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Bacteria encode hundreds of diverse defense systems that protect from viral infection and 1 

inhibit phage propagation1–5. Gabija is one of the most prevalent anti-phage defense 2 

systems, occurring in >15% of all sequenced bacterial and archaeal genomes1,6,7, but the 3 

molecular basis of how Gabija defends cells from viral infection remains poorly 4 

understood. Here we use X-ray crystallography and cryo-EM to define how Gabija proteins 5 

assemble into an ~500 kDa supramolecular complex that degrades phage DNA. Gabija 6 

protein A (GajA) is a DNA endonuclease that tetramerizes to form the core of the anti-phage 7 

defense complex. Two sets of Gabija protein B (GajB) dimers dock at opposite sides of the 8 

complex and create a 4:4 GajAB assembly that is essential for phage resistance in vivo. 9 

We show that a phage-encoded protein Gabija anti-defense 1 (Gad1) directly binds the 10 

Gabija GajAB complex and inactivates defense. A cryo-EM structure of the virally inhibited 11 

state reveals that Gad1 forms an octameric web that encases the GajAB complex and 12 

inhibits DNA recognition and cleavage. Our results reveal the structural basis of assembly 13 

of the Gabija anti-phage defense complex and define a unique mechanism of viral immune 14 

evasion. 15 

Bacterial Gabija defense operons encode the proteins GajA and GajB that together protect 16 

cells against diverse phages1. To define the structural basis of Gabija anti-phage defense, we co-17 

expressed Bacillus cereus VD045 GajA and GajB and determined a 3.0 Å X-ray crystal structure 18 

of the protein complex (Fig. 1a,b, Extended Data Fig. 1a,b, and Extended Data Table 1). The 19 

structure of the GajAB complex reveals an intricate 4:4 assembly with a tetrameric core of GajA 20 

subunits braced on either end by dimers of GajB (Fig. 1b). Focusing first on individual Gabjia 21 

protein subunits, GajA contains an N-terminal ATPase domain that is divided into two halves by 22 

insertion of a protein dimerization interface (discussed further below) (Fig. 1c). The GajA ATPase 23 

domain consists of an eleven-stranded β-sheet β1ABC, 2ABC, 4–6ABC and β3ABC, 7–11ABC that folds 24 

around the central α1ABC helix (Fig. 1c, Extended Data Fig. 2). Sequence analysis of diverse GajA 25 

homologs demonstrates that the GajA ATPase domain contains a highly conserved ATP-binding 26 
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site shared with canonical ABC ATPase proteins (Extended Data Fig. 2)8. The GajA C-terminus 27 

contains a four-stranded parallel β-sheet β1–4T surrounded by three α-helices α3T, α4T, and α12T 28 

that form a Toprim (topoisomerase-primase) domain associated with proteins that catalyze 29 

double-stranded DNA breaks (Fig. 1c, Extended Data Fig. 2)9,10. Consistent with a role in dsDNA 30 

cleavage, the structure of GajA confirms previous predictions of overall shared homology between 31 

GajA and a class of DNA endonucleases named OLD (overcoming lysogenization defect) 32 

nucleases11,12. Discovered initially as an E. coli phage P2 protein responsible for cell toxicity in 33 

recB, recC mutant cells13–15, OLD nucleases occur in diverse bacterial genomes as either single 34 

proteins (Class 1) or associated with partner UvrD/PcrA/Rep-like helicase proteins (Class 2), but 35 

the specific function of most OLD nuclease proteins is unknown11,12. GajA is a Class 2 OLD 36 

nuclease with the Toprim domain containing a complete active site composed of DxD after β3T 37 

(D432 and D434), an invariant glutamate following β2T (E379), and an invariant glycine between 38 

α1T and β1T (G409) similar to the active site of Burkholderia pseudomallei (BpOLD) previously 39 

demonstrated to be essential for a two-metal-dependent mechanism of DNA cleavage (Fig. 1d, 40 

Extended Data Fig. 2)11.  41 

The structure of GajB reveals a Superfamily 1A DNA helicase domain typically occurring 42 

in bacterial DNA repair (Fig. 1a,b)16. Superfamily 1A helicase proteins like UvrD, Rep, and PcrA 43 

translocate along ssDNA in the 3′–5′ direction, and are architecturally divided into four 44 

subdomains 1A, 1B, 2A, and 2B that reposition relative to each other during helicase function16. 45 

GajB contains all conserved helicase motifs required for ATP hydrolysis and nucleic acid 46 

unwinding including a Walker A motif Gx(4)GK-[TT] and a UvrD-like DEXQD-box Walker B motif 47 

responsible for NTP hydrolysis (Fig. 1f and Extended Data Fig. 3a)16–18. Activation of Superfamily 48 

1A DNA helicase proteins like UvrD and Rep is known to require protein dimerization and rotation 49 

of the 2B subdomain19–21. Comparisons with UvrD and Rep demonstrate that GajB protomers in 50 

the GajAB complex exhibit partial rotation of the 2B domain relative to 2A-1A-1B consistent with 51 

a partially active conformation poised to interact with phage DNA (Fig. 1e and Extended Data 52 
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Figure 1d).  53 

 54 

Mechanism and function of Gabija supramolecular complex formation 55 

To define the mechanism of Gabija complex assembly, we analyzed oligomerization 56 

interfaces within the GajAB structure. Purification of individual Gabija proteins demonstrates that 57 

GajA is alone sufficient to oligomerize into a homo-tetrameric assembly (Extended Data Fig. 1b). 58 

GajB migrates as a monomer on size-exclusion chromatography, supporting a stepwise model of 59 

GajAB assembly (Fig. 2a and Extended Data Fig. 1b). GajA tetramers form through two highly-60 

conserved oligomerization interfaces (Fig. 2b,c and Extended Data Fig. 2). First, the GajA N-61 

terminal ATPase domain contains an insertion between β7ABC and β8ABC that consists of four α-62 

helices (α1–4D) that zip-up against a partnering GajA protomer to form a hydrophobic interface 63 

along the α2D helix (Fig. 2b). A similar α1–4D dimerization interface exists in the structure of the 64 

bacterial T. scotoductus Class 1 OLD (TsOLD) protein demonstrating that this interface is 65 

conserved within divergent OLD nucleases (Figs. 1c and 2c)12. The GajA ATPase domain 66 

contains a second oligomerization interface in a loop between β6ABC and α6ABC where hydrogen 67 

bond contacts between D135 and R139 interlock two GajA dimers to form the tetrameric core 68 

assembly (Fig. 2c). Compared to GajA, the GajB–GajB dimerization interface is minimal and 69 

consists of a hydrophobic surface in the GajB helicase 1B domain centered at Y119 and I122 70 

