bioRxiv preprint doi: https://doi.org/10.1101/2023.05.01.538832; this version posted May 1, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Brain-wide Correspondence Between Neuronal Epigenomics and Long-Distance Projections

Jingtian Zhou'**, Zhuzhu Zhang'*, May Wu'*, Hanging Liu', Yan Pang*, Anna Bartlett!, Angeline Rivkin', Will N. Lagos*, Elora Williams?,
Cheng-Ta Lee®, Paula Assakura Miyazaki*, Andrew Aldridge', Qiurui Zeng', J.L. Angelo Salinda*, Naomi Claffey’, Michelle Liem’, Conor
Fitzpatrick’, Lara Boggeman’, Zizhen Yao®, Kimberly A. Smith®, Bosiljka Tasic?, Jordan Altshul', Mia A. Kenworthy!, Cynthia Valadon', Joseph
R. Nery!, Rosa G. Castanon', Neelakshi S. Patne*, Minh Vu*, Mohammad Rashid*, Matthew Jacobs®, Tony Ito*, Julia Osteen®, Nora Emerson®,
Jasper Lee?, Silvia Cho’, Jon Rink?, Hsiang-Hsuan Huang®, Antonio Pinto-Duartec®, Bertha Dominguez®, Jared B. Smith®, Carolyn O'Connor’,
Hongkui Zeng®, Kuo-Fen Lee®, Eran A. Mukamel'?, Xin Jin'!'2, M. Margarita Behrens®, Joseph R. Ecker!*", and Edward M. Callaway*'

!Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093
3Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093

4Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037
SMolecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
®Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037

"Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA 92037

8Allen Institute for Brain Science, Seattle, WA 98109

°Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037

1"Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92037

Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China;
2NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China

BHoward Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037

*These authors contributed equally
TLCorrespondtance: callaway@salk.edu, ecker(@salk.edu

Abstract

Single-cell genetic and epigenetic analyses parse the brain’s billions of neurons into thousands of “cell-type” clusters, each residing in
different brain structures. Many of these cell types mediate their unique functions by virtue of targeted long-distance axonal projections to
allow interactions between specific cell types. Here we have used Epi-Retro-Seq to link single cell epigenomes and associated cell types to
their long-distance projections for 33,034 neurons dissected from 32 different source regions projecting to 24 different targets (225
source—target combinations) across the whole mouse brain. We highlight uses of this large data set for interrogating both overarching
principles relating projection cell types to their transcriptomic and epigenomic properties and for addressing and developing specific
hypotheses about cell types and connections as they relate to genetics. We provide an overall synthesis of the data set with 926 statistical
comparisons of the discriminability of neurons projecting to each target for every dissected source region. We integrate this dataset into the
larger, annotated BICCN cell type atlas composed of millions of neurons to link projection cell types to consensus clusters. Integration with
spatial transcriptomic data further assigns projection-enriched clusters to much smaller source regions than afforded by the original
dissections. We exemplify these capabilities by presenting in-depth analyses of neurons with identified projections from the hypothalamus,
thalamus, hindbrain, amygdala, and midbrain to provide new insights into the properties of those cell types, including differentially
expressed genes, their associated cis-regulatory elements and transcription factor binding motifs, and neurotransmitter usage.

Introduction

In any given brain, each neuron contributes uniquely to brain function.
Nevertheless, neurons can be grouped into types based on similarities and
differences across multiple dimensions, including epigenetic state, gene
expression, anatomy, and physiology. Single-cell genomic technologies
have been particularly impactful for cell type classification due to their
high throughput (millions of cells assayed) and dimensionality
(thousands of genes and even more genetic loci) leading to the
identification of large numbers of transcriptomic and epigenomic clusters
corresponding to possible cell types across the entire mouse brain.

A prominent and distinguishing anatomical feature of many brain
neuron types is their long-distance axonal projections. Long-distance
projections can be directly related to single neuron gene expression or
epigenomes by use of powerful linking technologies, including
BARseq'?, Retro-seq>*, and Epi-Retro-Seq’. Previous studies have used
Retro-Seq and Epi-Retro-Seq to link mouse neocortical>-, hypothalamic®
and thalamic projection cell types’ to their genetic and epigenetic clusters,
revealing complex but predictable relationships. For example, cortical

neurons projecting solely to intra-telencephalic (IT) targets fall into
different clusters than those that project to extra-telencephalic (ET)
targets. On the other hand, cortical layer 2/3 (L2/3) IT neuron types
projecting to different cortical areas typically co-cluster despite having
quantifiable and predictable genetic and epigenetic differences across the
populations*?. In the face of this complexity, how can single-cell genetic
and epigenetic assays be used to inform the structure and function of brain
cell types and how can neuronal structure predict genetics, epigenetics,
and function? Further, can the principles learned from more limited
previous studies be extended to the entire brain? Are there different
principles linking projection status to epigenetics for different brain
areas?

To address these questions we employed Epi-Retro-Seq to assay
33,034 neurons from 225 source—target combinations across the entire
mouse brain. This approach combines retrograde labeling with single
nucleus methylation sequencing (snmC-Seq), which allows identification
of potential gene regulatory elements and prediction of gene expression
in the same neuron. Gene expression can be predicted because non-CG
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(CH; H=A,T,C) methylation of gene bodies is inversely related to RNA
expression®?, while epigenetic elements regulating expression can be
identified using methylation at CG (mCG) dinucleotides®. It is also
expected that Epi-Retro-Seq can provide unique insight into
developmental mechanisms that shape connectivity because CH
methylation accumulates during and peaks at the end of the
developmental critical period, and CG methylation is reconfigured during
synaptic development'®.

Results

Epi-Retro-Seq of 225 brain-wide projections

To link single-neuron epigenomes to their projection targets and cell body
locations, we used Epi-Retro-Seq’. A retrogradely-infecting AAV vector
expressing cre-recombinase (AAV-retro-Cre!') was injected into the
brains of cre-dependent, nuclear-GFP expressing reporter mice
(INTACT-cre®) at a target region of interest (Fig. 1a). Four mice (2 male
and 2 female) were injected for each of 24 different target brain areas,
including targets in the isocortex (CTX), hippocampal formation (HPF),
olfactory areas (OLF), amygdala (AMY), cerebral nuclei (CNU),
interbrain (IB), midbrain (MB), hindbrain (HB), and cerebellum (CB)
(Fig. 1a,b, Supplementary Table 1). After 2 weeks, mice were
sacrificed and the brain was hand dissected following the Allen Mouse
Common Coordinate Framework (CCF), Reference Atlas, Version 32,
into 32 possible source regions spanning the same major brain structures
as the target injections (Fig. 1a,b and Extended Data Fig. 1). For any
given mouse, dissected sources corresponding to locations with known
projections to the target were selected for profiling. Nuclei preps were
made from dissected source tissue and subject to fluorescence-activated
nuclear sorting (FANS) for GFP-positive, NeuN-positive retrogradely
labeled neuronal nuclei which were then processed for single nucleus
methylation sequencing (snmC-seq; Fig. 1a, Methods)'> 5.

After basic quality control, we recovered 48,032 single-cell
methylomes which were mapped to an unbiased sample of snmC-seq data
with 301,626 cells (companion paper #6) to perform cell type
classification, and for removal of potential doublets (Extended Data Fig.
2a-e, Methods). Each single neuron in the Epi-Retro-Seq sample was
assigned to one of the 2,304 level 4 clusters (L4 type) identified in our
companion study (companion paper #6). We have previously described
cortical neurons from the same 8 cortical sources included here and
projecting to 4 cortical and 6 subcortical targets (63 combinations)’. For
cortical sources, we now incorporate data for an additional 5 cortical
targets and 2 more subcortical targets. Similar to our previous work, for
cells from cortical sources we included an additional quality control step
to eliminate experiments with inadvertent spread of injected AAVretro
into source regions (e.g. from AAV spread along injection pipette paths
extending through some cortical regions) or with poor quality FANS
sorting, by filtering based on the proportion of known on-target vs off-
target cell types. (Such filtering is not needed for deeper source regions
that are not traversed by injection pipettes.) In total, 33,034 single-
nucleus methylomes were analyzed from 225 source—target
combinations for which the projection target could be confidently
assigned. These neurons were mapped to the unbiased snmC-seq dataset
to visualize the epigenetic similarity of projection neurons across cell
subclasses, sources, and targets (Fig. 1c).

Data analysis approaches and visualization across the whole brain

Overarching questions that can be addressed by this large data set include:
how distinct are neurons from a given source that project to different
targets? And are neurons in different sources that project to the same

target combinations more or less distinguishable? To provide a resource
that can be used to address the distinguishability of neurons with different
projection targets, we quantified which projection types are
epigenetically more different than the others by computing area under the
curve of receiver operating characteristic (AUROC) for each of the target
pairs from every source region (926 pairwise comparisons in total; Fig.
1d and Extended Data Fig. 3). An example of the results from the
pairwise comparisons for amygdala neurons projecting to 9 targets is
shown in Figure 1d. Such plots allow visualization of similarities and
differences between source neurons projecting to different targets, as
further exemplified in our deeper analyses of selected source regions
within the main text and figures below. Similar insights can be gained for
projection neurons from all of the assayed sources by accessing the
complete set of 926 AUROC comparisons (Extended Data Fig. 3d).

To facilitate further, comprehensive multimodal characterization of
projection neuron types, we integrated the Epi-Retro-Seq data with
unbiased samples of snmC-seq described above, and single-cell RNA-seq
(scRNA-seq) data containing 2.6 million neurons from 87 micro-
dissected brain regions (Fig. 1e and Extended Data Fig. 4). Alignment
of Epi-Retro-Seq data to these larger and carefully annotated datasets
allows for the confident assignment of our cells to consensus clusters and
enables the use of consistent nomenclature to describe the
correspondence between projection targets and cell types/clusters. We
performed co-clustering of the three datasets to identify the cell clusters
associated with each projection type, which allows for identification of
projection-enriched clusters (see further below). Quantification of the
proportion of cells found in each enriched cluster that projects to each
target is illustrated for amygdala source neurons in Figure 1f. This
approach exemplifies analyses explored in detail for other sources, below,
and which are provided for all of the sources in the data set in Extended
Data Figure S.

To separate neurons projecting to particular targets from different
sources, we performed microdissections of freshly cut brain slices. While
these careful dissections effectively separate fairly small structures, most
dissected regions contain still smaller known anatomical regions, as
typically illustrated in mouse brain atlases (Extended Data Fig. 1). To
potentially link projection-enriched clusters from particular sources to
more precise anatomical loci, we performed further integration with
multiplexed error robust fluorescence in-situ hybridization (MERFISH)
data, allowing examination of the spatial locations of the cells belonging
to particular clusters (Fig. 1g and Extended Data Fig. 6). Joint atlasing
of single neuron transcriptomes and epigenomes further allowed analyses
of both the signature genes in projection-enriched clusters based on RNA
expression, and methylation profiles to identify differentially methylated
regions (DMRs) as putative cis-regulatory elements (CREs) and
transcription factors whose binding motifs are enriched in these DMRs
(Fig. 1h,i).

