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iz Abstract

1e  The rise of open science and the absence of a global dedicated data repository for molecular

10 dynamics (MD) simulations has led to the accumulation of MD files in generalist data repositories,
20 constituting the dark matter of MD — data that is technically accessible, but neither indexed,

21 curated, or easily searchable. Leveraging an original search strategy, we found and indexed

22 about 250,000 files and 2,000 datasets from Zenodo, Figshare and Open Science Framework.

23 With a focus on files produced by the Gromacs MD software, we illustrate the potential offered by
2« the mining of publicly available MD data. We identified systems with specific molecular

2s composition and were able to characterize essential parameters of MD simulation such as

26 temperature and simulation length, and could identify model resolution, such as all-atom and

27 Ccoarse-grain. Based on this analysis, we inferred metadata to propose a search engine prototype
2s  to explore the MD data. To continue in this direction, we call on the community to pursue the

20 effort of sharing MD data, and to report and standardize metadata to reuse this valuable matter.

30

s Introduction

;2 The volume of data available in biology has increased tremendously (Marx, 2013; Stephens et al.,

33 2015), through the emergence of high-throughput experimental technologies, often referred to as -

s omics, and the development of efficient computational techniques, associated with high-performance
s computing resources. The Open Access (OA) movement to make research results free and avail-
ss able to anyone (including e.g. the Budapest Open Access Initiative and the Berlin declaration on

3z Open Access to Knowledge) has led to an explosive growth of research data made available by
ss  scientists (Wilson et al., 2021). The FAIR (Findable, Accessible, Interoperable and Reusable) princi-
3o ples (Wilkinson et al., 2016) have emerged to structure the sharing of these data with the goals

s Of reusing research data and to contribute to the scientific reproducibility. This leads to a world
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where research data has become widely available and exploitable, and consequently new applica-
tions based on artificial intelligence (Al) emerged. One example is AlphaFold (Jumper et al., 2021),
which enables the construction of a structural model of any protein from its sequence. However,
it is important to be aware that the development of AlphaFold was only possible because of the
existence of extremely well annotated and cleaned open databases of protein structures (wwPDB
Berman et al. (2003)) and sequences (UniProt Consortium (2022)). Similarly, accurate predictions
of NMR chemical shifts and chemical-shift-driven structure determination was only made possible
via a community-driven collection of NMR data in the Biological Magnetic Resonance Data Bank
(Hoch et al., 2023). One can easily imagine novel possibilities of Al and deep learning reusing pre-
vious research data in other fields, if that data is curated and made available at a large scale (Fan
and Shi, 2022; Mahmud et al., 2021).

Molecular Dynamics (MD) is an example of a well-established research field where simulations
give valuable insights into dynamic processes, ranging from biological phenomena to material sci-
ence (Perilla et al., 2015; Hollingsworth and Dror, 2018; Yoo et al., 2020; Alessandri et al., 2021,
Krishna et al., 2021). By unraveling motions at details and timescales invisible to the eye, this well-
established technique complements numerous experimental approaches (Bottaro and Lindorff-
Larsen, 2018; Marklund and Benesch, 2019; Fawzi et al., 2021). Nowadays, large amounts of MD
data could be generated when modelling large molecular systems (Gupta et al., 2022) or when
applying biased sampling methods (Hénin et al., 2022). Most of these simulations are performed
to decipher specific molecular phenomena, but typically they are only used for a single publication.
We have to confess that many of us used to believe that it was not worth the storage to collect
all simulations (in particular since all might not have the same quality), but in hindsight this was
wrong. Storage is exceptionally cheap compared to the resources used to generate simulations
data, and they represent a potential goldmine of information for researchers wanting to reana-
lyze them (Antila et al., 2021), in particular when modern machine-learning methods are typically
limited by the amount of training data. In the era of open and data-driven science, it is critical to
render the data generated by MD simulations not only technically available but also practically us-
able by the scientific community. In this endeavor, discussions started a few years ago (Abraham
et al., 2019; Abriata et al., 2020; Merz et al., 2020) and the MD data sharing trend has been accel-
erated with the effort of the MD community to release simulation results related to the COVID-19
pandemic (Amaro and Mulholland, 2020; Mulholland and Amaro, 2020) in a centralized database
(https://covid.bioexcel.eu). Specific databases have also been developed to store sets of simulations
related to protein structures (MoDEL: Meyer et al. (20710)), membrane proteins in general (Mem-
ProtMD: Stansfeld et al. (2015); Newport et al. (2018)), G-protein coupled receptors in particular
(GPCRmd: Rodriguez-Espigares et al. (2020)), or lipids (Lipidbook:Domanski et al. (2010), NMRLipids
Databank: Kiirikki et al. (2023)).

Albeit previous attempts in the past (Tai et al., 2004; Meyer et al., 2010), there is, as of now,
no central data repository that could host all kinds of MD simulation files. This is not only due to
the huge volume of data and its heterogeneity, but also because interoperability of the many file
formats used adds to the complexity. Thus, faced with the deluge of biosimulation data (Hospital
et al., 2020), researchers often share their simulation files in multiple generalist data repositories.
This makes it difficult to search and find available data on, for example, a specific protein or a
given set of parameters. We are qualifying this amount of scattered data as the dark matter of
MD, and we believe it is essential to shed light onto this overlooked but high-potential volume of
data. When unlocked, publicly available MD files will gain more visibility. This will help people to
access and reuse these data more easily and overall, by making MD simulation data more FAIR
(Wilkinson et al., 2016), it will also improve the reproducibility of MD simulations (Elofsson et al.,
2019; Porubsky et al., 2020; consortium, 2019).

In this work, we have employed a search strategy to index scattered MD simulation files de-
posited in generalist data repositories. With a focus on the files generated by the Gromacs MD
software, we performed a proof-of-concept large-scale analysis of publicly available MD data. We
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revealed the high value of these data and highlighted the different categories of the simulated
molecules, as well as the biophysical conditions applied to these systems. Based on these results
and our annotations, we proposed a search engine prototype to easily explore this dark matter of
MD. Finally, building on this experience, we provide simple guidelines for data sharing to gradually
improve the FAIRness of MD data.

Results

With the rise of open science, researchers increasingly share their data and deposit them into gen-
eralist data repositories, such as Zenodo (https://zenodo.org), Figshare (https://figshare.com), Open
Science Framework (OSF, https://osf.io), and Dryad (https://datadryad.org/). In this first attempt to
find out how many files related to MD are deposited in data repositories, we focused our explo-
ration on three major data repositories: Figshare (~3.3 million files, ~112 TB of data, as of January
2023), OSF (~2 million files, as of November 2022)", and Zenodo (~9.9 million files, ~1.3 PB of data,
as of December 2022; Panero and Benito (2022)).

