

MDverse: Shedding Light on the Dark Matter of Molecular Dynamics Simulations

**4 Johanna K. S. Tiemann^{1*,†}, Magdalena Szczuka², Lisa Bouarroudj³, Mohamed
5 Oussaren³, Steven Garcia⁴, Rebecca J. Howard⁵, Lucie Delemotte⁶, Erik Lindahl^{5,6},
6 Marc Baaden⁷, Kresten Lindorff-Larsen¹, Matthieu Chavent^{2*}, Pierre Poulain^{3*}**

***For correspondence:**

johanna.tiemann@gmail.com (JKST);
Matthieu.Chavent@ipbs.fr (MC);
pierre.poulain@u-paris.fr (PP)

Present address: [†]Novozymes
A/S, 2800 Kgs. Lyngby, Denmark

⁷1 Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of
Copenhagen, DK-2200 Copenhagen N, Denmark; ²Institut de Pharmacologie et Biologie
Structurale, CNRS, Université de Toulouse, 205 route de Narbonne, 31400, Toulouse,
France; ³Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France;
⁴Independent researcher, Amsterdam, Netherlands; ⁵Department of Biochemistry and
Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden;
⁶Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of
Technology, Stockholm, Sweden; ⁷Laboratoire de Biochimie Théorique, CNRS,
Université Paris Cité, 13 rue Pierre et Marie Curie, F-75005 Paris, France

¹⁶

17 **Abstract**

¹⁸ The rise of open science and the absence of a global dedicated data repository for molecular
¹⁹ dynamics (MD) simulations has led to the accumulation of MD files in generalist data repositories,
²⁰ constituting the *dark matter of MD* — data that is technically accessible, but neither indexed,
²¹ curated, or easily searchable. Leveraging an original search strategy, we found and indexed
²² about 250,000 files and 2,000 datasets from Zenodo, Figshare and Open Science Framework.
²³ With a focus on files produced by the Gromacs MD software, we illustrate the potential offered by
²⁴ the mining of publicly available MD data. We identified systems with specific molecular
²⁵ composition and were able to characterize essential parameters of MD simulation such as
²⁶ temperature and simulation length, and could identify model resolution, such as all-atom and
²⁷ coarse-grain. Based on this analysis, we inferred metadata to propose a search engine prototype
²⁸ to explore the MD data. To continue in this direction, we call on the community to pursue the
²⁹ effort of sharing MD data, and to report and standardize metadata to reuse this valuable matter.

³⁰

31 **Introduction**

³² The volume of data available in biology has increased tremendously (*Marx, 2013; Stephens et al.,
33 2015*), through the emergence of high-throughput experimental technologies, often referred to as -
omics, and the development of efficient computational techniques, associated with high-performance
35 computing resources. The Open Access (OA) movement to make research results free and available
36 to anyone (including e.g. the Budapest Open Access Initiative and the Berlin declaration on
37 Open Access to Knowledge) has led to an explosive growth of research data made available by
38 scientists (*Wilson et al., 2021*). The FAIR (Findable, Accessible, Interoperable and Reusable) principles
39 (*Wilkinson et al., 2016*) have emerged to structure the sharing of these data with the goals
40 of reusing research data and to contribute to the scientific reproducibility. This leads to a world

41 where research data has become widely available and exploitable, and consequently new applications
42 based on artificial intelligence (AI) emerged. One example is AlphaFold (*Jumper et al., 2021*),
43 which enables the construction of a structural model of any protein from its sequence. However,
44 it is important to be aware that the development of AlphaFold was only possible because of the
45 existence of extremely well annotated and cleaned open databases of protein structures (wwPDB
46 *Berman et al. (2003)*) and sequences (UniProt *Consortium (2022)*). Similarly, accurate predictions
47 of NMR chemical shifts and chemical-shift-driven structure determination was only made possible
48 via a community-driven collection of NMR data in the Biological Magnetic Resonance Data Bank
49 (*Hoch et al., 2023*). One can easily imagine novel possibilities of AI and deep learning reusing previous
50 research data in other fields, if that data is curated and made available at a large scale (*Fan and Shi, 2022; Mahmud et al., 2021*).

52 Molecular Dynamics (MD) is an example of a well-established research field where simulations
53 give valuable insights into dynamic processes, ranging from biological phenomena to material science
54 (*Perilla et al., 2015; Hollingsworth and Dror, 2018; Yoo et al., 2020; Alessandri et al., 2021; Krishna et al., 2021*). By unraveling motions at details and timescales invisible to the eye, this well-established technique complements numerous experimental approaches (*Bottaro and Lindorff-Larsen, 2018; Marklund and Benesch, 2019; Fawzi et al., 2021*). Nowadays, large amounts of MD data could be generated when modelling large molecular systems (*Gupta et al., 2022*) or when applying biased sampling methods (*Hénin et al., 2022*). Most of these simulations are performed to decipher specific molecular phenomena, but typically they are only used for a single publication. We have to confess that many of us used to believe that it was not worth the storage to collect all simulations (in particular since all might not have the same quality), but in hindsight this was wrong. Storage is exceptionally cheap compared to the resources used to generate simulations data, and they represent a potential goldmine of information for researchers wanting to reanalyze them (*Antila et al., 2021*), in particular when modern machine-learning methods are typically limited by the amount of training data. In the era of open and data-driven science, it is critical to render the data generated by MD simulations not only technically available but also practically usable by the scientific community. In this endeavor, discussions started a few years ago (*Abraham et al., 2019; Abriata et al., 2020; Merz et al., 2020*) and the MD data sharing trend has been accelerated with the effort of the MD community to release simulation results related to the COVID-19 pandemic (*Amaro and Mulholland, 2020; Mulholland and Amaro, 2020*) in a centralized database (<https://covid.bioexcel.eu>). Specific databases have also been developed to store sets of simulations related to protein structures (MoDEL: *Meyer et al. (2010)*), membrane proteins in general (MemProtMD: *Stansfeld et al. (2015); Newport et al. (2018)*), G-protein coupled receptors in particular (GPCRmd: *Rodríguez-Espigares et al. (2020)*), or lipids (Lipidbook: *Domański et al. (2010)*, NMRLipids Databank: *Kiirikki et al. (2023)*).

77 Albeit previous attempts in the past (*Tai et al., 2004; Meyer et al., 2010*), there is, as of now, no central data repository that could host all kinds of MD simulation files. This is not only due to the huge volume of data and its heterogeneity, but also because interoperability of the many file formats used adds to the complexity. Thus, faced with the deluge of biosimulation data (*Hospital et al., 2020*), researchers often share their simulation files in multiple generalist data repositories. This makes it difficult to search and find available data on, for example, a specific protein or a given set of parameters. We are qualifying this amount of scattered data as *the dark matter of MD*, and we believe it is essential to shed light onto this overlooked but high-potential volume of data. When unlocked, publicly available MD files will gain more visibility. This will help people to access and reuse these data more easily and overall, by making MD simulation data more FAIR (*Wilkinson et al., 2016*), it will also improve the reproducibility of MD simulations (*Elofsson et al., 2019; Porubsky et al., 2020; consortium, 2019*).

89 In this work, we have employed a search strategy to index scattered MD simulation files deposited
90 in generalist data repositories. With a focus on the files generated by the Gromacs MD software, we performed a proof-of-concept large-scale analysis of publicly available MD data. We

92 revealed the high value of these data and highlighted the different categories of the simulated
93 molecules, as well as the biophysical conditions applied to these systems. Based on these results
94 and our annotations, we proposed a search engine prototype to easily explore this *dark matter of*
95 *MD*. Finally, building on this experience, we provide simple guidelines for data sharing to gradually
96 improve the FAIRness of MD data.

97 Results

98 With the rise of open science, researchers increasingly share their data and deposit them into generalist
99 data repositories, such as Zenodo (<https://zenodo.org>), Figshare (<https://figshare.com>), Open
100 Science Framework (OSF, <https://osf.io>), and Dryad (<https://datadryad.org/>). In this first attempt to
101 find out how many files related to MD are deposited in data repositories, we focused our exploration
102 on three major data repositories: Figshare (~3.3 million files, ~112 TB of data, as of January
103 2023), OSF (~2 million files, as of November 2022)¹, and Zenodo (~9.9 million files, ~1.3 PB of data,
104 as of December 2022; *Panero and Benito (2022)*).

105 One immediate strategy to index MD simulation files available in data repositories is to perform
106 a text-based Google-like search. For that, one queries these repositories with keywords such
107 as 'molecular dynamics' or 'Gromacs'. Unfortunately, we experienced many false positives with
108 this search strategy. This could be explained by the strong discrepancy we observed in the quantity
109 and quality of metadata (title, description) accompanying datasets and queried in text-based
110 search. For instance, a description text could be composed of a couple of words to more than 1,200
111 words. Metadata is provided by the user depositing the data, with no incentive to issue relevant
112 details to support the understanding of the simulation. For the three data repositories studied, no
113 human curation other by that of the providers is performed when submitting data. It is also worth
114 mentioning that title and description are provided as free-text and do not abide to any controlled
115 vocabulary such as a specific MD ontology.

116 To circumvent this issue, we developed an original and specific search strategy that we called
117 *Explore and Expand (Ex²)* (see Fig. 1-A and Materials and Methods section) and that relies on a combination
118 of file types and keywords queries. In the *Explore* phase, we searched for files based on their file types (for instance: .xtc, .gro, etc) with MD-related keywords (for instance: 'molecular dynamics', 'Gromacs', 'Martini', etc). Each of these hit files belonged to a dataset, which we further
119 screened in the *Expand* phase. There, we indexed all files found in a dataset identified in the previous
120 *Explore* phase with, this time, no restriction to the collected file types (see Fig. 1-A and details
121 on the data scraping procedure in the Materials and Methods section).

122 Globally, we indexed about 250,000 files and 2,000 datasets that represented 14 TB of data deposited
123 between August 2012 and March 2023 (see Table 1). One major difficulty were the numerous files stored in zipped archives, about seven times more than files steadily available in datasets
124 (see Table 1). While this choice is very convenient for depositing the files (as one just needs to provide
125 one big zip file to upload to the data repository server), it hinders the analysis of MD files as data
126 repositories only provide a limited preview of the content of the zip archives and completely
127 inhibits, for example, data streaming for remote analysis and visualization. Files within zip files
128 are not indexed and cannot be searched individually. The use of zip archives also hampers the
129 reusability of MD data, since a specific file cannot be downloaded individually. One has to download
130 the entire zip archive (sometimes with a size up to several gigabytes) to extract the one file of
131 interest.

132 The first dataset we found related to MD data that has been deposited in August 2012 in Figshare and corresponds to the work of Fuller et al. (*Fuller et al., 2012*) (see Table 1) but we
133 may consider the start of more substantial deposition of the MD data to be 2016 with more than
134 20,000 files deposited, mainly in Figshare (see Fig. 1-B). While the number of files deposited in Zenodo
135 was first relatively limited, the last few years (2020-2022) saw a steep increase, passing from

¹Figures provided by Figshare and OSF user support teams

Table 1. Statistics of the MD-related datasets and files found in the data repositories Figshare, OSF, and Zenodo.

Data repository	datasets	first dataset	latest dataset	files	total size (GB)	zip files	files within zip	total files
Zenodo	1,011	19/11/2014	05/03/2023	20,250	12,851	1,780	141,304	161,554
Figshare	913	20/08/2012	03/03/2023	3,336	736	590	74,720	78,056
OSF	55	24/05/2017	05/02/2023	6,146	495	14	0	6,146
Total	1,979	–	–	29,732	14,082	2,384	216,024	245,756

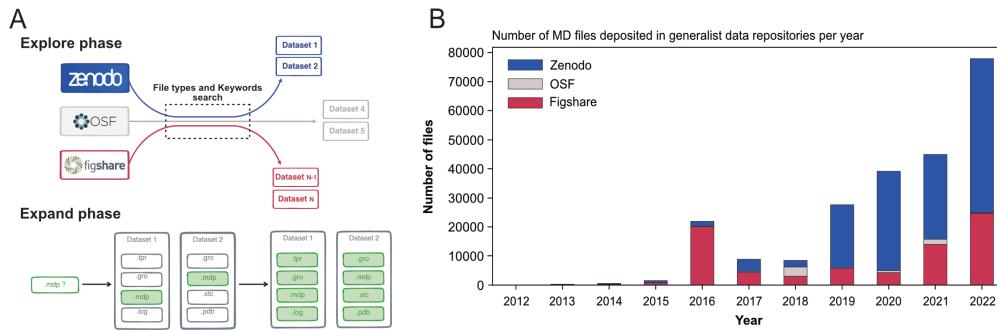


Figure 1. (A) Explore and Expand (Ex^2) strategy used to index and collect MD-related files. Within the explore phase, we search in the respective data repositories for datasets that contain specific keywords (e.g. "molecular dynamics", "md simulation", "namd", "martini"...) in conjunction with specific file extensions (e.g. ".mdp", ".psf", "parm7"...), depending on their uniqueness and level of trust to not report false-positives (i.e not MD related). In the expand phase, the content of the identified datasets is fully cataloged, including files that individually could result in false positives (such as e.g. ".log" files). (B) Number of deposited files in generalist data repositories, identified by our Ex^2 strategy.

