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Abstract 
Single-cell genetic and epigenetic analyses parse the brain’s billions of neurons into thousands of “cell-type” clusters, each residing in 
different brain structures. Many of these cell types mediate their unique functions by virtue of targeted long-distance axonal projections to 
allow interactions between specific cell types. Here we have used Epi-Retro-Seq to link single cell epigenomes and associated cell types to 
their long-distance projections for 33,034 neurons dissected from 32 different source regions projecting to 24 different targets (225 
source→target combinations) across the whole mouse brain. We highlight uses of this large data set for interrogating both overarching 
principles relating projection cell types to their transcriptomic and epigenomic properties and for addressing and developing specific 
hypotheses about cell types and connections as they relate to genetics. We provide an overall synthesis of the data set with 926 statistical 
comparisons of the discriminability of neurons projecting to each target for every dissected source region. We integrate this dataset into the 
larger, annotated BICCN cell type atlas composed of millions of neurons to link projection cell types to consensus clusters. Integration with 
spatial transcriptomic data further assigns projection-enriched clusters to much smaller source regions than afforded by the original 
dissections. We exemplify these capabilities by presenting in-depth analyses of neurons with identified projections from the hypothalamus, 
thalamus, hindbrain, amygdala, and midbrain to provide new insights into the properties of those cell types, including differentially 
expressed genes, their associated cis-regulatory elements and transcription factor binding motifs, and neurotransmitter usage.  

 
Introduction 
In any given brain, each neuron contributes uniquely to brain function. 
Nevertheless, neurons can be grouped into types based on similarities and 
differences across multiple dimensions, including epigenetic state, gene 
expression, anatomy, and physiology. Single-cell genomic technologies 
have been particularly impactful for cell type classification due to their 
high throughput (millions of cells assayed) and dimensionality 
(thousands of genes and even more genetic loci) leading to the 
identification of large numbers of transcriptomic and epigenomic clusters 
corresponding to possible cell types across the entire mouse brain. 
    A prominent and distinguishing anatomical feature of many brain 
neuron types is their long-distance axonal projections. Long-distance 
projections can be directly related to single neuron gene expression or 
epigenomes by use of powerful linking technologies, including 
BARseq1,2, Retro-seq3,4, and Epi-Retro-Seq5. Previous studies have used 
Retro-Seq and Epi-Retro-Seq to link mouse neocortical3–5, hypothalamic6 
and thalamic projection cell types7 to their genetic and epigenetic clusters, 
revealing complex but predictable relationships. For example, cortical 

neurons projecting solely to intra-telencephalic (IT) targets fall into 
different clusters than those that project to extra-telencephalic (ET) 
targets. On the other hand, cortical layer 2/3 (L2/3) IT neuron types 
projecting to different cortical areas typically co-cluster despite having 
quantifiable and predictable genetic and epigenetic differences across the 
populations4,5. In the face of this complexity, how can single-cell genetic 
and epigenetic assays be used to inform the structure and function of brain 
cell types and how can neuronal structure predict genetics, epigenetics, 
and function? Further, can the principles learned from more limited 
previous studies be extended to the entire brain? Are there different 
principles linking projection status to epigenetics for different brain 
areas? 
    To address these questions we employed Epi-Retro-Seq to assay 
33,034 neurons from 225 source→target combinations across the entire 
mouse brain. This approach combines retrograde labeling with single 
nucleus methylation sequencing (snmC-Seq), which allows identification 
of potential gene regulatory elements and prediction of gene expression 
in the same neuron. Gene expression can be predicted because non-CG 
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(CH; H=A,T,C) methylation of gene bodies is inversely related to RNA 
expression8,9, while epigenetic elements regulating expression can be 
identified using methylation at CG (mCG) dinucleotides8. It is also 
expected that Epi-Retro-Seq can provide unique insight into 
developmental mechanisms that shape connectivity because CH 
methylation accumulates during and peaks at the end of the 
developmental critical period, and CG methylation is reconfigured during 
synaptic development10.  
 
Results 
Epi-Retro-Seq of 225 brain-wide projections 
To link single-neuron epigenomes to their projection targets and cell body 
locations, we used Epi-Retro-Seq5. A retrogradely-infecting AAV vector 
expressing cre-recombinase (AAV-retro-Cre11) was injected into the 
brains of cre-dependent, nuclear-GFP expressing reporter mice 
(INTACT-cre8) at a target region of interest (Fig. 1a). Four mice (2 male 
and 2 female) were injected for each of 24 different target brain areas, 
including targets in the isocortex (CTX), hippocampal formation (HPF), 
olfactory areas (OLF), amygdala (AMY), cerebral nuclei (CNU), 
interbrain (IB), midbrain (MB), hindbrain (HB), and cerebellum (CB) 
(Fig. 1a,b, Supplementary Table 1). After 2 weeks, mice were 
sacrificed and the brain was hand dissected following the Allen Mouse 
Common Coordinate Framework (CCF), Reference Atlas, Version 312, 
into 32 possible source regions spanning the same major brain structures 
as the target injections (Fig. 1a,b and Extended Data Fig. 1). For any 
given mouse, dissected sources corresponding to locations with known 
projections to the target were selected for profiling. Nuclei preps were 
made from dissected source tissue and subject to fluorescence-activated 
nuclear sorting (FANS) for GFP-positive, NeuN-positive retrogradely 
labeled neuronal nuclei which were then processed for single nucleus 
methylation sequencing (snmC-seq; Fig. 1a, Methods)13–15. 
    After basic quality control, we recovered 48,032 single-cell 
methylomes which were mapped to an unbiased sample of snmC-seq data 
with 301,626 cells (companion paper #6) to perform cell type 
classification, and for removal of potential doublets (Extended Data Fig. 
2a-e, Methods). Each single neuron in the Epi-Retro-Seq sample was 
assigned to one of the 2,304 level 4 clusters (L4 type) identified in our 
companion study (companion paper #6). We have previously described 
cortical neurons from the same 8 cortical sources included here and 
projecting to 4 cortical and 6 subcortical targets (63 combinations)5. For 
cortical sources, we now incorporate data for an additional 5 cortical 
targets and 2 more subcortical targets. Similar to our previous work, for 
cells from cortical sources we included an additional quality control step 
to eliminate experiments with inadvertent spread of injected AAVretro 
into source regions (e.g. from AAV spread along injection pipette paths 
extending through some cortical regions) or with poor quality FANS 
sorting, by filtering based on the proportion of known on-target vs off-
target cell types. (Such filtering is not needed for deeper source regions 
that are not traversed by injection pipettes.) In total, 33,034 single-
nucleus methylomes were analyzed from 225 source→target 
combinations for which the projection target could be confidently 
assigned. These neurons were mapped to the unbiased snmC-seq dataset 
to visualize the epigenetic similarity of projection neurons across cell 
subclasses, sources, and targets (Fig. 1c).  
 
Data analysis approaches and visualization across the whole brain 
Overarching questions that can be addressed by this large data set include: 
how distinct are neurons from a given source that project to different 
targets? And are neurons in different sources that project to the same 

target combinations more or less distinguishable? To provide a resource 
that can be used to address the distinguishability of neurons with different 
projection targets, we quantified which projection types are 
epigenetically more different than the others by computing area under the 
curve of receiver operating characteristic (AUROC) for each of the target 
pairs from every source region (926 pairwise comparisons in total; Fig. 
1d and Extended Data Fig. 3). An example of the results from the 
pairwise comparisons for amygdala neurons projecting to 9 targets is 
shown in Figure 1d. Such plots allow visualization of similarities and 
differences between source neurons projecting to different targets, as 
further exemplified in our deeper analyses of selected source regions 
within the main text and figures below. Similar insights can be gained for 
projection neurons from all of the assayed sources by accessing the 
complete set of 926 AUROC comparisons (Extended Data Fig. 3d).  
    To facilitate further, comprehensive multimodal characterization of 
projection neuron types, we integrated the Epi-Retro-Seq data with 
unbiased samples of snmC-seq described above, and single-cell RNA-seq 
(scRNA-seq) data containing 2.6 million neurons from 87 micro-
dissected brain regions (Fig. 1e and Extended Data Fig. 4). Alignment 
of Epi-Retro-Seq data to these larger and carefully annotated datasets 
allows for the confident assignment of our cells to consensus clusters and 
enables the use of consistent nomenclature to describe the 
correspondence between projection targets and cell types/clusters. We 
performed co-clustering of the three datasets to identify the cell clusters 
associated with each projection type, which allows for identification of 
projection-enriched clusters (see further below). Quantification of the 
proportion of cells found in each enriched cluster that projects to each 
target is illustrated for amygdala source neurons in Figure 1f. This 
approach exemplifies analyses explored in detail for other sources, below, 
and which are provided for all of the sources in the data set in Extended 
Data Figure 5.  
    To separate neurons projecting to particular targets from different 
sources, we performed microdissections of freshly cut brain slices. While 
these careful dissections effectively separate fairly small structures, most 
dissected regions contain still smaller known anatomical regions, as 
typically illustrated in mouse brain atlases (Extended Data Fig. 1). To 
potentially link projection-enriched clusters from particular sources to 
more precise anatomical loci, we performed further integration with 
multiplexed error robust fluorescence in-situ hybridization (MERFISH) 
data, allowing examination of the spatial locations of the cells belonging 
to particular clusters (Fig. 1g and Extended Data Fig. 6). Joint atlasing 
of single neuron transcriptomes and epigenomes further allowed analyses 
of both the signature genes in projection-enriched clusters based on RNA 
expression, and methylation profiles to identify differentially methylated 
regions (DMRs) as putative cis-regulatory elements (CREs) and 
transcription factors whose binding motifs are enriched in these DMRs 
(Fig. 1h,i). 
    We prepared extended data figures to allow visualization of the 
integrative analysis approaches described above (e.g. Fig. 1d-i) for all 
source→target combinations in our dataset (Extended Data Figs. 3-6). 
These integrative analyses were facilitated by combining source regions 
from the whole brain datasets into 12 larger “region groups” that were 
common to all 3 data modalities, prior to integration (Extended Data Fig. 
2f,g). The groups include isocortex (CTX), retro hippocampal region 
(RHP), piriform area (PIR), hippocampal region (HIP), main olfactory 
bulb and anterior olfactory nucleus (MOB+AON), striatum (STR), 
pallidum (PAL), amygdala (AMY), thalamus (TH), hypothalamus (HY), 
midbrain (MB), and hindbrain (HB). 
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Fig. 1 | The epigenomic landscape of brain-wide projection neurons. 
a, Schematics of Epi-Retro-Seq workflow for retrogradely labeling and 
epigenetically profiling single projection neurons. The retrograde tracer 
rAAV2-retro-cre was injected into a specific target area in INTACT 
knock-in mice to label the nuclei of neurons that project to the target area 
with cre-dependent nuclear GFP. Source regions of interest with 
projections to the target areas were dissected 14 days after injection. 
Single GFP+/NeuN+ nuclei were isolated using fluorescence activated 
nuclei sorting (FANS), and then subjected to snmC-seq library 
preparation and sequencing for epigenome profiling. Brain diagrams of 
the source regions were derived from the Allen Mouse Brain Reference 
Atlas (version 3 (2020)). b, 225 source target combinations were profiled 
using Epi-Retro-Seq from 32 different source regions projecting to 24 
different targets across the whole mouse brain. c, Joint two-dimensional 
t-distributed stochastic neighbor embedding (t-SNE) of Epi-Retro-Seq 
(n=35,938) and unbiased snmC-seq (n=276,187) neurons. snmC-seq 
neurons are in gray and Epi-Retro-Seq neurons are colored by cell 
subclass (top), the source regions of neurons (middle, same color palette 
as row colors on the left of (b)), or their projection targets (bottom, same 
color palette as column colors on the bottom of (b), n=33,034, after 
removing the experiments with less confident target assignment). d, As 
an example, area under the curve of receiver operating characteristic 
(AUROC) for pairwise comparisons of amygdala neurons projecting to 9 
targets. Higher AUROC scores suggest greater distinguishability between 
the compared projections based on their gene body CH methylation 
(mCH) levels. e, Joint t-SNE of whole mouse brain neurons from Epi-
Retro-Seq (n=35,743), unbiased snmC-seq (n=266,740), and single-cell 
RNA-seq (scRNA-seq, n=2,434,472) colored by cell subclass. f, As an 
illustration, the proportion of neurons found in each amygdala cell cluster 
(row) that projects to each target (column). Only clusters that were 

