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1 Abstract

12 Mesoscopic photoacoustic imaging (PAI) enables label-free visualisation of vascular networks in
13 tissue at high contrast and resolution. The segmentation of vascular networks from 3D PAI data
14 and interpretation of their meaning in the context of physiological and pathological processes is
15 a crucial but time consuming and error-prone task. Deep learning holds potential to solve these
16 problems, but current supervised analysis frameworks require human-annotated ground-truth labels.
17 Here, we overcome the need for ground-truth labels by introducing an unsupervised image-to-image
18 translation deep learning model called the vessel segmentation generative adversarial network (VAN-
19 GAN). VAN-GAN integrates synthetic blood vessel networks that closely resemble real-life anatomy
20 into its training process and learns to replicate the underlying physics of the PAI system in order to
21 learn how to segment vasculature from 3D biomedical images. With a variety of in silico, in vitro
2 and in vivo data, including patient-derived breast cancer xenograft models, we show that VAN-GAN
23 facilitates accurate and unbiased segmentation of 3D vascular networks from PAI data volumes. By
24 leveraging synthetic data to reduce the reliance on manual labelling, VAN-GAN lowers the barrier
25 to entry for high-quality blood vessel segmentation to benefit users in the life sciences applying PAI

26 to studies of vascular structure and function.
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» Introduction

28 Mesoscopic photoacoustic imaging (PAI) provides high-resolution, contrast-rich images of vascular
20 structures in vivo based on the absorption of light by haemoglobin. These images reveal subtle
30 changes in vascular architecture in tissues, which have demonstrated importance in diagnosis and
31 staging of a range of diseases, from diabetes to oncology 2. To quantify disease status, segmenting
32 microvascular networks from 3D image volumes is vital, however, the development of segmentation
33 frameworks has not kept pace with the rapid advancements in imaging technology. While deep
3 learning offers a promising solution?, its effective application in this field is fraught with complexities.
35 Current supervised segmentation frameworks* ® typically require matched pairs of image vol-
36 umes and human-annotated ground-truth feature masks. Manually generating vascular labels is
37 time-consuming so is typically limited to a small number of image pairs. Furthermore, human anno-

78 or in the presence of

38 tation is error-prone, particularly in complex pathological tissues like tumours
30 imaging artefacts, where interpretation of what constitutes a blood vessel can vary between experts.
40 Supervised blood vessel segmentation models have been demonstrated based on annotated

9,10 11-13

41 datasets in 2D retinal fluorescein angiograms or 3D multiphoton images of brain vasculature

42 Efforts have also been made to develop semi-supervised methods, which reduce the paired dataset

d 418 or minimise ground-truth ambiguity '®. Given the challenges associated with man-

43 size require
42 ual labelling, unsupervised learning has naturally gained special attention for image segmentation
a5 tasks!®. In particular, cycle-consistent generative adversarial networks (CycleGAN) can be used to
46 transform images from a imaging (source) domain to a segmentation (target) domain. By assuming
47 an underlying relationship between each domain, CycleGAN performs style transfer between datasets
48 of unpaired images by allowing two neural network translators to be trained in a constrained unsu-

49 pervised and competitive manner. Modified formulations of CycleGAN have accurately segmented

50 biomedical images?° 24, including cell nuclei from 3D fluorescence microscopy?® and blood vessels
51 in 2D X-ray angiograms26.

52 To date, the application of deep learning methods in PAT has primarily focused on image recon-
53 struction®” 2% or bridging the domain gap between simulations and experiments3%3!. Supervised

54 methods have not only explored the task of blood vessel segmentation from 2D photoacoustic im-
55 ages>2 36 but have also shown promise in addressing the complexities involved in segmenting 3D
56 images, as recent work has demonstrated the potential of combining synthetic data and manual
57 annotations for effective supervised segmentation of 3D photoacoustic images”. However, the tran-
58 sition to unsupervised methods in 3D PAI has been challenging due to artefacts arising from low
5o signal-to-noise ratio (SNR)®® or excitation and detection geometries3?, which severely limit their
60 effectiveness. Whilst innovative unsupervised approaches have been applied in other 3D imaging
61 modalities??4! there remains a need for tailored unsupervised models which overcome specific chal-
62 lenges in 3D PAIL

63 In this study, we introduce VAN-GAN (Vessel Segmentation Generative Adversarial Network),
64+ an innovative unsupervised deep learning model tailored to 3D vascular network segmentation in

65 mesoscopic PAIL Distinctly surpassing traditional supervised approaches, VAN-GAN eliminates the
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66 need for human-annotated labels, employing image-to-image translation to adeptly transform PAI
67 volumes into precise 3D vascular segmentation maps. Our model leverages a synthetic dataset
6s enriched with a variety of vascular morphologies, further enhanced by advanced 3D deep residual U-
60 Net generators and cycle-consistency loss functions. A significant breakthrough of VAN-GAN is its
70 ability to segment vascular networks from tissue types beyond those included in its training dataset,
71 showcasing adaptability and precision even in low signal-to-noise ratio environments typical of PAI.
72 Demonstrating unparalleled performance on diverse in silico and in vivo PAI datasets, VAN-GAN
73 not only outperforms conventional methods but also exhibits remarkable robustness against user

74 bias and common PAI artefacts.

s Results

7 Advancing 3D vessel segmentation in photoacoustic imaging using VAN-
7 GAN

78 VAN-GAN is engineered to learn mappings between the imaging domain and segmentation domain,
79 thereby training a segmenter that is adept for real-world PAI applications (Fig. 1A). The imaging
so domain comprises PAI volumes, either generated through physics-driven simulations or acquired
g1 experimentally. The segmentation domain consists of computer-generated branching blood vessel
&2 structures in 3D, stochastically created based on mathematical formalisms (see Methods). Through-
83 out our study, the dataset for the segmentation domain remains consistent, and during the training
sa  of VAN-GAN, the datasets for imaging and segmentation domains are treated as unpaired.

85 VAN-GAN builds upon the CycleGAN model*? with several key enhancements (see Methods
8 and Supplementary Methods for full details). The generator architecture integrates U-Net? with
g7 deep residual learning®? (Supplementary Table 1), and random Gaussian noise is introduced to the
88 discriminator inputs and layers for improved training stability and regularisation (Supplementary
g0 Table 2). VAN-GAN is adapted to process 3D image volumes using 3D convolutions. It incorporates
90 cycle-consistency loss functions to improve performance: a structural similarity reconstruction loss,
o1 which is applied to both real and reconstructed images in the imaging domain; and a spatial and
92 topological constraint, applied to the real and reconstructed images in the segmentation domain to
03 preserve tubular structures* (Fig. 1B).