One immediate strategy to index MD simulation files available in data repositories is to per-
form a text-based Google-like search. For that, one queries these repositories with keywords such
as 'molecular dynamics’ or ‘Gromacs’. Unfortunately, we experienced many false positives with
this search strategy. This could be explained by the strong discrepancy we observed in the quan-
tity and quality of metadata (title, description) accompanying datasets and queried in text-based
search. Forinstance, a description text could be composed of a couple of words to more than 1,200
words. Metadata is provided by the user depositing the data, with no incentive to issue relevant
details to support the understanding of the simulation. For the three data repositories studied, no
human curation other by that of the providers is performed when submitting data. It is also worth
mentioning that title and description are provided as free-text and do not abide to any controlled
vocabulary such as a specific MD ontology.

To circumvent this issue, we developed an original and specific search strategy that we called
Explore and Expand (Ex?) (see Fig. 1-A and Materials and Methods section) and that relies on a com-
bination of file types and keywords queries. In the Explore phase, we searched for files based on
their file types (for instance: .xtc, .gro, etc) with MD-related keywords (for instance: 'molecular dy-
namics’, 'Gromacs', ‘Martini’, etc). Each of these hit files belonged to a dataset, which we further
screened in the Expand phase. There, we indexed all files found in a dataset identified in the previ-
ous Explore phase with, this time, no restriction to the collected file types (see Fig. 1-A and details
on the data scraping procedure in the Materials and Methods section).

Globally, we indexed about 250,000 files and 2,000 datasets that represented 14 TB of data de-
posited between August 2012 and March 2023 (see Table 1). One major difficulty were the numer-
ous files stored in zipped archives, about seven times more than files steadily available in datasets
(see Table 1). While this choice is very convenient for depositing the files (as one just needs to pro-
vide one big zip file to upload to the data repository server), it hinders the analysis of MD files as
data repositories only provide a limited preview of the content of the zip archives and completely
inhibits, for example, data streaming for remote analysis and visualization. Files within zip files
are not indexed and cannot be searched individually. The use of zip archives also hampers the
reusability of MD data, since a specific file cannot be downloaded individually. One has to down-
load the entire zip archive (sometimes with a size up to several gigabytes) to extract the one file of
interest.

The first dataset we found related to MD data that has been deposited in August 2012 in
Figshare and corresponds to the work of Fuller et al. (Fuller et al., 2012) (see Table 1) but we
may consider the start of more substantial deposition of the MD data to be 2016 with more than
20,000 files deposited, mainly in Figshare (see Fig. 1-B). While the number of files deposited in Zen-
odo was first relatively limited, the last few years (2020-2022) saw a steep increase, passing from

"Figures provided by Figshare and OSF user support teams
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Table 1. Statistics of the MD-related datasets and files found in the data repositories Figshare, OSF, and
Zenodo.

Data repository | datasets | first dataset | latest dataset | files | total size (GB) | zip files | files within zip | total files
Zenodo 1,011 19/11/2014 05/03/2023 20,250 12,851 1,780 141,304 161,554
Figshare 913 20/08/2012 03/03/2023 3,336 736 590 74,720 78,056

OSF 55 24/05/2017 05/02/2023 6,146 495 14 0 6,146
Total 1,979 - - 29,732 14,082 2,384 216,024 245,756
A B Number of MD files deposited i list dat itori
jlumber of flles deposited in generalist data repositories per year
Explore phase 80000 4 P g d peryt
I Zenodo
File types and Keywords 70000 4 OSF
search .
. 600001 I Figshare
3
& 50000
S
g 40000+
£
[ataset] 300004
Expand phase - 2
Er— Dataset 1 20000+
[ ] | a) 10000
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
) Year

Figure 1. (A) Explore and Expand (Ex?) strategy used to index and collect MD-related files. Within the explore
phase, we search in the respective data repositories for datasets that contain specific keywords (e.g.
"molecular dynamics", "md simulation", "namd", "martini"...) in conjunction with specific file extensions (e.g.
"mdp", "psf", "parm7"...), depending on their uniqueness and level of trust to not report false-positives (.i.e
not MD related). In the expand phase, the content of the identified datasets is fully cataloged, including files
that individually could result in false positives (such as e.g. ".log" files). (B) Number of deposited files in

generalist data repositories, identified by our Ex? strategy.

a few thousands files in 2018 to almost 50,000 files in 2022 (see Fig. 1-B). In 2018, the number of
MD files deposited in OSF was similar to those in the two other data repositories, but did not take
off as much as the other data repositories. Zenodo seems to be favored by the MD community
since 2019, even though Figshare in 2022 also saw a sharp increase in deposited MD files. The
preference for Zenodo could also be explained by the fact that it is a publicly funded repository de-
veloped under the European OpenAIRE program and operated by CERN (European Organization
For Nuclear Research and OpenAIRE, 2013). Overall, the trend showed a rise of deposited data with
a steep increase in 2022 (Fig. 1-B). We believe that this trend will continue in future years, which
will lead to a greater amount of MD data available. It is thus urgent to deploy a strategy to index
this vast amount of data, and to allow the MD community to easily explore and reuse such gigantic
resource. The following describes what is already feasible in terms of meta analysis, in particular
what types of data are deposited in data repositories and the simulation setup parameters used
by MD experts that have deposited their data.

With our Ex? strategy (see Fig. 1-A), we assigned the deposited files to the MD packages: AMBER
(Ferrer et al., 2012), DESMOND (Bowers et al., 2006), Gromacs (Berendsen et al., 1995; Abraham
et al., 2015), and NAMD/CHARMM (Phillips et al., 2020; Brooks et al., 2009), based on their corre-
sponding file types (see Materials and Methods section). In the case of NAMD/CHARMM,, file exten-
sions were mostly identical, which prevented us from distinguishing the respective files from these
two MD programs. With 87,204 files deposited, the Gromacs program was most represented (see
Fig. 2-A), followed by NAMD/CHARMM, AMBER, and DESMOND. This statistic is limited as it does not
consider more specific databases related to a particular MD program. For example, the DE Shaw
Research website contains a large amount of simulation data related to SARS-CoV-2 that has been
generated using the ANTON supercomputer (https://www.deshawresearch.com /downloads/download
trajectory sarscov2.cgi/) or other extensively simulated systems of interest to the community. How-
ever, this in itself might also serve as a good example, since few automated search strategies will
be able to find custom stand-alone web servers as valuable repositories. Here, our goal was not
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Figure 2. Categorization of index files based on their file types and assigned MD engine. (A) Distribution of
files among MD simulation engines (B) Expansion of (A) MD Engine category "Unknown" into the 10 most
observed file types.

