

1 **Glycogen phosphorylase inhibition alongside taxol chemotherapy synergistically elicits**
2 **ferroptotic cell death in clear cell ovarian and kidney cancers**

3

4 Tashbib Khan¹, Thomas Kryza¹, Yaowu He¹, Jennifer H Gunter², , Madeline Gough^{1,3}, , Cameron
5 Snell^{1,3}, John D. Hooper¹

6

7 ¹Mater Research Institute, The University of Queensland, Translational Research Institute,
8 Woolloongabba, QLD 4102, Australia

9 ²Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical
10 Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra
11 Hospital, Translational Research Institute, Brisbane, Queensland, Australia

12 ³Mater Brisbane Hospital, Mater Health Services, South Brisbane, QLD 4101, Australia

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ABSTRACT

29 **Background:** Clear cell carcinomas (CCCs) are a distinct histopathological subtype defined by a clear
30 cytoplasm comprised of glycogen and lipids and characterised by poor prognosis and widespread
31 chemoresistance. In the present work we investigate glycogen metabolism as a targetable modality for
32 these cancers.

33 **Methods and Results:** Adopting the indole carboxamide site pan-glycogen phosphorylase inhibitor
34 CP91149 against clear cell ovarian and renal cancer cell line models, we note antiproliferative and
35 antimigratory effects, as well as energetic stress reflected by reduced ATP pools and increased
36 superoxide-derived reactive oxygen species. Following this, using the agent alongside standard of care
37 chemotherapies for clear cell ovarian (ccOC) and renal cell carcinoma (ccRCC), we note specific
38 synergy with microtubule disrupting chemotherapy paclitaxel, a phenomenon retained in ccOC lines
39 made stably resistant to paclitaxel. Rescue experiments, as well as phenotypic assays suggest that
40 combination-treated cells undergo ferroptotic cell death. We postulate this synergistic efficacy to arise
41 from subjecting the already hypersensitive clear cell cancers to the mitochondrial stress elicited by taxol
42 chemotherapy alongside the oxidative stress augured by glycogen phosphorylase inhibition.

43 **Conclusions:** Given that CCCs are widely chemoresistant, the present work potentially presents a
44 novel therapeutic avenue for this shared histotype.

45

46

KEYWORDS

47 Glycogen, Clear Cell Cancer, Paclitaxel, Ferroptosis

48

49

BACKGROUND

50 Metabolic reprogramming is a hallmark of malignancy (1,2). Tumours adopt unique and varied metabolic
51 phenotypes to adapt to a range of cellular stressors. One such adaptation is the accumulation of
52 glycogen, the stored branched polymer of glucose. Glycogen fuels a range of malignant phenotypes,
53 including proliferation and migration, oxidative stress and senescence protection, histone acetylation,
54 and chemoresistance (3,4). Glycogen metabolism is upregulated in several oncogenic contexts,

55 including hypoxia, via the *RAB25A* oncogene, and in a unique histotype of carcinomas known as the
56 clear cell cancers (CCCs) (5-7).

57

58 CCCs are a distinct histopathological subtype defined by a clear cytoplasm comprised of glycogen and
59 lipids and characterised by poor prognosis and widespread chemoresistance (8). The two most common
60 CCCs are clear cell ovarian carcinoma (ccOC), the secondmost common and most chemoresistant
61 ovarian cancer, and clear cell renal cell carcinoma (ccRCC), the most frequent and metastatic kidney
62 cancer, although CCCs have been noted in diverse tissues of origin, including breast (9), colorectum
63 (10), and endometrium (11). Only recently have parallels begun to be drawn between CCCs beyond the
64 conspicuous histology, with studies highlighting common origins in hypoxia, shared metabolic states,
65 and hypersensitivity to glutathione peroxidase 4 (GPX4)-dependant ferroptosis (3,8,12). Although
66 inroads have been made in understanding and targeting the role of lipids in this shared context, glycogen
67 has been given scarce attention. Hence, the present work aims to investigate glycogen as a therapeutic
68 target in CCCs.

69

70 In ccOCs, which are thought to originate in the hypoxic and oxidative stress environment of
71 endometriotic cysts, glycogen accumulation arises as a stress-response mechanism via the
72 overactivation of the transcription factor *HNF-1B* (13,14). Stored glycogen facilitates cell growth, cellular
73 detoxification, and platinum resistance (13,14). Recently, we reported that concentrations of the small
74 molecular weight glucose analog 2DG that are too low to disrupt cell proliferation can nevertheless
75 disrupt glycogenolysis when combined with platinum chemotherapy (15). Recent work has also
76 highlighted the importance of glycogen to the cross-talk between ccOC cancer cells and cancer-
77 associated fibroblasts (16-18). In ccRCC, upregulated glycogen metabolism is thought to occur because
78 of VHL deficiency, giving rise to constitutively active HIF1 α and HIF2 α , resulting in glycogen
79 accumulation (12,19,20). This glycogen metabolism signature is reflected at both the genetic and protein
80 levels of ccRCC (21-24). Recently glycogen synthase (GS) was shown to be an independent predictor
81 of poor prognosis and mediator of resistance to the tyrosine kinase inhibitor sunitinib in *in vitro* and *in*

82 *vivo* models of ccRCC (25). However, it is important to note that another recent study reported that
83 glycogen metabolism is dispensable for primary tumour growth in ccRCC (26).

84

85 The present work examined glycogen metabolism as a therapeutic target in both ccOC and ccRCC. It
86 characterises the importance of glycogen and examines inhibitors of a key enzyme of glycogen
87 catabolism, glycogen phosphorylase (PYG), in ccOC and ccRCC cell line models. Aberrant expression
88 and function of the enzyme has previously been noted in cancer as well as diabetes and other metabolic
89 disorders, rationalising the development of PYG inhibitors (27). These inhibitors have been tested
90 largely in diabetes models but have scarcely been examined in cancer models (27-30). Hence, one of
91 the goals of the present work was to assess whether CCCs, with their unique cytoplasmic glycogen
92 stores, could provide a therapeutic window for PYG inhibition. In this vein, we pursued the PYG inhibitor
93 CP-91149 in cell line models of ccOC and ccRCC, finding dose-dependent energetic stress and
94 apoptosis akin to that observed in previous studies. We also assessed the ability of PYG inhibition to
95 synergise with existing chemotherapeutic modalities of ccOC and ccRCC, and interestingly found robust
96 synergy with microtubule-disrupting chemotherapy paclitaxel, potentially auguring ferroptosis. Given
97 they bear few effective therapies, the combination of paclitaxel and PYG inhibitor can garner a new
98 therapeutic avenue for CCCs.

99

100

METHODS

101 *Reagents and Antibodies*

102 The following antibodies were from Cell Signalling Technologies: Phospho-Glycogen Synthase (Ser⁶⁴¹)
103 #3891, total glycogen synthase #3886, Phospho-AKT (Ser⁴⁷³) #9271, AKT (pan) #4691, Phospho-GSK-
104 3β (Ser⁹) #9336, GSK-3β #9315, GAPDH #2118, Anti-rabbit IgG (H+L) (DyLight™ 800 4X PEG
105 Conjugate) #5151, Anti-mouse IgG (H+L) (DyLight™ 680 Conjugate) #5470. Antibodies against PYGL
106 (PA5-9152) and PYGB (PA5-28022), dyes for TMRE (T669), Calcein-AM (C3100MP), PI (PP1304MP),
107 BODIPY™ 581/591 C11 (D3861) and MitoSOX-PE (M36008) were from Thermo Fisher Scientific. PE

108 Anti-human TfR1 antibody (#334106) and FITC Annexin V (#640906) were from Biolegend. All
109 antibodies were used at 1:1000 for immunoblotting, except for GAPDH which was used at 1:10000, and
110 Anti-rabbit IgG 800 and Anti-mouse IgG 680 which were used at 1:20000. For flow cytometry and
111 fluorescent microscopy, antibodies were used according to manufacturer's instructions.

112 The following inhibitors were obtained from SelleckChem: CP91149 (#S2717), Sorafenib (#S7397), Z-
113 VAD-FMK (#S7023), Necrostatin-1 (#S8037), Deferoxamine mesylate (#S5742). Mitomycin C
114 (#M4287), BAY R3401 (#B3936), BI2596 (#S1109), Nocodazole (#S2775) and Chloroquine
115 diphosphate salt (#C6628) were from Sigma-Aldrich. Carboplatin and paclitaxel were from Mater
116 Pharmacy. All reagents were reconstituted according to manufacturer's instructions.

117 Tissue culture plastics and medium, as well as immunoblotting gels and transfer stacks, were from
118 ThermoFisher Scientific. ImageLock plates (96-well; #4379) as well corresponding Woundmaker
119 Incucyte® Cell Migration Kit (#4493) were from Sartorius. All other consumables were from Sigma-
120 Aldrich except where noted.

121 *Cell Lines and Culture Conditions*

122 As mentioned above, in sections 3.4.2. and 3.6.4.2, 786-O and A498 ccRCC cells were from ATCC
123 (Manassas, VA, USA). OVTKO cells were kindly provided by Dr Katherine Roby (University of Kansas
124 School of Medicine, Kansas and KOC7C cells were courtesy of Dr. Hiroaki Itamochi (Tottori University
125 School of Medicine, Yonago, Japan). All lines were cultured in RPMI-1640 with 10% heat-inactivated
126 fetal calf serum, and 1X penicillin-streptomycin.

127 *Luciferase-labelling of cells*

128 Luciferase labelling of cells for in vivo experiments was performed as outlined in Section 3.4.3. Briefly,
129 cells were stably transduced with a lentivirus-based expression construct generated by cloning a
130 polymerase chain reaction (PCR)-amplified DNA fragment encoding luciferase from a pGL4.10-
131 lucIIplasmid (Promega, Sydney, Australia) into a pLenti CMV Hygro DEST vector (Addgene, Cambridge,
132 MA, USA) using Gateway LR recombination cloning technology (Life Technologies, Mulgrave,

133 Australia), as previously described (117). Cells stably transduced with the luciferase construct were
134 selected in puromycin (2 µg/mL; Thermo Scientific).

135 *Western Blot Analysis*

136 Whole-cell lysates treated under stipulated conditions were collected using RIPA buffer (Sigma-Aldrich)
137 with 1 × Complete protease inhibitor cocktail (Roche, Castle Hill, NSW, Australia), 2 mM sodium
138 vanadate, and 10 mM sodium fluoride, and used in western blot analysis as described previously. Briefly,
139 Lysates (20-40 µg for cells and 80µg for tissues) were separated by SDS-PAGE under reducing
140 conditions (except where noted), transferred onto nitrocellulose membranes, and blocked in fish skin
141 gelatin blocking buffer (Sigma Aldrich) (3% w/v in PBS, with 0.1% Tween-20 and 0.05% sodium azide).
142 Membranes were incubated with primary antibodies diluted in blocking buffer overnight at 4°C,
143 washed with PBS containing 0.1% Tween 20 (Sigma-Aldrich), and then incubated with appropriate
144 secondary antibody. Signals were detected using an Odyssey Imaging System and software (LI-COR
145 Biosciences, Millennium Science, Mulgrave, Australia).

146 *Endpoint Cell Count Measurement of Cytotoxicity*

147 Endpoint Cell Count Measurement of Cytotoxicity were performed as noted above. Briefly, following
148 specified cell treatments, media was removed and cells were fixed with 50µl ice-cold methanol for 5
149 minutes. Methanol was then removed, cells were washed in PBS, and then stained with 0.5 µg/mL DAPI
150 (Thermo Scientific) for at least 30 minutes. Cells were then imaged at 4X using the InCell 2200 or 6500
151 automated fluorescence microscope system (GE Healthcare Life Sciences) and quantitative analysis
152 was performed with Cell Profiler Software(182,183). Cell numbers were normalized to untreated controls
153 and plotted as “relative cell number.”

154 *Cell Viability Assay*

155 Cell viability was measured as outlined in Chapter 3. Briefly, cells (1500 cells/well) were plated in
156 triplicate in 96 well plates and allowed to attach overnight, before treatment for 72 h with stipulated drug
157 concentrations. Cell viability was assessed using a CellTiter cell proliferation assay kit (Promega),

158 according to the instructions of the manufacturer. Tetrazolium dye solution (20 μ L) was added to each
159 well, followed by incubation at 37 °C for 3 h, then measurement of absorbance at 490 nm, using a
160 PHERAstar Omega plate reader (BMG Labtech, Mornington, Australia), as previously described
161 (25,117,220).

162 *Incucyte measurements of cell proliferation*

163 Cells (3,000 per well) were plated in 96-well plates and allowed to attach overnight. The following day,
164 cells were treated with stipulated drug concentrations and by imaging on the Incucyte Zoom S3
165 (Sartorius). Images were taken every two hours and fold change in confluence calculated using Incucyte
166 software.

167 *Wound Healing Assay*

168 Cells (50,000 per well) were plated in 96-well ImageLock plates (Sartorius) and allowed to attach
169 overnight. The following day, cells were pre-incubated for 6 hours with stipulated drug concentrations
170 and for 2 hours with mitomycin C (0.5 μ g/mL) to halt proliferation. Cells were then scratched using the
171 Essen Biosciences automated Woundmaker according to manufacturer instructions (at least two
172 scratches per plate). Cells were washed twice in warm PBS and replenished with drug-containing media,
173 following by imaging on the Incucyte Zoom S3 (Sartorius). Images were taken every two hours and
174 relative wound confluence (%) calculated using Incucyte software.

175 *Colony Formation Assay*

176 The colony-forming ability of cell lines was assessed as previously (117). Briefly, Cells (100,000/well)
177 were seeded overnight in six well plates, followed by treatment for 72 h with indicated drug
178 concentrations. Here, Paclitaxel GI₅₀ represents the paclitaxel dose defined by cell count measurements
179 of cytotoxicity (100nM for OVTKO, 250 nM for KOC7C. 290 nM for 786O and 1 μ M for A498). After 72
180 hours, cells were non-enzymatically dissociated, and then replated at low density in a 24-well plate (500
181 cells/well), followed by growth for 1–2 weeks. The media was then removed from the plates and washed
182 gently with PBS twice, followed by fixation with 4% paraformaldehyde (Sigma-Aldrich) for 30 minutes.

183 The cells were then washed gently in PBS and stained with 0.1% crystal violet (Sigma-Aldrich). The
184 stain was removed after at least 30 mins and plates were washed under running RO water, allowed to
185 dry overnight, and then scanned.

186 *Glycogen Content Assay*

187 Total cellular glycogen content was measured as previously (117,179). Briefly, cells treated for
188 stipulated drug doses were scraped in glycogen isolation buffer (Tris pH 8, 150 mM NaCl, 50 mM NaF,
189 2 mM EDTA, 5 mM sodium pyrophosphate). Samples were then homogenized by passing through 26-
190 G needles and cleared by centrifugation at 14,000 g and 4°C for 30 min. Protein concentration was
191 quantified by micro-bicinchoninic acid assay (Thermo Fisher Scientific), and then glycogen quantification
192 assay was performed as previously. Briefly, 5 µL of amyloglucosidase (Megazyme, 3260 Units/mL) was
193 added to the reaction mixture containing 10 µL of sample, 20 µL of 200 mM sodium acetate buffer (pH
194 4.5), 2.5 µL of 10% acetic acid and 62.5 µL of deionized water. Two controls with 10 µL of deionized
195 water (instead of homogenate) were also analysed. Samples were incubated for 30 min at 50 °C and
196 then centrifuged at 20 000 g for 20 min, with the supernatant being transferred to a new tube and the
197 pellets being discarded. Then, 5 µL of degraded glycogen and 5 µL of D-glucose standards up to 1
198 mg/mL was mixed with 170 µL of reaction buffer containing: 150 µL of 200 mM tricine/KOH (pH 8) and
199 10 mM MgCl₂; 18 µL of deionized water; 1 µL of 112.5 mM NAPD; 1 µL of 180 mM of adenosine
200 triphosphate (ATP) and 0.5 U of Glucose-6-phosphate dehydrogenase(G6PDH) (Roche). After the
201 absorbance at 340 nm was recorded for 20 min to determine a baseline, 4 µL of Hexokinase solution
202 (0.75 U in 5 µL of 200 mM tricine/KOH (pH 8) and 10 mM MgCl₂) was added to each well and the
203 absorbance at 340 nm was recorded for 30 min. Glucose concentration in each well was calculated by
204 subtracting the baseline absorbance from the absorbance plateau, using the D-glucose standard curve,
205 and water blank background values were subtracted. This was then used to extrapolate the glycogen
206 concentration in the initial sample. Samples unreacted with amyloglucosidase were used to verify the
207 insignificance of background glucose.