94 The generators consists of three parts: encoder, bridge, and decoder?® (Fig. 1C). The encoder
o5 and decoder feature four layers with residual units (Fig. 1D) connected by skip connections. The
96 convolutional block sequence includes instance normalisation®, ReLU activation?”, and 3D con-
o7 volution, with reflection padding to minimise boundary artefacts*?4%. VAN-GAN is trained on
9s subvolumes of images, with predictions combined using a sliding window for full volume segmenta-
99 tion (Fig. 1E, see Methods).
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Figure 1: Vessel segmentation generative adversarial network (VAN-GAN) archi-
tecture for unsupervised segmentation of blood vessels in photoacoustic imaging
(PAI) volumes. (A) The training and application process of VAN-GAN utilises two un-
paired datasets (real PAI volumes, x and synthetic blood vessels, y) to train the segmentor,
G, for real-world use. (B) VAN-GAN adapts the cycleGAN model and learns mappings be-
tween imaging (z) and segmentation (y) domains (G : x — g, F' : y — &) using additional
reconstruction, L., and topological, Liope, cycle-consistency constraints. (C) A 3D deep
residual U-Net generator architectures are employed. An example, PAI subvolume input
(left) and segmentation output (right) is shown. (D) Standard residual units are employed
for each generator. (E) A sliding window approach is used to form a probability map that is
binarised to create the final segmentation mask. CB = convolutional block; MIP = maximal
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intensity projection; IN = instance normalisation.

VAN-GAN rivals supervised learning in segmenting photoacoustic images

We first tested VAN-GAN using physics-driven simulations to virtually emulate PAI, giving the
stochastic 3D branching vessel structures from VAN-GAN’s segmentation domain as simulation
inputs (see Methods, Supplementary Methods, Supplementary Fig. 1 and 2). In essence, this
created a paired in silico dataset of PAI volumes and their segmentations, which enables direct
validation of VAN-GAN’s segmentation performance (Fig. 2A).

During training, VAN-GAN perceived images from both the imaging and segmentation domains
as unpaired and thus processed them in an unsupervised manner. Then during testing, the paired
dataset enabled us to perform an ablation study to quantitatively evaluate the impact of key VAN-
GAN components on the segmentation accuracy via their systematic removal from the model. The
ablation study indicated that VAN-GAN was able to generate fake PAI volumes that included typical
photoacoustic artefacts, such as those arising from limited illumination and detection views, as well
as shadowing from overlying absorbers3? (Fig. 2B). We found that omission of discriminator noise
and reconstruction loss in the reduced models impeded learning of these image features, whereas the
addition of the topological loss provides a greater constraint to improve segmentation of vascular
structures (Table 1). The full VAN-GAN model achieved the highest F1 Score (0.842) and IoU
(0.730) for the paired dataset.

VAN-GAN was then benchmarked using the paired synthetic data against other deep-learning
models selected for their relevance and proven effectiveness in image segmentation within the scope of
PAI. Supervised methods included a random forest pixel classifier (RF, embeded within open-source
package ilastik*?) and a 3D U-Net® (Supplementary Table 3). A comparison with CycleGAN*? was
also made (Supplementary Table 4), given its architectural similarities with VAN-GAN. CycleGAN
and VAN-GAN treated the dataset as unpaired during training, whereas full feature labels were
supplied to the RF and U-Net (see Supplementary Methods). The dataset consisted of 449 paired
images with 10% assigned for testing and the remaining 90% split between training (80%) and
validation (20%).

The results show good performance by VAN-GAN with, for example, mean F1 Score / IoU of
0.842 / 0.778, compared to the RF (0.792 / 0.665), U-Net (0.873 / 0.778) and CycleGAN (0.502 /
0.346) (Table 2). Significant differences between metrics were found when comparing VAN-GAN to
RF and CycleGAN (Fig. 2C,D) and due to its poor performance, CycleGAN was excluded from all
further analyses. Comparison to U-Net found there was no significant difference in performance in
these fully labeled synthetic datasets, however, in an in vivo context, ground-truth annotations are
partial at best and we found the U-Net trained on synthetic data lacked generalisability to in vivo
data (Supplementary Fig. 3), hence the U-Net model was also excluded from all further analyses.
RF methods are typically able to maintain performance with only partially labelled data, so RF was

used as a comparator in subsequent analyses in the in vivo setting.
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Figure 2: VAN-GAN performance on synthetic photoacoustic data. (A) Illustra-
tion of the paired dataset, consisting of synthetic vessel structures that form ground-truth
labels and corresponding physics-driven PAI simulations. (B) Fake simulation images gen-
erated by generator F' reproduce artefacts (present in our simulations) that are inherent
to mesoscopic PAI and influence vessel shape and continuity. The example illustrates an
artefact arising from limited angular coverage of the illumination fibres, which means the
circular vessel cross-section appears as an arc in PAI. Segmentation metric distributions
compare performance of a random forest pixel classifier, U-Net, CycleGAN and VAN-GAN:
(C) F1 Score; and (D) Intersection over Union (IoU). (E) An example of (left) a photoacous-
tic simulation, (middle) the corresponding VAN-GAN segmentation labels and error with
respect to the ground-truth, and (right) a colour-coded depth projection of the network.
Data in (C-D) are represented by truncated violin plots with interquartile range (dotted)
and median (solid) shown. Statistical significance indicated by * (P < 0.05), ** (P < 0.01),
K (P < 0.001) and **** (P < 0.0001). ns = no significance.

Qualitative examination of VAN-GAN segmentation predictions showed errors were largely con-
fined to the smallest vessels, which exhibited relatively low SNR as they were furthest from the
simulated light-source in the tissue (Fig. 2E).
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Table 1: VAN-GAN ablation study. The following components were systematically re-
moved to evaluate the performance of our model in their absence: 1) random Gaussian noise
added to discriminator inputs and convolution layers (Noise); 2) a perceptual constraint
on cycle reconstructed photoacoustic images (Rec.); and 3) a spatial and topological con-
strained on cycle reconstructed segmentation images (Topo.). In the Base setup, all these
components are ablated. The inclusion of all three components, Base + Noise + Rec. Loss
+ Top. Loss, gives the full VAN-GAN model. Note, specificity excluded due to ~ 0.999
values for all methods.