to compare the availability of all data related to each MD program but to give a snapshot of the
type of data available at a given time (i.e. March 2023) in generalist data repositories. Interest-
ingly, many files (> 133,000) were not directly associated to any MD program (see Fig. 2-A label
‘Unknown’). We categorized these files based on their extensions (see Fig. 2-B). While 10 % of these
files were without file extension (Fig. 2-B, column none), we found numerous files corresponding
to structure coordinates such as .pdb (~12,000) and .xyz (~6,800) files. We also got images (.tiff
files) and graphics (.xvg files). Finally, we found many text files such as .txt, .dat, and .out which can
potentially hold details about how simulations were performed. Focusing further on files related
to the Gromacs program, being currently most represented in the studied data repositories, we
demonstrated in the following present possibilities to retrieve numerous information related to
deposited MD simulations.

First, we were interested in what file types researchers deposited and thereby find potentially
of great value to share. We therefore quantified the types of files generated by Gromacs (Fig. 3-A).
The most represented file type is the .xtc file (28,559 files, representing 8.6 TB). This compressed
(binary) file is used to store the trajectory of an MD simulation and is an important source of in-
formation to characterize the evolution of the simulated molecular system as a function of time.
It is thus logical to mainly find this type of file shared in data repositories, as it is of great value
for reusage and new analyses. Nevertheless, it is not directly readable but needs to be read by a
third-party program, such as Gromacs itself, a molecular viewer like VMD (Humphrey et al., 1996)
or an analysis library such as MDAnalysis (Michaud-Agrawal et al., 2011; Gowers et al., 2016). In
addition, this trajectory file can only be of use in combination with a matching coordinates file, in
order to correctly access the dynamics information stored in this file. Thus, as it is, this file is not
easily mineable to extract useful information, especially if multiple .xtc and coordinate files are
available in one dataset. Interestingly, we found 1,406 .trr files, which contain trajectory but also
additional information such as velocities, energy of the system, etc. While this file is especially use-
ful in terms of reusability, the large size (can go up to several 100 GB) limits its deposition in most
data repositories. For instance, a file cannot usually exceed 50 GB in Zenodo, 20 GB in Figshare
(for free accounts) and 5 GB in OSF. Altogether, Gromacs trajectory files represented about 30,000
files in the three explored generalist repositories (34% of Gromacs files). This is a large number
in comparison to existing trajectories stored in known databases dedicated to MD with 1,700 MD
trajectories available in MoDEL, 1,737 trajectories (as of November 2022) available in GPCRmd,
5,971 (as of January 2022) trajectories available in MemProtMD and 726 trajectories (as of March
2023) available in the NMRLipids Databank. Although fewer in count, these numbers correspond to
manually or semi-automatically curated trajectories of specific systems, mostly proteins and lipids.
Thus, ~30,000 MD trajectories available in generalist data repositories may represent a wider spec-
trum of simulated systems but need to be further analyzed and filtered to separate usable data
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from less interesting trajectories such as minimization or equilibration runs.

Given the large volume of data represented by .xtc files (see above), we could only scratch the
surface of the information stored in these trajectory files by analyzing a subset of 779 .xtc files -
one per dataset in which this type of file was found. We were able to get the size of the molecular
systems and the number of frames available in these files (Fig. 3-B). The system size was up to
more than one million atoms for a simulation of the TonB protein (Virtanen et al., 2020). The
cumulative distribution of the number of frames showed that half of the files contain more than
10,000 frames. This conformational sampling can be very useful for other research fields besides
the MD community that study, for instance, protein flexibility or protein engineering where diverse
backbones can be of value. We found an .xtc file containing more than 5 million frames, where the
authors probe the picosecond-nanosecond dynamics of T4 lysozyme and guide the MD simulation
with NMR relaxation data (Kiimmerer et al., 2021). Extending this analysis to all 28,559 .xtc files
detected would be of great interest for a more holistic view, but this would require an initial step
of careful checking and cleaning to be sure that these files are analyzable. Of note, as .xtc files
also contain time stamps, it would be interesting to study the relationship between the time and
the number of frames to get useful information about the sampling. Nevertheless, this analysis
would be possible only for unbiased MD simulations. So, we would need to decipher if the .xtc file
is coming from biased or unbiased simulations, which may not be trivial.

These results bring a first explanation on why there is not a single special-purpose repository
for MD trajectory files. Databases dedicated to molecular structures such as the Protein Databank
(Berman et al., 2000; Kinjo et al., 2017; Armstrong et al., 2019), or even the recent PDB-dev (Bur-
ley et al., 2017), designed for integrative models, cannot accept such large-size files, even less if
complete trajectories without reducing the number of frames would be uploaded. This would also
require implementing extra steps of data curation and quality control. In addition, the size of the
IT infrastructure and the human skills required for data curation represents a significant cost that
could probably not be supported by a single institution.

Subsequently, our interest shifted towards exploring which systems are being investigated by
MD researchers who deposit their files. We found 9,718 .gro files which are text files that contain
the number of particles and the Cartesian coordinates of the system modelled. By parsing the
number of particles and the type of residue, we were able to give an overview of all Gromacs sys-
tems deposited (Fig. 3-C,D). In terms of system size, they ranged from very small - starting with
two coarse-grain (CG) particles of graphite (Piskorz et al., 2019), followed by coordinates of a water
molecule (3 atoms) (lvanov et al., 2017), CG model of benzene (3 particles) (Dandekar and Mondal,
2020) and atomistic model of ammonia (4 atoms) (Kelly and Smith, 2020) — to go up to atomistic
and coarse-grain systems composed of more than 3 million particles (Duncan et al., 2020; Schae-
fer and Hummer, 2022) (Fig. 3-C). Interestingly, the system sizes in .gro files exceeded those of the
analyzed .xtc files (Fig. 3-B). Even if we cannot exclude that the limited number of .xtc files analyzed
(779 .xtc files selected from 28,559 .xtc files indexed) could explain this discrepancy, an alternate
hypothesis is that the size of an .xtc file also depends on the number of frames stored. To reduce
the size of .xtc files deposited in data repositories, besides removing some frames, researchers
might also remove parts of the system, such as water molecules. As a consequence for reusability,
this solvent removal could limit the number of suitable datasets available for researchers inter-
ested in re-analysing the simulation with respect to, in this case, water diffusion. While the size of
systems extracted from .gro files was homogeneously spread, we observed a clear bump around
system sizes of circa 8,500 atoms/particles. This enrichment of data could be explained by the de-
position of ~340 .gro files related to the simulation of a peptide translocation through a membrane
(Fig. 3-C) (Kabelka et al., 2021). Beyond 1 million particles/atoms, the number of systems is, for the
moment, very limited.