enriched for projection neurons are shown and values are Z-score 
normalized across targets. g, A sagittal brain slice for multiplexed error 
robust fluorescence in-situ hybridization (MERFISH) with all neurons 
colored by their assigned subclasses. h, An illustration of joint analysis 
of single-cell transcriptomes and DNA methylomes that enables the 
characterization of gene expression patterns of differentially expressed 
genes (DEGs) between these projection-enriched clusters, as well as the 
CG methylation (mCG) levels of DEG-associated putative cis-regulatory 
elements (CREs), as marked by differentially methylated regions 
(DMRs). i, An illustration of identifying transcription factors (TFs) 
whose binding motifs are enriched in these CREs and potentially regulate 
the expression of the DEGs.  
CTX, isocortex; CB, cerebellum; OLF, olfactory areas; HIP, 
hippocampal region; CNU, cerebral nuclei; AMY, amygdala; IB, 
interbrain; MB, midbrain; HB, hindbrain; PFC, prefrontal cortex; MOp, 
primary motor cortex; SSp, primary somatosensory cortex; ACA, anterior 
cingulate cortex; AI, agranular insular cortex; AUD, auditory cortex; 
AUDp, primary auditory cortex; RSP, retrosplenial cortex; PTLp, 
posterior parietal cortex; VIS, visual cortex; VISp, primary visual cortex; 
ENT, entorhinal cortex; CAa, anterior Cornu Ammonis; CAp, posterior 
Cornu Ammonis; DGa, anterior dentate gyrus; DGp, posterior dentate 
gyrus; MOB, main olfactory bulb; AON, anterior olfactory nucleus; PIR, 
piriform cortex; PIRa, anterior piriform cortex; PIRp, posterior piriform 
cortex; STR, striatum; PAL, pallidum; TH, thalamus; THm, anterior 
medial thalamus; THl, anterior lateral thalamus; THp, posterior thalamus; 
HY, hypothalamus; SC, superior colliculus; MRN, midbrain reticular 
nucleus; VTA, the ventral tegmental area; SN, substantia nigra; PAG, 
periaqueductal gray; IC, inferior colliculus; P, pons; MY, medulla; CBN, 
cerebellar nuclei; CBX, cerebellar cortex; IT, intra-telencephalic; ET, 
extra-telencephalic. 
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Distinguishability of ET- versus IT-projecting neurons across the 
whole brain 
Are neurons in different sources that project to the same target 
combinations more or less distinguishable? In isocortex, the most explicit 
correspondence between projection types and molecular types is 
observed for neurons that project to ET targets versus IT targets (For a 
breakdown of ET and IT target regions sampled, see Fig. 1b.). To 
investigate whether such distinctions are shared with neurons from other 
sources, we explored the genetic distinguishability of neurons projecting 
to ET versus IT targets across source brain areas. To visualize the 
distinguishability of ET versus IT neurons from different sources we first 
used the joint t-SNEs of Epi-Retro-Seq and unbiased datasets of the 10 
region groups (Extended Data Figs. 2g and 4) that contain both ET and 
IT neurons from the same source, and color-coded the Epi-Retro-Seq data 
for IT versus ET projections (Fig. 2a). For the cortical source t-SNE plots, 
the ET-projecting neurons clearly separate into a distinct cluster (L5 ET) 
while the IT neurons are found distributed across the annotated IT 
clusters, as expected. ET and IT neurons are also well-separated for the 
projection neurons in the entorhinal cortex (illustrated in the RHP plot) 
as well as for thalamic (TH) ET and IT neurons, as expected from known 
projections of glutamatergic TH neurons to cortex versus GABAergic 
neurons to subcortical targets. (See further detailed consideration of TH 
neurons below.) ET versus IT neurons show varying levels of separation 
for the other sources. While t-SNE plots allow visualization of similarities 
in a convenient 2-D format, they cannot fully capture the high-
dimensionality of snmC-seq data. We therefore compared computed 
AUROC scores for ET versus IT neurons from each of the 22 sources in 
Figure 2b. Generally, comparisons show some degree of separability for 
each of the source regions, but AUROC scores are higher for cortical 
sources than for subcortical courses (except TH and AON). 
    We next asked whether the epigenetic differences between ET- and IT-
projecting neurons are shared across sources or alternatively whether 
different sources might have distinct molecular signatures that distinguish 
ET from IT neurons. We trained logistic regression models to distinguish 
ET- vs. IT-projecting neurons in each one of the 22 sources, and tested 
whether each model could accurately separate ET and IT neurons from 
each of the other sources (Fig. 2c). We observed that the knowledge 
learned by the models could largely be transferred between isocortical 
sources and between isocortical and archicortical (ENT and PIR) areas, 

but not beyond the cortical regions. Other source groups sharing similar 
ET vs. IT differences include MOB and AON, as well as AMY, TH and 
MRN. To further evaluate these relationships, we identified the 
differentially methylated genes (DMGs) between ET and IT-projecting 
cells, which merge into a combined set of 2,919 genes. Consistent with 
the AUROC results, these DMGs show similar fold changes across 
isocortical and archicortical areas, MOB and AON, as well as different 
parts of TH and MB (Fig. 2d). 
    The ET vs. IT differences described above group together various more 
specific targets, which are nevertheless distinct structures. We, therefore, 
assessed whether neurons projecting to more finely separated groups of 
targets might be more or less separable. We separated the ET and IT 
targets into 3 finer groups (IT: CTX, MOB, CNU; ET: IB, MB, HB) and 
asked which pairs of target groups are less separable between ET and IT. 
Most of the target group pairs have better prediction results than ET vs. 
IT, except that the CNU vs. IB projecting cells are less distinguishable 
compared to ET vs. IT based on DNA methylomes with linear models 
(Fig. 2e).  
    To better understand what types of genes are contributing to the 
predictions of projection targets, we used genes assigned to different gene 
ontology terms as features to compute AUROC scores. We used genes 
from five different categories that are considered to be associated with 
neuronal cell identity and projections, including: 1) neurotransmitter 
receptors, 2) neuropeptides and receptors, 3) ion channels, 4) 
transcription factors, and 5) neuron projection development (Methods). 
Since different categories have different numbers of genes, and use of 
more genes increases prediction performance, we downsampled the 
larger gene categories into samples including the same numbers of genes 
as the smaller categories to facilitate comparisons in 5 different groups 
using from 19 to 666 genes and compared the AUROC scores. We 
observed that the neuron projection development genes have the strongest 
target prediction power, followed by neurotransmitter receptors, ion 
channels, neuropeptides and receptors, transcription factors, and 
randomly selected genes (Fig. 2f). Using all 628 genes in the neuron 
projection development category achieved an average AUROC of 0.88, 
which is slightly lower than using all the 9906 genes as features (AUROC 
0.91, Fig. 2f), suggesting that additional genes from other GO categories 
also contribute to the target predictability. 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2023. ; https://doi.org/10.1101/2023.05.01.538832doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.01.538832
http://creativecommons.org/licenses/by-nc/4.0/


 
Fig. 2 | Distinguishability of neurons projecting to different targets 
across the entire brain. a, Joint t-SNEs of Epi-Retro-Seq, unbiased 
snmC-seq, and scRNA-seq data from 10 region groups containing both 
IT- and ET-projecting neurons from the same source. Only the Epi-Retro-
Seq neurons projecting from the same source to ET (blue) and IT (orange) 
targets are colored and the other cells are in gray. RHP, retro hippocampal 
region. b, AUROC scores for comparisons between IT versus ET neurons 
from each of the 22 source regions. c, AUROC for IT versus ET neurons 
when the model was trained in one source region (row) and tested on 
another source region (column). A high AUROC indicates that the 
epigenetic differences between IT and ET neurons were similar between 
the training and testing sources. The values on the diagonal of (c) are the 
same as values in (b). d, The log2 fold changes of mCH levels in each 

source at the IT versus ET differentially methylated genes (DMGs). A 
total of 2,919 DMGs were shown that were identified in at least one of 
the 22 source regions. The row and column colors represent region groups 
in (b-d). e, AUROC for comparisons of neurons projecting to each pair 
of target groups. Each dot represents the comparison in one source region 
and the same color palette was used as in (b). f, AUROC for the 
comparison of all target pairs from every source region (n=926) with 
models using different sets of genes as features. Only subsets of the 9,906 
genes with high coverage in single cells were used. The larger gene sets 
were downsampled to the same number of genes as the smaller sets for 
comparison. All comparisons between gene sets are significant 
(Wilcoxon signed-rank test) except the ones between “neuron projection 
development” and “neurotransmitter receptor” with 19 genes. 

 
 
Epi-Retro-Seq of hypothalamic projection neurons and integration 
with spatial assays 
Although the hypothalamus is relatively small in size when compared to 
other profiled brain regions, analyses of gene expression and DNA 
methylation patterns have revealed the existence of numerous cell 
clusters within the hypothalamus, indicating a high level of cell type 
diversity (Fig. 3a) (See also companion papers16,17). Additionally, the 
hypothalamus is comprised of many distinct subregions and nuclei, each 
with unique functions and contributions to innate behaviors such as 
aggression, mating and feeding18. The hypothalamus therefore serves as 
an excellent use case for our data set to further examine the relationships 
between neuronal cell types as defined by their transcriptional and 

epigenomic signatures, their projection patterns, and their spatial 
organization. 
    We profiled hypothalamic neurons that project to ten distinct targets 
throughout the brain, including PFC, MOB, STR, PAL, AMY, TH, SC, 
VTA+SN (referred to later as VTA), P, and MY. By integrating Epi-
Retro-Seq data with unbiased snmC-seq and single-cell RNA-seq 
hypothalamic data, we identified a total of 94 neuronal cell clusters, of 
which 17 were enriched for the profiled HY projections (Fig. 3a,b). Each 
of the projections to the ten targets was enriched in a unique subset of cell 
clusters, as quantified by the normalized proportion of each projection in 
each cluster (Fig. 3b). For example, HY→STR neurons were 
predominantly enriched in cluster 76, while HY→AMY neurons were 
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uniquely enriched in cluster 64, indicating distinct cell type specificity of 
different HY projection neurons. Notably, HY neurons projecting to 
targets within the same major brain structure occupied overlapping yet 
different sets of clusters: HY→P and HY→MY were both enriched in 
clusters 0, 74, 18, 57, 51, and 63, but only HY→P neurons were enriched 
in cluster 76. Similarly, HY→PFC and HY→MOB neurons were both 
enriched in different subsets of cluster 50, 39, and 29, but HY→MOB 
neurons were uniquely enriched in cluster 17. These results suggest that 
HY neurons projecting to structurally related targets may share some 
common genetic/epigenetic cell types but also exhibit some level of 
diversity. In summary, HY neurons projecting to each brain region were 
enriched in a specific set of cell clusters (Fig. 3b-d). These findings 
underscore the cell type specificity and diversity of hypothalamic neurons 
projecting to different targets, shedding light on the potential functional 
roles of these cell clusters in various physiological and behavioral 
processes. 

Next, we examined the spatial distributions of projection-enriched HY 
neuron clusters. We performed MERFISH on both sagittal and coronal 
brain slices to visualize the spatial location of neurons. By using the gene 
expression signatures of the projection-enriched clusters, we mapped 
them to MERFISH cells (Fig. 3e, Methods). Strikingly, the majority of 
the 17 projection-enriched clusters were located in different HY sub-
regions, and the spatial distributions of cells from many clusters were 
distinguished by well-defined boundaries. For instance, clusters 0, 3, and 
76 were located in separate "stripes" in the dorsolateral hypothalamus, in 
regions corresponding to Zona Incerta (ZI) or Subthalamic nucleus (STN) 
(Fig. 3e). Neurons assigned to other clusters, such as 29 and 39 (Fig. 3e), 
occupied distinct areas but were partially intermixed with neurons from 
other clusters. With respect to projection targets, some clusters that were 
enriched for particular projections were relatively confined to specific 
regions within the hypothalamus, while other projection-enriched clusters 
were distributed topographically across the hypothalamus. For example, 
HY→TH neurons were enriched in clusters 12, 32, and 3, all of which 
were located in well-delineated subregions of dorsal hypothalamus (Fig. 
3b,e). In contrast, the seven clusters enriched for HY→P were distributed 
along the anterior to posterior axis of the hypothalamus and also occupied 
locations across the dorso-ventral and medio-lateral axes (Fig. 3b,e). 
Overall, our findings underscore the fine-scale spatial organizations of 
these projection-enriched cell clusters within the hypothalamus and the 
varying degrees of topographical heterogeneity of the locations of 
projection-defined HY neuronal populations.  