Method F1 Score IoU  Sensitivity
Base 0.793 0.661 0.768
Base + Noise 0.434 0.282 0.303
Base + Rec. Loss 0.675 0.514 0.694
Base + Top. Loss 0.772 0.633 0.864
Base + Noise + Rec. Loss 0.581 0.411 0.634
Base + Noise + Top. Loss 0.760 0.618 0.793
Base + Rec. Loss + Top. Loss 0.675 0.518 0.770

Base + Noise + Rec. Loss + Top. Loss 0.842 0.730 0.834

Table 2: Comparison of segmentation performance using PAI simulations. F1
Score, intersection over union (IoU), sensitivity and specificity were calculated on the testing
dataset. RF = random forest pixel classifier and the highest metric score per ground-truth
is shown in bold. Statistical significance between VAN-GAN is indicated by * (P < 0.05),
(P < 0.01), *** (P < 0.001) and **** (P < 0.0001). If blank, no significance was found
compared to VAN-GAN.

Dataset Method F1 Score IoU Sensitivity —Specificity
Simulated RF 0.792** 0.665** 0.748** 0.999
U-Net 0.873 0.778 0.877 0.999
CycleGAN  0.502%**  (0.346™***  (0.558**** 0.997****
VAN-GAN 0.842 0.730 0.834 0.999
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VAN-GAN avoids user bias arising from human annotations

Given the need for human annotations in supervised training, we sought to compare the impact of
expert variability on this process. Firstly, two experts independently labelled blood vessels on 2D
maximum intensity projections (MIPs) generated from 3D in vivo PAI data from mouse ears (n=1)
and skin (n=4) (Fig. 3A). MIPs were specifically employed to mitigate prevalent surface illumination
artefacts that typically lead to only the upper part of absorbing structures being excited and detected,
which has been shown to result in inaccurate 3D segmentations by human annotators>S.

Comparing the two expert annotations, substantial differences were observed between their seg-
mentations both qualitatively (Fig. 3B) and quantitatively (F1 Score: 0.667/0.569, IoU: 0.501/0.397,
Specificity: 0.916/0.892 and Sensitivity: 0.754/0.659 for ear / skin), highlighting the challenges in
ground-truth label creation in real imaging data. These expert annotators then independently
trained separate 3D RF models for vessel segmentation in mouse ear and skin datasets. Compar-
ing these models showed no bias toward respective expert labels; each RF model performed poorly
against the 2D annotations (for example, F1 Score: 0.668 / 0.613 for ear / skin for the RF model and
ground-truths created by expert 1 - Supplementary Table 5). VAN-GAN'’s accuracy was also low
overall (F1 Score: 0.649 / 0.529 for ear / skin compared against ground-truths labelled by expert
1), however, it was more robust to segmentation of background noise as closer scrutiny revealed
limitations in RF, such as artefact segmentation and discontinuities in segmented vessels (Fig. 3C,
D).

To analyse more comprehensively the 3D morphology of vascular networks segmented by the
RF and VAN-GAN models, we skeletonised the 3D vessel masks (Fig. 3E) and calculated a set of
vascular descriptors based on topological data analysis (see Methods). Focusing on the mouse skin,
we found that the number of vascular subnetworks (or connected components) and network loops
between RF; and RFy were significantly different (Fig. 3F,G). These analyses highlight a critical
flaw in using supervised segmentation models - their performance is inherently limited by the quality
of training data. Independent training by different expert users can lead to systematically varied
segmentation outcomes (Fig. 3H), which could bias study interpretation. By comparison, VAN-
GAN predicts more larger interconnected vascular networks, with the largest subnetwork on average
forming 84.0% of the total subnetwork volume (Fig. 3H,I). These results indicate that VAN-GAN
segments more well-connected networks compared to RF, which aligns better with the expectations

of the biological network in healthy skin.
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Figure 3: Unsupervised vascular segmentation overcomes user variation in human
annotations. (A) Mouse ear and skin imaged in vivo using PAI. (B) ground-truths for
XY maximal intensity projections (MIPs) were generated by two experts (indicated by
subscripts 1 and 2). Visualisations indicate variability between each expert for the ear
(top) and skin (bottom). (C) 3D segmentation masks predicted using RF (left) and VAN-
GAN (right) for datasets shown in (A,B). (D) Comparison of MIPs generated from the
3D segmentation labels shown in (C) with arrows indicating segmented noise and vessel
discontinuities using RF. (E) 2D projections of 3D vascular skeletons created from the
two segmentation methods applied to mouse skin. Variability between individual users
RF classifiers and VAN-GAN on the skeletonised mouse skin is indicated for a range of
statistical and vascular descriptors: (F) connected component (CC) density (the number
of subnetworks normalised against tissue volume, mm 3); (G) loop density (the number of
vessel network loops normalised against tissue volume, mm 3); (H) network volume (mm?);
and (I) connectivity (the volume of the largest subnetwork normalised against total network
volume, %);. Mean and standard deviation of data are shown in (F-I). Statistical significance
indicated by * (P < 0.05), ** (P < 0.01), *** (P < 0.001) and **** (P < 0.0001). MIP =
maximal intensity projection.
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i1 VAN-GAN is more robust to artefacts compared to human annotations

12 Several imaging artefacts impede segmentation performance in PAIL Illumination artefacts, resulting
173 from limited light coverage, cause objects to appear flattened in images (Fig. 4A), leading human
174 users to annotate only the brighter top surfaces of blood vessels. In our paired synthetic dataset, we
175 addressed this by training the supervised RF with full ground-truth labels, enabling it to learn the
176 complete range of signal intensities expected from the reference structures. Training an RF segmenter
177 with these paired synthetic data resulted in more accurate, axisymmetric vessel segmentation than

17s  that achieved by an RF model specialised for experimental in vivo datasets and trained by a human
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Figure 4: VAN-GAN overcomes image artefacts in photoacoustic mesoscopy. (A)
The illumination artefact in photoacoustic mesoscopy results in the incorrect segmentation
of the top surface of blood vessels due to lower signals from underlying regions. (B) Example
image subsections highlighting the illumination artefact in each imaging domain dataset
and corresponding random forest pixel classifier (RF) and VAN-GAN segmentations. RF
models for phantom, ear and skin segmentation were trained by an expert whereas the
RF model for the synthetic data was trained using known computer-generated ground-
truths. (C) Diameters in the XY and XZ directions calculated for each dataset. For the
string phantom, the known string volume is indicated by the dotted line. Computed string
phantom volumes from (D) 3D segmented images and (E) skeletonised strings normalised
against the ground-truth value. (F) Normalised segmented volume for our synthetic dataset
with respect to tissue depth. (G) Histograms of signal intensities for each voxel segmented
by each method and for each dataset: synthetic vasculatures, in situ string phantoms and
in vivo mouse ear and skin datasets. Data in (C) is given by box and whisker plots which
display the 25, 50" and 75 ™ quartiles, and the interquartile range. Mean and standard
deviation of data are shown in (D) and (E).
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annotator (Fig. 4B,C).

