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ABSTRACT 
 
Neural phenotypes are the result of probabilistic developmental processes. This means that 
stochasticity is an intrinsic aspect of the brain as it self-organizes over a protracted period. In other 
words, while both genomic and environmental factors shape the developing nervous system, another 
significant—though often neglected—contributor is the randomness introduced by probability 
distributions. Using generative modelling of brain networks, we provide a framework for probing the 
contribution of stochasticity to neurodevelopmental diversity. To mimic the prenatal scaffold of brain 
structure set by activity-independent mechanisms, we start our simulations from the medio-posterior 
neonatal rich-club (Developing Human Connectome Project; dHCP, n = 630). From this initial starting 
point, models implementing Hebbian-like wiring processes generate variable yet consistently 
plausible brain network topologies. By analyzing repeated runs of the generative process (> 107 

simulations), we identify critical determinants and effects of stochasticity. Namely, we find that 
stochastic variation has a greater impact on brain organization when networks develop under weaker 
constraints. This heightened stochasticity makes brain networks more robust to random and targeted 
attacks, but more often results in non-normative phenotypic outcomes. To test our framework 
empirically, we evaluated whether stochasticity varies according to the experience of early-life 
deprivation using a cohort of neurodiverse children (Centre for Attention, Learning and Memory; 
CALM n = 357). We show that low socioeconomic status predicts more stochastic brain wiring. We 
conclude that stochasticity may be an unappreciated contributor to relevant developmental 
outcomes, and make specific predictions for future research. 
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INTRODUCTION 
 
Human brain structure is the result of a complex and dynamic interplay among various constraints. 
Foremost among them are the genomic information children receive from their parents and the 
environment in which they grow up1. In the literature, these two factors—together with the 
interaction between them—are often credited with explaining the whole of phenotypic variation in 
brain development across the population2. However, this overlooks a critical fact: that development 
unfolds stochastically3,4. 
 
Stochasticity refers to the fact that biological development is probabilistic, rather than deterministic; 
there is an element of intrinsic randomness or noise in the relationship between earlier and later 
states5. This appears to be an integral—rather than artefactual—feature of many developmental 
processes. At the cellular level, due to non-linear interactions between molecules and entropy-
induced variation, identical biochemical processes result in different outcomes across individuals6. In 
neurodevelopment itself, stochasticity is particularly operative through randomness in the 
transcription and translation of key proteins7, axonal outgrowth,8,9 and dynamics of spontaneous 
neuronal firing and synaptic transmission10,11. These processes converge to produce stochastic 
influences on the morphology of macroscopic brain regions. The relative importance of stochasticity 
as a contributor to phenotypic outcomes likely varies by domain. Some features—such as the volume 
of the brain stem—are highly heritable and appear to be tightly governed by genetic constraints12, 
while others—such as the microstructure of association tracts—are only weakly heritable and vary 
greatly even between genetically identical individuals13. While some of this non-heritable variation is 
due to differential environmental exposures, which engage experience-dependent neural 
processes14,15, other variation is likely attributable to inherent stochasticity within brain development.  
 
As developmental stochasticity heightens intra-individual variability, its contribution to phenotypic 
outcomes is an adaptive feature that favors species success in environmental challenges6. 
Evolutionary pressures may therefore have favored a heightened role for stochastic developmental 
processes in harsh and uncertain environments. Exposure to unpredictability early in life is a robust 
predictor of later behavior across species16, including cognitive and emotional outcomes in humans17–

21. This is thought to reflect adaptive responses to ancestral cues or to statistical learning of 
environmental changes22. Could ontogenetic stochasticity account for some of this pathway? In other 
words, could stochastic processes in neural development mediate adaptation to unpredictable early-
life environments?  
 
Despite being an inherent feature of neural development, across multiple levels of analysis, 
stochasticity is largely neglected in empirical studies. One reason for this lacuna could be the difficulty 
of successfully separating stochastic effects from unknown deterministic effects3, let alone 
manipulating it to evaluate the magnitude of its contribution to a particular outcome. 
 
A promising path toward addressing this gap lies in computational modelling, which permits a quasi-
experimental approach to understanding the emergence of neural phenotypes. One such method, 
generative network modelling, probabilistically simulates realistic whole-brain networks23,24. In this 
model, nodes within a developing network form connections based on an economic trade-off between 
two parameters: the cost of forming a connection versus the value that connection may bring. 
Crucially, this trade-off can be constrained to varying extents by modulating parameter magnitude. 
Highly constrained simulations minimize stochasticity within the generative process, which may lead 
to limited phenotypic variability. In contrast, weaker wiring constraints allow for greater randomness 
from one step of the generative process to the next, which may thereby produce greater phenotypic 
variation. Thus, in this model of the brain, stochasticity is an integral and manipulatable element of 
development. 
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In this work, we explored the contributions of stochasticity to whole-brain organization by analyzing 
repeated runs of the generative network model24–26. Starting from a prenatal scaffold of brain 
architecture obtained from the Developing Human Connectome Project (dHCP, n = 630) we generated 
over ten million plausible brain networks. We analyzed the simulations to answer the following 
questions: Does developmental stochasticity lead to variability in brain network outcomes? Are some 
connectomes more sensitive to the effects of heightened developmental stochasticity than others? 
What advantage might stochastic development confer on brain networks? Through this work, we 
produce a framework for understanding determinants of variability in brain network organization. 
 