To gain insight into the molecular characteristics and gene regulation 
of the projection-enriched clusters, we further utilized the integrative 
analysis of Epi-Retro-Seq, snmC-seq, and scRNA-seq. We identified 
1,163 differentially expressed genes (DEGs) across the 17 clusters in all 
pairwise comparisons (Fig. 3f). In Figure 3f,g, the projection-enriched 
clusters are organized along the y-axis in the same order as for the target-
cluster enrichment illustrations in Figure 3b. Each row has a largely 
independent pattern suggesting that each cluster has a different set of 
DEGs, even when there are multiple clusters enriched for projections to 

a particular target. (Note that this contrasts with results for TH. See 
below.) Notably, many of the DEGs were found to be involved in 
neuronal function and connectivity, as exemplified by a few highlighted 
genes in Figure 3f. As expected from the typical inverse relationship 
between gene expression and gene body CH methylation (mCH), mCH 
levels plotted with an inverted colormap in Figure 3g are strikingly 
similar to the expression levels for the same genes shown in Fig. 3f 
indicating differential methylation of these genes across clusters (Fig. 
3g). To investigate the regulation of these DEGs, we identified 148,897 
DMRs associated with the DEGs (Methods). The CG methylation 
(mCG) levels of the DEG-associated DMRs exhibited differential 
methylation patterns consistent with the gene expression and gene body 
mCH levels (Fig. 3h). To uncover the regulatory network of these DEGs, 
we further identified transcription factors (TFs) whose binding motifs 
were enriched in CREs (Fig. 3i). The analysis showed some shared sets 
of TFs between clusters enriched for some projections, such as HY→TH. 
In contrast, more varied sets of TFs were identified between clusters 
enriched for some other projections, such as HY→P or HY→MY. 
Additionally, distinct sets of TFs were observed between clusters that 
were enriched for different projections. Collectively, these findings 
underscore the existence of diverse gene regulatory networks that employ 
distinct TFs and DMRs for different hypothalamic projections. 
Furthermore, they offer valuable insights into the molecular mechanisms 
that govern the regulation of projection-enriched cell clusters and their 
associated genes in the hypothalamus. 

In summary, our integrative analysis has revealed the relationships 
between hypothalamic neurons projecting to ten different targets and their 
methylation profiles, enrichment in genetic/epigenetic clusters, and 
spatial locations of neurons belonging to those clusters. A prior study 
linked transcriptomic clusters and their spatial locations within the medial 
pre-optic area (MPOA) of the hypothalamus to specific behaviors19, 
suggesting that those clusters might mediate their differential 
contributions to behavior through differences in their projections. 
Another study directly linked transcriptomic clusters of neurons and their 
locations within the ventro-medial hypothalamus (VMH) to their 
projections to the MPOA or PAG by combining retrograde labeling with 
scRNA-seq and seqFISH6. Those experiments revealed projection-
enriched clusters, as we have found for a different set of hypothalamic 
projection targets, but they did not observe clear relationships between 
transcriptomic clusters, behavior-specific activation, and projections to 
the PAG or MPOA. We mapped the Kim et al. 6 neurons to our 
hypothalamus clusters and found that none of the behavior enriched 
clusters or projection-enriched clusters from Kim et al. correspond to any 
of our projection-enriched clusters in the entire hypothalamus (Extended 
Date Fig. 7, Methods). Our observations across the full spatial extent of 
hypothalamus and a large number of projection targets reveal strong 
correlations between clusters and projection targets, suggesting that cell 
types defined by their projections and genetics/epigenetics are also likely 
to make distinct contributions to hypothalamic function and related 
behaviors. 
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Fig. 3 | The diversity of cell type, spatial location, and gene regulation 
of hypothalamic projection neurons. a, Joint t-SNE of Epi-Retro-Seq 
(n=1,572), unbiased snmC-seq (n=11,554), and scRNA-seq (n=148,840) 
data of hypothalamic neurons colored by cell cluster (top) or projection 
target (bottom, same color palette as left row colors in Fig. 1b). Seventeen 
clusters enriched for the profiled projection neurons are outlined. b, The 
proportion of each of the 10 projections in each of the 17 projection-
enriched clusters, Z-score normalized across targets. c, d, t-SNE of the 17 
projection-enriched clusters (c), where neurons projecting to different 
targets were highlighted in (d). e, Projection-enriched HY clusters 
mapped to MERFISH data of 6 coronal slices (C6R1, C6R2, C8R1, 
C8R2, C10R1, C10R2) and 2 sagittal slices (S1, S2) of HY. The 
replicates of coronal slices (R1 and R2) are arranged from anterior to 
posterior (C6, C8, C10), left to right. The sagittal slices are arranged from 
lateral to medial (S1, S2), top to bottom. Examples of clusters with 

specific spatial locations are labeled in the enlarged insets of each slice. 
Scale bars represent 15 mm. The same color palette for clusters is used in 
(b-e). f-h, Gene expression (f), gene body mCH (g) levels of differentially 
expressed genes (DEGs) between the 17 projection-enriched clusters, or 
mCG levels of DEG-associated DMRs (h) in each cluster. The values are 
Z-score normalized across clusters. The DEGs and cell clusters are 
arranged in the same orders in (f-h). Only the DMR with highest anti-
correlation with each DEG are shown in (h) to make the column orders 
consistent between (f-h). Examples of DEGs with GO annotations related 
to neuronal function and connectivity are labeled on the x-axis. i, 
Examples of transcription factors (TFs) whose binding motifs were 
enriched in hypo-CG-methylated DMRs are shown in the bubble plot. 
The size of each dot represents the enrichment level (AUC). The color of 
the dot indicates the expression level of the TF. The clusters are arranged 
in the same order as in (f-h). 

 
 
Epi-Retro-Seq of thalamic projection neurons 
The thalamus is a primary hub in sensory and cortical information 
processing and also projects to subcortical structures. Similar to 
hypothalamus, thalamus consists of a large number of nuclei that are 
organized into multiple functional groups. The main, central regions of 
the thalamus are composed of exclusively excitatory regions (except for 
a few local GABAergic interneurons in the dorsal lateral geniculate 
nucleus (LGd)) that are reciprocally connected with cortical areas20. 
Other more ventral and lateral regions of the thalamus (such as LGv and 
RT) contain GABAergic inhibitory neurons that are either reciprocally 
connected with thalamic excitatory neurons or project to subcortical 
structures such as the basal ganglia and brainstem20. In contrast to the 

hypothalamus, the thalamus had a lower degree of cell type complexity 
as shown by the smaller number of cell clusters identified through gene 
expression analysis16. Despite both the thalamus and hypothalamus 
showing a high level of heterogeneity in their anatomical nuclei and 
projections, the differences in their cell type complexity prompted us to 
investigate whether the relationships between cell types, their projections, 
and their spatial locations in the thalamus differ from those observed in 
the hypothalamus, as discussed above.  

We analyzed thalamic neurons that project to twelve different targets, 
including nine cortical areas (PFC, MOp, SSp, ACA, AI, AUDp, RSP, 
PTLp, and VISp), SC, VTA, and P. To gain a comprehensive 
understanding of these neurons, we combined Epi-Retro-Seq data with 
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unbiased snmC-seq and single-cell RNA-seq data from the thalamus. 
Through this integration, we identified a total of 58 thalamic neuronal cell 
clusters (Fig. 4a), of which 33 clusters were enriched for Epi-Retro-Seq 
neurons (Fig. 4b). It is worth noting that neurons dissected from different 
anatomical regions within the thalamus were located in distinct sets of 
clusters17 (Fig. 4c), as expected from prior descriptions based on analysis 
of scRNA-seq data7, suggesting that these molecularly defined cell 
clusters also have a spatial organization.  

In Figure 4b, we assessed the degree of enrichment of each projection 
in each cluster. Similar to what was observed in the hypothalamus, each 
population of thalamic projection neurons exhibited enrichment in 
distinct subsets of cell clusters, with each cluster showing enrichment for 
a specific set of projections, sometimes only one. Notably, the clusters 
enriched for TH→SC, TH→VTA, TH→P, and TH→cortex were mostly 
mutually exclusive. Regarding cortical projections, TH→PTLp and 
TH→VISp neurons exhibited enrichment in a largely overlapping set of 
clusters, but with varying degrees of enrichment. TH→MOp and 
TH→SSp neurons also shared most of their enriched clusters, which 
differed from those enriched for TH→PTLp and TH→VISp. These 
results support the notion of a separation of thalamic cell types between 
the visual and motor pathways in the thalamus and highlight the 
heterogeneity of cell types within each pathway. Notably, TH→RSP 
neurons showed no overlap in enriched clusters with any other cortical 
projections, and were uniquely enriched in clusters 13, 26 and 47. These 
clusters were annotated by their gene expression patterns as belonging to 
the anteroventral (AV) nucleus (clusters 13 and 26), and anterodorsal 
(AD) nucleus (cluster 47), which is consistent with TH→RSP projections 
originating from anterior thalamic nuclei21. In summary, TH neurons 
projecting to cortex vs. subcortical targets were enriched in distinct sets 
of clusters. The enriched cell clusters for cortical projections were further 
segregated by different thalamic pathways, with multiple enriched cell 
clusters observed for each pathway or projection. These findings 
highlight the cell type specificity as well as heterogeneity at the level of 
TH projections. 

Such cell type specificity and heterogeneity of TH projection neurons 
were also reported in transcriptomic analysis of single TH projection 
neurons. Phillips et al. conducted a single-cell RNA-seq study on 
thalamic neurons projecting to the prefrontal, motor, somatosensory, 
auditory, and visual cortices7. We will refer to their dataset as Retro-Seq 
of these thalamocortical (TC) projections. In their study, clustering 
analysis of Retro-Seq revealed that neurons of each projection were 
enriched in a specific set of clusters, indicating specific and shared cell 
types between different TC projections, as well as cell type heterogeneity 
within each TC projection. 

To compare Retro-Seq and Epi-Retro-Seq data for these TC 
projections, we mapped the Retro-Seq data onto our 58 integrated TH 
clusters (Extended Data Fig. 8a, Methods). The t-SNE of Retro-Seq and 
Epi-Retro-Seq neurons from comparisons of the most closely 
corresponding projections showed that they occupied similar spaces and 
were enriched in a common set of clusters (Extended Data Fig. 8a,b). 
However, in addition to the shared projection-enriched clusters, certain 
clusters were found to be enriched for each projection only in either 
Retro-Seq or Epi-Retro-Seq. These differences are most likely due to the 
use of different injection coordinates for each cortical target 

(Supplementary Table 4), resulting in overlapping yet different 
populations of retrogradely labeled TH neurons being analyzed in the two 
data sets. The degree of alignment between Epi-Retro-Seq and Retro-Seq 
was quantified by the overlap score and cosine distance (Extended Data 
Fig. 8c, Methods), which revealed that Retro-Seq neurons of each 
projection were more similar to Epi-Retro-Seq neurons for the 
corresponding projections than for any other projections. Taken together, 
these results provide further evidence for the remarkable cell type 
specificity and heterogeneity within each thalamocortical projection, as 
revealed by the analysis of both gene expression and DNA methylation. 

Similar to our approach for the hypothalamus, we utilized the 
MERFISH data to map the spatial locations of the 33 TH projection-
enriched clusters (Fig. 4d). Notably, almost all of these clusters exhibited 
a unique spatial pattern, many of them with distinct boundaries in the 
distributions of their cells (Fig. 4d). These boundaries often corresponded 
to specific thalamic nuclei, exemplified by clusters 25 and 45 that were 
enriched for pons-projecting neurons and annotated as medial habenula 
(MH) cell types based on their molecular signatures. When mapped to the 
MERFISH data, cells in these clusters demonstrated a clearly defined 
spatial location that corresponded to MH. This illustrates the high 
resolution of our data and analysis, enabling the identification of specific 
MH→P projection neurons among all thalamic neurons. Similarly, we 
were able to accurately map the molecularly annotated AD cluster 47 and 
AV cluster 26 that were enriched for the TH→RSP projection to their 
corresponding locations in the dorsal and ventral anterior thalamus. This 
high resolution of our data also allowed us to investigate the molecular 
and spatial cellular heterogeneity within a projection. For instance, the 
visual input from the retina reaches VISp through LGd in TH. When 
mapped to MERFISH, clusters 38, 5, 4, 1, and 6 that were enriched for 
TH→VISp neurons collectively occupied the location that corresponds to 
LGd, with each cluster having a unique distribution within LGd. These 
findings underscore the heterogeneity of LGd→VISp neurons and 
provide valuable insights for future in-depth analysis of different types of 
LGd→VISp neurons. 