(Fig. 2d). Major GajA–GajB contacts also occur in the GajB helicase 1B domain where GajA R97 71 

in a loop between α4ABC and β5ABC forms hydrogen-bond contacts with Q150 in GajB α7 along 72 

with hydrophobic packing interactions centered at GajB V147 (Fig. 2d and Extended Data Fig. 73 

3a). Notably, the GajAB structure demonstrates that the GajB helicase 1A subdomain including 74 

the DEXQD-box active-site is positioned adjacent to the GajA ATPase domain suggesting that 75 

GajB ATP-hydrolysis and DNA unwinding activity may regulate GajA ATPase domain activation 76 

(Fig. 2e). In addition to the major GajAB interface contacts, Gabija supramolecular complex 77 

assembly is driven by extensive protomer interactions that result in ~31,000 Å2 of surface area 78 
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buried for the GajA tetramer and ~1,800 Å2 of surface area buried for each GajB subunit. 79 

We reconstituted Gabija activity in vitro and observed that the GajAB complex rapidly 80 

cleaves a previously characterized 56 bp dsDNA substrate containing a sequence specific motif 81 

derived from phage lambda DNA (Extended Data Fig. 1c)22. GajA and GajB proteins are each 82 

essential for phage defense in vivo1,22, but we observed in vitro that GajA alone is sufficient to 83 

cleave target DNA suggesting a specific role for the GajAB complex in substrate recognition or 84 

nuclease activation during phage infection (Extended Data Fig. 1c). To confirm these findings, we 85 

tested a panel of GajAB interface mutations and measured the impact of substitutions on the 86 

ability of Gabija to defend B. subtilis cells from phage SPβ infection. Substitutions to the GajA–87 

GajA dimerization interface including I199E, I212E, and K229E resulted in complete loss of phage 88 

resistance (Fig. 2f). Likewise, substitutions to the GajA–GajB hetero-oligomerization interface 89 

including GajA K94E, R97A and GajB V147E dramatically reduced the ability of Gabija to inhibit 90 

phage replication in vivo. In contrast, phage resistance was tolerant to mutations in the GajB–91 

GajB interface suggesting that this minimal interaction surface is not strictly essential for anti-92 

phage defense. Together, these results define the structural basis of GajA and GajB interaction 93 

and demonstrate that GajAB supramolecular complex formation is critical for Gabija anti-phage 94 

defense. 95 

 96 

Structural basis of viral inhibition of Gabija anti-phage defense 97 

 To overcome host immunity, phages encode evasion proteins that specifically inactivate 98 

anti-phage defense23–28. Yirmiya, Leavitt, and colleagues report discovery of the first viral inhibitor 99 

of Gabija anti-phage defense (Yirmiya and Leavitt et al 2023 Submitted Manuscript), and we 100 

reasoned that defining the mechanism of immune evasion would provide further insight into 101 

Gabija complex function. Gabija anti-defense 1 (Gad1) is a Bacillus phage Phi3T protein that is 102 

atypically large (35 kDa) compared to other characterized phage immune evasion proteins 103 

(Extended Data Fig. 4). Protein interaction analysis demonstrated that Gad1 binds directly to 104 
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GajAB (Extended Data Fig. 5a,b), and we used cryo-EM to determine a 2.7 Å structure of the 105 

GajAB–Gad1 co-complex assembly (Fig. 3a,b, Extended Data Figs. 6 and 7a–f, and Extended 106 

Data Table 2). The GajAB–Gad1 co-complex structure reveals a striking mechanism of inhibition 107 

where Gad1 proteins form an oligomeric web that wraps 360° around the host defense complex. 108 

Eight copies of phage Gad1 encircle the GajAB assembly, forming a 4:4:8 GajAB–Gad1 complex 109 

that is ~775 kDa in size (Fig. 3b,c). Gad1 primarily recognizes the GajA nuclease core, forming 110 

extensive contacts along the surface of the GajA dimerization domain (Fig. 3c,d). Key GajAB–111 

Gad1 contacts include hydrogen-bond interactions from a Gad1 positively-charged loop located 112 

between β6 and β7 with GajA α2D (Fig. 3e and Extended Data Fig. 8) and hydrophobic packing 113 

interactions between Gad1 Y190 and F192 with GajA α2D (Fig. 3f and Extended Data Fig. 8). 114 

Although Gad1 contacts with GajB are limited, both GajA and GajB proteins are necessary for 115 

Gad1 interaction, demonstrating that Gad1 specifically targets the fully assembled GajAB 116 

complex to inactivate host anti-phage defense (Extended Data Fig. 5c). 117 

 Gad1 wraps around the GajAB complex using a network of homo-oligomeric interactions 118 

and remarkable conformational flexibility. On either side of the GajAB complex, four copies of 119 

Gad1 interlock into a tetrameric interface along the primary GajA binding site (Fig. 3d). The Gad1 120 

tetrameric interface is formed by hydrogen-bond interactions between the C-termini “shoulder” 121 

domain of each Gad1 monomer and a highly conserved set of three cysteine residues C282, 122 

C284, and C285 that form disulfide interactions deep within an inter-subunit interface (Fig. 3d,g 123 

and Extended Data Fig. 8). The N-termini of each Gad1 monomer forms an “arm” domain that 124 

extends out from the shoulder and reaches around the GajA nuclease active site to connect to a 125 

partnering Gad1 protomer from the opposite side of the complex. At the end of the Gad1 arm is 126 

an N-terminal “fist” domain that allows two partnering Gad1 protomers to interact and complete 127 

the octameric web assembly (Fig. 3c,h). Particle heterogeneity limits resolution in this portion of 128 

the cryo-EM map, but AlphaFold2 modeling29,30 and rigid-body placement of the Gad1 N-terminal 129 

fist domain suggests conserved hydrophobic residues around the Gad1 α1 helix mediate the fist–130 
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fist interactions (Fig. 3h and Extended Data Fig. 8). To fully encircle GajAB, Gad1 adopts two 131 

distinct structural conformations. Each pair of Gad1 proteins that wrap around and connect at the 132 