140 a few thousands files in 2018 to almost 50,000 files in 2022 (see Fig. 1-B). In 2018, the number of
 141 MD files deposited in OSF was similar to those in the two other data repositories, but did not take
 142 off as much as the other data repositories. Zenodo seems to be favored by the MD community
 143 since 2019, even though Figshare in 2022 also saw a sharp increase in deposited MD files. The
 144 preference for Zenodo could also be explained by the fact that it is a publicly funded repository de-
 145 veloped under the European OpenAIRE program and operated by CERN (*European Organization
 146 For Nuclear Research and OpenAIRE, 2013*). Overall, the trend showed a rise of deposited data with
 147 a steep increase in 2022 (Fig. 1-B). We believe that this trend will continue in future years, which
 148 will lead to a greater amount of MD data available. It is thus urgent to deploy a strategy to index
 149 this vast amount of data, and to allow the MD community to easily explore and reuse such gigantic
 150 resource. The following describes what is already feasible in terms of meta analysis, in particular
 151 what types of data are deposited in data repositories and the simulation setup parameters used
 152 by MD experts that have deposited their data.

153 With our Ex^2 strategy (see Fig. 1-A), we assigned the deposited files to the MD packages: AMBER
 154 (*Ferrer et al., 2012*), DESMOND (*Bowers et al., 2006*), Gromacs (*Berendsen et al., 1995; Abraham
 155 et al., 2015*), and NAMD/CHARMM (*Phillips et al., 2020; Brooks et al., 2009*), based on their corre-
 156 sponding file types (see Materials and Methods section). In the case of NAMD/CHARMM, file exten-
 157 sions were mostly identical, which prevented us from distinguishing the respective files from these
 158 two MD programs. With 87,204 files deposited, the Gromacs program was most represented (see
 159 Fig. 2-A), followed by NAMD/CHARMM, AMBER, and DESMOND. This statistic is limited as it does not
 160 consider more specific databases related to a particular MD program. For example, the DE Shaw
 161 Research website contains a large amount of simulation data related to SARS-CoV-2 that has been
 162 generated using the ANTON supercomputer (https://www.deshawresearch.com/downloads/download_trajectory_sarscov2.cgi/) or other extensively simulated systems of interest to the community. How-
 163 ever, this in itself might also serve as a good example, since few automated search strategies will
 164 be able to find custom stand-alone web servers as valuable repositories. Here, our goal was not
 165

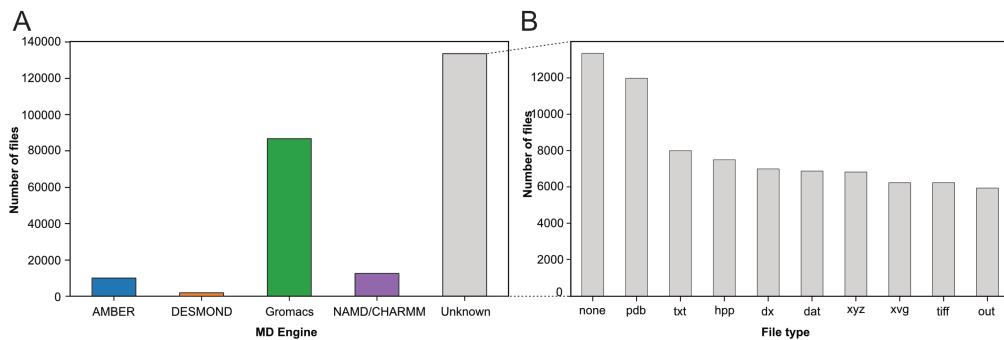


Figure 2. Categorization of index files based on their file types and assigned MD engine. (A) Distribution of files among MD simulation engines (B) Expansion of (A) MD Engine category "Unknown" into the 10 most observed file types.

166 to compare the availability of all data related to each MD program but to give a snapshot of the
167 type of data available at a given time (*i.e.* March 2023) in generalist data repositories. Interest-
168 ingly, many files (> 133,000) were not directly associated to any MD program (see Fig. 2-A label
169 'Unknown'). We categorized these files based on their extensions (see Fig. 2-B). While 10 % of these
170 files were without file extension (Fig. 2-B, column *none*), we found numerous files corresponding
171 to structure coordinates such as .pdb (~12,000) and .xyz (~6,800) files. We also got images (.tiff
172 files) and graphics (.xvg files). Finally, we found many text files such as .txt, .dat, and .out which can
173 potentially hold details about how simulations were performed. Focusing further on files related
174 to the Gromacs program, being currently most represented in the studied data repositories, we
175 demonstrated in the following present possibilities to retrieve numerous information related to
176 deposited MD simulations.

177 First, we were interested in what file types researchers deposited and thereby find potentially
178 of great value to share. We therefore quantified the types of files generated by Gromacs (Fig. 3-A).
179 The most represented file type is the .xtc file (28,559 files, representing 8.6 TB). This compressed
180 (binary) file is used to store the trajectory of an MD simulation and is an important source of in-
181 formation to characterize the evolution of the simulated molecular system as a function of time.
182 It is thus logical to mainly find this type of file shared in data repositories, as it is of great value
183 for reusage and new analyses. Nevertheless, it is not directly readable but needs to be read by a
184 third-party program, such as Gromacs itself, a molecular viewer like VMD (*Humphrey et al., 1996*)
185 or an analysis library such as MDAnalysis (*Michaud-Agrawal et al., 2011; Gowers et al., 2016*). In
186 addition, this trajectory file can only be of use in combination with a matching coordinates file, in
187 order to correctly access the dynamics information stored in this file. Thus, as it is, this file is not
188 easily mineable to extract useful information, especially if multiple .xtc and coordinate files are
189 available in one dataset. Interestingly, we found 1,406 .trr files, which contain trajectory but also
190 additional information such as velocities, energy of the system, etc. While this file is especially use-
191 ful in terms of reusability, the large size (can go up to several 100 GB) limits its deposition in most
192 data repositories. For instance, a file cannot usually exceed 50 GB in Zenodo, 20 GB in Figshare
193 (for free accounts) and 5 GB in OSF. Altogether, Gromacs trajectory files represented about 30,000
194 files in the three explored generalist repositories (34% of Gromacs files). This is a large number
195 in comparison to existing trajectories stored in known databases dedicated to MD with 1,700 MD
196 trajectories available in MoDEL, 1,737 trajectories (as of November 2022) available in GPCRmd,
197 5,971 (as of January 2022) trajectories available in MemProtMD and 726 trajectories (as of March
198 2023) available in the NMRlipids Databank. Although fewer in count, these numbers correspond to
199 manually or semi-automatically curated trajectories of specific systems, mostly proteins and lipids.
200 Thus, ~30,000 MD trajectories available in generalist data repositories may represent a wider spec-
201 trum of simulated systems but need to be further analyzed and filtered to separate usable data

202 from less interesting trajectories such as minimization or equilibration runs.

203 Given the large volume of data represented by .xtc files (see above), we could only scratch the
204 surface of the information stored in these trajectory files by analyzing a subset of 779 .xtc files -
205 one per dataset in which this type of file was found. We were able to get the size of the molecular
206 systems and the number of frames available in these files (Fig. 3-B). The system size was up to
207 more than one million atoms for a simulation of the TonB protein (*Virtanen et al., 2020*). The
208 cumulative distribution of the number of frames showed that half of the files contain more than
209 10,000 frames. This conformational sampling can be very useful for other research fields besides
210 the MD community that study, for instance, protein flexibility or protein engineering where diverse
211 backbones can be of value. We found an .xtc file containing more than 5 million frames, where the
212 authors probe the picosecond–nanosecond dynamics of T4 lysozyme and guide the MD simulation
213 with NMR relaxation data (*Kümmerer et al., 2021*). Extending this analysis to all 28,559 .xtc files
214 detected would be of great interest for a more holistic view, but this would require an initial step
215 of careful checking and cleaning to be sure that these files are analyzable. Of note, as .xtc files
216 also contain time stamps, it would be interesting to study the relationship between the time and
217 the number of frames to get useful information about the sampling. Nevertheless, this analysis
218 would be possible only for unbiased MD simulations. So, we would need to decipher if the .xtc file
219 is coming from biased or unbiased simulations, which may not be trivial.

220 These results bring a first explanation on why there is not a single special-purpose repository
221 for MD trajectory files. Databases dedicated to molecular structures such as the Protein Databank
222 (*Berman et al., 2000; Kinjo et al., 2017; Armstrong et al., 2019*), or even the recent PDB-dev (*Bur-
223 ley et al., 2017*), designed for integrative models, cannot accept such large-size files, even less if
224 complete trajectories without reducing the number of frames would be uploaded. This would also
225 require implementing extra steps of data curation and quality control. In addition, the size of the
226 IT infrastructure and the human skills required for data curation represents a significant cost that
227 could probably not be supported by a single institution.

228 Subsequently, our interest shifted towards exploring which systems are being investigated by
229 MD researchers who deposit their files. We found 9,718 .gro files which are text files that contain
230 the number of particles and the Cartesian coordinates of the system modelled. By parsing the
231 number of particles and the type of residue, we were able to give an overview of all Gromacs sys-
232 tems deposited (Fig. 3-C,D). In terms of system size, they ranged from very small - starting with
233 two coarse-grain (CG) particles of graphite (*Piskorz et al., 2019*), followed by coordinates of a water
234 molecule (3 atoms) (*Ivanov et al., 2017*), CG model of benzene (3 particles) (*Dandekar and Mondal,
235 2020*) and atomistic model of ammonia (4 atoms) (*Kelly and Smith, 2020*) — to go up to atomistic
236 and coarse-grain systems composed of more than 3 million particles (*Duncan et al., 2020; Schae-
237 fer and Hummer, 2022*) (Fig. 3-C). Interestingly, the system sizes in .gro files exceeded those of the
238 analyzed .xtc files (Fig. 3-B). Even if we cannot exclude that the limited number of .xtc files analyzed
239 (779 .xtc files selected from 28,559 .xtc files indexed) could explain this discrepancy, an alternate
240 hypothesis is that the size of an .xtc file also depends on the number of frames stored. To reduce
241 the size of .xtc files deposited in data repositories, besides removing some frames, researchers
242 might also remove parts of the system, such as water molecules. As a consequence for reusability,
243 this solvent removal could limit the number of suitable datasets available for researchers inter-
244 ested in re-analysing the simulation with respect to, in this case, water diffusion. While the size of
245 systems extracted from .gro files was homogeneously spread, we observed a clear bump around
246 system sizes of circa 8,500 atoms/particles. This enrichment of data could be explained by the de-
247 position of ~340 .gro files related to the simulation of a peptide translocation through a membrane
248 (Fig. 3-C) (*Kabelka et al., 2021*). Beyond 1 million particles/atoms, the number of systems is, for the
249 moment, very limited.

250 We then analyzed residues in .gro files and inferred different types of molecular systems (see
251 Fig. 3-D). Two of the most represented systems contained lipid molecules. This may be related to
252 NMRLipids initiative (<http://nmrlipids.blogspot.com>). For several years, this consortium has been ac-