We then analyzed residues in .gro files and inferred different types of molecular systems (see
Fig. 3-D). Two of the most represented systems contained lipid molecules. This may be related to
NMRLipids initiative (http://nmrlipids.blogspot.com). For several years, this consortium has been ac-
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size (in orange). (C) Cumulative distribution of the system sizes extracted from .gro files. (D) Upset plot of systems grouped by molecular
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tively working on lipid modelling with a strong policy of data sharing and has contributed to share
numerous datasets of membrane systems. As illustrated in Fig 3-C, a variety of membrane sys-
tems, especially membrane proteins, were deposited. This highlights the vitality of this research
field, and the will of this community to share their data. We also found numerous systems contain-
ing solvated proteins. This type of data, combined with .xtc trajectory files (see above), could be
invaluable to describe protein dynamics and potentially train new artificial intelligence models to
go beyond the current representation of the static protein structure (Lane, 2023). There was also
a good proportion of systems containing nucleic acids alone or in interaction with proteins (1237
systems). At this time, we found only few systems containing carbohydrates that also contained
proteins and corresponded to one study to model hyaluronan-CD44 interactions (Vuorio et al.,
2017). Maybe a reason for this limited number is that systems containing sugars are often mod-
elled using AMBER force field (Ferrer et al., 2012), in combination with GLYCAM (Kirschner et al.,
2008-03). A future study on the ~10,200 AMBER files deposited could retrieve more data related
to carbohydrate containing systems. Given the current developments to model glycans (Fadda,
2022), we expect to see more deposited systems with carbohydrates in the coming years.

Finally, we found 1,029 .gro files which did not belong to the categories previously described.
These files were mostly related to models of small molecules, or molecules used in organic chem-
istry (Young et al., 2020) and material science (Zheng et al., 2022; Piskorz et al., 2019) (see central
panel, Fig. 3-D). Several datasets contained lists of small molecules used for calculating free energy
of binding (Aldeghi et al., 2015), solubility of molecules (Liu et al., 2016), or osmotic coefficient
(Zhu, 2079). Then, we identified models of nanoparticles (Kyrychenko et al., 2012; Pohjolainen
et al., 2016), polymers (Sarkar et al., 2020; Karunasena et al., 2021; Gertsen et al., 2020), and drug
molecules like EPI-7170, which binds disordered regions of proteins (Zhu et al., 2022). Finally, an
interesting case from material sciences was the modelling of the PTEG-1 molecule, an addition of
polar triethylene glycol (TEG) onto a fulleropyrrolidine molecule (see central panel, Fig. 3-D). This
molecule was synthesized to improve semiconductors (Jahani et al., 2014). We found several mod-
els related to this peculiar molecule and its derivatives, both atomistic (Qiu et al., 2017; Sami et al.,
2022) and coarse grained (Alessandri et al., 2020). With a good indexing of data and appropri-
ate metadata to identify modelled molecules, a simple search, which was previously to this study
missing, could easily retrieve different models of the same molecule to compare them or to run
multi-scale dynamics simulations. Beyond .gro files, we would like to analyze the ensemble of the
~ 12,000 .pdb extracted in this study (see Fig. 2-B) to better characterize the types of molecular
structures deposited.

Another important category of deposited files are those containing information about the topol-
ogy of the simulated molecules, including file extensions such as .itp and .top. Further, they are of-
ten the results of long parametrization processes (Wang et al., 2004; Vanommeslaeghe and MackK-
erell, 2012; Souza et al., 2021) and therefore of significant value for reusability . Based on our
analysis, we indexed almost 20,000 topology files which could spare countless efforts to the MD
community if these files could be easily found, annotated and reused. Interestingly, the number of
.itp files was elevated (13,058 files) with a total size of 2 GB, while there were less .top files (7,009
files) with a total size of 17 GB. Thus, .itp files seemed to contain much less information than the
.top files. Among the remaining file types, .tpr files contain all the information to potentially directly
run a simulation. Here, we found 4,987 .tpr files, meaning that it could virtually be possible to re-
run almost 5,000 simulations without the burden of setting up the system to simulate. Finally, the
3,730 .log files are also a source of useful information as it is relatively easy to parse this text file to
extract details on how MD simulations were run, such as the version of Gromacs, which command
line was used to run the simulation, etc.

Our next step was to gain insight into the parameter settings employed by the MD commu-
nity, which may aid us in identifying preferences in MD setups and potential necessity for further
education to avoid suboptimal or outdated configurations. We therefore analyzed 10,055 .mdp
files stored in the different data repositories. These text files contain information regarding the
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input parameters to run the simulations such as the integrator, the number of steps, the differ-
ent algorithms for barostat and thermostat, etc. (for more details see: https://manual.gromacs.org/
documentation/current/user-guide/mdp-options.html).

We determined the expected simulation time corresponding to the product of two parameters
found in .mdp files: the number of steps and the time step. Here, we acknowledge that one can
set up a very long simulation time and stop the simulation before the end or, on contrary, use
a limited time (especially when calculations are performed on HPC resources with wall-time) and
then extend the simulation for a longer duration. Using only the .mdp file, we cannot know if the
simulation reached its term. To do so, comparison with an .xtc file from the same dataset may
help to answer this specific question. However, in this study, we were interested in MD setup
practices, in particular what simulation time researchers would set up their system with - likely in
the mindset to reach that ending time. We restricted this analysis to the 4,623 .mdp files that used
the md or sd integrator, and that have a simulation time above 1 ns. We found that the majority of
the .mdp files were used for simulations of 50 ns or less (see Fig. 4-A). Further, 697 .mdp files with
simulations times set-up between 50 ns and 1 pys and 585 .mdp files with simulation time above
1 ps were identified. As analyzing .gro files showed a good proportion of coarse-grained models
(Fig. 3-B,C), we discriminated simulations setups for these two types of models using the time step
as a simple cutoff. We considered that a time step greater than 10 fs (i.e. dt=0.01) corresponded
to MD setups for coarse grained models (Ingélfsson et al., 2014). Globally, we found that over all
simulations, the setups for atomistic simulations were largely dominant. However, for simulations
with a simulation time above 1 ys specifically, coarse-grain simulations represented 86 % of all.