208 *Bioenergetic Analysis of ATP Production*

209 ECAR and OCR, and specifically ATP derived from glycolysis and mitochondrial oxidative
210 phosphorylation, were quantified in real time using a Seahorse XFe Extracellular Flux Analyser
211 (Seahorse Bioscience, Agilent, In Vitro Technologies, Noble Park North, Australia), as described
212 previously, and above in section 3.4.8(117). Here, cells were treated for 24 h with either 20 μ M or 100
213 μ M CP91149. On the day of the assay, the cells were washed twice with XF RPMI media (Seahorse
214 Bioscience), then cultured in this media supplemented with 10 mM glucose, 2 mM glutamine, 5 mM
215 HEPES, and 1 mM sodium pyruvate (pH adjusted to 7.4 + 0.05). Cells were then cultured in a non-CO₂
216 incubator for 1 h prior to the start of the experiment, when rotenone and antimycin A (5 μ M each) were
217 injected into the media to eliminate cellular citric acid cycle activity, followed by oligomycin (100 mM) to
218 eliminate all ATP production, with differences enabling the calculation of ATP derived from both
219 glycolysis and mitochondrial oxidative phosphorylation. The assay plates included control blank wells
220 containing only media to which the various reagents were added for experimental wells. Measurements
221 from blanks were automatically subtracted by the instrument Wave 2.6 software. Data were normalized
222 to the cell number per well, which was determined by imaging of DAPI stained cells using the Incell 2200
223 or 6500 Cell Imaging Systems (GE Healthcare, Parramatta, Australia).

224 *Flow Cytometry*

225 Cells (100,000 per well) were seeded in 6 well plates and allowed to attach overnight. The following
226 day, cells were treated with stipulated drug concentrations for 24 hours.

227 For MitoSox Red and calcein-AM assays: On the day of the assay, cells were lifted non-enzymatically
228 and incubated for 30 minutes with either 5 μ M MitoSoX Red, 100nM calcein-AM in the dark in a tissue
229 culture incubator. Cells were then washed twice in warm PBS and then analysed using a flow cytometer
230 (FACsFortessa, BD Biosciences) in the PE channel for MitoSox Red and the FITC channel for calcein-
231 AM. At least 10,000 events were analysed per condition.

232 For BODIPY 581/591 C11 assays: On the day of assay, 5 μ M BODIPY 581/91 C11 was added to wells,
233 and cells were incubated for 45 minutes in a tissue culture incubator in the dark. Then, cells were lifted

234 non-enzymatically, washed twice, and analysed in both a FITC and PE channels using a flow cytometer
235 (FACs Fortessa, BD Biosciences), with at least 10,000 events analysed per condition.

236 For TfR1 assays: On the day of the assay, cells were lifted non-enzymatically, blocked for 30 minutes
237 in 0.5% bovine serum albumin in PBS at 4°C, and then incubated for one hour in PE anti-human CD71
238 Antibody in the dark at 4°C (1:100; Biolegend). Cells were washed twice with PBS and then and then
239 analysed using a flow cytometer (FACsFortessa, BD Biosciences), with at least 10,000 events analysed
240 per condition.

241 *Synergism Measurements*

242 Synergism between drug treatments was measured using the Chou-Talalay Combination Index Method
243 using the Compusyn software (Combosyn Inc.) (<https://www.combosyn.com/>), as described above. CI
244 values <1 were considered synergistic interactions, 1 additive interactions, and >1 antagonistic
245 interactions.

246 *Generation of Paclitaxel Resistant Lines*

247 The generation of OVTOKO and KOC7C cells stably resistant to paclitaxel (Pac_R) was performed based
248 on GI₅₀ values calculated for both lines using the above cell count measurement of cytotoxicity (100 nM
249 and 250 nM respectively). Cells were treated in T25 flasks with stepwise doses of paclitaxel starting at
250 1/10 GI₅₀ doses. Cells were treated for at least 3 days, followed by change into drug-free media for at
251 least 4 days to allow resistant cells to re-proliferate. This was repeated for doses ¼ GI₅₀, ½ GI₅₀ and at
252 GI₅₀. Once cells displayed stabilized growth in the presence of GI₅₀ doses of paclitaxel they were
253 expanded and assays performed alongside passage-matched parental cells (Pac_{Control}). Cells were
254 routinely re-treated with GI₅₀ values of paclitaxel to ensure they did not revert to parental sensitivities.

255 *Time-Lapse Annexin-V/PI Imaging*

256 Time-lapse imaging of cell death was performed as previously describe(198). Briefly, cells (4000 / well)
257 were plated in phenol-red free complete DMEM and allowed to attach overnight. On the day of assay,

258 Cells were preincubated for 30 minutes in annexin V-FITC (1 µg/ml; BD Biosciences) and Propidium
259 Iodide (1 µg/ml; Sigma Aldrich), treated with stipulated drug concentrations, and then imaged every 30
260 minutes on the Incucyte Zoom S3 (Sartorius). Cell-by-cell analysis was performed specific to every line
261 using Incucyte software, with cells demarcated into the following 4 groups: 1) Green – Red –, 2) Green
262 + Red –, 3) Green – Red +, and 4) Green + Red +.

263 *Mitochondrial Membrane Potential*

264 Cells (10,000/ well) were seeded in 96 well plates in phenol red-free growth media and allowed to attach
265 overnight. On the day of assay, cells were loaded with TMRE (200 nM) for 30 min at 37 °C before
266 indicated treatments. Cells were then imaged on the Incucyte Zoom S3 at 15-minute intervals using the
267 phase contrast and Red Channel (Excitation 585 nm [565,605]). TMRE fluorescence per cell was
268 calculated using the Incucyte cell-by-cell analysis. When fluorescence changes had plateaued the
269 analysis was stopped, and the steady-state fluorescence/cell /well was plotted (209).

270 *Rescue Experiments*

271 The capacity of common inhibitors of cell death modalities (zVAD-FMK; apoptosis, necrostatin-1,
272 necroptosis; chloroquine, autophagy; deferoxamine, ferroptosis) to rescue combination efficacy was
273 assessed. Cells were treated as outlined with paclitaxel (0-10 µM) with or without a fixed 20µM dose of
274 CP91149, in the presence or absence of either zVAD-FMK (20µM), necrostatin-1 (20µM) or chloroquine
275 (50µM). Cells were then fixed after 72 hours, stained with DAPI and enumerated as outlined above in
276 section 4.4.5.

277

278 *Statistical Analysis*

279 Except where noted, the Mann- Whitney test was used in analysis comparing two groups while the
280 Kruskal-Wallis test was used for comparisons involving more than two groups. A value of $p \leq 0.05$ was
281 considered significant. Significance values are represented in graphs as * $p < 0.05$, ** $p < 0.01$, *** $p <$

282 0.001 and ****p < 0.0001. Data and statistical analyses were performed using Prism 6.0 software
283 (GraphPad, San Diego, CA, USA).

284

285 RESULTS

286

287 *PYG inhibitor CP91149 impairs growth and elicits energetic and oxidative stress in clear cell cancer*
288 *lines in vitro*

289 To directly examine the role of PYG in CCC, we disrupted its function pharmacologically using CP91149.

290 This agent inhibits the indole carboxamide site of the enzyme and has previously been used for both
291 cancer and diabetes studies (31-33). Importantly, the inhibitor successfully targets all three PYG
292 isoforms, so circumvents isoform redundancy (28). We first assessed the efficacy of CP91149 in ccRCC

293 lines 786-O and A498 and ccOC lines OVTKO and KOC7C by treatment for 72 hours with increasing
294 concentrations of the compound, followed by fixation, staining with DAPI, and automated cell counting.

295 Figure 1A shows that the inhibitor elicited a concentration-dependent reduction in cell number for all
296 four lines, with the two ccOC lines displaying a lower GI₅₀ (60 µM and 65 µM) than the two renal lines

297 (94 µM and 86 µM). Then, the effect 20 µM or 100 µM of the on the migration and clonogenic potential
298 of the four CCC lines inhibitor was assessed. The two concentrations (highlighted by broken lines in

299 Figure 1A) were selected because 100 µM inhibits the PYG enzyme in cell-free systems (28,31) and
300 exerted over 50% reduction in cell number in Figure 1A, whereas 20 µM was largely ineffective at

301 exerting antiproliferative effects. *In vitro* migration was next assessed by measuring the ability of a
302 confluent cell monolayer to heal a scratch wound. Figures 1B shows that 100 µM CP91149 impinged

303 the wound healing capacity of the two ccOC lines OVTKO and KOC7C (p<0.05), but that this same
304 dose had minimal effect on ccRCC lines 786-O and A498; possibly a reflection of the higher doses

305 required to exert efficacy for ccRCC. 20 µM CP91149 had little effect on any of the lines. The effect of
306 CP91149 on the clonogenic survival of cells was then assessed. Cells were treated for 72 hours with
307 indicated concentrations, and then re-plated in drug-free media for 7-14 days, and colonies were stained

308 with crystal violet and colony area quantified using ImageJ. Figure 1C shows that 20 μ M CP91149 had
309 no impact on colony formation of any of the lines, whereas 100 μ M of the inhibitor attenuated clonogenic
310 survival of ccOC lines OVTOKO and KOC7C by 30%, and ccRCC line A498 by 70% ($p<0.05$).
311 Interestingly, there was no effect of either dose on ccRCC line 786-O. Generally, CP91149 seems more
312 effective at reducing proliferation, migration, and colony formation in ccOC lines than ccRCC lines,
313 consistent with the lower GI_{50} observed.

314 CP91149 also elicits apoptosis in models of hepatocellular carcinoma (32). To assess if the drug was
315 displaying a similar mode of action in CCCs, KOC7C ccOC and 786-O ccRCC cells were stained with
316 annexin V-FITC and propidium iodide (PI), treated with CP91149, and time-lapse imaged using the
317 Incucyte S3 system. Annexin-V stains membrane-protruded phosphatidylserine, an early event in
318 programmed apoptosis, whereas PI binds the nuclei of cells with perforated plasma membranes; a
319 conserved marker of late-stage cell death (34,35). Thus, apoptosis traditionally entails early-stage
320 annexin-V positivity followed by later annexin-V/PI dual-positivity. Here, the proportion of cells positive
321 for annexin-V (AV) and PI were calculated using Incucyte software, and cells were demarcated into
322 AV+PI, AV-PI+, AV+PI+ or AV-PI-, and these were plotted with time. Figure 1D highlights endpoint
323 representative images of cells treated with the two doses of inhibitor. Below this, the dose-time-
324 dependant effect of 100 μ M CP91149 is highlighted, showing that at high doses cells displayed a robust
325 early increase in annexin V positivity followed by dual annexin V/PI positivity, corroborating a time-
326 dependant induction of apoptosis.

327 *CP91149 increases glycogen levels, reduces ATP levels and generates superoxide ROS*

328 Next, we assessed the effect of CP91149 on total glycogen levels, to corroborate that the inhibitor was
329 exerting an on-target effect. Changes in total cellular glycogen levels were measured for cells treated
330 for 24 hours with 20 μ M or 100 μ M CP91149. A shorter timepoint was selected for these assays to
331 overcome the cytotoxicity observed for high doses of the inhibitor at 72 hours in Figure 1. Figure 2A
332 shows that the inhibitor causes an increase in glycogen levels for all four lines. This increase is probably
333 reflective of a homeostatic response in glucose flux towards glycogenesis, a phenomenon previously

334 noted by Favaro et al. (2012) with *pygl* silencing under hypoxic conditions (7). Interestingly, the effect
335 more pronounced in the ccRCC lines 786-O and A498, with both 20 μ M or 100 μ M CP91149 doubling
336 glycogen levels ($p<0.05$); contrastingly, for ccOC lines OVTOKO and KOC7C, only 100 μ M CP91149
337 showed significantly increased glycogen levels ($p<0.05$).

338 We next assessed whether activation of glycogen synthesis pathway contributed to the increased
339 glycogenesis following CP91149 treatment. Glycogenesis is largely mediated by GS, which can be
340 phosphorylated directly by activated glycogen synthase kinase 3B (GSK-3B), with phosphorylation
341 serving to inactivate the enzyme and reduce synthesis (4,36). This axis can also be inhibited by insulin-
342 driven activation of the PI3K/Akt pathway, which stimulates glycogen synthesis (4,36). Thus, glycogen
343 synthesis is mediated by a balance of activating signals (i.e. Akt) and inactivating signals (i.e. GS and
344 GSK). To assess the relative modulation of these signals with CP91149 treatment, immunoblotting was
345 performed on KOC7C and 786-O cells treated for 24 hours with 20 μ M or 100 μ M CP91149, for
346 phosphorylated GS, GSK, and AKT. Figure 2B illustrates that after 24 hours of treatment with CP91149,
347 there is a marked increase in AKT activation at Ser⁴⁷³ for all three lines treated with 100 μ M CP91149,
348 suggesting a favouring of glycogen synthesis. Importantly, there is also a less-pronounced increase in
349 the activation of GS (Ser⁶⁴¹) with OVTOKO and KOC7C cells and GSK-3 β (Ser⁹) with 786-O cells. This
350 perhaps suggests that the inhibitor did not exert its maximal effect in 24 hours, or maybe indicates that
351 signals for glycogenolysis still exist, thus highlighting the multi-faceted homeostatic control of the
352 glycogen metabolism axis.

353 We then assessed the downstream effects of CP91149, by measuring ATP production in ccOC cells
354 OVTOKO and KOC7C using the Seahorse ATP Rate Assay, which enables the delineation of ATP
355 production from the routes of glycolysis and mitochondrial oxidative phosphorylation. The two ccOC
356 lines were selected because they displayed the smallest increase in glycogen levels, leading us to
357 postulate that the inhibitor was already exerting an effect downstream by 24 hours. Figure 2C shows
358 that in ccOC lines OVTOKO and KOC7C, 100 μ M CP91149 caused a reduction in ATP levels derived
359 from both glycolysis and mitochondrial oxidative phosphorylation. Interestingly, mitochondrial oxidative

360 phosphorylation was more acutely reduced by the inhibitor, which may be reflective of an increased
361 dependence of these cells on the pathway, or a specific impact of the inhibitor on mitochondrial
362 phenotypes such as apoptosis. In support of the latter hypothesis, both *pyg* silencing and CP91149
363 have previously been shown to specifically elicit mitochondrial ROS in glioma and breast cancer lines
364 *in vitro* to elicit apoptotic cell death (7,32). This is thought to occur because PYG modulates glucose
365 entry into the pentose phosphate pathway (PPP), which facilitates NADPH generation and subsequent
366 ROS scavenging (7). To assess whether the inhibitor induced a similar phenotype in CCCs, the MitoSox
367 superoxide sensor was employed, and ROS formation was assessed. Cells were treated for 24 hours
368 with 20 μ M or 100 μ M CP91149, lifted, stained with the MitoSox dye, and then fluorescence measured
369 flow cytometrically. As expected, CP91149 elicited a dose-dependent increase in MitoSox fluorescence
370 after 24 hours of treatment, in both the ccOC and ccRCC lines, with a small increase in MFI with 20 μ M,
371 and a larger increase (~double for OVTKO, KOC7C and A498, ~20% for 786-O), observed with 100
372 μ M of the inhibitor (Figure 2D). This suggests that CP91149 is also modulating PPP flux to increase
373 ROS in CCC lines.

374

375 *Low dose CP91149 specifically synergises with SOC OC chemotherapy paclitaxel in CCCs to elicit*
376 *non-apoptotic cell death*

377 Widespread chemoresistance remains one of the key prognostic hurdles for CCCs: for ccOC the
378 platinum-taxol regime is largely ineffective, whereas ccRCC are highly resistant to first line chemo- and
379 radio-therapies and are often refractory to TKI therapies (37,38). Because glycogen has been implicated
380 in CCC chemoresistance in the past, we sought to assess whether PYG inhibition could synergise with
381 existing standard of care therapies. A fixed dose of CP91149 was adopted – 20 μ M – relatively
382 ineffective as a single agent, alongside a dose range of kidney cancer therapy sunitinib and ovarian
383 cancer chemotherapies carboplatin and paclitaxel. Cells were treated for 72 hours, followed by fixation,
384 staining with DAPI, and automated cell counting. Synergism was measured using the Chou-Talalay
385 Combination Index (CI) method, that calculates a CI based on median effects, where CI<1 indicates

386 synergism, CI=1 indicates additive effects, and CI>1 indicates antagonistic effects (39). Figure 3A
387 highlights the dose-response curves for ovarian cancer chemotherapy carboplatin alongside 20 μ M
388 CP91149 for ccOC lines OVTOKO and KOC7C, whilst Figure 3C highlights the combination of sunitinib
389 with CP91149 in ccRCC lines 786-O and A498. CP91149 does not seem to synergise with either
390 carboplatin nor sunitinib, as evidenced by the minimal shift in both dose-response curves and GI_{50}
391 values. This is also reflected in the CI values in Figures 3B and 3D respectively, although there are
392 weak suggestions of synergism (CI<0.9) with low-doses of carboplatin and sunitinib with CP91149,
393 however these are likely false-positives that have been previously suggested to occur in low-order
394 synergism cases using the CI method (40,41).