GajAB complex edge are formed by one Gad1 protomer reaching out from the shoulder with an 133 

arm domain extended straight down and one Gad1 protomer reaching out with an arm domain 134 

bent ~34° to the left (Fig. 3i and Extended Data Fig. 7h). Sequence analysis of Gad1 proteins 135 

from phylogenetically diverse phages demonstrates that the Gad1 N-terminal arm domain is 136 

highly variable in length (Extended Data Fig. 8), further supporting that conformational flexibility 137 

in this region is critical to inhibit host Gabija defense. 138 

 To test the importance of individual GajAB–Gad1 interfaces, we next analyzed a series of 139 

Gad1 substitution and truncation mutants for the ability to interact with GajAB and inhibit Gabija 140 

anti-phage defense. A Gad1 substitution F192R between β4 and β5 at the center of the primary 141 

GajA–Gad1 interface disrupted all ability of Gad1 to interact with GajAB in vitro and inhibit Gabjia 142 

anti-phage defense in vivo (Fig. 3j and Extended Data Fig. 9a). However, individual mutations 143 

throughout the periphery were insufficient to disrupt Gad1 inhibition of Gabjia anti-phage defense, 144 

demonstrating that the large footprint of Gad1 is tolerant to small perturbations that may enable 145 

host resistance. Likewise, mutations to the conserved Gad1 cysteine residues in the tetrameric 146 

shoulder interface greatly reduced stability of the GajAB–Gad1 complex formation in vitro but 147 

exhibited an ~3-fold difference and still permitted Gad1 to block phage defense in B. subtilis cells 148 

(Fig. 3j and Extended Data Fig. 9a). Finally, in contrast to wildtype Gad1, expression of the Gad1 149 

N-terminal fist–arm or C-terminal shoulder domains alone were unable to inhibit Gabija, 150 

demonstrating that full wrapping of Gad1 around the GajAB complex is necessary to enable 151 

phage evasion of anti-phage defense (Fig. 3j and Extended Data Fig. 9a). 152 

 153 

Inhibition of Gabija DNA binding and cleavage enables viral evasion  154 

 To define the mechanism of Gad1 inhibition of Gabija anti-phage defense, we next 155 

modeled interactions between GajAB and target DNA. The GajA Toprim domain is structurally 156 
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homologous to the E. coli protein MutS involved in DNA repair31. Superimposing the MutS–DNA 157 

structure revealed positively charged patches lining a groove in the GajA Toprim domain that dips 158 

into the nuclease active site (Extended Data Fig. 10). Notably, the Gad1 arm domain directly 159 

occupies this putative DNA-binding surface supporting a model where the phage protein directly 160 

clashes with the path of target dsDNA (Fig. 4a,b). To determine the impact of viral inhibition on 161 

GajAB catalytic function we tested the role of Gad1 in individual steps of DNA binding and target 162 

DNA cleavage. Gad1 prevented GajAB from binding to target DNA and abolished all nuclease 163 

activity in vitro (Fig. 4c,d). Mutant Gad1 proteins F192R and C282E were no longer able to inhibit 164 

DNA cleavage, agreeing with the complete loss of F192R and reduced ability of C282E mutant 165 

proteins to block Gabija defense in vivo and form stable GajAB–Gad1 complexes in vitro. 166 

(Extended Data Fig. 9b). Together, these results demonstrate that phage Gad1 binds and wraps 167 

around the GajAB complex to block target DNA degradation and define a complete mechanism 168 

for immune evasion of Gabija anti-phage defense (Fig. 4e). 169 

Our study defines the structural basis of Gabija supramolecular complex formation and 170 

explains how phages block DNA cleavage to defeat this form of host immunity. Similar to 171 

supramolecular complexes in CRISPR32, CBASS33,34, and RADAR immunity35,36, the ~500 kDa 172 

GajAB complex extends an emerging theme in anti-phage defense where protein subunits 173 

assemble into large machines to resist phage infection. These results parallel human innate 174 

immunity, where key effectors in inflammasome, Toll-like receptor, RIG-I-like receptor, and cGAS-175 

STING signaling pathways also oligomerize into large assemblies to block viral replication37,38. In 176 

contrast to the exceptionally large host defense complexes, phage evasion proteins are typically 177 

small 5–20 kDa proteins that sterically occlude key protein binding and active site motifs24,25. 178 

Breaking this rule, the 35 kDa anti-Gabija protein Gad1 is one of the largest described viral 179 

protein–protein inhibitors of host immune signaling (Extended Data Fig. 4). Whereas most viral 180 

evasion proteins >20 kDa in size are enzymatic domains that catalytically modify target host 181 

factors or signaling molecules, the large size of Gad1 is necessary to bind, oligomerize, and 182 
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encircle around the entire host GajAB complex. Resistance to small phage proteins that simply 183 

block the GajA active site may explain why Gabija is a highly prevalent defense system in diverse 184 

bacterial phyla. Additionally, a key question opened by our structures of the Gabija complex is 185 

how GajB helicase activity is linked to activation of the GajA nuclease domain to control DNA 186 

target cleavage. Gad1 encasing the GajAB complex to trap it in an inactive state reveals a new 187 

mechanism for evasion of host defense and provides a key template to understand how viruses 188 

disrupt the complex mechanisms of activation of diverse anti-phage defense systems in bacteria.  189 
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Figure Legends 275 

Figure 1 | Structure of the Gabija anti-phage defense complex. 276 

a, Schematic of B. cereus Gabija defense operon and domain organization of GajA and GajB. b, 277 

Overview of the GajAB X-ray crystal structure shown in three orientations. GajA protomers are 278 

depicted in two shades of blue and GajB protomers are in red. c, Isolated GajA monomer (top) 279 

and comparison with a TsOLD nuclease monomer (bottom) (Protein Data Bank (PDB) ID 6P74)12. 280 

d, Close-up view of GajA (left) and BpOLD (right) (PDB ID 6NK8)11 Toprim catalytic residues. 281 

Location of GajA cutaway image is indicated with a box in (c) and magnesium ions are depicted 282 

as grey spheres. e, Isolated GajB monomer (top) and comparison with EcUvrD (bottom) (PDB ID 283 

2IS2)20. f, Close-up view of GajB (left) and EcUvrD (right) DEXQD-box motif. Location of GajB 284 

cutaway image is indicated with a box in (e). 285 

 286 

Figure 2 | Mechanism of Gabija supramolecular complex assembly. 287 

a, Schematic model of GajAB complex formation by GajA tetramerization and GajB docking. b, 288 

Overview of the GajA α2D–α2D dimerization interface and detailed view of interacting residues. 289 

For clarity, each GajA monomer is depicted in two shades of blue. c, Overview of the GajA–GajA 290 