Next, we investigated the gene regulations of thalamic neurons in these 
projection-enriched clusters. Joint analysis of single-cell RNA-seq and 
scmC-seq data of thalamus identified a total of 2,348 differentially 
expressed genes (Fig. 4e,f) and 1,566,402 associated DMRs (Fig. 4g) 
across the 33 clusters. As expected, the expression levels of the DEGs 
(Fig. 4e) were anti-correlated with their mCH levels (Fig. 4f), while their 
associated DMRs also showed strong correspondence in terms of mCG 
levels (Fig. 4g). In contrast to HY, TH clusters enriched for the same 
projections displayed similar expression patterns of DEGs and 
methylation patterns of the associated DMRs, suggesting shared usage of 
CREs in gene regulation. Additionally, we identified transcription factors 
with significant motif enrichment in the DMRs (Fig. 4h). Clusters 
enriched for the same projection had similar sets of TFs, while those 
enriched for different projections had more distinct sets of TFs. These 
results imply the existence of projection-specific gene regulatory 
networks, which consist of unique sets of TFs, CREs, and target genes in 
the thalamus. These relationships are in contrast to those observed in HY, 
where the organization of TF motifs is not closely related to projection 
targets.
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Fig. 4 | The diversity of cell type, spatial location, and gene regulation 
of thalamic projection neurons. a, Joint t-SNE of Epi-Retro-Seq 
(n=2,606), unbiased snmC-seq (n=16,943), and scRNA-seq (n=162,795) 
data of thalamic neurons colored by cell cluster. b, The proportion of each 
of the 12 assayed TH projections in each of the 33 projection-enriched 
clusters, Z-score normalized across targets. The same set of colors is used 
for labeling clusters in both cluster group i (14 clusters) and cluster group 
ii (19 clusters). c, TH neurons dissected from two anterior lateral regions 
(THl-1, THl-2), two anterior medial regions (THm-1, THm2), and three 
posterior regions (THp-1, THp-2, THp-3) are colored respectively in the 
t-SNE. See slices 7-10 in Extended Data Fig. 1 for details of the 
dissection regions. d, Projection-enriched TH clusters mapped to 
MERFISH data of 6 coronal slices (C8R1, C8R2, C10R1, C10R2, 
C12R1, C12R2) and 2 sagittal slices (S1, S2) of TH. The sagittal slices 
are arranged from lateral to medial (S1, S2), top to bottom. The replicates 
of coronal slices (R1 and R2) are arranged from anterior to posterior (C8, 
C10, C12), left to right. The colors of clusters in the top two rows of insets 
are the same as the cluster labels in cluster group i in (b). The colors of 

clusters in the bottom two rows of insets are the same as the cluster labels 
in cluster group ii in (b). Examples of clusters with specific spatial 
locations are labeled in the enlarged insets of each slice. Note that slices 
C12R1 and C12R2 are not shown for cluster group ii. e-g, Gene 
expression (e), gene body mCH (f) levels of differentially expressed 
genes (DEGs) between the 33 projection-enriched clusters, or mCG 
levels of DEG-associated DMRs (g) in each cluster. The values are Z-
score normalized across clusters. The DEGs and cell clusters are arranged 
in the same orders in (e-g). Only the DMR with highest anti-correlation 
with each DEG are shown in (g) to make the column orders consistent 
between (e-g). Examples of DEGs with GO annotations related to 
neuronal function and connectivity are labeled on the x-axis. h, Examples 
of transcription factors (TFs) whose binding motifs were enriched in 
hypo-CG-methylated DMRs are shown in the bubble plot. The size of 
each dot represents the enrichment level (AUC). The color of the dot 
indicates the expression level of the TF. The clusters are arranged in the 
same order as in (e-g). 

 
 
Differential usage of neurotransmitters in projection neurons 
Recent brain-wide single-cell and spatial transcriptomic analyses have 
revealed remarkable heterogeneity and spatial specificity in 
neurotransmitter usage among different cell types across the mouse 
brain16,17. As described above and exemplified in thalamus and 
hypothalamus, our integrative analysis revealed high levels of cell-type 
and spatial specificity in neurons with different projections. These 
findings sparked a further investigation into the neurotransmitter usage of 
these distinct projection neurons that were in different brain regions and 
had different cell type compositions. Insights into the neurotransmitter 
usage of different projection neurons may shed light on their functional 
properties and their potential role in behavior, with broader implications 

for understanding neural circuits and the mechanisms underlying various 
brain functions and disorders. 
    To systematically examine the use of neurotransmitters by different 
projections, we quantified the levels of expression of nine canonical 
neurotransmitter transporter genes in each of the projection-enriched 
clusters within the twelve grouped brain regions described previously 
(Extended Data Fig. 5). These transporter genes included Slc17a7 
(Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3) for glutamatergic 
neurons, Slc32a1 (Vgat) for GABAergic neurons, Slc6a2 (Net) for 
noradrenergic neurons, Slc6a3 (Dat) for dopaminergic neurons, Slc6a4 
(Sert) for serotonergic neurons, Slc6a5 (Glyt2) for glycinergic neurons, 
and Slc18a3 (Vacht) for cholinergic neurons. In addition, we used 
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histidine decarboxylase (Hdc) for histaminergic neurons. Our analysis 
revealed a diverse range of neurotransmitter usage across the projection-
enriched clusters, particularly those in the midbrain and hindbrain 
regions. Furthermore, a large proportion of the projection-enriched 
clusters exhibited significant expression of more than one 
neurotransmitter transporter gene. These findings support that there is a 
wide variation in neurotransmitter usage across different neural pathways 
and highlight the heterogeneity within some of these pathways. Below, 
we delve deeper into a few interesting cases, including projections from 
the hindbrain regions of P and MY, the amygdala, and the midbrain 
region of VTA. 
  
Epi-Retro-Seq and Neurotransmitter Usage in Hindbrain Projection 
Neurons 
We analyzed eleven hindbrain projections, which included projections 
from P or MY to five different targets - TH, HY, SC, CBN, and CBX - as 
well as the projection from P to MY. These projections were enriched in 
20 cell clusters out of a total of 128 hindbrain clusters. The degree of 
enrichment of each projection in each cluster was quantified as shown in 
Figure 5a. Notably, in both P and MY, neurons projecting to the CBX 
were the most distinct from other projection neurons. This was evidenced 
by the presence of exclusive CBX-projecting clusters in each region. For 
instance, in P, the cluster 0 was uniquely enriched for the P→CBX 
projection, while in medulla, cluster 76 was enriched for MY neurons 
projecting to the cerebellum, particularly those projecting to CBX. 

The 20 projection-enriched clusters showed expression of six 
neurotransmitter transporter genes (Fig. 5b). The majority of these 
clusters contain glutamatergic neurons expressing Vglut2, such as the 
previously mentioned MY→CBX enriched cluster 76. Interestingly, 
Vglut1 and Vglut2 were co-expressed in cluster 0 neurons that were 
enriched for the P→CBX projection. These observations are consistent 
with previous studies that demonstrated the presence of VGLUT1 or 
VGLUT2 in climbing fiber (MY→CBX) terminals and both VGLUT1 
and VGLUT2 in cerebellar mossy fiber (P→CBX) terminals using 
synaptic vesicle immunoisolation22. Moreover, different 
neurotransmitters were utilized in clusters enriched for the same 
projections. For instance, clusters 10, 30, 11, and 27 were enriched for 
P→HY projections. Among them, clusters 10 and 30 are GABAergic 
with Vgat expression, cluster 11 is glutamatergic with Vglut2 expression, 
whereas cluster 27 is serotonergic showing co-expression of Sert and 
Vglut3. Furthermore, several of these clusters also exhibited distinctive 
spatial distributions when mapped to the MERFISH data, such as clusters 
0, 76, 10, and 27 (Fig. 5c). Altogether, these results underscore the extent 
of molecular, cellular, and spatial specificity and diversity within 
hindbrain projections. 

We observed that neurons projecting to CBX from P or MY were 
distinct from other projections originating from the same regions. To 
investigate this further, we examined the molecular signatures that could 
differentiate CBX-projecting neurons from other projection neurons in P 
or MY. Additionally, we investigated whether there were any common 
molecular signatures between the P→CBX and MY→CBX projections. 
Analysis of gene body DNA methylation identified genes that could 
distinguish the P→CBX cluster (0) from other P projections associated 
clusters, or differentiate MY→CBX cluster (76) from other MY 
projections associated clusters (Fig. 5d). Interestingly, only five genes 
were common between the top 100 genes in the two sets, namely Slit3, 
Phactr3, Pcbp3, Atp10a, and Cdk14 (highlighted in Fig. 5d). Notably, 
Slit3 encodes a repulsive axon guidance molecule23,24, and Phactr3 has 
been shown to be involved in regulating axonal morphology25,26. To 

understand how the differentially expressed genes in CBX-projecting 
neurons are regulated, we explored DMRs that were hypo-methylated in 
CBX-projecting neurons. In total, we identified 223,839 hypo-DMRs in 
the hindbrain that were associated with CBX-projecting neurons (Fig. 
5e). These DMRs were further divided into subsets that were hypo-
methylated in either P→CBX or MY→CBX, while only a limited number 
were hypo-methylated in both. Collectively, these findings suggest that 
the molecular mechanisms underlying CBX versus other projections in P 
and MY are largely distinct, but with some shared features at both the 
transcriptomic and epigenomic levels. 
 
Epi-Retro-Seq and Neurotransmitter Usage in Amygdala and Midbrain 
Projection Neurons 
We examined projections from the amygdala to nine different targets, 
including the PFC, ENT, HIP, MOB, STR, TH, VTA, P, and MY. These 
projections were enriched in 16 amygdala clusters, with distinct sets of 
clusters enriched for neurons projecting to IT targets (ENT, STR, MOB, 
PFC, and HIP) versus ET targets (TH, MY, VTA, and P) (Fig. 5f). The 
clusters enriched for IT projections were primarily glutamatergic and 
expressed Vglut1 and/or Vglut2(Fig. 5g). In contrast, the clusters enriched 
for ET projections were divided between glutamatergic clusters that 
expressed Vglut2 and GABAergic clusters (Fig. 5g). Notably, the 
AMY→ENT projection was particularly distinct compared to other IT 
projections, with unique enrichment in clusters 1 and 7 (Fig. 5f). 
Additionally, it exhibited varied usage of vesicular glutamate 
transporters. Within the clusters enriched for AMY→ENT, Vglut1 was 
predominantly expressed in cluster 12, Vglut2 was the predominant 
transporter in clusters 24, 7, and 1, while Clusters 31 and 64 expressed 
both Vglut1 and Vglut2, suggesting a potential diversity in the physiology 
and function of amygdala neurons projecting to the entorhinal cortex. In 
summary, our results underscore the heterogeneity in neurotransmitters 
and their transporter utilization among amygdala projection neurons. 

The midbrain regions containing the ventral tegmental area (VTA) and 
substantia nigra (SN) (which we collectively refer to as VTA) exhibit 
some of the most interesting and complex patterns of heterogeneous 
neurotransmitter usage between different projections. Our study analyzed 
VTA neurons projecting to sixteen different targets, including six cortical 
targets (PFC, MOp, SSp, ACA, RSP, and PTLp), six other IT targets 
(MOB, ENT, PIR, AMY, STR, and PAL), and four ET targets (TH, HY, 
SC, and P). By integrating Epi-Retro-Seq and unbiased snmC-seq data, 
as well as single-cell RNA sequencing of VTA, we can distinguish 
between cell clusters with various combinations of the expected 
glutamate, GABA, and dopamine transporters known to be expressed by 
VTA neurons27–30 (Extended Data Fig. 9a,b). 