395 Contrastingly, we found that 20 μ M CP91149 caused a marked downward shift in the paclitaxel dose-
396 response in both ccOC lines OVTOKO and KOC7C and ccRCC cell lines 786-O and A498 (Figure 3E).
397 This was also corroborated by the change in GI_{50} values for the lines: a 7-fold reduction for ccOC lines
398 OVTOKO and KOC7C, and a 9-fold reduction for the ccRCC lines 786-O and A498. Specific synergism
399 with paclitaxel was an unexpected finding, and hence we tested high grade serous ovarian cancer
400 (HGSOC) lines HEY and OVMZ6 to assess whether this was a CCC-specific effect. Importantly, neither
401 lines displayed the same marked shifts in dose-response curves nor GI_{50} and CI values, indicating that
402 synergism between paclitaxel and CP91149 is a CCC-specific phenomenon. These trends were also
403 reflected in the CI values, which suggested strong synergism in all cases but the two highest paclitaxel
404 doses for OVTOKO and A498, which probably speaks to the monotherapy efficacy of paclitaxel at these
405 concentrations (Figure 3F). in contrast, HEY and OVMZ6 cells did not display strong suggestions of
406 synergism.

407 We also validated that this synergistic effect was specific to PYG by adopting a second PYG inhibitor,
408 targeting a different site (Figure S1). We used BAY-R3401, which targets the AMP binding site of
409 glycogen phosphorylase (42). We noted that BAY-R3401 similarly elicited a sharp drop in the dose-
410 response curves of all four CCC lines (Figure S1A), eliciting a 20-fold reduction in GI_{50} for OVTOKO and

411 KOC7C cells, a 10-fold reduction for 786-O cells, and a 5-fold reduction for A498 cells; a trend also
412 reflected in the CI values for the combination (Figure S1B).

413

414 *Combination efficacy of paclitaxel and CP91149 is retained in ccOC cells stably resistant to paclitaxel*

415 We next explored the efficacy of this drug combination using the MTT cell viability assay and clonogenic
416 potential assay, to assess whether the potency of the combination was also reflected in different settings
417 of cell growth. We employed GI_{50} values of paclitaxel for each line alongside 20 μ M of CP91149. Viability
418 of cells treated for 72 hours is shown in Figure 4A, which illustrates that the combination is more potent
419 than either monotherapy for all 4 lines ($p<0.05$). Similarly, assessing clonogenic potential, the
420 combination therapy elicited a near-complete ablation of colony-forming capacity of all four lines
421 assessed (Figure 4B). Here, it is interesting to note that GI_{50} values of paclitaxel alone had differing effects
422 on the four lines: a minimal reduction in line OVTOKO (20%), more in KOC7C and 786-O (60%), and a
423 marked effect for A498 (80%). This could be reflective of differing capacities to deal with the long-term
424 effects of paclitaxel even after the drug's withdrawal.

425 Particularly for OC chemotherapy, poor prognosis is often characterised by primary disease response
426 followed by disease relapse (43,44). Over subsequent chemotherapy doses, a resistant pool of drug-
427 tolerant cells emerges, that are highly resistant to both the primary chemotherapy as well as other
428 chemotherapy regimens (45). Given their importance to patient prognosis, we sought to generate
429 paclitaxel resistant (Pac_R) persister ccOC cells and assess the efficacy of the paclitaxel and CP91149
430 combination in these cells. OVTOKO and KOC7C cells were treated in culture with increasing doses of
431 paclitaxel nestled between drug-free holiday periods, akin to what occurs in the clinical setting (45,46).
432 Cells were deemed paclitaxel resistant when they displayed exponential growth in the presence of GI_{50}
433 levels of the compound. Then, Control and Pac_R cells were treated with GI_{50} levels of paclitaxel
434 alongside 20 μ M CP91149. Change in confluency was measured using the Incucyte S3 system and
435 endpoint cell number was also enumerated after 72 hours. Both Figure 4C and 4D show that OVTOKO

436 and KOC7C Pac_R cells were robustly resistant to GI₅₀ levels of paclitaxel. The paclitaxel response curves
437 for Pac_R cells in Figure 4C revert nearly the same growth rate as control cells, whereas endpoint cell
438 numbers highlight that the dose that caused 90% reduction in growth for control cells only reduced
439 growth by 30% in Pac_R cells. Interestingly, assessing the combination of paclitaxel with CP91149, Pac_R
440 cells were equally sensitive to control cells, illustrated both in terms of time-lapse confluence (Figure
441 4C) and endpoint cell number (Figure 4D). This highlights the potency of the drug combination, and
442 potentially insinuates that PYG has a direct impact on paclitaxel resistance. Given that acquired
443 chemoresistance is often a cause of poor prognosis for cancer patients, including ccOC and ccRCC
444 patients, the observation that PYG inhibition can revert paclitaxel resistance can prove therapeutically
445 useful (47,48).

446

447 *Combination-treated cells undergo ferroptotic cell death*

448 Because of the magnitude of the effect for paclitaxel combined with CP91149, as well as the combination
449 efficacy being retained in Pac_R cells, we wanted to further investigate the cause of this synergism. First,
450 we assessed the mode of cell death elicited by combined treatment of paclitaxel and CP91149. Once
451 again, time-lapse fluorescence microscopy was adopted using Annexin-V and PI. Cells (OVTOKO and
452 KOC7C ccOC cells and 786-O and A498 ccRCC cells) were treated with GI₅₀ concentrations of paclitaxel
453 alongside 20 μ M CP91149 and imaged every 30 minutes using the Incucyte S3 system as above. Cells
454 were demarcated into AV+PI, AV-PI+, AV+PI+ or AV-PI-, and these were plotted with time; the
455 frequencies of these populations for cells treated with paclitaxel and 20 μ M CP91149 are shown in
456 Figure 5A. Interestingly, in contrast to the early AV positivity followed by late dual positivity observed
457 for CP91149-treated cells (Figure 1D), it was observed that for all four lines, cells treated with
458 combination therapy underwent simultaneous annexin-V-PI dual-positivity (Figure 5A). This suggests
459 that phosphatidylserine exposure does not preclude membrane rupture but rather occur alongside it, or
460 even as a result of it. Such a trend is unlikely to be seen with apoptotic cell death, and is more likely
461 reflective of non-apoptotic, necrotic modes of cell death (34,49-51).

462 We sought to determine the mode of non-apoptotic cell death elicited by treatment with paclitaxel and
463 CP91149. We attempted to rescue combination efficacy with inhibitors for several cell death pathways:
464 chloroquine for autophagic cell death, necrostatin-1 for necroptotic cell death, deferoxamine for
465 ferroptotic cell death, and z-VAD FMK for apoptotic cell death (Figure 5B). We reasoned that a rescuing
466 of the observed synergism would be suggestive of the cell death pathway of combination-treated cells.
467 Cells were treated with the combination of paclitaxel and CP91149 in the presence of rescue agents,
468 and endpoint cell number was calculated as previously. Figure 5B shows that neither zVAD-FMK,
469 necrostatin-1 nor chloroquine elicited any marked shift in the dose-response curves, suggesting that
470 cells are not undergoing apoptotic, necroptotic, or autophagic cell death. Notably, iron chelator
471 deferoxamine was the only agent to consistently reduce combination efficacy, as demonstrated by an
472 upward shift of both the paclitaxel-treated and combination-treated dose-response curves in all four cell
473 lines (Figure 5B), suggesting cells were undergoing ferroptotic death. Ferroptosis is an iron-dependant
474 form of cell death that culminates in peroxidation of the lipid membrane and is mediated by the
475 glutathione peroxidase 4-driven antioxidant state of cells (52,53). Importantly, CCCs have previously
476 been shown hypersensitive to ferroptosis, owing to a GPX4-dependant cell state (12). Furthermore,
477 ferroptosis has previously been shown to be an achilles' heel of drug-tolerant persister cells (45), which
478 perhaps explains the efficacy of combination treatment in paclitaxel-resistant lines in Figure 4.

479 *CCC cells treated with combined CP91149 and paclitaxel display hallmarks of ferroptosis*

480 We examined whether cells treated with paclitaxel and CP91149 were undergoing ferroptosis by
481 assessing several markers that characterise the phenotype: mitochondrial hyperpolarisation, transferrin
482 receptor translocation, increased labile iron, and lipid peroxidation. Mitochondrial hyperpolarisation has
483 been shown to drive ferroptosis by facilitating the rapid depletion of the cellular antioxidant system (54).
484 We examined mitochondrial membrane potential by fluorescence microscopy using the rhodamine dye
485 TMRE. Cells were pre-incubated with TMRE for 30 minutes, treated with indicated compounds, and the
486 steady-state TMRE fluorescence per cell was measured using the Incucyte S3. Figure 6A shows that
487 there was a slight increase in TMRE fluorescence per cell for treatment with 20 μ M of CP91149, and a

488 robust increase for both paclitaxel and combination-treated cells. For OVTOKO this corresponded to a
489 two-fold increase, for KOC7C and A498 a 5-fold increase, and for 786-O a 7-fold increase in TMRE
490 fluorescence per cell. Hence, Figure 6A suggests that CP91149 and paclitaxel treatment increases
491 mitochondrial membrane potential and corroborates ferroptosis.

492 Transferrin receptor membrane translocation and the labile iron pool facilitate iron entry into cells and
493 iron-catalysed lipid peroxidation and are thus also markers for ferroptosis (53,55). Both were measured
494 by flow cytometry on cells treated with paclitaxel and CP91149 for 24 hours. Membrane transferrin
495 receptor (TfR1) has recently been shown to be a faithful marker for ferroptosis induction, presumably
496 because transferrin facilitates iron entry and thus facilitates increases in the labile iron pool (55). We
497 measured membrane expression of TfR1 using anti-human CD71-PE conjugate by flow cytometry
498 (Figure 6B). We found that both paclitaxel and the combination treatment resulted in increased TfR1
499 expression for all four lines by approximately 40%. This suggests an increase in labile iron and a priming
500 for ferroptosis.

501 We next measured labile iron pool using the dye calcein-AM (Figure 6C) which is robustly quenched by
502 intracellular iron (52). Figure 6C shows that calcein fluorescence decreased with both paclitaxel and
503 combination treatment for all four lines, quite robustly for ccOC lines OVTOKO and KOC7C and ccRCC
504 line A498 (~60% reduction), and slightly for ccRCC line 786-O (~25%). This corroborates trends for
505 TfR1 translocation and suggests paclitaxel and combination treatment for all four lines facilitates
506 ferroptosis.

507 The final cytotoxic event of ferroptosis is peroxidation of the lipid membrane, which disrupts membrane
508 integrity and thus elicits cell death (52). Lipid peroxidation can also be measured flow cytometrically,
509 with the BODIPY dye 581/91-C11, a specific marker of peroxidised lipids. BODIPY-C11 fluorescence
510 was measured in cells treated for 24 hours with 20 μ M of CP91149, GI₅₀ paclitaxel, or a combination.
511 Figure 6D shows that paclitaxel caused a slight shift in BODIPY-FITC fluorescence for OVTOKO,
512 KOC7C, and A498 cells, and no foreseeable shift for 786-O cells. This is reflected in a doubling of MFI
513 values for OVTOKO and A498, and a 3-fold increase for KOC7C. Combination therapy elicited a greater

514 shift for OVTKO, KOC7C and 786-O cells, while it elicited an equivalent shift to paclitaxel in A498
515 cells. This is reflected in a doubling of MFI values for 786-O and A498 cells, and a 4-fold increase for
516 OVTKO and KOC7C cells compared to control. This increased lipid peroxidation supports the
517 trajectory of ferroptotic cell death.

518 Our data suggests cotreatment with paclitaxel and CP91149 causes ferroptosis, however it remains to
519 be seen how this drug combination is causing ferroptotic cell death in specifically CCCs. Interestingly,
520 paclitaxel monotherapy augurs many of the hallmarks of ferroptosis, including increased mitochondrial
521 membrane potential, increased labile iron and increased membrane TfR1 expression (Figure 6). The
522 ability of taxol to increase mitochondrial membrane potential has been reported previously and
523 suggested to be the result of a decrease in cytoplasmic free tubulin, which can act to depolarise
524 mitochondria (56). It is possible that this presents a sufficient ferroptotic stimulus to CCCs, which
525 are already hypersensitive to ferroptosis, when PYG is inhibited to a sufficient extent to modulate redox
526 potential. If this were the case, one would hypothesise that different tubulin- and cell cycle-targeted
527 drugs would not engender similar synergism.

528 To test this hypothesis, we tried both the microtubule destabiliser nocodazole and the PLK-1 inhibitor
529 BI2596 in combination with 20 μ M CP91149. Nocodazole acts in the opposite way to paclitaxel,
530 destabilising microtubules and thus increasing free tubulin (56). BI2596 inhibits the enzyme polo-like
531 kinase 1 (PLK1), which serves as an early trigger to G2/M transition, and thus inhibits mitosis via a
532 different mechanism altogether to paclitaxel and nocodazole (57). We treated OVTKO and KOC7C
533 ccOC cells with both inhibitors alongside CP91149 (Supplementary Figure 2). Supplementary Figure 2
534 shows that the curves of both nocodazole and BI2536 shifted downwards with the addition of CP91149,
535 but not to the same marked extent as paclitaxel. For nocodazole, the addition of CP91149 elicited a
536 small shift in GI_{50} values (20% reduction); whilst for BI2536 it was a more pronounced effect – 60% for
537 paclitaxel and 70% for KOC7C. The observation that nocodazole – which acts similarly to paclitaxel –
538 does not similarly synergise with CP91149 is important, as it suggests synergism is specific to agents
539 that decrease free tubulin. However, it is interesting to note that the dose-response curve of PLK1

540 inhibitor BI2536 did shift more markedly with CP91149, which may indicate additional mechanisms of
541 synergy between PYG inhibitors and cell-cycle targeted drugs. This would support suggestions of the
542 importance of PYG in cell cycle progression in both cancerous and normal physiology settings (3,7,58).

543

544

DISCUSSION

545 The present work investigated CP91149, an inhibitor of the indole carboxamide site of all PYG isoforms.
546 The inhibitor as a monotherapy induced dose dependant effects in CCC lines akin to that which had
547 been previously shown in non CCC lines, specifically hepatocellular carcinoma and PDAC lines (30,32).
548 Interestingly however, synergism with microtubule disrupting chemotherapy paclitaxel was noted only
549 in CCC lines. Given that small-molecule inhibitors can elicit off-target effects, we verified our synergistic
550 efficacy with a second inhibitor for a different PYG site; BAY R3401, an allosteric site inhibitor of the
551 phosphorylase- α subunit. A necessary future direction for the present work is to verify this synergistic
552 efficacy using genetic approaches to PYG silencing, however such approaches may be encumbered by
553 compensation between isoforms as well as the potential that different phenotypic effects may be elicited
554 by inhibiting the enzyme constitutively versus at a specific point in time.

555 The combination of paclitaxel with PYG inhibition seems to promote ferroptotic cell death, given that
556 cytotoxicity was rescued by the iron chelator deferoxamine, and that combination therapy displayed
557 many of the signatures of ferroptosis. It is not entirely clear how this combination therapy is eliciting
558 ferroptosis. That the combination of paclitaxel with CP91149 is specifically potent in CCCs is perhaps
559 explained by the hypersensitivity of the histotype to ferroptosis, owing to a pseudohypoxia-based
560 reliance on glutathione peroxidase 4 (GPX4), a master gatekeeper of ferroptosis (12,59). Zou and
561 colleagues (2019) recently found that HIFs selectively enrich polyunsaturated lipids, the rate-limiting
562 substrates for lipid peroxidation, in CCCs, which render cells hypersensitive to the induction of
563 ferroptosis by the inhibition of GPX4. In the present setting, we hypothesise that PYG inhibition lends
564 itself to ferroptosis by hampering the antioxidant capacity of CCCs, a hypothesis supported by a

565 CP91149-based increase in mitochondrial reactive oxygen species. Interestingly, glycogen metabolism
566 has been implicated in ferroptosis in the past, with an upstream modulator of PYG, phosphorylase
567 kinase G (PHKG2), recently implicated as a modulator of labile iron and ferroptosis by Yang and
568 colleagues (2016) (52). Importantly though, the authors noted a ferroptosis-rescuing effect with PHKG2
569 silencing and postulated this to be due to a moonlighting effect of the enzyme, separate to its role in
570 glycogenolysis, given that this rescue was not recapitulated by PYG inhibition (52). Importantly, the
571 authors did note a ferroptosis sensitising effect with CP91149, a phenomenon that supports the findings
572 of the present work (52).

573 The role of paclitaxel in eliciting ferroptosis is an intriguing one; although taxol has previously been
574 shown to cause ferroptosis (53), the link between cell cycle arrest and ferroptosis is currently tenuous.
575 Moreover, in the present work we have shown that two other cell cycle inhibitors – microtubule
576 destabiliser nocodazole and PLK1 inhibitor BI-2596 – do not similarly synergise with PYG inhibition nor
577 seem to augur ferroptotic cell death. We hypothesise that the specificity of paclitaxel may be due to the
578 drug's unique effect on free tubulin; as a microtubule stabiliser paclitaxel diminishes the amount of free
579 tubulin in the cytosol (56). Free tubulin can act directly on mitochondrial voltage-dependant anion channels
580 to depolarise mitochondria (56). A lack of free tubulin can hyperpolarise mitochondria, which has been
581 shown to sensitise cells to ferroptosis (54). In this regard, it may also be useful to assess whether
582 paclitaxel synergises with existing ferroptosis inducers, such as those targeting system XC or GPX4.
583 These compounds have thus far been encumbered pre-clinically by poor bioavailability and
584 pharmacokinetic properties (59-61); the combining them with existing chemotherapeutic agents may
585 potentially provide a therapeutic window.