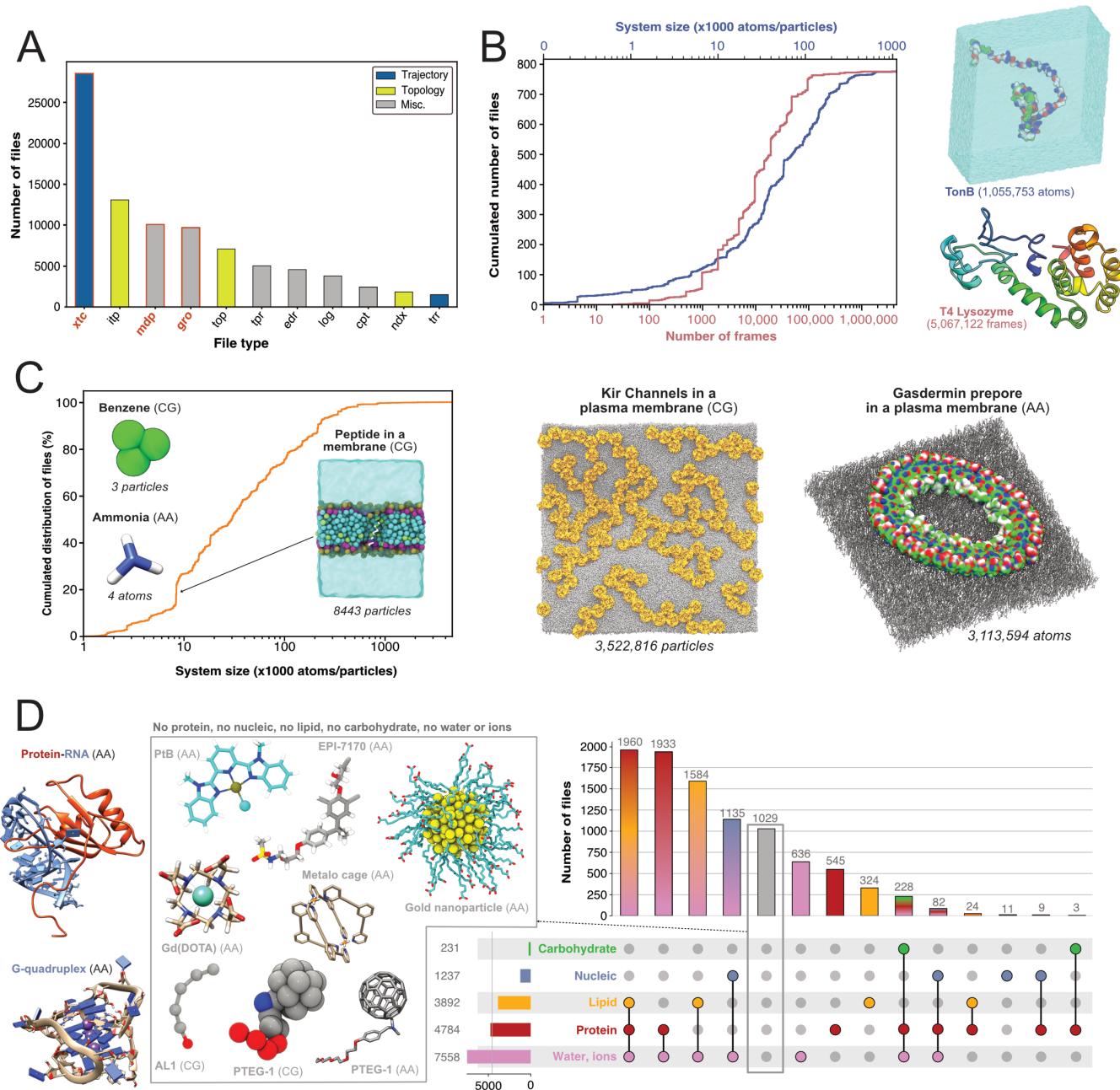


Figure 3. Content analysis of .xtc and .gro files. (A) Number of Gromacs-related files available in searched data repositories. In red, files used for further analyses. (B) Simple analyze of a subset of .xtc files with the cumulative distribution of the number of frames (in green) and the system size (in orange). (C) Cumulative distribution of the system sizes extracted from .gro files. (D) Upset plot of systems grouped by molecular composition, inferred from the analysis of .gro files. For this figure, 3D structures of representative systems were displayed, including soluble proteins such as TonB and T4 Lysozyme, membrane proteins such as Kir Channels and the Gasdermin prepore, Protein-/RNA and G-quadruplex and other non-protein molecules.

253 tively working on lipid modelling with a strong policy of data sharing and has contributed to share
254 numerous datasets of membrane systems. As illustrated in Fig 3-C, a variety of membrane sys-
255 tems, especially membrane proteins, were deposited. This highlights the vitality of this research
256 field, and the will of this community to share their data. We also found numerous systems contain-
257 ing solvated proteins. This type of data, combined with .xtc trajectory files (see above), could be
258 invaluable to describe protein dynamics and potentially train new artificial intelligence models to
259 go beyond the current representation of the static protein structure (*Lane, 2023*). There was also
260 a good proportion of systems containing nucleic acids alone or in interaction with proteins (1237
261 systems). At this time, we found only few systems containing carbohydrates that also contained
262 proteins and corresponded to one study to model hyaluronan-CD44 interactions (*Vuorio et al.,*
263 **2017**). Maybe a reason for this limited number is that systems containing sugars are often mod-
264 modelled using AMBER force field (*Ferrer et al., 2012*), in combination with GLYCAM (*Kirschner et al.,*
265 **2008-03**). A future study on the ~10,200 AMBER files deposited could retrieve more data related
266 to carbohydrate containing systems. Given the current developments to model glycans (*Fadda,*
267 **2022**), we expect to see more deposited systems with carbohydrates in the coming years.

268 Finally, we found 1,029 .gro files which did not belong to the categories previously described.
269 These files were mostly related to models of small molecules, or molecules used in organic chem-
270 istry (*Young et al., 2020*) and material science (*Zheng et al., 2022; Piskorz et al., 2019*) (see central
271 panel, Fig. 3-D). Several datasets contained lists of small molecules used for calculating free energy
272 of binding (*Aldeghi et al., 2015*), solubility of molecules (*Liu et al., 2016*), or osmotic coefficient
273 (*Zhu, 2019*). Then, we identified models of nanoparticles (*Kyrychenko et al., 2012; Pohjolainen*
274 *et al., 2016*), polymers (*Sarkar et al., 2020; Karunasena et al., 2021; Gertsen et al., 2020*), and drug
275 molecules like EPI-7170, which binds disordered regions of proteins (*Zhu et al., 2022*). Finally, an
276 interesting case from material sciences was the modelling of the PTEG-1 molecule, an addition of
277 polar triethylene glycol (TEG) onto a fulleropyrrolidine molecule (see central panel, Fig. 3-D). This
278 molecule was synthesized to improve semiconductors (*Jahani et al., 2014*). We found several mod-
279 els related to this peculiar molecule and its derivatives, both atomistic (*Qiu et al., 2017; Sami et al.,*
280 **2022**) and coarse grained (*Alessandri et al., 2020*). With a good indexing of data and appropri-
281 ate metadata to identify modelled molecules, a simple search, which was previously to this study
282 missing, could easily retrieve different models of the same molecule to compare them or to run
283 multi-scale dynamics simulations. Beyond .gro files, we would like to analyze the ensemble of the
284 ~ 12,000 .pdb extracted in this study (see Fig. 2-B) to better characterize the types of molecular
285 structures deposited.

286 Another important category of deposited files are those containing information about the topol-
287 ogy of the simulated molecules, including file extensions such as .itp and .top. Further, they are of-
288 ten the results of long parametrization processes (*Wang et al., 2004; Vanommeslaeghe and Mack-
289 erell, 2012; Souza et al., 2021*) and therefore of significant value for reusability. Based on our
290 analysis, we indexed almost 20,000 topology files which could spare countless efforts to the MD
291 community if these files could be easily found, annotated and reused. Interestingly, the number of
292 .itp files was elevated (13,058 files) with a total size of 2 GB, while there were less .top files (7,009
293 files) with a total size of 17 GB. Thus, .itp files seemed to contain much less information than the
294 .top files. Among the remaining file types, .tpr files contain all the information to potentially directly
295 run a simulation. Here, we found 4,987 .tpr files, meaning that it could virtually be possible to re-
296 run almost 5,000 simulations without the burden of setting up the system to simulate. Finally, the
297 3,730 .log files are also a source of useful information as it is relatively easy to parse this text file to
298 extract details on how MD simulations were run, such as the version of Gromacs, which command
299 line was used to run the simulation, etc.

300 Our next step was to gain insight into the parameter settings employed by the MD commu-
301 nity, which may aid us in identifying preferences in MD setups and potential necessity for further
302 education to avoid suboptimal or outdated configurations. We therefore analyzed 10,055 .mdp
303 files stored in the different data repositories. These text files contain information regarding the

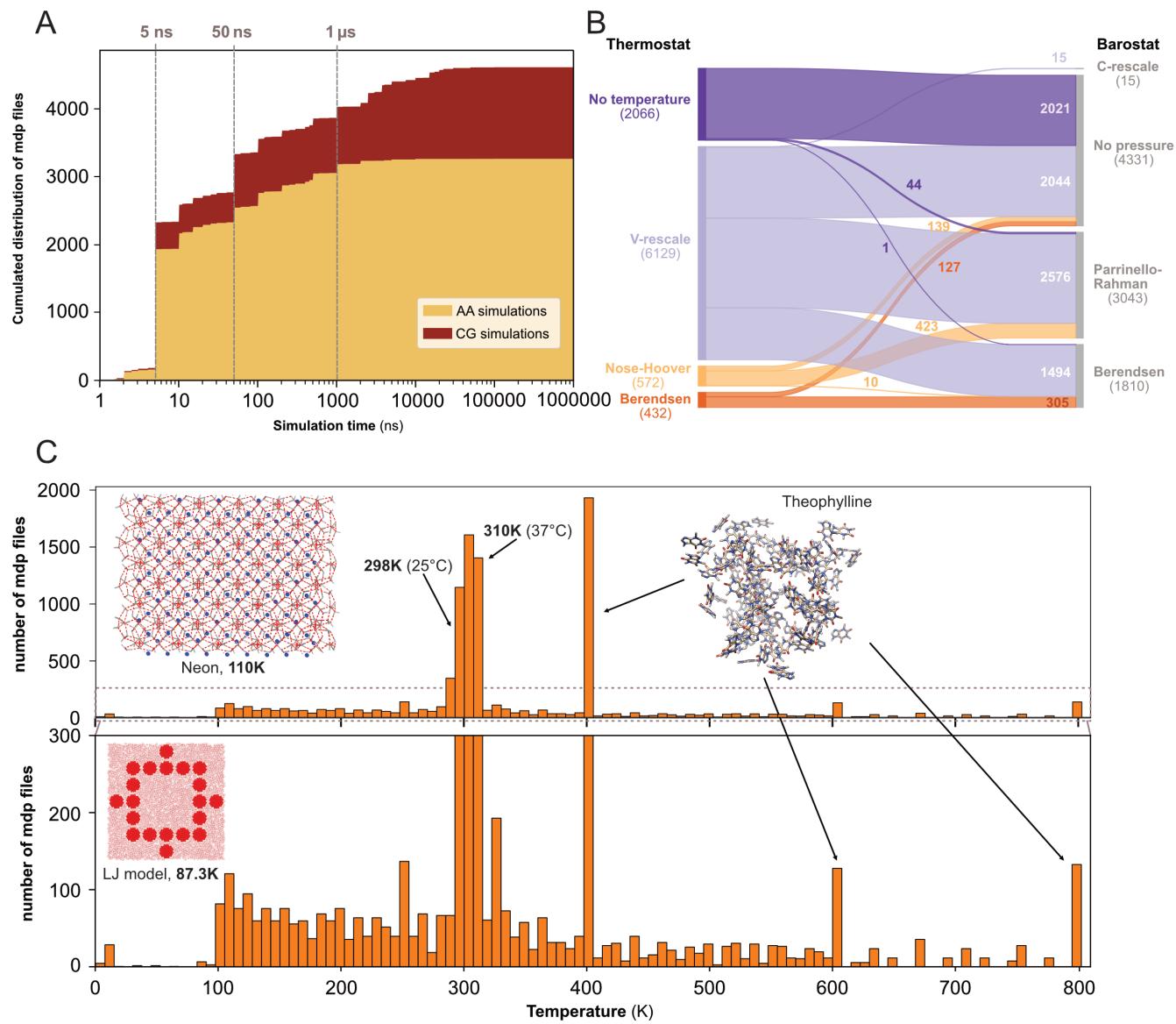


Figure 4. Content analysis of .mdp files. (A) Cumulative distribution of .mdp files versus the simulation time for all-atom and coarse-grain simulations. (B) Sankey graph of the repartition between different values for thermostat and barostat. (C) Temperature distribution, full scale in upper panel and zoom-in in lower panel.

304 input parameters to run the simulations such as the integrator, the number of steps, the differ-
305 ent algorithms for barostat and thermostat, etc. (for more details see: <https://manual.gromacs.org/documentation/current/user-guide/mdp-options.html>).

307 We determined the expected simulation time corresponding to the product of two parameters
308 found in .mdp files: the number of steps and the time step. Here, we acknowledge that one can
309 set up a very long simulation time and stop the simulation before the end or, on contrary, use
310 a limited time (especially when calculations are performed on HPC resources with wall-time) and
311 then extend the simulation for a longer duration. Using only the .mdp file, we cannot know if the
312 simulation reached its term. To do so, comparison with an .xtc file from the same dataset may
313 help to answer this specific question. However, in this study, we were interested in MD setup
314 practices, in particular what simulation time researchers would set up their system with - likely in
315 the mindset to reach that ending time. We restricted this analysis to the 4,623 .mdp files that used
316 the *md* or *sd* integrator, and that have a simulation time above 1 ns. We found that the majority of
317 the .mdp files were used for simulations of 50 ns or less (see Fig. 4-A). Further, 697 .mdp files with
318 simulations times set-up between 50 ns and 1 μ s and 585 .mdp files with simulation time above
319 1 μ s were identified. As analyzing .gro files showed a good proportion of coarse-grained models
320 (Fig. 3-B,C), we discriminated simulations setups for these two types of models using the time step
321 as a simple cutoff. We considered that a time step greater than 10 fs (*i.e.* dt=0.01) corresponded
322 to MD setups for coarse grained models (*Ingólfsson et al., 2014*). Globally, we found that over all
323 simulations, the setups for atomistic simulations were largely dominant. However, for simulations
324 with a simulation time above 1 μ s specifically, coarse-grain simulations represented 86 % of all.

325 We then looked into the combinations of thermostat and barostat (see Fig. 4-B) from 9,199 .mdp
326 files. The main thermostat used is by far the V-rescale (*Bussi et al., 2007*) often associated with the
327 Parrinello-Rahman barostat (*Parrinello and Rahman, 1981*). This thermostat was also used with
328 the Berendsen barostat (*Berendsen et al., 1984*). In a few cases, we observed the use of the V-
329 rescale thermostat with the very recently developed C-rescale barostat (*Bernetti and Bussi, 2020*).
330 A total of 2,021 .mdp files presented neither thermostat nor barostat, which means they would
331 not be used in production runs. This could correspond to setups used for energy minimization,
332 or to add ions to the system (with the genion command), or for molecular mechanics with Pois-
333 son-Boltzmann and surface area solvation (MM/PBSA) and molecular mechanics with generalised
334 Born and surface area solvation (MM/GBSA) calculations (*Genheden and Ryde, 2015*).