To test the empirical plausibility of our theoretical framework, we then simulated the connectomes 
of a sample of neurodiverse children (Centre for Attention, Learning and Memory; CALM, n = 357). 
Children who grew up in early socioeconomic deprivation showed macroscopic brain networks that 
appear to organize more stochastically. We propose this finding may reflect an adaptive connectomic 
response to unpredictable features of the early environment. We conclude with specific predictions 
and recommendations for future investigation that follow from our framework. 
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RESULTS 
 
To simulate the formation of brain network connectivity, we employed a generative network model. 
This model is increasingly used in computational neuroscience to simulate highly plausible brain 
networks25–33. The model does this by adding connections iteratively based on dynamic economic 
negotiations between their costs and topological values23,24: 
  

𝑝",$ 	∝ (𝑑",$)*(𝑘",$), (1) 
 
The 𝑑",$  term represents the cost of a connection between two given nodal regions i and j, which we 
approximated using the Euclidean distance between the regions. The 𝑘",$	term represents the 
topological value of this connection, which we estimated using the normalized overlap in connectivity 
between regions i and j. 𝑝",$	refers to the overall the probability of forming a fixed binary connection 
between nodes i and j, and is proportional to the parametrized multiplication of costs and values. Two 
wiring parameters, 𝜂	and 𝛾, respectively scale the contributions of each term to wiring probability. In 
other words, by varying 𝜂	and 𝛾, it is possible to impose different constraints on the developing 
network.  
 
The generative model begins from an initial minimal scaffold of connectivity. To root our simulations 
in a realistic representation of neonatal brain structure, we reconstructed a core rich club network 
from data collected from the Developing Human Connectome Project (dHCP; see Methods and 
Supplementary Figures 1-2). Because connections form within this initial scaffold probabilistically, the 
generative model is intrinsically stochastic. This means there may not be a clear one-to-one 
relationship between wiring parameters and outcomes. For example, running the model multiple 
times using the same	𝜂	and 𝛾 parameters may lead to highly dissimilar phenotypes, whilst running the 
model with different 𝜂	and 𝛾 parameters may lead to highly similar phenotypes (Figure 1a). 

 
Figure 1. Schematic of dissimilarity procedure. (a) A schematic illustration of how stochasticity in the 
developing simulation leads to variable outcomes. For example, the same wiring constraints can lead 
to quite dissimilar outcomes (i.e., multifinality, top right) and different wiring constraints can lead to 
similar outcomes (i.e., equifinality, top left). (b) For each parameter combination, we ran 625 repeated 
simulations. To calculate the dissimilarity between these network outcomes, two measures were 
produced. The first was a topological dissimilarity measure, which calculated the dissimilarity in global 
network topology between each pairwise combination of network outcomes at each parameter 
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combination (top). The second was an embedding dissimilarity measure, which calculated the 
dissimilarity in edge existence between each pairwise combination of network outcomes at each 
parameter combination (bottom). 
 
Experiment 1 – The effect of constraints on multifinality 
 
We first set out to determine the relationship between constraints on development and variability in 
network outcomes. This is equivalent to multifinality, a known developmental principle by which the 
same developmental history can result in diverse phenotypes34 (Figure 1a, top right). Specifically, we 
asked: does changing the wiring constraints systematically manipulate its intrinsic stochasticity, 
therefore leading to altered variability in observed brain organization? 
 
We addressed this question by undertaking repeated runs of the generative model with identical 
wiring parameters, at multiple combinations of 𝜂	and 𝛾. In order to quantify the resulting variability 
in network outcomes, we calculated two measures: topological and embedding dissimilarity (Figure 
1b; see Methods: Experiment 1). Topological dissimilarity captures how different networks are to 
each other in terms of their organization; a low topological dissimilarity indicates similar topology 
across repeated runs of the simulation, whilst a high topological dissimilarity indicates multifinality. In 
contrast, embedding dissimilarity tests whether networks resemble one another in the precise 
location of their connections. A low embedding dissimilarity means that repeated runs of the 
simulation share many specific connections between the same nodes, whilst a high embedding 
dissimilarity indicates multifinality. 
 
We first explored the topological dissimilarity across the wiring parameter space (Figure 2a). We found 
that constraints on wiring are in fact systematically related to multifinality in brain network 
organization. However, 𝜂	and 𝛾 do not contribute to topological dissimilarity in the same way. Namely, 
𝛾, which guides the extent to which regions prefer connecting to regions with similar neighborhoods, 
has a much larger influence on network stochasticity (R2, 76.3%) compared to 𝜂	, which penalizes long-
distance connections (R2, 0.1%) (Figure 2b). In Figure 2c, this result is presented schematically, 
illustrating that softer 𝛾 constraints drive networks to be topologically highly dissimilar across runs, 
while fewer differences emerge when the 𝛾 parameter is larger in magnitude. 
 
We then explored the embedding dissimilarity across the wiring parameter space. As shown In Figure 
2d, an opposite effect occurs, in which 𝜂	has a much larger influence (R2, 83.5%) compared to 𝛾 (R2, 
8.3%) (Figure 2e). The schematic in Figure 2f illustrates this, showing that softer 𝜂	constraints drive 
networks to more dissimilar topological states, while fewer differences emerge when the 𝜂	parameter 
is larger in (negative) magnitude. 
 
These findings can be interpreted quite straightforwardly from the wiring equation. As 𝛾 determines 
the extent to which nodes with similar connectivity profiles wire with each other, a strong 𝛾 favours a 
similar topological arrangement across runs. Across repeated runs, the same organizational features 
will emerge. When 𝜂 has a large magnitude, the simulation favors the formation of local short 
connections—these are more consistently present across multiple runs, increasing the embedding 
similarity. Thus, across multiple runs of the simulation, the same brain wiring parameters can produce 
networks that vary in organization (topological dissimilarity) and in the precise location of their 
connections (embedding dissimilarity), depending upon the severity of each of the two wiring 
constraints.  
 