We then looked into the combinations of thermostat and barostat (see Fig. 4-B) from 9,199 .mdp
files. The main thermostat used is by far the V-rescale (Bussi et al., 2007) often associated with the
Parrinello-Rahman barostat (Parrinello and Rahman, 1981). This thermostat was also used with
the Berendsen barostat (Berendsen et al., 1984). In a few cases, we observed the use of the V-
rescale thermostat with the very recently developed C-rescale barostat (Bernetti and Bussi, 2020).
A total of 2,021 .mdp files presented neither thermostat nor barostat, which means they would
not be used in production runs. This could correspond to setups used for energy minimization,
or to add ions to the system (with the genion command), or for molecular mechanics with Pois-
son-Boltzmann and surface area solvation (MM/PBSA) and molecular mechanics with generalised
Born and surface area solvation (MM/GBSA) calculations (Genheden and Ryde, 2015).

Finally, we analyzed the range of starting temperatures used to perform simulations (see Fig. 4-
C). We found a clear peak around the temperatures 298 K - 310 K which corresponds to the range
between ambient room (298 K- 25 °C) and physiological (310 K- 37 °C) temperatures. Nevertheless,
we also observed lower temperatures, which often relate to studies of specific organic systems or
simulations of Lennard-Jones models (Jeon et al., 2016). Interestingly, we noticed the appearance
of several pikes at 400 K, 600 K, and 800 K, which were not present before the end of the year 2022.
These peaks corresponded to the same study related to the stability of hydrated crystals (Dybeck
et al., 2023). Overall, this analysis revealed that a wide range of temperatures have been explored,
starting mostly from 100 K and going up to 800 K.

To encourage further analysis of the collected files, we shared our data collection with the com-
munity in Zenodo (see Data and code availability section). The data scrapping procedure and data
analysis is available on GitHub with a detailed documentation. To let researchers having a quick
glance and explore this data collection, we created a prototype web application called MDverse data
explorer available at https://mdverse.streamlit.app/ and illustrated in Fig. 5-A. With this web applica-
tion, it is easy to use keywords and filters to access interesting datasets for all MD engines, as well
as .gro and .mdp files. Furthermore, when available, a description of the found data is provided
and searchable for keywords (Fig. 5-A, on the left sidebar). The sets of data found can then be
exported as a tab-separated values (.tsv) file for further analysis (Fig. 5-B).
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Towards a better sharing of MD data

With this work, we have shown that it was possible to not only retrieve MD data from the gen-
eralist data repositories Zenodo, Figshare and OSF, but to shed light onto the dark matter of MD
data in terms of learning current scientific practice, extracting valuable topology information, and
analysing how the field is developing. Our objective was not to assess the quality of the data but
only to show what kind of data was available. The Ex? strategy to find files related to MD sim-
ulations relied on the fact that many MD software output files with specific file extensions. This
strategy could not be applied in research fields where data exhibits non-specific file types. We
experienced this limitation while indexing zip archives related to MD simulations, where we were
able to decide if a zip archive was pertinent for this work only by accessing the list of files contained
in the archive. This valuable feature is provided by data repositories like Zenodo and Figshare, with
some caveats, though.

As of March 2023, we managed to index 245,756 files from 1,979 datasets, representing alto-
gether 14 TB of data. This is a fraction of all files stored in data repositories. For instance, as of
December 2022, Zenodo hosted about 9.9 million files for ~1.3 PB of data (Panero and Benito,
2022). All these files are stored on servers available 24/7. This high availability costs human re-
sources, IT infrastructures and energy. Even if MD data represents only 1 % of the total volume
of data stored in Zenodo, we believe it is our responsibility, as a community, to develop a better
sharing and reuse of MD simulation files - and it will neither have to be particularly cumbersome
nor expensive. To this end, we are proposing two solutions. First, improve practices for sharing
and depositing MD data in data repositories. Second, improve the FAIRness of already available
MD data notably by improving the quality of the current metadata.

Guidelines for better sharing of MD simulation data

Without a community-approved methodology for depositing MD simulation files in data reposito-
ries, and based on the current experience we described here, we propose a few simple guidelines
when sharing MD data to make them more FAIR (Findable, Accessible, Interoperable and Reusable):

+ Avoid zip or tar archives whose content cannot be properly indexed by data repositories. As
much as possible, deposit original data files directly.

+ Describe the MD dataset with extensive metadata. Provide adequate information along your
dataset, such as:

- The scope of the study, e.g. investigate conformation dynamics, benchmark force field,

- The method on a basic (e.g. quantum mechanics, all-atom, coarse-grain) or advanced
(accelerated, metadynamics, well-tempered) level.

- The MD software: name, version (tag) and whether modifications have been made.

- The simulation settings (for each of the steps, including minimization, equilibration and
production): temperature(s), thermostat, barostat, time step, total runtime (simulation
length), force field, additional force field parameters.

- The composition of the system, with the precise names of the molecules and their num-
bers, if possible also PDB, UniProt or Ensemble identifiers and whether the default struc-
ture has been modified.

- Give information about any post-processing of the uploaded files (e.g. truncation or
stripping of the trajectory), including before and after values of what has been modified
e.g. number of frames or number of atoms of uploaded files

- Highlight especially valuable data, e.g. excessively QM-based parameterized molecules,
and their parameter files.