335 Finally, we analyzed the range of starting temperatures used to perform simulations (see Fig. 4-
336 C). We found a clear peak around the temperatures 298 K - 310 K which corresponds to the range
337 between ambient room (298 K - 25 °C) and physiological (310 K - 37 °C) temperatures. Nevertheless,
338 we also observed lower temperatures, which often relate to studies of specific organic systems or
339 simulations of Lennard-Jones models (*Jeon et al., 2016*). Interestingly, we noticed the appearance
340 of several pikes at 400 K, 600 K, and 800 K, which were not present before the end of the year 2022.
341 These peaks corresponded to the same study related to the stability of hydrated crystals (*Dybeck
342 et al., 2023*). Overall, this analysis revealed that a wide range of temperatures have been explored,
343 starting mostly from 100 K and going up to 800 K.

344 To encourage further analysis of the collected files, we shared our data collection with the com-
345 munity in Zenodo (see Data and code availability section). The data scrapping procedure and data
346 analysis is available on GitHub with a detailed documentation. To let researchers having a quick
347 glance and explore this data collection, we created a prototype web application called *MDverse data
348 explorer* available at <https://mdverse.streamlit.app/> and illustrated in Fig. 5-A. With this web applica-
349 tion, it is easy to use keywords and filters to access interesting datasets for all MD engines, as well
350 as .gro and .mdp files. Furthermore, when available, a description of the found data is provided
351 and searchable for keywords (Fig. 5-A, on the left sidebar). The sets of data found can then be
352 exported as a tab-separated values (.tsv) file for further analysis (Fig. 5-B).

353 **Towards a better sharing of MD data**

354 With this work, we have shown that it was possible to not only retrieve MD data from the gen-
355 eralist data repositories Zenodo, Figshare and OSF, but to shed light onto the *dark matter of MD*
356 data in terms of learning current scientific practice, extracting valuable topology information, and
357 analysing how the field is developing. Our objective was not to assess the quality of the data but
358 only to show what kind of data was available. The *Ex²* strategy to find files related to MD sim-
359 ulations relied on the fact that many MD software output files with specific file extensions. This
360 strategy could not be applied in research fields where data exhibits non-specific file types. We
361 experienced this limitation while indexing zip archives related to MD simulations, where we were
362 able to decide if a zip archive was pertinent for this work only by accessing the list of files contained
363 in the archive. This valuable feature is provided by data repositories like Zenodo and Figshare, with
364 some caveats, though.

365 As of March 2023, we managed to index 245,756 files from 1,979 datasets, representing alto-
366 gether 14 TB of data. This is a fraction of all files stored in data repositories. For instance, as of
367 December 2022, Zenodo hosted about 9.9 million files for ~1.3 PB of data (*Panero and Benito,*
368 **2022**). All these files are stored on servers available 24/7. This high availability costs human re-
369 sources, IT infrastructures and energy. Even if MD data represents only 1 % of the total volume
370 of data stored in Zenodo, we believe it is our responsibility, as a community, to develop a better
371 sharing and reuse of MD simulation files - and it will neither have to be particularly cumbersome
372 nor expensive. To this end, we are proposing two solutions. First, improve practices for sharing
373 and depositing MD data in data repositories. Second, improve the FAIRness of already available
374 MD data notably by improving the quality of the current metadata.

375 **Guidelines for better sharing of MD simulation data**

376 Without a community-approved methodology for depositing MD simulation files in data reposi-
377 tories, and based on the current experience we described here, we propose a few simple guidelines
378 when sharing MD data to make them more FAIR (Findable, Accessible, Interoperable and Reusable):

- 379 • Avoid zip or tar archives whose content cannot be properly indexed by data repositories. As
380 much as possible, deposit original data files directly.
- 381 • Describe the MD dataset with extensive metadata. Provide adequate information along your
382 dataset, such as:
 - 383 – The scope of the study, e.g. investigate conformation dynamics, benchmark force field,
384 ...
 - 385 – The method on a basic (e.g. quantum mechanics, all-atom, coarse-grain) or advanced
386 (accelerated, metadynamics, well-tempered) level.
 - 387 – The MD software: name, version (tag) and whether modifications have been made.
 - 388 – The simulation settings (for each of the steps, including minimization, equilibration and
389 production): temperature(s), thermostat, barostat, time step, total runtime (simulation
390 length), force field, additional force field parameters.
 - 391 – The composition of the system, with the precise names of the molecules and their num-
392 bers, if possible also PDB, UniProt or Ensemble identifiers and whether the default struc-
393 ture has been modified.
 - 394 – Give information about any post-processing of the uploaded files (e.g. truncation or
395 stripping of the trajectory), including before and after values of what has been modified
396 e.g. number of frames or number of atoms of uploaded files
 - 397 – Highlight especially valuable data, e.g. excessively QM-based parameterized molecules,
398 and their parameter files.

399 Store this metadata in the description of the dataset. An adaptation of the Minimum Infor-
400 mation About a Simulation Experiment (**MIASE**) guidelines (*Waltemath et al., 2011*) in the
401 context of MD simulations would be useful to define required metadata.

A

MDverse data explorer

gro files quick search

Enter search term. For instance: Covid, POPC, Gromacs, CHARMM36, 1402417

9780 elements found

Show 20 entries

index	dataset	ID	Title	Creation date	Authors	Description	File name	Atom number	Protein	Lipid
1	zenodo	1468560	C36 POPC simulation with 17 lipids per leaflet, 300K	2018-10-22	Hanne ...	POPC bilayer with 30 waters per lipid (17+17), at 300K, si...	whole17.gro	7616	false	true
2	zenodo	6526243	Amyloid-beta 16-22 peptide dimer simulation (150mM Na...)	2022-05-07	Kav, Ba...	Amyloid-beta 16-22 peptide dimer simulation with the CH...	prod.gro	32020	true	false
3	zenodo	838641	Large DPPC monolayer simulations with Charmm36+OPC ...	2017-08-03	Javanai...	DPPC monolayers simulated at a varying area per lipid in t...	DPPC-31...	232488	false	true
4	zenodo	838641	Large DPPC monolayer simulations with Charmm36+OPC ...	2017-08-03	Javanai...	DPPC monolayers simulated at a varying area per lipid in t...	DPPC-31...	232488	false	true
5	zenodo	838641	Large DPPC monolayer simulations with Charmm36+OPC ...	2017-08-03	Javanai...	DPPC monolayers simulated at a varying area per lipid in t...	DPPC-31...	232488	false	true
6	zenodo	838641	Large DPPC monolayer simulations with Charmm36+OPC ...	2017-08-03	Javanai...	DPPC monolayers simulated at a varying area per lipid in t...	DPPC-31...	232488	false	true
7	zenodo	838641	Large DPPC monolayer simulations with Charmm36+OPC ...	2017-08-03	Javanai...	DPPC monolayers simulated at a varying area per lipid in t...	DPPC-31...	232488	false	true
8	zenodo	838641	Large DPPC monolayer simulations with Charmm36+OPC ...	2017-08-03	Javanai...	DPPC monolayers simulated at a varying area per lipid in t...	DPPC-31...	232488	false	true
9	zenodo	838641	Large DPPC monolayer simulations with Charmm36+OPC ...	2017-08-03	Javanai...	DPPC monolayers simulated at a varying area per lipid in t...	DPPC-31...	232488	false	true
10	zenodo	838641	Large DPPC monolayer simulations with Charmm36+OPC ...	2017-08-03	Iacobati...	DPPC monolayers simulated at a varying area per lipid in t...	DPPC-31...	232488	false	true

B

Example of outputs for mdp files

dataset_origin	dataset_id	file_name	dt	nsteps	temperature	thermostat	barostat	dataset_url
0	zenodo 1043926	mono.mdp	0.002	100000000.0	298.0	v-rescale	no	https://zenodo.org/record/1043926
1	zenodo 1043946	mono.mdp	0.002	100000000.0	298.0	v-rescale	no	https://zenodo.org/record/1043946
2	zenodo 3463130	md.mdp	0.020	2500000.0	310.0	v-rescale	parrinello-rahman	https://zenodo.org/record/3463130
3	zenodo 1167532	md.mdp	0.002	100000000.0	298.0	nose-hoover	parrinello-rahman	https://zenodo.org/record/1167532
4	zenodo 3434100	1-POPC512_ECC-lipid14-CaCl_978mM_md_mdout.mdp	0.002	NaN	313.0	v-rescale	parrinello-rahman	https://zenodo.org/record/3434100

Example of outputs for gro files

dataset_origin	dataset_id	file_name	atom_number	has_protein	has_nucleic	has_lipid	has_glucid	has_waterion	dataset_url	k_particles
1706	zenodo 7125315	3b_START.gro	5583.0	False	False	False	False	False	https://zenodo.org/record/7125315	5.583
1707	zenodo 7125315	3c_START.gro	5844.0	False	False	False	False	False	https://zenodo.org/record/7125315	5.844
1708	zenodo 7125315	4a_START.gro	4374.0	False	False	False	False	False	https://zenodo.org/record/7125315	4.374
1709	zenodo 7125315	4b_START.gro	4410.0	False	False	False	False	False	https://zenodo.org/record/7125315	4.410
1710	zenodo 7125315	DMF.gro	12.0	False	False	False	False	False	https://zenodo.org/record/7125315	0.012
...
8666	osf 4aghb	PtB-b-force field/em4_nojump.gro	18432.0	False	False	False	False	False	https://osf.io/4aghb/	18.432
8667	osf 4aghb	PtB-b-force field/pr_nvt.gro	18432.0	False	False	False	False	False	https://osf.io/4aghb/	18.432
8668	osf 4aghb	PtB-b-force field/pr_nvt_nojmp.gro	18432.0	False	False	False	False	False	https://osf.io/4aghb/	18.432
8669	osf 4aghb	PtB-b-force field/Production_10ns_PT1_noVs.gro	18432.0	False	False	False	False	False	https://osf.io/4aghb/	18.432
8670	osf 4aghb	Pt-free-force field/MOL_GMX.gro	61.0	False	False	False	False	False	https://osf.io/4aghb/	0.061

Figure 5. Snapshots of the MDverse data explorer, a prototype search engine to explore collected files and datasets. (A) General view of the web application. (B) Focus on the .mdp and .gro files sets of data exported as .tsv files. The web application also includes links to their original repository.

- 402 • Link the MD dataset to other associated resources, such as:
 - 403 - The research article (if any) for which these data have been produced. Datasets are
 - 404 usually mentioned in the research articles, but rarely the other way around, since the
 - 405 deposition has to be done prior to publication. However, it is eminently possible to
 - 406 submit a revised version, and providing a link to the related research paper in updated
 - 407 metadata of the MD dataset will ease the reference to the original publication upon data
 - 408 reuse.
 - 409 - The code used to analyze the data, ideally deposited in the repository to guarantee avail-
 - 410 ability, or in a GitHub or GitLab repository.
 - 411 - Any other datasets that belong to the same study.
- 412 • Provide sufficient files to reproduce simulations and use a clear naming convention to make
- 413 explicit links between related files. For instance, for the Gromacs MD engine, trajectory .xtc
- 414 files could share the same names as structure .gro files (e.g. proteinA.gro & proteinA.xtc).
- 415 • Revisit your data deposition after paper acceptance and update information if necessary. Zen-
- 416 odo and Figshare provide a DOI for every new version of a dataset as well as a 'master' DOI
- 417 that always refers to the latest version available.

418 These guidelines are complementary to the reliability and reproducibility checklist for molecular

419 dynamics simulations (*Commun Biol*, 2023). Eventually, they could be implemented in machine

420 actionable Data Management Plan (maDMP) (*Miksa et al.*, 2019). So far, MD metadata is formalized

421 as free text. We advocate for the creation of a standardized and controlled vocabulary to describe

422 artifacts and properties of MD simulations. Normalized metadata will, in turn, enable scientific

423 knowledge graphs (*Auer*, 2018; *Färber and Lamprecht*, 2021) that could link MD data, research

424 articles and MD software in a rich network of research outputs.

425 Converging on a set of metadata and format requires a large consensus of different stakeholders,

426 from users, to MD program developers, and journal editors. It would be especially useful to

427 organize specific workshops with representatives of all these communities to collectively tackle this

428 specific issue.

429 **Improving metadata of current MD data**

430 While indexing about 2,000 MD datasets, we found that title and description accompanying these

431 datasets were very heterogeneous in terms of quality and quantity and were difficult for machines

432 to process automatically. It was sometimes impossible to find even basic information such as the

433 identity of the molecular system simulated, the temperature or the length of the simulation. With-

434 out appropriate metadata, sharing data is pointless, and its reuse is doomed to fail (*Musen*, 2022).