586

CONCLUSIONS

587 In conclusion, the present work shows that PYG inhibition may improve the efficacy of paclitaxel
588 chemotherapy against CCCs. However future work is required to decide and assess the ideal dosing
589 regimen for *in vivo* studies.

590

ABBREVIATIONS

591 **CCC**: Clear cell carcinoma
592 **ccOC**: Clear cell ovarian cancer
593 **ccRCC**: Clear cell renal cell carcinoma
594 **GPX4**: glutathione peroxidase
595 **GS**: glycogen synthase
596 **PYG**: Glycogen Phosphorylase
597 **CI**: Combination Index
598 **HGSOC**: High Grade Serous Ovarian Cancer
599 **PacR**: Paclitaxel Resistant

600

601 REFERENCES

602 1. Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between Metabolism and
603 Cancer Biology. *Cell* **2017**;168:657-69
604 2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* **2011**;144:646-74
605 3. Khan T, Sullivan MA, Gunter JH, Kryza T, Lyons N, He Y, *et al*. Revisiting Glycogen in Cancer:
606 A Conspicuous and Targetable Enabler of Malignant Transformation. *Frontiers in Oncology*
607 **2020**;10
608 4. Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and
609 provides new targets for cancer therapy. *J Mol Med (Berl)* **2016**;94:137-54
610 5. Cheng KW, Agarwal R, Mitra S, Lee J-S, Carey M, Gray JW, *et al*. Rab25 increases cellular ATP
611 and glycogen stores protecting cancer cells from bioenergetic stress. *EMBO Mol Med*
612 **2012**;4:125-41
613 6. Witney TH, Carroll L, Alam IS, Chandrashekran A, Nguyen Q-D, Sala R, *et al*. A Novel
614 Radiotracer to Image Glycogen Metabolism in Tumors by Positron Emission Tomography.
615 *Cancer Research* **2014**;74:1319-28

616 7. Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C, *et al.* Glucose utilization
617 via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer
618 cells. *Cell Metab* **2012**;16:751-64

619 8. Ji JX, Wang YK, Cochrane DR, Huntsman DG. Clear cell carcinomas of the ovary and kidney:
620 clarity through genomics. *The Journal of pathology* **2018**;244:550-64

621 9. Zhou Z, Kinslow CJ, Hibshoosh H, Guo H, Cheng SK, He C, *et al.* Clinical Features, Survival
622 and Prognostic Factors of Glycogen-Rich Clear Cell Carcinoma (GRCC) of the Breast in the U.S.
623 Population. *J Clin Med* **2019**;8

624 10. Barrera-Maldonado CD, Wiener I, Sim S. Clear cell adenocarcinoma of the colon: a case report
625 and review of the literature. *Case Rep Oncol Med* **2014**;2014:905478-

626 11. Abdulfatah E, Sakr S, Thomas S, Al-Wahab Z, Mutch DG, Dowdy S, *et al.* Clear Cell Carcinoma
627 of the Endometrium: Evaluation of Prognostic Parameters in a Multi-institutional Cohort of 165
628 Cases. *International journal of gynecological cancer : official journal of the International
629 Gynecological Cancer Society* **2017**;27:1714-21

630 12. Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, *et al.* A GPX4-dependent cancer cell state
631 underlies the clear-cell morphology and confers sensitivity to ferroptosis. *Nature
632 Communications* **2019**;10:1617

633 13. Yamaguchi K, Mandai M, Oura T, Matsumura N, Hamanishi J, Baba T, *et al.* Identification of an
634 ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the
635 carcinogenic processes. *Oncogene* **2010**;29:1741-52

636 14. Iida Y, Okamoto A, Hollis RL, Gourley C, Herrington CS. Clear cell carcinoma of the ovary: a
637 clinical and molecular perspective. *International Journal of Gynecologic Cancer* **2020**:ijgc-2020-
638 001656

639 15. Khan T, He Y, Kryza T, Harrington BS, Gunter JH, Sullivan MA, *et al.* Disruption of Glycogen
640 Utilization Markedly Improves the Efficacy of Carboplatin against Preclinical Models of Clear Cell
641 Ovarian Carcinoma. *Cancers* **2020**;12

642 16. Curtis M, Kenny HA, Ashcroft B, Mukherjee A, Johnson A, Zhang Y, *et al.* Fibroblasts Mobilize
643 Tumor Cell Glycogen to Promote Proliferation and Metastasis. *Cell metabolism* **2019**;29:141-
644 55.e9

645 17. Coscia F, Watters KM, Curtis M, Eckert MA, Chiang CY, Tyanova S, *et al.* Integrative proteomic
646 profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional
647 status. *Nature Communications* **2016**;7:12645

648 18. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by
649 comparison of genomic profiles. *Nature Communications* **2013**;4:2126

650 19. Park SK, Haase VH, Johnson RS. von Hippel Lindau tumor suppressor regulates hepatic
651 glucose metabolism by controlling expression of glucose transporter 2 and glucose 6-
652 phosphatase. *Int J Oncol* **2007**;30:341-8

653 20. Maruggi M, Layng FI, Lemos R, Garcia G, James BP, Sevilla M, *et al.* Absence of HIF1A Leads
654 to Glycogen Accumulation and an Inflammatory Response That Enables Pancreatic Tumor
655 Growth. *Cancer Research* **2019**;79:5839-48

656 21. Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, *et al.* The Cancer Genome
657 Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. *Cell reports*
658 **2018**;23:313-26.e5

659 22. Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A, *et al.* An Integrated Metabolic
660 Atlas of Clear Cell Renal Cell Carcinoma. *Cancer cell* **2016**;29:104-16

661 23. Creighton CJ, Morgan M, Gunaratne PH, Wheeler DA, Gibbs RA, Gordon Robertson A, *et al.*
662 Comprehensive molecular characterization of clear cell renal cell carcinoma. *Nature*
663 **2013**;499:43-9

664 24. Lu Y, Luo G, Zhu S, Wang X, Chen Y, Dong Z, *et al.* The different expression of glycogen
665 phosphorylases in renal clear cell renal carcinoma and chromophobe renal carcinoma. *Clinical*
666 *Proteomics* **2020**;17:7

667 25. Chen S-I, Huang Q-s, Huang Y-h, Yang X, Yang M-m, He Y-f, *et al.* GYS1 induces glycogen
668 accumulation and promotes tumor progression via the NF-κB pathway in Clear Cell Renal
669 Carcinoma. *Theranostics* **2020**;10:9186-99

670 26. Xie H, Song J, Godfrey J, Riscal R, Skuli N, Nissim I, *et al.* Glycogen metabolism is dispensable
671 for tumour progression in clear cell renal cell carcinoma. *Nature Metabolism* **2021**;3:327-36

672 27. Donnier-Marechal M, Vidal S. Glycogen phosphorylase inhibitors: a patent review (2013 - 2015).
673 *Expert Opin Ther Pat* **2016**;26:199-212

674 28. Schnier JB, Nishi K, Monks A, Gorin FA, Bradbury EM. Inhibition of glycogen phosphorylase
675 (GP) by CP-91,149 induces growth inhibition correlating with brain GP expression. *Biochemical*
676 and *biophysical research communications* **2003**;309:126-34

677 29. Oikonomakos NG, Schnier JB, Zographos SE, Skamnaki VT, Tsitsanou KE, Johnson LN.
678 Flavopiridol inhibits glycogen phosphorylase by binding at the inhibitor site. *Journal of Biological*
679 *Chemistry* **2000**;275:34566-73

680 30. Ma D, Wang J, Zhao Y, Lee W-NP, Xiao J, Go VLW, *et al.* Inhibition of glycogen phosphorylation
681 induces changes in cellular proteome and signaling pathways in MIA pancreatic cancer cells.
682 *Pancreas* **2012**;41:397-408

683 31. Martin WH, Hoover DJ, Armento SJ, Stock IA, McPherson RK, Danley DE, *et al.* Discovery of a
684 human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. *Proceedings of*
685 *the National Academy of Sciences of the United States of America* **1998**;95:1776-81

686 32. Barot S, Abo-Ali EM, Zhou DL, Palaguachi C, Dukhande VV. Inhibition of glycogen catabolism
687 induces intrinsic apoptosis and augments multikinase inhibitors in hepatocellular carcinoma
688 cells. *Experimental Cell Research* **2019**;381:288-300

689 33. Aiston S, Hampson L, Gómez-Foix AM, Guinovart JJ, Agius L. Hepatic glycogen synthesis is
690 highly sensitive to phosphorylase activity: evidence from metabolic control analysis. *J Biol Chem*
691 **2001**;276:23858-66

692 34. Gelles JD, Chipuk JE. Robust high-throughput kinetic analysis of apoptosis with real-time high-
693 content live-cell imaging. *Cell Death & Disease* **2016**;7:e2493-e

694 35. Lokman NA, Ho R, Gunasegaran K, Bonner WM, Oehler MK, Ricciardelli C. Anti-tumour effects
695 of all-trans retinoid acid on serous ovarian cancer. *Journal of experimental & clinical cancer*
696 *research : CR* **2019**;38:10

697 36. Zois CE, Favaro E, Harris AL. Glycogen metabolism in cancer. *Biochem Pharmacol* **2014**;92:3-
698 11

699 37. Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to Systemic
700 Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies.
701 *Molecular cancer therapeutics* **2018**;17:1355-64

702 38. Tan DSP, Miller RE, Kaye SB. New perspectives on molecular targeted therapy in ovarian clear
703 cell carcinoma. *British journal of cancer* **2013**;108:1553-9

704 39. Chou T-C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay
705 Method. *Cancer Research* **2010**;70:440

706 40. Chou T-C. The combination index (CI < 1) as the definition of synergism and of synergy claims.
707 *Synergy* **2018**;7:49-50

708 41. García-Fuente A, Vázquez F, Viéitez JM, García Alonso FJ, Martín JI, Ferrer J. CISNE: An
709 accurate description of dose-effect and synergism in combination therapies. *Scientific Reports*
710 **2018**;8:4964

711 42. Zhang L, Yan Z, Wang Y, Song C, Miao G. Design, Synthesis, and Biological Application of
712 Novel Photoaffinity Probes of Dihydropyridine Derivatives, BAY R3401. *Molecules* (Basel,
713 Switzerland) **2019**;24:2394

714 43. Giornelli G, Mando P. A THEORETICAL VIEW OF OVARIAN CANCER RELAPSE. 2017. 128-
715 35 p.

716 44. Giornelli GH. Management of relapsed ovarian cancer: a review. *SpringerPlus* **2016**;5:1197-

717 45. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant
718 persister cancer cells are vulnerable to GPX4 inhibition. *Nature* **2017**;551:247-50

719 46. McDermott M, Eustace AJ, Busschots S, Breen L, Crown J, Clynes M, *et al.* In vitro Development
720 of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide
721 with Case Studies. *Frontiers in oncology* **2014**;4:40-

722 47. Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance.
723 *Biochimica et Biophysica Acta (BBA) - Reviews on Cancer* **2019**;1872:188310

724 48. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. *Cancer*
725 *Drug Resistance* **2019**;2:141-60

726 49. Serasinghe MN, Gelles JD, Li K, Zhao L, Abbate F, Syku M, *et al.* Dual suppression of inner and
727 outer mitochondrial membrane functions augments apoptotic responses to oncogenic MAPK
728 inhibition. *Cell Death & Disease* **2018**;9:29

729 50. Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ. Quantitation of Apoptosis and Necrosis by
730 Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry. *Cold Spring Harbor protocols*
731 **2016**;2016

732 51. Shlomovitz I, Speir M, Gerlic M. Flipping the dogma – phosphatidylserine in non-apoptotic cell
733 death. *Cell Communication and Signaling* **2019**;17:139

734 52. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of
735 polyunsaturated fatty acids by lipoxygenases drives ferroptosis. *Proceedings of the National*
736 *Academy of Sciences of the United States of America* **2016**;113:E4966-E75

737 53. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, *et al.* Ferroptosis:
738 an iron-dependent form of nonapoptotic cell death. *Cell* **2012**;149:1060-72

739 54. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, *et al.* Role of Mitochondria in
740 Ferroptosis. *Mol Cell* **2019**;73:354-63.e3

741 55. Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, *et al.* Transferrin Receptor Is
742 a Specific Ferroptosis Marker. *Cell Rep* **2020**;30:3411-23.e7

743 56. Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ. Free tubulin modulates mitochondrial
744 membrane potential in cancer cells. *Cancer research* **2010**;70:10192-201

745 57. Steegmaier M, Hoffmann M, Baum A, Lénárt P, Petronczki M, Krššák M, *et al.* BI 2536, a Potent
746 and Selective Inhibitor of Polo-like Kinase 1, Inhibits Tumor Growth In Vivo. *Current Biology*
747 **2007**;17:316-22

748 58. Zhao G, Chen Y, Carey L, Futcher B. Cyclin-Dependent Kinase Co-Ordinates Carbohydrate
749 Metabolism and Cell Cycle in *S. cerevisiae*. *Mol Cell* **2016**;62:546-57

750 59. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer.
751 *Cancer cell* **2019**;35:830-49

752 60. Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, *et al.* Imidazole Ketone Erastin
753 Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. *Cell chemical*
754 *biology* **2019**;26:623-33.e9

755 61. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, *et al.* Ferroptosis: A
756 Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. *Cell*
757 **2017**;171:273-85

