempt to detect batch effects or
360 determine the impact of variations in temperature (collection, storage, or transport)⁷¹.

361

362 The necessary means to address experimental variance are longitudinal sampling and specimen
363 aliquoting. Longitudinal sampling (i.e. collecting numerous serial samples from each test

364 condition) from pre-flight, in-flight, and post-flight allows for greater statistical power when
365 assessing changes attributable to spaceflight. In addition, each sample collected should be
366 divided upon collection into multiple aliquots. This better assures that freeze-thaw cycles can be
367 avoided in the analysis stage, as freeze-thaw events can introduce considerable experimental
368 variance depending on the molecular class being measured. Maintaining all samples at their
369 optimal storage temperature at all times, typically -80°C or lower, is crucial⁷². Special attention
370 must be given to how the collection and storage methods in-flight vary in relation to the
371 conditions on Earth. Spaceflight presents considerable differences in the operating environment,
372 where ground conditions are far easier to control than flight. In practice, this may limit the types
373 of samples that can be collected during flight.

374

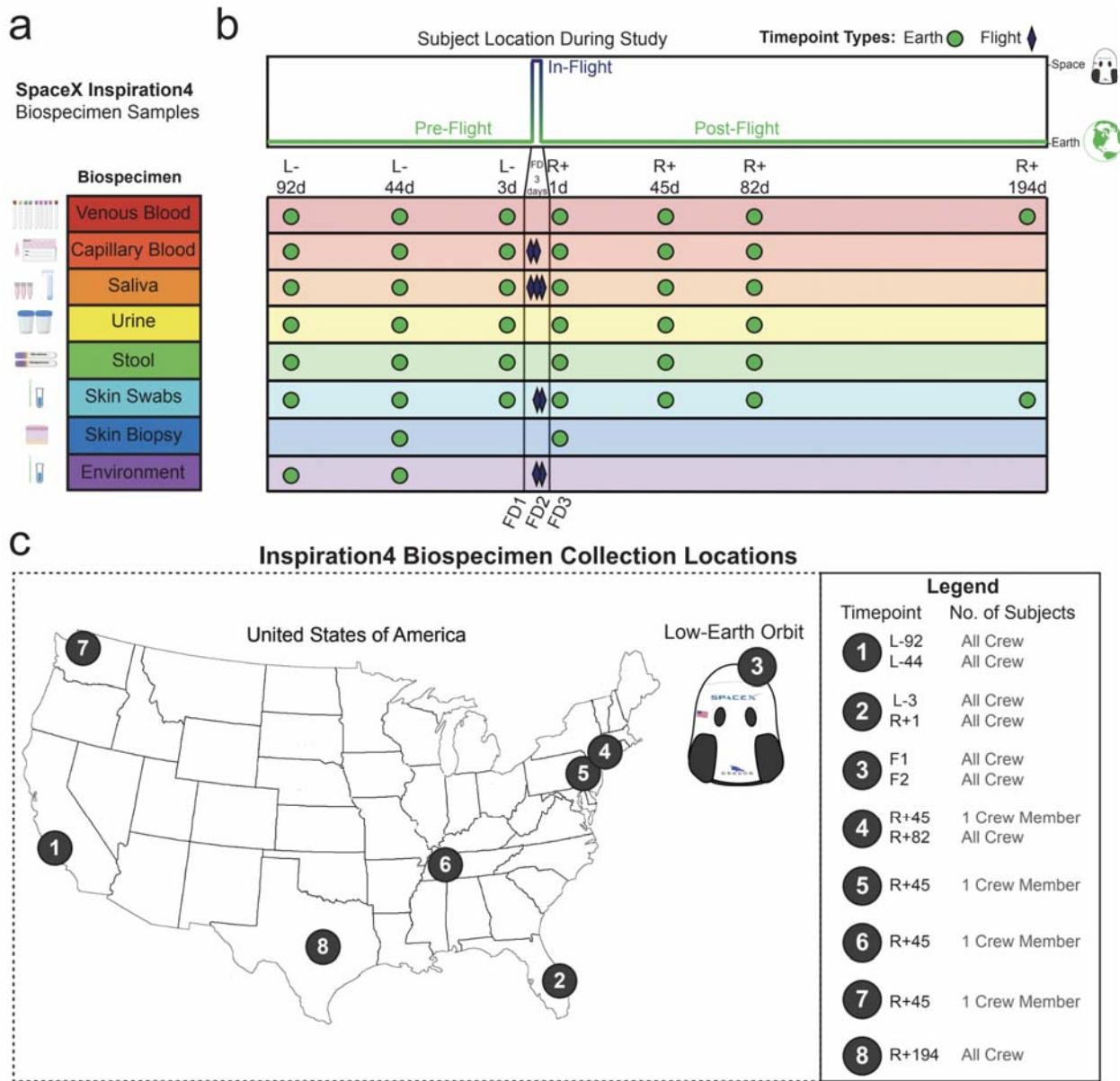
375 Third, rigorous methods must be developed and followed to pursue comparisons across missions
376 with varying design parameters. In this consideration, there is an argument for the development
377 of specimen collection, transport, storage, processing, analysis, and reporting standards. At the
378 same time, this must be balanced with the flexibility required for innovation since standards can
379 sometimes limit advancement in methodology. In the present study, common methods were used
380 for the Inspiration4 and the forthcoming Polaris Dawn and Axiom missions. However, selected
381 methods may require optimization for Polaris Dawn to increase the yields during sample
382 processing and adapt to unique parameters imposed by the anticipated spacewalk (extravehicular
383 activity; EVA). Moreover, within standards or best practices, unique research for each mission
384 may require alteration of previously successful methods. With these considerations in mind, we
385 must balance methodology standardization with advances in methodology options and mission-
386 specific objectives.

387

388 As the commercial spaceflight sector gains momentum and more astronauts with different health
389 profiles and backgrounds have access to space, comprehensive data on the biological impact of
390 short-duration spaceflight is of paramount importance. Such data will further expand our
391 understanding and knowledge of how spaceflight affects human physiology, microbial
392 adaptations, and environmental biology. The use of integrative omics technologies for civilian
393 astronauts will unveil novel data on genomics, proteomics, metabolomics, and transcriptomics.
394 Creating multi-omic datasets from spaceflight studies on astronaut cohorts will further advance
395 our understanding, inform future mission planning, and help discover what appropriate
396 countermeasures can be developed to minimize future risk and enhance performance.

397

398 Validating sample collection methodologies initially in short-duration commercial spaceflight is
399 a key step for future human health research in long-duration and exploration-class missions to
400 the Moon and beyond. To help meet these challenges, we have established the SOMA protocols,
401 which detail standard multi-omic measures of astronaut health and protocols for sample
402 collection from astronaut cohorts. Although the all-civilian Inspiration4 crew pioneered the first
403 use of the SOMA protocols, the methodology outlined here is robust and generalizable, making it
404 applicable to future astronaut crews from any commercial mission provider (e.g., SpaceX,
405 Axiom Space, Sierra Space, Blue Origin) or space agencies (NASA, ESA, JAXA,
406 ROSCOSMOS). Furthermore, the SOMA banking, sequencing, and processing methods are a
407 springboard for continuing biospecimen analysis and expanding our knowledge of multi-omic
408 dynamics before, during, and after human spaceflight missions, providing a molecular roadmap
409 for crew health, medical biometrics, and possible countermeasures.