We prepared extended data figures to allow visualization of the
integrative analysis approaches described above (e.g. Fig. 1d-i) for all
source—target combinations in our dataset (Extended Data Figs. 3-6).
These integrative analyses were facilitated by combining source regions
from the whole brain datasets into 12 larger “region groups” that were
common to all 3 data modalities, prior to integration (Extended Data Fig.
2f,g). The groups include isocortex (CTX), retro hippocampal region
(RHP), piriform area (PIR), hippocampal region (HIP), main olfactory
bulb and anterior olfactory nucleus (MOB+AON), striatum (STR),
pallidum (PAL), amygdala (AMY), thalamus (TH), hypothalamus (HY),
midbrain (MB), and hindbrain (HB).
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Fig. 1 | The epigenomic landscape of brain-wide projection neurons.
a, Schematics of Epi-Retro-Seq workflow for retrogradely labeling and
epigenetically profiling single projection neurons. The retrograde tracer
rAAV2-retro-cre was injected into a specific target area in INTACT
knock-in mice to label the nuclei of neurons that project to the target area
with cre-dependent nuclear GFP. Source regions of interest with
projections to the target areas were dissected 14 days after injection.
Single GFP+/NeuN+ nuclei were isolated using fluorescence activated
nuclei sorting (FANS), and then subjected to snmC-seq library
preparation and sequencing for epigenome profiling. Brain diagrams of
the source regions were derived from the Allen Mouse Brain Reference
Atlas (version 3 (2020)). b, 225 source target combinations were profiled
using Epi-Retro-Seq from 32 different source regions projecting to 24
different targets across the whole mouse brain. ¢, Joint two-dimensional
t-distributed stochastic neighbor embedding (t-SNE) of Epi-Retro-Seq
(n=35,938) and unbiased snmC-seq (n=276,187) neurons. snmC-seq
neurons are in gray and Epi-Retro-Seq neurons are colored by cell
subclass (top), the source regions of neurons (middle, same color palette
as row colors on the left of (b)), or their projection targets (bottom, same
color palette as column colors on the bottom of (b), n=33,034, after
removing the experiments with less confident target assignment). d, As
an example, area under the curve of receiver operating characteristic
(AUROC) for pairwise comparisons of amygdala neurons projecting to 9
targets. Higher AUROC scores suggest greater distinguishability between
the compared projections based on their gene body CH methylation
(mCH) levels. e, Joint t-SNE of whole mouse brain neurons from Epi-
Retro-Seq (n=35,743), unbiased snmC-seq (n=266,740), and single-cell
RNA-seq (scRNA-seq, n=2,434,472) colored by cell subclass. f, As an
illustration, the proportion of neurons found in each amygdala cell cluster
(row) that projects to each target (column). Only clusters that were
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enriched for projection neurons are shown and values are Z-score
normalized across targets. g, A sagittal brain slice for multiplexed error
robust fluorescence in-situ hybridization (MERFISH) with all neurons
colored by their assigned subclasses. h, An illustration of joint analysis
of single-cell transcriptomes and DNA methylomes that enables the
characterization of gene expression patterns of differentially expressed
genes (DEGs) between these projection-enriched clusters, as well as the
CG methylation (mCG) levels of DEG-associated putative cis-regulatory
elements (CREs), as marked by differentially methylated regions
(DMRs). i, An illustration of identifying transcription factors (TFs)
whose binding motifs are enriched in these CREs and potentially regulate
the expression of the DEGs.

CTX, isocortex; CB, cerebellum; OLF, olfactory areas; HIP,
hippocampal region; CNU, cerebral nuclei; AMY, amygdala; IB,
interbrain; MB, midbrain; HB, hindbrain; PFC, prefrontal cortex; MOp,
primary motor cortex; SSp, primary somatosensory cortex; ACA, anterior
cingulate cortex; Al, agranular insular cortex; AUD, auditory cortex;
AUDp, primary auditory cortex; RSP, retrosplenial cortex; PTLp,
posterior parietal cortex; VIS, visual cortex; VISp, primary visual cortex;
ENT, entorhinal cortex; CAa, anterior Cornu Ammonis; CAp, posterior
Cornu Ammonis; DGa, anterior dentate gyrus; DGp, posterior dentate
gyrus; MOB, main olfactory bulb; AON, anterior olfactory nucleus; PIR,
piriform cortex; PIRa, anterior piriform cortex; PIRp, posterior piriform
cortex; STR, striatum; PAL, pallidum; TH, thalamus; THm, anterior
medial thalamus; THI, anterior lateral thalamus; THp, posterior thalamus;
HY, hypothalamus; SC, superior colliculus; MRN, midbrain reticular
nucleus; VTA, the ventral tegmental area; SN, substantia nigra; PAG,
periaqueductal gray; IC, inferior colliculus; P, pons; MY, medulla; CBN,
cerebellar nuclei; CBX, cerebellar cortex; IT, intra-telencephalic; ET,
extra-telencephalic.
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Distinguishability of ET- versus IT-projecting neurons across the
whole brain

Are neurons in different sources that project to the same target
combinations more or less distinguishable? In isocortex, the most explicit
correspondence between projection types and molecular types is
observed for neurons that project to ET targets versus IT targets (For a
breakdown of ET and IT target regions sampled, see Fig. 1b.). To
investigate whether such distinctions are shared with neurons from other
sources, we explored the genetic distinguishability of neurons projecting
to ET versus IT targets across source brain areas. To visualize the
distinguishability of ET versus IT neurons from different sources we first
used the joint t-SNEs of Epi-Retro-Seq and unbiased datasets of the 10
region groups (Extended Data Figs. 2g and 4) that contain both ET and
IT neurons from the same source, and color-coded the Epi-Retro-Seq data
for IT versus ET projections (Fig. 2a). For the cortical source t-SNE plots,
the ET-projecting neurons clearly separate into a distinct cluster (L5 ET)
while the IT neurons are found distributed across the annotated IT
clusters, as expected. ET and IT neurons are also well-separated for the
projection neurons in the entorhinal cortex (illustrated in the RHP plot)
as well as for thalamic (TH) ET and IT neurons, as expected from known
projections of glutamatergic TH neurons to cortex versus GABAergic
neurons to subcortical targets. (See further detailed consideration of TH
neurons below.) ET versus IT neurons show varying levels of separation
for the other sources. While t-SNE plots allow visualization of similarities
in a convenient 2-D format, they cannot fully capture the high-
dimensionality of snmC-seq data. We therefore compared computed
AUROC scores for ET versus IT neurons from each of the 22 sources in
Figure 2b. Generally, comparisons show some degree of separability for
each of the source regions, but AUROC scores are higher for cortical
sources than for subcortical courses (except TH and AON).

We next asked whether the epigenetic differences between ET- and IT-
projecting neurons are shared across sources or alternatively whether
different sources might have distinct molecular signatures that distinguish
ET from IT neurons. We trained logistic regression models to distinguish
ET- vs. IT-projecting neurons in each one of the 22 sources, and tested
whether each model could accurately separate ET and IT neurons from
each of the other sources (Fig. 2¢). We observed that the knowledge
learned by the models could largely be transferred between isocortical
sources and between isocortical and archicortical (ENT and PIR) areas,

but not beyond the cortical regions. Other source groups sharing similar
ET vs. IT differences include MOB and AON, as well as AMY, TH and
MRN. To further evaluate these relationships, we identified the
differentially methylated genes (DMGs) between ET and IT-projecting
cells, which merge into a combined set of 2,919 genes. Consistent with
the AUROC results, these DMGs show similar fold changes across
isocortical and archicortical areas, MOB and AON, as well as different
parts of TH and MB (Fig. 2d).

The ET vs. IT differences described above group together various more
specific targets, which are nevertheless distinct structures. We, therefore,
assessed whether neurons projecting to more finely separated groups of
targets might be more or less separable. We separated the ET and IT
targets into 3 finer groups (IT: CTX, MOB, CNU; ET: 1B, MB, HB) and
asked which pairs of target groups are less separable between ET and IT.
Most of the target group pairs have better prediction results than ET vs.
IT, except that the CNU vs. IB projecting cells are less distinguishable
compared to ET vs. IT based on DNA methylomes with linear models
(Fig. 2e).

To better understand what types of genes are contributing to the
predictions of projection targets, we used genes assigned to different gene
ontology terms as features to compute AUROC scores. We used genes
from five different categories that are considered to be associated with
neuronal cell identity and projections, including: 1) neurotransmitter
receptors, 2) neuropeptides and receptors, 3) ion channels, 4)
transcription factors, and 5) neuron projection development (Methods).
Since different categories have different numbers of genes, and use of
more genes increases prediction performance, we downsampled the
larger gene categories into samples including the same numbers of genes
as the smaller categories to facilitate comparisons in 5 different groups
using from 19 to 666 genes and compared the AUROC scores. We
observed that the neuron projection development genes have the strongest
target prediction power, followed by neurotransmitter receptors, ion
channels, neuropeptides and receptors, transcription factors, and
randomly selected genes (Fig. 2f). Using all 628 genes in the neuron
projection development category achieved an average AUROC of 0.88,
which is slightly lower than using all the 9906 genes as features (AUROC
0.91, Fig. 2f), suggesting that additional genes from other GO categories
also contribute to the target predictability.
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Fig. 2 | Distinguishability of neurons projecting to different targets
across the entire brain. a, Joint t-SNEs of Epi-Retro-Seq, unbiased
snmC-seq, and scRNA-seq data from 10 region groups containing both
IT- and ET-projecting neurons from the same source. Only the Epi-Retro-
Seq neurons projecting from the same source to ET (blue) and IT (orange)
targets are colored and the other cells are in gray. RHP, retro hippocampal
region. b, AUROC scores for comparisons between IT versus ET neurons
from each of the 22 source regions. ¢, AUROC for IT versus ET neurons
when the model was trained in one source region (row) and tested on
another source region (column). A high AUROC indicates that the
epigenetic differences between IT and ET neurons were similar between
the training and testing sources. The values on the diagonal of (¢) are the
same as values in (b). d, The log2 fold changes of mCH levels in each

Epi-Retro-Seq of hypothalamic projection neurons and integration
with spatial assays

Although the hypothalamus is relatively small in size when compared to
other profiled brain regions, analyses of gene expression and DNA
methylation patterns have revealed the existence of numerous cell
clusters within the hypothalamus, indicating a high level of cell type
diversity (Fig. 3a) (See also companion papers'®!7). Additionally, the
hypothalamus is comprised of many distinct subregions and nuclei, each
with unique functions and contributions to innate behaviors such as
aggression, mating and feeding'®. The hypothalamus therefore serves as
an excellent use case for our data set to further examine the relationships
between neuronal cell types as defined by their transcriptional and

628 666 9906
# Genes

source at the IT versus ET differentially methylated genes (DMGs). A
total of 2,919 DMGs were shown that were identified in at least one of
the 22 source regions. The row and column colors represent region groups
in (b-d). e, AUROC for comparisons of neurons projecting to each pair
of target groups. Each dot represents the comparison in one source region
and the same color palette was used as in (b). f, AUROC for the
comparison of all target pairs from every source region (n=926) with
models using different sets of genes as features. Only subsets of the 9,906
genes with high coverage in single cells were used. The larger gene sets
were downsampled to the same number of genes as the smaller sets for
comparison. All comparisons between gene sets are significant
(Wilcoxon signed-rank test) except the ones between “neuron projection
development” and “neurotransmitter receptor” with 19 genes.

epigenomic signatures, their projection patterns, and their spatial
organization.

We profiled hypothalamic neurons that project to ten distinct targets
throughout the brain, including PFC, MOB, STR, PAL, AMY, TH, SC,
VTA+SN (referred to later as VTA), P, and MY. By integrating Epi-
Retro-Seq data with unbiased snmC-seq and single-cell RNA-seq
hypothalamic data, we identified a total of 94 neuronal cell clusters, of
which 17 were enriched for the profiled HY projections (Fig. 3a,b). Each
of the projections to the ten targets was enriched in a unique subset of cell
clusters, as quantified by the normalized proportion of each projection in
each cluster (Fig. 3b). For example, HY—STR neurons were
predominantly enriched in cluster 76, while HY —=AMY neurons were
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uniquely enriched in cluster 64, indicating distinct cell type specificity of
different HY projection neurons. Notably, HY neurons projecting to
targets within the same major brain structure occupied overlapping yet
different sets of clusters: HY —»P and HY —»MY were both enriched in
clusters 0, 74, 18, 57, 51, and 63, but only HY —P neurons were enriched
in cluster 76. Similarly, HY -PFC and HY —>MOB neurons were both
enriched in different subsets of cluster 50, 39, and 29, but HY -=MOB
neurons were uniquely enriched in cluster 17. These results suggest that
HY neurons projecting to structurally related targets may share some
common genetic/epigenetic cell types but also exhibit some level of
diversity. In summary, HY neurons projecting to each brain region were
enriched in a specific set of cell clusters (Fig. 3b-d). These findings
underscore the cell type specificity and diversity of hypothalamic neurons
projecting to different targets, shedding light on the potential functional
roles of these cell clusters in various physiological and behavioral
processes.