Store this metadata in the description of the dataset. An adaptation of the Minimum Infor-
mation About a Simulation Experiment (MIASE) guidelines (Waltemath et al., 2011) in the
context of MD simulations would be useful to define required metadata.
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& Datasets
o cRofies MDverse data explorer
™ MDP files
.grofiles quick search
47 ({ Add filter -, Exportto tsv
Selected row:
3261 9780 elements found
1 9780
Show | 20 % entries
Dataset: zenodo 4943557 index Dataset m Title Creation date Authors. Description File name. Atom number Protein Lipid
Creation date: 2021-06-14
1 zenodo 1468560 C36 POPC simulation with 17 lipids per leaflet, 300K 2018-10-22 Hanne...  POPC bilayer with 30 waters per lipid (17+17),at 300K, si...  wholel7gro 7616 false true
Author(s): Joseph, Thomas
Title: Data from: Common intemal. 2 zenodo 6526243 Amyloid-beta 16-22 peptide dimer simulation (150mM Na... 20220507 Kav,Ba...  Amyloid-beta 16-22 peptide dimer simulation with the CH...  prod.gro 32020 true false
allosteric network links anesthetic 3 Znodo 838641 Large DPPC monolayer simulations with Charmm3640PC ... 2017-08-03 Javanai..  DPPC monolayers simulated at a varying area per lipidint...  DPPC-31.. 232488 false e
binding sites in a pentameric ligand- 4 Znodo 838641 Large DPPC monolayer simulations with Charmm3640PC ... 20170803 Javanai..  DPPC monolayers simulated at a varying area per lipidint...  DPPC31.. 232488 false e
godinchoonl 5 e | e e |l || T D T | || ™ o
escription:
General anesthetics bind reversibly to 6 zenodo 838641 Large DPPC monolayer simulations with Charmm36+4OPC ... 2017-08-03 Javanai..  DPPC monolayers simulated at a varying area per lipidint... ~ DPPC-31... 232488 false true
ion channels, modifying their global 7 mnodo 838641 Large DPPC monolayer simulations with Charmm3640PC ... 20170803 Javanai..  DPPC monolayers simulated at a varying arca per lipidint...  DPPC31.. 232488 false e
conformational distributions, but the 5 zenodo 838641 Large DPPC monolayer simulations with Charmm36+OPC ... 2017-08-03 Javanai..  DPPC monolayers simulated at a varying arca per lipid in t.. DPPC-31... 232488 false true
underlying atomic mechanisms are ) ) )
9 zenodo 838641 Large DPPC monolayer simulations with Charmm36+OPC ...~ 2017-08-03 Javanai..  DPPC monolayers simulated at a varying arcaper lipidint...  DPPC-31... 232488 false rue
not completely known. We examine
B 0 nde | saadl 1 aron PP mannlaver cimulations with CharmmWGsOPC 0170000 Tavanai IPPC mannlavers cimulaind at  varving ama ner linid int | DPPCAL 20488 falen .
Example of outputs for mdp files
dataset_origin dataset_id file_name dt nsteps temperature dataset_url
0 zenodo 1043926 mono.mdp 0.002 100000000.0 298.0 v-rescale no https://zenodo.org/record/1043926
1 zenodo 1043946 mono.mdp 0.002 100000000.0 298.0 v-rescale no https://zenodo.org/record/1043946
2 zenodo 3463130 md.mdp 0.020 2500000.0 310.0 v-rescale parrinello-rahman https://zenodo.org/record/3463130
- | zenodo 1167532 md.mdp 0.002 100000000.0 298.0 nose-hoover parrinello-rahman https://zenodo.org/record/1167532
4 zenodo 3434100 1-POPC512_ECC-lipid14-CaCL_978mM_md_mdout.mdp 0.002 NaN 313.0 v-rescale parrinello-rahman https://zenodo.org/record/3434100
Example of outputs for gro files
dataset_origin dataset_id file_name atom_number has_protein has_nucleic has_lipid has_glucid has_water_ion dataset_url k_particles
1706 zenodo 7125315 3b_START.gro 5583.0 False False False False False https://zenodo.org/record/7125315 5.583
1707 zenodo 7125315 3c_START.gro 5844.0 False False False False False https://zenodo.org/record/7125315 5.844
1708 zenodo 7125315 4a_START.gro 43740 False False False False False https://zenodo.orgfrecord/7125315 4374
1709 zenodo 7125315 4b_START.gro 44100 False False False False False https://zenodo.org/record/7125315 4410
1710 zenodo 7125315 DMF.gro 120 False False False False False https://zenodo.org/record/7125315 0.012
8666 osf 4aghb PtB-b-force field/em4_nojump.gro 18432.0 False False False False False https://osf.io/4aghb/ 18.432
8667 osf 4aghb PtB-b-force field/pr_nvt.gro 184320 False False False False False https://osf.io/4aghb/ 18.432
8668 osf 4aghb PtB-b-force field/pr_nvt_nojump.gro 18432.0 False False False False False https:/josf.io/daghb/ 18.432
8669 osf 4aghb PtB-b-force field/Production_10ns_PTI_noVs.gro 18432.0 False False False False False https://osf.io/4aghb/ 18.432
8670 osf 4aghb Pt-free-force field/MOL_GMX.gro 61.0 False False False False False https:/josf.io/4aghb/ 0.061

Figure 5. Snapshots of the MDverse data explorer, a prototype search engine to explore collected files and datasets. (A) General view of the web
application. (B) Focus on the .mdp and .gro files sets of data exported as .tsv files. The web application also includes links to their original
repository.
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» Link the MD dataset to other associated resources, such as:

- The research article (if any) for which these data have been produced. Datasets are
usually mentioned in the research articles, but rarely the other way around, since the
deposition has to be done prior to publication. However, it is eminently possible to
submit a revised version, and providing a link to the related research paper in updated
metadata of the MD dataset will ease the reference to the original publication upon data
reuse.

- The code used to analyze the data, ideally deposited in the repository to guarantee avail-
ability, or in a GitHub or GitLab repository.

- Any other datasets that belong to the same study.

+ Provide sufficient files to reproduce simulations and use a clear naming convention to make
explicit links between related files. For instance, for the Gromacs MD engine, trajectory .xtc
files could share the same names as structure .gro files (e.g. proteinA.gro & proteinA.xtc).

* Revisityour data deposition after paper acceptance and update information if necessary. Zen-
odo and Figshare provide a DOI for every new version of a dataset as well as a ‘master’ DOI
that always refers to the latest version available.

These guidelines are complementary to the reliability and reproducibility checklist for molecular
dynamics simulations (Commun Biol, 2023). Eventually, they could be implemented in machine
actionable Data Management Plan (maDMP) (Miksa et al., 2019). So far, MD metadata is formalized
as free text. We advocate for the creation of a standardized and controlled vocabulary to describe
artifacts and properties of MD simulations. Normalized metadata will, in turn, enable scientific
knowledge graphs (Auer, 2018; Fdarber and Lamprecht, 2021) that could link MD data, research
articles and MD software in a rich network of research outputs.

Converging on a set of metadata and format requires a large consensus of different stakehold-
ers, from users, to MD program developers, and journal editors. It would be especially useful to
organize specific workshops with representatives of all these communities to collectively tackle this
specific issue.