435 It is thus important to close the gap between the availability of MD data and its discoverability and

436 description through appropriate metadata. We could gradually improve the metadata by following

437 two strategies. First, since MD engines produce normalized and well-documented files, we could

438 extract parameters of the simulation by parsing specific files. We already explored this path with

439 Gromacs, by extracting the molecular size and composition from .gro files and the simulation time

440 (with some limitations), thermostat and barostat from .mdp files. We could go even further, by

441 extracting for instance Gromacs version from .log file (if provided) or by identifying the simulated

442 system from its atomic topology stored in .gro files. This strategy can in principle be applied to

443 files produced by other MD engines. A second approach that we are currently exploring uses data

444 mining and named entity recognition (NER) methods (*Perera et al.*, 2020) to automatically identify

445 the molecular system, the temperature, and the simulation length from existing textual metadata

446 (dataset title and description), providing they are of sufficient length. Finally, the possibilities af-

447 forded by large language models supplemented by domain-specific tools (*Bran et al.*, 2023) might

448 help interpret the heterogenous metadata that is often associated with the simulations.

449 Future works

450 In the future, it is desirable to go further in terms of analysis and integrate other data repositories,
451 such as Dryad and Dataverse instances (for example [Recherche Data Gouv](#) in France). The collabora-
452 tive platform for source code GitHub could also be of interest. Albeit dedicated to source code
453 and not designed to host large-size binary files, GitHub handles small to medium-size text files like
454 tabular .csv and .tsv data files and has been extensively used to record cases of the Ebola epidemic
455 in 2014 ([Perkel, 2016](#)) and the Covid-19 pandemic (<https://github.com/CSSEGISandData/COVID-19>).
456 Thus, GitHub could probably host small text-based MD simulation files. For Gromacs, we already
457 found 70,000 parameter .mdp files and 55,000 structure .gro files. Scripts found along these files
458 could also provide valuable insights to understand how a given MD analysis was performed. Fi-
459 nally, GitHub repositories might also be an entry point to find other datasets by linking to simu-
460 lation data, such as institutional repositories (see for instance ([Pesce and Lindorff-Larsen, 2023](#))).
461 However, one potential point of concern is that repositories like GitHub or GitLab do not make any
462 promises about long-term availability of repositories, in particular ones not under active develop-
463 ment. Archiving of these repositories could be achieved in Zenodo (for data-centric repositories)
464 or Software Heritage ([Di Cosmo and Zacchiroli, 2017](#)) (for source-code-centric repositories).

465 An obvious next step is the enrichment of metadata with the hope to render open MD data
466 more findable, accessible and ultimately reusable. Possible strategies have already been detailed
467 previously in this paper. We could also go further by connecting MD data in the research ecosystem.
468 For this, two apparent resources need to be linked to MD datasets: their associated research pa-
469 pers to mine more information and to establish a connection with the scientific context, and their
470 simulated biomolecular systems, which ultimately could cross-reference MD datasets to reference
471 databases such as UniProt ([Consortium, 2022](#)), the PDB ([Berman et al., 2000](#)) or Lipid Maps ([Sud
472 et al., 2007](#)). For already deposited datasets, the enrichment of metadata can only be achieved
473 via systematic computational approaches, while for future depositions, a clear and uniformly used
474 ontology and dedicated metadata reference file (as it is used by the PLUMED-NEST: [Bonomi et al.
475 \(2019\)](#)) would facilitate this task.

476 Eventually, front-end solutions such as the MDverse data explorer tool can evolve to being more
477 user-friendly by interfacing the structures and dynamics with interactive 3D molecular viewers ([Tie-
478 mann et al., 2017; Kampfrath et al., 2022; Martinez and Baaden, 2021](#)).

479 Conclusion

480 In this work, we showed that sharing data generated from MD simulations is now a common prac-
481 tice. From Zenodo, Figshare and OSF alone, we indexed about 250,000 files from 2,000 datasets,
482 and we showed that this trend is increasing. This data brings incentive and opportunities at differ-
483 ent levels. First, for researchers who cannot access high-performance computing (HPC) facilities,
484 or do not want to rerun a costly simulation to save time and energy, simulations of many sys-
485 tems are already available. These simulations could be useful to reanalyze existing trajectories, to
486 extend simulations with already equilibrated systems or to compare simulations of a dedicated
487 molecular system modelled with different settings. Second, building annotated and highly curated
488 datasets for artificial intelligence will be invaluable to develop dynamic generative deep-learning
489 models. Then, improving metadata along available data will foster their reuse and will mechani-
490 cally increase the reproducibility of MD simulations. At last, we see here the occasion to push for
491 good practices in the setup and production of MD simulations.

492 Methods and Materials

493 Initial data collection

494 We searched for MD-related files in the data repositories Zenodo, Figshare and Open Science
495 Framework (OSF). Queries were designed with a combination of file types and optionally keywords,
496 depending on how a given file type was solely associated to MD simulations. We therefore built a

497 list of manually curated and cross-checked file types and keywords ([https://github.com/MDverse/](https://github.com/MDverse/mdws/blob/main/params/query.yml)
498 [mdws/blob/main/params/query.yml](https://github.com/MDverse/mdws/blob/main/params/query.yml)). All queries were automated by Python scripts that utilized Ap-
499 plication Programming Interfaces (APIs) provided by data repositories. Since APIs offered by data
500 repositories were different, all implementations were performed in dedicated Python(*van Rossum,*
501 *1995*) (version 3.9.16) scripts with the NumPy(*Oliphant, 2007*) (version 1.24.2), Pandas(*Wes McKin-
502 ney, 2010*) (version 1.5.3) and Requests (version 2.28.2) libraries.

503 We made the assumption that files deposited by researchers in data repositories were coherent
504 and all related to a same research project. Therefore, when an MD-related file was found in a
505 dataset, all files belonging to this dataset were indexed, regardless of whether their file types were
506 actually identified as MD simulation files. This is the core of the Explore and Expand strategy (*Ex²*)
507 we applied in this work and illustrated in Fig 1. By default, the last version of the datasets was
508 collected.

509 When a zip file was found in a dataset, its content was extracted from a preview provided by
510 Zenodo and Figshare. This preview was not provided through APIs, but as HTML code, which we
511 parsed using the Beautiful Soup library (version 4.11.2). Note that the zip file preview for Zenodo
512 was limited to the first 1,000 files. To avoid false-positive files collected from zip archives, a final
513 cleaning step was performed to remove all datasets that did not share at least one file type with
514 the file type list mentioned above. In the case of OSF, there was no preview for zip files, so their
515 content has not been retrieved.

516 **Gromacs files**

517 After the initial data collection, Gromacs .mdp and .gro files were downloaded with the Pooch
518 library (version 1.6.0). When a .mdp or .gro file was found to be in a zip archive, the latter was
519 downloaded and the targeted .mdp or .gro file was selectively extracted from the archive. The same
520 procedure was applied for a subset of .xtc files that consisted of about one .xtc file per Gromacs
521 datasets.

522 Once downloaded, .mdp files were parsed to extract the following parameters: integrator, time
523 step, number of steps, temperature, thermostat, and barostat. Values for thermostat and barostat
524 were normalized according to values provided by the Gromacs documentation. For the simulation
525 time analysis, we selected .mdp files with the *md* or *sd* integrator and with simulation time above
526 1 ns to exclude most minimization and equilibrating simulations. For the thermostat and barostat
527 analysis, only files with non-missing values and with values listed in the Gromacs documentation
528 were considered.

529 The .gro files were parsed with the MDAnalysis library (*Michaud-Agrawal et al., 2011*) to ex-
530 tract the number of particles of the system. Values found in the residue name column were also
531 extracted and compared to a list of residues we manually associated to the following categories:
532 protein, lipid, nucleic acid, glucid and water or ions (https://github.com/MDverse/mdws/blob/main/params/residue_names.yml).

534 The .xtc files were analyzed using the gmxcheck command ([https://manual.gromacs.org/current/](https://manual.gromacs.org/current/onlinehelp/gmx-check.html)
535 [onlinehelp/gmx-check.html](https://manual.gromacs.org/current/onlinehelp/gmx-check.html)) to extract the number of particles and the number of frames.

536 **MDverse data explorer web app**

537 The MDverse data explorer web application was built in Python with the Streamlit library. Data was
538 downloaded from Zenodo (see the Data and code availability section).

539 **System visualization and molecular graphics**

540 Molecular graphics were performed with VMD (*Humphrey et al., 1996*) and Chimera (*Pettersen
541 et al., 2004*). For all visualizations, .gro files containing molecular structure were used. In the case
542 of the two structures in Fig. 3-B, .xtc files were manually assigned to their corresponding .gro (for
543 the TonB protein) or .tpr (for the T4 Lysozyme) files based on their names in their datasets.

544 Origin of the structures displayed in this work:

545 TonB

546 Dataset URL: <https://zenodo.org/record/3756664>

547 Publication (DOI): <https://doi.org/10.1039/D0CP03473H>

548 T4 Lysozyme

549 Dataset URL: <https://zenodo.org/record/3989044>

550 Publication (DOI): <https://doi.org/10.1021/acs.jctc.0c01338>

551 Benzene

552 Dataset URL: https://figshare.com/articles/dataset/Capturing_Protein_Ligand_Recognition_Pathways_in_Coarse-Grained_Simulation/12517490/

554 Publication (DOI): <https://doi.org/10.1021/acs.jpcllett.0c01683>

555 Ammonia

556 Dataset URL: https://figshare.com/articles/dataset/Alchemical_Hydration_Free-Energy_Calculations_Using_Molecular_Dynamics_with_Explicit_Polarization_and_Induced_Polarity_Decoupling_An_On_the_Fly_Polarization_Approach/11702442

559 Publication (DOI): <https://doi.org/10.1021/acs.jctc.9b01139>

560 Peptide with membrane

561 Dataset URL: <https://zenodo.org/record/4371296>

562 Publication (DOI): <https://doi.org/10.1021/acs.jcim.0c01312>

563 Kir channels

564 Dataset URL: <https://zenodo.org/record/3634884>

565 Publication (DOI): <https://doi.org/10.1073/pnas.1918387117>

566 Gasdermin

567 Dataset URL: <https://zenodo.org/record/6797842>

568 Publication (DOI): <https://doi.org/10.7554/eLife.81432>

569 Protein-RNA

570 Dataset URL: <https://zenodo.org/record/1308045>

571 Publication (DOI): <https://doi.org/10.1371/journal.pcbi.1006642>

572 G-quadruplex

573 Dataset URL: <https://zenodo.org/record/5594466>

574 Publication (DOI): <https://doi.org/10.1021/jacs.1c11248>

575 PtB

576 Dataset URL: <https://osf.io/4aghb/>

577 Publication (DOI): <https://doi.org/10.1073/pnas.2116543119>

578 EPI-7170

579 Dataset URL: <https://zenodo.org/record/7120845>

580 Publication (DOI): <https://doi.org/10.1038/s41467-022-34077-z>

581 Gold nanoparticle

582 Dataset URL: https://acs.figshare.com/articles/dataset/Fluorescence_Probing_of_Thiol_Functionalized_Gold_Nanoparticles_Is_Alkylthiol_Coating_of_a_Nanoparticle_as_Hydrophobic_as_Expected_/2481241

584 Publication (DOI): <https://doi.org/10.1021/jp3060813>

585 Gd(DOTA)

586 Dataset URL: https://acs.figshare.com/articles/dataset/Modeling_Gd_sup_3_sup_Complexes_for_Molecular_Dynamics_Simulations_Toward_a_Rational_Optimization_of_MRI_Contrast_Agents/20334621

588 Publication (DOI): <https://doi.org/10.1021/acs.inorgchem.2c01597>

589 **Metalo cage**

590 Dataset URL: https://acs.figshare.com/articles/dataset/Rationalizing_the_Activity_of_an_Artificial_
591 [Diels-Alderase_Establishing_Efficient_and_Accurate_Protocols_for_Calculating_Supramolecular_Catalysis/11569452](#)
592

593 Publication (DOI): <https://doi.org/10.1021/jacs.9b10302>

594 **AL1**

595 Dataset URL: https://acs.figshare.com/articles/dataset/Nucleation_Mechanisms_of_Self-Assembled_
596 [Physisorbed_Monolayers_on_Graphite/8846045](#)
597

Publication (DOI): <https://doi.org/10.1021/acs.jpcc.9b01234>

598 **PTEG-1 (all-atom)**

599 Dataset URL: https://figshare.com/articles/dataset/PTEG-1_PP_and_N-DMBI_atomistic_force_fields/
600 [5458144](#)

601 Publication (DOI): <https://doi.org/10.1039/C7TA06609K>

602 **PTEG-1 (coarse-grain)**

603 Dataset URL: https://figshare.com/articles/dataset/Neat_and_P3HT-Based_Blend_Morphologies_for_
604 [PCBM_and_PTEG-1/12338633](#)

605 Publication (DOI): <https://doi.org/10.1002/adfm.202004799>

606 **Theophylline**

607 Dataset URL: https://figshare.com/articles/dataset/A_Comparison_of_Methods_for_Computing_Relative_
608 [Anhydrous_Hydrate_Stability_with_Molecular_Simulation/21644393](#)

609 Publication (DOI): <https://doi.org/10.1021/acs.cgd.2c00832>

610 **Data and code availability**

611 Data files produced from the data collection and processing are shared in Parquet format in the
612 Zenodo repository: <https://zenodo.org/record/7856806>. They are freely available under the Creative
613 Commons Attribution 4.0 International license (CC-BY).