Overall, weaker wiring constraints results in more heterogeneity in brain network outcomes, while 
stronger wiring constraints reduce stochasticity and limit the range of possible outcomes. 
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Figure 2. Weaker brain wiring constraints increase multifinality in network outcomes. (a) The 
topological dissimilarity landscape is given across the wiring parameter space. Green corresponds to 
highly topologically dissimilar networks while brown corresponds to low topological dissimilarity. (b) 
A scatter plot of the topological dissimilarity as a function of the wiring parameters shows that 𝛾 most 
drives topological dissimilarity. (c) Variable outcomes are more likely with weaker topological 
constraints on the network development (highlighted by the light green wider funnel) and vice versa 
for highly constrained networks (highlighted by the light brown narrower funnel). (d) The embedding 
dissimilarity landscape is given across the wiring parameter space. Green corresponds to highly 
dissimilar networks in terms of embeddings while brown corresponds to low embedding dissimilarity 
(e) A scatter plot of the topological dissimilarity as a function of the wiring parameters shows that 
𝜂	most drives embedding dissimilarity. (f) Variable outcomes are more likely with less embedding 
constraints on the network development (highlighted by the light green wider funnel) and vice versa 
for highly constrained networks (highlighted by the light brown narrower funnel). 
 
Experiment 2 – The effect of noise on multifinality 
 
Our first experiment revealed that softening wiring constraints leads to greater multifinality in the 
organization and spatial localization of the connectome. But can variation in network outcomes be 
increased by enhancing the noisiness of network development itself? In other words, does 
upregulating developmental stochasticity increase multifinality? And if so, when does this intervention 
have the greatest influence on network outcomes?  
 
To answer these questions, we heightened the stochasticity of the simulations at different stages of 
network development. To do this, we allowed the model to choose 5% of total connections completely 
at random either at the start of, halfway through, or in the final steps of the generative process 
(termed early, middle, and late respectively) (see Methods: Experiment 2).  
 
We first examined the effect of heightened developmental noise on topological dissimilarity. Our 
results indicate that the later the noise is injected into the developmental simulation, the greater the 
increase in topological dissimilarity across multiple runs of the same parameters (Figure 5a-c, 
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Supplementary Figure 4, ANOVA F2,1872, = 134.44, p = 2.774 x 10-55; early M = 1.242 x 103, SD = 6.685 x 
103; middle M = 8.212 x 103, SD = 9.826 x 103; late M = 8.296 x 103, SD = 9.348 x 103). The effect was 
predominantly present at higher values of 𝛾 (see Supplementary Figure 4 i-k), where the simulations 
are more strongly driven by the wiring rule. Thus, the topology of networks that are following a more 
deterministic, rule-based approach to development are more sensitive to the effects of injecting 
noise. 
 
We next evaluated the impact on embedding dissimilarity. Interestingly, we find the opposite 
phenomenon, showing that the earlier noise is injected into the developmental simulation, the greater 
the increase in embedding dissimilarity across runs (Figure 5d-f, Supplemental Figure 5, ANOVA F2,1872, 
= 140.92, p = 9.792 x 10-58; early M = 0.0298, SD = 0.0246; middle M = 0.0126, SD = 0.0144; late M = 
0.0103, SD = 0.0101). Injecting noise results in a greater increase in outcome variability when models 
are further from the origin of the parameter space (Supplemental Figure 5i-l). This greater impact of 
early stochasticity on the final layout of connections is consistent with the importance of the initial 
scaffold upon which network development unfolds. 
 
In summary, the timing of heightened ontogenetic stochasticity shapes its impact on resulting network 
outcomes. Weaker wiring constraints (i.e., low magnitude parameters) broadly protect against the 
impact of injecting noise at any time point during development. Networks that are developing under 
stronger wiring constraints are more sensitive, but this effect depends on the timing of the 
intervention. Namely, early stochasticity has little effect on topological dissimilarity but greatly 
increases embedding dissimilarity, whilst late stochasticity greatly increases topological dissimilarity 
with a negligible impact on embedding. This indicates that topological characteristics of the network 
can recover from temporary increases in developmental noise, given sufficient time, but that the 
precise identity and locations of the connections that form depend strongly on the initial scaffold.  

 
Figure 3.  Upregulating developmental noise increases variability in network outcomes. Injecting 
stochasticity (a) early, (b) middle, or (c) late in the generative process increased the topological 
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dissimilarity across repeated runs of each parameter combination, with middle and late noise exerting 
a greater impact (ANOVA F2,1872, = 134.44, p = 2.774 x 10-55) especially at higher values of 𝛾. Injecting 
stochasticity (d) early, (e) middle, or (f) late in the generative process also increased the embedding 
dissimilarity, with early noise exerting a greater impact (ANOVA F2,1872, = 140.92, p = 9.792 x 10-58) 
especially at lower values of 𝜂. 
 
Experiment 3 – The effect of constraints on robustness 
 
Our first two experiments revealed that networks with weaker wiring constraints exhibit greater 
multifinality but are less sensitive to the effects of temporary increases in developmental noise. In 
contrast, highly constrained networks with exhibit less multifinality but are more vulnerable to such 
interventions, depending on their timing.  
 
As an evolved system, the brain is best understood in light of selective pressures that shaped its 
features across evolutionary history35. This includes the brain’s potential to reach multiple phenotypic 
outcomes. Why might this be advantageous? One possibility is that higher stochasticity within 
development, which leads to multifinality, confers robustness to external perturbation. This 
phenomenon has been observed in developmental systems in biology at multiple levels36.  
 
To examine this possibility, we tested whether higher stochasticity within the simulation confers 
robustness to targeted attacks on nodes with high levels of connectivity. Figure 4a provides a 
schematic overview of the experimental procedure. In short, by measuring the resilience of each 
network’s communicability to the removal of nodes, we obtained a measure of relative robustness to 
external perturbation (see Methods: Experiment 3). The smaller the change in response to simulated 
attacks, the greater the robustness. 
 
Our findings indicate that networks with higher constraints on their topology are more vulnerable to 
targeted attacks relative to networks with lesser constraints (Figure 4b). In Supplementary Figure 6 
we show this also true for a random attack regime. Given that strong wiring constraints produce 
topologically invariant networks, these may rely more strongly on core hub nodes, resulting in a 
proportionally larger drop in network communication when such nodes are removed. However, it is 
important to note that this large drop still leaves the networks at a higher absolute capacity for 
communication than networks that develop with weaker wiring constraints. Thus, networks 
developing more deterministically are more vulnerable to change in relative terms, while retaining a 
more advantageous topology than networks that develop more stochastically. For a schematic 
presentation of this finding, see Figure 4c. 
 