ATPase interaction and detailed view of inter-subunit D135–R139 interaction. d, Overview of the 291 

minimal GajB–GajB dimer interface and detailed view of GajB–GajB hydrophobic interactions 292 

centered around Y119 and I122. e, Overview of the GajA–GajB interface highlighting proximity of 293 

GajA ABC ATPase and GajB helicase active site residues (left) with box indicating location of 294 

GajA R97 and GajB Q150 interaction (right). f, Analysis of GajA and GajB mutations in the GajA–295 

GajB (A–B), GajA–GajA (A–A), and GajB–GajB (B–B) multimerization interfaces on the ability of 296 

the B. cereus Gabija operon to defend cells against phage infection. Data represent the phage 297 

SPβ average plaque-forming units (PFU) mL−1 of three biological replicates with individual data 298 

points shown.  299 

 300 
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Figure 3 | Structural basis of viral evasion of Gabija defense. 301 

a, Schematic model of GajAB–Gad1 co-complex formation and domain organization of phage 302 

Phi3T Gad1. b, Cryo-EM density map of BcGajAB in complex with Phi3T Gad1 shown in three 303 

different orientations. The map is colored by the model, with Gad1 monomers depicted in two 304 

shades of green. c, Side-view of the complete Gad1 octameric complex and d, top-down view of 305 

the Gad1 tetrameric interface with boxes highlighting close-up views in (e–h). e,f, Zoomed-in 306 

views of major Gad1–GajA interface contacts including a Gad1 positively charged loop (e) and 307 

hydrophobic interactions with GajA α2D (f). g,h, Zoomed-in views of major Gad1–Gad1 308 

oligomerization interactions including disulfide bonds in the C-terminal shoulder domain (g) and 309 

fist–fist domain contacts modeled by rigid-body placement of an AlphaFold2 fist domain structure 310 

prediction into the cryo-EM map (h). i, Two distinct conformations of Gad1 observed in the GajAB–311 

Gad1 co-complex structure. Differences in Gad1 arm domain rotation are highlighted on the right. 312 

j, Analysis of Gad1 mutations in the GajA–Gad1 and Gad1–Gad1 multimerization interfaces on 313 

the ability Gad1 to enable evasion of Gabija defense. Data represent PFU mL−1 of phage SPβ 314 

infecting cells expressing BcGabija and Shewanella sp. phage 1/4 Gad1, or negative control (NC) 315 

cells expressing either plasmid empty vector. Shewanella sp. phage 1/4 Gad1 residues are 316 

numbered according to the Phi3T Gad1 structure. Data are the average of three biological 317 

replicates with individual data points shown.  318 

 319 

Figure 4 | Inhibition of Gabija DNA binding and cleavage enables viral evasion. 320 

a, Cartoon representation of the GajAB–Gad1 co-complex structure with modeled DNA based on 321 

structural homology with E. coli MutS (PDB ID 3K0S)31. b, Isolated GajA protomer with modeled 322 

DNA bound to the Toprim domain (top) and same GajA promoter with Gad1 demonstrating 323 

significant steric clashes between Gad1 and the path of DNA (bottom). c,d, Biochemical analysis 324 

of GajAB 56-bp target DNA binding (c) and target cleavage (d) demonstrates that Gad1 potently 325 

inhibits GajAB activity. Data are representative of three independent experiments. e, Model of 326 
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Gabija anti-phage defense and mechanism of Gad1 immune evasion. 327 

 328 

Methods 329 

Bacterial strains and phages 330 

B. subtilis BEST7003 was grown in MMB (LB supplemented with 0.1 mM MnCl2 and 5 mM MgCl2) 331 

with or without 0.5% agar at 37°C or 30°C respectively. Whenever applicable, media were 332 

supplemented with ampicillin (100 μg mL−1), chloramphenicol (34 μg mL−1), or kanamycin (50 μg 333 

mL−1) to ensure the maintenance of plasmids. B. subtilis phages phi3T (BGSCID 1L1) and SPβ 334 

(BGSCID 1L5) were obtained from the Bacillus Genetic Stock Center (BGSC). Prophages were 335 

induced using Mitomycin C (Sigma, M0503). 336 

Phage titer was determined using the small drop plaque assay method39. 400 µL of 337 

overnight culture of bacteria was mixed with 0.5% agar and 30 mL MMB and poured into a 10 338 

cm2 plate followed by incubation for 1 h at room temperature. In cases of bacteria expressing 339 

Gad1 homolog and Gad1 mutations, 0.1–1mM IPTG was added to the medium. 10-fold serial 340 

dilutions in MMB were performed for each of the tested phages and 10 µL drops were put on the 341 

bacterial layer. After the drops had dried up, the plates were inverted and incubated at room 342 

temperature overnight. Plaque forming units (PFUs) were determined by counting the derived 343 

plaques after overnight incubation and lysate titer was determined by calculating PFU mL−1. When 344 

no individual plaques could not be identified, a faint lysis zone across the drop area was 345 

considered to be 10 plaques. Efficiency of plating (EOP) was measured by comparing plaque 346 

assay results on control bacteria and bacteria containing the defense system and/or a candidate 347 

anti-defense gene. 348 

 349 

Plasmid Construction 350 

For protein purification and biochemistry, B. cereus VD045 GajA (IMG ID 2519684552) and GajB 351 

(IMG ID 2519684553) genes were codon-optimized for expression in E. coli and synthesized as 352 
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gBlocks (Integrated DNA Technologies) and cloned into custom pET vectors with an N-terminal 353 

6×His-SUMO2 fusion tag (GajB alone) or a C-terminal 6×His tag (GajA alone). GajA and GajB 354 

proteins were co-expressed together using custom pET vector with an N-terminal 6×His-SUMO2 355 

or N-terminal 6×His-SUMO2-5×GS tag on GajA and ribosome binding site between GajA and 356 

GajB. Phi3T and Shewanella sp. phage 1/4 Gad1 (IMG ID 2708680195) gBlocks were cloned into 357 

a custom pBAD vector containing a chloramphenicol resistance gene and IPTG-inducible 358 

promoter. For Gad1 pull-down assays, Shewanella sp. phage 1/4 Gad1 was cloned with a 359 

ribosome binding site after the GajB gene in the N-terminal 6×His-SUMO2-5×GS GajAB plasmid. 360 

For plaque assays, the DNA of Gad1 was amplified from phage phi3T genome using 361 