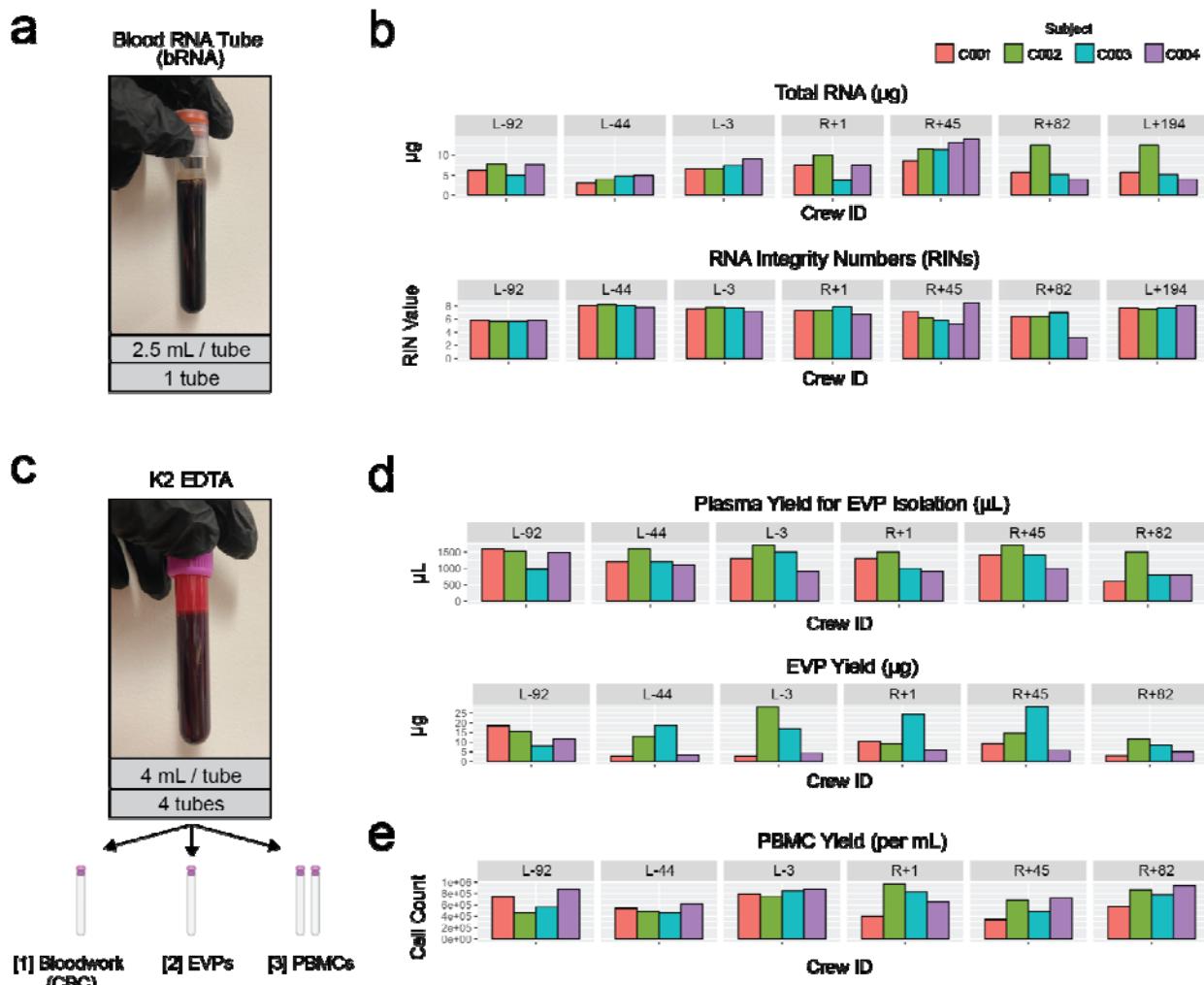

410

411 **Acknowledgements**

412 We thank the Scientific Computing Unit (SCU) at WCM and the Genomics, Epigenomics, and
413 Biorepository Cores, the NIH (R01MH117406) and NASA (NNX14AH50G, NNX17AB26G,
414 80NSSC22K0254, NNH18ZTT001N-FG2, NNX16AO69A, 80NSSC23K0832), the LLS
415 (MCL7001-18, LLS 9238-16, 7029-23), as well as Igor Tulchinsky and the WorldQuant
416 Foundation, the GI Research Foundation (GIRF), the Radvinsky/Chudnovsky family. We thank
417 JJ Hastings for early protocol work. JK thanks MOGAM Science Foundation. We also thank
418 Jennifer Conrad for CPT photography.