Improving metadata of current MD data

While indexing about 2,000 MD datasets, we found that title and description accompanying these
datasets were very heterogeneous in terms of quality and quantity and were difficult for machines
to process automatically. It was sometimes impossible to find even basic information such as the
identity of the molecular system simulated, the temperature or the length of the simulation. With-
out appropriate metadata, sharing data is pointless, and its reuse is doomed to fail (Musen, 2022).
Itis thus important to close the gap between the availability of MD data and its discoverability and
description through appropriate metadata. We could gradually improve the metadata by following
two strategies. First, since MD engines produce normalized and well-documented files, we could
extract parameters of the simulation by parsing specific files. We already explored this path with
Gromacs, by extracting the molecular size and composition from .gro files and the simulation time
(with some limitations), thermostat and barostat from .mdp files. We could go even further, by
extracting for instance Gromacs version from .log file (if provided) or by identifying the simulated
system from its atomic topology stored in .gro files. This strategy can in principle be applied to
files produced by other MD engines. A second approach that we are currently exploring uses data
mining and named entity recognition (NER) methods (Perera et al., 2020) to automatically identify
the molecular system, the temperature, and the simulation length from existing textual metadata
(dataset title and description), providing they are of sufficient length. Finally, the possibilities af-
forded by large language models supplemented by domain-specific tools (Bran et al., 2023) might
help interpret the heterogenous metadata that is often associated with the simulations.
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Future works

In the future, it is desirable to go further in terms of analysis and integrate other data repositories,
such as Dryad and Dataverse instances (for example Recherche Data Gouv in France). The collab-
orative platform for source code GitHub could also be of interest. Albeit dedicated to source code
and not designed to host large-size binary files, GitHub handles small to medium-size text files like
tabular .csv and .tsv data files and has been extensively used to record cases of the Ebola epidemic
in 2014 (Perkel, 2016) and the Covid-19 pandemic (https://github.com/CSSEGISandData/COVID-19).
Thus, GitHub could probably host small text-based MD simulation files. For Gromacs, we already
found 70,000 parameter .mdp files and 55,000 structure .gro files. Scripts found along these files
could also provide valuable insights to understand how a given MD analysis was performed. Fi-
nally, GitHub repositories might also be an entry point to find other datasets by linking to simu-
lation data, such as institutional repositories (see for instance (Pesce and Lindorff-Larsen, 2023)).
However, one potential point of concern is that repositories like GitHub or GitLab do not make any
promises about long-term availability of repositories, in particular ones not under active develop-
ment. Archiving of these repositories could be achieved in Zenodo (for data-centric repositories)
or Software Heritage (Di Cosmo and Zacchiroli, 2017) (for source-code-centric repositories).

An obvious next step is the enrichment of metadata with the hope to render open MD data
more findable, accessible and ultimately reusable. Possible strategies have already been detailed
previously in this paper. We could also go further by connecting MD data in the research ecosystem.
For this, two apparent resources need to be linked to MD datasets: their associated research pa-
pers to mine more information and to establish a connection with the scientific context, and their
simulated biomolecular systems, which ultimately could cross-reference MD datasets to reference
databases such as UniProt (Consortium, 2022), the PDB (Berman et al., 2000) or Lipid Maps (Sud
et al., 2007). For already deposited datasets, the enrichment of metadata can only be achieved
via systematic computational approaches, while for future depositions, a clear and uniformly used
ontology and dedicated metadata reference file (as it is used by the PLUMED-NEST: Bonomi et al.
(2079)) would facilitate this task.

Eventually, front-end solutions such as the MDverse data explorer tool can evolve to being more
user-friendly by interfacing the structures and dynamics with interactive 3D molecular viewers (Tie-
mann et al., 2017; Kampfrath et al., 2022; Martinez and Baaden, 2021).

Conclusion

In this work, we showed that sharing data generated from MD simulations is now a common prac-
tice. From Zenodo, Figshare and OSF alone, we indexed about 250,000 files from 2,000 datasets,
and we showed that this trend is increasing. This data brings incentive and opportunities at differ-
ent levels. First, for researchers who cannot access high-performance computing (HPC) facilities,
or do not want to rerun a costly simulation to save time and energy, simulations of many sys-
tems are already available. These simulations could be useful to reanalyze existing trajectories, to
extend simulations with already equilibrated systems or to compare simulations of a dedicated
molecular system modelled with different settings. Second, building annotated and highly curated
datasets for artificial intelligence will be invaluable to develop dynamic generative deep-learning
models. Then, improving metadata along available data will foster their reuse and will mechani-
cally increase the reproducibility of MD simulations. At last, we see here the occasion to push for
good practices in the setup and production of MD simulations.

Methods and Materials

Initial data collection

We searched for MD-related files in the data repositories Zenodo, Figshare and Open Science
Framework (OSF). Queries were designed with a combination of file types and optionally keywords,
depending on how a given file type was solely associated to MD simulations. We therefore built a
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list of manually curated and cross-checked file types and keywords (https://github.com/MDverse/
mdws/blob/main/params/query.yml). All queries were automated by Python scripts that utilized Ap-
plication Programming Interfaces (APIs) provided by data repositories. Since APIs offered by data
repositories were different, all implementations were performed in dedicated Python(van Rossum,
1995) (version 3.9.16) scripts with the NumPy(Oliphant, 2007) (version 1.24.2), Pandas(Wes McKin-
ney, 2010) (version 1.5.3) and Requests (version 2.28.2) libraries.

We made the assumption that files deposited by researchers in data repositories were coherent
and all related to a same research project. Therefore, when an MD-related file was found in a
dataset, all files belonging to this dataset were indexed, regardless of whether their file types were
actually identified as MD simulation files. This is the core of the Explore and Expand strategy (Ex?)
we applied in this work and illustrated in Fig 1. By default, the last version of the datasets was
collected.

When a zip file was found in a dataset, its content was extracted from a preview provided by
Zenodo and Figshare. This preview was not provided through APIs, but as HTML code, which we
parsed using the Beautiful Soup library (version 4.11.2). Note that the zip file preview for Zenodo
was limited to the first 1,000 files. To avoid false-positive files collected from zip archives, a final
cleaning step was performed to remove all datasets that did not share at least one file type with
the file type list mentioned above. In the case of OSF, there was no preview for zip files, so their
content has not been retrieved.

Gromacs files

After the initial data collection, Gromacs .mdp and .gro files were downloaded with the Pooch
library (version 1.6.0). When a .mdp or .gro file was found to be in a zip archive, the latter was
downloaded and the targeted .mdp or .gro file was selectively extracted from the archive. The same
procedure was applied for a subset of .xtc files that consisted of about one .xtc file per Gromacs
datasets.

Once downloaded, .mdp files were parsed to extract the following parameters: integrator, time
step, number of steps, temperature, thermostat, and barostat. Values for thermostat and barostat
were normalized according to values provided by the Gromacs documentation. For the simulation
time analysis, we selected .mdp files with the md or sd integrator and with simulation time above
1 ns to exclude most minimization and equilibrating simulations. For the thermostat and barostat
analysis, only files with non-missing values and with values listed in the Gromacs documentation
were considered.