Next, we examined the spatial distributions of projection-enriched HY
neuron clusters. We performed MERFISH on both sagittal and coronal
brain slices to visualize the spatial location of neurons. By using the gene
expression signatures of the projection-enriched clusters, we mapped
them to MERFISH cells (Fig. 3e, Methods). Strikingly, the majority of
the 17 projection-enriched clusters were located in different HY sub-
regions, and the spatial distributions of cells from many clusters were
distinguished by well-defined boundaries. For instance, clusters 0, 3, and
76 were located in separate "stripes" in the dorsolateral hypothalamus, in
regions corresponding to Zona Incerta (ZI) or Subthalamic nucleus (STN)
(Fig. 3e). Neurons assigned to other clusters, such as 29 and 39 (Fig. 3e),
occupied distinct areas but were partially intermixed with neurons from
other clusters. With respect to projection targets, some clusters that were
enriched for particular projections were relatively confined to specific
regions within the hypothalamus, while other projection-enriched clusters
were distributed topographically across the hypothalamus. For example,
HY—TH neurons were enriched in clusters 12, 32, and 3, all of which
were located in well-delineated subregions of dorsal hypothalamus (Fig.
3b,e). In contrast, the seven clusters enriched for HY —P were distributed
along the anterior to posterior axis of the hypothalamus and also occupied
locations across the dorso-ventral and medio-lateral axes (Fig. 3b,e).
Overall, our findings underscore the fine-scale spatial organizations of
these projection-enriched cell clusters within the hypothalamus and the
varying degrees of topographical heterogeneity of the locations of
projection-defined HY neuronal populations.

To gain insight into the molecular characteristics and gene regulation
of the projection-enriched clusters, we further utilized the integrative
analysis of Epi-Retro-Seq, snmC-seq, and scRNA-seq. We identified
1,163 differentially expressed genes (DEGs) across the 17 clusters in all
pairwise comparisons (Fig. 3f). In Figure 3f,g, the projection-enriched
clusters are organized along the y-axis in the same order as for the target-
cluster enrichment illustrations in Figure 3b. Each row has a largely
independent pattern suggesting that each cluster has a different set of
DEGs, even when there are multiple clusters enriched for projections to

a particular target. (Note that this contrasts with results for TH. See
below.) Notably, many of the DEGs were found to be involved in
neuronal function and connectivity, as exemplified by a few highlighted
genes in Figure 3f. As expected from the typical inverse relationship
between gene expression and gene body CH methylation (mCH), mCH
levels plotted with an inverted colormap in Figure 3g are strikingly
similar to the expression levels for the same genes shown in Fig. 3f
indicating differential methylation of these genes across clusters (Fig.
3g). To investigate the regulation of these DEGs, we identified 148,897
DMRs associated with the DEGs (Methods). The CG methylation
(mCG) levels of the DEG-associated DMRs exhibited differential
methylation patterns consistent with the gene expression and gene body
mCH levels (Fig. 3h). To uncover the regulatory network of these DEGs,
we further identified transcription factors (TFs) whose binding motifs
were enriched in CREs (Fig. 3i). The analysis showed some shared sets
of TFs between clusters enriched for some projections, such as HY —TH.
In contrast, more varied sets of TFs were identified between clusters
enriched for some other projections, such as HY—P or HY—>MY.
Additionally, distinct sets of TFs were observed between clusters that
were enriched for different projections. Collectively, these findings
underscore the existence of diverse gene regulatory networks that employ
distinct TFs and DMRs for different hypothalamic projections.
Furthermore, they offer valuable insights into the molecular mechanisms
that govern the regulation of projection-enriched cell clusters and their
associated genes in the hypothalamus.

In summary, our integrative analysis has revealed the relationships
between hypothalamic neurons projecting to ten different targets and their
methylation profiles, enrichment in genetic/epigenetic clusters, and
spatial locations of neurons belonging to those clusters. A prior study
linked transcriptomic clusters and their spatial locations within the medial
pre-optic area (MPOA) of the hypothalamus to specific behaviors'®,
suggesting that those clusters might mediate their differential
contributions to behavior through differences in their projections.
Another study directly linked transcriptomic clusters of neurons and their
locations within the ventro-medial hypothalamus (VMH) to their
projections to the MPOA or PAG by combining retrograde labeling with
scRNA-seq and seqFISH®. Those experiments revealed projection-
enriched clusters, as we have found for a different set of hypothalamic
projection targets, but they did not observe clear relationships between
transcriptomic clusters, behavior-specific activation, and projections to
the PAG or MPOA. We mapped the Kim et al. ® neurons to our
hypothalamus clusters and found that none of the behavior enriched
clusters or projection-enriched clusters from Kim et al. correspond to any
of our projection-enriched clusters in the entire hypothalamus (Extended
Date Fig. 7, Methods). Our observations across the full spatial extent of
hypothalamus and a large number of projection targets reveal strong
correlations between clusters and projection targets, suggesting that cell
types defined by their projections and genetics/epigenetics are also likely
to make distinct contributions to hypothalamic function and related
behaviors.
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Fig. 3 | The diversity of cell type, spatial location, and gene regulation
of hypothalamic projection neurons. a, Joint t-SNE of Epi-Retro-Seq
(n=1,572), unbiased snmC-seq (n=11,554), and scRNA-seq (n=148,840)
data of hypothalamic neurons colored by cell cluster (top) or projection
target (bottom, same color palette as left row colors in Fig. 1b). Seventeen
clusters enriched for the profiled projection neurons are outlined. b, The
proportion of each of the 10 projections in each of the 17 projection-
enriched clusters, Z-score normalized across targets. ¢, d, t-SNE of the 17
projection-enriched clusters (c¢), where neurons projecting to different
targets were highlighted in (d). e, Projection-enriched HY clusters
mapped to MERFISH data of 6 coronal slices (C6R1, C6R2, C8R1,
C8R2, CI0R1, CI0R2) and 2 sagittal slices (S1, S2) of HY. The
replicates of coronal slices (R1 and R2) are arranged from anterior to
posterior (C6, C8, C10), left to right. The sagittal slices are arranged from
lateral to medial (S1, S2), top to bottom. Examples of clusters with

Epi-Retro-Seq of thalamic projection neurons

The thalamus is a primary hub in sensory and cortical information
processing and also projects to subcortical structures. Similar to
hypothalamus, thalamus consists of a large number of nuclei that are
organized into multiple functional groups. The main, central regions of
the thalamus are composed of exclusively excitatory regions (except for
a few local GABAergic interneurons in the dorsal lateral geniculate
nucleus (LGd)) that are reciprocally connected with cortical areas®.
Other more ventral and lateral regions of the thalamus (such as LGv and
RT) contain GABAergic inhibitory neurons that are either reciprocally
connected with thalamic excitatory neurons or project to subcortical
structures such as the basal ganglia and brainstem®. In contrast to the

specific spatial locations are labeled in the enlarged insets of each slice.
Scale bars represent 15 mm. The same color palette for clusters is used in
(b-e). f-h, Gene expression (f), gene body mCH (g) levels of differentially
expressed genes (DEGs) between the 17 projection-enriched clusters, or
mCQG levels of DEG-associated DMRs (h) in each cluster. The values are
Z-score normalized across clusters. The DEGs and cell clusters are
arranged in the same orders in (f-h). Only the DMR with highest anti-
correlation with each DEG are shown in (h) to make the column orders
consistent between (f-h). Examples of DEGs with GO annotations related
to neuronal function and connectivity are labeled on the x-axis. i,
Examples of transcription factors (TFs) whose binding motifs were
enriched in hypo-CG-methylated DMRs are shown in the bubble plot.
The size of each dot represents the enrichment level (AUC). The color of
the dot indicates the expression level of the TF. The clusters are arranged
in the same order as in (f-h).

hypothalamus, the thalamus had a lower degree of cell type complexity
as shown by the smaller number of cell clusters identified through gene
expression analysis'é. Despite both the thalamus and hypothalamus
showing a high level of heterogeneity in their anatomical nuclei and
projections, the differences in their cell type complexity prompted us to
investigate whether the relationships between cell types, their projections,
and their spatial locations in the thalamus differ from those observed in
the hypothalamus, as discussed above.

We analyzed thalamic neurons that project to twelve different targets,
including nine cortical areas (PFC, MOp, SSp, ACA, Al, AUDp, RSP,
PTLp, and VISp), SC, VTA, and P. To gain a comprehensive
understanding of these neurons, we combined Epi-Retro-Seq data with
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unbiased snmC-seq and single-cell RNA-seq data from the thalamus.
Through this integration, we identified a total of 58 thalamic neuronal cell
clusters (Fig. 4a), of which 33 clusters were enriched for Epi-Retro-Seq
neurons (Fig. 4b). It is worth noting that neurons dissected from different
anatomical regions within the thalamus were located in distinct sets of
clusters'’ (Fig. 4c¢), as expected from prior descriptions based on analysis
of scRNA-seq data’, suggesting that these molecularly defined cell
clusters also have a spatial organization.

In Figure 4b, we assessed the degree of enrichment of each projection
in each cluster. Similar to what was observed in the hypothalamus, each
population of thalamic projection neurons exhibited enrichment in
distinct subsets of cell clusters, with each cluster showing enrichment for
a specific set of projections, sometimes only one. Notably, the clusters
enriched for TH—SC, TH—-VTA, TH—P, and TH—cortex were mostly
mutually exclusive. Regarding cortical projections, TH—PTLp and
TH—VISp neurons exhibited enrichment in a largely overlapping set of
clusters, but with varying degrees of enrichment. TH—MOp and
TH—SSp neurons also shared most of their enriched clusters, which
differed from those enriched for TH—PTLp and TH—VISp. These
results support the notion of a separation of thalamic cell types between
the visual and motor pathways in the thalamus and highlight the
heterogeneity of cell types within each pathway. Notably, TH—RSP
neurons showed no overlap in enriched clusters with any other cortical
projections, and were uniquely enriched in clusters 13, 26 and 47. These
clusters were annotated by their gene expression patterns as belonging to
the anteroventral (AV) nucleus (clusters 13 and 26), and anterodorsal
(AD) nucleus (cluster 47), which is consistent with TH—RSP projections
originating from anterior thalamic nuclei?!. In summary, TH neurons
projecting to cortex vs. subcortical targets were enriched in distinct sets
of clusters. The enriched cell clusters for cortical projections were further
segregated by different thalamic pathways, with multiple enriched cell
clusters observed for each pathway or projection. These findings
highlight the cell type specificity as well as heterogeneity at the level of
TH projections.

Such cell type specificity and heterogeneity of TH projection neurons
were also reported in transcriptomic analysis of single TH projection
neurons. Phillips et al. conducted a single-cell RNA-seq study on
thalamic neurons projecting to the prefrontal, motor, somatosensory,
auditory, and visual cortices’. We will refer to their dataset as Retro-Seq
of these thalamocortical (TC) projections. In their study, clustering
analysis of Retro-Seq revealed that neurons of each projection were
enriched in a specific set of clusters, indicating specific and shared cell
types between different TC projections, as well as cell type heterogeneity
within each TC projection.

To compare Retro-Seq and Epi-Retro-Seq data for these TC
projections, we mapped the Retro-Seq data onto our 58 integrated TH
clusters (Extended Data Fig. 8a, Methods). The t-SNE of Retro-Seq and
Epi-Retro-Seq neurons from comparisons of the most closely
corresponding projections showed that they occupied similar spaces and
were enriched in a common set of clusters (Extended Data Fig. 8a,b).
However, in addition to the shared projection-enriched clusters, certain
clusters were found to be enriched for each projection only in either
Retro-Seq or Epi-Retro-Seq. These differences are most likely due to the
use of different injection coordinates for each cortical target

(Supplementary Table 4), resulting in overlapping yet different
populations of retrogradely labeled TH neurons being analyzed in the two
data sets. The degree of alignment between Epi-Retro-Seq and Retro-Seq
was quantified by the overlap score and cosine distance (Extended Data
Fig. 8c, Methods), which revealed that Retro-Seq neurons of each
projection were more similar to Epi-Retro-Seq neurons for the
corresponding projections than for any other projections. Taken together,
these results provide further evidence for the remarkable cell type
specificity and heterogeneity within each thalamocortical projection, as
revealed by the analysis of both gene expression and DNA methylation.