758

759 **FIGURE LEGENDS**

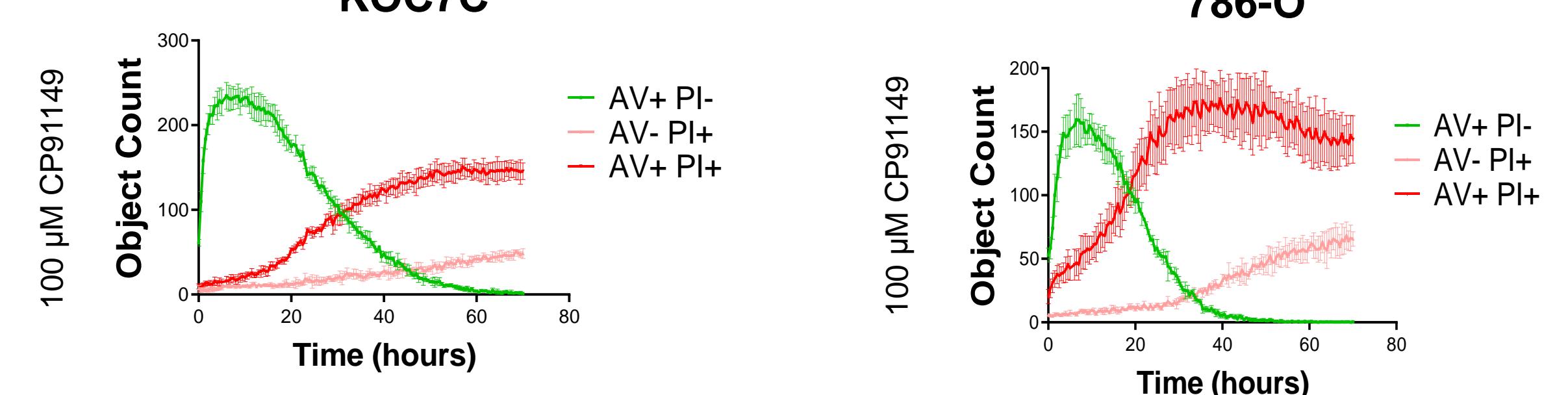
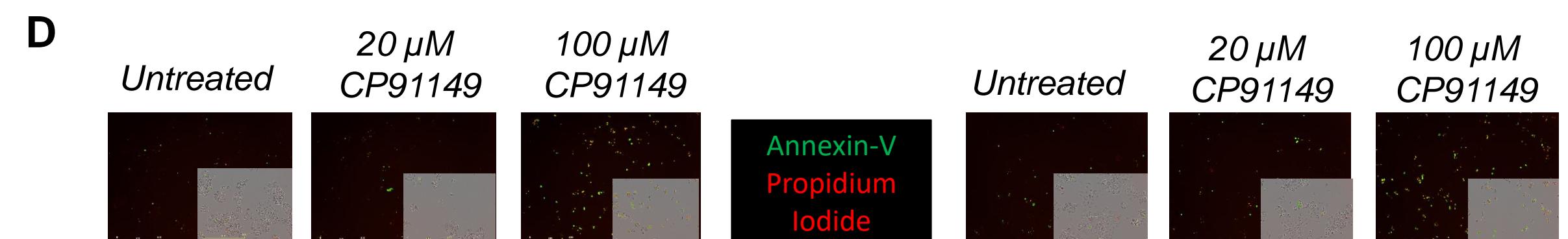
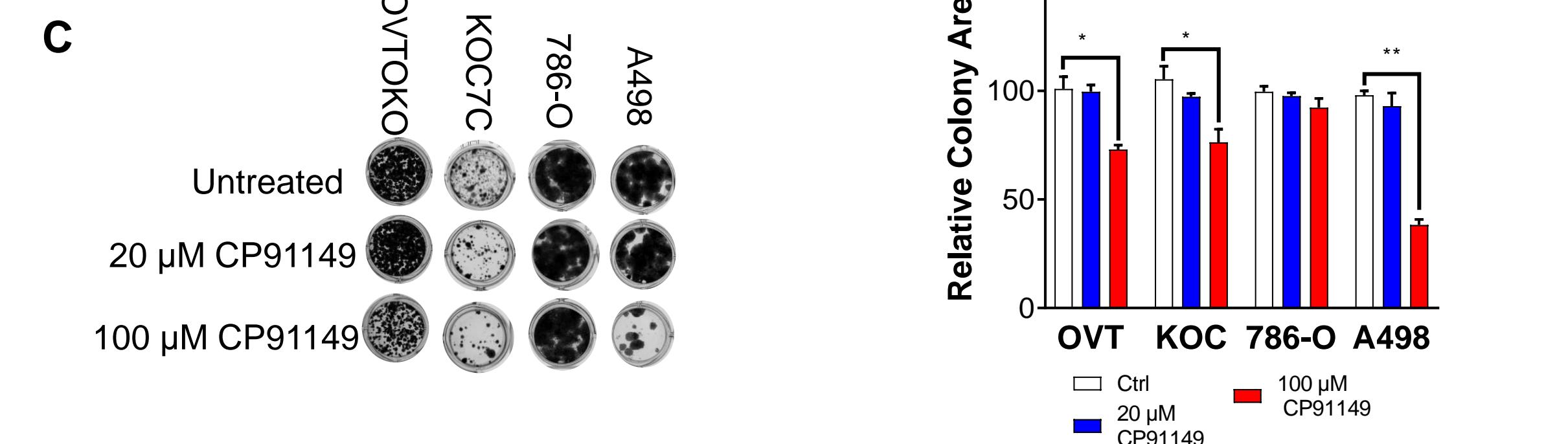
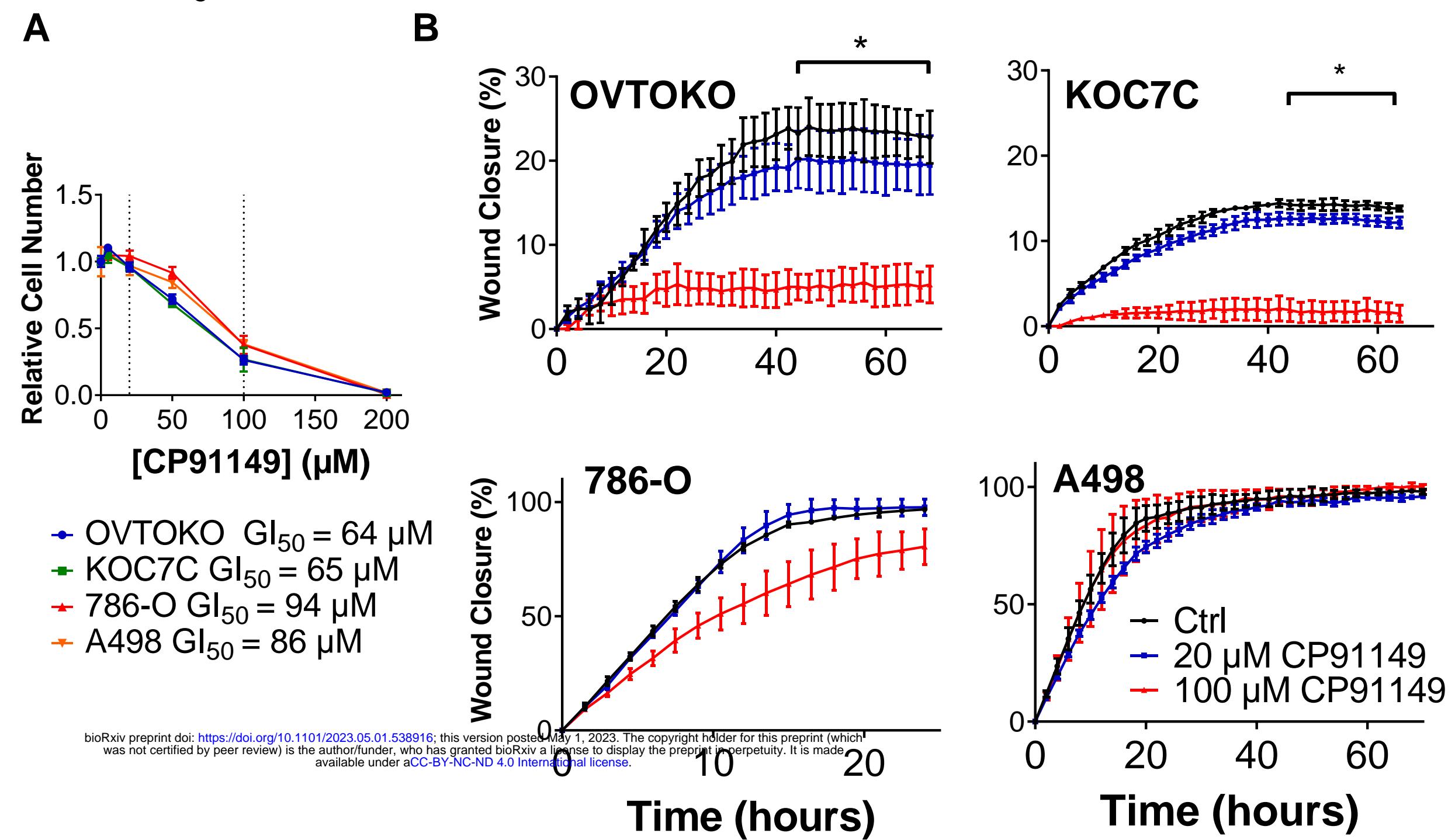
760 **Figure 1. CP91149 attenuates proliferation, migration and clonogenic survival in CCCs. A)**
761 CP91149 monotherapy efficacy was assessed in clear cell carcinoma lines. 3000 cells/well were plated
762 and allowed to attach overnight. Cells were then treated with indicated concentrations of CP91149 for
763 72 hours, followed by methanol fixation, DAPI staining and cell counting on the Incell 6500 system and
764 analysis using CellProfiler software. **B)** Cells (50,000/well) were allowed to attach overnight. On the day
765 of the assay, cells were pretreated for 12 hours with relevant drug concentrations, as well as Mitomycin
766 C (10 µg/mL for 2 hours). Cells were then scratched using an Essen Woundmaker, washed, replenished
767 with drug-containing media, and imaged every two hours using the Incucyte S3 system. **C)** Cells (50,
768 000 per well) were plated in 6 well-plates and allowed to attach overnight. Cells were then treated with
769 relevant drug concentrations for 72 hours, after which time cells were lifted and replated (1000/well) in
770 drug-free media, and grown for 2 weeks, then fixed and stained with crystal violet, imaged, and relative

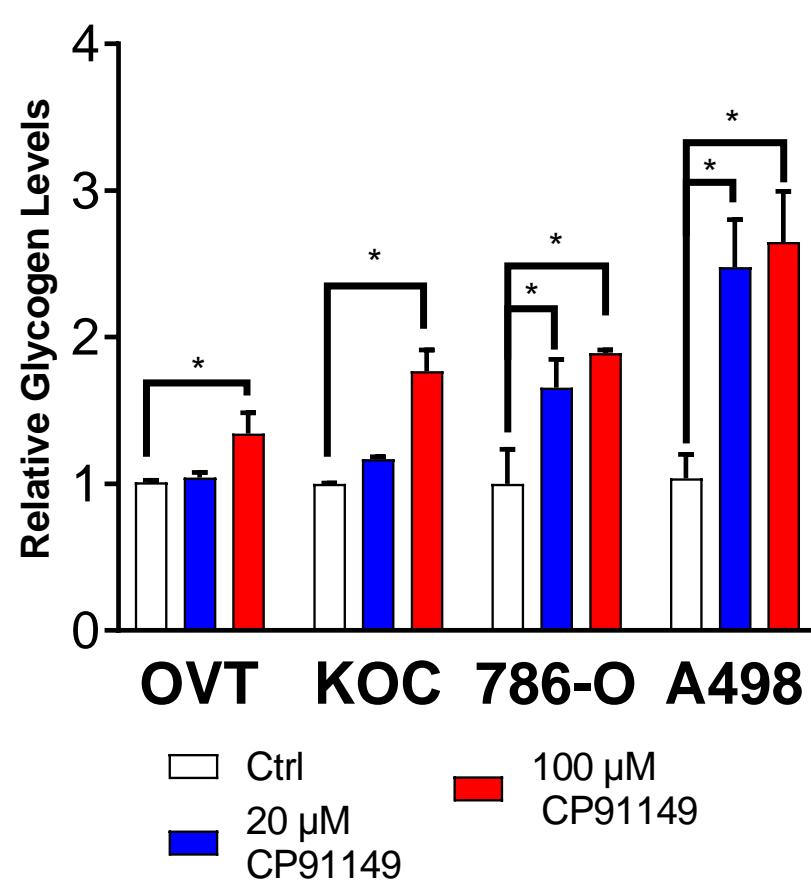
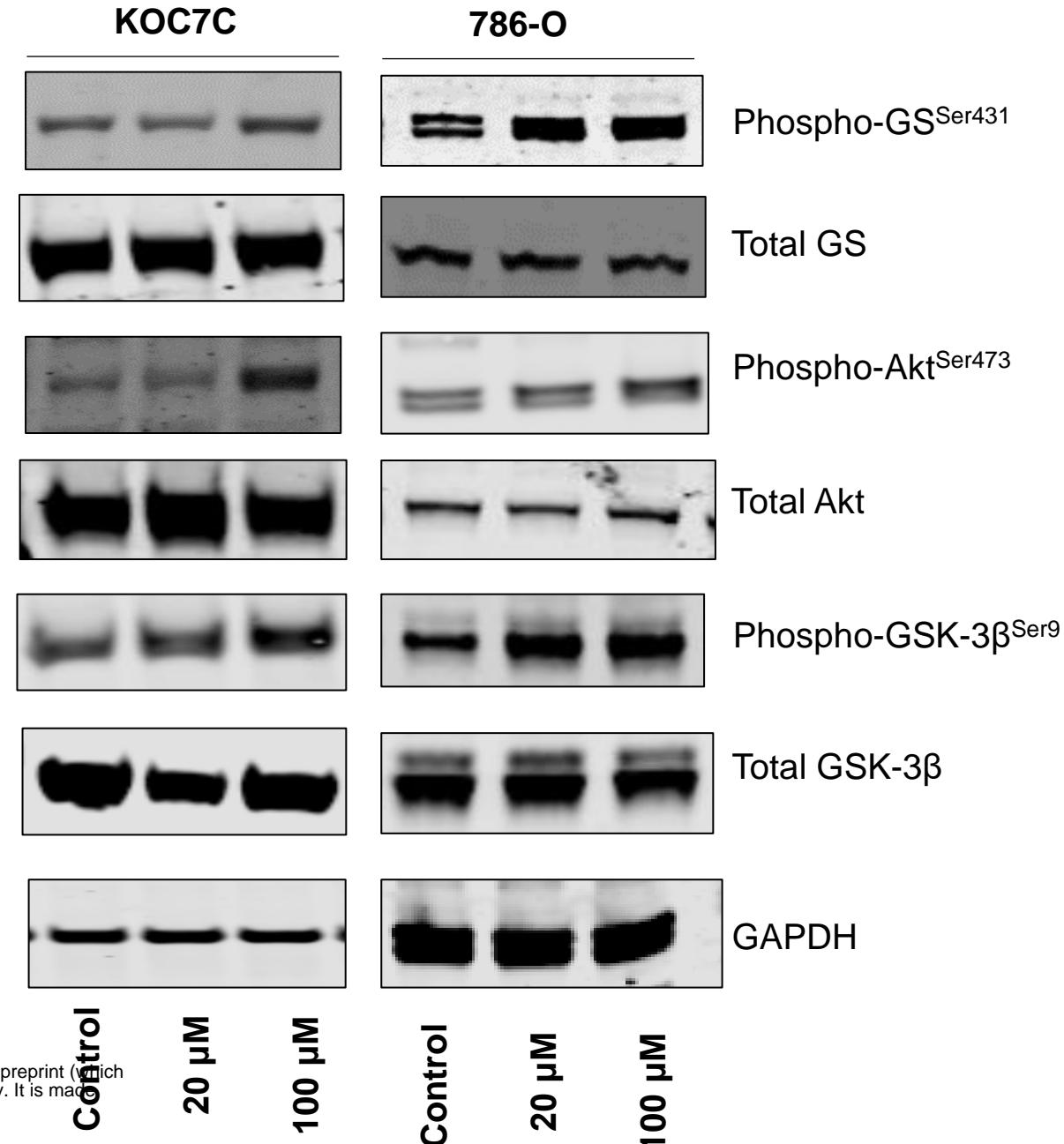
771 colony area calculated using ImageJ. **D)** Cells (4000/well) were plated in phenol red free DMEM medium
772 and allowed to attach overnight. On the day of assay pre-incubated in phenol red-free DMEM media
773 containing annexin V (AV; 1 µg/ml) and propidium iodide (PI; 1 µg/ml). Cells were then treated with
774 indicated concentrations of CP91149 and imaged every 30 minutes using the Incucyte S3 system.
775 Representative images from 72 hours are shown. Single cells were analysed using Incucyte software
776 and defined as either AV+PI-, AV-PI+, AV+PI+ or AV-PI-, and cell populations are plotted with time.
777 Data is presented as mean ± SEM and was analysed using a Mann-Whitney test with *p<0.05 **p<0.01,
778 ***p<0.005 and ****p<0.001