419

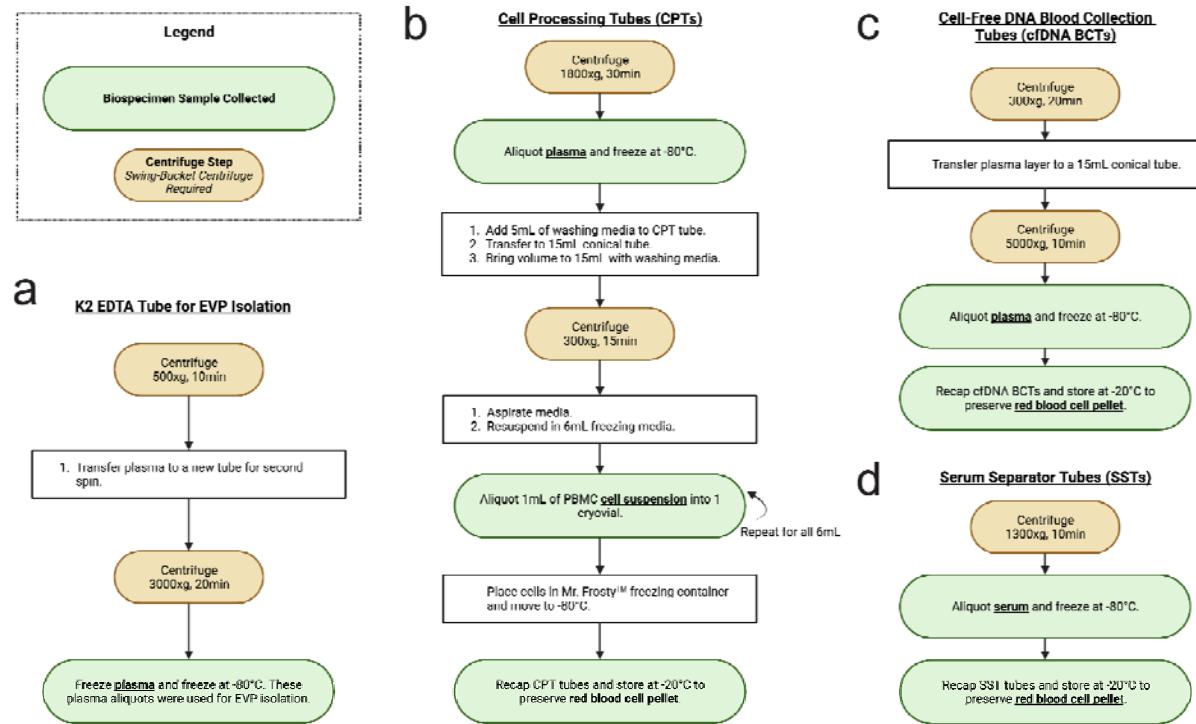
420 **Figures**


421

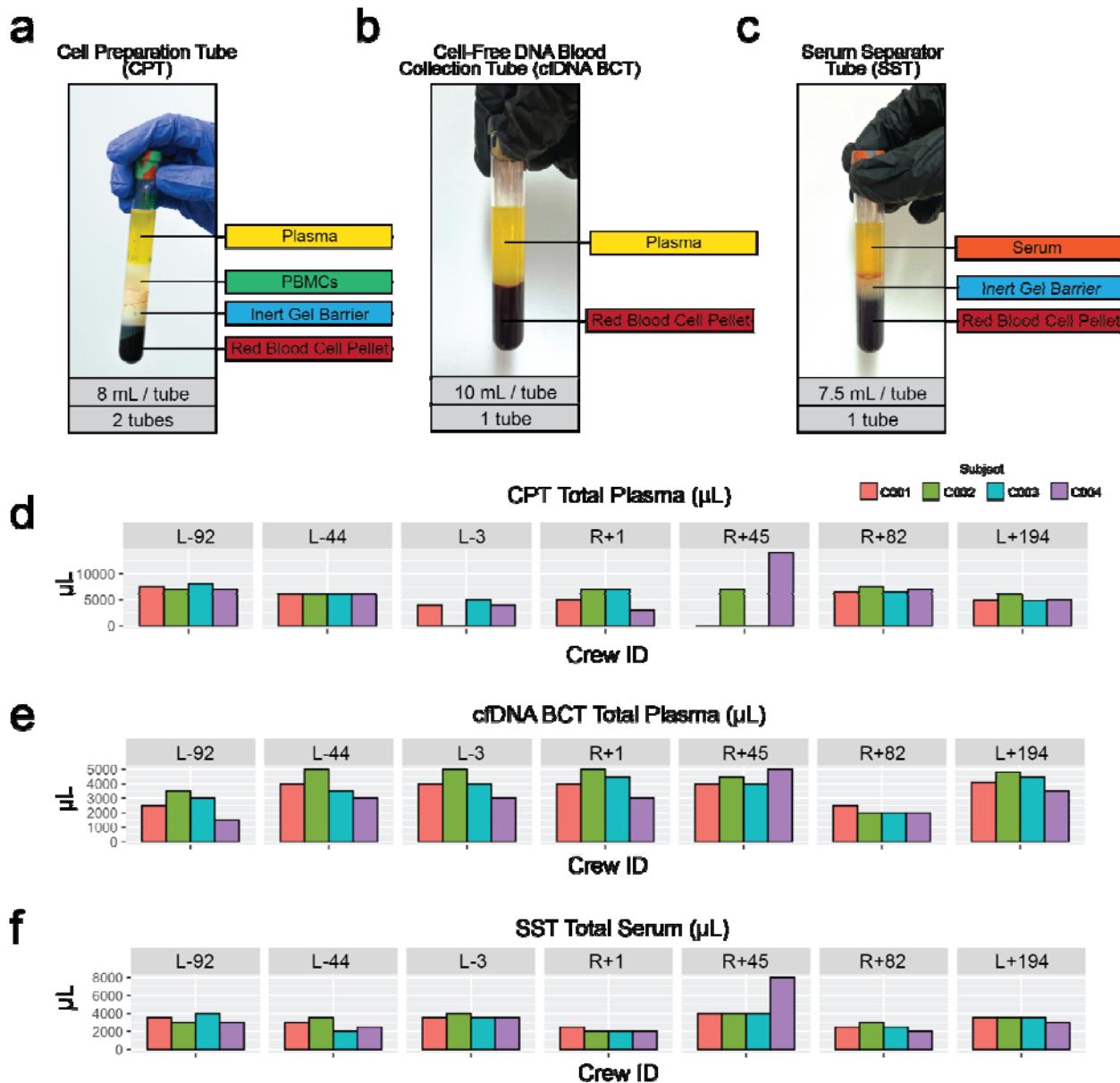
422 **Figure 1: Biospecimen Samples and Collection Locations.** (a) List of biospecimen samples
423 collected over the course of the study. (b) Timepoints for each biospecimen sample collection.
424 “L-” denotes the number of days prior to launch. “R+” denotes the number of days after return to
425 Earth. “FD” denotes which day of the flight a sample was collected. (c) Location of each
426 collection timepoint.

427

428

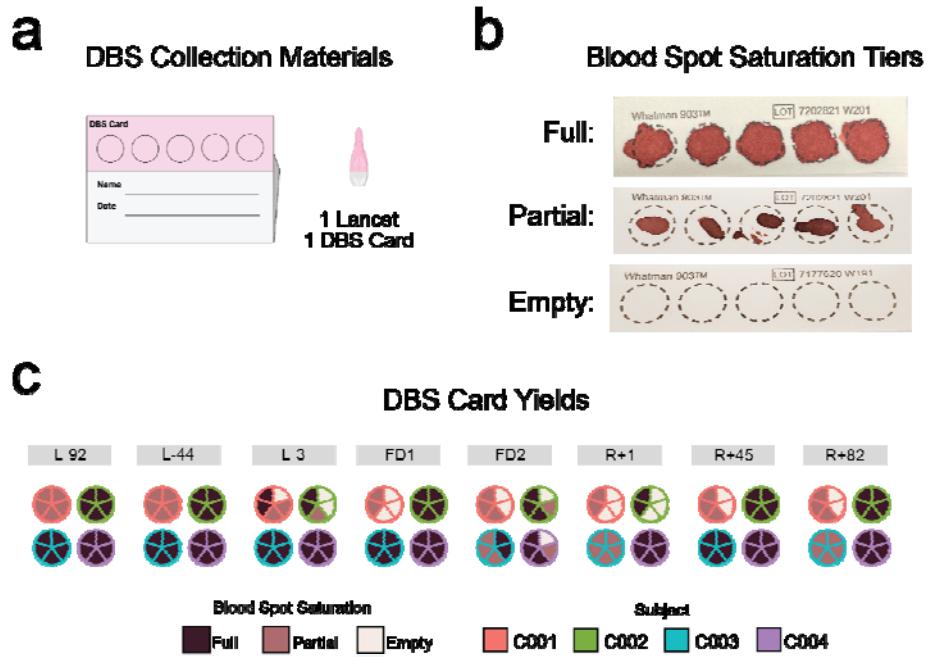

429

430


431 **Figure 2: bRNA and K2 EDTA Tubes.** (a) One 2.5mL bRNA tube was collected per crew
432 member at each ground timepoint. (b) bRNA tube total RNA yields per sample (μ g) and RINs.
433 (c) Four K2 EDTA tubes were collected per member at each ground timepoint. One tube was
434 used for a CBC, one tube was used to isolate EVPs, and two tubes were used for isolation of
435 PBMCs. (d) Plasma and EVP yields from the “[2] EVPS” tube on figure 2c. (e) PBMC yields
436 per mL from the “[3] PBMCs” tubes on figure 2c.