KAPA HiFi HotStart ReadyMix (Roche cat # KK2601). Since Gad1 was toxic in B. subtilis cells 362 

containing Gabija, Shewanella sp. phage 1/4 Gad1 was used and synthesized by Genscript. Gad1 363 

and related homologs were cloned into the pSG-thrC-Phspank vector40 and transformed to DH5α 364 

competent cells. The cloned vector and the vector containing Gad1 substitution and truncation 365 

mutants were subsequently transformed into B. subtilis BEST7003 cells containing Gabija 366 

integrated into the amyE locus1, resulting in cultures expressing both Gabija and a Gad1 homolog. 367 

As a negative control, a transformant with an identical plasmid containing GFP instead of the anti-368 

defense gene, was used. Transformation in B. subtilis was performed using MC medium as 369 

previously described1. Sanger sequencing was then applied to verify the integrity of the inserts 370 

and the mutations. The pSG1 plasmids containing point mutations in Gabija were constructed by 371 

restriction-enzyme subcloning Gabija sequence into pGEM9Z, site-directed mutagenesis as 372 

previously described41, Gibson back into pSG1, and transformed into B. subtilis BEST7003 cells. 373 

Sanger sequencing of the mutations regions was then applied to verify the mutations in Gabija. 374 

 375 

Protein expression and purification  376 

Recombinant GajAB and GajAB–Gad1 complexes were purified from E. coli as previously 377 

described42. Briefly, expression plasmids described above were transformed into BL21(DE3) or 378 
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BL21(DE3)-RIL cells (Agilent), plated on MDG media plates (1.5% Bacto agar, 0.5% glucose, 25 379 

mM Na2HPO4, 25 mM KH2PO4, 50 mM NH4Cl, 5 mM Na2SO4, 0.25% aspartic acid, 2–50 μM trace 380 

metals, 100 μg mL−1 ampicillin, 34 μg mL−1 chloramphenicol) and grown overnight at 37°C. Five 381 

colonies were used to inoculate 30 mL of MDG starter overnight cultures (37°C 230 rpm). 10 mL 382 

of MDG starter cultures were then inoculated in 1 L M9ZB expression cultures (47.8 mM 383 

Na2HPO4, 22 mM KH2PO4, 18.7 mM NH4Cl, 85.6 mM NaCl, 1% Cas-Amino acids, 0.5% glycerol, 384 

2 mM MgSO4, 2–50 μM trace metals, 100 μg mL−1 ampicillin, 34 μg mL−1 chloramphenicol) and 385 

induced with 0.5 mM IPTG after reaching an OD600 of ≥1.5 (overnight, 16°C, 230 rpm).  386 

 After overnight induction, cells were pelleted by centrifugation, resuspended, and lysed by 387 

sonication in 60 mL lysis buffer (20 mM HEPES pH 7.5, 400 mM NaCl, 10% glycerol, 20 mM 388 

Imidazole, 1 mM DTT). Lysate was clarified by centrifugation, and supernatant was poured over 389 

Ni-NTA resin (Qiagen). Resin was then washed with lysis buffer, lysis buffer supplemented to 1 390 

M NaCl, lysis buffer again, and finally eluted with lysis buffer supplemented to 300 mM Imidazole. 391 

Samples were then dialyzed overnight in 14 kDa MWCO dialysis tubing (Ward’s Science) with 392 

SUMO2-cleavage by hSENP2 as previously described29,30. hSENP2 did not efficiently cleave N-393 

terminal 6×His-SUMO2-GajAB and the complex was therefore purified with an additional 5×GS 394 

linker. Proteins for crystallography and cryo-EM were dialyzed in dialysis buffer (20 mM HEPES-395 

KOH pH 7.5, 250 mM KCl, and 1 mM DTT), purified by size exclusion chromatography using a 396 

16/600 Superdex 200 column (Cytiva) and stored in gel filtration buffer (20 mM HEPES-KOH pH 397 

7.5, 20 mM KCl, and 1 mM TCEP-KOH). Proteins for biochemical assays were dialyzed in dialysis 398 

buffer, purified by size exclusion chromatography using a 16/600 Superdex 200 column (Cytiva) 399 

or 16/600 Sephacryl 300 column (Cytiva) and stored in gel filtration buffer with 10% glycerol. 400 

Purified proteins were concentrated to >10 mg mL−1 using a 30 kDa MWCO centrifugal filter 401 

(Millipore Sigma), aliquoted, flash frozen in liquid nitrogen, and stored at −80°C. 402 

 For Gad1 pull-down assays, SUMO2-5×GS-GajA-GajB-Gad1 point mutant plasmids were 403 

transformed and expressed in BL21(DE3)-RIL cells and subject to Ni-NTA column 404 
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chromatography. Proteins were dialyzed overnight along with SUMO2 cleavage with SENP2. 405 

Gad1 pulldown was analyzed by SDS-PAGE and Coomassie Blue staining. 406 

 407 

Crystallization and X-ray structure determination  408 

Crystals were grown in hanging drop format using EasyXtal 15-well trays (NeXtal). Native GajAB 409 

crystals were grown at 18°C in 2 μL drops mixed 1:1 with purified protein (10 mg mL−1, 20 mM 410 

HEPES 250 mM KCl, and 1 mM TCEP-KOH) and reservoir solution (100 mM HEPES-NaOH pH 411 

7.5, 2.4% PEG-400, and 2.2 M ammonium sulfate). Crystals were grown for 7 days before cryo-412 

protection with reservoir solution supplemented with 25% glycerol and harvested by plunging in 413 

liquid nitrogen. X-ray diffraction data were collected at the Advanced Photon Source (beamlines 414 

24-ID-C and 24-ID-E). Data were processed using the SSRL autoxds script (A. Gonzalez, 415 

Stanford SSRL). Experimental phase information was determined by molecular replacement 416 

using monomeric GajA and GajB AlphaFold2 predicted structures29,30 in Phenix43. Model building 417 

was completed in Coot22 and then refined in Phenix. The final structure was refined to 418 

stereochemistry statistics as reported in Extended Data Table 1. Structure images and figures 419 

were prepared in PyMOL.  420 

 421 

Electrophoretic mobility shift assay 422 

56-bp sequence-specific motif dsDNA (5′ TTTTTTTTTT TTTTTTTAAT AACCCGGTTA 423 

TTTTTTTTTT TTTTTTTTTT TTTTTT 3′)22 was incubated with a final concentration of 2, 5, or 10 424 

µM purified GajAB or GajAB–Gad1 complexes in 20 µL gel shift reactions containing 1 µM dsDNA, 425 

5 mM CaCl2, and 20 mM Tris-HCl pH 8.0 for 30 min at 4°C. 10 µL was then mixed with 2 μL of 426 