In order to better examine the relationships between VTA neurons 
projecting to different targets and their use of neurotransmitters, we 
analyzed the levels of mCH at specific marker genes, including tyrosine 
hydroxylase (Th) for dopaminergic neurons, Gad2 for GABAergic 
neurons, and Vglut2 for glutamate neurons because previous studies 
showed that rodent VTA glutamate neurons mainly express Vglut2 but 
not Vglut1 or Vglut331,32 (Fig. 5h,i and Extended Data Fig. 9c-d). Lower 
mCH levels at these genes suggest higher gene expression, given the 
negative correlation between gene body mCH levels and gene expression. 
In general, VTA neurons that project to the cortex had lower levels of 
mCH at Th compared to subcortical projections (except for VTA→STR), 
suggesting a higher expression of Th (Fig. 5h top, P values=2.8e-7 (CTX 
vs MOB), 3.0e-5 (CTX vs PAL), 6.2e-15 (CTX vs ET), Wilcoxon rank-
sum tests). The CTX-projecting neurons also exhibited lower mCH levels 
at Vglut2, indicating a significant Vglut2 expression (Fig. 5h middle). 
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Therefore, these CTX-projecting VTA neurons are likely Th+ and 
Vglut2+ and utilize both dopamine and glutamate (Fig. 5i and Extended 
Data Fig. 9c). In contrast, VTA neurons projecting to STR do not appear 
to co-express Th and Vglut2 but instead were shown to consist of three 
subpopulations: Th+ Vglut2-, Th- Vglut2+, and Th- Gad2+, as indicated 
by their mCH levels at Th, Vglut2, and Gad2 (Fig. 5i and Extended Data 
Fig. 9c-e). Based on their mCH levels, the ET-projecting neurons were 
generally divided into two subgroups: Gad2+ and Vglut2+ (Fig. 5i). 

Among the ET-projecting VTA neurons, those projecting to TH and HY 
were more similar to each other than to those projecting to SC and P 
(Extended Data Fig. 9b). Notably, some of the SC- and P-projecting 
neurons were uniquely present in a VTA Gad2+ cluster that were absent 
in other projections (Extended Data Fig. 9b). Overall, our findings 
corroborate prior reports of diverse populations of VTA neurons that 
employ single or combined neurotransmitters and highlight intricate 
patterns of distinct neurotransmitter usage among various projections.

 
  

 
Fig. 5 | Neurotransmitter usage in HB, AMY, and VTA projection 
neurons. a, b, The proportion of each of the 11 assayed HB projections 
(a, Z-score normalized across targets) and the expression levels of six 
neurotransmitter transporter genes (b) in each of the 20 hindbrain 
projection-enriched clusters. c, Projection-enriched clusters mapped to 
the MERFISH slice S1. The same color palette for clusters is used in a 
and c. d, Area under the curve of precision-recall (AUPR) of genes to 
distinguish P→CBX cluster (0) and P→ET clusters (10, 11, 27, 30, 35, 
44, 57, 62, 80) vs. MY→CBX cluster (76) and MY→ET clusters (5, 7, 
10, 11, 17, 57, 66, 114) with gene body mCH level in Epi-Retro-Seq data. 
The genes with AUPR>0.872 in P and AUPR>0.647 in MY (>99th 
quantile) are colored in red. The name of five genes selected in both P 
and MY are labeled. e, mCG levels of hypo-mCG DMRs in P and MY 

between the →CBX clusters and →ET clusters. f, g, The proportion of 
each of the 9 assayed AMY projections (f, Z-score normalized across 
targets) and the expression levels of neurotransmitter transporters Vglut1, 
Vglut2, and Vgat (g) in each of the 16 projection-enriched clusters. h, i, 
The gene-body mCH levels of tyrosine hydroxylase (Th), Gad2, and 
Vglut2 in VTA projection neurons, shown in density plots (h) or scatter 
plots (i). Colors represent VTA neurons projecting to different targets and 
the same palette is used in (h, i). Note that, because low mCH levels 
indicate high gene expression, the x-axis in h and both axes in i are plotted 
as the reciprocal mCH values (1/gene body mCH), so low mCH is plotted 
to the right/up and high to the left/down. ACA was not included in CTX 
(see Extended Data Fig. 9). 

 
 
Summary 
Altogether, we have uploaded and made available data that informs 
potential users about the relationships between axonal projection status 
and DNA methylation at single-cell resolution for tens of thousands of 
neurons corresponding to hundreds of source→target combinations. We 
have provided quantitative measures of the discriminability of source 
neurons projecting to different targets for nearly one-thousand target-to-
target comparisons. We have further demonstrated how these data can be 
integrated with other single-cell data modalities, including scRNA-seq 

and MERFISH, to link the projection status of spatially-resolved cell-type 
clusters to neural circuits. More extensive details about the use of these 
data, their potential limitations, and the analytic approaches we have 
taken can be found in Methods. The in-depth analyses provided here for 
both brain-wide comparisons of ET- versus IT-projecting neurons, and 
for the full sets of targets assayed for 6 of the 32 assayed source regions 
(HY, TH, P, MY, AMY, VTA) exemplify the utility of the much larger 
data set for further brain-wide and source- or target-focused analyses. 
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Methods 
Experimental Animals. 
As described by Zhang et al. 5, all experimental procedures using live 
animals were approved by the Salk Institute Animal Care and Use 
Committee. The knock-in mouse line, R26R-CAG-loxp-stop-loxp-Sun1-
sfGFP-Myc (INTACT) used in Epi-Retro-Seq5 was maintained on a 
C57BL/6J background. 42-49 day old adult male and female INTACT 
mice were used for the retrograde labeling experiments. Adult C57BL/6J 
“wild-type” mice were used for MERFISH experiments. 
  
Surgical Procedures for Viral Vector and Tracer Injections. 
As described by Zhang et al.5, to label neurons projecting to regions of 
interest, injections of rAAV2-retro-Cre (produced by Salk Vector Core 
or Vigene, 2x1012 to 1x1013 viral genomes/ml, produced with capsid from 
Addgene plasmid #81070 packaging pAAV-EF1a-Cre from Addgene 
plasmid #55636) were made into both hemispheres of the INTACT mice. 
In summary, animals were anesthetized with either ketamine/xylazine or 
isoflurane and placed in a stereotaxic frame. Pressure injections of 0.05 
to 0.4 microliters of AAV per injection site were made using glass 
micropipettes (tip diameters ~10-30μm) targeted to stereotaxic 
coordinates corresponding to MOp, SSp, ACA, AUDp, RSP, PTLp, 
VISp, HPF, MOB, STR, PAL, TH, SC, VTA+SN, P, MY, and CBX. To 
precisely target PFC, AI, ENT, PIR, AMY, HY, and CBN, AAV was 
injected using iontophoresis to ensure confined viral infection. 
Iontophoretic injections (+5µA, 7 s on/7 s off cycles for 5-10 min) were 
made with glass pipettes with tip diameter of ~10μm. For most of the 
desired target areas, injections were made at different depths, and/or at 
different AP or ML coordinates to label neurons throughout the target 
area. More detailed injection coordinates and conditions are listed in 
Supplementary Table 1. At least 2 male and 2 female mice were injected 
for each desired target.  
 
Brain dissection. 
Brain dissections were done as described in Zhang et al.5. In summary, 
approximately two weeks after the AAVretro injection, brains were 
extracted from the 56-63 day old INTACT mice, immediately submerged 
in ice-cold slicing buffer (2.5mM KCl, 0.5mM CaCl2, 7mM MgCl2, 
1.25mM NaH2PO4, 110mM sucrose, 10mM glucose, and 25mM 
NaHCO3) that was bubbled with carbogen, and sliced into 0.6 mm 
coronal sections starting from the frontal pole. From each AAVretro-
injected brain, the slices were kept in the ice-cold dissection buffer from 
which selected brain regions (Fig. 1b) were manually dissected under a 
fluorescent dissecting microscope (Olympus SZX16), following the 
Allen Mouse Common Coordinate Framework (CCF), Reference Atlas, 
Version 3 (2015) (Extended Data Fig. 1). The dissected brain tissues 
were transferred to prelabeled microcentrifuge tubes, immediately frozen 
in dry ice, and subsequently stored at -80oC. 
 
Nuclei preparation and single-nucleus isolation. 
Nuclei preparation and isolation were done as described by Zhang et al.5. 
In summary, for each dissected brain region, samples from 2 males and 2 
females were pooled separately as biological replicates for nuclei 
preparation. Nuclei were prepared using a modified protocol as reported 
by Lacar et al., 201633 and described by Zhang et al.5. Nuclei suspensions 
were then incubated with GFP antibody, Alexa Fluor 488 (Invitrogen, A-
21311), and anti-NeuN antibody (EMD Millipore MAB377) conjugated 
with Alexa Fluor 647 (Invitrogen A20173). GFP+/NeuN+ single nuclei 
were isolated using fluorescence-activated nuclei sorting (FANS) on a 
BD Influx sorter or a BD Aria Fusion cell sorter with 100μm nozzle, and 

sorted into 384-well plates with digestion buffer for snmC-seq. The 
collected plates were incubated at 50oC for 20 minutes and then stored at 
-20 oC. 
 
snmC-Seq library preparation. 
The bisulfite conversion and library preparation were performed 
following the detailed snmC-seq protocol as previously described14. In 
brief, DNA samples from single nuclei were barcoded with random 
primers after the bisulfite conversion, pooled through two rounds of 
cleaning up with SPRI beads, then added with adapters and PCR 
amplified to generate the libraries. Libraries were then pooled, cleaned 
up with SPRI beads, normalized and sequenced on Illumina Novaseq 
6000 using the S4 flow cell 2 x 150 bp mode. 
 
Mapping and Preprocessing. 
Epi-Retro-Seq data were mapped to the mm10 genome as described in 
our previous study34. For each single cell, we counted the methylated and 
total basecalls for all 100kb non-overlapping genomic bins and all gene 
bodies expanded 2kb in both directions using ALLCools generate-
dataset. The data is saved in Zarr format to allow chunk loading and on-
disk computing35. To avoid the methylation differences being driven by 
the active and inactive X-chromosomes, we only used the autosomal bins 
and genes in our analyses. The cell-by-bin and cell-by-gene posterior 
methylation levels were computed as previously described34, which is the 
input for all downstream analyses. 
 
Quality control. 
Step 1. The cells included in the analysis are required to have 1) median 
mCCC level of the experiment <0.025, 2) 500,000 < nonclonal reads < 
10,000,000, 3) mCCC level <0.05. In total, 56,843 cells from 703 
experiments satisfied these requirements (Extended Data Fig. 2a, b).  
Step 2. The potential doublets were removed as described in the next 
section, and 48,032 cells remained in the dataset (Extended Data Fig. 
2c, d). The cell type and dissection information of these cells were used 
in our analysis, but further filters were applied to exclude non-neuronal 
cells as well as neurons whose projection targets are not confidently 
assigned. 
Step 3. The experiments with less than 20 neurons were excluded to 
ensure the statistical power of projection analysis, resulting in 39,461 
cells from 519 experiments left. The non-neuronal cells are also removed 
from the dataset, after which 34,643 neurons remain. The cell type 
classification method is described in the next section.  
Step 4. The cortical cells from 286 experiments were further filtered to 
exclude the experiments with a high proportion of neurons of the cell 
types known not to project to the intended injection site (off-target 
clusters), using the same method as in our previous study5. Specifically, 
for each FANS run, we counted the number of neurons that were observed 
in known on-target cell types (𝑂!") and off-target cell types (𝑂!##). 
Assuming that the proportions of contaminated cells in each subclass 
would be similar to a sample without projection-type enrichment, we 
compared the observed counts to the counts from unbiased snmC-seq data 
(𝐸!" and 𝐸!##) collected from the corresponding dissections in Extended 

Data Fig. 1. The fold-enrichment was computed as $!"%!##
$!##%!"