779

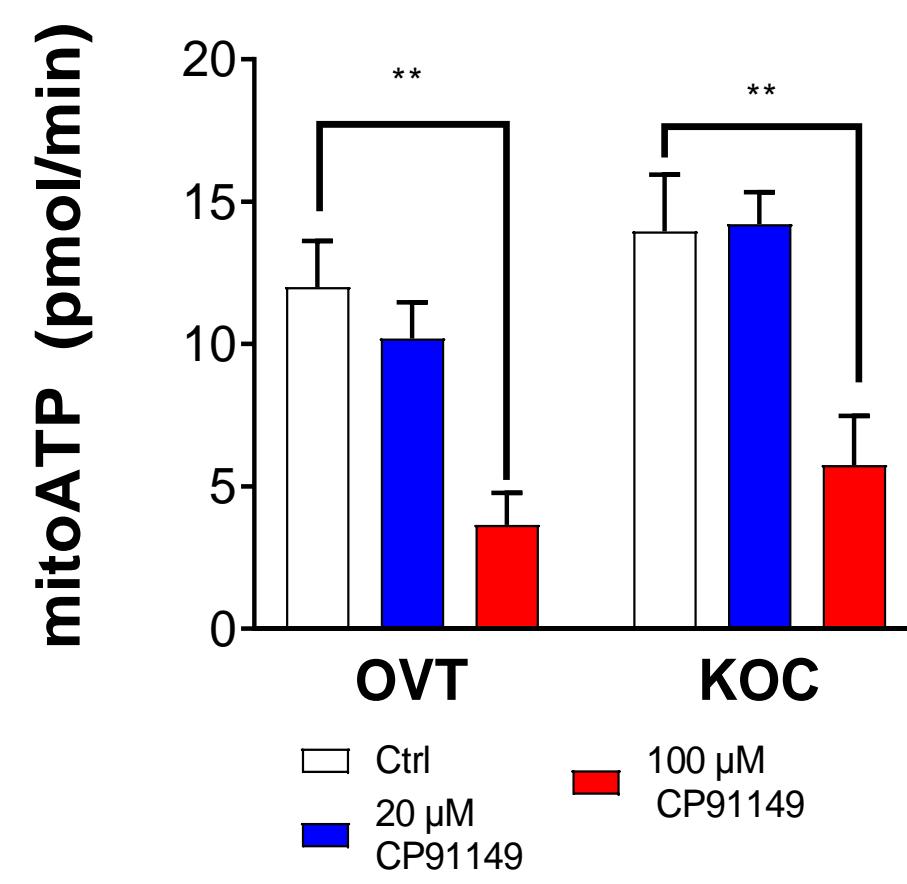
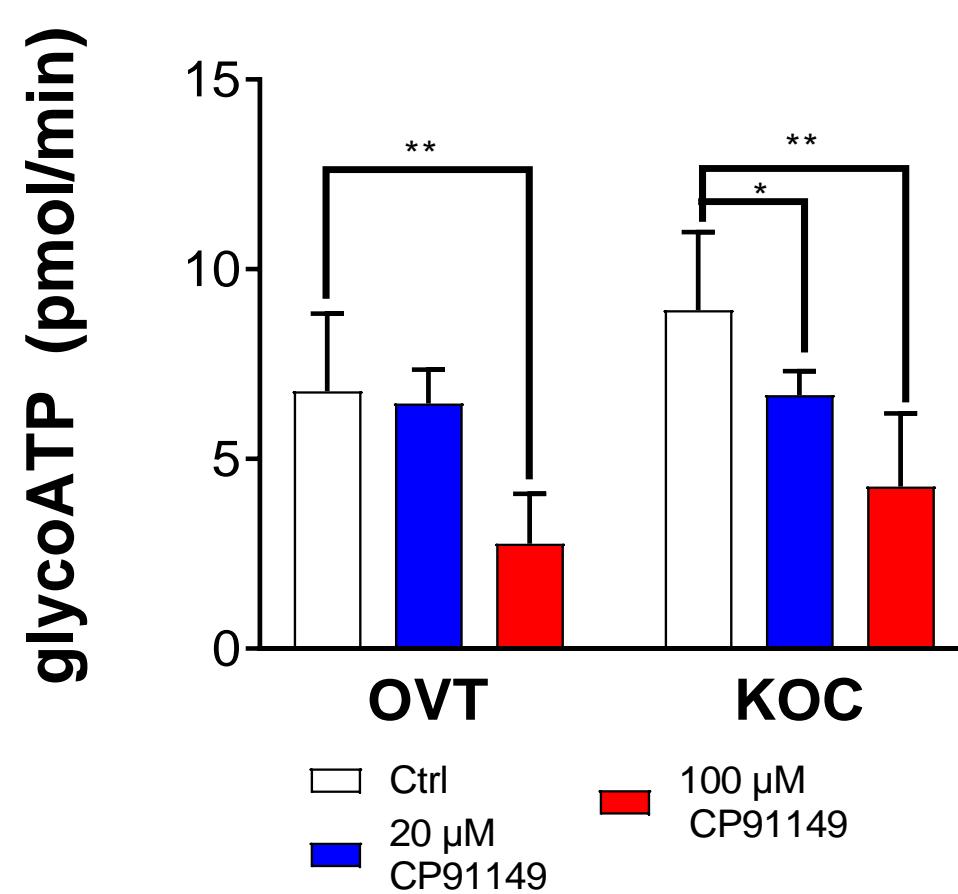
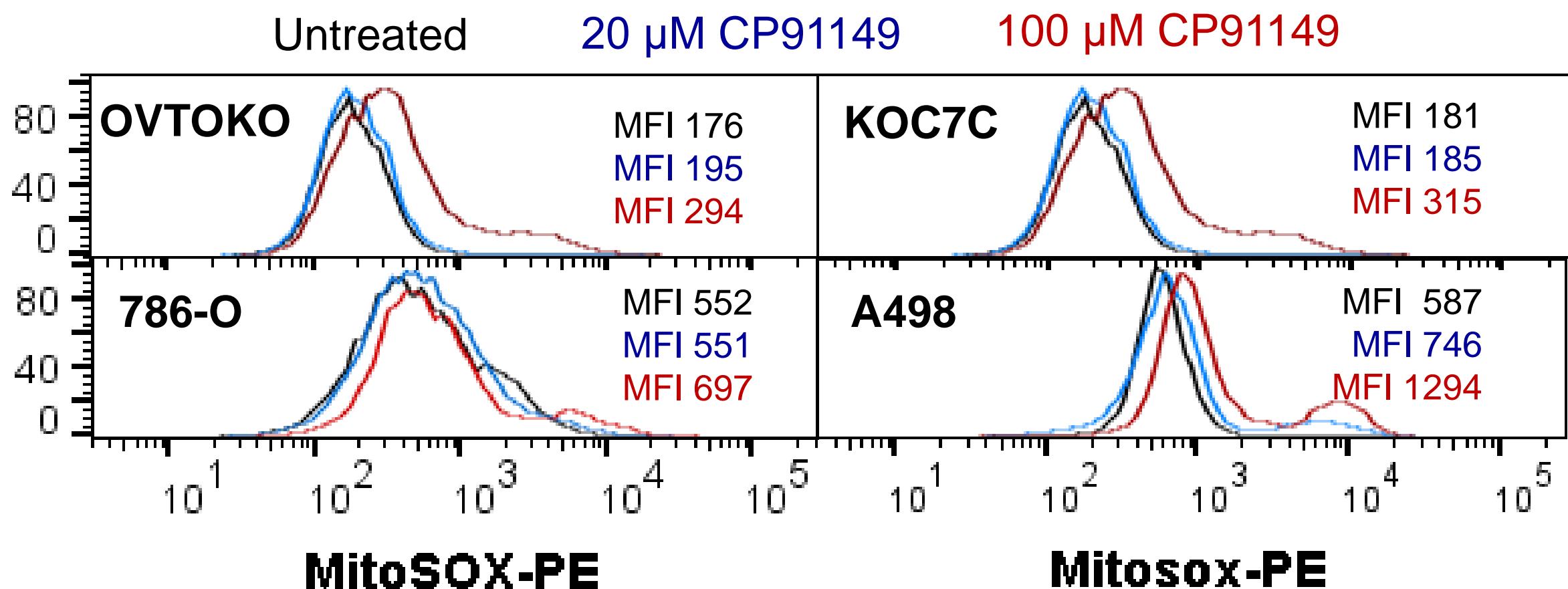
780 **Figure 2. CP91149 increases glycogen levels, reduces ATP levels and generates superoxide**
781 **ROS.** A) OVTOKO (OVT), KOC7C (KOC), 786-O and A498 cells were treated for 24 hours with relevant
782 drug concentrations and assayed for glycogen; Cells were lysed in glycogen isolation buffer, glycogen
783 degraded using amyloglucosidase, and glycogen-derived NADPH detected spectrophotometrically.
784 Glycogen levels were normalized to untreated control. B) Cells were treated overnight with relevant drug
785 concentrations, lysed in RIPA buffer, and immunoblotted for phospho Glycogen Synthase^{s641}, total
786 Glycogen synthase, phospho Glycogen Synthase^{s641}, total Glycogen synthase phospho-GSK3B^{s9}, and
787 total GSK3B. GAPDH was used as a loading control. C) Cells were treated overnight with relevant drug
788 concentrations and the Seahorse ATP Rate assay was performed. Glycolysis-derived ATP (GlycoATP)
789 and oxidative phosphorylation-derived ATP (MitoATP) are shown. Data was compared using a Mann-
790 Whitney test with *p<0.05 **p<0.01, ***p<0.005 and ****p<0.001. D) Cells were treated overnight in 6
791 well plates, followed by lifting and staining with MitoSOX Red and flow cytometry using the FACS
792 Fortessa (minimum 10,000 events acquired). Mean fluorescent intensity (MFI) is shown in inset. Where
793 relevant, data was compared using a Mann-Whitney test with *p<0.05 **p<0.01, ***p<0.005 and
794 ****p<0.001.

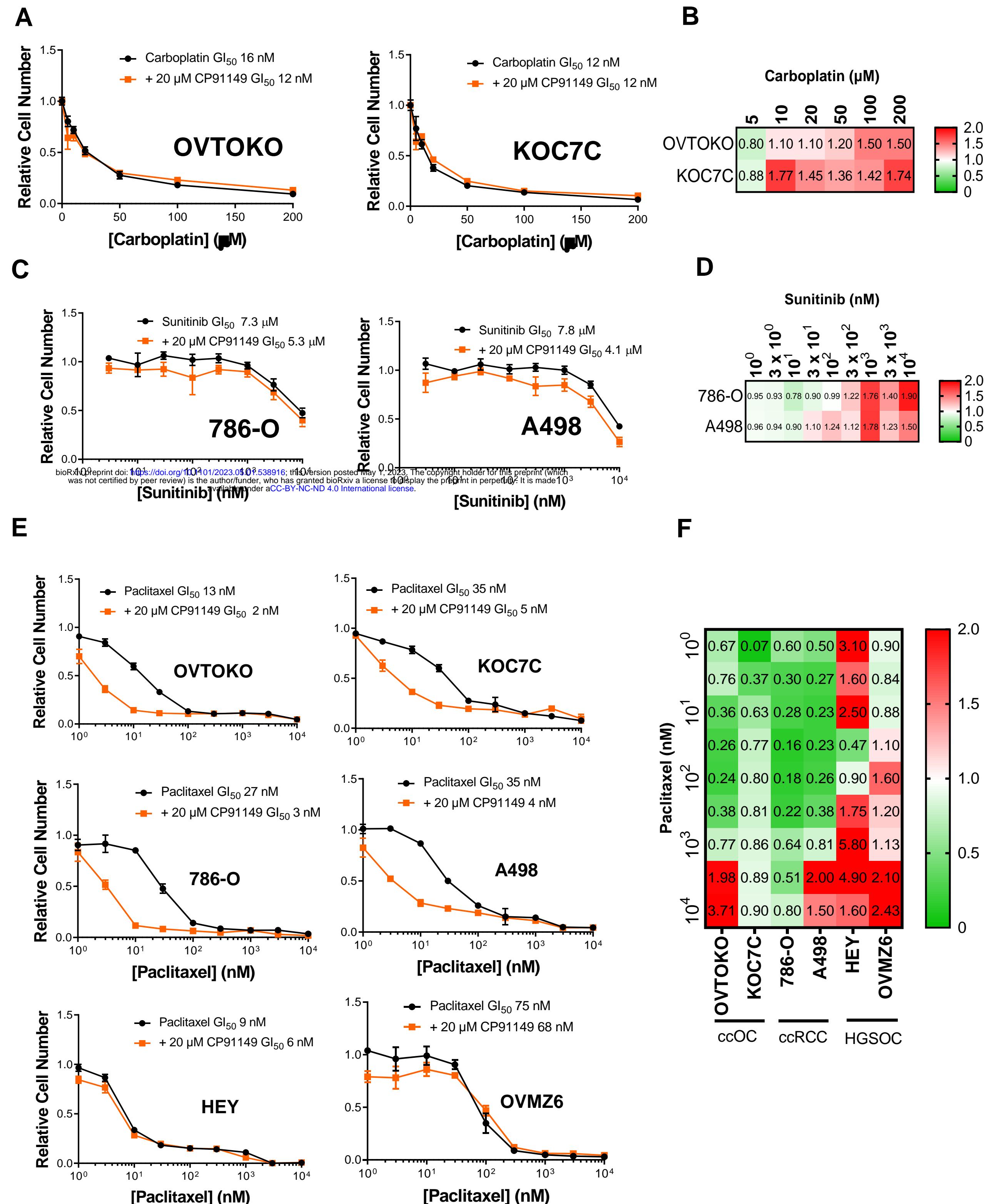
795 **Figure 3. Low dose CP91149 specifically synergises with SOC OC chemotherapy paclitaxel in**
796 **CCCs** A) Cells were treated with indicated concentrations of carboplatin in the presence or absence of