614 Python scripts to search and index MD files, and to download and parse .mdp and .gro files are
615 open-source (under the AGPL-3.0 license), freely available on GitHub (<https://github.com/MDverse/MDws>) and archived in Software Heritage (sw.h:1:dir:4d30b00345a732dcf9f79d3c8bfae38b35b8f2c4).
616 A detailed documentation is provided along the scripts to easily reproduce the data collection and
617 processing.

618 Jupyter notebooks used to analyze results and create the figures of this paper are open-source
619 (under the BSD 3-Clause license), freely available on GitHub (<https://github.com/MDverse/mdda>) and
620 archived in Software Heritage (sw.h:1:dir:1f8497f72134cef0a9724c955bb03c751f52cccd).

621 The code of the MDverse data explorer web application is open-source (under the BSD 3-Clause
622 license), freely available on GitHub (<https://github.com/MDverse/mdde>) and archived in Software
623 Heritage (sw.h:1:dir:1fc8b8eaabf4a9087e6d5b0ec5ed97031482bcbf).

625 **Acknowledgments**

626 We thank Lauri Mesilaakso, Bryan White, Jorge Hernansanz Biel, Zihwei Li and Kirill Baranov for their
627 participation in the Copenhagen BioHackathon 2020, whose results showcased the need for a more
628 advanced search strategy. We acknowledge Massimiliano Bonomi, Giovanni Bussi, Patrick Fuchs
629 and Elise Lehoux for helpful discussions and suggestions. We also thank the Zenodo, Figshare and
630 OSF support teams for providing figures on the content of their respective data repository and for
631 their help in using APIs.

632 This work was supported by Institut français du Danemark (Blåtand program, 2021), the Data
633 Intelligence Institute of Paris (diiP, IdEx Université Paris Cité, ANR-18-IDEX-0001, 2023). JKST and
634 KL-L acknowledge funding by the Novo Nordisk Foundation [NNF18OC0033950 to KL-L], and work-
635 shops funded by The BioExcel Center-of-Excellence (grant agreements 823830, 101093290).

636 **Author contributions**

637 The original idea was conceived by EL together with JKST, MC, RH and LD. JKST, MC and PP super-
638 vised the project. JKST, PP, MC and SG conceived the search strategy. PP, JKST and LB implemented
639 the search strategy. PP performed the analysis and interpreted the results with MS, JKST, MC and
640 KL-L. PP and MO generated the MDverse web interface. JKST, PP and MC discussed all designs and
641 results. MC and PP designed the figures. JKST, MB, MC and PP wrote the manuscript with input
642 from all authors.

643 **References**

644 **Abraham M**, Apostolov R, Barnoud J, Bauer P, Blau C, Bonvin AMJJ, Chavent M, Chodera J, Čondić Jurkić K, Dele-
645 motte L, Grubmüller H, Howard RJ, Jordan EJ, Lindahl E, Ollila OHS, Selent J, Smith DGA, Stansfeld PJ, Tiemann
646 JKS, Trellet M, et al. Sharing Data from Molecular Simulations. *Journal of Chemical Information and Modeling*.
647 2019 Oct; 59(10):4093–4099. <https://doi.org/10.1021/acs.jcim.9b00665>, doi: 10.1021/acs.jcim.9b00665.

648 **Abraham MJ**, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular
649 simulations through multi-level parallelism from laptops to supercomputers. *SoftwareX*. 2015; 1-2:19 – 25.
650 doi: 10.1016/j.softx.2015.06.001.

651 **Abriata LA**, Lepore R, Dal Peraro M. About the need to make computational models of biological macro-
652 molecules available and discoverable. *Bioinformatics*. 2020 May; 36(9):2952–2954. <https://doi.org/10.1093/bioinformatics/btaa086>, doi: 10.1093/bioinformatics/btaa086.

654 **Aldeghi M**, Heifetz A, Bodkin MJ, Knapp S, Biggin PC. Accurate calculation of the absolute free energy of binding
655 for drug molecules. *Chemical Science*. 2015; 7(1):207–218. doi: 10.1039/c5sc02678d.

656 **Alessandri R**, Grünewald F, Marrink SJ. The Martini Model in Materials Science. *Advanced Materials*. 2021;
657 33(24):2008635. doi: 10.1002/adma.202008635.

658 **Alessandri R**, Sami S, Barnoud J, Vries AH, Marrink SJ, Havenith RWA. Resolving Donor–Acceptor Interfaces
659 and Charge Carrier Energy Levels of Organic Semiconductors with Polar Side Chains. *Advanced Functional
660 Materials*. 2020; 30(46):2004799. doi: 10.1002/adfm.202004799.

661 **Amaro RE**, Mulholland AJ. A Community Letter Regarding Sharing Biomolecular Simulation Data for COVID-19.
662 *Journal of Chemical Information and Modeling*. 2020 Jun; 60(6):2653–2656. <https://doi.org/10.1021/acs.jcim.0c00319>, doi: 10.1021/acs.jcim.0c00319, publisher: American Chemical Society.

664 **Antila HS**, M Ferreira T, Ollila OHS, Miettinen MS. Using Open Data to Rapidly Benchmark Biomolecular Simu-
665 lations: Phospholipid Conformational Dynamics. *Journal of Chemical Information and Modeling*. 2021 Feb;
666 61(2):938–949. <https://doi.org/10.1021/acs.jcim.0c01299>, doi: 10.1021/acs.jcim.0c01299, publisher: American
667 Chemical Society.

668 **Armstrong DR**, Berrisford JM, Conroy MJ, Gutmanas A, Anyango S, Choudhary P, Clark AR, Dana JM, Deshpande
669 M, Dunlop R, Gane P, Gáborová R, Gupta D, Haslam P, Koča J, Mak L, Mir S, Mukhopadhyay A, Nadzirin N, Nair
670 S, et al. PDBe: improved findability of macromolecular structure data in the PDB. *Nucleic Acids Research*.
671 2019; 48(D1):D335–D343. doi: 10.1093/nar/gkz990.

672 **Auer S**, Towards an Open Research Knowledge Graph. Zenodo; 2018. <https://doi.org/10.5281/zenodo.1157185>,
673 doi: 10.5281/zenodo.1157185.

674 **Berendsen HJC**, Postma JPM, Gunsteren WVF, DiNola A, Haak JR. Molecular dynamics with coupling to an
675 external bath. *The Journal of Chemical Physics*. 1984 04; 81(8):3684 – 3690. <https://aip.scitation.org/doi/10.1063/1.448118>, doi: 10.1063/1.448118.

677 **Berendsen HJC**, van der Spoel D, van Drunen R. GROMACS: A Message-Passing Parallel Molecular Dynam-
678 ics Implementation. *Computer Physics Communications*. 1995 Sep; 91(1-3):43–56. doi: 10.1016/0010-
679 4655(95)00042-E.

680 **Berman H**, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. *Nature structural biology*.
681 2003; 10(12):980. doi: 10.1038/nsb1203-980.

682 **Berman HM**, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data
683 Bank. *Nucleic Acids Research*. 2000; 28(1):235–242. doi: 10.1093/nar/28.1.235.

684 **Bernetti M**, Bussi G. Pressure control using stochastic cell rescaling. *The Journal of Chemical Physics*. 2020;
685 153(11):114107. doi: [10.1063/5.0020514](https://doi.org/10.1063/5.0020514).

686 **Bonomi M**, Bussi G, Camilloni C, Tribello GA, Banáš P, Barducci A, Bernetti M, Bolhuis PG, Bottaro S, Branduardi
687 D, Capelli R, Carloni P, Ceriotti M, Cesari A, Chen H, Chen W, Colizzi F, De S, De La Pierre M, Donadio D, et al.
688 Promoting transparency and reproducibility in enhanced molecular simulations. *Nature Methods*. 2019 Aug;
689 16(8):670–673. <https://www.nature.com/articles/s41592-019-0506-8>, doi: 10.1038/s41592-019-0506-8.

690 **Bottaro S**, Lindorff-Larsen K. Biophysical experiments and biomolecular simulations: A perfect match? *Science*. 2018 07; 361(6400):355 – 360. <http://science.sciencemag.org/content/361/6400/355>, doi: [10.1126/science.aat4010](https://doi.org/10.1126/science.aat4010).

693 **Bowers KJ**, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti
694 FD, Salmon JK, Shan Y, Shaw DE. Scalable Algorithms for Molecular Dynamics Simulations on Commodity
695 Clusters. *ACM/IEEE SC 2006 Conference (SC'06)*. 2006; p. 43–43. doi: [10.1109/sc.2006.54](https://doi.org/10.1109/sc.2006.54).

696 **Bran AM**, Cox S, White AD, Schwaller P, ChemCrow: Augmenting large-language models with chemistry tools;
697 2023.

698 **Brooks BR**, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S,
699 Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, et al. CHARMM:
700 the biomolecular simulation program. *Journal of computational chemistry*. 2009 07; 30(10):1545 – 1614. doi:
701 [10.1002/jcc.21287](https://doi.org/10.1002/jcc.21287).

702 **Burley SK**, Kurisu G, Markley JL, Nakamura H, Velankar S, Berman HM, Sali A, Schwede T, Trewella J. PDB-Dev:
703 a Prototype System for Depositing Integrative/Hybrid Structural Models. *Structure* (London, England : 1993).
704 2017 09; 25(9):1317 – 1318. doi: [10.1016/j.str.2017.08.001](https://doi.org/10.1016/j.str.2017.08.001).

705 **Bussi G**, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. *The Journal of
706 Chemical Physics*. 2007; 126(1):014101. http://jcp.aip.org/resource/1/jcpa6/v126/i1/p014101_s1, doi:
707 [10.1063/1.2408420](https://doi.org/10.1063/1.2408420).

708 **Commun Biol e**. Reliability and reproducibility checklist for molecular dynamics simulations. *Communications
709 Biology*. 2023 Mar; 6(1). <https://doi.org/10.1038/s42003-023-04653-0>, doi: 10.1038/s42003-023-04653-0.

710 **consortium TP**. Promoting transparency and reproducibility in enhanced molecular simulations. *Nat Methods*.
711 2019 08; 16(8):670 – 673. <https://www.nature.com/articles/s41592-019-0506-8>, doi: 10.1038/s41592-019-0506-8.

713 **Consortium TU**. UniProt: the Universal Protein Knowledgebase in 2023. *Nucleic Acids Research*. 2022 11;
714 51(D1):D523–D531. <https://doi.org/10.1093/nar/gkac1052>, doi: 10.1093/nar/gkac1052.

715 **Dandekar BR**, Mondal J. Capturing Protein–Ligand Recognition Pathways in Coarse-Grained Simulation. *The
716 Journal of Physical Chemistry Letters*. 2020; 11(13):5302–5311. doi: [10.1021/acs.jpclett.0c01683](https://doi.org/10.1021/acs.jpclett.0c01683).

717 **Di Cosmo R**, Zacchiroli S. Software Heritage: Why and How to Preserve Software Source Code. In: *Proceedings
718 of the 14th International Conference on Digital Preservation, iPRES 2017* Japan; 2017. .

719 **Domański J**, Stansfeld PJ, Sansom MSP, Beckstein O. Lipidbook: a public repository for force-field parameters
720 used in membrane simulations. *The Journal of membrane biology*. 2010; 236(3):255 – 258. doi:
721 [10.1007/s00232-010-9296-8](https://doi.org/10.1007/s00232-010-9296-8).

722 **Duncan AL**, Corey RA, Sansom MSP. Defining how multiple lipid species interact with inward rectifier potassium
723 (Kir2) channels. *Proc Natl Acad Sci USA*. 2020 04; 117(14):7803 – 7813. doi: [10.1073/pnas.1918387117](https://doi.org/10.1073/pnas.1918387117).

724 **Dybeck EC**, Thiel A, Schnieders MJ, Pickard FC, Wood GPF, Krzyzaniak JF, Hancock BC. A Comparison of Methods
725 for Computing Relative Anhydrous-Hydrate Stability with Molecular Simulation. *Crystal Growth & Design*.
726 2023; 23(1):142–167. doi: [10.1021/acs.cgd.2c00832](https://doi.org/10.1021/acs.cgd.2c00832).

727 **Elofsson A**, Hess B, Lindahl E, Onufriev A, Spoel DVD, Wallqvist A. Ten simple rules on how to create open
728 access and reproducible molecular simulations of biological systems. *PLOS Computational Biology*. 2019;
729 15(1):e1006649. doi: [10.1371/journal.pcbi.1006649](https://doi.org/10.1371/journal.pcbi.1006649).

730 **European Organization For Nuclear Research**, OpenAIRE, Zenodo. CERN; 2013. <https://www.zenodo.org/>,
731 doi: 10.25495/7GXK-RD71.

732 **Fadda E.** Molecular simulations of complex carbohydrates and glycoconjugates. *Current Opinion in Chemical*
733 *Biology*. 2022; 69:102175. doi: [10.1016/j.cbpa.2022.102175](https://doi.org/10.1016/j.cbpa.2022.102175).

734 **Fan FJ**, Shi Y. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction. *Bioorganic & Medicinal Chemistry*. 2022; 72:117003. <https://www.sciencedirect.com/science/article/pii/S0968089622003960>, doi: <https://doi.org/10.1016/j.bmc.2022.117003>.