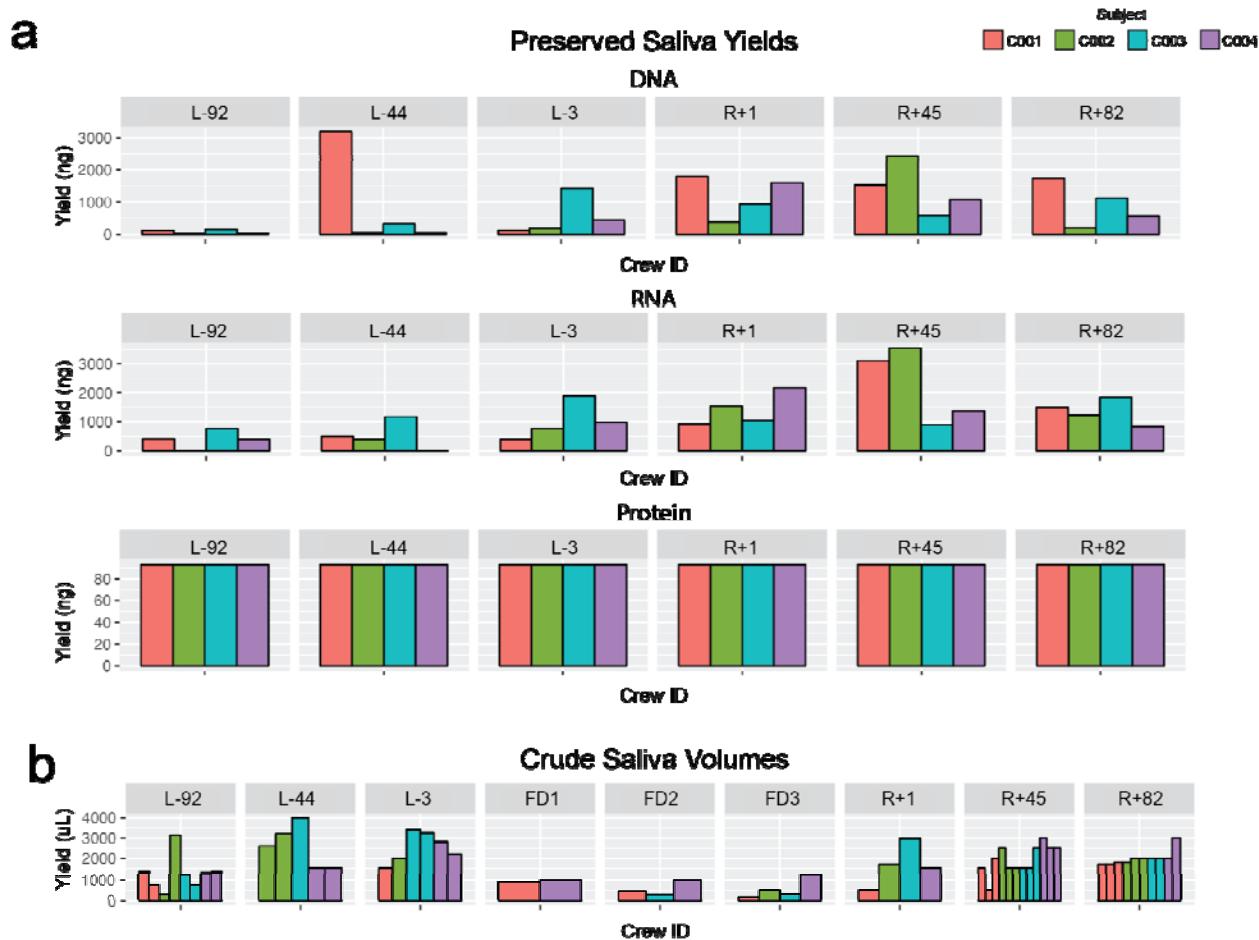
437

438


439 **Figure 3: Tube Processing Steps.** Centrifuge (brown circles) and aliquoting (white and green
440 boxes and circles) protocols for (a) K2 EDTA tubes designated for EVP isolation (b) CPTs (c)
441 cfDNA BCTs and (d) SSTs.

443 **Figure 4: CPT, cfDNA BCT, and SST Yields.** (a) A spun CPT yields plasma, PBMCs, and a
444 red blood cell pellet. PBMC from each tube were divided into 6 cryovials and viably frozen.
445 Plasma was aliquoted and the pellet was frozen at -20C. (b) A spun cfDNA BCT yields plasma
446 and a red blood cell pellet. Plasma was purified with an additional spin (see Fig 4a) then
447 aliquoted. The pellet was frozen at -20C. (c) A spun SST yields serum and a red blood cell pellet.
448 Serum was aliquoted and the pellet was frozen at -20C. (d) CPT plasma volumes per timepoint

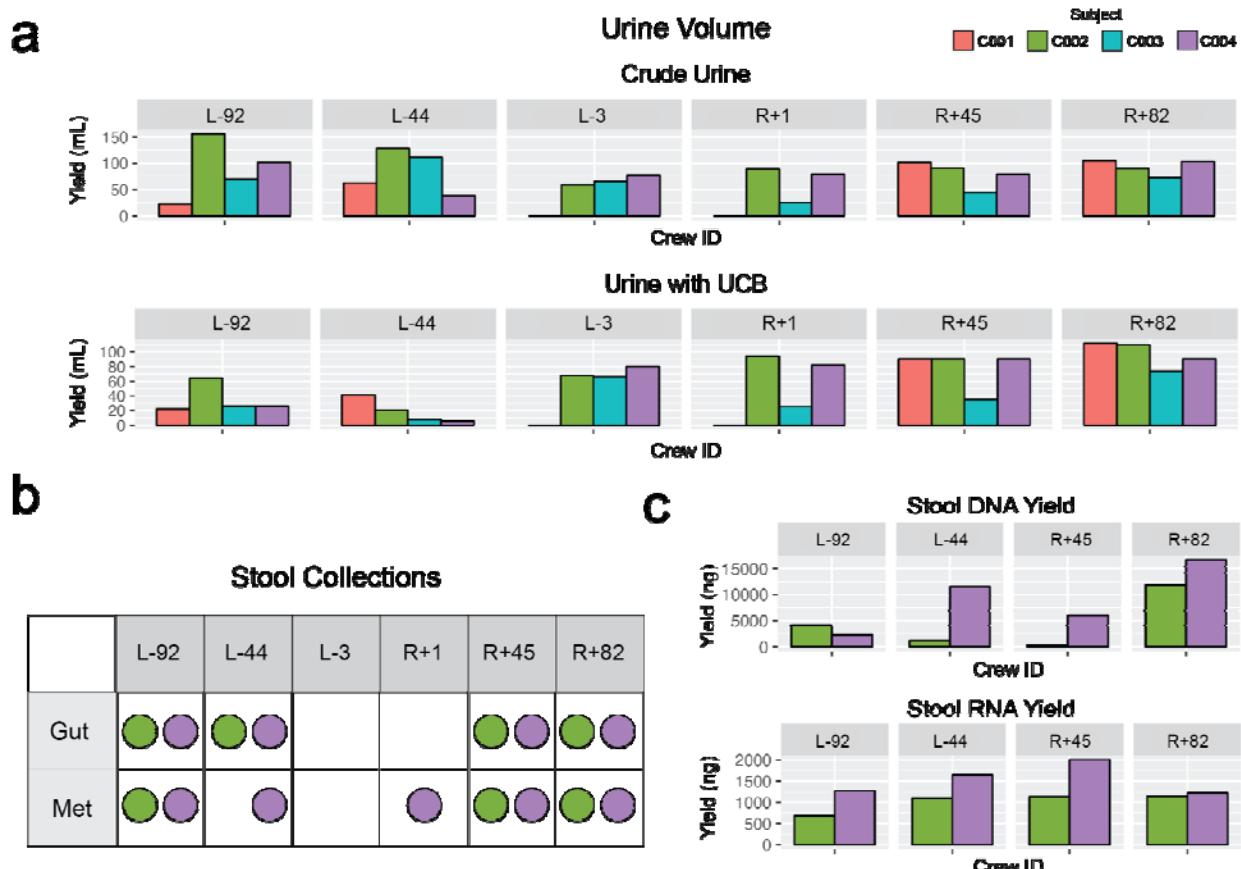
449 are reported. (e) cfDNA BCT plasma volumes per timepoint. (f) SST serum volumes per
450 timepoint. An extra tube was drawn for C004 at R+45, resulting in a higher serum yield.


451

452

453 **Figure 5: DBS Collection Yields.** (a) Dried blood spot cards were collected preflight, during
454 flight, and postflight. There were five spots for blood collection per card. (b) Blood collections
455 varied in saturation level across blood spots and timepoints. These were classified as “full”,
456 “partial”, and occasionally “empty”. (c) DBS card yields per blood spot, per timepoint, and per
457 crew member.

458


459

460 **Figure 6: Saliva, Urine, and Stool Sample Collections. (a)** DNA, RNA, and protein yields