In summary, heightened stochasticity within network development has a protective effect on the 
structure of the network, just as it protects against the impact of increased developmental noise (as 
shown in Experiment 2). However, this resilience is relative, rather than absolute. 
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Figure 4. Weaker wiring constraints confer relative resilience to simulated attacks. (a) A schematic 
demonstration of the robustness testing protocol. Robustness is estimated by quantifying how much 
network communicability decreases upon the removal of network nodes. (b) The 𝛽	coefficient 
computed from a targeted attack regime, which preferentially removes network hubs, across the 
parameter space. More constrained networks (top left of the landscape) are less robust, as the 
gradient of change is greater. Weakly constrained networks (bottom right of the landscape) exhibit 
less change. To the right of the landscape, the communicability trajectories of networks with the least 
(left) and most (right) robustness to change are presented. (c) A schematic showing that weakly 
constrained networks (which achieve more multifinality, as indicated by the funnel width), are 
relatively more robust to attack. 
 
Experiment 4 – The effects of constraints on equifinality 
 
We have so far established that weakening wiring constraints leads to greater multifinality in network 
outcomes and robustness to external perturbation, while highly constrained networks tend to have 
more invariant outcomes along with a greater vulnerability to change. Before turning to empirical 
data, we aimed to examine the relationship between stochasticity and a final core developmental 
principle: equifinality.  
 
Equifinality refers to the attainment of a similar phenotype by way of a diverse set of pathways34, and 
is a known characteristic of child neural development37. Numerous contributing factors, such as similar 
environments and experiences, may contribute to similar phenotypes between two genetically 
different individuals. 
 
We hypothesized that both the wiring constraints and the intrinsic stochasticity of the developing 
brain could modulate the resultant equifinality by setting the range of outcomes that any individual 
could exhibit. In other words, we predicted that brains generated using relatively similar wiring 
parameters would exhibit greater overlap in the range of potential phenotypic outcomes than those 
generated using more dissimilar parameters. However, we also expected that equifinality would 
depend on the intrinsic stochasticity of the models. Namely, we thought that simulations with weaker 
constraints would achieve lower equifinality with other parameter combinations than more 
constrained simulations, due to the broader range of potential outcomes of the simulation. 
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To test this prediction, we assessed the ability of a supervised machine learning model to successfully 
distinguish simulations run with differing wiring parameters based on their global topology. 
Specifically, we trained a support vector machine (SVM) to distinguish all possible pairwise 
comparisons of the global statistics of the simulations (see Methods: Experiment 4). Using 10-fold 
cross-validation, we computed the misclassification rate of the SVM. A higher rate would indicate that 
the SVM was performing closer to chance, and that the two sets of simulations were exhibiting 
equifinality. Lower misclassification rates would indicate that the SVM was successfully able to 
distinguish the two sets of simulations, and when this rate nears zero, the two sets could not be said 
to exhibit any equifinality. 
 
As predicted, simulations run with closer generative modelling parameters tended to show higher 
equifinality (Figure 5a, r = -0.379, p < 0.0001). This reflects that a similar trade-off between wiring cost 
and value results in simulations that occupy an overlapping range of phenotypes (Figure 1a). 
Furthermore, simulations with higher multifinality in network topology also exhibited lower mean 
misclassification rate (Figure 5b, r = -0.787, p < 0.0001), indicating that developmental stochasticity 
was inversely related to equifinality. Thus, it appears that networks that grow less deterministically 
are more likely to end up in unique phenotypic outcomes that are easily distinguishable from more 
normatively developing networks.  

 
Figure 5.  Similar wiring constraints and deterministic development lead to equifinality in network 
outcomes. A support vector machine (SVM) was trained to distinguish simulations run with different 
parameters. The SVM sought to correctly classify the runs of the simulations using their global 
statistics. The mean misclassification rate refers to the mean proportion of the sample that was 
incorrectly classified across all pairwise comparisons, and was obtained using cross validation. (a)  A 
density plot of equifinality, measured using the misclassification rate of the SVM, by the Euclidean 
distance between the two parameter combinations. Each point represents a pair-wise comparison of 
the global statistics of two multi-run simulations. (b) The equifinality exhibited by a parameter 
combination, indexed using the mean misclassification rate of the SVM, by the topological dissimilarity 
of that simulation. The mean was taken over all pairwise simulation comparisons.  
 
Prediction – Environmental uncertainty may favor weaker wiring constraints 
 
Experiment 1 (The effects of constraints on multifinality) established that weaker wiring constraints 
lead to greater multifinality, whilst stronger wiring constraints narrow the range of phenotypic 
outcomes of the network. Experiment 2 (The effects of timing on multifinality) demonstrated that 
weaker wiring constraints are protective against the impact of heightened developmental noise, 
whereas stronger constraints allow noise to produce a time-dependent increase in multifinality. 
Experiment 3 (The effects of constraints on robustness) revealed that weaker constraints have a 
protective effect on the structure of the network, operationalized as resilience to relative change in 
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communicability in response to targeted and random simulated attacks. However, this resilience is 
relative, rather than absolute. Finally, Experiment 4 (The effects of constraints on equifinality) shows 
that networks developing more stochastically more often exhibit strongly unique phenotypes, 
meaning there is a lesser likelihood of equifinal outcomes. Together, our findings reveal that 
stochasticity is a critical element of the successful simulation of brain networks, which may correspond 
to real-world developmental processes. 
 
Our theoretical-computational framework gives rise to falsifiable hypotheses about child 
development. Namely, we propose that children growing up in unpredictable contexts (i.e., 
environments with fewer statistical regularities) have brain networks whose organization is best 
approximated with weaker wiring constraints (i.e., smaller magnitude 𝜂	and/or 𝛾). As per Experiment 
1, this would correspond to more stochastic development. As per Experiments 2 and 3, such 
heightened stochasticity would make brain networks less sensitive to perturbation, which is likely a 
useful feature in uncertain environments. Finally, as Experiment 4 demonstrated, this up-regulation 
of stochasticity could lead to a greater likelihood of aberrant neural phenotypes as a by-product. 
 