. A one-sided 

exact binomial test of goodness-of-fit was used to determine whether the 
enrichment of on-target cells was significant. The P value was computed 
as 𝑃𝑟(𝑋 ≥ 𝑂!"; 𝑛, 𝑝), where 𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝), 𝑛 = 𝑂!" +𝑂!##, 𝑝 =

%!"
%!"&%!##

. For each ET target, we considered ET as on-target subclass and 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2023. ; https://doi.org/10.1101/2023.05.01.538832doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.01.538832
http://creativecommons.org/licenses/by-nc/4.0/


IT+inhibitory neurons as off-target. The thresholds for fold-enrichment 
and FDR (Benjamini-Hochberg procedure) were 8 and 0.001. For IT 
targets, we considered IT as on-target subclasses and L6 CT+inhibitory 
neurons as off-target. The thresholds for fold-enrichment and FDR 
(Benjamini-Hochberg procedure) were 3 and 0.001. This eliminated 32 
out of 286 sorting cases (Extended Data Fig. 2e).  
The rationale of step 4 is to remove potential contamination in the dataset 
that might have resulted from 1) inaccurate gating of GFP+ NeuN+ cells, 
and 2) AAV-retro injection pipettes that passed through overlying source 
brain regions and directly labeled neurons at those sources rather than 
being taken up retrogradely from the intended target. 1) could be more 
common in the experiments of some weak projections, where very few 
neurons were retrogradely labeled, resulting in small proportions of cells 
passing FANS gating criteria and subsequent inclusion of high 
proportions of cells accepted from the edges of FANS gates. 2) could be 
more common when targeting a deep structure in the brain (e.g. TH, HY) 
and collecting cells from the superficial structures directly above the 
target (e.g. cortex). Note that step 4 was only performed on experiments 
of isocortical neurons, given that the on-target and off-target clusters were 
relatively clear in these areas. For subcortical projections, comprehensive 
prior knowledge of molecular cell types associated with projection is 
usually lacking, which makes the estimation of contamination using this 
method more challenging. The projections profiled in the subcortical 
structures are usually strong and do not involve overlaying of sources and 
targets, which would potentially lead to lower noise level in those data. 
Nevertheless, it is worth noting that even after these QC steps, there are 
still expected to be some contaminated cells remaining in the dataset. 
After all the QC steps, 33,304 neurons from 487 experiments were used 
for analyses related to projection targets.  
 
Transfer of cell labels from one dataset to another with weighted k-
nearest neighbors. 
This method is similar to the label transfer method in Seurat v336, and 
implemented in our ALLCools python package. This is used in multiple 
analyses throughout the manuscript, including Epi-Retro-Seq cell 
classification and doublet removal, and mapping of MERFISH cells and 
Retro-Seq cells into major dissection regions or RNA and mC co-clusters. 
The original Seurat method identified anchors between two datasets, and 
used the 100 nearest anchors for each cell in the unlabeled dataset to 
average the information from the labeled dataset. Since the 100 anchors 
usually include cells from other clusters, especially for a cell in an 
underrepresented cluster, this method makes the label transfer of small 
clusters quite noisy. Instead of using the anchors between datasets to 
transfer the labels, we only used the anchors to integrate the datasets 
together, and directly find the neighboring cells of the unlabeled dataset 
in the labeled dataset on the integrated space. Since the larger dataset 
usually has more cells than the number of anchors, this method reduced 
the noise in the small clusters.  
Assume we have two datasets in a coembedding space, A with labels and 
B without labels. For each cell in B as a query cell, we first find its k 
nearest neighbors in A with Euclidean distance, and denote its distances 
to the neighbors as a k-dimensional vector 𝐷. 𝐷 is then transformed to 𝑊 
as the weights for averaging the information from the neighbors through 
the following steps which are the same as in Seurat. 1) 𝐷′ = 1 − '

()*(')
; 

2) 𝐷′′ = 1 − 𝑒-
$%
& ; 3) 𝑊 = '..

/'..
. After the transformation, the closer 

neighbors have higher weights, and the weights of all neighbors sum up 
to 1. To transfer a categorical label from A to B, we used one-hot 
encoding to represent the label and the label vectors corresponding to the 

k neighbors in A of the query cell (k-by-#categories, denoted as 𝐿01#) 
were averaged with the weights 𝑊. The resulting vector 𝐿203 = 𝑊𝐿01# 
represents the probability of the query cell belonging to each category. 
The category with the maximum probability is used as the final 
assignment. 
 
Cell classification and doublet removal. 
As described in our companion manuscript, the cell clustering of the 
unbiased dataset was performed iteratively at four levels (L1-L4), which 
assigned the cells into 61 (L1), 411 (L2), 1346 (L3), and 2573 (L4) 
clusters, respectively. At each level, the highly variable 100kb bins were 
selected, and PCA was used for dimension reduction. The significant PCs 
from mCH and mCG were combined to perform consensus clustering. 
We first performed doublet removal with the help of unbiased data. The 
56,843 cells after QC step 2 are mapped to the 310,605 unbiased snmC-
seq cells (including predicted doublet cells). We used the highly variable 
features selected in the unbiased data and the PCA model fit with the 
unbiased data to transform the Epi-Retro-Seq to the same dimension 
reduction space as the unbiased data. Then we classified the Epi-Retro-
Seq cells into either one of the 61 L1 clusters or the predicted doublet 
clusters defined in the unbiased data. The classification was performed 
with the k-nearest neighbor approach described above on the PCs 
combining mCH and mCG. The Epi-Retro-Seq cells assigned to each 
non-doublet L1 cluster were analyzed in the next iteration, using the 
highly variable features selected in the unbiased data of the cluster and 
the PCA model fit with the unbiased data of the cluster. All the predicted 
doublet cells in the unbiased data were added in each L1 cluster in the 
level 2 clustering to further exclude the potential doublets. After these 
two iterations, the cells predicted to be doublets were removed, with 
48,032 Epi-Retro-Seq cells remaining. These cells were mapped to the 
301,626 unbiased snmC-seq cells (without predicted doublets) with the 
same feature selection and PCA methods through the four levels, so each 
Epi-Retro-Seq cell is assigned to one cluster at each level. The 61 L1 
clusters were annotated based on their dissection source and marker 
genes. The cell clusters representing non-neuronal cells were removed 
from further analyses. The cells corresponding to the IT, ET, CT, and 
cortical inhibitory clusters in the L1 cluster annotation were used for QC 
step 4 as described above. 
 
Quantification of projection neuron difference with AUROC. 
To test the similarity of two groups of cells based on DNA methylation, 
we trained logistic regression models to predict the group label of each 
cell. We compared the results using four different types of features to 
predict the projection target of neurons from the same source. These 
include the posterior of 100 kb-bin mCH level, gene body mCH level, 
and the dimension reduction results of the two matrices. 50 PCs were used 
as dimension reduction, with unbiased snmC-seq to fit the PCA models 
and transform the Epi-Retro-Seq data. We also used two methods to split 
the cells into training and testing sets. One used a random selection of 
half of the cells projecting to each target for training and the other half 
for testing (computational replicates), the other was based on the sex of 
the mice where the cells were collected (biological replicates). After the 
QC steps, we have 168 source-target combinations with data from both 
sexes and the other 57 with cells only from one sex. Therefore, all the 
comparisons of 926 target pairs could be quantified with the 
computational replicates, but only 516 of them could be quantified with 
biological replicates. We noticed significant congruence of model 
performance between the different features and different train/test splits 
(Extended Data Fig. 3a-c). Using 100 kb-bins performed very similar to 
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gene bodies (Extended Data Fig. 3a). Using raw features performed 
slightly better than using principal components (Extended Data Fig. 3b). 
Using computational replicates performed significantly better than 
biological replicates (Extended Data Fig. 3c), which was expected given 
that the computational replicates dismissed the heterogeneity between 
biological replicates and made the predictions easier. Nevertheless, the 
computational replicates still provided strongly correlated results to 
biological replicates (Extended Data Fig. 3c), which allowed the 
comparison between different target pairs to evaluate their epigenomic 
differences. 
All the other results in the figures were computed using the computational 
replicates with gene-body mCH as features. The features were filtered 
based on average read coverage across cells before the model training. 
We removed the 100 kb bins and genes with <500 average CH basecalls, 
resulting in 23,730 bins or 9,906 genes in the model. Sci-kit learn was 
used for model implementation. The area under the receiver operating 
characteristic (AUROC) from cross-validation was used to measure the 
performance of the model. The higher AUROC represented the better 
ability of the model to present the group label, which indicated the two 
groups had larger mCH differences and were more distinguishable. For 
computational replicates, we performed random sampling 50 times with 
different seeds, and used the average AUROC as the final result. 
To test the predictability of projection targets with genes from different 
categories, we collected the genes from the following resources. 
Neuropeptide and receptors: Table 1 in Smith et al.37 and Supplementary 
Figure 16 in Tasic et al38. Neurotransmitter receptors: Supplementary 
Figure 15 in Tasic et al38. Ion channels: Supplementary Figure 14 in Tasic 
et al38. and the Guide to PHARMACOLOGY database 
(https://www.guidetopharmacology.org/DATA/targets_and_families.csv
). Neural projection development: gene ontology terms GO0031175 
Neuron Projection Development and GO0050808 Synapse Organization. 
Transcription factors: annotation from SCENIC+39. Only genes included 
in 9,906 genes with high CH coverage were analyzed, and adding more 
lower coverage genes to increase the size of genesets did not improve the 
prediction performance. 
Several reasons could contribute to a low prediction performance. 
Biological reasons would include: 1) Some neurons make projections to 
several targets simultaneously. These could result in the neurons being 
captured by multiple retrograde labeling experiments of different targets. 
It would be impossible to predict a single label with our pairwise models 
for this type of neuron. 2) Some neurons project to different target regions 
but have tiny epigenetic differences. To systematically distinguish 1) to 
2), other anatomic and genetic validations are still needed. 
Technical reasons would include: 1) The contamination levels of some 
experiments might be relatively high, which make larger noise and hinder 
the models from capturing real projection differences. 2) The epigenetic 
differences between neurons projecting to different targets varies across 
replicates. 3) The sample sizes of some projections are small, which 
makes learning more challenging. 4) The models are not powerful enough 
to capture the complex differences between projections.  
Elimination of contaminated FANS runs in QC step 4 decreased the 
potential influence by 1) for cortical neurons as discussed in the QC 
section, although there are still contaminated cells included in the dataset. 
The improvement in labeling efficiency and specificity would help to 
better solve the molecular differences between projection types. In this 
study, male and female mice were treated as biological replicates after 
removing sex chromosomes. Although methylation patterns of autosomes 
are similar, differences between sexes or animals might still exist. The 
small differences in performances between data splitting methods (based 

on computation or biological replicates) might suggest a less notable 
effect contributed by 2) in those samples. To evaluate the potential 
limitation of 4), more carefully curated models, and accordingly, more 
samples, would be required. Thus, given all these factors, we are 
generally more confident in the distinguishable target pairs when training 
and testing sets were split based on both computational and biological 
replicates. The interpretation of comparisons without biological 
replicates and the indistinguishable pairs would need to be more careful 
and are not involved in the major conclusions in this manuscript. Our 
study aims to provide a general view across multiple sources and targets. 
A more detailed understanding of specific projections would require 
larger scale profiles on those specific projection types. 
 