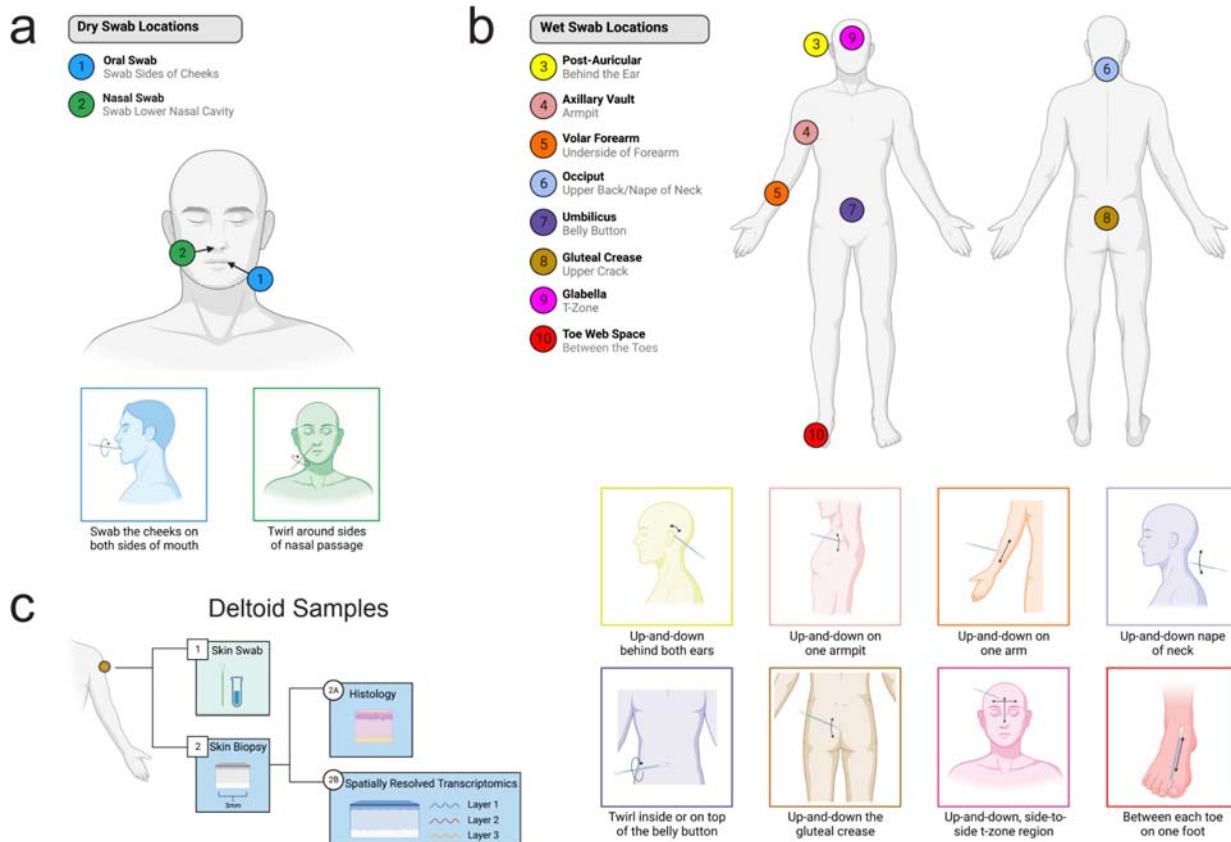
461 from the OMNIgene Oral kits. **(b)** Volume of crude saliva collected per timepoint.

462

463

464

465 **Figure 7: Urine and Stool Sample Collections.** (a) Urine volumes per timepoint. Volumes are
466 reported for both crude urine and urine preserved with Zymo urine conditioning buffer (UCB).
467 (b) Timepoints that stool tubes were collected. “Gut” tubes are OMNIgene•GUT tubes for
468 microbiome preservation. “Met” tubes are OMNImet•GUT tubes for metabolome preservation.
469 (c) Stool “Gut” tube DNA and RNA extraction quantities.


470

471

472

473

474

475

476 **Figure 8: Skin Collection Locations and Sample Types. (a)** Dry swabs were collected from
477 two body locations. **(b)** Wet swabs were collected from eight body locations. **(c)** Swabs were
478 collected from the deltoid region. Immediately after, 3- or 4-mm skin biopsies were collected
479 from the same area and divided for histology and spatially resolved transcriptomics.

480

a

Environmental Swab Locations

ID	Location	Description
1	Control Swab	Dampened swab; hold in air for 30 seconds.
2	Execute Button	Physical button on the control panel.
3	G-meter Button	Under an acrylic barrier. Located in the same area as the G-meter button.
4	Control Touch Screen	Left side of the screen.
5	Control Touch Screen	Right side of the screen.
6	Side Hatch Mobility Aid	Side of the spacecraft. View from the camera angle in Figure 6B.
7	Lid of Waste Locker	Quarter turn screws and surface of panel was swabbed. Towards the bottom-right floor of Figure 6B.
8	Seat 2	Upper section by head was swabbed.
9	Commode panel	Quarter turn screws and bottom part of panel was swabbed. At the top of Figure 6B on the camera side.
10	Viewing Dome	Bottom rim of the cupola, towards the crew entrance.

b

Dragon Capsule Interior

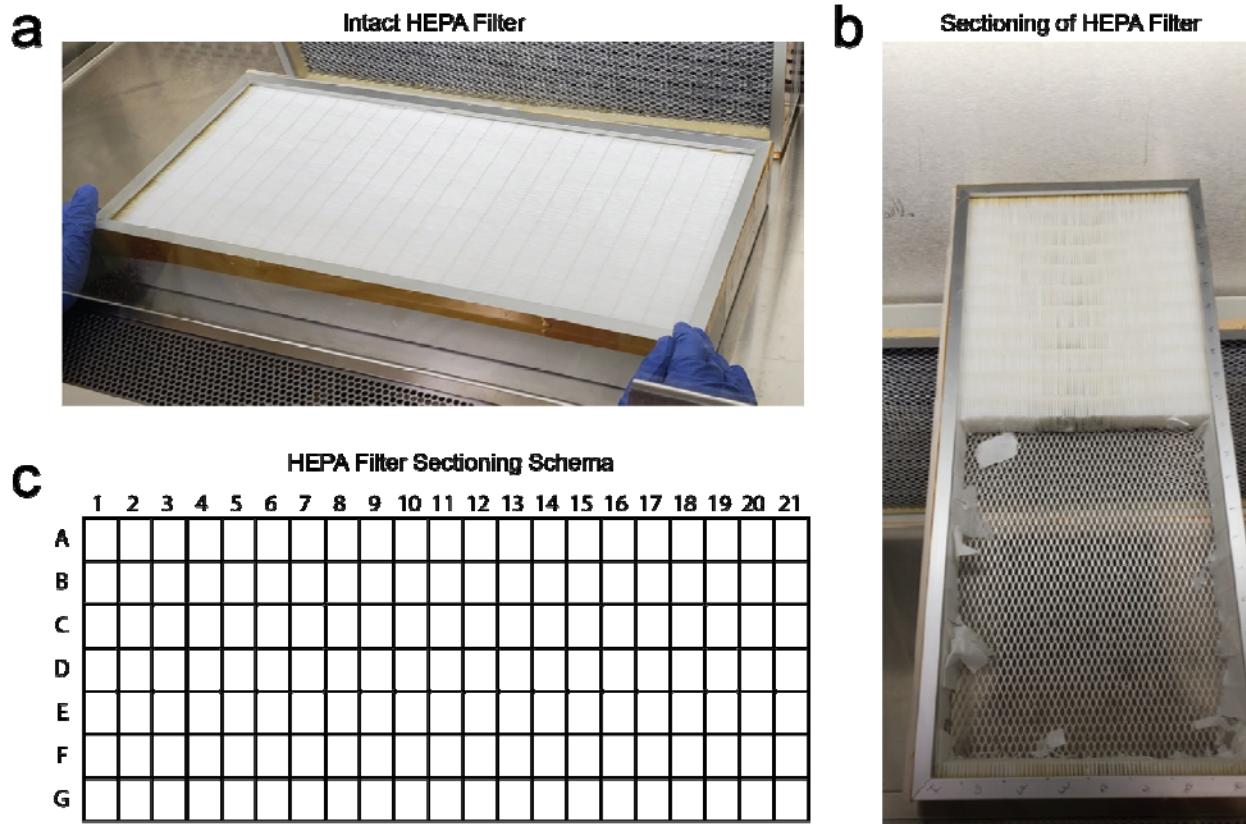
1 Air of Capsule Interior 6 Located Near Camera

c

Control Panel

d

Cupola View



*swab collected on capsule interior

481

482 **Figure 9: Capsule Swab Locations.** (a) Swab locations, descriptions, and label IDs. (b) Interior
483 view of the SpaceX Dragon capsule. (c) View of the control panel located above the middle seats
484 in the Dragon capsule. (d) View of the cupola (viewing dome) region from the outside. The rim
485 of the dome was swabbed from the inside (ID 10).

486

487

488 **Figure 10: Dragon Capsule HEPA Filter. (a)** View of the un-cut HEPA filter. **(b)** HEPA filter
489 during sectioning. **(c)** Cutting schema for the HEPA filter. The filter was split into 21 columns
490 and 7 rows, creating a total of 147 preserved sections.