737 **Fawzi NL**, Parekh SH, Mittal J. Biophysical studies of phase separation integrating experimental and computational methods. *Current Opinion in Structural Biology*. 2021 Oct; 70:78–86. <https://www.sciencedirect.com/science/article/pii/S0959440X21000580>, doi: [10.1016/j.sbi.2021.04.004](https://doi.org/10.1016/j.sbi.2021.04.004).

740 **Ferrer RS**, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. *Wiley Interdisciplinary Reviews: Computational Molecular Science*. 2012; 3(2):198 – 210. doi: [10.1002/wcms.1121](https://doi.org/10.1002/wcms.1121).

742 **Fuller JC**, Jackson RM, Edwards TA, Wilson AJ, Shirts MR. Modeling of Arylamide Helix Mimetics in the p53
743 Peptide Binding Site of hDM2 Suggests Parallel and Anti-Parallel Conformations Are Both Stable. *PLOS ONE*.
744 2012 08; 7(8):1–17. <https://doi.org/10.1371/journal.pone.0043253>, doi: [10.1371/journal.pone.0043253](https://doi.org/10.1371/journal.pone.0043253).

745 **Färber M**, Lamprecht D. The data set knowledge graph: Creating a linked open data source for data
746 sets. *Quantitative Science Studies*. 2021 12; 2(4):1324–1355. https://doi.org/10.1162/qss_a_00161, doi:
747 [10.1162/qss_a_00161](https://doi.org/10.1162/qss_a_00161).

748 **Genheden S**, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. *Expert
749 Opinion on Drug Discovery*. 2015; 10(5):449–461. <https://doi.org/10.1517/17460441.2015.1032936>, doi:
750 [10.1517/17460441.2015.1032936](https://doi.org/10.1517/17460441.2015.1032936), pMID: 25835573.

751 **Gertsen AS**, Sørensen MK, Andreasen JW. Nanostructure of organic semiconductor thin films: Molecular
752 dynamics modeling with solvent evaporation. *Physical Review Materials*. 2020; 4(7):075405. doi: [10.1103/physrevmaterials.4.075405](https://doi.org/10.1103/physrevmaterials.4.075405).

754 **Gowers R**, Linke M, Barnoud J, Reddy T, Melo M, Seyler S, Domański J, Dotson D, Buchoux S, Kenney I, Beck-
755 stein O. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In: *Pro-
756 ceedings of the Python in Science Conference SciPy*; 2016. <https://doi.org/10.25080/majora-629e541a-00e>, doi:
757 [10.25080/majora-629e541a-00e](https://doi.org/10.25080/majora-629e541a-00e).

758 **Gupta C**, Sarkar D, Tielemans DP, Singharoy A. The ugly, bad, and good stories of large-scale biomolecular
759 simulations. *Current Opinion in Structural Biology*. 2022 Apr; 73:102338. <https://www.sciencedirect.com/science/article/pii/S0959440X22000112>, doi: [10.1016/j.sbi.2022.102338](https://doi.org/10.1016/j.sbi.2022.102338).

761 **Hoch JC**, Baskaran K, Burr H, Chin J, Eghbalnia HR, Fujiwara T, Gryk MR, Iwata T, Kojima C, Kurisu G, et al.
762 Biological Magnetic Resonance Data Bank. *Nucleic Acids Research*. 2023; 51(D1):D368–D376.

763 **Hollingsworth SA**, Dror RO. Molecular Dynamics Simulation for All. *Neuron*. 2018 Sep; 99(6):1129–1143. <https://www.sciencedirect.com/science/article/pii/S0896627318306846>, doi: [10.1016/j.neuron.2018.08.011](https://doi.org/10.1016/j.neuron.2018.08.011).

765 **Hospital A**, Battistini F, Soliva R, Gelpí JL, Orozco M. Surviving the deluge of biosimulation data. *WIREs Computational
766 Molecular Science*. 2020; 10(3):e1449. <https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1449>, doi:
767 [10.1002/wcms.1449](https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1449).

768 **Humphrey W**, Dalke A, Schulten K. VMD: visual molecular dynamics. *J Mol Graph*. 1996; 14(1):33 – 8, 27–8.

769 **Hénin J**, Lelièvre T, Shirts MR, Valsson O, Delemonette L. Enhanced Sampling Methods for Molecular Dynamics
770 Simulations [Article v1.0]. *Living Journal of Computational Molecular Science*. 2022; 4(1). doi: [10.33011/ljcoms.4.1.1583](https://doi.org/10.33011/ljcoms.4.1.1583).

772 **Ingólfsson HI**, Lopez CA, Uusitalo JJ, Jong DHd, Gopal SM, Periole X, Marrink SJ. The power of coarse graining
773 in biomolecular simulations. *Wiley Interdisciplinary Reviews: Computational Molecular Science*. 2014 05;
774 4(3):225 – 248. <https://onlinelibrary.wiley.com/doi/full/10.1002/wcms.1169>, doi: [10.1002/wcms.1169](https://doi.org/10.1002/wcms.1169).

775 **Ivanov P**, Mu J, Leay L, Chang SY, Sharrad CA, Masters AJ, Schroeder SLM. Organic and Third Phase in
776 HNO₃/TBP/n-Dodecane System: No Reverse Micelles. Solvent Extraction and Ion Exchange. 2017; 35(4):251–
777 265. doi: [10.1080/07366299.2017.1336048](https://doi.org/10.1080/07366299.2017.1336048).

778 **Jahani F**, Torabi S, Chiechi RC, Koster LJA, Hummelen JC. Fullerene derivatives with increased dielectric con-
779 stants. *Chemical Communications*. 2014; 50(73):10645–10647. doi: [10.1039/c4cc04366a](https://doi.org/10.1039/c4cc04366a).

780 **Jeon JH**, Javanainen M, Martinez-Seara H, Metzler R. Protein Crowding in Lipid Bilayers Gives Rise to
781 Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins. *Physical Review X*. 2016; doi:
782 [10.1103/physrevx.6.021006](https://doi.org/10.1103/physrevx.6.021006).

783 **Jumper J**, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A,
784 Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J,
785 Back T, et al. Highly accurate protein structure prediction with AlphaFold. *Nature*. 2021 Aug; 596(7873):583-
786 589. <https://www.nature.com/articles/s41586-021-03819-2>, doi: 10.1038/s41586-021-03819-2, number: 7873
787 Publisher: Nature Publishing Group.

788 **Kabelka I**, Brožek R, Vácha R. Selecting Collective Variables and Free-Energy Methods for Peptide Translo-
789 cation across Membranes. *Journal of Chemical Information and Modeling*. 2021; 61(2):819-830. doi:
790 [10.1021/acs.jcim.0c01312](https://doi.org/10.1021/acs.jcim.0c01312).

791 **Kampfrath M**, Staritzbichler R, Hernández GP, Rose AS, Tiemann JKS, Scheuermann G, Wiegreffe D, Hildebrand
792 PW. MDsrv: visual sharing and analysis of molecular dynamics simulations. *Nucleic Acids Research*. 2022;
793 50(W1):W483-W489. doi: 10.1093/nar/gkac398.

794 **Karunasena C**, Li S, Heifner MC, Ryno SM, Risko C. Reconsidering the Roles of Noncovalent In-
795 tramolecular "Locks" in π -Conjugated Molecules. *Chemistry of Materials*. 2021; 33(23):9139-9151. doi:
796 [10.1021/acs.chemmater.1c02335](https://doi.org/10.1021/acs.chemmater.1c02335).

797 **Kelly BD**, Smith WR. Alchemical Hydration Free-Energy Calculations Using Molecular Dynamics with Explicit
798 Polarization and Induced Polarity Decoupling: An On-the-Fly Polarization Approach. *Journal of Chemical
799 Theory and Computation*. 2020; 16(2):1146-1161. doi: [10.1021/acs.jctc.9b01139](https://doi.org/10.1021/acs.jctc.9b01139).

800 **Kiirikki A**, Antila H, Bort L, Buslaev P, Fernando F, Ferreira TM, Fuchs P, Garcia-Fandino R, Gushchin I, Kav B, Kula
801 P, Kurki M, Kuzmin A, Madsen J, Miettinen M, Nencini R, Piggot T, Pineiro A, Samantray S, Suarez-Leston F, et al.
802 NMRlipids Databank makes data-driven analysis of biomembrane properties accessible for all. *ChemRxiv*.
803 2023 Feb; <https://doi.org/10.26434/chemrxiv-2023-jrpwm>, doi: 10.26434/chemrxiv-2023-jrpwm.

804 **Kinjo AR**, Bekker GJ, Suzuki H, Tsuchiya Y, Kawabata T, Ikegawa Y, Nakamura H. Protein Data Bank Japan (PDBj):
805 updated user interfaces, resource description framework, analysis tools for large structures. *Nucleic Acids
806 Research*. 2017; 45(D1):D282-D288. doi: 10.1093/nar/gkw962.

807 **Kirschner KN**, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ. GLYCAM06:
808 a generalizable biomolecular force field. *Carbohydrates*. *Journal of computational chemistry*. 2008-03;
809 29(4):622 - 655. doi: [10.1002/jcc.20820](https://doi.org/10.1002/jcc.20820).

810 **Krishna S**, Sreedhar I, Patel CM. Molecular dynamics simulation of polyamide-based materials – A review.
811 *Computational Materials Science*. 2021 Dec; 200:110853. <https://www.sciencedirect.com/science/article/pii/S0927025621005711>, doi: [10.1016/j.commatsci.2021.110853](https://doi.org/10.1016/j.commatsci.2021.110853).

813 **Kyrychenko A**, Karpushina GV, Svechkarev D, Kolodezny D, Bogatyrenko SI, Kryshchal AP, Doroshenko AO.
814 Fluorescence Probing of Thiol-Functionalized Gold Nanoparticles: Is Alkylthiol Coating of a Nanoparticle
815 as Hydrophobic as Expected? *The Journal of Physical Chemistry C*. 2012; 116(39):21059-21068. doi:
816 [10.1021/jp3060813](https://doi.org/10.1021/jp3060813).

817 **Kümmerer F**, Orioli S, Harding-Larsen D, Hoffmann F, Gavrilov Y, Teilum K, Lindorff-Larsen K. Fitting Side-
818 Chain NMR Relaxation Data Using Molecular Simulations. *Journal of Chemical Theory and Computation*.
819 2021; 17(8):5262-5275. doi: [10.1021/acs.jctc.0c01338](https://doi.org/10.1021/acs.jctc.0c01338).

820 **Lane TJ**. Protein structure prediction has reached the single-structure frontier. *Nature Methods*. 2023; p. 1-4.
821 doi: 10.1038/s41592-022-01760-4.

822 **Liu S**, Cao S, Hoang K, Young KL, Paluch AS, Mobley DL. Using MD Simulations To Calculate How Sol-
823 vents Modulate Solubility. *Journal of Chemical Theory and Computation*. 2016; 12(4):1930-1941. doi:
824 [10.1021/acs.jctc.5b00934](https://doi.org/10.1021/acs.jctc.5b00934).

825 **Mahmud M**, Kaiser MS, McGinnity TM, Hussain A. Deep Learning in Mining Biological Data. *Cognitive Compu-
826 tation*. 2021; 13(1):1-33. <https://doi.org/10.1007/s12559-020-09773-x>, doi: 10.1007/s12559-020-09773-x.

827 **Marklund EG**, Benesch JL. Weighing-up protein dynamics: the combination of native mass spectrometry and
828 molecular dynamics simulations. *Current Opinion in Structural Biology*. 2019 Feb; 54:50-58. <https://www.sciencedirect.com/science/article/pii/S0959440X18300630>, doi: [10.1016/j.sbi.2018.12.011](https://doi.org/10.1016/j.sbi.2018.12.011).

830 **Martinez X**, Baaden M. UnityMol prototype for FAIR sharing of molecular-visualization experiences: from
831 pictures in the cloud to collaborative virtual reality exploration in immersive 3D environments. *Acta Crystallographica Section D*. 2021; 77(6):746–754. doi: 10.1107/s2059798321002941.

833 **Marx V**. Biology: The Big Challenges of Big Data. *Nature*. 2013; 498(7453):255–260. doi: 10.1038/498255a.

834 **Wes McKinney**. Data Structures for Statistical Computing in Python. In: Stéfan van der Walt, Jarrod Millman, editors. *Proceedings of the 9th Python in Science Conference*; 2010. p. 56 – 61. doi: 10.25080/Majora-92bf1922-00a.

837 **Merz KMJ**, Amaro R, Cournia Z, Rarey M, Soares T, Tropsha A, Wahab HA, Wang R. Editorial: Method and
838 Data Sharing and Reproducibility of Scientific Results. *Journal of Chemical Information and Modeling*. 2020
839 Dec; 60(12):5868–5869. <https://doi.org/10.1021/acs.jcim.0c01389>, doi: 10.1021/acs.jcim.0c01389, publisher: American Chemical Society.

841 **Meyer T**, D'Abramo M, Hospital A, Rueda M, Ferrer-Costa C, Pérez A, Carrillo O, Camps J, Fenollosa C, Repchevsky
842 D, Gelpí JL, Orozco M. MoDEL (Molecular Dynamics Extended Library): A Database of Atomistic Molecular
843 Dynamics Trajectories. *Structure*. 2010 Nov; 18(11):1399–1409. [https://www.cell.com/structure/abstract/S0969-2126\(10\)00353-9](https://www.cell.com/structure/abstract/S0969-2126(10)00353-9), doi: 10.1016/j.str.2010.07.013, publisher: Elsevier.