In contrast, VAN-GAN effectively accounts for the entire signal intensity range across vessel walls
and lumens in both in silico and in vivo datasets. When comparing diameters in the XZ-plane, VAN-
GAN’s predictions were closer to ground-truth, outperforming the RF model (Fig. 4B,C). Accuracy
was further validated using photoacoustic string phantoms, which consist of three non-overlapping
strings of known size located at three separate depths parallel to the imaged surface3”. Although
VAN-GAN was not specifically trained on string phantom images, it more accurately predicted
string diameters in the XZ-plane than the RF model, demonstrating its robustness and versatility
to illumination artefacts.

Further artefacts arise in PAI due to depth-dependent SNR. VAN-GAN demonstrated a con-
sistent ability to accurately predict string volumes at various depths (Fig. 4D). Both VAN-GAN
and RF models showed improved network volume predictions after applying skeletonisation, which
presumes axisymmetric vessels (Fig. 4E). On the synthetic dataset, VAN-GAN consistently outper-
formed RF, especially when depth exceeded 2 mm (Fig. 4F). A detailed analysis of segmented voxel
signal intensities revealed a tendency for VAN-GAN to segment more low-intensity voxels across all
datasets, a trend that became more pronounced for in vivo data (Fig. 4G). Compared to RF models
with their limited receptive fields, VAN-GAN appears superior in handling complex spatially-varying

background noise and can better learn intricate feature representations.

VAN-GAN segments vascular topologies beyond the training dataset

PAI is vital for monitoring blood vessel evolution in tumours, which present unique segmentation

50,51 Unlike physiological tissues, tumour vascular

challenges due to their heterogeneous nature
architecture is chaotic with varying diameters, lengths and inter-connectivity across various spatial
scales. These features are absent in VAN-GAN’s synthetic segmentation domain dataset since the
method used to generate branching structures inherently leads to regular and predictable patterns.

To evaluate the ability of VAN-GAN to segment complex pathological vascular networks, datasets
of 3D images of oestrogen receptor positive (ER+) and negative (ER-) breast cancer tumours derived
from both patient-derived xenograft models3®52 and cell lines (MCF7 and MDA-MB-231, respec-
tively) were used. Segmentations made by VAN-GAN allowed hypothesised structural differences in
vasculature between the ER+ and ER- subtypes to be identified in both tumour types (Fig. 5A and
Supplementary Notes). In the PDX tumours, the ER- tumours exhibited significantly higher vessel
surface area density with respect to tumour volume (P < 0.05, Fig. 5B). The ez vivo immunohisto-
chemistry (IHC) analysis of CD31 staining, an endothelial cell marker, cross-validated this finding,
as the ER~ tumours showed significantly greater CD31 positivity (P < 0.05, Fig. 5C). Addition-
ally, VAN-GAN indicated ER~ tumours displayed a higher density of vascular looping structures
(P < 0.01, Fig. 5D) and reduced vessel lengths (P < 0.01), which could indicate a more immature
vascular network compared to ER+. IHC staining of a-smooth muscle actin (aSMA), a pericyte
and smooth muscle marker, colocalised with CD31, supported this finding as ER- tumours showed
significantly lower positivity (P < 0.01, Fig. 5E).
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Figure 5: VAN-GAN enables quantification of pathological vascular architecture.
(A) Vascular skeletons for oestrogen receptor negative (ER-, left) and positive (ER+, right)
breast cancer patient-derived xenograft tumours. A comparison of metrics for ER~ (top) and
ER+ (bottom): (B) vessel surface density (1/mm), (C) CD31 positivity (staining area with
respect to tumour area, %), (D) vessel loop density (1/mm?®) and (E) a-smooth muscle
actin (wSMA) colocalisation with CD31 staining (%). (F) Vascular skeletons of MCF7
(left) and MDA-MB-231 (right) breast cancer tumours. VAN-GAN metrics for MCF7 and
MDA-MB-231 tumours: (G) vessel surface density (1/mm), (H) CD31 positivity and (I)
standard deviation (STD) of vessel diameters (um). (J) A comparison of vessel loop density
(1/mm?) in ER+ models. Mean and standard deviation of data are shown in (C-F) and
(H-K). Statistical significance indicated by * (P < 0.05), ** (P < 0.01), *** (P < 0.001)
and **** (P < 0.0001).

VAN-GAN also showed distinct features between the cell-line derived MCF7 (ER+) and MDA-
MB-231 (ER-) tumours (Fig. 5F) that were cross-validated by THC, where the percentage of vessel
wall surface was quantified on CD31 stained sections with respect to intra- and extra-vascular area.
Here, when quantifying blood vessel network surface area with respect to the tumour volume from
our 3D VAN-GAN segmentations, similar trends were observed (P < 0.05, Fig. 5G), with ER-
MDA-MB-231 tumours displaying significantly elevated levels of CD31 (P = 0.0001, Fig. 5H).
aSMA staining also indicated lower positivity for ER- MDA-MB-231 tumours (P < 0.01) but no
significance in vessel loops or lengths between groups was found between each oestrogen receptor
group. Vessels in the ER- MDA-MB-231 tumours exhibited greater heterogeneity (vessel diameters
standard deviation, P < 0.0001, Fig. 5I), in contrast to the pattern observed in PDX tumours
where greater heterogeneity was noted in ER+ tumours (P < 0.05). Observed differences between
PDX and cell-line derived tumours were underscored by a significant difference in looping structure
between ER+ models (P < 0.05, Fig. 5J), highlighting divergence in vascular maturity. The ER+
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PDX tumours were likely at a more advanced stage of vascular development compared to ER+
MCF7 tumours.