The .gro files were parsed with the MDAnalysis library (Michaud-Agrawal et al., 2011) to ex-
tract the number of particles of the system. Values found in the residue name column were also
extracted and compared to a list of residues we manually associated to the following categories:
protein, lipid, nucleic acid, glucid and water or ions (https://github.com/MDverse/mdws/blob/main/
params/residue _names.yml).

The .xtc files were analyzed using the gmxcheck command (https://manual.gromacs.org/current/
onlinehelp/gmx-check.html) to extract the number of particles and the number of frames.

MDverse data explorer web app
The MDverse data explorer web application was built in Python with the Streamlit library. Data was
downloaded from Zenodo (see the Data and code availability section).

System visualization and molecular graphics

Molecular graphics were performed with VMD (Humphrey et al., 1996) and Chimera (Pettersen
et al., 2004). For all visualizations, .gro files containing molecular structure were used. In the case
of the two structures in Fig. 3-B, .xtc files were manually assigned to their corresponding .gro (for
the TonB protein) or .tpr (for the T4 Lysozyme) files based on their names in their datasets.

Origin of the structures displayed in this work:
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TonB
Dataset URL: https://zenodo.org/record /3756664
Publication (DOI): https://doi.org/10.1039/D0CP03473H

T4 Lyzozyme
Dataset URL: https://zenodo.org/record /3989044
Publication (DOI): https://doi.org/10.1021 /acs.jctc.0c01338

Benzene

Dataset URL: https://figshare.com/articles/dataset/Capturing_Protein Ligand Recognition Pathways
in_Coarse-Grained Simulation/12517490/1

Publication (DOI): https://doi.org/10.1021 /acs.jpclett.0c01683

Ammonia

Dataset URL: https://figshare.com/articles/dataset/Alchemical Hydration Free-Energy Calculations
UsingMolecular Dynamics with Explicit Polarization and Induced Polarity Decoupling An On
the Fly Polarization Approach/11702442

Publication (DOI): https://doi.org/10.1021 /acs.jctc.9b01139

Peptide with membrane
Dataset URL: https://zenodo.org/record /4371296
Publication (DOI): https://doi.org/10.1021 /acs.jcim.0c01312

Kir channels
Dataset URL: https://zenodo.org/record /3634884
Publication (DOI): https://doi.org/10.1073/pnas.1918387117

Gasdermin
Dataset URL: https://zenodo.org/record /6797842
Publication (DOI): https://doi.org/10.7554 /el ife.81432

Protein-RNA
Dataset URL: https://zenodo.org/record /1308045
Publication (DOI): https://doi.org/10.1371 /journal.pchi.1006642

G-quadruplex
Dataset URL: https://zenodo.org/record /5594466
Publication (DOI): https://doi.org/10.1021 /jacs.1c11248

Ptb
Dataset URL: https://osf.io/4aghb/
Publication (DOI): https://doi.org/10.1073/pnas.2116543119

EPI-7170
Dataset URL: https://zenodo.org/record /7120845
Publication (DOI): https://doi.org/10.1038/s41467-022-34077-z

Gold nanoparticle

Dataset URL: https://acs.figshare.com/articles/dataset /Fluorescence  Probing of Thiol Functionalized
Gold Nanoparticles s Alkylthiol Coating_of a Nanoparticle as Hydrophobic as Expected /2481241
Publication (DOI): https://doi.org/10.1021/jp3060813

Gd(DOTA)

Dataset URL: https://acs.figshare.com/articles/dataset/Modeling Gd sup 3 sup Complexes for
Molecular _Dynamics_Simulations_Toward a_Rational Optimization _of MRI_Contrast Agents/20334621
Publication (DOI): https://doi.org/10.1021 /acs.inorgchem.2c01597
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ss0 Metalo cage

soo Dataset URL: https://acs.figshare.com/articles/dataset/Rationalizing the Activity of an Artificial

so1 Diels-Alderase Establishing Efficient and Accurate Protocols for Calculating Supramolecular Catalysis/
so2 11569452

ses  Publication (DOI): https://doi.org/10.1021 /jacs.9b10302

soa  AL1

sos Dataset URL: https://acs.figshare.com/articles/dataset/Nucleation Mechanisms_of Self-Assembled
ses  Physisorbed Monolayers on Graphite/8846045

so7 Publication (DOI): https://doi.org/10.1021 /acs.jpcc.9b01234

s0s PTEG-1 (all-atom)

seo Dataset URL: https://figshare.com/articles/dataset/PTEG-1 PP _and N-DMBI _atomistic_force fields/
s00 5458144

s01 Publication (DOI): https://doi.org/10.1039/C7TA06609K

s02 PTEG-1 (coarse-grain)

sos Dataset URL: https://figshare.com/articles/dataset/Neat and P3HT-Based Blend Morphologies for
s PCBM and PTEG-1/12338633

s0s Publication (DOI): https://doi.org/10.1002/adfm.202004799

s0s Theophylline

ez Dataset URL: https://figshare.com/articles/dataset/A Comparison _of Methods for Computing Relative
s0s Anhydrous Hydrate Stability with Molecular Simulation/21644393

s00 Publication (DOI): https://doi.org/10.1021 /acs.cgd.2c00832

s10 Data and code availability

e11 Data files produced from the data collection and processing are shared in Parquet format in the
e12 Zenodo repository: https://zenodo.org/record /7856806. They are freely available under the Creative
s13  Commons Attribution 4.0 International license (CC-BY).

614 Python scripts to search and index MD files, and to download and parse .mdp and .gro files are
s1s Open-source (under the AGPL-3.0 license), freely available on GitHub (https://github.com/MDverse/
s1.6 mdws)and archived in Software Heritage (swh:1:dir:4d30b00345a732dcf9f79d3c8bfae38b35b8f2c4).
e17 A detailed documentation is provided along the scripts to easily reproduce the data collection and
e1s processing.

610 Jupyter notebooks used to analyze results and create the figures of this paper are open-source
s20 (under the BSD 3-Clause license), freely available on GitHub (https://github.com/MDverse/mdda) and
e21 archived in Software Heritage (swh:1:dir:1f8497f72134cef0a9724c955bb03c751f52cccd).

622 The code of the MDverse data explorer web application is open-source (under the BSD 3-Clause
e23 license), freely available on GitHub (https://github.com/MDverse/mdde) and archived in Software
s2a Heritage (swh:1:dir:1fc8b8eaabf4a9087e6d5b0ec5ed97031482bcbf).
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