Similar to our approach for the hypothalamus, we utilized the
MERFISH data to map the spatial locations of the 33 TH projection-
enriched clusters (Fig. 4d). Notably, almost all of these clusters exhibited
a unique spatial pattern, many of them with distinct boundaries in the
distributions of their cells (Fig. 4d). These boundaries often corresponded
to specific thalamic nuclei, exemplified by clusters 25 and 45 that were
enriched for pons-projecting neurons and annotated as medial habenula
(MH) cell types based on their molecular signatures. When mapped to the
MERFISH data, cells in these clusters demonstrated a clearly defined
spatial location that corresponded to MH. This illustrates the high
resolution of our data and analysis, enabling the identification of specific
MH—P projection neurons among all thalamic neurons. Similarly, we
were able to accurately map the molecularly annotated AD cluster 47 and
AV cluster 26 that were enriched for the TH—RSP projection to their
corresponding locations in the dorsal and ventral anterior thalamus. This
high resolution of our data also allowed us to investigate the molecular
and spatial cellular heterogeneity within a projection. For instance, the
visual input from the retina reaches VISp through LGd in TH. When
mapped to MERFISH, clusters 38, 5, 4, 1, and 6 that were enriched for
TH—VISp neurons collectively occupied the location that corresponds to
LGd, with each cluster having a unique distribution within LGd. These
findings underscore the heterogeneity of LGd—VISp neurons and
provide valuable insights for future in-depth analysis of different types of
LGd—VISp neurons.

Next, we investigated the gene regulations of thalamic neurons in these
projection-enriched clusters. Joint analysis of single-cell RNA-seq and
scmC-seq data of thalamus identified a total of 2,348 differentially
expressed genes (Fig. 4e,f) and 1,566,402 associated DMRs (Fig. 4g)
across the 33 clusters. As expected, the expression levels of the DEGs
(Fig. 4e) were anti-correlated with their mCH levels (Fig. 4f), while their
associated DMRs also showed strong correspondence in terms of mCG
levels (Fig. 4g). In contrast to HY, TH clusters enriched for the same
projections displayed similar expression patterns of DEGs and
methylation patterns of the associated DMRs, suggesting shared usage of
CRE:s in gene regulation. Additionally, we identified transcription factors
with significant motif enrichment in the DMRs (Fig. 4h). Clusters
enriched for the same projection had similar sets of TFs, while those
enriched for different projections had more distinct sets of TFs. These
results imply the existence of projection-specific gene regulatory
networks, which consist of unique sets of TFs, CREs, and target genes in
the thalamus. These relationships are in contrast to those observed in HY,
where the organization of TF motifs is not closely related to projection
targets.
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Fig. 4 | The diversity of cell type, spatial location, and gene regulation
of thalamic projection neurons. a, Joint t-SNE of Epi-Retro-Seq
(n=2,606), unbiased snmC-seq (n=16,943), and scRNA-seq (n=162,795)
data of thalamic neurons colored by cell cluster. b, The proportion of each
of the 12 assayed TH projections in each of the 33 projection-enriched
clusters, Z-score normalized across targets. The same set of colors is used
for labeling clusters in both cluster group i (14 clusters) and cluster group
ii (19 clusters). ¢, TH neurons dissected from two anterior lateral regions
(THI-1, THI-2), two anterior medial regions (THm-1, THm2), and three
posterior regions (THp-1, THp-2, THp-3) are colored respectively in the
t-SNE. See slices 7-10 in Extended Data Fig. 1 for details of the
dissection regions. d, Projection-enriched TH clusters mapped to
MERFISH data of 6 coronal slices (C8R1, C8R2, C10R1, CI0R2,
C12R1, C12R2) and 2 sagittal slices (S1, S2) of TH. The sagittal slices
are arranged from lateral to medial (S1, S2), top to bottom. The replicates
of coronal slices (R1 and R2) are arranged from anterior to posterior (C8,
C10, C12), left to right. The colors of clusters in the top two rows of insets
are the same as the cluster labels in cluster group i in (b). The colors of

Differential usage of neurotransmitters in projection neurons

Recent brain-wide single-cell and spatial transcriptomic analyses have
revealed remarkable heterogeneity and spatial specificity in
neurotransmitter usage among different cell types across the mouse
brain'®!7. As described above and exemplified in thalamus and
hypothalamus, our integrative analysis revealed high levels of cell-type
and spatial specificity in neurons with different projections. These
findings sparked a further investigation into the neurotransmitter usage of
these distinct projection neurons that were in different brain regions and
had different cell type compositions. Insights into the neurotransmitter
usage of different projection neurons may shed light on their functional
properties and their potential role in behavior, with broader implications
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clusters in the bottom two rows of insets are the same as the cluster labels
in cluster group ii in (b). Examples of clusters with specific spatial
locations are labeled in the enlarged insets of each slice. Note that slices
C12R1 and C12R2 are not shown for cluster group ii. e-g, Gene
expression (e), gene body mCH (f) levels of differentially expressed
genes (DEGs) between the 33 projection-enriched clusters, or mCG
levels of DEG-associated DMRs (g) in each cluster. The values are Z-
score normalized across clusters. The DEGs and cell clusters are arranged
in the same orders in (e-g). Only the DMR with highest anti-correlation
with each DEG are shown in (g) to make the column orders consistent
between (e-g). Examples of DEGs with GO annotations related to
neuronal function and connectivity are labeled on the x-axis. h, Examples
of transcription factors (TFs) whose binding motifs were enriched in
hypo-CG-methylated DMRs are shown in the bubble plot. The size of
each dot represents the enrichment level (AUC). The color of the dot
indicates the expression level of the TF. The clusters are arranged in the
same order as in (e-g).

for understanding neural circuits and the mechanisms underlying various
brain functions and disorders.

To systematically examine the use of neurotransmitters by different
projections, we quantified the levels of expression of nine canonical
neurotransmitter transporter genes in each of the projection-enriched
clusters within the twelve grouped brain regions described previously
(Extended Data Fig. 5). These transporter genes included Sicl7a7
(Vglutl), Slc17a6 (Vglut2), and Slc17a8 (Vglut3) for glutamatergic
neurons, Slc32al (Vgat) for GABAergic neurons, Sic6a2 (Net) for
noradrenergic neurons, Slc6a3 (Dat) for dopaminergic neurons, Slc6a4
(Sert) for serotonergic neurons, Slc6as (Glyt2) for glycinergic neurons,
and Slci8a3 (Vacht) for cholinergic neurons. In addition, we used
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histidine decarboxylase (Hdc) for histaminergic neurons. Our analysis
revealed a diverse range of neurotransmitter usage across the projection-
enriched clusters, particularly those in the midbrain and hindbrain
regions. Furthermore, a large proportion of the projection-enriched
clusters exhibited significant expression of more than one
neurotransmitter transporter gene. These findings support that there is a
wide variation in neurotransmitter usage across different neural pathways
and highlight the heterogeneity within some of these pathways. Below,
we delve deeper into a few interesting cases, including projections from
the hindbrain regions of P and MY, the amygdala, and the midbrain
region of VTA.

Epi-Retro-Seq and Neurotransmitter Usage in Hindbrain Projection
Neurons

We analyzed eleven hindbrain projections, which included projections
from P or MY to five different targets - TH, HY, SC, CBN, and CBX - as
well as the projection from P to MY. These projections were enriched in
20 cell clusters out of a total of 128 hindbrain clusters. The degree of
enrichment of each projection in each cluster was quantified as shown in
Figure 5a. Notably, in both P and MY, neurons projecting to the CBX
were the most distinct from other projection neurons. This was evidenced
by the presence of exclusive CBX-projecting clusters in each region. For
instance, in P, the cluster 0 was uniquely enriched for the P—CBX
projection, while in medulla, cluster 76 was enriched for MY neurons
projecting to the cerebellum, particularly those projecting to CBX.

The 20 projection-enriched clusters showed expression of six
neurotransmitter transporter genes (Fig. Sb). The majority of these
clusters contain glutamatergic neurons expressing Vglut2, such as the
previously mentioned MY—CBX enriched cluster 76. Interestingly,
Vglutl and Vglut2 were co-expressed in cluster 0 neurons that were
enriched for the P—CBX projection. These observations are consistent
with previous studies that demonstrated the presence of VGLUTI1 or
VGLUT?2 in climbing fiber (MY—CBX) terminals and both VGLUT1
and VGLUT2 in cerebellar mossy fiber (P—CBX) terminals using
synaptic vesicle immunoisolation??. Moreover, different
neurotransmitters were utilized in clusters enriched for the same
projections. For instance, clusters 10, 30, 11, and 27 were enriched for
P—HY projections. Among them, clusters 10 and 30 are GABAergic
with Vgat expression, cluster 11 is glutamatergic with Vglut2 expression,
whereas cluster 27 is serotonergic showing co-expression of Sert and
Vglut3. Furthermore, several of these clusters also exhibited distinctive
spatial distributions when mapped to the MERFISH data, such as clusters
0, 76, 10, and 27 (Fig. 5¢). Altogether, these results underscore the extent
of molecular, cellular, and spatial specificity and diversity within
hindbrain projections.

We observed that neurons projecting to CBX from P or MY were
distinct from other projections originating from the same regions. To
investigate this further, we examined the molecular signatures that could
differentiate CBX-projecting neurons from other projection neurons in P
or MY. Additionally, we investigated whether there were any common
molecular signatures between the P>CBX and MY—CBX projections.
Analysis of gene body DNA methylation identified genes that could
distinguish the P—CBX cluster (0) from other P projections associated
clusters, or differentiate MY—CBX cluster (76) from other MY
projections associated clusters (Fig. 5d). Interestingly, only five genes
were common between the top 100 genes in the two sets, namely S/iz3,
Phactr3, Pcbp3, Atp10a, and Cdkl4 (highlighted in Fig. Sd). Notably,
Slit3 encodes a repulsive axon guidance molecule’>?*, and Phactr3 has
been shown to be involved in regulating axonal morphology®>?. To

understand how the differentially expressed genes in CBX-projecting
neurons are regulated, we explored DMRs that were hypo-methylated in
CBX-projecting neurons. In total, we identified 223,839 hypo-DMRs in
the hindbrain that were associated with CBX-projecting neurons (Fig.
5e). These DMRs were further divided into subsets that were hypo-
methylated in either P»CBX or MY —CBX, while only a limited number
were hypo-methylated in both. Collectively, these findings suggest that
the molecular mechanisms underlying CBX versus other projections in P
and MY are largely distinct, but with some shared features at both the
transcriptomic and epigenomic levels.

Epi-Retro-Seq and Neurotransmitter Usage in Amygdala and Midbrain
Projection Neurons

We examined projections from the amygdala to nine different targets,
including the PFC, ENT, HIP, MOB, STR, TH, VTA, P, and MY. These
projections were enriched in 16 amygdala clusters, with distinct sets of
clusters enriched for neurons projecting to IT targets (ENT, STR, MOB,
PFC, and HIP) versus ET targets (TH, MY, VTA, and P) (Fig. 5f). The
clusters enriched for IT projections were primarily glutamatergic and
expressed Vglutl and/or Vglut2(Fig. 5g). In contrast, the clusters enriched
for ET projections were divided between glutamatergic clusters that
expressed Vglut2 and GABAergic clusters (Fig. Sg). Notably, the
AMY—ENT projection was particularly distinct compared to other IT
projections, with unique enrichment in clusters 1 and 7 (Fig. Sf).
Additionally, it exhibited varied usage of vesicular glutamate
transporters. Within the clusters enriched for AMY—ENT, Vglutl was
predominantly expressed in cluster 12, Vglut2 was the predominant
transporter in clusters 24, 7, and 1, while Clusters 31 and 64 expressed
both Vglutl and Vglut2, suggesting a potential diversity in the physiology
and function of amygdala neurons projecting to the entorhinal cortex. In
summary, our results underscore the heterogeneity in neurotransmitters
and their transporter utilization among amygdala projection neurons.

The midbrain regions containing the ventral tegmental area (VTA) and
substantia nigra (SN) (which we collectively refer to as VTA) exhibit
some of the most interesting and complex patterns of heterogeneous
neurotransmitter usage between different projections. Our study analyzed
VTA neurons projecting to sixteen different targets, including six cortical
targets (PFC, MOp, SSp, ACA, RSP, and PTLp), six other IT targets
(MOB, ENT, PIR, AMY, STR, and PAL), and four ET targets (TH, HY,
SC, and P). By integrating Epi-Retro-Seq and unbiased snmC-seq data,
as well as single-cell RNA sequencing of VTA, we can distinguish
between cell clusters with various combinations of the expected
glutamate, GABA, and dopamine transporters known to be expressed by
VTA neurons?’° (Extended Data Fig. 9a,b).