491

492 **Methods**

493

494 *Venous Blood Draw*

495 Venipuncture was performed on each subject using a BD Vacutainer® Safety-Lok™ blood
496 collection set (BD Biosciences, #367281) and a Vacutainer one-use holder (BD Biosciences,
497 364815). The puncture site was located near the cubital fossa and was sterilized with a BZK
498 antiseptic towelette (Dynarex, Reorder No. 1303). Blood was collected into 1 serum separator
499 tube (SST, BD Biosciences: #367987, Lot: #1158449, #1034773), 2 cell processing tubes (CPT,

500 BD Biosciences: #362753, Lot: #1133477, #1012161), 1 blood RNA tube (bRNA, PAXgene:
501 #762165, Lot: #1021333), 1 cell-free DNA BCT (cfDNA BCT, Streck: #230470, Lot:
502 #11530331), and 4 K2 EDTA blood collection tubes (BD Biosciences, #367844, Lot: #0345756)
503 per crew member per time point. For samples collected in Hawthorne, blood was drawn at
504 SpaceX headquarters, then immediately transported to USC for processing. Samples collected at
505 Cape Canaveral were processed on-site.

506

507 *Blood Tube Processing*

508 For processing, serum separator tubes (SST) were centrifuged at 1300xg for 10 minutes. 500uL
509 aliquots of serum were aliquoted into 1mL Matrix 2D Screw Tubes (ThermoFisher, 3741-
510 WP1D-BR) and stored at -80°C. SST tubes were recapped and stored at -20°C to preserve the
511 red blood cell pellet.

512

513 Cell processing tubes were centrifuged at 1800xg for 30 minutes. Plasma was aliquoted into 1mL
514 Matrix 2D Screw Tubes and stored at -80°C. 5mL of 2% FBS (ThermoFisher, #26140079) in
515 PBS (ThermoFisher, #10010023) was added to the CPT tube to resuspend PBMCs. PBMC
516 suspension was transferred to a clean 15mL conical tube. The total volume was brought to 15mL
517 with 2% FBS in PBS. The tube was centrifuged for 15 minutes at 300xg. Supernatant was
518 discarded. PBMCs were resuspended 6mL of 10% DMSO (Millipore Sigma, #D4540-500mL) in
519 FBS. 1mL of PBMCs were moved to 6 cryogenic vials (Corning, #8672). Cryovials were placed
520 in a Mr. Frosty™ (ThermoFisher, #5100-0001) and stored at -80°C. CPTs were recapped and
521 stored at -20°C to preserve the red blood cell pellet.

522 Cell-free DNA blood collection tubes (cfDNA BCTs) were centrifuged at 300xg for 20 minutes.

523 Plasma was transferred to a 15mL conical tube. Plasma was centrifuged 5000xg for 10 minutes.

524 500uL aliquots of plasma were aliquoted into 1mL Matrix 2D Screw Tubes and stored at -80°C.

525 cfDNA BCTs were recapped and stored at -20°C to preserve the red blood cell pellet.

526 PAXgene blood RNA tubes were processed according to the manufacturer's instructions. Briefly,

527 tubes were left upright for a minimum of 2 hours before freezing at -20°C. For RNA extraction,

528 tubes were thawed and processed with the PAXgene blood RNA kit (Qiagen, #762164).

529 *Extracellular Vesicles and Particles (EVPs) Isolation*

530 One 4mL K2 EDTA tube was shipped on ice overnight to WCM for processing. Blood was

531 centrifuged at 500 x g for 10 minutes, then plasma was transferred to a new tube and centrifuged

532 at 3000 x g for 20 minutes, and the supernatant was collected and stored at -80°C for EVP

533 isolation. Plasma volumes ranged between 0.6 - 1.7 ml. Plasma was later thawed for downstream

534 processing, when concentrations were measured. Plasma samples were thawed on ice and EVPs

535 were isolated by sequential ultracentrifugation, as previously described (Hoshino et al., 2020).

536 Briefly, samples were centrifuged at 12,000 x g for 20 minutes to remove microvesicles, then

537 EVPs were collected by ultracentrifugation in a Beckman Coulter Optima XE or XPE

538 ultracentrifuge at 100,000 x g for 70 minutes. EVPs were then washed in PBS and pelleted again

539 by ultracentrifugation at 100,000 x g for 70 minutes. The final EVP pellet was resuspended in

540 PBS.

541

542 *Dried Blood Spot (DBS)*

543 Crew members warmed their hands and massaged their finger towards the fingertip to enrich

544 blood flow towards the puncture site. The puncture site was sterilized using a BZK antiseptic

545 towelette (Dynarex, Reorder No. 1303). Skin was punctured using a contact-activated lancet (BD
546 Biosciences, #366593) or a 21-gauge needle (BD Biosciences, #305167), depending on crew
547 member preference. Capillary blood was collected onto the Whatman 903 Protein Saver DBS
548 cards (Cytiva, #10534612). Blood was transferred by touching only the blood droplet to the
549 surface of the DBS card. DBS cards were stored at room temperature with a desiccant pack
550 (Cytiva, #10548239).

551

552 *Saliva*

553 To collect crude saliva, crew members uncapped and spit into a sterile, PCR-clean, 5mL screw-
554 cap tube (Eppendorf, 30122330). Crew spit repeatedly until at least 1mL was collected. Saliva
555 was transported to a sterile flow hood and separated into 500uL aliquots. Aliquots were frozen at
556 -80°C. To collect preserved saliva, crew members used the OMNIgene ORAL kit (DNA
557 Genotek, OME-505). Crew members spit into the kit's tube until they reached the fill line. The
558 tube was re-capped, which released the preservative liquid. Tubes were inverted to mix the saliva
559 and preservative before being placed at -20°C for storage. After all timepoints were collected,
560 DNA, RNA, and protein were extracted using the AllPrep DNA/RNA/Protein kit (Qiagen,
561 #47054). Sample concentrations were measured with Qubit high sensitivity dsDNA and RNA
562 platform. Proteins were quantified with the Pierce™ Rapid Gold BCA Protein Assay Kit
563 (Thermo Scientific, #A53225) on Promega GloMax Plate Reader.

564

565 *Urine*

566 Crew members urinated into sterile specimen containers (Thermo Scientific, #13-711-56). The
567 container was stored at 4C until it was prepared for long-term storage. To prepare urine samples

568 for long-term storage, urine was aliquoted into 1mL, 15mL, and 50mL tubes. Half of the urine
569 was immediately placed at -80°C. The other half had urine conditioning buffer (Zymo, #D3061-
570 1-140) added to the sample before placing in the -80°C freezer.

571

572 *Stool Collection*

573 Crew members isolated a stool sample using a paper toilet accessory (DNA Genotek, OM-AC1).
574 Stool was transferred into and OMNIgene•GUT tube (DNAgenotek, OMR-200) and an
575 OMNImet•GUT tube (DNA Genotek, ME-200). Tubes were placed at -80°C for long-term
576 storage. For nucleic acid extraction, 200uL of each tube was allocated for DNA extraction with
577 the QIAGEN PowerFecal Pro kit and 200uL was allocated to RNA extraction with the QIAGEN
578 PowerViral kit. The remaining sample was split into 500uL aliquots and re-stored at -80°C.

579

580 *Swab Collection*

581 Crew members put on gloves and remove a sterile swab from its packaging. For collection of the
582 postauricular, axillary vault, volar forearm, occiput, umbilicus, gluteal crease, glabella, toe web
583 space, and capsule environment regions, swabs were dipped in nuclease-free water (this step was
584 skipped for oral and nasal swabs) for ground collections. For in-flight collections, HFactor
585 hydrogen infused water was used in place of nuclease-free water. Each body location was
586 swabbed for 30 seconds, using both sides of the swab. Swabs were then placed in 1mL Matrix
587 2D Screw Tubes containing 400uL of DNA/RNA Shield (Zymo). The tip of the swab was
588 broken off so that only the swab tip was stored in the Matrix 2D Screw Tube. Tubes were stored
589 at 4C.