845 **Michaud-Agrawal N**, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A toolkit for the analysis of molecular
846 dynamics simulations. *Journal of computational chemistry*. 2011 04; 32(10):2319 – 2327. doi:
847 10.1002/jcc.21787.

848 **Miksa T**, Simms S, Mietchen D, Jones S. Ten principles for machine-actionable data management plans. *PLOS
849 Computational Biology*. 2019 03; 15(3):1–15. <https://doi.org/10.1371/journal.pcbi.1006750>, doi: 10.1371/journal.pcbi.1006750.

851 **Mulholland AJ**, Amaro RE. COVID19 - Computational Chemists Meet the Moment. *Journal of Chemical
852 Information and Modeling*. 2020 Dec; 60(12):5724–5726. <https://doi.org/10.1021/acs.jcim.0c01395>, doi:
853 10.1021/acs.jcim.0c01395.

854 **Musen MA**. Without Appropriate Metadata, Data-Sharing Mandates Are Pointless. *Nature*. 2022 Sep;
855 609(7926):222–222. doi: 10.1038/d41586-022-02820-7.

856 **Newport TD**, Sansom MSP, Stansfeld PJ. The MemProtMD database: a resource for membrane-embedded
857 protein structures and their lipid interactions. *Nucleic Acids Research*. 2018; 47(Database issue):gky1047–.
858 doi: 10.1093/nar/gky1047.

859 **Oliphant TE**. Python for Scientific Computing. *Computing in Science & Engineering*. 2007; 9(3):10–20. doi:
860 10.1109/MCSE.2007.58.

861 **Panero P**, Benito J, OpenAIRE Webinar: Zenodo - open digital repository. Zenodo; 2022. <https://doi.org/10.5281/zenodo.7417839>, doi: 10.5281/zenodo.7417839.

863 **Parrinello M**, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method.
864 *Journal of Applied Physics*. 1981; 52(12):7182. http://jap.aip.org/resource/1/japiau/v52/i12/p7182_s1, doi:
865 10.1063/1.328693.

866 **Perera N**, Dehmer M, Emmert-Streib F. Named Entity Recognition and Relation Detection for Biomedical Infor-
867 mation Extraction. *Frontiers in Cell and Developmental Biology*. 2020; 8:673. doi: 10.3389/fcell.2020.00673.

868 **Perilla JR**, Goh BC, Cassidy CK, Liu B, Bernardi RC, Rudack T, Yu H, Wu Z, Schulten K. Molecular dynamics
869 simulations of large macromolecular complexes. *Current opinion in structural biology*. 2015 Apr; 31:64–74.
870 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476923/>, doi: 10.1016/j.sbi.2015.03.007.

871 **Perkel J**. Democratic Databases: Science on GitHub. *Nature*. 2016 Oct; 538(7623):127–128. doi:
872 10.1038/538127a.

873 **Pesce F**, Lindorff-Larsen K. Combining experiments and simulations to examine the temperature-dependent
874 behaviour of a disordered protein. *bioRxiv*. 2023; <https://www.biorxiv.org/content/early/2023/03/05/2023.03.04.531094>, doi: 10.1101/2023.03.04.531094.

876 **Pettersen EF**, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visual-
877 ization system for exploratory research and analysis. *Journal of computational chemistry*. 2004; 25(13):1605
878 – 1612. <http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=15264254&retmode=ref&cmd=prlinks>, doi: 10.1002/jcc.20084, pettersen, Eric F Goddard, Thomas D Huang, Conrad C Couch, Gregory S Greenblatt, Daniel M Meng, Elaine C Ferrin, Thomas E P41-RR01081/RR/NCRR NIH HHS/United States Research Support, U.S. Gov't, P.H.S. United States Journal of computational chemistry J Comput Chem. 2004 Oct;25(13):1605-12.

883 **Phillips JC**, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singhary A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kalé LV, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. *The Journal of Chemical Physics*. 2020; 153(4):044130. doi: 10.1063/5.0014475.

887 **Piskorz TK**, Gobbo C, Marrink SJ, Feyter SD, Vries AHD, Esch JHV. Nucleation Mechanisms of Self-Assembled Physisorbed Monolayers on Graphite. *The Journal of Physical Chemistry C*. 2019; 123(28):17510-17520. doi: 10.1021/acs.jpcc.9b01234.

890 **Pohjolainen E**, Chen X, Malola S, Groenhof G, Häkkinen H. A Unified AMBER-Compatible Molecular Mechanics Force Field for Thiolate-Protected Gold Nanoclusters. *Journal of Chemical Theory and Computation*. 2016; 12(3):1342–1350. doi: 10.1021/acs.jctc.5b01053.

893 **Porubsky VL**, Goldberg AP, Rampadarath AK, Nickerson DP, Karr JR, Sauro HM. Best Practices for Making Reproducible Biochemical Models. *Cell Systems*. 2020; 11(2):109–120. doi: 10.1016/j.cels.2020.06.012.

895 **Qiu L**, Liu J, Alessandri R, Qiu X, Koopmans M, Havenith RWA, Marrink SJ, Chiechi RC, Koster LJA, Hummelen JC. Enhancing doping efficiency by improving host-dopant miscibility for fullerene-based n-type thermoelectrics. *Journal of Materials Chemistry A*. 2017; 5(40):21234–21241. doi: 10.1039/c7ta06609k.

898 **Rodríguez-Espigares I**, Torrens-Fontanals M, Tiemann JKS, Aranda-García D, Ramírez-Anguita JM, Stepniewski TM, Worp N, Varela-Rial A, Morales-Pastor A, Medel-Lacruz B, Pándy-Szekeres G, Mayol E, Giorgino T, Carlsson J, Deupi X, Filipek S, Filizola M, Gómez-Tamayo JC, Gonzalez A, Gutiérrez-de Terán H, et al. GPCRmd uncovers the dynamics of the 3D-GPCRome. *Nature Methods*. 2020 Aug; 17(8):777–787. <https://www.nature.com/articles/s41592-020-0884-y>, doi: 10.1038/s41592-020-0884-y.

903 **Sami S**, Alessandri R, Wijaya JBW, Grünewald F, Vries AHD, Marrink SJ, Broer R, Havenith RWA. Strategies for Enhancing the Dielectric Constant of Organic Materials. *The Journal of Physical Chemistry C*. 2022; 126(45):19462–19469. doi: 10.1021/acs.jpcc.2c05682.

906 **Sarkar A**, Sasmal R, Empereur-mot C, Bochicchio D, Kompella SVK, Sharma K, Dhiman S, Sundaram B, Agasti SS, Pavan GM, George SJ. Self-Sorted, Random, and Block Supramolecular Copolymers via Sequence Controlled, Multicomponent Self-Assembly. *Journal of the American Chemical Society*. 2020; 142(16):7606–7617. doi: 10.1021/jacs.0c01822.

910 **Schaefer SL**, Hummer G. Sublytic gasdermin-D pores captured in atomistic molecular simulations. *eLife*. 2022; 11:e81432. doi: 10.7554/elife.81432.

912 **Souza PCT**, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F, Patmanidis I, Abdizadeh H, Bruininks BMH, Wassenaar TA, Kroon PC, Melcr J, Nieto V, Corradi V, Khan HM, Domański J, Javanainen M, Martinez-Seara H, Reuter N, Best RB, et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. *Nature Methods*. 2021; p. 1–7. doi: 10.1038/s41592-021-01098-3.

916 **Stansfeld PJ**, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MSP. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes. *Structure* (London, England : 1993). 2015 07; 23(7):1350 – 1361. doi: 10.1016/j.str.2015.05.006.

919 **Stephens ZD**, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE. Big Data: Astronomical or Genomical? *PLOS Biology*. 2015; 13(7):e1002195. doi: 10.1371/journal.pbio.1002195.

921 **Sud M**, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Subramanian S. LMSD: LIPID MAPS structure database. *Nucleic Acids Research*. 2007 Jan; 35(Database):D527–D532. <https://doi.org/10.1093/nar/gkl838>, doi: 10.1093/nar/gkl838.

924 **Tai K**, Murdock S, Wu B, Ng MH, Johnston S, Fangohr H, Cox SJ, Jeffreys P, Essex JW, Sansom MSP. BioSimGrid: towards a worldwide repository for biomolecular simulations. *Organic & Biomolecular Chemistry*. 2004 Nov; 2(22):3219–3221. <https://pubs.rsc.org/en/content/articlelanding/2004/ob/b411352g>, doi: 10.1039/B411352G, publisher: The Royal Society of Chemistry.

928 **Tiemann JKS**, Guixà-González R, Hildebrand PW, Rose AS. MDsrv: viewing and sharing molecular dynamics
929 simulations on the web. *Nat Methods*. 2017 12; 14(12):1123 – 1124. <https://www.nature.com/articles/nmeth.4497>. doi: 10.1038/nmeth.4497.

931 **van Rossum G**. Python Tutorial. Amsterdam: Centrum voor Wiskunde en Informatica (CWI); 1995.

932 **Vanommeslaeghe K**, MacKerell AD. Automation of the CHARMM General Force Field (CGenFF) I: Bond Per-
933 ception and Atom Typing. *Journal of Chemical Information and Modeling*. 2012; 52(12):3144–3154. doi:
934 10.1021/ci300363c.

935 **Virtanen SI**, Kiirikki AM, Mikula KM, Iwaï H, Ollila OHS. Heterogeneous dynamics in partially disordered proteins.
936 *Physical Chemistry Chemical Physics*. 2020; 22(37):21185–21196. doi: 10.1039/d0cp03473h.

937 **Vuorio J**, Vattulainen I, Martinez-Seara H. Atomistic fingerprint of hyaluronan-CD44 binding. *PLoS Computa-
938 tional Biology*. 2017; 13(7):e1005663. doi: 10.1371/journal.pcbi.1005663.

939 **Waltemath D**, Adams R, Beard DA, Bergmann FT, Bhalla US, Britten R, Chelliah V, Cooling MT, Cooper J, Crampin
940 EJ, Garry A, Hoops S, Hucka M, Hunter P, Klipp E, Laibe C, Miller AK, Moraru I, Nickerson D, Nielsen P, et al.
941 Minimum Information About a Simulation Experiment (MIASE). *PLOS Computational Biology*. 2011 04; 7(4):1–
942 4. <https://doi.org/10.1371/journal.pcbi.1001122>, doi: 10.1371/journal.pcbi.1001122.

943 **Wang J**, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field.
944 *Journal of computational chemistry*. 2004 07; 25(9):1157 – 1174. doi: 10.1002/jcc.20035.

945 **Wilkinson MD**, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, Santos
946 LBdS, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers
947 R, Gonzalez-Beltran A, et al. The FAIR Guiding Principles for scientific data management and stewardship.
948 *Scientific data*. 2016 03; 3:160018. doi: 10.1038/sdata.2016.18.

949 **Wilson SL**, Way GP, Bittremieux W, Armache JP, Haendel MA, Hoffman MM. Sharing biological data: why, when,
950 and how. *FEBS Letters*. 2021; 595(7):847–863. <https://febs.onlinelibrary.wiley.com/doi/abs/10.1002/1873-3468.14067>. doi: <https://doi.org/10.1002/1873-3468.14067>.

952 **Yoo J**, Winogradoff D, Aksimentiev A. Molecular dynamics simulations of DNA-DNA and DNA-protein interac-
953 tions. *Current Opinion in Structural Biology*. 2020 Oct; 64:88–96. doi: 10.1016/j.sbi.2020.06.007.

954 **Young TA**, Martí-Centelles V, Wang J, Lusby PJ, Duarte F. Rationalizing the Activity of an “Artificial Diels-Alderase”:
955 Establishing Efficient and Accurate Protocols for Calculating Supramolecular Catalysis. *Journal of the Ameri-
956 can Chemical Society*. 2020; 142(3):1300–1310. doi: 10.1021/jacs.9b10302.

957 **Zheng X**, Chan MHY, Chan AKW, Cao S, Ng M, Sheong FK, Li C, Goonetilleke EC, Lam WWY, Lau TC, Huang
958 X, Yam VWW. Elucidation of the key role of Pt···Pt interactions in the directional self-assembly of plat-
959 inium(II) complexes. *Proceedings of the National Academy of Sciences*. 2022; 119(12):e2116543119. doi:
960 10.1073/pnas.2116543119.

961 **Zhu J**, Salvatella X, Robustelli P. Small molecules targeting the disordered transactivation domain of the andro-
962 gen receptor induce the formation of collapsed helical states. *Nature Communications*. 2022; 13(1):6390.
963 doi: 10.1038/s41467-022-34077-z.

964 **Zhu S**. Validation of the Generalized Force Fields GAFF, CGenFF, OPLS-AA, and PRODRGFF by Testing Against
965 Experimental Osmotic Coefficient Data for Small Drug-Like Molecules. *Journal of Chemical Information and
966 Modeling*. 2019; 59(10):4239–4247. doi: 10.1021/acs.jcim.9b00552.