To test this prediction, we obtained data from n = 357 the Centre for Attention, Learning and Memory 
(CALM) (see Methods for more detail and Supplementary Table 1 for demographics). To approximate 
the unpredictability of the early-life environment, we measured the Index of Multiple Deprivation 
(IMD) of each child, which captures their relative socioeconomic disadvantage. We then split subjects 
into high and low deprivation SES groups using the sample      median IMD (Supplementary Figure 4). 
Next, we constructed structural connections of each child’s connectome using diffusion imaging and 
probabilistic tractography with anatomical constraints computed the best estimate of each child’s 
ground-truth wiring parameters (see Methods). In line with our prediction, we found that subjects 
with high SES show higher (negative) wiring parameter magnitude in 𝜂	(Figure 6, left; p = 0.0247, 
Cohen’s d = 0.239). We found no detectable difference in the 𝛾 parameter (Figure 6, middle; p = 
0.817). Finally, we found a corresponding better model fit in lower SES children (Figure 6, right; p = 
0.019, Cohen’s d = 0.250), which accords with the fact that parameters are simulating more randomly 
organized networks—a comparatively easy target (see 29). 
 
In summary, we tested the idea that—as stochasticity confers both robustness to perturbation and 
intrinsic variability in phenotypic outcomes—children within low-SES environments show an adaptive 
preference for heightened stochasticity within the topology of their macroscopic brain networks. Our 
findings, which show that the connection length constraint 𝜂 is weakened in children from low-SES 
environments, appears to be consistent with this hypothesis. 
 

 
Figure 6. Wiring parameters and model fits vary with SES. In n = 357 children, we split groups into 
high and low SES groupings. We find that the wiring parameter 𝜂	is greater magnitude negative in high 
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SES children, suggesting more constrained connectivity (left). We find no effect in the 𝛾 parameter 
between groups (middle). Model fits are better in low SES networks reflected by being shifted to the 
left, due to the connectome being more randomly organized and therefore more easily simulated by 
the generative model (right). 
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DISCUSSION 
 
Some of the most fundamental elements of developmental theory — equifinality, multifinality and 
adaptability — are among the hardest to study empirically. In this work, through generative network 
modelling, we were able to investigate the role of stochasticity in the emergence of macroscopic brain 
networks. Importantly, this computational framework provided a means to systematically study these 
core developmental concepts. Through our simulations, we found that weaker wiring constraints 
leads to greater multifinality in brain network phenotypes, less sensitivity to temporary increases in 
developmental noise and greater relative robustness to simulated attacks, and greater likelihood of 
atypical phenotypes. By fitting our models to empirical data, we found that children from low-SES 
environments appeared to follow this developmental pattern: their connectomes were better 
approximated through a more stochastic generative model with weaker constraints on long-distance 
connections. 
 
The adaptive stochasticity hypothesis 
 
Our work has highlighted, at a computational level, several core effects of developmental 
stochasticity. For example, it affords relative robustness to perturbation. That is, while it lowers the 
absolute capacity to support network communication, it confers resilience to change. Developmental 
stochasticity also inoculates networks against the impact of temporary increases in noise. Finally, 
higher stochasticity results in greater multifinality and more distinct network outcomes.  
 
Are these features advantageous or disadvantageous? This likely depends on the environmental 
context of the developing system. In an enriched environment that is statistically predictable, 
stochasticity may be disadvantageous because it introduces greater risk of unfavorable outcomes that 
are unsuited to that narrow context. In contrast, networks developing within a statistically 
unpredictable environment benefit from what stochasticity can provide: flexibility to unexpected 
perturbation and robustness to change. 
 
We therefore put forward the adaptive stochasticity hypothesis. This states that heightened 
stochasticity within the developing brain may serve as an adaptive mechanism in situations of 
environmental uncertainty.  Our empirical finding that the brains of children from low socioeconomic 
backgrounds — which we use as an approximate measure of environmental predictability — are 
better simulated with more stochastic models offers preliminary and partial support for this 
hypothesis. 
 
Predictions 
 
The adaptive stochasticity hypothesis gives rise to numerous testable predictions. If unpredictability 
increases developmental stochasticity in brain networks: 
 

• Connectomic variability. Connectomic phenotypes should vary more amongst children who 
live in unpredictable environments. 

 
• Separable intrinsic and extrinsic influences. Intrinsic (e.g., genomic) and extrinsic (e.g., 

environmental) factors should predict at least partially non-overlapping variance in wiring 
parameters.  

 
• Topological signature of randomness. The up-regulation of developmental stochasticity 

should be manifest in network topology. Likely candidates for a measurable signature of 
stochasticity include lower segregation and greater integration38, consistent with higher 
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entropy.  
 

• Elevated likelihood of non-normative outcomes. Weaker wiring parameters, giving rise to 
heightened neurodiversity, should be associated with increased rates of neurodevelopmental 
conditions, captured by canonical diagnostic groups (e.g., schizophrenia31) or transdiagnostic 
dimensions26. 

 
• Adaptive cognition. Weaker wiring parameters should be associated with adaptive outcomes 

on the cognitive level, including better performance on tasks that are relevant in harsh 
environments or under adverse testing conditions39. To our knowledge, no diffusion imaging 
cohort has yet collected such measures.  

 
• Inducible stochasticity. Children raised in predictable environments later introduced to severe 

unpredictability should exhibit a shift in wiring parameters over time, depending on the 
chronicity of that unpredictability. 