In order to better examine the relationships between VTA neurons
projecting to different targets and their use of neurotransmitters, we
analyzed the levels of mCH at specific marker genes, including tyrosine
hydroxylase (7h) for dopaminergic neurons, Gad2 for GABAergic
neurons, and Vglut2 for glutamate neurons because previous studies
showed that rodent VTA glutamate neurons mainly express Vglut2 but
not Vglutl or Vglut3*"3? (Fig. 5h,i and Extended Data Fig. 9c-d). Lower
mCH levels at these genes suggest higher gene expression, given the
negative correlation between gene body mCH levels and gene expression.
In general, VTA neurons that project to the cortex had lower levels of
mCH at Th compared to subcortical projections (except for VTA—STR),
suggesting a higher expression of 7/ (Fig. Sh top, P values=2.8e-7 (CTX
vs MOB), 3.0e-5 (CTX vs PAL), 6.2e-15 (CTX vs ET), Wilcoxon rank-
sum tests). The CTX-projecting neurons also exhibited lower mCH levels
at Vglut2, indicating a significant Vglut2 expression (Fig. Sh middle).
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Therefore, these CTX-projecting VTA neurons are likely 7h+ and
Vglut2+ and utilize both dopamine and glutamate (Fig. S5i and Extended
Data Fig. 9¢). In contrast, VTA neurons projecting to STR do not appear
to co-express Th and Vglut2 but instead were shown to consist of three
subpopulations: Th+ Vglut2-, Th- Vglut2+, and Th- Gad2+, as indicated
by their mCH levels at Th, Vglut2, and Gad?2 (Fig. 5i and Extended Data
Fig. 9c-e). Based on their mCH levels, the ET-projecting neurons were
generally divided into two subgroups: Gad2+ and Vglut2+ (Fig. 5i).

Among the ET-projecting VTA neurons, those projecting to TH and HY
were more similar to each other than to those projecting to SC and P
(Extended Data Fig. 9b). Notably, some of the SC- and P-projecting
neurons were uniquely present in a VTA Gad2+ cluster that were absent
in other projections (Extended Data Fig. 9b). Overall, our findings
corroborate prior reports of diverse populations of VTA neurons that
employ single or combined neurotransmitters and highlight intricate
patterns of distinct neurotransmitter usage among various projections.

Hindbrain
a 76:10 Glut [
40:ECU-CU Slc6a2 Glut
® 70:MV Glut

I ® 0:PG-TRN-LRN Fat2 Glut
F 5:MY Lhx1 Gly-Gaba
114:PB-an-do Evx2 Glut
F 124:MY Lhx1 Gly-Gaba

° 7 PGHN PARN-| MDHN Hoxb5 Glut
F 7:CU- ECU-SF:VGl[Fobe Glut
‘| ut

- ® 10: CLI PDTg Pax6 Gaba

Source Cell Cluster

I ® 30:RN-MRN En1 Sox2 Gaba
r 11:PB-an-do Evx2 Glut

® 27:MB-MY Glut-Sero
44:MB/HB Lhx1 Glut
I ® 80:PB-an-do Evx2 Glut
18:LDT-PCG Gata3 Irx5 Gaba
I ® 62:CUN-PPN Evx2 Meis2 Glut
I © 57:CU-ECU-SPVI Foxb1 Glut

AUPR P
223,839 »CBX hypo DMRs

FTOXZX o 3TYQORETY 0 02 06 08 10 peg
IFpQo® Z-score 555885 m 2a8bb
Expr. 23S
11I9%% EO Proportion el 29 G AUPR MY 8 53875 %
$5%czz U 0 u 7 T4l
= 00 * % s
AMY 32:CEA-AAA-BST Ebf Gaba VTA i -CTX -MOB >STR SPAL SET
25:NDB-SI-MA-STRv Lhx8 Gaba o -
67:COAa-PAA Barhl2 Glut h ~—LDopamine 10
55:COAa-PAA Barhi2 Glut /
5 23 SLMANDE Ebf1 B Gaba 21 A K &
3 15:COAa-PAA Barhi o S
5 9:MEA-BST Otp Glu 10 s S
° I MEACOABMA Codod2 Glut R Slutamate (Valut2) g Wl
8 12:MEA Slc17a7 Glut 2
8 T VA COMBMA Godod? Glut § | —< 10
= iC* uf 3
3 31:MEA Slc17a7 Glut So o i
? 38 EA COABMA Gotedz Gl GABA (Gad Fio] v &
! cdc: ut R SN PR AT Vo
57:NLOT Rho Glut 2 S LS e oS98 o o
46:MEA Sic17a7 Glut ~\ o1
I>r<obcoOou 2 3 tuw 0 —— -
F25 EREE |Lo Zsoore Expr. 239 1 10 1o 10 10 10 10 10 10 10 10 10
Target 2Pr090ﬂl°n 0 S S 1/ Gene body mCH Vglut2 Vglut2 Vglut2 Vglut2 Vglut2

Fig. 5 | Neurotransmitter usage in HB, AMY, and VTA projection
neurons. a, b, The proportion of each of the 11 assayed HB projections
(a, Z-score normalized across targets) and the expression levels of six
neurotransmitter transporter genes (b) in each of the 20 hindbrain
projection-enriched clusters. ¢, Projection-enriched clusters mapped to
the MERFISH slice S1. The same color palette for clusters is used in a
and c. d, Area under the curve of precision-recall (AUPR) of genes to
distinguish P—CBX cluster (0) and P—ET clusters (10, 11, 27, 30, 35,
44, 57, 62, 80) vs. MY—CBX cluster (76) and MY—ET clusters (5, 7,
10,11, 17,57, 66, 114) with gene body mCH level in Epi-Retro-Seq data.
The genes with AUPR>0.872 in P and AUPR>0.647 in MY (>99th
quantile) are colored in red. The name of five genes selected in both P
and MY are labeled. e, mCG levels of hypo-mCG DMRs in P and MY

Summary

Altogether, we have uploaded and made available data that informs
potential users about the relationships between axonal projection status
and DNA methylation at single-cell resolution for tens of thousands of
neurons corresponding to hundreds of source—target combinations. We
have provided quantitative measures of the discriminability of source
neurons projecting to different targets for nearly one-thousand target-to-
target comparisons. We have further demonstrated how these data can be
integrated with other single-cell data modalities, including scRNA-seq

between the —CBX clusters and —ET clusters. f, g, The proportion of
each of the 9 assayed AMY projections (f, Z-score normalized across
targets) and the expression levels of neurotransmitter transporters Vglutl,
Vglut2, and Vgat (g) in each of the 16 projection-enriched clusters. h, i,
The gene-body mCH levels of tyrosine hydroxylase (7h), Gad2, and
Vglut2 in VTA projection neurons, shown in density plots (h) or scatter
plots (i). Colors represent VTA neurons projecting to different targets and
the same palette is used in (h, i). Note that, because low mCH levels
indicate high gene expression, the x-axis in h and both axes in i are plotted
as the reciprocal mCH values (1/gene body mCH), so low mCH is plotted
to the right/up and high to the left/down. ACA was not included in CTX
(see Extended Data Fig. 9).

and MERFISH, to link the projection status of spatially-resolved cell-type
clusters to neural circuits. More extensive details about the use of these
data, their potential limitations, and the analytic approaches we have
taken can be found in Methods. The in-depth analyses provided here for
both brain-wide comparisons of ET- versus IT-projecting neurons, and
for the full sets of targets assayed for 6 of the 32 assayed source regions
(HY, TH, P, MY, AMY, VTA) exemplify the utility of the much larger
data set for further brain-wide and source- or target-focused analyses.
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Methods

Experimental Animals.

As described by Zhang et al. *, all experimental procedures using live
animals were approved by the Salk Institute Animal Care and Use
Committee. The knock-in mouse line, R26R-CAG-loxp-stop-loxp-Sunl-
sfGFP-Myc (INTACT) used in Epi-Retro-Seq® was maintained on a
C57BL/6J background. 42-49 day old adult male and female INTACT
mice were used for the retrograde labeling experiments. Adult C57BL/6J
“wild-type” mice were used for MERFISH experiments.

Surgical Procedures for Viral Vector and Tracer Injections.

As described by Zhang et al.’, to label neurons projecting to regions of
interest, injections of rAAV2-retro-Cre (produced by Salk Vector Core
or Vigene, 2x10'? to 1x10"3 viral genomes/ml, produced with capsid from
Addgene plasmid #81070 packaging pAAV-EFla-Cre from Addgene
plasmid #55636) were made into both hemispheres of the INTACT mice.
In summary, animals were anesthetized with either ketamine/xylazine or
isoflurane and placed in a stereotaxic frame. Pressure injections of 0.05
to 0.4 microliters of AAV per injection site were made using glass
micropipettes (tip diameters ~10-30pm) targeted to stereotaxic
coordinates corresponding to MOp, SSp, ACA, AUDp, RSP, PTLp,
VISp, HPF, MOB, STR, PAL, TH, SC, VTA+SN, P, MY, and CBX. To
precisely target PFC, Al, ENT, PIR, AMY, HY, and CBN, AAV was
injected using iontophoresis to ensure confined viral infection.
Iontophoretic injections (+5uA, 7's on/7 s off cycles for 5-10 min) were
made with glass pipettes with tip diameter of ~10um. For most of the
desired target areas, injections were made at different depths, and/or at
different AP or ML coordinates to label neurons throughout the target
area. More detailed injection coordinates and conditions are listed in
Supplementary Table 1. At least 2 male and 2 female mice were injected
for each desired target.

Brain dissection.

Brain dissections were done as described in Zhang et al.’>. In summary,
approximately two weeks after the AAVretro injection, brains were
extracted from the 56-63 day old INTACT mice, immediately submerged
in ice-cold slicing buffer (2.5mM KCI, 0.5mM CaCl,, 7mM MgCl,,
1.25mM NaH,PO4, 110mM sucrose, 10mM glucose, and 25mM
NaHCOs3) that was bubbled with carbogen, and sliced into 0.6 mm
coronal sections starting from the frontal pole. From each AAVretro-
injected brain, the slices were kept in the ice-cold dissection buffer from
which selected brain regions (Fig. 1b) were manually dissected under a
fluorescent dissecting microscope (Olympus SZX16), following the
Allen Mouse Common Coordinate Framework (CCF), Reference Atlas,
Version 3 (2015) (Extended Data Fig. 1). The dissected brain tissues
were transferred to prelabeled microcentrifuge tubes, immediately frozen
in dry ice, and subsequently stored at -80°C.

Nuclei preparation and single-nucleus isolation.

Nuclei preparation and isolation were done as described by Zhang et al.’.
In summary, for each dissected brain region, samples from 2 males and 2
females were pooled separately as biological replicates for nuclei
preparation. Nuclei were prepared using a modified protocol as reported
by Lacar et al., 2016 and described by Zhang et al.>. Nuclei suspensions
were then incubated with GFP antibody, Alexa Fluor 488 (Invitrogen, A-
21311), and anti-NeuN antibody (EMD Millipore MAB377) conjugated
with Alexa Fluor 647 (Invitrogen A20173). GFP*/NeuN" single nuclei
were isolated using fluorescence-activated nuclei sorting (FANS) on a
BD Influx sorter or a BD Aria Fusion cell sorter with 100pm nozzle, and

sorted into 384-well plates with digestion buffer for snmC-seq. The
collected plates were incubated at 50°C for 20 minutes and then stored at
-20°C.

snmC-Seq library preparation.

The bisulfite conversion and library preparation were performed
following the detailed snmC-seq protocol as previously described'. In
brief, DNA samples from single nuclei were barcoded with random
primers after the bisulfite conversion, pooled through two rounds of
cleaning up with SPRI beads, then added with adapters and PCR
amplified to generate the libraries. Libraries were then pooled, cleaned
up with SPRI beads, normalized and sequenced on Illumina Novaseq
6000 using the S4 flow cell 2 x 150 bp mode.

Mapping and Preprocessing.