The close relationship of the topological descriptors extracted from VAN-GAN segmentations to
THC analyses of the same tumours, together with common trends across different tumour models,
indicate that VAN-GAN is able to accurate segment complex vasculatures that exceed the constraints

imposed by the synthetic segmentation data used in its training.

Discussion

Here, we introduced VAN-GAN, an innovative deep learning model that segments 3D vascular
networks imaged using PAT mesoscopy. For mesoscopic PAI, human annotations are time consuming
and laborious due to depth-dependent SNR and subtle imaging artefacts, which make it particularly
challenging to label pathological tissues such as tumours. Independent ground-truth labelling by
two expert users in our study showed substantial discrepancies in both their segmentations and the
vascular topology parameters measured from subsequent skeletonisations, highlighting the potential
for detrimental impact of user bias on quantification of blood vessel networks.

VAN-GAN adeptly navigates these difficulties in multiple ways. Firstly, VAN-GAN is a novel
approach that builds on the foundation of CycleGAN by integrating 3D deep residual U-Net genera-
tors and bespoke cycle-consistency loss functions and discriminator noise, fully leveraging the power
of unsupervised learning for PAI image segmentation. These additional elements were found through
an ablation study to enhance the capability of VAN-GAN in segmenting intricate vascular structures
from synthetic PAI volumes, leading to VAN-GAN surpassing traditional supervised methods and
rivalling the gold standard U-Net.

Secondly, VAN-GAN is able to handle complex imaging artefacts arising from the geometry of
the PAI system, demonstrating robustness in both synthetic and real-world datasets. VAN-GAN
errors were generally confined to only the smallest vessels. Importantly, VAN-GAN provided realistic
quantification of vessel lumens, which otherwise appear flattened in supervised segmentations due
to illumination artefacts; VAN-GAN restored the segmenation that would be expected based on
reference structures (in phantoms) and maintained lumen patency through to healthy ear and skin
tissues. VAN-GAN also demonstrated greater robustness to depth-dependent SNR, segmenting at a
greater depth than supervised methods and providing the most accurate quantifications with depth
of the tested methods.

Finally, VAN-GAN provides biologically relevant segmentations for in vivo PAI data, showing
more interconnected and larger vascular networks in the healthy ear and skin than other methods.
VAN-GAN also extended directly to application in pathological tissues, such as patient-derived
breast cancer, even though the complex chaotic architectures associated with these tissue types
were absent from the synthetic dataset used for training. Topological data analysis of skeletonised
vascular networks derived from VAN-GAN segmentations showed biological findings consistent with

THC analysis conducted on ez vivo sections. Taken together, these three main findings demonstrate
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strengths of VAN-GAN to significantly boost the precision and reliability of vascular segmentation
in PAI, while emphasising the versatility of the approach.

VAN-GAN has demonstrated impressive capabilities, however ,it is important to consider the
limitations of its training. Reliance on synthetic data, though effective, may in future need fur-
ther adaptation to encompass the full diversity of real-world vascular structures, particularly when
considering application to human imaging data. Such adaptations could include developing more
complex simulations to create more realistic vasculatures for simulation or integrating manual 3D
labels from a diverse range of imaging techniques into the training data. Additionally, extending
applicability to a wider range of tissue types and chromophores, beyond those included in its initial
training, would be important. All of the animal studies undertaken here were in nude mice, which
lack skin pigmentation, however, skin tone is a consideration that is gaining greater attention in the
PAI community®® and data from a range of skin tones would be needed to maximise applicability
of VAN-GAN in future.

Moving forward, the potential applications of VAN-GAN extend beyond PAI. A key focus area
for enhancement is the optimisation of training schemes and loss function weightings, which are
crucial for ensuring the generalisability and efficacy of the model across diverse imaging contexts.
Merging VAN-GAN with open-source bioimage platforms would also be important to democratise
access to advanced segmentation tools, fostering wider adoption and application in the life sciences.
Integration such as this not only aligns with the trend towards accessible, high-quality image analysis
but also opens new avenues for research and clinical applications by providing consistent and unbiased
results.

In conclusion, VAN-GAN sets a new precedent in the segmentation of 3D microvascular networks
in mesoscopic PAI. By reducing the reliance on manual labelling and leveraging synthetic data, our
approach promises to lower the barrier to entry for high-quality blood vessel segmentation, leading
to more robust and consistent characterisation of vascular structures. VAN-GAN could thus not
only deepen our understanding of tumour vascular architectures but also pave the way for the
discovery of novel vascular-targeted therapeutics and improvement of diagnostic accuracy across

clinical applications.

Methods

The following details architecture and training methodology of VAN-GAN;, in addition to describing
image synthesis and preprocessing. VAN-GAN was implemented using Tensorflow®* with Keras
backend®® and Tensorflow Addons, along with Tensorflow-MRI®. The model was trained on either:
1) a Dell Precision 7920T with a Dual Intel Xeon Gold 5120 CPU with 128GB RAM and two NVIDIA
Quadro GV100 32GB GPUs with NVLink; or 2) a custom built workstation with a Intel Xeon Gold
5220 CPU with 128GB RAM and four NVIDIA RTX A6000 48GB GPUs with NVLinks. The
optimal model for each dataset was selected for application based on qualitative image evaluation

of generated images from the test set and a comprehensive analysis of minima for each loss function
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(see Supplementary Methods and Supplementary Figs. 4-6).

3D Deep Residual U-Net Generators. VAN-GAN generators use a modified version of a deep
residual U-Net architecture®® (see Supplementary Table 2), which integrates residual units into
a U-Net architecture to ease training and facilitate information propagation through the network
without degradation. For the latter, it is important to use low-level details and retain high-resolution

4,45,57

semantic information to improve segmentation performance Both the generator input and

output tensor shapes are 128 x 128 x 128 x 1 (depth x width x height x channel).

3D PatchGAN Discriminators. The discriminators use a five layer PatchGAN architecture®®
(see Supplementary Table 3). Each layer is composed of a 3D convolutional layer, instance nor-
malisation %6, leaky ReLU® and spatial dropout®® (a rate of 20% and excluded from first and final
layers). Similarly to our generators, reflection padding was also used prior to convolution layers
to reduce feature map artefacts*®. Further, for additional regularisation and to limit unstable be-
haviour of VAN-GAN during training, random Gaussian noise was added to real or fake inputs to

61,62

the discriminator and for every proceeding layer prior to convolution blocks®? (Supplementary

Table 4).