590

591 *Skin Biopsies*

592 Skin biopsies were performed on the deltoid region of the arm. Each site was prepared by
593 application of ChloraPrep and anesthesia was induced with administration of 1% lidocaine with
594 1:100,000 epinephrine. A trephine punch was used to remove a 3- or 4-mm diameter piece of
595 skin. The resected piece was cut into approximately $\frac{1}{3}$ and $\frac{2}{3}$ sections. The smaller piece was
596 added to a formalin-filled specimen jar. The larger piece was placed in a cryovial and stored at -
597 80°C. Surgical defects were closed with 1 or 2 5-0 or 4-0 nylon sutures.

598

599 *HEPA Filter*

600 HEPA Filter was taken apart and sectioned under a chemical hood to avoid contamination. The
601 filter contained two parts, an activated carbon component and a HEPA filter. The activated
602 carbon component was discarded and the filter was sectioned using a sterile blade. Sections were
603 placed in individual specimen containers and stored at -20°C.

604

605 *Human Subjects Research*

606 All subjects were consented and samples were collected and processed under the approval of the
607 IRB at Weill Cornell Medicine, under Protocol 21-05023569.

608

609 *Manuscript Preparation*

610 Figures were generated using Adobe Illustrator and Biorender. Plots were generated in R using
611 ggplot2. SpaceX Dragon capsule images are from the SpaceX Flickr Account
612 (<https://www.flickr.com/people/spacex/>).

613

614 **References**

615 1. Witze, A. 2022 was a record year for space launches. *Nature* **613**, 426 (2023).

616 2. Afshinnekoo, E. *et al.* Fundamental Biological Features of Spaceflight: Advancing the Field to
617 Enable Deep-Space Exploration. *Cell* vol. 183 1162–1184 Preprint at
618 <https://doi.org/10.1016/j.cell.2020.10.050> (2020).

619 3. Comfort, P. *et al.* Effects of Spaceflight on Musculoskeletal Health: A Systematic Review and Meta-
620 analysis, Considerations for Interplanetary Travel. *Sports Med.* **51**, 2097–2114 (2021).

621 4. Vernice, N. A., Meydan, C., Afshinnekoo, E. & Mason, C. E. Long-term spaceflight and the
622 cardiovascular system. *Precis Clin Med* **3**, 284–291 (2020).

623 5. Lee, A. G. *et al.* Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-
624 ophthalmologic effects of microgravity: a review and an update. *NPJ Microgravity* **6**, 7 (2020).

625 6. Russomano, T., da Rosa, M. & Dos Santos, M. A. Space motion sickness: A common
626 neurovestibular dysfunction in microgravity. *Neurol. India* **67**, S214–S218 (2019).

627 7. Carriot, J., Mackrou, I. & Cullen, K. E. Challenges to the Vestibular System in Space: How the
628 Brain Responds and Adapts to Microgravity. *Front. Neural Circuits* **15**, 760313 (2021).

629 8. Crucian, B. E., Stowe, R. P., Pierson, D. L. & Sams, C. F. Immune system dysregulation following
630 short- vs long-duration spaceflight. *Aviat. Space Environ. Med.* **79**, 835–843 (2008).

631 9. Guo, Z., Zhou, G. & Hu, W. Carcinogenesis induced by space radiation: A systematic review.
632 *Neoplasia* **32**, 100828 (2022).

633 10. Krieger, S. S. *et al.* Alterations in Saliva and Plasma Cytokine Concentrations During Long-Duration
634 Spaceflight. *Front. Immunol.* **12**, 725748 (2021).

635 11. Gertz, M. L. *et al.* Multi-omic, Single-Cell, and Biochemical Profiles of Astronauts Guide
636 Pharmacological Strategies for Returning to Gravity. *Cell Rep.* **33**, 108429 (2020).

637 12. Cirillo, M. *et al.* Low urinary albumin excretion in astronauts during space missions. *Nephron
638 Physiol.* **93**, 102–105 (2003).

639 13. Trudel, G., Shahin, N., Ramsay, T., Laneuville, O. & Louati, H. Hemolysis contributes to anemia
640 during long-duration space flight. *Nat. Med.* **28**, 59–62 (2022).

641 14. Brojakowska, A. *et al.* Retrospective analysis of somatic mutations and clonal hematopoiesis in
642 astronauts. *Commun Biol* **5**, 828 (2022).

643 15. Mencia-Trinchant, N. *et al.* Clonal hematopoiesis before, during, and after human spaceflight. *Cell*
644 *Rep.* **34**, 108740 (2021).

645 16. Luxton, J. J. *et al.* Telomere Length Dynamics and DNA Damage Responses Associated with Long-
646 Duration Spaceflight. *Cell Rep.* **33**, 108457 (2020).

647 17. Garrett-Bakelman, F. E. *et al.* The NASA Twins Study: A multidimensional analysis of a year-long
648 human spaceflight. *Science* **364**, (2019).

649 18. Malkani, S. *et al.* Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure
650 Development. *Cell Rep.* **33**, 108448 (2020).

651 19. Martin, D., Makedonas, G., Crucian, B., Peanlikhit, T. & Rithidech, K. The use of the
652 multidimensional protein identification technology (MudPIT) to analyze plasma proteome of
653 astronauts collected before, during, and after spaceflights. *Acta Astronaut.* **193**, 9–19 (2022).

654 20. Larina, I. M. *et al.* Protein expression changes caused by spaceflight as measured for 18 Russian
655 cosmonauts. *Sci. Rep.* **7**, 8142 (2017).

656 21. Urbaniak, C. *et al.* Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the
657 International Space Station. *Microbiome* **10**, 100 (2022).

658 22. Be, N. A. *et al.* Whole metagenome profiles of particulates collected from the International Space
659 Station. *Microbiome* **5**, 81 (2017).

660 23. Witze, A. Astronauts have conducted nearly 3,000 science experiments aboard the ISS. *Nature*
661 (2020) doi:10.1038/d41586-020-03085-8.

662 24. Bisserier, M. *et al.* Cell-Free Mitochondrial DNA as a Potential Biomarker for Astronauts' Health.
663 *J. Am. Heart Assoc.* **10**, e022055 (2021).

664 25. Bisserier, M. *et al.* Emerging Role of Exosomal Long Non-coding RNAs in Spaceflight-Associated
665 Risks in Astronauts. *Front. Genet.* **12**, 812188 (2021).

666 26. Crucian, B. E. *et al.* Plasma Cytokine Concentrations Indicate That In Vivo Hormonal Regulation of

667 Immunity Is Altered During Long-Duration Spaceflight. *J. Interferon Cytokine Res.* **34**, 778–786

668 (2014).

669 27. Brzozovskiy, A. G. *et al.* The Effects of Spaceflight Factors on the Human Plasma Proteome,

670 Including Both Real Space Missions and Ground-Based Experiments. *Int. J. Mol. Sci.* **20**, 3194

671 (2019).

672 28. Kashirina, D. N. *et al.* The molecular mechanisms driving physiological changes after long duration

673 space flights revealed by quantitative analysis of human blood proteins. *BMC Medical Genomics*

674 vol. 12 Preprint at <https://doi.org/10.1186/s12920-019-0490-y> (2019).

675 29. Kashirina, D. N., Pastushkova, L. K. & Percy, A. J. Changes in the plasma protein composition in

676 cosmonauts after space flight and its significance for endothelial functions. *Hum. Physiol.* (2019)

677 doi:10.1134/S0362119719010092.

678 30. Goukassian, D. & Arakelyan, A. Space flight associated changes in astronauts' plasma□derived

679 small extracellular vesicle microRNA: Biomarker identification. *Clinical and* (2022).

680 31. Crucian, B. *et al.* Alterations in adaptive immunity persist during long-duration spaceflight. *NPJ*

681 *Microgravity* **1**, 15013 (2015).

682 32. Rai, A. K. *et al.* Spaceflight-Associated Changes of snoRNAs in Peripheral Blood Mononuclear

683 Cells and Plasma Exosomes—A Pilot Study. *Frontiers in Cardiovascular Medicine* **9**, (2022).

684 33. Barrila, J. *et al.* Spaceflight modulates gene expression in the whole blood of astronauts. *NPJ*

685 *Microgravity* 2: 16039. Preprint at (2016).