 
Limitations  
 
Our study has limitations in both methods and scope. First, our generative network modelling 
framework is a blunt approximation of stochasticity in the developing brain. Our models currently only 
approximate the topology of binary networks; new models that modulate connection strength over 
time may better capture developmental stochasticity. Secondly, this work does not consider the 
valence of the environment, which is entangled with but theoretically separate from 
unpredictability38. Moreover, we do not deal with meta-predictability, or the consistency of 
unpredictability over time22. Fine-grained measures of the environment and sophisticated modelling 
would be necessary to test how these may interact with developmental stochasticity. Finally, we have 
focused our analysis on macroscopic neural networks derived from diffusion tensor imaging, which is 
characterized by certain empirical limitations40,41 and cannot capture circuitry at lower scales. 
 
Conclusions 
 
Stochasticity is an underappreciated contributor to developmental outcomes that may be particularly 
relevant in adverse environments. We present a modelling approach to parsing its contributions to 
the emergence of brain network organization. We believe this line of investigation could yield critical 
insights into inter-individual variability in general, and the influence of the early environment in 
particular.  
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The empirical dataset supporting the current study have not been deposited in a public repository 
because of restrictions imposed by NHS ethical approval, but are available from the corresponding 
author on request. Requests for access can be made by research-based institutions for academic 
purposes. A response can be expected within 1 week. 
Results were generated using code written in Matlab 2020b. Simulations were conducted on large 
compute clusters for parallelisation. All code will be made openly available upon publication. 
 
METHODS 
 
Probabilistic wiring equation 
  
To simulate the formation of brain network connectivity, we employed generative network 
modelling23,24. This model is composed of a wiring probability equation: 
  

𝑝",$ 	∝ (𝑑",$)*(𝑘",$), (1) 
 
The 𝑑",$	term represents the cost of a connection between two nodes i and j, approximated using the 
Euclidean distance between the two nodes. The 𝑘",$	term represents how nodes i and j value each 
other and is set a priori using a topological relationship between the two (also denoted a “wiring 
rule”). Two wiring parameters, 𝜂	and 𝛾, respectively parameterize the costs and value terms, thereby 
calibrating their relative influence. 𝑝",$	reflects the probability of forming a fixed binary connection 
between nodes i and j. This is proportional to the parametrized multiplication of costs and values.  
  
Previous research has shown that generative models implementing a value term (i.e., wiring rule) that 
prefers connections between regions with overlapping neighbors, termed homophily, can reliably 
produce networks with statistics that mirror empirical observations25,26,28,29,42. As such, we utilized the 
matching wiring rule in our analyses – the main homophily wiring rule used in prior work.  
 
Mathematically, matching is defined as the normalized overlap in connectivity between two 
nodes24,25. Specifically, if Γ represents the set of node i's neighbors, then the matching index is equal 
to: 
 

𝑚",$ 	= 	
|34/6∩36/4|
34/6∪36/4|

, (2) 

 
where Γ"/$ is Γ but with j excluded from the set. If i and j have perfect overlap in their neighborhoods, 
then 𝑚",$  = 1. If the neighbourhoods contain no common elements, then 𝑚",$  = 0. This is because ∩ 
(the numerator) refers to the intersection of the neighbors (i.e., neighbors in common) while ∪ (the 
denominator) refers to the union of the neighbors (i.e., neighbors in total). 
 
All simulations were generated within a physical space defined by the commonly-used AAL116 
parcellation scheme43. The coordinates of node centroids within the AAL116 atlas were used to 
determine the Euclidean distance between every node combination, which was used to approximate 
the cost of connections. 
 
A termination criterion must be defined for when the formation of the networks ends. As we do not 
mirror empirical data for the main part of the study, we set 400 connections as the stop criterion to 
attain a final density of 3%. This was done so that the core trade-offs could easily be examined within 
computational limits. Later in the study, when we compare directly to empirical data, we use the 
number of edges in the empirical CALM dataset networks (see Methods: Empirical prediction and 
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application) as the stop condition. This gives at an average sample 10% density (mean 668.5 edges; 
SD 43.6 edges), which aligns with prior work done on the sample26 and elsewhere25. 
  
Neonatal seed network generation 

The approach to initializing generative network models (i.e., the seed) that best mimics developmental 
trajectories is unknown. Three main approaches have been taken in the literature: (1) The selection 
of edges that are highly consistent across the sample of empirical connectomes25,26,29; (2) No edges at 
all, thereby initializing the model with a first calculated 𝑝",$ matrix that is equivalent to 𝑑",$ 
matrix24,28,30,44 and; (3) A theory-driven set of edges (e.g., medio-posterior nodes23).  

The choice of initial conditions is of great biological relevance. The generative model is thought to 
reflect activity-dependent interactions between neural assemblies by forming connections between 
self-similar regions. However, it is widely known that the preliminary scaffold of brain connectivity 
arises through processes that are largely activity-independent45. Furthermore, by virtue of wiring early 
on in development, these regions will have a greater time-availability for future wiring therefore are 
more likely to become hubs later in development (the old-get-richer effect46). We sought to account 
for the early activity-independent scaffold using a neonatal seed network. 

Toward this end, we reconstructed a core rich club network from data collected from the Developing 
Human Connectome Project (dHCP). We then used this core neonatal rich club as the initial 
connectivity matrix for our subsequent simulations. The dHCP sample contains n = 630 neonates 
(mean post-conceptual age = 39.46 weeks, SD = 3.58 weeks, n = 297 female, n = 343 male) 
connectomes rendered within the AAL90 parcellation (47; see Methods: Neuroimaging data and 
preprocessing). A rich club topology describes how high-degree nodes tend to be more densely 
interconnected (in topological binary networks) than would be expected by chance.  

To identify highly conserved invariable edges across the n = 685 neonatal connectomes, we considered 
only those edges which were shared in 70% of the sample (n = 480) (Supplementary Figure 1a, b). 
Across the sample, these edges had above-average streamline connectivity (Supplementary Figure 
1c).  

To assess the inter-connectivity between hub regions within a binary brain connectivity network, we 
used the topological rich-club coefficient ϕ(k). This quantifies the density of the subgraph comprising 
nodes with a degree higher than the hub-defining threshold k: 

𝜙(𝑘) =
2𝐸=>

𝑁=>(𝑁=> − 1)
, (3) 

where N>k is the number of nodes with degree>k, and E>k is the number of edges between nodes 
with degree >k.  