Integration between snmC-seq, Epi-Retro-Seq, and scRNA-seq. 
snmC-seq and scRNA-seq are comprehensive atlases of the whole mouse 
brain, so most of the cell types are expected to be presented in both 
datasets. Therefore, the two datasets were integrated based on a canonical 
correlation analysis (CCA) framework, which captures the shared 
variation between the two datasets36. Epi-Retro-Seq is a projection-
enriched dataset that contains part of the cell types in the atlas, but the 
shared methylation modality with snmC-seq allowed it to be integrated 
with the comprehensive atlas with a reciprocal PCA framework. Both the 
Epi-Retro-Seq and the scRNA-seq datasets were mapped to the 
dimension reduction space of the snmC-seq data to create a multi-
modality atlas of each brain region group. 
For each region group, we selected cells from the three datasets belonging 
to the dissection regions. The methylation cells in the L1 clusters 
corresponding to cerebellar neurons were excluded from the analysis of 
cerebral and brainstem regions. The RNA cells from the major classes of 
non-neuronal cells and immature neurons, and the subclasses of 
cerebellar neurons were excluded from the analyses. The RNA cells from 
subclasses of MM and DCO were also excluded due to the dissection 
differences between the two studies. 
The gene expression levels of scRNA-seq cells were normalized by 
dividing the total UMI count of the cell and multiplying the average total 
UMI count of all cells, and then log-transformed. The posterior gene-
body mCH level of snmC-seq and Epi-Retro-Seq cells were used. The 
cluster-enriched genes (CEGs) were identified in each L4 cluster. We 
checked the variance of the mCH CEGs among the snmC-seq cells and 
scRNA-seq cells and only used the CEGs with mCH variance greater than 
0.05 and expression variation greater than 0.005 for the analyses. The 
opposite of mCH levels was used for snmC-seq and Epi-Retro-seq data 
due to the negative correlation between gene body DNA methylation and 
gene expression. We fit a PCA model with the snmC-seq cells and 
transformed the Epi-Retro-Seq cells and scRNA-seq cells with the model. 
The PCs were normalized by the singular value of each dimension to 
avoid the embedding being driven by the first few PCs. 
We adopted a similar framework as Seurat v336 for data integration by 
first identifying the mutual nearest neighbors (MNN) as anchors between 
datasets, and then aligning the datasets through the anchors.  
To find anchors between snmC-seq and scRNA-seq, we first Z-score 
scaled the mCH matrix and expression matrix of CEGs across cells, and 
the resulting matrices are represented as 𝑋 (mC cell-by-CEG) and 𝑌 
(RNA cell-by-CEG), respectively. CCA was used to find the shared low 
dimensional embedding of the two datasets, solved by singular value 
decomposition (SVD) of their dot product 𝑈𝑆𝑉4 = 𝑋𝑌4. 𝑈 and 𝑉 were 
normalized by dividing the L2-norm of each row, and were used to find 
5 MNNs as anchors and score anchors using the same method as Seurat 
v3.  
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The original CCA framework of Seurat (v3) is hard to scale up to millions 
of cells due to the memory bottleneck, where the mC cell-by-RNA matrix 
was used as the input to CCA. To handle this limitation, we randomly 
selected 50,000 cells from each dataset (𝑋01# and 𝑌01#) as a reference to 
fit the CCA and transformed the other cells (𝑋203 and 𝑌203) onto the same 
CC space. Specifically, the canonical correlation vectors (CCV) of 𝑋01# 
and 𝑌01# (denoted as 𝑈01# and 𝑉01#) were computed by 𝑈01#𝑆𝑉01#4 =
𝑋01#𝑌01#4 , where 𝑈01#4 𝑈01# = 𝐼 and 𝑉01#4 𝑉01# = 𝐼. Then the CCV of 𝑋203 
and 𝑌203 (denoted as 𝑈203 and 𝑉203) were computed by 𝑈203 =
𝑋203(𝑌01#4 𝑉01#)/𝑆 and 𝑉203 = 𝑌203(𝑋01#4 𝑈01#)/𝑆. The embeddings from 
the reference and query cells were concatenated for anchor identification.  
To find anchors between snmC-seq and Epi-Retro-Seq, we used the 
snmC-seq data to fit a PCA model and use the model to transform Epi-
Retro-Seq cells to the same space and find 5 nearest snmC-seq cells for 
each Epi-Retro-Seq cell. Reciprocally, we fit another PCA model with 
the Epi-Retro-Seq cells and transform the snmC-seq cells and find 5 
nearest Epi-Retro-Seq cells for each snmC-seq cell. The mutual nearest 
neighbors between the two datasets were used as anchors and scored 
using the same method as Seurat v3.  
The PCs derived from the previous step were then integrated together 
using the same method as Seurat v3 through these anchors. This 
integration step projects the PCs of Epi-Retro-Seq and scRNA-seq 
(query) to the PCs of the snmC-seq (reference) while keeping the PCs of 
the reference dataset unchanged. The resulting PCs from the three 
datasets were used for t-SNE visualization and k-nearest neighbor (k=25) 
graph construction with Euclidean distance. The joint clustering was 
performed with the Leiden algorithm on the graph using a resolution of 
1.0. 
The quality of the integration analysis was evaluated from two aspects. 
1) We visualized the different modalities in the co-embedding space 
(Extended Data Fig. 4 left). The local neighborhoods of the co-
embedding usually contain cells from all modalities, suggesting a good 
mixture between the three datasets after integration. 2) We computed the 
proportion of cells in each mC cluster (Extended Data Fig. 4 middle) or 
RNA cluster (Extended Data Fig. 4 right) assigned to each cluster 
defined on the co-embedding space (co-cluster). Since we used the 
highest granularity of clustering from individual modalities (original 
cluster), the co-clusters were usually larger than the original clusters. We 
therefore used the proportion of original clusters rather than the 
proportion of co-clusters, to demonstrate that almost all original clusters 
are included in one co-cluster with low ambiguity. The strongest signals 
align on the diagonals suggesting that the co-embedding preserved the 
cluster structures that were originally present within each modality. 
Further evidence of integration quality was suggested by the downstream 
analyses, where highly consistent cell type specificity of marker gene 
expression and gene body mCH were observed (Figs. 3f,g, 4e,f, and 
Extended Data Fig. 9a).  
 
Cluster associated with projection. 
For neurons projecting to each target within one source, we computed the 
proportion of these neurons in each joint Leiden cluster. The clusters 
with >5% of the cells were considered as associated with the projection. 
The clusters associated with at least one projection were shown in the 
heatmaps of Figs. 3, 4, 5, and Extended Data Fig. 5. The values in the 
heatmaps represent the proportion of projection neurons in each cluster, 
Z-scored across the projection targets.  
In general, there are two intuitive ways to quantify the enrichment of 
projection neurons in a cluster. One is to directly find the clusters with a 

high absolute proportion of Epi-Retro-Seq neurons projecting to a target. 
The other is to find clusters captured at a significantly higher frequency 
in the projection-enriched data relative to the unbiased data. The two 
methods each have their advantages and shortcomings. For example, the 
contaminated cells from inaccurate labeling or gating are likely to have 
similar distribution across clusters to unbiased profiling. So a comparison 
using unbiased data as a control might help exclude the contaminated 
clusters better. However, if most of the neurons from a projection type 
are in the clusters that are originally abundant cell types in the source, by 
comparing with unbiased data, we would miss the predominant clusters 
making the projection. In this manuscript, we used the absolute 
proportions but not the relative ones to the unbiased data due to the 
different profiling strategies between the two datasets. Although the Epi-
Retro-Seq samples and unbiased snmC-seq samples were dissected in the 
same way, we pooled the different dissections into the 32 different 
sources to perform FANS and sequencing for Epi-Retro-Seq, so that the 
proportion of cells from different dissection regions of the same source is 
likely to follow their proportions in the mouse brain. However, the 
unbiased snmC-seq profiled all the dissection regions separately and 
sequenced the same number of cells in each dissection, which manually 
amplified the proportion of cells from the smaller/sparser dissection 
regions relative to the larger/denser ones, and limited the power to 
estimate the real proportion of neurons in each cluster from the sources. 
 
Classification of MERFISH cells into major brain regions and cell 
clusters. 
The MERFISH experiments were conducted as described by Liu et al. 
(companion paper #6), including the gene panel design, tissue 
preparation, imaging, data processing, and annotation. The dataset 
includes two sagittal slices (S1 and S2, where S1 is more lateral and S2 
is more medial) and 14 coronal slices (C2, C4, C6, C8, C10, C12, and 
C14, roughly corresponding to slice 2, 4, 6, 8, 10, 12, and 14 in Extended 
Data Fig. 1, with two replicates for each slice, represented as R1 and R2). 
The same naming of slices was used throughout this manuscript (Figs. 
3e, 4d, 5c and Extended Data Fig. 6).  
The MERFISH cells were classified into subclasses and brain region 
groups by integration with scRNA-seq data. The 489 autosomal genes 
overlapped between scRNA-seq and MERFISH datasets were used. We 
fit a PCA model with the scRNA-seq cells and transformed the 
MERFISH cells with the model. The PCs were normalized by the singular 
value of each dimension. The cell-by-gene matrices were Z-score 
normalized across cells within each dataset, and CCA was used to find 
anchors between the two datasets. We used 50,000 cells to fit the CCA 
and transformed the other cells as described above. The transformed PCs 
of MERFISH cells were then aligned to the PCs of scRNA-seq cells to 
derive a coembedding between the two datasets. This co-embedding was 
used for label transfer of cell subclasses from scRNA-seq data to 
MERFISH data, considering 25 neighboring scRNA-seq cells for each 
MERFISH cell. 
The cells classified as non-neuronal and immature neuronal subclasses 
were excluded due to lack of regional specificity, and the rest of cells 
from the two datasets were integrated again with the procedures described 
above to transfer the label of 14 brain region groups from the scRNA-seq 
neurons to the MERFISH neurons. The initial label assignment is noisy. 
Therefore a smoothing step was performed to refine the region group 
assignment. Specifically, for each MERFISH cell i, we found its 25 
neighbors on the same slice (denoted as 𝑁𝑠5) based on the spatial 
coordinates, and used 𝐷𝑠5 to represent the corresponding distances 
between i and its j-th neighbor 𝑁𝑠5,7. Similarly, we found the 25 scRNA-
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seq neighbors for each MERFISH cell 𝑖 based on the integration, and used 
𝐷𝑟5 to represent the distances. The distance matrices were transformed as 
described in the label transfer section, and the final spatial labels were 
transferred from the 25 RNA neighbors of each of the 25 spatial neighbors 
(625 scRNA-seq cells in total) to one MERFISH cell. The weight 
between the MERFISH cell i and the k-th scRNA-seq neighbor of its j-th 
spatial neighbor was computed as 𝐷′′5,897&: = 𝐷𝑠′′5,7𝐷𝑟′′;<',),:. 𝐷′′ is 
row normalized and used as weights for label transfer as described in 
previous sections. 
We note that this could also be achieved through registration of 
MERFISH DAPI images to the common coordinate framework. 
However, our companion works demonstrated that the procedure is 
relatively challenging and it is important to use cell types with known 
locations as landmarks to refine the registration. 
Finally, the neurons from each region group were selected and integrated 
with the scRNA-seq cells from the same region group, using the same 
procedure as described above. The methylation-RNA co-cluster labels 
were transferred from the scRNA-seq cell to the MERFISH cells. The 
MERFISH cells assigned to the MM and DCO subclasses in the last step 
were also excluded since those clusters were not included in the co-cluster 
analysis as described in the previous section. 
 
Comparison with Act-Seq. 
The 10x scRNA-seq data in Kim et al.6 were downloaded from Mendeley 
Data (https://data.mendeley.com/datasets/ypx3sw2f7c/3), and are 
referred to as Act-Seq in this section and Extended Data Fig. 7. The 
dataset contains 168,877 cells in total, among which 78,476 were labeled 
as neurons and were used to integrate to the unbiased scRNA-seq data of 
hypothalamic neurons, using the 5,314 CEGs of 1,891 L3 scRNA-seq 
clusters. PCA was fitted with scRNA-seq data and the Act-Seq data was 
transformed. The CCA framework was used to find anchors between the 
two datasets, and the transformed PCs of Act-Seq were aligned to the 
scRNA-seq PCs. We used the label transfer method described in the 
previous section to transfer the mC-RNA co-cluster labels from scRNA-
seq cells to the Act-Seq cells, considering 5 neighboring scRNA-seq cells 
for each Act-Seq cell. The Act-Seq cells with Fos expression level >0 
were considered to be Fos+ cells, and the proportion of Fos+ cells were 
compared between control and each behavior using Fisher exact tests. 
The Fos expression levels were compared with Wilcoxon rank-sum tests. 
Only the 23,345 Act-Seq cells from 16 VMH neuron clusters were 
considered as VMHvl cells and were used for the behavior association 
studies in Kim et al. However, almost none of them correspond to 
projection-associated clusters in our data (Extended Data Fig. 7a-c). We 
further compared our projection-associated clusters with all the neuron 
clusters profiled in Kim et al. and note that five clusters have 
corresponding clusters in the Act-Seq data (Extended Data Fig. 7d, in 
red). Among them, clusters 4 and 64 showed weak but significant 
increases in proportions of Fos+ cells labeled during certain behaviors 
(Extended Data Fig. 7f).  
The generally weak associations between projection-associated and 
behavior-associated clusters are likely due to the small overlap between 
the brain regions profiled in the two datasets, particularly the under 
representation of VMHvl neurons in Epi-Retro-Seq data. Additionally, 
because there were far fewer cells profiled in Epi-Retro-Seq vs. Act-Seq, 
the granularity of clusters used for projection-association and behavior 
association is different; this difference is particularly pronounced in 
VMHvl where >10 times more cells were used for the behavior 
association study (Extended Data Fig. 7c-e). Therefore, further 
increasing the size of datasets to achieve higher granularity of cell typing 

in specific regions of interest could facilitate further association between 
molecular types with projections and behaviors. Our study aimed at a 
comprehensive view of a large number of projections across the whole 
brain and focused on targets that do not appear to receive strong input 
from VMH. This apparently limited the data overlap between these and 
limited the ability to make direct comparisons between studies. 
 