50% glycerol and separated on a 2% TB (Tris-borate) agarose gel. The gel was then run at 250 427 

V for 45 min, post-stained with TB containing 10 µg mL−1 ethidium bromide rocking at room 428 

temperature, de-stained in TB buffer for 40 min, and imaged on ChemiDoc MP Imaging System. 429 

 430 
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DNA cleavage assay 431 

The same 56-bp dsDNA as above was incubated with GajAB or GajAB–Gad1 complexes in a 20 432 

μL DNA cleavage reaction buffer containing 1 µM dsDNA, 1 µM GajAB or GajAB–Gad1, 1 mM 433 

MgCl2, 20 mM Tris-HCl pH 9.0 for 20 min at 37°C. Following incubation, reactions were stopped 434 

with DNA loading buffer containing EDTA and 10 µL was analyzed on a 2% TB agarose gel, which 435 

was run at 250V for 45 min. The gel was then post-stained rocking at room temperature with TB 436 

buffer containing 10 µg mL−1 ethidium bromide, de-stained in TB buffer alone for 40 min, and 437 

imaged on a ChemiDoc MP Imaging System. 438 

 439 

Cryo-EM sample preparation and data collection 440 

For the SUMO2-GajAB–Gad1 co-complex sample, 3 μL of 1 mg mL−1 was vitrified using a Mark 441 

IV Vitrobot (Thermofisher). Prior to sample vitrification, 2/1 Carbon QuantfoilTM grids were glow 442 

discharged using an easiGlowTM (Pelco). Grids were then double-sided blotted for 9s, constant 443 

force of 0, 100% relative humidity chamber at 4°C, and a 10 s wait time prior to liquid ethane 444 

plunge and storage in liquid nitrogen.  445 

 GajAB–Gad1 co-complex cryo-EM grids were screened using a Talos Arctica microscope 446 

(Thermofisher) operating at 200 kV and the final map was collected on a Titan Krios microscope 447 

(ThermoFisher) operating at 300 kV. Both microscopes operated with a K3 direct electron detector 448 

(Gatan). SerialEM software version 3.8.6 was used for all data collection. For final data collection 449 

a total of 9,243 movies were taken at a pixel size of 0.3115 Å, a total dose of 41.1 e− /Å2, dose 450 

per frame of 0.63 e− /Å2 at a defocus range of range of −0.8 to −1.9 µm. 451 

 452 

Cryo-EM data processing 453 

 SBGrid Consortium provided data-processing software. Movies were imported into 454 

cryoSPARC45 for patch-based motion correction, patch-based CTF estimation, 2D and 3D particle 455 

classification, and non-uniform refinement. cryoSPARC data processing is outlined in Extended 456 
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Data Figure 6. Briefly, after patch-based CTF estimation, five hundred micrographs were selected 457 

and autopicked using Blob Picker, which resulted in 625,295 particles after extracting from 458 

micrographs. 2D classifications were then used to generate 5 templates for Template Picker from 459 

which 110,654 particles were picked from 500 micrographs. After three more rounds of 2D 460 

classification 648,298 particles from all 9,243 micrographs were used in ab initios (K = 3), followed 461 

by heterogenous refinement. The best class with 573,410 particles was then used to go back and 462 

extract from all micrographs, which resulted in 570,485 particles that were used in non-uniform 463 

refinement resulting in a 2.86 Å C1 symmetry and 2.73 Å C2 symmetry map, which was then used 464 

for model building. 465 

 466 

Cryo-EM model building 467 

Model building was performed in Coot44 by manually docking AlphaFold2 predicted structures29,30 468 

as starting models and then manually completing refinement and model correction. To model the 469 

Gad1 fist domain, an AlphaFold2 model of the Gad1 arm–fist region was superimposed on the 470 

cryo-EM density of the manually built shoulder–arm region and then fit into density in Coot44. To 471 

complete the model for the sparse GajB density, the X-ray GajB structure was superimposed on 472 

the cryo-EM density. GajAB–Gad1 model was refined in Phenix43, and the structure 473 

stereochemistry statistics are reported in Extended Data Table 2. Figures were prepared in 474 

PyMOL and UCSF ChimeraX46.  475 

 476 

Statistics and reproducibility 477 

Experimental details regarding replicates are found within figure legends.  478 

 479 
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Extended Data Figure Legends 551 

Extended Data Figure 1 | GajA and GajB form a supramolecular complex that cleaves 552 

phage lambda DNA in vitro. 553 

a, Size-exclusion chromatography (16/600 S200) analysis of recombinant BcGajA and BcGajB 554 

proteins, and the co-expressed BcGajAB complex. Brackets indicate fractions collected for 555 

biochemical and structural analysis. b, SDS-PAGE analysis of purified GajA, GajB, and GajAB. 556 

Asterisk indicates minor contamination with the E. coli protein ArnA. c, Agarose gel analysis of 557 

the ability of GajA, GajB, and GajAB to cleave a 56-bp dsDNA demonstrates that GajA alone and 558 

the GajAB complex can cleave target DNA. d, Structural comparison of GajB and EcRep (PDB 559 

ID 1UAA)19 demonstrates the GajB 2B domain is rotated in a partially active intermediate position 560 

in the GajAB complex structure. 561 

 562 

Extended Data Figure 2 | Structural characterization of GajA.  563 

a, Structure-guided alignment of GajA proteins from indicated bacteria colored according to amino 564 

acid conservation. The determined Bacillus cereus VD045 GajA secondary structure is displayed, 565 

and active-site and oligomerization interface residues are annotated according to the key below. 566 

Secondary structure abbreviations include ABC ATPase domain (ABC), dimerization domain (D), 567 

and Toprim domain (T).  568 

 569 

Extended Data Figure 3 | Structural characterization of GajB. 570 

a, Structure-guided alignment of GajB proteins from indicated bacteria colored according to amino 571 

acid conservation. The determined Bacillus cereus VD045 GajB secondary structure is displayed, 572 

and active-site and oligomerization interface residues are annotated according to the key below. 573 