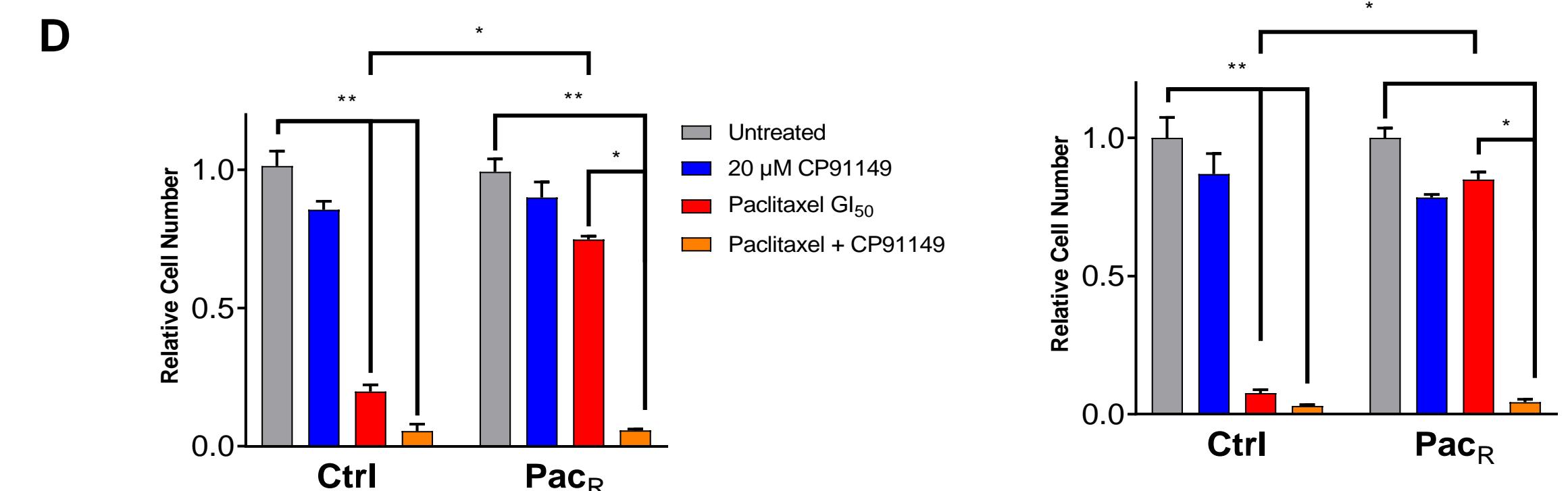
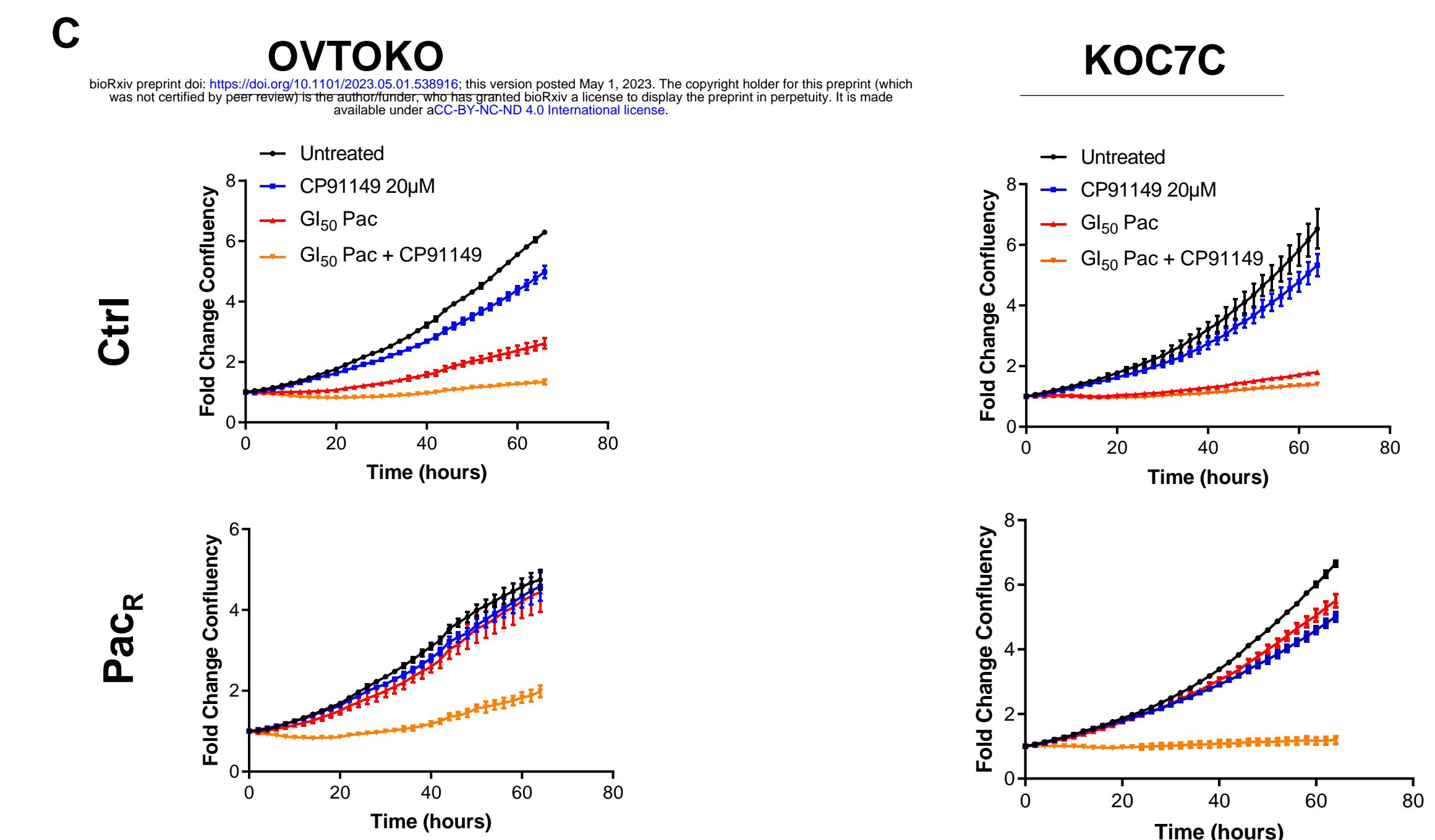
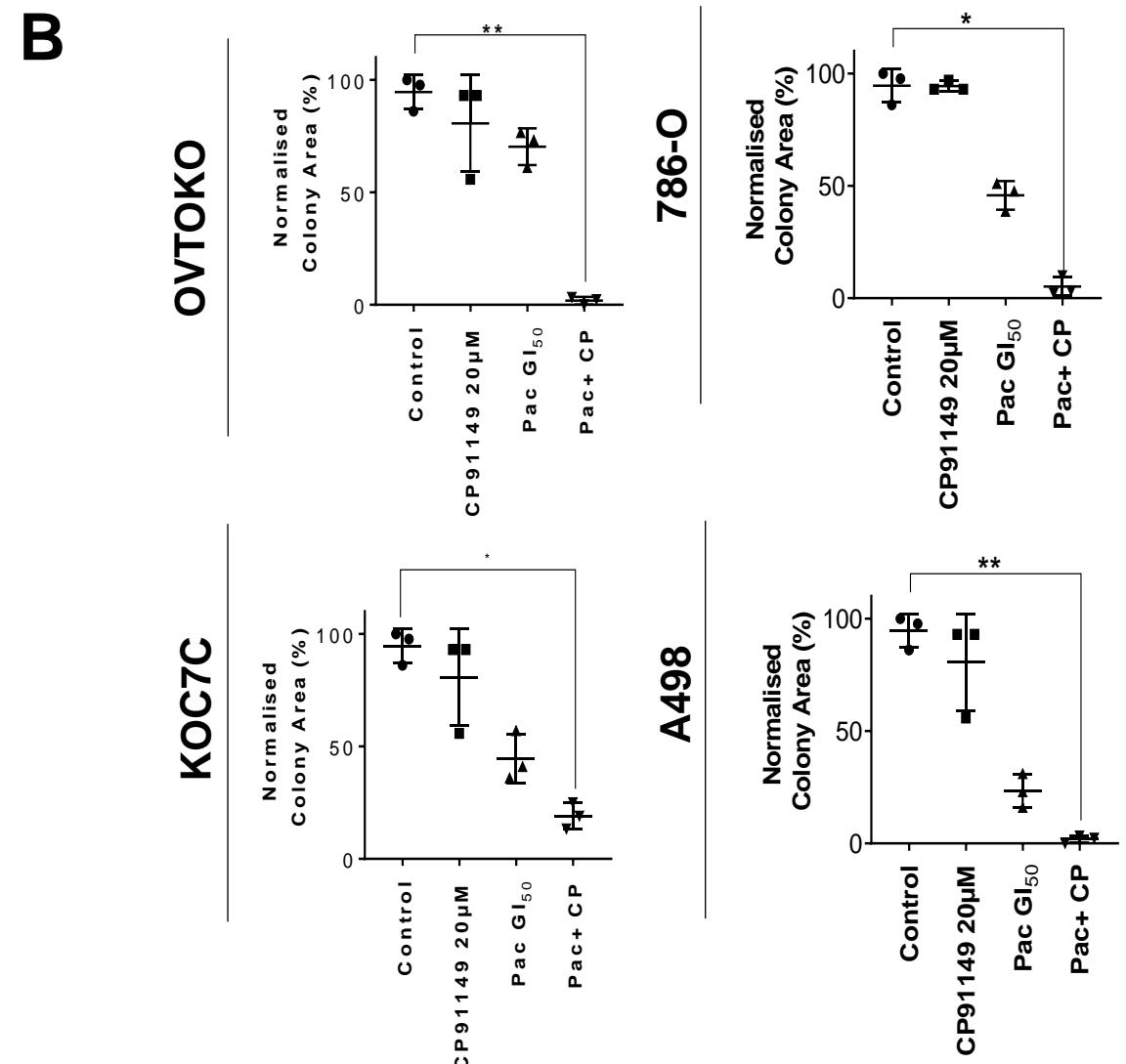
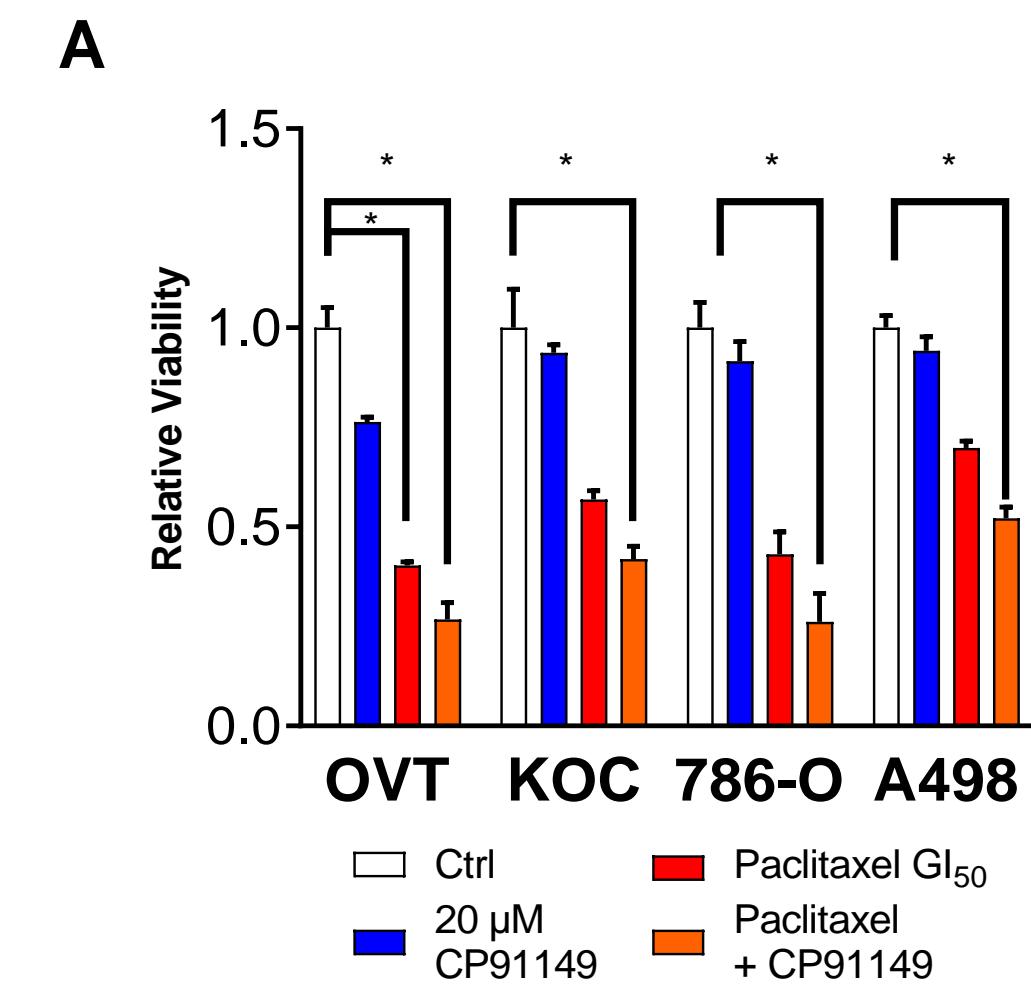




797 20 μ M CP91149 for 72 hours, after which time they were fixed, stained with DAPI, imaged using the
798 Incell 6500 system and analysed using CellProfiler software. **B)** Combination Index (CI) values were
799 computed for cells treated with carboplatin alongside CP91149 using the Chou-Talalay Method. Data is
800 presented in heatmap format with green indicating synergism and CI<1, white additive effects, and red
801 antagonism. **C)** and **D)** As in A) and B) however cells were treated with varied doses of sunitinib
802 alongside 20 μ M CP91149. **E)** and **F)** As in A) and B) however cells were treated with varied doses of
803 paclitaxel alongside 20 μ M CP91149.

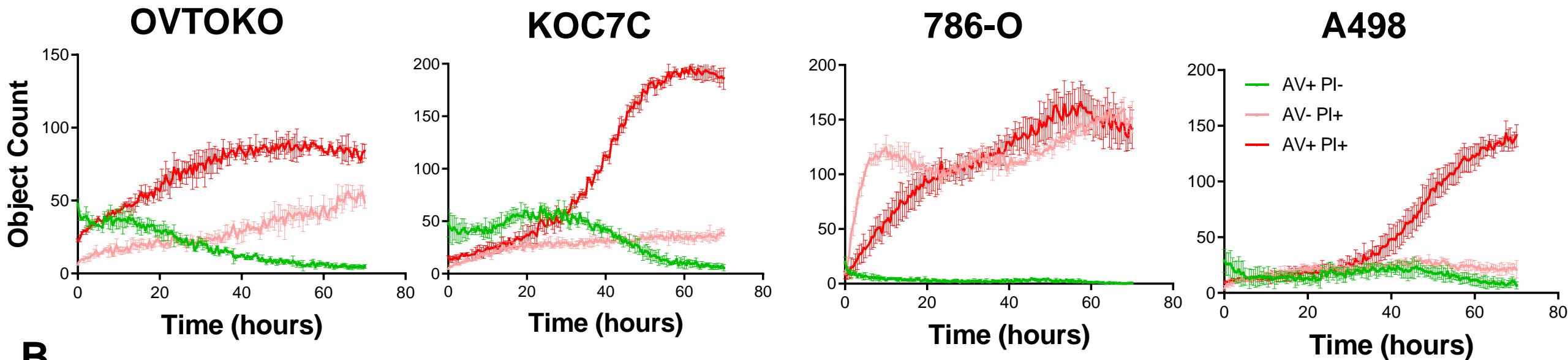
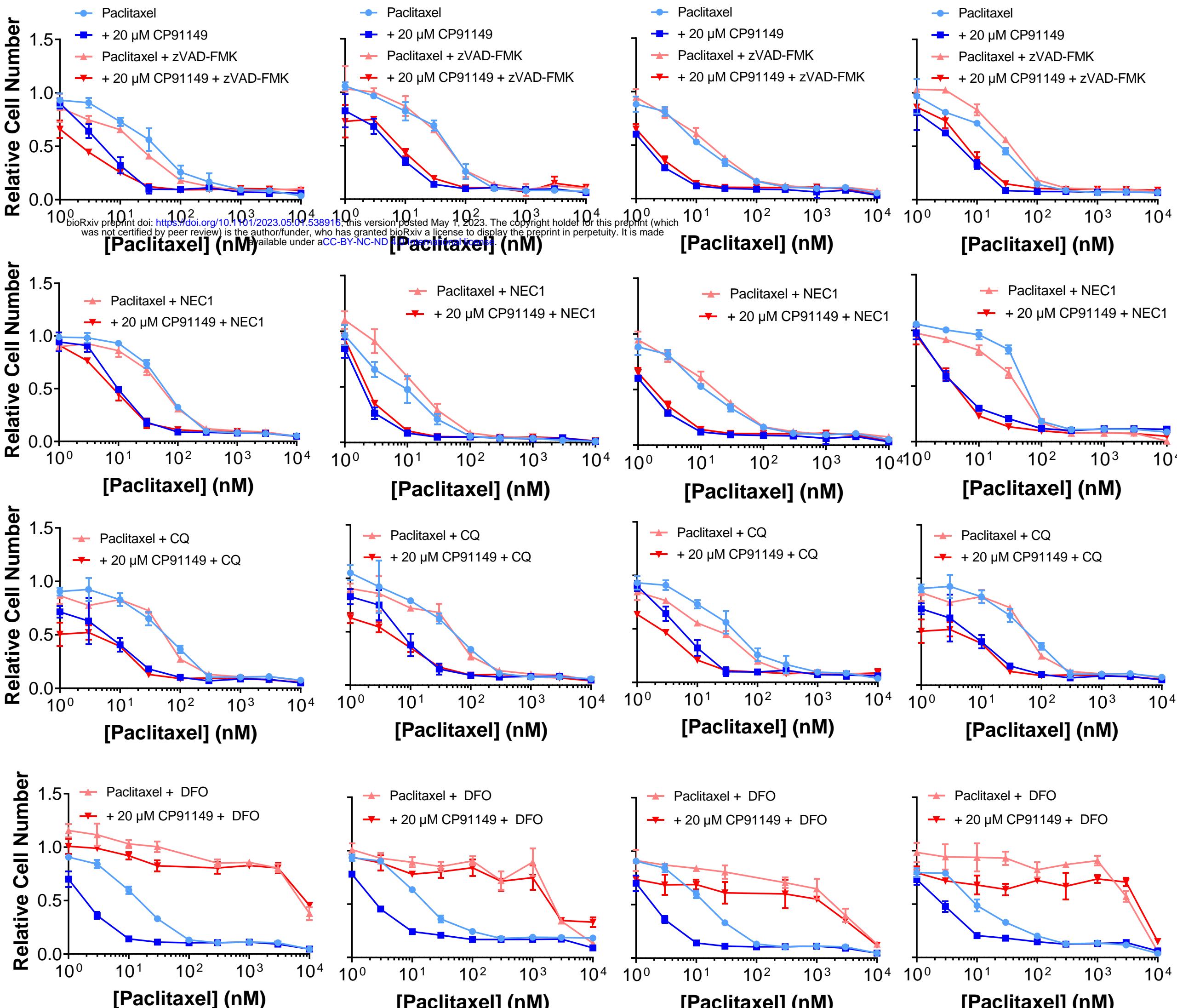


804 **Figure 4. Combination efficacy of paclitaxel and CP91149 is retained in cell viability and colony**
805 **formation assays, and in cells rendered stably resistant to paclitaxel. A)** Cells were treated with
806 indicated concentrations of paclitaxel in the presence or absence of 20 μ M CP91149 for 72 hours, and
807 viability was measured using the CellTiter AQueous One Solution MTT assay and normalized to
808 untreated control. **B)** Cells were treated in 6 well plates with indicated drug doses for 72 hours, after
809 which time they were lifted and re-seeded in drug-free media for 14 days. Colonies were fixed and
810 stained with crystal violet, and colony area calculated using the ImageJ software. **C)** Paclitaxel resistant
811 cells (Pac_R) were generated by stepwise increase in paclitaxel concentration in culture between-drug
812 free holiday periods to restore proliferative potential. Cells were considered stably resistant when they
813 showed logarithmic growth in the presence of GI₅₀ levels of paclitaxel. For assays, both Control and
814 PacR cells were treated for 72 hours with indicated drug concentrations and imaged every two hours
815 using the Incucyte S3 system. **D)** After 72 hours, cells were fixed, stained with DAPI and enumerated
816 using the Incell 6500 system and CellProfiler software. Data is presented as mean \pm SEM and was
817 analysed using a Mann-Whitney test with *p<0.05 **p<0.01, ***p<0.005 and ****p<0.001.