Comparison with Retro-Seq. 
The scRNA-seq data in Phillips et al.7 were downloaded from the Gene 
Expression Omnibus with the identifier GSE133912. The Retro-Seq data 
were integrated to the unbiased scRNA-seq data of thalamic neurons, 
using the 5,404 CEGs of 1,128 L3 scRNA-seq clusters. PCA was fitted 
with scRNA-seq data and Retro-Seq data was transformed. The CCA 
framework was used to find anchors between the two datasets, and the 
transformed PCs of Retro-Seq were aligned to the scRNA-seq PCs. To 
compare the distribution of Retro-Seq cells and Epi-Retro-Seq cells 
across thalamic cell clusters, we used the label transfer method described 
in the previous section to transfer the mC-RNA co-cluster label and the 
joint t-SNE coordinates from scRNA-seq cells to the Retro-Seq cells, 
considering 5 neighboring scRNA-seq cells for each Retro-Seq cell. 
 
Differentially expressed genes. 
The gene expression level of each single cell was normalized by the total 
UMI count of the cell and log-transformed. We performed pairwise 
comparisons between clusters associated with projection neurons. For 
each cluster pair, the P values were derived with the Wilcoxon rank-sum 
test, and the fold-change is computed as the ratio between the average 
expression level across cells in the two clusters. The genes with absolute 
value of log2 fold-change greater than 1 and False Discovery Rate (FDR, 
Benjamini-Hochberg Procedure) values smaller than 0.01 were 
considered as differentially expressed. The DEGs from all cluster pairs 
were merged to generate the heatmaps in Fig. 3 and Fig. 4. Only the top 
100 DEGs ranked by FDRs were used if there were more than 100 DEGs 
identified between a pair of clusters. 
 
Differentially methylated regions (DMRs) and association with 
genes. 
The unbiased snmC-seq cells from each mC-RNA co-cluster were 
merged to generate pseudobulk methylation profiles. The Epi-Retro-Seq 
cells were not used due to the different genome backgrounds of the mice 
to avoid confounding results. DMRs were identified within each region 
group between clusters using ALLCools. We then calculated the Pearson 
Correlation Coefficient (PCC) between DMR mCG and gene mCH 
fraction. For a group of overlapping DMRs, we selected the one with the 
highest absolute PCC value to represent that group, making the edges’ 
DMRs non-overlap. Similar to the domain boundary and interaction 
correlation analysis, we shuffled the DMRs and genes within each sample 
to calculate null PCC and estimate FDR. We filtered DMR-Target edges 
with FDR < 0.001. 
 
Transcription factor motif enrichment. 
We used an ensemble motif database from SCENIC+39, which contained 
49,504 motif position weight matrices (PWM) collected from 29 sources. 
Redundant motifs (highly similar PWMs) were combined into 8,045 
motif clusters through clustering based on PWM distances calculated by 
TOMTOM40 by the SCENIC+ authors. Each motif cluster was annotated 
with one or more mouse TF genes. To calculate motif occurrence on 
DMRs, we used the Cluster-Buster41 implementation in SCENIC+, which 
scanned motifs in the same cluster together with Hidden Markov Models. 
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Within each region group, we assign hypo-DMRs to each cluster if the 
mCG level of a DMR in the cluster is below the 10th quantile of all DMRs 
from the region group and below the 10th quantile of the mCG level of 
this DMR in all clusters from the region group. To perform motif 
enrichment analysis, we used the recovery-curve-based cisTarget 
algorithm39. In brief, the cisTarget algorithm performed motif enrichment 
on the hypo-DMRs of each cluster by calculating the area under the 
recovery curve (AUC) for each motif, which is further normalized based 
on all other motifs in the collection to calculate a Normalized Enrichment 
Score (NES). We used the cutoff AUC>0.01 and NES > 3 to select 
enriched motifs. The TFs shown in Fig. 3i and Fig. 4h were additionally 
required to have expression level >0 and normalized mCH level <1 in at 
least one cluster that its motif enriched in, to select the TFs that are likely 
to express among a family of TFs showing the same motif enrichment 
scores. 
 
Data access and code availability 
The data can be accessed via the NeMO ftp archive: 
https://data.nemoarchive.org/biccn/grant/u19_cemba/ecker/epigenome/s
ncell/mCseq2_retro/mouse/. Raw and processed data are also available 
at GEO under accession code GSE230782. The code for all of the 
analyses can be found at 
https://github.com/zhoujt1994/EpiRetroSeq2023.git. 
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Extended Data Fig. 1 | The dissection map of source regions across 
the mouse brain. The posterior views of dissected slices are shown. The 
slices correspond to Allen Mouse Common Coordinate Framework 
(CCF), Reference Atlas, Version 3 (2020), level 21~27 (slice 1), 27~33 
(slice 2), 33~39 (slice 3), 39~45 (slice 4), 45~51 (slice 5), 51~57 (slice 
6), 57~63 (slice 7), 63~69 (slice 8), 69~75 (slice 9), 75~81 (slice 10), 

81~87 (slice 11), 87~93 (slice 12), 93~99 (slice 13), 99~105 (slice 14), 
105~111 (slice 15), 111~117 (slice 16), 117~123 (slice 17), and 123~129 
(slice 18), respectively. Regions dissected from each slice are indicated 
by dotted lines and are annotated.  
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Extended Data Fig. 2 | Quality control workflow and region group 
assignment. a, b, Joint t-SNE of Epi-Retro-Seq cells (n=56,843) and 
unbiased snmC-seq cells (n=310,605) after basic QC (Methods, QC Step 
1) colored by the predicted outliers (a) or the total number of reads 

normalized per sequencing plate (b). c, d, Joint t-SNE of Epi-Retro-Seq 
cells (n=48,032) and unbiased snmC-seq cells (n=301,626) after 
removing outlier clusters (Methods, QC Step 2) colored by neuronal vs. 
non-neuronal cells (c) or their assigned L1 type (d). e, the on-target vs. 
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off-target fold enrichment (x-axis) and -log10 FDR (y-axis) of IT (n=186, 
top) or ET (n=100, bottom) FANS experiments. The size of the circle is 
proportional to the number of neurons captured in the experiment. f, The 
overlap scores between 115 snmC-seq dissections and 87 scRNA-seq 
dissections. Each region group is colored differently on the x and y axes 

and squared in the heatmap. g, Joint t-SNE of Epi-Retro-Seq (n=35,743), 
snmC-seq (n=266,740), and scRNA-seq (n=2,434,472) neurons colored 
by region groups. (f) and (g) share the same color palette. 
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Extended Data Fig. 3 | Quantification of target discriminability for 
all 926 target pairs from all source regions. a, Comparisons of 
AUROCs from models trained with gene features (x-axis) or 100kb bin 
features (y-axis) using posterior mCH level (top) or mCH principal 
components (bottom) when splitting the training and testing data 
according to biological replicates (left) or computational replicates 
(right). b, Comparisons of AUROCs from models trained with mCH 

principal components (x-axis) or posterior mCH level (y-axis) using gene 
(top) or 100kb bin (bottom) features when split the training and testing 
data according to biological replicates (left) or computational replicates 
(right). c, Comparisons of AUROCs from models when splitting the 
training and testing data according to biological replicates (x-axis) or 
computational replicates (y-axis) using gene (top) or 100kb bin (bottom) 
features and posterior mCH level (left) or mCH principal components 
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(right). For a-c, each dot represents a pairwise comparison between the 
neurons projecting from the same source to two different targets. The 
plots involving biological replicates have 516 data points each while the 
others have 926 data points each. Pearson Correlation Coefficient (PCC, 
r) and P value (permutation test) are labeled in each panel. d, The 

AUROC between neurons projecting from each of the 30 sources to all 
possible pairs of targets that have been profiled for the source. STR and 
CBX are not included since we only profiled one target for these sources. 
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Extended Data Fig. 4 | Co-clustering of Epi-Retro-Seq, unbiased 
snmC-seq and scRNA-seq data for 12 brain regions. For each brain 
region group, the joint t-SNE colored by data modality (left) and the 
proportion of cells from each snmC-seq L4 cluster (middle, column) or 
scRNA-seq L3 cluster (right, column) within each co-cluster (middle and 

right, row). Numbers of co-clusters in the rows are sometimes different 
for middle and right columns because only the co-clusters (rows) with 
more than one value >10% across the columns are shown. See Methods 
for further details. 
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Extended Data Fig. 5 | Projection-enriched cell clusters and their 
neurotransmitter usage for all brain regions. Joint clustering analysis 
of Epi-Retro-Seq, unbiased snmC-seq and scRNA-seq was performed on 
each of the major brain region groups, including CTX, RHP, PIR, HB, 

MOB+AON, AMY, TH, HIP, MB, HY, and PAL (STR not included 
because there is only one target), to characterize neuronal cell clusters 
that were enriched for Epi-Retro-Seq projections. The normalized 
proportion of each projection in each cluster was visualized in the 
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heatmaps (left) for each of the brain region groups. In addition, the 
expression levels of 10 marker genes for neurotransmitter usage in each 
cluster are visualized in the heatmap (right) for each brain region group. 
These genes included Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 
(Vglut3) for glutamatergic neurons, Slc32a1 (Vgat) for GABAergic 

neurons, Slc6a2 (Net) for noradrenergic neurons, Slc6a3 (Dat) for 
dopaminergic neurons, Slc6a4 (Sert) for serotonergic neurons, Slc6a5 
(Glyt2) for glycinergic neurons, Slc18a3 (Vacht) for cholinergic neurons, 
and histidine decarboxylase (Hdc) for histaminergic neurons. 
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Extended Data Fig. 6 | Joint clustering and annotation of MERFISH 
and scRNA-seq data. a, b, Joint t-SNE of scRNA-seq neurons 
(n=2,619,158, left) and MERFISH neurons (n=329,282, right) colored by 
cell subclass (a) or region group (b). The labels for scRNA-seq cells are 

based on Yao et al.16 and the labels for MERFISH cells are predicted 
through integration. c, d, The MERFISH slices colored by cell subclass 
(c) or region group (d). Scale bars represent 15 mm. 
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Extended Data Fig. 7 | Integration and comparisons of hypothalamic 
Epi-Retro-Seq, Act-seq, and scRNAseq data. a, b, Joint t-SNE of Act-
Seq neurons6 (n=78,476, a) and scRNA-seq neurons (n=148,840, b). In 
(a), all Act-Seq neurons (left) or only VMHvl neurons (right) are colored 
by Act-Seq neuron cluster (left) or VMH cluster (right). In (b), all 
scRNA-seq neurons (left) or only neurons in projection associated 
clusters (right) are colored by the co-cluster label. c, d, The proportion of 
neurons from each of the Act-Seq VMHvl clusters (c) or all neuron 

clusters (d) classified as neurons of each co-cluster. Only the co-clusters 
with value >0.1 in at least one Act-Seq cluster are shown. The projection-
associated co-clusters are labeled in red. e, f, Proportion of Fos+ 
“behavior activated” cells (left) or average Fos expression (right) of each 
VMHvl cluster (e) or each co-cluster (f) in control and different behavior 
experiments. Only the co-clusters labeled red in d are shown in (f). *, **, 
and *** represent FDR<0.1, 0.01, and 0.001, respectively. 
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Extended Data Fig. 8 | Comparison of thalamic Retro-Seq and Epi-
Retro-Seq data. a, t-SNEs for visualization of the Retro-Seq data from 
thalamic neurons projecting to prefrontal, motor, somatosensory, 
auditory, and visual cortices7 that were mapped onto the joint-clustering 
analysis of Epi-Retro-Seq, unbiased snmC-seq and scRNA-seq in TH. b, 
The t-SNEs for visualization of the Epi-Retro-Seq data for thalamic 

neurons projecting to 12 different targets that were mapped onto the same 
t-SNE space. c, The overlap score and cosine distance were calculated for 
each pairwise comparison of Retro-Seq and Epi-Retro-Seq projections 
and were visualized in the heatmaps, respectively. 
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Extended Data Fig. 9 | The neurotransmitter usage of VTA 
projection neurons. a, Joint t-SNE of Epi-Retro-Seq, unbiased snmC-
seq and scRNA-seq of VTA neurons colored by the gene expression 
levels (red) and gene-body mCH levels (purple) for Vglut2 (left), Gad2 

(middle), and Th (right), marker genes for glutamatergic, GABAergic, 
and dopaminergic neurons, respectively. b, The distribution of VTA 
neurons projecting to each of the 16 targets on the same t-SNE. c-e, The 
gene-body mCH levels of Th versus Vglut2 (c), Gad2 versus Vglut2 (d), 
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and Gad2 versus Th (e) for VTA neurons projecting to each of the 16 
targets, are visualized in scatter plots. Note that, because low mCH levels 
indicate high gene expression, the axes in c-e are plotted as the reciprocal 

mCH values (1/gene body mCH), so low mCH is plotted to the right/up 
and high to the left/down. 
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