 574 

Extended Data Figure 4 | Size comparison of Gad1 to known phage immune evasion 575 

proteins. 576 
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a, Analysis of known phage immune evasion proteins according to function and molecular weight 577 

demonstrates that Gad1 is atypically large for an evasion protein that functions through protein–578 

protein interactions with a host anti-phage defense system. Phage immune evasion proteins are 579 

categorized and exhibited as colored dots colored according to the key below. Notable evasion 580 

proteins are indicated with text labels23–27,40,47–50.  581 

 582 

Extended Data Figure 5 | Biochemical characterization of Gad1 requirements for binding 583 

to the GajAB complex.  584 

a, Top, size-exclusion chromatography analysis (16/600 S200) of SUMO2-tagged BcGajAB with 585 

or without phage Phi3T Gad1 used for cryo-EM structural studies. Bottom, size-exclusion 586 

chromatography analysis (16/600 S300) of BcGajAB with or without Shewanella phage 1/4 Gad1 587 

used for biochemical studies. Shewanella phage 1/4 Gad1 was used preferentially for biochemical 588 

studies due to less toxicity during E. coli expression. b, SDS-PAGE analysis of purified SUMO2-589 

tagged GajAB, SUMO2-tagged GajAB in complex with phage Phi3T Gad1, untagged GajAB, and 590 

untagged GajB in complex with Shewanella phage 1/4 Gad1. c, SDS-PAGE analysis of Ni-NTA 591 

co-purified GajA, GajB, and GajAB with Shewanella phage 1/4 Gad1 indicates that Gad1 only 592 

binds the fully assembled GajAB complex. Asterisk indicates minor contamination with the E. coli 593 

protein ArnA.  594 

 595 

Extended Data Figure 6 | Cryo-EM data processing GajAB–Gad1 co-complex. 596 

a, Section of a representative electron micrograph (n = 9,243) of SUMO2–GajAB in complex with 597 

phage Phi3T Gad1. Scale bar is 50 nm. b, Data processing scheme used to generate the final 598 

2.73 Å map. 599 

 600 

Extended Data Figure 7 | GajAB–Gad1 co-complex Cryo-EM map quality and model to map 601 

fitting.  602 
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a, Reconstruction of the GajAB–Gad1 co-complex colored by local resolution. b, Fourier shell 603 

correlation (FSC) of the EM map. c, GajA, GajB, and Gad1 map to model fit for designated 604 

regions. d,e,f, Isolated GajA, GajB, Gad1 density maps with model fitting. g, GajAB–Gad1 model 605 

that was used for refining the cryo-EM map for Extended Data Table 2. h, Left, sections of Gad1 606 

chains that were built de novo from the cryo-EM density and built using rigid-body placement of 607 

AlphaFold2 modeled residues. Right, cryo-EM density used to fit placement of Gad1 fist–fist 608 

domain contacts that complete protomer interactions. 609 

 610 

Extended Data Figure 8 | Structural characterization of Gad1.  611 

a, Structure-guided alignment of Gad1 proteins from indicated phage or prophage genomes 612 

colored according to amino acid conservation. The Bacillus phage Phi3T Gad1 secondary 613 

structure is displayed according to the two different conformations observed in the GajAB–Gad1 614 

co-complex structure. Oligomerization interface residues are annotated according to the key 615 

below. 616 

 617 

Extended Data Figure 9 | Biochemical characterization of Gad1 mutants that disrupt GajAB 618 

complex binding.  619 

a, SDS-PAGE analysis of the ability of Shewanella phage 1/4 Gad1 mutant proteins to interact 620 

with the GajAB complex. Shewanella phage 1/4 Gad1 mutant proteins were co-expressed with 621 

SUMO2-tagged GajAB (GajA-tagged) and co-purified by Ni-NTA pulldown. Shewanella sp. phage 622 

1/4 Gad1 residues are numbered according to the Phi3T Gad1 structure. b, Agarose gel analysis 623 

of the ability of GajAB–Gad1 mutant complexes to cleave target 56-bp dsDNA after a minute and 624 

20 minute incubation.  625 

 626 

Extended Data Figure 10 | Modeling DNA-bound GajA.  627 

a,b, Isolated GajA protomer modeled with DNA bound to the Toprim domain shown with surface 628 
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electrostatic potential (a) and in cartoon format (b). DNA modeling was performed using structural 629 

homology with the E. coli MutS–DNA complex (PDB ID 3K0S)31. c, Zoomed-in view of the GajA 630 

Toprim active site with modeled DNA. 631 
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Figure 1. Structure of the Gabija anti-phage defense complex. 
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shown in three orientations. GajA protomers are depicted in two shades of blue and GajB protomers are in red. c, Isolated GajA monomer (top) 
and comparison with a TsOLD nuclease monomer (bottom) (Protein Data Bank (PDB) ID 6P74)12. d, Close-up view of GajA (left) and BpOLD 
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Figure 2. Mechanism of Gabija supramolecular complex assembly. 
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Figure 3. Structural basis of viral evasion of Gabija defense.
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a, Schematic model of GajAB–Gad1 co-complex formation and domain organization of phage Phi3T Gad1. b, Cryo-EM density map of BcGajAB 
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shades of green. c, Side-view of the complete Gad1 octameric complex and d, top-down view of the Gad1 tetrameric interface with boxes 
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Figure 4. Inhibition of Gabija DNA binding and cleavage enables viral evasion.
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Extended Data Figure 1. GajA and GajB form a supramolecular complex that cleaves phage lambda DNA in vitro.

a, Size-exclusion chromatography (16/600 S200) analysis of recombinant BcGajA and BcGajB proteins, and the co-expressed BcGajAB 
complex. Brackets indicate fractions collected for biochemical and structural analysis. b, SDS-PAGE analysis of purified GajA, GajB, and GajAB. 
Asterisk indicates minor contamination with the E. coli protein ArnA. c, Agarose gel analysis of the ability of GajA, GajB, and GajAB to cleave a 
56-bp dsDNA demonstrates that GajA alone and the GajAB complex can cleave target DNA. d, Structural comparison of GajB and EcRep (PDB 
ID 1UAA)19 demonstrates the GajB 2B domain is rotated in a partially active intermediate position in the GajAB complex structure.
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Extended Data Figure 2. Structural characterization of GajA. 

a, Structure-guided alignment of GajA proteins from indicated bacteria colored according to amino acid conservation. The determined Bacillus 
cereus VD045 GajA secondary structure is displayed, and active-site and oligomerization interface residues are annotated according to the key 
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Extended Data Figure 3. Structural characterization of GajB. 

a, Structure-guided alignment of GajB proteins from indicated bacteria colored according to amino acid conservation. The determined Bacillus 
cereus VD045 GajB secondary structure is displayed, and active-site and oligomerization interface residues are annotated according to the key 
below. 
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Extended Data Figure 4. Size comparison of Gad1 to known phage immune evasion proteins.
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a, Analysis of known phage immune evasion proteins according to function and molecular weight demonstrates that Gad1 is atypically large for 
an evasion protein that functions through protein–protein interactions with a host anti-phage defense system. Phage immune evasion proteins 
are categorized and exhibited as colored dots colored according to the key below. Notable evasion proteins are indicated with text 
labels23–27,40,47–50. 
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Extended Data Figure 5. Biochemical characterization of Gad1 requirements for binding to the GajAB complex. 