Loss Functions. The goal is to learn the mapping functions G : X — Y and F' : Y — X be-
tween the imaging, X, and segmentation, Y, domains. In the VAN-GAN model, each generator is
designed to minimise its own respective cycle-consistency loss, rather than collectively minimising a
total cycle-consistency loss as in CycleGAN“2. Consequently, for each domain transformation the
corresponding generator is responsible for reducing the discrepancy between the original input and
cycle reconstructed output. Separating total cycle consistency components enables more specialised
optimisation of the generators by reducing the potential for conflicting domain transformation ob-
jectives, particularly given our imaging and segmentation domains are highly disparate.

We utilise Li-norm for forward cycle-consistency, i.e., ¢ — G(z) — F(G(z)) =~ «:
Leyex (G, F, 1) = Bonpyro @) 1 F(G(2)) = [1], (1)
and binary cross-entropy for backward cycle-consistency, i.e., y = F(y) = G(F(y)) = y:

Leyey (G, Fyy) = —Eyopioam) 19108 [G(F(y))] + (1 — y) log [l — G(F(y))]} - (2)

In addition to (1) and (2), two additional constraints on cycle-consistency are imposed: 1) a
structural similarity index measure (SSIM) loss; and 2) a topology-preserving loss (centrelineDice or
clDice*?*) for backward cycle-consistency. SSIM is used for forward-consistency to ensure structural
and perceptive features in biomedical images are retained when generating fake images. Similarly,
to preserve the morphological characteristics of vascular networks when segmenting blood vessels,

a constraint on backward-consistency was applied that seeks to minimise differences in network
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structure and topology.
SSIM is a perceptually motivated model composed of three comparison functions: luminance,

contrast and structure. Typically SSIM is used to assess image quality, so as a loss function can

64,65

be used for image restoration%?, such as denoising and super-resolution and pose-guided person

66

image generation Here, SSIM adopts a sliding Gaussian window to calculate the SSIM index

between two local patches centred around a pixel coordinate. For image patches I, and J,, SSIM is

defined as
Qurpy + C1)(2015 + Cs)

SSIM(I,,, J,) = :
Unh) = Gz 212+ OnoF + 03 + C)

3)

Here, pr, 17, a? and J?I are the mean and variance of I, and J,, respectively, oy is the covariance
of I, and Jp,, and C; = (0.01- L) and Cy = (0.03- L)?, where L is the dynamic range of the

pixel-values. To maximise the SSIM of biomedical images we form the reconstruction loss:
Lreel G Fy,y) = 1= By, (2SS (1, F(G(2)), ), (4)

where the subscript p indicates image patches.

Cycle-consistency alone does not provide sufficient spatial constraint on the network topology
of segmented images**. Consequently, spatial and topological constraints on backward-consistency
are added to act as additional regulatory loss function term. Here, the segmentation labels of
synthetically-generated 3D vascular networks, y, are compared to G(F(y)) to ensure differences in
topology are minimised. Minimisation is achieved using the connectivity-preserving metric clDice,
which enforces topology preservation up to homotopy equivalence for binary segmentation®*. Fol-
lowing Shit et al. 4, the loss function is a combination of soft-Dice loss and the differentiable form
of clDice, softclDice:

Liopo(Gy Fyy) =By () {(1 —a) [1 — softDice (y G(F(y)))}
+a [1 ~ 50 ftchice(y, G(F(y)))} } ,

where the weighting, «, is set to 0.5.
The adversarial loss is expressed via least-squares adversarial loss®” to mitigate problems with

vanishing gradients. In the case of the mapping G : X — Y, this is given by

1 1
Laan(F,Dx,z,y) = §]Ey~pdm(y) (Dx(x+ey) — 1)2} + §]Erwpdam(m) [(DX (F(y) + GX))Q] , (6)

where ex and ey are the randomly sampled Gaussian noise2. Here the discriminator Dy aims to
discern translated images, F'(y), from real images y by minimising the objective function, whereas F'
aims to maximise it against its adversarial rival. Adversarial loss is similarly used for the mapping
G : X — Y. Following Ihle et al.?!, we do not impose an identity mapping loss as this constrains

the tint of an image®? and so is not required for our greyscale and binary image volumes.

16


https://doi.org/10.1101/2023.04.30.538453
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.30.538453; this version posted February 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

perpetuity. It is made available under aCC-BY 4.0 International license.

Thus, the objective function of VAN-GAN is given by

L(G,F,Dx,Dy) = Lgan(G, Dy, z,y) + Laan(F, Dx,x,y)

(7)
+ )‘ [‘C’CyCX (G7 F7 LL') + £cy5y (G7 F7 y)] + n‘CTec(Gv F7 x) + N‘Ctopo(Ga F; y),

where the hyperparameters A, n and p control the relative importance between the objectives are

set to 10, 5 and 5, respectively. We aim to solve:

G*, F* = argréli}} max L(G,F,Dx,Dy). (8)

Dx,Dy
Synthetic Vasculature. A language-theoretic model, called a Lindenmayer system (L-System)®®,
was used to generate 3D branching vascular networks (termed here as V-System). L-Systems are
ideally suited to our segmentation task as these models have been shown to create realistic, computer-
generated 3D vascular branching structures® 70 quickly and at scale®® (O(10%) networks in O(1)
minutes). To generate a synthetic branching network, we used a new stochastic grammar to create
a string, which defines the complexity (in our case, the number of branching orders) of the vascular
network, for example, branching order and angle, vessel diameter and tortuosity, and aneurysms
or branching vessel shrinkage (see Supplementary Methods for mathematical descriptions). These
strings are translated to graph form using a lexical and syntactic analyser and subsequently converted
into volumetric binary segmentation masks>®, forming a synthetic dataset of 459 images for network

training.

Photoacoustic Simulations. To generate a paired image dataset, we performed photoacoustic
simulations on the segmentation volume of each image in our synthetic vascular dataset. Each
image pair consists of a physics-driven image volume and its corresponding known segmentation
labels. Simulations followed the method of Brown et al.?® who used SIMPA™! (v0.1.1 with MCX
v2020, 1.8) with the k-Wave MATLAB toolbox? (v1.3, MATLAB v2020b, MathWorks, Natick,
MA, USA) to predict photoacoustic signals across synthetic vasculatures under the assumption that
they are embedded in muscular tissue. In brief, vascular planar (XY) illumination was achieved
on an isotropic resolution with optical forward modelling assuming an absorption spectrum of 50%
oxygenated haemoglobin in blood vessels to mimic tumours™. 3D acoustic forward modelling was
then performed with the signal detected by a planar array of sensors positioned at the tissue surface,
mimicking our PAI instrument (see below). The resulting photoacoustic wave-field was then recon-
structed using a fast Fourier transform”2. While the PAI instrument raster-scans, we approximated
this process with a planar illumination due to computational restrictions (reducing simulation time
by a factor of 600?%).