Because higher degree nodes make more connections, it is important to determine whether this value 
is higher than that expected by change. We therefore compared the rich club coefficient of the 
empirical neonatal consensus network to the mean value across a 1000 randomized null networks, 
generated by rewiring the edges of the empirical network while retaining the same degree sequence, 
using the randmio_und function from the Brain Connectivity Toolbox48, rewiring each edge 50 times 
per null network. This approach has precedent in the literature (e.g., 44). We thus computed a 
normalized rich-club coefficient, taking the ratio between the rich-club coefficient in the empirical 
network and the mean rich-club coefficient in this set of corresponding randomized networks: 
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𝜙BCDE(𝑘) =
𝜙(𝑘)

< 𝜙DGBH(𝑘) >
 

(4) 

Values of >1 indicate rich-club organization, where high-degree nodes are more densely 
interconnected. To characterize the statistical significance of the result, we computed a p-value 
directly from the empirical null distribution of the 1000 randomized networks, 𝜙DGBH(𝑘), as a one-
sided permutation test. Specifically, the p-value is the ranking position of the empirical rich-club 
coefficient within the null distribution of rich-club coefficients from the randomization procedure. For 
example, a pperm of 0.01 would be equivalent to being in the top 1% of 1000 null models, which is 
position 10. 

In Supplementary Figure 2a we plot the rich-club coefficient, normalized rich club coefficient and pperm 

values across increasing degree, or k levels. This highlights a rich-club topology that is statistically 
significant (p = 0.018) is found beyond level 22. That is, there is a sub-graph of nodes with degree>22 
in the neonatal consensus network that are connected to each other more than would be expected 
by chance. This rich club network contains 5 nodes: left and right lingual cortex, left precuneus, left 
occipital mid and right fusiform cortex. All nodes fully connected to each other (n = 10 edges) 
(Supplementary Figure 2b, left). This seed network generally occupies medio-posterior positions 
which is thought to be the earliest location of white and grey matter development23. 

To scale these results to adult size, we then placed this equivalent rich club within the adult AAL116 
equivalent atlas (Supplementary Figure 2b, right). This network was then used as the seed for all 
simulations. Note that, to prevent data-leakage, we did not assess model fits with respect to any of 
the dHCP data. Instead, we only tested models on a completely independent dataset (see below).  

As the seed network consists of 10 edges, and simulations were computed for 400 edges (density = 
0.075%), the seed constitutes the first 2.5% and 1.05% of simulated networks in the main analyses 
versus empirical analyses respectively. As seen in Supplementary Figure 2a, a lower-level threshold 
of degree >17 would also generate a significant rich club network, but this constituted 133 edges and 
therefore was deemed too large. 

Parameter space and repeated simulations 
   
We ran the generative models from this seed network at 625 different parameter combinations of 
𝜂	and 𝛾. The parameter combinations were selected evenly across a parameter space of 0 ≤ 𝜂	≤ 4 and 
0 ≤ 𝛾	≤ 1 to provide a 25x25 grid space. This parameter space was chosen as this range best 
recapitulates the statistics of empirical brain networks using the matching rule25,26. At each 
combination, we ran the simulation 625 times. This led to a total of 390,625 (625 parameter 
combinations x 625 repetitions) simulations for each protocol. 
  
Experiment 1 – Network outcome dissimilarity 
  
For each parameter combination, we computed two measures of dissimilarity between every 
combination of the produced 625 networks (Figure 1b). The first dissimilarity measure was a measure 
of topological dissimilarity. For each network, we calculated five simple global topological measures 
for each network, using the Brain Connectivity Toolbox48: (1) Global clustering; (2) Mean betweenness 
centrality; (3) Total edge length; (4) Global efficiency and (5) Modularity. These were used because 
they cover a range of topological features common to brain networks. From this topological matrix, 
we then simply calculated the Euclidean distance between each network in this 5-dimensional space 
(625 x 625 dissimilarity matrix). As measure of total topological dissimilarity, we simply computed a 
summation of this Euclidean distance matrix (Figure 1c). The second dissimilarity measure was a 
measure of embedding dissimilarity, which calculated the percentage of non-overlapping connections 
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(i.e., the dis-consistency) between all network combinations (Figure 1d). For both measures, large 
numbers correspond to there being more heterogeneity among network outcomes, and vice versa.  
 
Experiment 2 – Timing of noise analysis 
  
To assess the effects of heightened stochasticity in network development on variability in outcomes, 
we re-ran each of our models whilst forming a subset of the connections at random. This was 
achieved by temporarily setting the probability matrix to zero, erasing any contribution made by the 
cost and value of connections and allowing network formation to proceed completely randomly. We 
injected this noise at one of three stages of development: early, middle, and late. This corresponds 
to 5-10%, 47.5%-52.5%, and 90-95% of network development. We then computed the global 
topological dissimilarity (see Methods: Experiment 1) of the resulting networks. This enabled us to 
identify and quantify the contribution of injecting noise at the three points in development to the 
stochasticity of network outcomes.  
 
Experiment 3 – Robustness analysis 
  
Network robustness refers to the ability for networks to be resistant to external perturbation. It is 
evaluated by computing some benchmark measure of network quality before and after perturbation. 
As previous studies suggest that communication models accurately capture propagation dynamics in 
empirical brain networks49,50, we selected binary network communicability51 as the benchmark 
measure: 
 

𝐶 = 	L𝑒N  (5) 

 
Here, 𝐴 is the symmetrical binary matrix that has been simulated and 𝐶 is the network 
communicability within that matrix. 
 
We used two regimes to assess robustness of the networks: (i) targeted and (ii) random attacks. In the 
targeted attack regime, nodes within a network are first ranked according to some measure (in our 
case, the degree of the nodes). Then, nodes are incrementally removed (i.e., attacked) by tuning all 
their connectivity weights to zero. In the random attack protocol, nodes chosen at random are 
attacked in the same way. After each node’s connectivity is removed, network communicability was 
recalculated.  
 