a, Top, size-exclusion chromatography analysis (16/600 S200) of SUMO2-tagged BcGajAB with or without phage Phi3T Gad1 used for cryo-EM 
structural studies. Bottom, size-exclusion chromatography analysis (16/600 S300) of BcGajAB with or without Shewanella sp. phage 1/4 Gad1 
used for biochemical studies. Shewanella sp. phage 1/4 Gad1 was used preferentially for biochemical studies due to less toxicity during E. coli 
expression. b, SDS-PAGE analysis of purified SUMO2-tagged GajAB, SUMO2-tagged GajAB in complex with phage Phi3T Gad1, untagged 
GajAB, and untagged GajB in complex with Shewanella sp. phage1/4 Gad1. c, SDS-PAGE analysis of Ni-NTA co-purified GajA, GajB, and 
GajAB with Shewanella sp. phage 1/4 Gad1 indicates that Gad1 only binds the fully assembled GajAB complex. Asterisk indicates minor 
contamination with the E. coli protein ArnA. 
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Extended Data Figure 6. Cryo-EM data processing GajAB–Gad1 co-complex.  

a, Section of a representative electron micrograph (n = 9,243) of SUMO2–GajAB in complex with phage Phi3T Gad1. Scale bar is 50 nm. b, 
Data processing scheme used to generate the final 2.73 Å map.
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Extended Data Figure 7. GajAB–Gad1 co-complex Cryo-EM map quality and model to map fitting. 

a, Reconstruction of the GajAB–Gad1 co-complex colored by local resolution. b, Fourier shell correlation (FSC) of the EM map. c, GajA, GajB, 
and Gad1 map to model fit for designated regions. d,e,f, Isolated GajA, GajB, Gad1 density maps with model fitting. g, GajAB–Gad1 model that 
was used for refining the cryo-EM map for Extended Data Table 2. h, Left, sections of Gad1 chains that were built de novo from the cryo-EM 
density and built using rigid-body placement of AlphaFold2 modeled residues. Right, cryo-EM density used to fit placement of Gad1 fist–fist 
domain contacts that complete protomer interactions.
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Extended Data Figure 8. Structural characterization of Gad1.  

a, Structure-guided alignment of Gad1 proteins from indicated phage or prophage genomes colored according to amino acid conservation. The 
Bacillus phage Phi3T Gad1 secondary structure is displayed according to the two different conformations observed in the GajAB–Gad1 
co-complex structure. Oligomerization interface residues are annotated according to the key below.
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Extended Data Figure 9. Biochemical characterization of Gad1 mutants that disrupt GajAB complex binding. 

a, SDS-PAGE analysis of the ability of Shewanella phage 1/4 Gad1 mutant proteins to interact with the GajAB complex. Shewanella phage 1/4 
Gad1 mutant proteins were co-expressed with SUMO2-tagged GajAB (GajA-tagged) and co-purified by Ni-NTA pulldown. Shewanella sp. 
phage 1/4 Gad1 residues are numbered according to the Phi3T Gad1 structure. b, Agarose gel analysis of the ability of GajAB–Gad1 mutant 
complexes to cleave target 56-bp dsDNA after a minute and 20 minute incubation. 
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Extended Data Figure 10. Modeling DNA-bound GajA. 

a,b, Isolated GajA protomer modeled with DNA bound to the Toprim domain shown with surface electrostatic potential (a) and in cartoon format 
(b). DNA modeling was performed using structural homology with the E. coli MutS–DNA complex (PDB ID 3K0S)31. c, Zoomed-in view of the 
GajA Toprim active site with modeled DNA.
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Extended Data Table 1. Summary of X-ray data collection, phasing and refinement 

statistics 

 Gabija GajA–GajB 

(8SM3) 

Data collection  

Space group P 62 2 2 

Cell dimensions    

    a, b, c (Å) 215.79 215.79 173.81 

       ()  90.0, 90.0, 120.0 

Resolution (Å) 49.24–3.00 (3.10–3.00) 

Rpim 4.0 (80.5) 

I / (I) 15.4 (1.4) 

Completeness (%) 100.0 (100.0) 

Redundancy 18.1 (16.1) 

  

Refinement  

Resolution (Å) 49.24–3.00 

No. reflections 

Total 

Unique 

Free 

 

872109 

48144 

2000 

Rwork / Rfree 23.76 / 26.60 

No. atoms  

    Protein 8501 

    Ligand / ion 5 

    Water – 

B-factors  

    Protein 130.62 

    Ligand / ion 175.63 

    Water – 

R.m.s. deviations  

    Bond lengths (Å) 0.002 

    Bond angles () 0.441 

*Data set was collected from an individual crystal. *Values in parentheses are for the highest 

resolution shell. 
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Extended Data Table 2. Cryo-EM data collection, refinement and validation statistics 

 

 GajAB-Gad1  

co-complex 

(EMD-xxxx) 

(PDB xxxx) 

Data collection and processing  

Magnification    37,000 

Voltage (kV) 300 

Electron exposure (e–/Å2) 41.1 

Defocus range (μm) −0.8 to −1.9 

Pixel size (Å) 0.3115 

Symmetry imposed C2 

Initial particle images (no.) 1,587,382 

Final particle images (no.) 570,485 

Map resolution (Å) 

    FSC threshold 

2.7 

0.143 

Map resolution range (Å) 2.17–2.99 

  

Refinement  

Initial model used (PDB code)  

Model resolution (Å) 

    FSC threshold 

2.71 

0.143 

Model resolution range (Å) 2.71–2.73 

Map sharpening B factor (Å2) −105.9 

Model composition 

    Non-hydrogen atoms 

    Protein residues 

    Ligands 

 

35,487 

4,338 

0 

B factors (Å2) 

    Proteins 

 

38.34 

R.m.s. deviations 

    Bond lengths (Å) 

    Bond angles (°) 

 

0.003 

0.604 

 Validation 

    MolProbity score 

    Clashscore 

    Poor rotamers (%) 

 

1.95 

9.55 

3.35 

 Ramachandran plot 

    Favored (%) 

    Allowed (%) 

    Disallowed (%) 

 

97.81 

2.12 

0.07 
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