Experimental Imaging. PAI was performed using a commercial system (Raster-scan optoacoustic

mesoscopy RSOM Explorer P50, iThera Medical GmbH), as described previously®®. Briefly, string
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phantoms were composed in agar mixed with intralipid (both Merck, UK) to mimic tissue-like
scattering with red-coloured synthetic fibres (Smilco, USA) embedded at three different depths. PAI
data were acquired at 100% laser energy with a 2kHz repetition rate. All animal procedures were
conducted in accordance with project (PE12C2B96) and personal licenses (1544913B4, TAT0F0365)
issued under the United Kingdom Animals (Scientific Procedures) Act, 1986 and approved locally
by the Cancer Research UK Cambridge Institute Animal Welfare Ethical Review Board.

To generate in vivo vascular tumour models, breast PDX tumour fragments were cryopreserved
in a freezing media consisting of heat-inactivated foetal bovine serum (10500064, Gibco™ Fisher
Scientific, Goteborg Sweden) and 10% dimethyl sulfoxide (D2650, Merck). The fragments were then
defrosted at 37°C, washed with Dulbecco’s Modified Eagle Medium (41965039, Gibco™), mixed
with matrigel (354262, Corning, NY, USA), and surgically implanted into the flank of 6-9 week-
old NOD scid gamma (NSG) mice (#005557, Jax Stock, Charles River, UK), following standard
protocols®®52. The implantation involved one oestrogen receptor negative (ER-, n=6) PDX model
and one oestrogen receptor positive (ER+, n=8) PDX model. After the tumours had reached an
average diameter of ~ 1 cm, the mice were imaged and then sacrificed, with the tumours collected
in formalin for THC analysis.

For the remaining breast cancer cell lines, seven-week old immuno-deficient female nude (BALB/c
nu/nu) mice (Charles River) were inoculated orthotopically in the mammary fat pad of both flanks
1-1008 cells (either MCF7, n=7, or MDA-MB-231, n=6, random group assignment) in a final volume
of 100 pL of 1:1 phosphate-buffered saline (PBS, Gibco) and matrigel (BD). For MCF7, oestrogen
implants (E2-M - 127 S-estradiol 90 days release, daily dose: 41.2-105.6 pg/ml, Belma Technologies)
were implanted subcutanaously in the scruff of the neck 3 days before tumour cell injection.

For animal imaging, were mice anaesthetised using 3-5% isoflurane in 50% oxygen and 50%
medical air. Mice were shaved and depilatory cream applied to remove hair that could generate
image artefacts; single mice were placed into the PAI system, on a heat-pad maintained at 37°C.
Respiratory rate was maintained between 70-80 bpm using isoflurane (~ 1 — 2% concentration)
throughout image acquisition. PAI data were acquired at 80% laser energy at 1kHz.

For string phantom imaging, phantoms were prepared following standard protocols "4 using agar
mixed with intralipid (both Merck, UK) to mimic tissue-like scattering with red-coloured synthetic
fibres (Smilco, USA) embedded at three different depths (top: 0.5 mm, middle: 1 mm, bottom: 2

mm).

Immunohistochemistry. The tumour tissues, obtained for ex vivo validation, were processed by
sectioning formalin-fixed paraffin-embedded (FFPE) samples. After deparaffinisation and rehydra-
tion, THC analysis was performed on the tissues using the following antibodies: CD31 (anti-mouse
77699, Cell Signalling, London, UK), aSMA (anti-mouse ab5694, Abcam, Cambridge, UK), and
carbonic anhydrase-IX (CAIX) (anti-human AB1001, Bioscience Slovakia, Bratislava, Slovakia), at
concentrations of 1:100, 1:500, and 1:1000, respectively. The analysis was carried out using a BOND

automated stainer, with a bond polymer refine detection kit (Leica Biosystems, Milton Keynes,
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422 UK), and 3,3’-diaminobenzadine as a substrate. The stained FFPE sections were scanned at a mag-
a33  nification of 20x using an Aperio ScanScope (Leica Biosystems, Milton Keynes, UK) and analysed
434 with either ImageScope software or HALO Software (v2.2.1870, Indica Labs, Albuquerque, NM,
a5 USA). Regions of interest (ROIs) were drawn over the entire viable tumour area, and the built-in
436 algorithms were customised to analyse the following: CD31 positive area (qu) normalised to the
s ROI area (um?) (reported as CD31 positivity (%)), area of CD31 positive pixels (um?) colocalised
138 on adjacent serial section with aSMA positive pixels/CD31 positive area (um?).

439

a0 Datasets and Preprocessing. Image volume datasets were split into two categories: synthetic
a1 or experimental datasets (see Supplementary Table 6 for overview). The synthetic datasets were
a2 comprised of binary labels of 3D mathematically-generated vascular networks, which are paired with
a3 computer-simulated photoacoustic image volumes (n=449 for each). Here, physics-driven predictions
aas  are performed on the spatial architecture of the synthetic vasculature provided by the V-System in
a5 each binary image volume. The experimental datasets consisted of a string phantom (n=7), mouse
a6 ears (n=32), mouse skin (n=41) and breast cancer patient-derived xenograft (PDX) tumours in mice
a7 (n=445), and MCF7 and MDA-MB-231 tumours derived from bread cancer cell lines (n=204), all
ag  imaged in vivo. These datasets represent the imaging domain in VAN-GAN where n indicates the
as9  number of image volumes used. Note, the string phantoms were not used for training.