818 **Figure 5. Paclitaxel and CP91149-treated cells potentially undergo ferroptotic cell death. A)** Cells,
819 pre-incubated with annexin V-FITC and propidium iodide, were treated with GI₅₀ levels of paclitaxel
820 alongside 20 μ M CP91149 and imaged every two hours using the Incucyte S3 system. Single cells were
821 analysed using Incucyte software and defined as either AV+PI-, AV-PI+, AV+PI+ or AV-PI-, and cell
822 populations are plotted with time. **B)** Cells were treated for indicated concentrations of paclitaxel in the

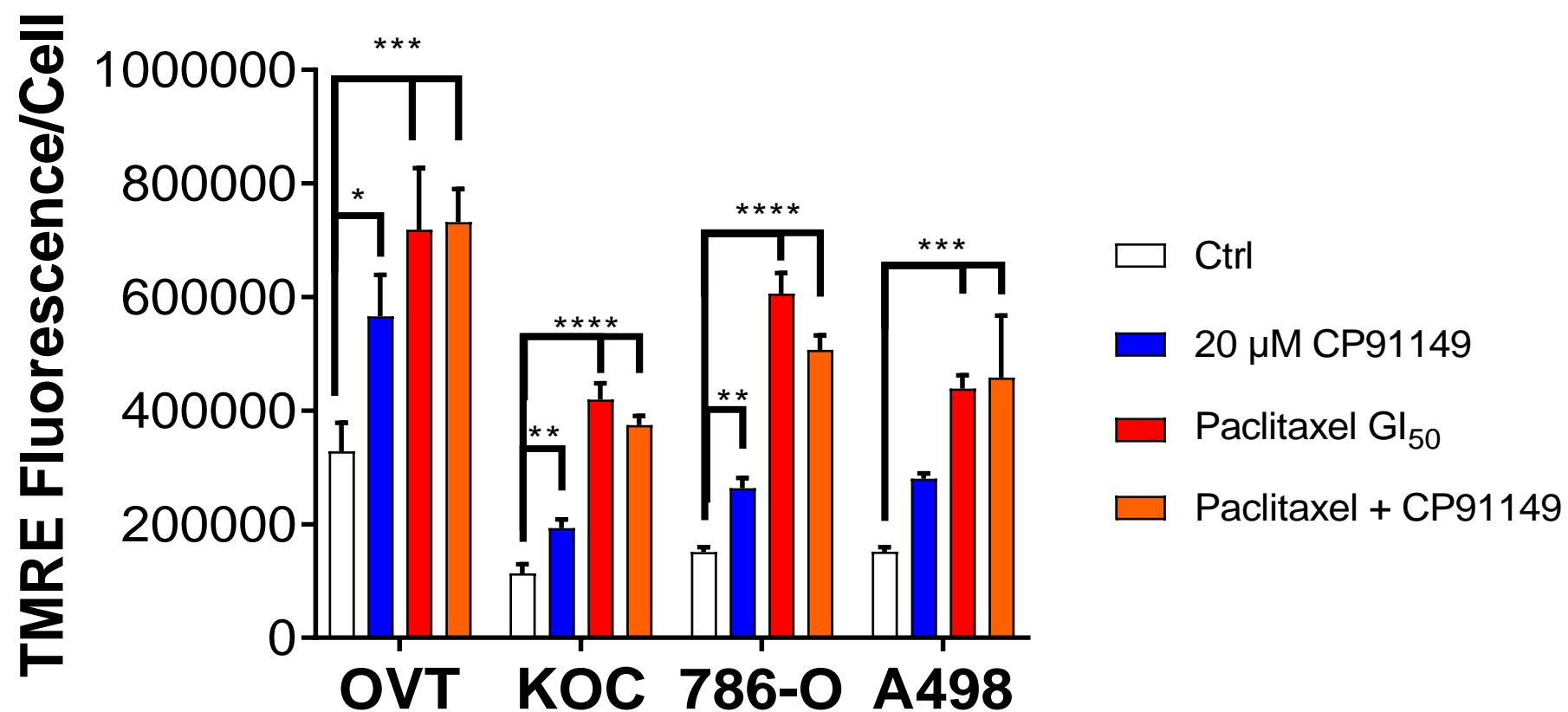



823 presence or absence of CP91149 (20 μ M), necrostatin-1 (NEC-1; 1 μ M), deferoxamine (DFO; 100 μ M),
824 zVAD-FMK (20 μ M) or chloroquine (CQ; 50 μ M) for 72 hours, after which time they were fixed, stained
825 with DAPI, and enumerated using the Incell 6500 system and associated CellProfiler software.

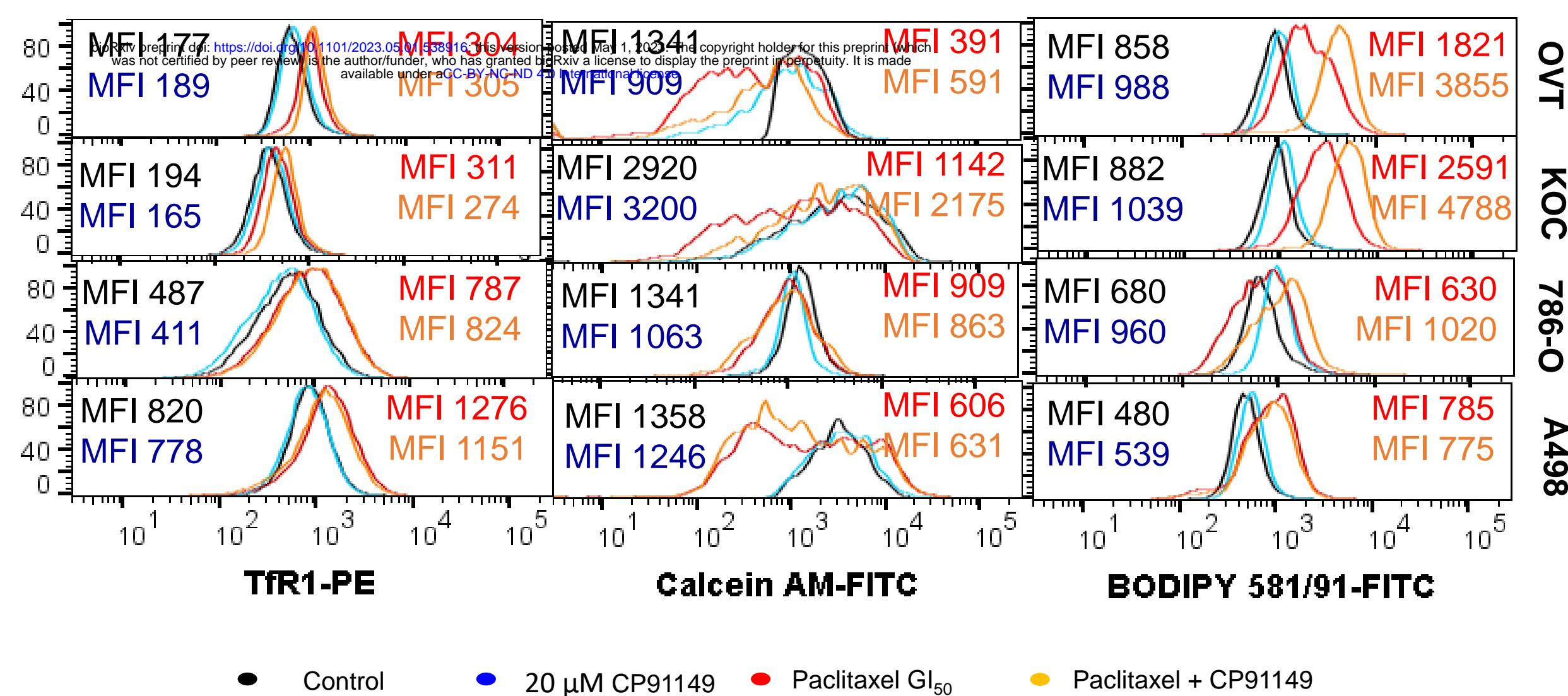

826 **Figure 6. Paclitaxel and CP91149-treated cells display several hallmarks of ferroptosis. A)** Cells
827 were preincubated with 100 nM TMRE for 30 mins, after which time the relevant agents were added
828 and cells imaged using the Incucyte S3 system. TMRE fluorescence/cell was calculated at 30 minutes
829 post-treatment. **B)** Cells were treated and lifted as in B), this time blocked (30 mins 0.5% BSA in PBS)
830 and incubated with anti-Cd71 TfR1 antibody (Biolegend) and at least 10,000 events acquired flow
831 cytometrically using the FACS Fortessa system. **C)** Cells were treated for indicated drugs for 24 hours,
832 after which time they were lifted, stained for 30 minutes with calcein-AM (100nM) and at least 10,000
833 events acquired flow cytometrically using the FACS Fortessa system. **D)** Cells were treated as in B),
834 however here they were incubated with BODIPY 581/91 C11 lipid peroxidation sensor for 30 minutes,
835 followed by lifting and at least 10,000 events acquired flow cytometrically using the FACS Fortessa
836 system. Where relevant, data is presented as mean \pm SEM and was analysed using a Mann-Whitney
837 test with *p<0.05 **p<0.01, ***p<0.005 and ****p<0.001.

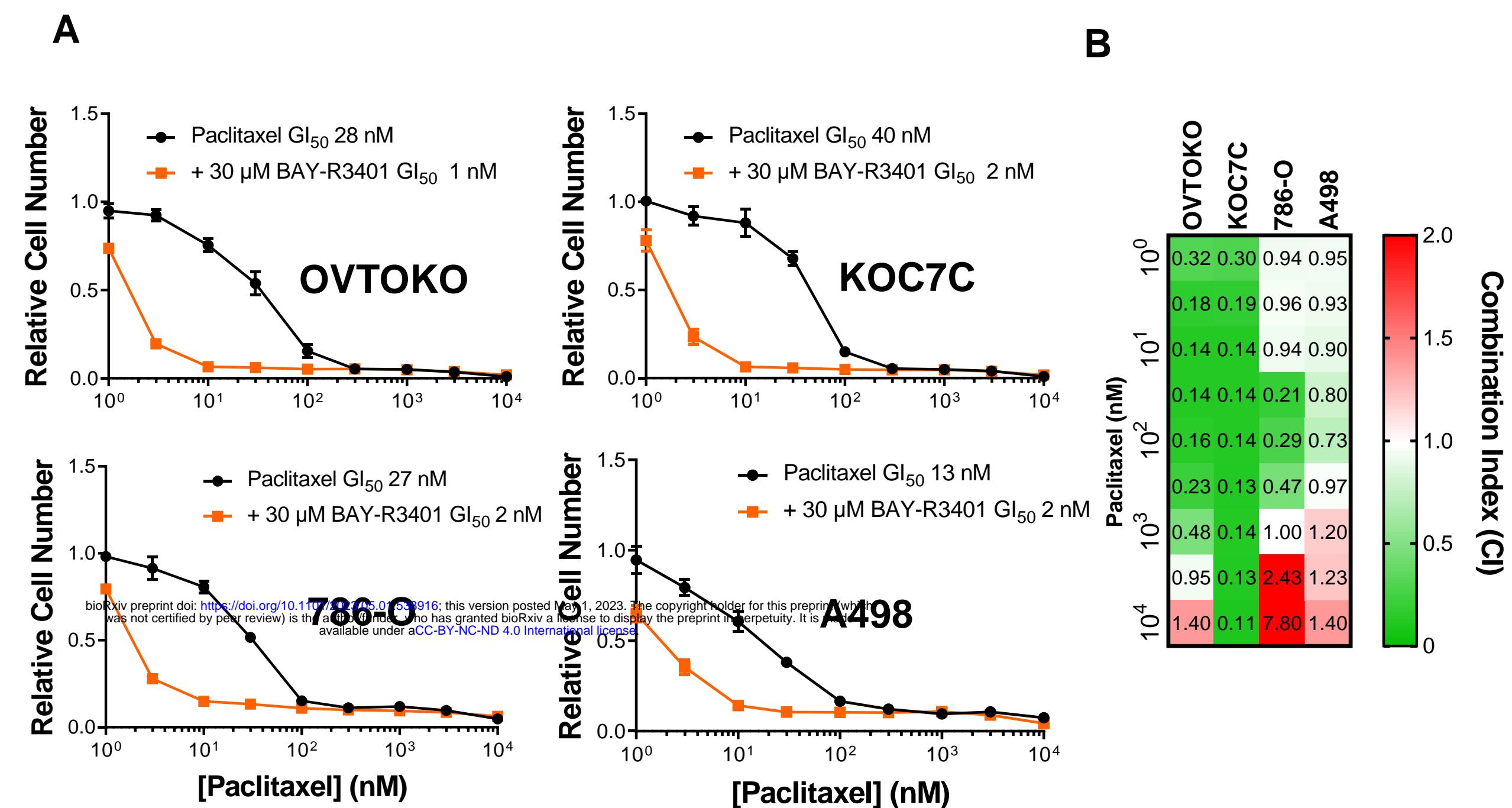







A**B**

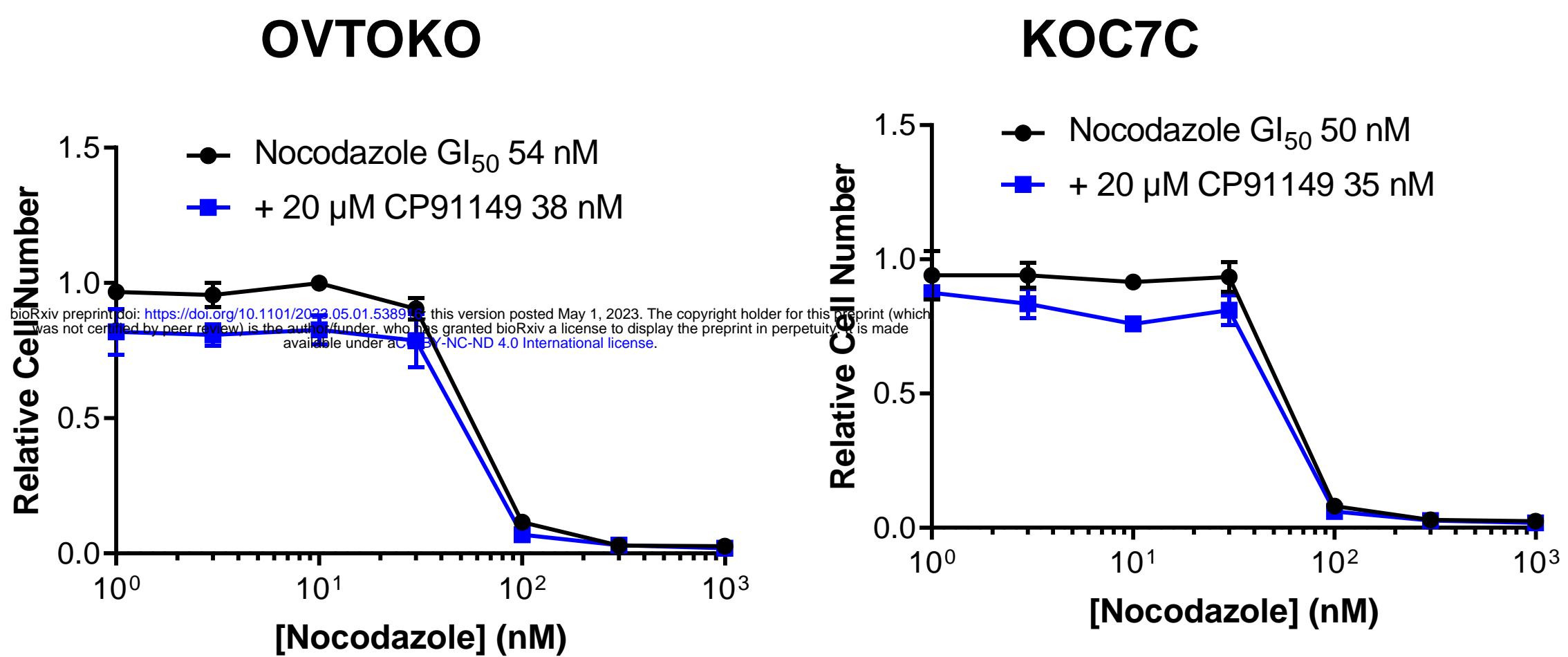
bioRxiv preprint doi: <https://doi.org/10.1101/2023.05.01.538916>; this version posted May 1, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


C**D**

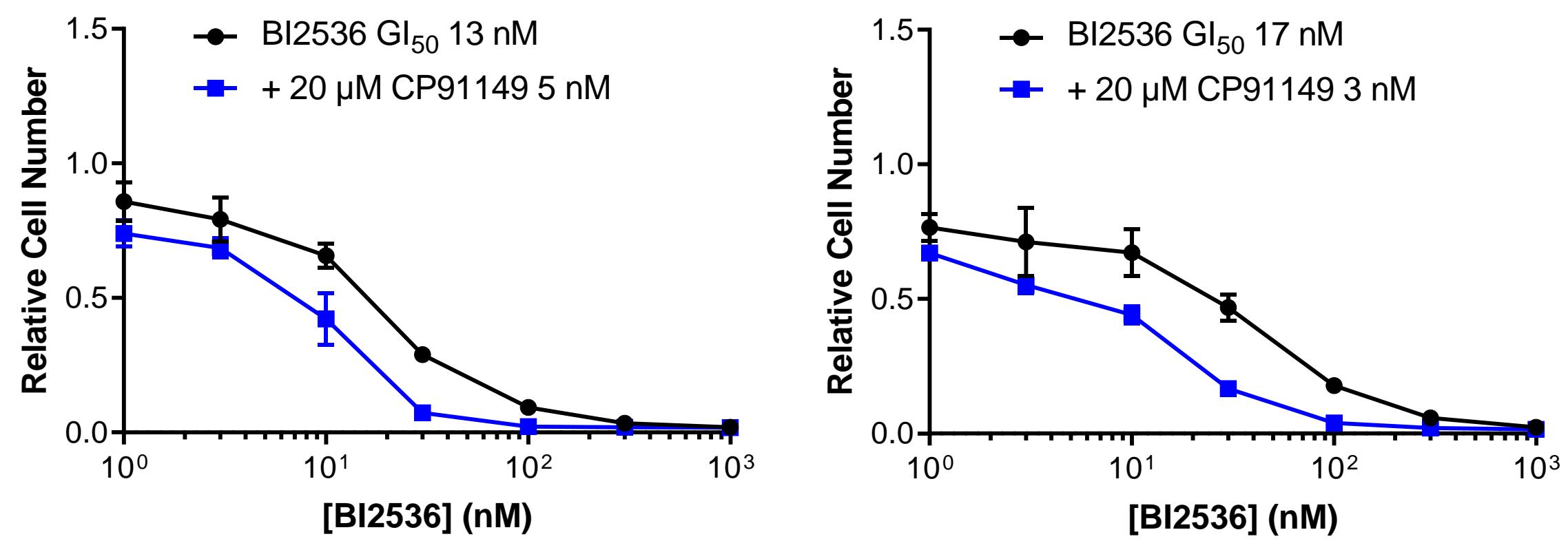



A**B**

A



B



A

B