Epi-Retro-Seq data were mapped to the mm10 genome as described in
our previous study®*. For each single cell, we counted the methylated and
total basecalls for all 100kb non-overlapping genomic bins and all gene
bodies expanded 2kb in both directions using ALLCools generate-
dataset. The data is saved in Zarr format to allow chunk loading and on-
disk computing®®. To avoid the methylation differences being driven by
the active and inactive X-chromosomes, we only used the autosomal bins
and genes in our analyses. The cell-by-bin and cell-by-gene posterior
methylation levels were computed as previously described®*, which is the
input for all downstream analyses.

Quality control.

Step 1. The cells included in the analysis are required to have 1) median
mCCC level of the experiment <0.025, 2) 500,000 < nonclonal reads <
10,000,000, 3) mCCC level <0.05. In total, 56,843 cells from 703
experiments satisfied these requirements (Extended Data Fig. 2a, b).
Step 2. The potential doublets were removed as described in the next
section, and 48,032 cells remained in the dataset (Extended Data Fig.
2¢, d). The cell type and dissection information of these cells were used
in our analysis, but further filters were applied to exclude non-neuronal
cells as well as neurons whose projection targets are not confidently
assigned.

Step 3. The experiments with less than 20 neurons were excluded to
ensure the statistical power of projection analysis, resulting in 39,461
cells from 519 experiments left. The non-neuronal cells are also removed
from the dataset, after which 34,643 neurons remain. The cell type
classification method is described in the next section.

Step 4. The cortical cells from 286 experiments were further filtered to
exclude the experiments with a high proportion of neurons of the cell
types known not to project to the intended injection site (off-target
clusters), using the same method as in our previous study®. Specifically,
for each FANS run, we counted the number of neurons that were observed
in known on-target cell types (O,,) and off-target cell types (Oyff).
Assuming that the proportions of contaminated cells in each subclass
would be similar to a sample without projection-type enrichment, we
compared the observed counts to the counts from unbiased snmC-seq data
(Eon and E, f) collected from the corresponding dissections in Extended

Data Fig. 1. The fold-enrichment was computed as W. A one-sided

offEon
exact binomial test of goodness-of-fit was used to determine whether the
enrichment of on-target cells was significant. The P value was computed
as Pr(X = O,y; m, p), where X ~ Binomial(n,p),n = Ogp + Ogpp,p =
EOTL

. For each ET target, we considered ET as on-target subclass and
EontEoff
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IT+inhibitory neurons as off-target. The thresholds for fold-enrichment
and FDR (Benjamini-Hochberg procedure) were 8 and 0.001. For IT
targets, we considered IT as on-target subclasses and L6 CT+inhibitory
neurons as off-target. The thresholds for fold-enrichment and FDR
(Benjamini-Hochberg procedure) were 3 and 0.001. This eliminated 32
out of 286 sorting cases (Extended Data Fig. 2e).

The rationale of step 4 is to remove potential contamination in the dataset
that might have resulted from 1) inaccurate gating of GFP+ NeuN+ cells,
and 2) AAV-retro injection pipettes that passed through overlying source
brain regions and directly labeled neurons at those sources rather than
being taken up retrogradely from the intended target. 1) could be more
common in the experiments of some weak projections, where very few
neurons were retrogradely labeled, resulting in small proportions of cells
passing FANS gating criteria and subsequent inclusion of high
proportions of cells accepted from the edges of FANS gates. 2) could be
more common when targeting a deep structure in the brain (e.g. TH, HY)
and collecting cells from the superficial structures directly above the
target (e.g. cortex). Note that step 4 was only performed on experiments
ofisocortical neurons, given that the on-target and off-target clusters were
relatively clear in these areas. For subcortical projections, comprehensive
prior knowledge of molecular cell types associated with projection is
usually lacking, which makes the estimation of contamination using this
method more challenging. The projections profiled in the subcortical
structures are usually strong and do not involve overlaying of sources and
targets, which would potentially lead to lower noise level in those data.
Nevertheless, it is worth noting that even after these QC steps, there are
still expected to be some contaminated cells remaining in the dataset.
After all the QC steps, 33,304 neurons from 487 experiments were used
for analyses related to projection targets.

Transfer of cell labels from one dataset to another with weighted k-
nearest neighbors.

This method is similar to the label transfer method in Seurat v3%¢, and
implemented in our ALLCools python package. This is used in multiple
analyses throughout the manuscript, including Epi-Retro-Seq cell
classification and doublet removal, and mapping of MERFISH cells and
Retro-Seq cells into major dissection regions or RNA and mC co-clusters.
The original Seurat method identified anchors between two datasets, and
used the 100 nearest anchors for each cell in the unlabeled dataset to
average the information from the labeled dataset. Since the 100 anchors
usually include cells from other clusters, especially for a cell in an
underrepresented cluster, this method makes the label transfer of small
clusters quite noisy. Instead of using the anchors between datasets to
transfer the labels, we only used the anchors to integrate the datasets
together, and directly find the neighboring cells of the unlabeled dataset
in the labeled dataset on the integrated space. Since the larger dataset
usually has more cells than the number of anchors, this method reduced
the noise in the small clusters.

Assume we have two datasets in a coembedding space, A with labels and
B without labels. For each cell in B as a query cell, we first find its k
nearest neighbors in A with Euclidean distance, and denote its distances
to the neighbors as a k-dimensional vector D. D is then transformed to W

as the weights for averaging the information from the neighbors through
D

max(D);

the following steps which are the same as in Seurat. 1) D' =1 —
br n

2)D'"=1—e"2;3) W= %. After the transformation, the closer

neighbors have higher weights, and the weights of all neighbors sum up

to 1. To transfer a categorical label from A to B, we used one-hot

encoding to represent the label and the label vectors corresponding to the

k neighbors in A of the query cell (k-by-#categories, denoted as Ly.f)
were averaged with the weights W. The resulting vector Lg, = Wik,,f
represents the probability of the query cell belonging to each category.
The category with the maximum probability is used as the final
assignment.

Cell classification and doublet removal.

As described in our companion manuscript, the cell clustering of the
unbiased dataset was performed iteratively at four levels (L1-L4), which
assigned the cells into 61 (L1), 411 (L2), 1346 (L3), and 2573 (L4)
clusters, respectively. At each level, the highly variable 100kb bins were
selected, and PCA was used for dimension reduction. The significant PCs
from mCH and mCG were combined to perform consensus clustering.
We first performed doublet removal with the help of unbiased data. The
56,843 cells after QC step 2 are mapped to the 310,605 unbiased snmC-
seq cells (including predicted doublet cells). We used the highly variable
features selected in the unbiased data and the PCA model fit with the
unbiased data to transform the Epi-Retro-Seq to the same dimension
reduction space as the unbiased data. Then we classified the Epi-Retro-
Seq cells into either one of the 61 L1 clusters or the predicted doublet
clusters defined in the unbiased data. The classification was performed
with the k-nearest neighbor approach described above on the PCs
combining mCH and mCG. The Epi-Retro-Seq cells assigned to each
non-doublet L1 cluster were analyzed in the next iteration, using the
highly variable features selected in the unbiased data of the cluster and
the PCA model fit with the unbiased data of the cluster. All the predicted
doublet cells in the unbiased data were added in each L1 cluster in the
level 2 clustering to further exclude the potential doublets. After these
two iterations, the cells predicted to be doublets were removed, with
48,032 Epi-Retro-Seq cells remaining. These cells were mapped to the
301,626 unbiased snmC-seq cells (without predicted doublets) with the
same feature selection and PCA methods through the four levels, so each
Epi-Retro-Seq cell is assigned to one cluster at each level. The 61 L1
clusters were annotated based on their dissection source and marker
genes. The cell clusters representing non-neuronal cells were removed
from further analyses. The cells corresponding to the IT, ET, CT, and
cortical inhibitory clusters in the L1 cluster annotation were used for QC
step 4 as described above.

Quantification of projection neuron difference with AUROC.

To test the similarity of two groups of cells based on DNA methylation,
we trained logistic regression models to predict the group label of each
cell. We compared the results using four different types of features to
predict the projection target of neurons from the same source. These
include the posterior of 100 kb-bin mCH level, gene body mCH level,
and the dimension reduction results of the two matrices. 50 PCs were used
as dimension reduction, with unbiased snmC-seq to fit the PCA models
and transform the Epi-Retro-Seq data. We also used two methods to split
the cells into training and testing sets. One used a random selection of
half of the cells projecting to each target for training and the other half
for testing (computational replicates), the other was based on the sex of
the mice where the cells were collected (biological replicates). After the
QC steps, we have 168 source-target combinations with data from both
sexes and the other 57 with cells only from one sex. Therefore, all the
comparisons of 926 target pairs could be quantified with the
computational replicates, but only 516 of them could be quantified with
biological replicates. We noticed significant congruence of model
performance between the different features and different train/test splits
(Extended Data Fig. 3a-c). Using 100 kb-bins performed very similar to
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gene bodies (Extended Data Fig. 3a). Using raw features performed
slightly better than using principal components (Extended Data Fig. 3b).
Using computational replicates performed significantly better than
biological replicates (Extended Data Fig. 3¢), which was expected given
that the computational replicates dismissed the heterogeneity between
biological replicates and made the predictions easier. Nevertheless, the
computational replicates still provided strongly correlated results to
biological replicates (Extended Data Fig. 3c), which allowed the
comparison between different target pairs to evaluate their epigenomic
differences.

All the other results in the figures were computed using the computational
replicates with gene-body mCH as features. The features were filtered
based on average read coverage across cells before the model training.
We removed the 100 kb bins and genes with <500 average CH basecalls,
resulting in 23,730 bins or 9,906 genes in the model. Sci-kit learn was
used for model implementation. The area under the receiver operating
characteristic (AUROC) from cross-validation was used to measure the
performance of the model. The higher AUROC represented the better
ability of the model to present the group label, which indicated the two
groups had larger mCH differences and were more distinguishable. For
computational replicates, we performed random sampling 50 times with
different seeds, and used the average AUROC as the final result.

To test the predictability of projection targets with genes from different
categories, we collected the genes from the following resources.
Neuropeptide and receptors: Table 1 in Smith et al.>” and Supplementary
Figure 16 in Tasic et al*®. Neurotransmitter receptors: Supplementary
Figure 15 in Tasic et al*®. Ion channels: Supplementary Figure 14 in Tasic
et aP®. and the Guide to PHARMACOLOGY database
(https://www.guidetopharmacology.org/DATA/targets_and families.csv
). Neural projection development: gene ontology terms GO0031175
Neuron Projection Development and GO0050808 Synapse Organization.
Transcription factors: annotation from SCENIC+°. Only genes included
in 9,906 genes with high CH coverage were analyzed, and adding more
lower coverage genes to increase the size of genesets did not improve the
prediction performance.

Several reasons could contribute to a low prediction performance.
Biological reasons would include: 1) Some neurons make projections to
several targets simultaneously. These could result in the neurons being
captured by multiple retrograde labeling experiments of different targets.
It would be impossible to predict a single label with our pairwise models
for this type of neuron. 2) Some neurons project to different target regions
but have tiny epigenetic differences. To systematically distinguish 1) to
2), other anatomic and genetic validations are still needed.

Technical reasons would include: 1) The contamination levels of some
experiments might be relatively high, which make larger noise and hinder
the models from capturing real projection differences. 2) The epigenetic
differences between neurons projecting to different targets varies across
replicates. 3) The sample sizes of some projections are small, which
makes learning more challenging. 4) The models are not powerful enough
to capture the complex differences between projections.

Elimination of contaminated FANS runs in QC step 4 decreased the
potential influence by 1) for cortical neurons as discussed in the QC
section, although there are still contaminated cells included in the dataset.
The improvement in labeling efficiency and specificity would help to
better solve the molecular differences between projection types. In this
study, male and female mice were treated as biological replicates after
removing sex chromosomes. Although methylation patterns of autosomes
are similar, differences between sexes or animals might still exist. The
small differences in performances between data splitting methods (based

on computation or biological replicates) might suggest a less notable
effect contributed by 2) in those samples. To evaluate the potential
limitation of 4), more carefully curated models, and accordingly, more
samples, would be required. Thus, given all these factors, we are
generally more confident in the distinguishable target pairs when training
and testing sets were split based on both computational and biological
replicates. The interpretation of comparisons without biological
replicates and the indistinguishable pairs would need to be more careful
and are not involved in the major conclusions in this manuscript. Our
study aims to provide a general view across multiple sources and targets.
A more detailed understanding of specific projections would require
larger scale profiles on those specific projection types.