686 34. Kunz, H. *et al.* Alterations in hematologic indices during long-duration spaceflight. *BMC Hematol*

687 **17**, 12 (2017).

688 35. Buchheim, J.-I. *et al.* Stress Related Shift Toward Inflammaging in Cosmonauts After Long-

689 Duration Space Flight. *Front. Physiol.* **10**, 85 (2019).

690 36. Morrison, M. D. *et al.* Investigation of Spaceflight Induced Changes to Astronaut Microbiomes.

691 *Front. Microbiol.* **12**, 659179 (2021).

692 37. Mora, M. *et al.* Space Station conditions are selective but do not alter microbial characteristics

693 relevant to human health. *Nat. Commun.* **10**, 3990 (2019).

694 38. Avila-Herrera, A. *et al.* Crewmember microbiome may influence microbial composition of ISS
695 habitable surfaces. *PLoS One* **15**, e0231838 (2020).

696 39. Voorhies, A. A. *et al.* Study of the impact of long-duration space missions at the International Space
697 Station on the astronaut microbiome. *Scientific Reports* vol. 9 Preprint at
698 <https://doi.org/10.1038/s41598-019-46303-8> (2019).

699 40. Mehta, S. K. *et al.* Dermatitis during Spaceflight Associated with HSV-1 Reactivation. *Viruses* **14**,
700 (2022).

701 41. Bigley, A. B. *et al.* NK cell function is impaired during long-duration spaceflight. *J. Appl. Physiol.*
702 **126**, 842–853 (2019).

703 42. Crucian, B. *et al.* Immune system dysregulation occurs during short duration spaceflight on board
704 the space shuttle. *J. Clin. Immunol.* **33**, 456–465 (2013).

705 43. Spielmann, G. *et al.* B cell homeostasis is maintained during long-duration spaceflight. *J. Appl.*
706 *Physiol.* **126**, 469–476 (2019).

707 44. Agha, N. H. *et al.* Salivary antimicrobial proteins and stress biomarkers are elevated during a 6-
708 month mission to the International Space Station. *J. Appl. Physiol.* **128**, 264–275 (2020).

709 45. Urbaniak, C. *et al.* The influence of spaceflight on the astronaut salivary microbiome and the search
710 for a microbiome biomarker for viral reactivation. *Microbiome* **8**, 56 (2020).

711 46. Mehta, S. K. *et al.* Multiple latent viruses reactivate in astronauts during Space Shuttle missions.
712 *Brain Behav. Immun.* **41**, 210–217 (2014).

713 47. Benjamin, C. L. *et al.* Decreases in thymopoiesis of astronauts returning from space flight. *JCI*
714 *Insight* **1**, e88787 (2016).

715 48. Stahn, A. C. *et al.* Increased core body temperature in astronauts during long-duration space
716 missions. *Sci. Rep.* **7**, 16180 (2017).

717 49. Zwart, S. R., Morgan, J. L. L. & Smith, S. M. Iron status and its relations with oxidative damage and
718 bone loss during long-duration space flight on the International Space Station. *Am. J. Clin. Nutr.* **98**,

719 217–223 (2013).

720 50. Smith, S. M. *et al.* Men and Women in Space: Bone Loss and Kidney Stone Risk After Long-
721 Duration Spaceflight. *Journal of Bone and Mineral Research* vol. 29 1639–1645 Preprint at
722 <https://doi.org/10.1002/jbmr.2185> (2014).

723 51. Smith, S. M. *et al.* Bone metabolism and renal stone risk during International Space Station
724 missions. *Bone* **81**, 712–720 (2015).

725 52. Smith, S. M. & Zwart, S. R. Magnesium and Space Flight. *Nutrients* **7**, 10209–10222 (2015).

726 53. Zwart, S. R. *et al.* Dietary acid load and bone turnover during long-duration spaceflight and bed rest.
727 *Am. J. Clin. Nutr.* **107**, 834–844 (2018).

728 54. Frings-Meuthen, P. *et al.* Natriuretic Peptide Resetting in Astronauts. *Circulation* **141**, 1593–1595
729 (2020).

730 55. Lee, S. M. C. *et al.* Arterial structure and function during and after long-duration spaceflight. *J. Appl.*
731 *Physiol.* **129**, 108–123 (2020).

732 56. Gabel, L. *et al.* Pre-flight exercise and bone metabolism predict unloading-induced bone loss due to
733 spaceflight. *Br. J. Sports Med.* **56**, 196–203 (2022).

734 57. da Silveira, W. A. *et al.* Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a
735 Central Biological Hub for Spaceflight Impact. *Cell* **183**, 1185–1201.e20 (2020).

736 58. Bezdan, D. *et al.* Cell-free DNA (cfDNA) and Exosome Profiling from a Year-Long Human
737 Spaceflight Reveals Circulating Biomarkers. *iScience* **23**, 101844 (2020).

738 59. Luxton, J. J. *et al.* Temporal Telomere and DNA Damage Responses in the Space Radiation
739 Environment. *Cell Rep.* (2020) doi:10.2139/ssrn.3646569.

740 60. Schmidt, M. A., Meydan, C., Schmidt, C. M., Afshinnekoo, E. & Mason, C. E. The NASA Twins
741 Study: The Effect of One Year in Space on Long-Chain Fatty Acid Desaturases and Elongases.
742 *Lifestyle Genom* **13**, 107–121 (2020).

743 61. Schmidt, M. A., Meydan, C., Schmidt, C. M., Afshinnekoo, E. & Mason, C. E. Elevation of gut-
744 derived p-cresol during spaceflight and its effect on drug metabolism and performance in astronauts.

745 *bioRxiv* (2020) doi:10.1101/2020.11.10.374645.

746 62. Stroud, J. E. *et al.* Longitudinal metabolomic profiles reveal sex-specific adjustments to long-
747 duration spaceflight and return to Earth. *Cell. Mol. Life Sci.* **79**, 578 (2022).

748 63. Taylor, P. Impact of space flight on bacterial virulence and antibiotic susceptibility. *Infection and*
749 *Drug Resistance* 249 Preprint at <https://doi.org/10.2147/idr.s67275> (2015).

750 64. Crucian, B. *et al.* Incidence of clinical symptoms during long-duration orbital spaceflight. *Int. J.*
751 *Gen. Med.* **9**, 383–391 (2016).

752 65. Satoh, K. *et al.* Microbe-I: fungal biota analyses of the Japanese experimental module KIBO of the
753 International Space Station before launch and after being in orbit for about 460 days. *Microbiol.*
754 *Immunol.* **55**, 823–829 (2011).

755 66. Bijlani, S. *et al.* Methylobacterium ajmalii sp. nov., Isolated From the International Space Station.
756 *Front. Microbiol.* **12**, 639396 (2021).

757 67. Barrila, J. *et al.* Evaluating the effect of spaceflight on the host-pathogen interaction between human
758 intestinal epithelial cells and *Salmonella Typhimurium*. *NPJ Microgravity* **7**, 9 (2021).

759 68. Beger, R. D. *et al.* Metabolomics enables precision medicine: ‘A White Paper, Community
760 Perspective’. *Metabolomics* vol. 12 Preprint at <https://doi.org/10.1007/s11306-016-1094-6> (2016).

761 69. Schmidt, M. A., Schmidt, C. M., Hubbard, R. M. & Mason, C. E. Why Personalized Medicine Is the
762 Frontier of Medicine and Performance for Humans in Space. *New Space* **8**, 63–76 (2020).

763 70. Broadhurst, D. I. & Kell, D. B. Statistical strategies for avoiding false discoveries in metabolomics
764 and related experiments. *Metabolomics* **2**, 171–196 (2006).

765 71. Krassowski, M., Das, V., Sahu, S. K. & Misra, B. B. State of the Field in Multi-Omics Research:
766 From Computational Needs to Data Mining and Sharing. *Front. Genet.* **11**, 610798 (2020).

767 72. Kirwan, J. A., Brennan, L., Broadhurst, D. & Fiehn, O. Preanalytical processing and biobanking
768 procedures of biological samples for metabolomics research: A white paper, community perspective
769 (for “Precision Medicine *Clinical* (2018).