Robustness—or resistance to change—was subsequently measured as the coefficient of a univariate 
linear model fit to the trajectory of the natural logarithm of the communicability after 25% of total 
nodes (29 nodes). This indicates the extent to which a network is robust to change in its capacity to 
support dynamics; the larger in magnitude the negative coefficient, the less robust the network, and 
vice versa.  
  
Experiment 4 – Equifinality analysis 
 
To test which factors may contribute to equifinality, we assessed the ability of a supervised machine 
learning model to successfully distinguish simulations run with differing wiring parameters. For each 
of the previously-run 625 simulations, we trained a support vector machine (SVM) to distinguish its 
global statistics from each of the 624 other simulations. Then, we used 10-fold cross-validation to 
determine the misclassification rate (i.e., how many of the 625 runs were attributed to the wrong 
parameter combination). In order to determine the contribution of wiring parameters to equifinality, 
we calculated the Pearson correlations between the misclassification rate and the Euclidean distance 
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between the two parameter combinations. To determine the contribution of the intrinsic stochasticity 
to equifinality, we calculated the Pearson correlation between the mean misclassification rate (across 
the 624 comparisons) and the topological stochasticity of the simulation (see Methods: Experiment 
1).  
 
Empirical prediction and application  
  
To test our theoretical framework, we made empirical predictions about the relationship between 
socioeconomic status and brain wiring parameters, which we then tested in a large sample of children. 
 
The CALM cohort 
 
The data were collected at the Centre for Attention, Learning and Memory (CALM), a research clinic 
at the MRC Cognition and Brain Sciences Unit, University of Cambridge. The study protocol was 
approved by, and data collection proceeded under the permission of, the local NHS Research Ethics 
Committee (reference: 13/EE/0157). The sample is designed to be reflective of children at heightened 
risk of a range of neurodevelopmental difficulties52 and has sufficient variability within it to establish 
wiring parameter differences26. Practitioners working in specialist educational or clinical services in 
the East of England (UK) were asked to refer children with ongoing problems of “language”, 
“attention”, “memory”, or “learning/poor school progress”, regardless of the presence or absence of 
a formal diagnosis. Exclusion criteria included uncorrected problems in vision or hearing, having 
English as a second language, or having received a causative genetic diagnosis. In addition to 800 
children, 200 children recruited from the same schools and neighbourhoods who present no such 
difficulties. A range of measures were collected, including genetic, cognitive and behavioural, and 
neural data (see 52 for the full assessment protocol). Of the n = 1000 total children, n = 425 completed 
some neuroimaging portion of the study, of whom n = 386 had diffusion imaging data (see below for 
pre-processing details). A strict movement threshold (see below) led to a final sample of n = 357. Of 
these children, n = 283 were from the pool of 800 children meeting the above CALM criteria, and n = 
73 were from the control group. 
 
Neuroimaging data and preprocessing 
 
MRI data were acquired on a Siemens 3 T Prisma-fit system (Siemens Healthcare) using a 32-channel 
quadrature head coil. T1-weighted volume scans were acquired using a whole brain coverage 3D 
Magnetization Prepared Rapid Acquisition Gradient Echo sequence acquired using 1 mm isometric 
image resolution. Echo time was 2.98 ms, and repetition time was 2250 ms. Diffusion scans were 
acquired using echo-planar diffusion-weighted images with an isotropic set of 68 noncollinear 
directions, using a weighting factor of b = 1000 s mm−2, interleaved with 4 T2-weighted (b = 0) volume. 
Whole brain coverage was obtained with 60 contiguous axial slices and isometric image resolution of 
2 mm. Echo time was 90 ms and repetition time was 8500 ms. We enforced a strict movement 
threshold of 1mm (estimated through FSL eddy during the diffusion sequence), which led to 29 scans 
being removed, leaving a final sample of 357 children. 
 
Images were preprocessed using FSL eddy to correct for motion, eddy currents, and field 
inhomogeneities. Nonlocal means de-noising using DiPy v0.11 was performed to increase signal-to-
noise ratio. Finally, single-shell constrained spherical deconvolution (CSD) was used to estimate the 
fibre orientation distribution53 with a brain mask derived from the T1-weighted image. Whole-brain 
tractography was then performed using iFOD2 probabilistic tracking54, to generate 107 streamlines 
with a maximum length of 250mm and minimum length of 30mm. Weights for each streamline were 
calculated using SIFT255. Streamlines were then mapped to the Schaefer 100 atlas, a gradient-
weighted Markov Random Field parcellation of the cortex56, to generate a connectivity matrix. 
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We thresholded this connectivity matrix at an absolute threshold of 1530 streamlines to generate 
binary connectomes for our analyses to achieve a sample average 10% of density (see Methods: 
Probabilistic wiring equation for details on the number of connections present across the sample). 
We then simulated the development of each structural connectome using the generative network 
modelling procedure as outlined above, and determined the parameters that best replicated their 
organization through the Fast Landscape Generation (FLaG) approach described below. 
 
Fitting generative model parameters using Fast Landscape Generation (FLaG) 
 
A significant shortcoming of generative modelling in large cohort studies is that parameter estimation 
is computationally burdensome. Here, we use a fast, reliable, and accurate parameter estimation 
method for connectome generative models called Fast Landscape Generation (FLaG; 33). This method 
computes multiple landscapes and fits subjects to individual simulations simultaneously. At our 
sample size of n = 357, this allows for efficient but clear examination of differences. As recommended, 
we computed k = 50 landscapes to compute the average parameter combination across landscapes 
per subject. 
 
Analysis of socioeconomic status 
 
To measure socioeconomic status, we used the Index of Multiple Deprivation (IMD). This index 
captures the relative deprivation of an individual’s circumstances by surveying income, employment, 
education, health, crime, barriers to housing and services, and the quality of the living environment. 
See Supplementary Figure 3 for the distribution of IMD values in the CALM sample. 
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