Integration between snmC-seq, Epi-Retro-Seq, and scRNA-seq.
snmC-seq and scRNA-seq are comprehensive atlases of the whole mouse
brain, so most of the cell types are expected to be presented in both
datasets. Therefore, the two datasets were integrated based on a canonical
correlation analysis (CCA) framework, which captures the shared
variation between the two datasets’®. Epi-Retro-Seq is a projection-
enriched dataset that contains part of the cell types in the atlas, but the
shared methylation modality with snmC-seq allowed it to be integrated
with the comprehensive atlas with a reciprocal PCA framework. Both the
Epi-Retro-Seq and the scRNA-seq datasets were mapped to the
dimension reduction space of the snmC-seq data to create a multi-
modality atlas of each brain region group.

For each region group, we selected cells from the three datasets belonging
to the dissection regions. The methylation cells in the L1 clusters
corresponding to cerebellar neurons were excluded from the analysis of
cerebral and brainstem regions. The RNA cells from the major classes of
non-neuronal cells and immature neurons, and the subclasses of
cerebellar neurons were excluded from the analyses. The RNA cells from
subclasses of MM and DCO were also excluded due to the dissection
differences between the two studies.

The gene expression levels of scRNA-seq cells were normalized by
dividing the total UMI count of the cell and multiplying the average total
UMI count of all cells, and then log-transformed. The posterior gene-
body mCH level of snmC-seq and Epi-Retro-Seq cells were used. The
cluster-enriched genes (CEGs) were identified in each L4 cluster. We
checked the variance of the mCH CEGs among the snmC-seq cells and
scRNA-seq cells and only used the CEGs with mCH variance greater than
0.05 and expression variation greater than 0.005 for the analyses. The
opposite of mCH levels was used for snmC-seq and Epi-Retro-seq data
due to the negative correlation between gene body DNA methylation and
gene expression. We fit a PCA model with the snmC-seq cells and
transformed the Epi-Retro-Seq cells and scRNA-seq cells with the model.
The PCs were normalized by the singular value of each dimension to
avoid the embedding being driven by the first few PCs.

We adopted a similar framework as Seurat v3*¢ for data integration by
first identifying the mutual nearest neighbors (MNN) as anchors between
datasets, and then aligning the datasets through the anchors.

To find anchors between snmC-seq and scRNA-seq, we first Z-score
scaled the mCH matrix and expression matrix of CEGs across cells, and
the resulting matrices are represented as X (mC cell-by-CEG) and Y
(RNA cell-by-CEQG), respectively. CCA was used to find the shared low
dimensional embedding of the two datasets, solved by singular value
decomposition (SVD) of their dot product USVT = XYT. U and V were
normalized by dividing the L2-norm of each row, and were used to find
5 MNNSs as anchors and score anchors using the same method as Seurat
v3.
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The original CCA framework of Seurat (v3) is hard to scale up to millions
of cells due to the memory bottleneck, where the mC cell-by-RNA matrix
was used as the input to CCA. To handle this limitation, we randomly
selected 50,000 cells from each dataset (X, and Y,..5) as a reference to
fit the CCA and transformed the other cells (X, and ¥,.,,) onto the same
CC space. Specifically, the canonical correlation vectors (CCV) of Xres
and Y..; (denoted as Uy and Vi.r) were computed by UporS VTTef =
XyerYyes, where Ul Uyer = I and Vi Vyor = 1. Then the CCV of X,
and Yy, (denoted as Uy, and V) were computed by U, =
Xagry(ViefVier)/S and Vpyyy = Yy, (X7 Urer)/S. The embeddings from
the reference and query cells were concatenated for anchor identification.
To find anchors between snmC-seq and Epi-Retro-Seq, we used the
snmC-seq data to fit a PCA model and use the model to transform Epi-
Retro-Seq cells to the same space and find 5 nearest snmC-seq cells for
each Epi-Retro-Seq cell. Reciprocally, we fit another PCA model with
the Epi-Retro-Seq cells and transform the snmC-seq cells and find 5
nearest Epi-Retro-Seq cells for each snmC-seq cell. The mutual nearest
neighbors between the two datasets were used as anchors and scored
using the same method as Seurat v3.

The PCs derived from the previous step were then integrated together
using the same method as Seurat v3 through these anchors. This
integration step projects the PCs of Epi-Retro-Seq and scRNA-seq
(query) to the PCs of the snmC-seq (reference) while keeping the PCs of
the reference dataset unchanged. The resulting PCs from the three
datasets were used for t-SNE visualization and k-nearest neighbor (k=25)
graph construction with Euclidean distance. The joint clustering was
performed with the Leiden algorithm on the graph using a resolution of
1.0.

The quality of the integration analysis was evaluated from two aspects.
1) We visualized the different modalities in the co-embedding space
(Extended Data Fig. 4 left). The local neighborhoods of the co-
embedding usually contain cells from all modalities, suggesting a good
mixture between the three datasets after integration. 2) We computed the
proportion of cells in each mC cluster (Extended Data Fig. 4 middle) or
RNA cluster (Extended Data Fig. 4 right) assigned to each cluster
defined on the co-embedding space (co-cluster). Since we used the
highest granularity of clustering from individual modalities (original
cluster), the co-clusters were usually larger than the original clusters. We
therefore used the proportion of original clusters rather than the
proportion of co-clusters, to demonstrate that almost all original clusters
are included in one co-cluster with low ambiguity. The strongest signals
align on the diagonals suggesting that the co-embedding preserved the
cluster structures that were originally present within each modality.
Further evidence of integration quality was suggested by the downstream
analyses, where highly consistent cell type specificity of marker gene
expression and gene body mCH were observed (Figs. 3f,g, 4e,f, and
Extended Data Fig. 9a).

Cluster associated with projection.

For neurons projecting to each target within one source, we computed the
proportion of these neurons in each joint Leiden cluster. The clusters
with >5% of the cells were considered as associated with the projection.
The clusters associated with at least one projection were shown in the
heatmaps of Figs. 3, 4, 5, and Extended Data Fig. 5. The values in the
heatmaps represent the proportion of projection neurons in each cluster,
Z-scored across the projection targets.

In general, there are two intuitive ways to quantify the enrichment of
projection neurons in a cluster. One is to directly find the clusters with a

high absolute proportion of Epi-Retro-Seq neurons projecting to a target.
The other is to find clusters captured at a significantly higher frequency
in the projection-enriched data relative to the unbiased data. The two
methods each have their advantages and shortcomings. For example, the
contaminated cells from inaccurate labeling or gating are likely to have
similar distribution across clusters to unbiased profiling. So a comparison
using unbiased data as a control might help exclude the contaminated
clusters better. However, if most of the neurons from a projection type
are in the clusters that are originally abundant cell types in the source, by
comparing with unbiased data, we would miss the predominant clusters
making the projection. In this manuscript, we used the absolute
proportions but not the relative ones to the unbiased data due to the
different profiling strategies between the two datasets. Although the Epi-
Retro-Seq samples and unbiased snmC-seq samples were dissected in the
same way, we pooled the different dissections into the 32 different
sources to perform FANS and sequencing for Epi-Retro-Seq, so that the
proportion of cells from different dissection regions of the same source is
likely to follow their proportions in the mouse brain. However, the
unbiased snmC-seq profiled all the dissection regions separately and
sequenced the same number of cells in each dissection, which manually
amplified the proportion of cells from the smaller/sparser dissection
regions relative to the larger/denser ones, and limited the power to
estimate the real proportion of neurons in each cluster from the sources.

Classification of MERFISH cells into major brain regions and cell
clusters.

The MERFISH experiments were conducted as described by Liu et al.
(companion paper #6), including the gene panel design, tissue
preparation, imaging, data processing, and annotation. The dataset
includes two sagittal slices (S1 and S2, where S1 is more lateral and S2
is more medial) and 14 coronal slices (C2, C4, C6, C8, C10, C12, and
C14, roughly corresponding to slice 2, 4, 6, 8, 10, 12, and 14 in Extended
Data Fig. 1, with two replicates for each slice, represented as R1 and R2).
The same naming of slices was used throughout this manuscript (Figs.
3e, 4d, 5¢ and Extended Data Fig. 6).

The MERFISH cells were classified into subclasses and brain region
groups by integration with scRNA-seq data. The 489 autosomal genes
overlapped between scRNA-seq and MERFISH datasets were used. We
fit a PCA model with the scRNA-seq cells and transformed the
MERFISH cells with the model. The PCs were normalized by the singular
value of each dimension. The cell-by-gene matrices were Z-score
normalized across cells within each dataset, and CCA was used to find
anchors between the two datasets. We used 50,000 cells to fit the CCA
and transformed the other cells as described above. The transformed PCs
of MERFISH cells were then aligned to the PCs of scRNA-seq cells to
derive a coembedding between the two datasets. This co-embedding was
used for label transfer of cell subclasses from scRNA-seq data to
MERFISH data, considering 25 neighboring scRNA-seq cells for each
MERFISH cell.

The cells classified as non-neuronal and immature neuronal subclasses
were excluded due to lack of regional specificity, and the rest of cells
from the two datasets were integrated again with the procedures described
above to transfer the label of 14 brain region groups from the scRNA-seq
neurons to the MERFISH neurons. The initial label assignment is noisy.
Therefore a smoothing step was performed to refine the region group
assignment. Specifically, for each MERFISH cell i, we found its 25
neighbors on the same slice (denoted as Ns;) based on the spatial
coordinates, and used Ds; to represent the corresponding distances
between i and its j-th neighbor Ns; ;. Similarly, we found the 25 scRNA-


https://doi.org/10.1101/2023.05.01.538832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.01.538832; this version posted May 1, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

seq neighbors for each MERFISH cell i based on the integration, and used
Dr; to represent the distances. The distance matrices were transformed as
described in the label transfer section, and the final spatial labels were
transferred from the 25 RNA neighbors of each of the 25 spatial neighbors
(625 scRNA-seq cells in total) to one MERFISH cell. The weight
between the MERFISH cell i and the k-th scRNA-seq neighbor of its j-th
spatial neighbor was computed as D" 554 = Ds"; jDr"yg, . D" is
row normalized and used as weights for label transfer as described in
previous sections.

We note that this could also be achieved through registration of
MERFISH DAPI images to the common coordinate framework.
However, our companion works demonstrated that the procedure is
relatively challenging and it is important to use cell types with known
locations as landmarks to refine the registration.

Finally, the neurons from each region group were selected and integrated
with the scRNA-seq cells from the same region group, using the same
procedure as described above. The methylation-RNA co-cluster labels
were transferred from the scRNA-seq cell to the MERFISH cells. The
MERFISH cells assigned to the MM and DCO subclasses in the last step
were also excluded since those clusters were not included in the co-cluster
analysis as described in the previous section.

Comparison with Act-Seq.

The 10x scRNA-seq data in Kim et al.® were downloaded from Mendeley
Data  (https://data.mendeley.com/datasets/ypx3sw2f7¢/3), and are
referred to as Act-Seq in this section and Extended Data Fig. 7. The
dataset contains 168,877 cells in total, among which 78,476 were labeled
as neurons and were used to integrate to the unbiased scRNA-seq data of
hypothalamic neurons, using the 5,314 CEGs of 1,891 L3 scRNA-seq
clusters. PCA was fitted with scRNA-seq data and the Act-Seq data was
transformed. The CCA framework was used to find anchors between the
two datasets, and the transformed PCs of Act-Seq were aligned to the
scRNA-seq PCs. We used the label transfer method described in the
previous section to transfer the mC-RNA co-cluster labels from scRNA-
seq cells to the Act-Seq cells, considering 5 neighboring scRNA-seq cells
for each Act-Seq cell. The Act-Seq cells with Fos expression level >0
were considered to be Fos+ cells, and the proportion of Fos+ cells were
compared between control and each behavior using Fisher exact tests.
The Fos expression levels were compared with Wilcoxon rank-sum tests.
Only the 23,345 Act-Seq cells from 16 VMH neuron clusters were
considered as VMHvI cells and were used for the behavior association
studies in Kim et al. However, almost none of them correspond to
projection-associated clusters in our data (Extended Data Fig. 7a-c). We
further compared our projection-associated clusters with all the neuron
clusters profiled in Kim et al. and note that five clusters have
corresponding clusters in the Act-Seq data (Extended Data Fig. 7d, in
red). Among them, clusters 4 and 64 showed weak but significant
increases in proportions of Fos+ cells labeled during certain behaviors
(Extended Data Fig. 7f).

The generally weak associations between projection-associated and
behavior-associated clusters are likely due to the small overlap between
the brain regions profiled in the two datasets, particularly the under
representation of VMHvI neurons in Epi-Retro-Seq data. Additionally,
because there were far fewer cells profiled in Epi-Retro-Seq vs. Act-Seq,
the granularity of clusters used for projection-association and behavior
association is different; this difference is particularly pronounced in
VMHvl where >10 times more cells were used for the behavior
association study (Extended Data Fig. 7c-e). Therefore, further
increasing the size of datasets to achieve higher granularity of cell typing

in specific regions of interest could facilitate further association between
molecular types with projections and behaviors. Our study aimed at a
comprehensive view of a large number of projections across the whole
brain and focused on targets that do not appear to receive strong input
from VMH. This apparently limited the data overlap between these and
limited the ability to make direct comparisons between studies.

Comparison with Retro-Seq.

The scRNA-seq data in Phillips et al.” were downloaded from the Gene
Expression Omnibus with the identifier GSE133912. The Retro-Seq data
were integrated to the unbiased scRNA-seq data of thalamic neurons,
using the 5,404 CEGs of 1,128 L3 scRNA-seq clusters. PCA was fitted
with scRNA-seq data and Retro-Seq data was transformed. The CCA
framework was used to find anchors between the two datasets, and the
transformed PCs of Retro-Seq were aligned to the scRNA-seq PCs. To
compare the distribution of Retro-Seq cells and Epi-Retro-Seq cells
across thalamic cell clusters, we used the label transfer method described
in the previous section to transfer the mC-RNA co-cluster label and the
joint t-SNE coordinates from scRNA-seq cells to the Retro-Seq cells,
considering 5 neighboring scRNA-seq cells for each Retro-Seq cell.

Differentially expressed genes.

The gene expression level of each single cell was normalized by the total
UMI count of the cell and log-transformed. We performed pairwise
comparisons between clusters associated with projection neurons. For
each cluster pair, the P values were derived with the Wilcoxon rank-sum
test, and the fold-change is computed as the ratio between the average
expression level across cells in the two clusters. The genes with absolute
value of log2 fold-change greater than 1 and False Discovery Rate (FDR,
Benjamini-Hochberg Procedure) values smaller than 0.01 were
considered as differentially expressed. The DEGs from all cluster pairs
were merged to generate the heatmaps in Fig. 3 and Fig. 4. Only the top
100 DEGs ranked by FDRs were used if there were more than 100 DEGs
identified between a pair of clusters.

Differentially methylated regions (DMRs) and association with
genes.

The unbiased snmC-seq cells from each mC-RNA co-cluster were
merged to generate pseudobulk methylation profiles. The Epi-Retro-Seq
cells were not used due to the different genome backgrounds of the mice
to avoid confounding results. DMRs were identified within each region
group between clusters using ALLCools. We then calculated the Pearson
Correlation Coefficient (PCC) between DMR mCG and gene mCH
fraction. For a group of overlapping DMRs, we selected the one with the
highest absolute PCC value to represent that group, making the edges’
DMRs non-overlap. Similar to the domain boundary and interaction
correlation analysis, we shuffled the DMRs and genes within each sample
to calculate null PCC and estimate FDR. We filtered DMR-Target edges
with FDR < 0.001.

Transcription factor motif enrichment.

We used an ensemble motif database from SCENIC+°, which contained
49,504 motif position weight matrices (PWM) collected from 29 sources.
Redundant motifs (highly similar PWMs) were combined into 8,045
motif clusters through clustering based on PWM distances calculated by
TOMTOM*’ by the SCENIC+ authors. Each motif cluster was annotated
with one or more mouse TF genes. To calculate motif occurrence on
DMRs, we used the Cluster-Buster*! implementation in SCENIC+, which
scanned motifs in the same cluster together with Hidden Markov Models.
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Within each region group, we assign hypo-DMRs to each cluster if the
mCQG level of a DMR in the cluster is below the 10th quantile of all DMRs
from the region group and below the 10th quantile of the mCG level of
this DMR in all clusters from the region group. To perform motif
enrichment analysis, we used the recovery-curve-based cisTarget
algorithm™®. In brief, the cisTarget algorithm performed motif enrichment
on the hypo-DMRs of each cluster by calculating the area under the
recovery curve (AUC) for each motif, which is further normalized based
on all other motifs in the collection to calculate a Normalized Enrichment
Score (NES). We used the cutoff AUC>0.01 and NES > 3 to select
enriched motifs. The TFs shown in Fig. 3i and Fig. 4h were additionally
required to have expression level >0 and normalized mCH level <1 in at
least one cluster that its motif enriched in, to select the TFs that are likely
to express among a family of TFs showing the same motif enrichment
scores.

Data access and code availability

The data can be accessed via the NeMO ftp archive:
https://data.nemoarchive.org/biccn/grant/ul9 cemba/ecker/epigenome/s
ncell/mCseq2_retro/mouse/. Raw and processed data are also available
at GEO under accession code GSE230782. The code for all of the
analyses can be found at
https://github.com/zhou;jt1994/EpiRetroSeq2023.git.
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600-um Brain Coronal Slices Slice 1
(Sagittal View)
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) 357 911131517
Slice 24 6 81012141618

Extended Data Fig. 1 | The dissection map of source regions across
the mouse brain. The posterior views of dissected slices are shown. The
slices correspond to Allen Mouse Common Coordinate Framework
(CCF), Reference Atlas, Version 3 (2020), level 21~27 (slice 1), 27~33
(slice 2), 33~39 (slice 3), 39~45 (slice 4), 45~51 (slice 5), 51~57 (slice
6), 57~63 (slice 7), 63~69 (slice 8), 69~75 (slice 9), 75~81 (slice 10),

Slice 2 Slice 3

81~87 (slice 11), 87~93 (slice 12), 93~99 (slice 13), 99~105 (slice 14),
105~111 (slice 15), 111~117 (slice 16), 117~123 (slice 17), and 123~129
(slice 18), respectively. Regions dissected from each slice are indicated
by dotted lines and are annotated.
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Extended Data Fig. 2 | Quality control workflow and region group normalized per sequencing plate (b). ¢, d, Joint t-SNE of Epi-Retro-Seq
assignment. a, b, Joint t-SNE of Epi-Retro-Seq cells (n=56,843) and cells (n=48,032) and unbiased snmC-seq cells (n=301,626) after
unbiased snmC-seq cells (n=310,605) after basic QC (Methods, QC Step  removing outlier clusters (Methods, QC Step 2) colored by neuronal vs.
1) colored by the predicted outliers (a) or the total number of reads non-neuronal cells (c) or their assigned L1 type (d). e, the on-target vs.
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off-target fold enrichment (x-axis) and -log10 FDR (y-axis) of IT (n=186,
top) or ET (n=100, bottom) FANS experiments. The size of the circle is
proportional to the number of neurons captured in the experiment. f, The
overlap scores between 115 snmC-seq dissections and 87 scRNA-seq
dissections. Each region group is colored differently on the x and y axes

and squared in the heatmap. g, Joint t-SNE of Epi-Retro-Seq (n=35,743),
snmC-seq (n=266,740), and scRNA-seq (n=2,434,472) neurons colored
by region groups. (f) and (g) share the same color palette.
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(right). For a-c, each dot represents a pairwise comparison between the
neurons projecting from the same source to two different targets. The
plots involving biological replicates have 516 data points each while the
others have 926 data points each. Pearson Correlation Coefficient (PCC,
r) and P value (permutation test) are labeled in each panel. d, The

AUROC between neurons projecting from each of the 30 sources to all
possible pairs of targets that have been profiled for the source. STR and
CBX are not included since we only profiled one target for these sources.
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Extended Data Fig. 4 | Co-clustering of Epi-Retro-Seq, unbiased
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more than one value >10% across the columns are shown. See Methods

for further details.
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Extended Data Fig. 5 | Projection-enriched cell clusters and their
neurotransmitter usage for all brain regions. Joint clustering analysis
of Epi-Retro-Seq, unbiased snmC-seq and scRNA-seq was performed on
each of the major brain region groups, including CTX, RHP, PIR, HB,

MOB+AON, AMY, TH, HIP, MB, HY, and PAL (STR not included
because there is only one target), to characterize neuronal cell clusters
that were enriched for Epi-Retro-Seq projections. The normalized
proportion of each projection in each cluster was visualized in the
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heatmaps (left) for each of the brain region groups. In addition, the
expression levels of 10 marker genes for neurotransmitter usage in each
cluster are visualized in the heatmap (right) for each brain region group.
These genes included Sic17a7 (Vglutl), Slci17a6 (Vglut2), and Slc17a8
(Vglut3) for glutamatergic neurons, Slc32al (Vgatf) for GABAergic

neurons, Slc6a? (Net) for noradrenergic neurons, Slc6a3 (Dat) for
dopaminergic neurons, Slc6a4 (Sert) for serotonergic neurons, Slc6as
(Glyt2) for glycinergic neurons, Slcl8a3 (Vacht) for cholinergic neurons,
and histidine decarboxylase (Hdc) for histaminergic neurons.
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Extended Data Fig. 6 | Joint clustering and annotation of MERFISH
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Extended Data Fig. 7 | Integration and comparisons of hypothalamic
Epi-Retro-Seq, Act-seq, and scRNAseq data. a, b, Joint t-SNE of Act-
Seq neurons® (n=78,476, a) and scRNA-seq neurons (n=148,840, b). In
(a), all Act-Seq neurons (left) or only VMHvI neurons (right) are colored
by Act-Seq neuron cluster (left) or VMH cluster (right). In (b), all
scRNA-seq neurons (left) or only neurons in projection associated
clusters (right) are colored by the co-cluster label. ¢, d, The proportion of
neurons from each of the Act-Seq VMHUvI clusters (¢) or all neuron

clusters (d) classified as neurons of each co-cluster. Only the co-clusters
with value >0.1 in at least one Act-Seq cluster are shown. The projection-
associated co-clusters are labeled in red. e, f, Proportion of Fos+
“behavior activated” cells (left) or average Fos expression (right) of each
VMHUvI cluster (e) or each co-cluster (f) in control and different behavior
experiments. Only the co-clusters labeled red in d are shown in (f). *, **,
and *** represent FDR<(.1, 0.01, and 0.001, respectively.
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Extended Data Fig. 8 | Comparison of thalamic Retro-Seq and Epi-
Retro-Seq data. a, t-SNEs for visualization of the Retro-Seq data from
thalamic neurons projecting to prefrontal, motor, somatosensory,
auditory, and visual cortices’ that were mapped onto the joint-clustering
analysis of Epi-Retro-Seq, unbiased snmC-seq and scRNA-seq in TH. b,
The t-SNEs for visualization of the Epi-Retro-Seq data for thalamic
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each pairwise comparison of Retro-Seq and Epi-Retro-Seq projections
and were visualized in the heatmaps, respectively.
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Extended Data Fig. 9 | The neurotransmitter usage of VTA
projection neurons. a, Joint t-SNE of Epi-Retro-Seq, unbiased snmC-
seq and scRNA-seq of VTA neurons colored by the gene expression
levels (red) and gene-body mCH levels (purple) for Vglur2 (left), Gad2

(middle), and Tk (right), marker genes for glutamatergic, GABAergic,
and dopaminergic neurons, respectively. b, The distribution of VTA
neurons projecting to each of the 16 targets on the same t-SNE. c-e, The
gene-body mCH levels of Th versus Vglut2 (¢), Gad?2 versus Vglut? (d),
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and Gad?2 versus Th (e) for VTA neurons projecting to each of the 16
targets, are visualized in scatter plots. Note that, because low mCH levels
indicate high gene expression, the axes in c-e are plotted as the reciprocal

Supplementary Tables

Supplementary Table 1. Epi-Retro-Seq injection information.
Supplementary Table 2. Epi-Retro-Seq cell metadata.
Supplementary Table 3. Gene categories for ROC analyses.
Supplementary Table 4. Comparisons of injection coordinates to
retrogradely label thalamic projection neurons for Epi-Retro-Seq vs.
Retro-Seq.
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