450 All photoacoustic datasets were stored as 32-bit greyscale 600 x 600 x 140 pm? (real) and
w1 512 x 512 x 140 pm?® (simulated) voxel tiff stacks with an isotropic voxel size of 20 x 20 x 20 ym?® in
42 the X-, Y- and Z-directions, where the Z-axis is perpendicular to the surface. All synthetic images
453 were stored in an 8-bit format and generated with dimensions 512 x 512 x 140 umg and an equal
a5 isotropic voxel size. As VAN-GAN trains on image subvolumes of size 128 x 128 x 128 x 1 voxels,
455 all datasets were downsampled to 128 voxels in the Z-axis using a combination of maximum and
456 bicubic downsampling, to ensure that depth-dependent SNR information is retained for training.
a5 All real and simulated photoacoustic images were normalised by performing XY slice-wise Z-score
458 normalisation followed by thresholding of the top and bottom 0.05% of pixel intensities to correct
459 for uneven illumination with respect to depth. Finally, datasets were normalised to a pixel intensity
a0 range of [—1,1]. Datasets were partitioned with 10% assigned for testing and with the remaining
a1 90% split 80/20 between training/validation.

462

463 Network Training. Image patches were randomly sampled with a global batch size of two. Due to
464 the sparsity of vessels with respect to the background for all datasets, a mapping function was applied
465 when images were retrieved from the synthetic segmentation dataset. Here, the function detected
a6 whether a sampled volume contained any vessels to ensure VAN-GAN learnt how to segment vessels
467 rather than just background. For 90% of sampled volumes, if no vessel was detected, a new image
468 volume was sampled. In addition, to artificially extend the size of our datasets, all images were
a0 augmented via a rotation about the Z-axis randomly sampled from the set {0, 7 /2,7, 37/2,27}.

470 All convolutional kernels were initialised using a He-normal initialiser and our loss functions
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hyperparameters were set to default values*?#* o = 0.5, A = 10 and n = p = 5. Following Zhu
et al. 2, training was performed for 200 epochs using the Adam optimizer > with a learning rate of
2 x 10~% and 1°* and 2°! moment estimates of 0.5 and 0.9, for both generators and discriminators.
Each generator and discriminator was given a linear learning rate decay to 0 from the 100*" epoch.

Training was stabilised in two ways. Firstly, noise was applied to the real and fake input images
to the discriminators®?. Noise was sampled from a Gaussian distribution with a mean and variance,
o, of 0.0 and 0.8%, where i was the i*" epoch, and so ¢ is annealed during training. Secondly, to avoid
exploding gradients, a gradient clip normalisation strategy "® where all gradients of each weight was

individually clipped so that its norm is no higher than 100.

Postprocessing. To reconstruct whole image volumes from generator output a sliding-window
approach was employed??. In summary, a sliding-window of size 128 x 128 x 128 voxels was strided
across each inputted image with a stride length of 25 voxels in each XY direction. Output intensities
were summed and the mean value calculated for each voxel location by tracking the number of times
the window passed across a given voxel. To reduce edge artefacts, symmetric padding was used to
ensure the sliding-window passed over each voxel for an equal number of instances. For segmenting an
image, this reconstruction method results in a 32-bit 3D greyscale image where intensities indicate a
probability that a voxel is a blood vessel. Consequently, following bicubic upsampling to an isotropic
voxel size (140 voxels in the Z-axis), images were then thresholded based on the histogram of voxel

intensities to binarise the image.

Evaluation Metrics. Common machine learning metrics do not provide a complete picture of image
segmentation performance for tubular-like structures””. To evaluate our results, we calculated both
standard segmentation metrics and a set of vascular descriptors3®7® to provide a deeper insight
into how well network morphology is predicted. The standard segmentation metrics used comprised
of: F1 Score = 2 - (precision - sensitivity)/(precision + sensitivity); Intersection over Union (IoU)
=TP/(TP+ FP + FN); Sensitivity = TP/(TP + FN) and Specificity = TN/(T'N + FP), where
TP = true positive, TN = true negative, F'P = false positive and F'N = false negative.

To calculate vascular descriptors, all segmentations were skeletonised using the open-source

79,80 The vascular skeletons allowed us to perform structural and topological

78,81

package Russ-learn
data analyses on the vascular skeletons The metrics were use are: number of vessels and
branching nodes, vessel mean and standard deviation of diameters and lengths, network volume,
surface density (the surface area of the vascular network normalised against the tissue volume),
whereas topological descriptors consisted of connected components (or subnetworks, Betti-0) and
looping structures (Betti-1) and network connectivity (the volume of the largest vascular subnetwork

normalised against total network volume).

Statistical Analysis. Statistical analyses were conducted using Prism (v9, GraphPad Software,

San Diego, CA, USA). Comparisons of metrics between synthetic segmentations were computed using
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the non-parametric Friedman test. Comparisons of vascular descriptors for in vivo ear datasets were
performed using either paired parametric or non-parametric t-tests depending on data satisfying
normality. Comparison of vascular descriptors for in vivo tumour datasets were performed using
Wilcoxon tests, with comparisons between ER- and ER+ or MCF7 and MDA-MB-231 tumour
types made using unpaired non-parametric t-tests (Mann-Whitney tests). Statistical outliers were
identified by five non-parametric tests: 1) Tukey’s fences; 2) Median Absolute Deviation (MAD);
3) Modified Z-Score; 4) percentiles (5" and 95" percentile cuttoffs) and 5) Hampel identifier. All

P-values < 0.05 were considered statistically significant.

Code Availability

All our software are open-source and available in Github repositories. VAN-GAN (2023, Version
1.0) [Computer software - https://github.com/psweens/VAN-GAN]. V-System (2022, Version 2.0)
[Computer Software - https://github.com/psweens/V-System]. Vascular Topological Data Analysis
(2022, Version 2.0) [Computer Software - https://github.com/psweens/Vascular-TDA].

Data Availability

Scientific data supporting the findings of this study will be made available upon publication via the
University of Cambridge Research Data Repository at: https://doi.org/10.17863/CAM.96379.
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7" February 2024
Dear Dr Pep Pamies,

We are pleased to submit our manuscript entitled ‘Unsupervised segmentation of 3D
microvascular photoacoustic images using deep generative learning’ for consideration for
publication in Nature Biomedical Engineering. Our study introduces a novel multidisciplinary
approach that leverages machine learning for the analysis of medical images obtained
through photoacoustic imaging (PAl) to explore vascular structure and function. Our
innovative solution stands to significantly benefit your readership by advancing research and
diagnostics in fields that utilise PAI.

Current Challenge

Microvascular network segmentation from image volumes presents a unique
obstacle in biological research due to their complex 3D structures. This challenge is
particularly evident in PAI, where photoacoustic artefacts significantly hinder the accurate
and robust extraction of vascular parameters from high-resolution in vivo and ex vivo
images, thus limiting their study in animal models and humans. While supervised deep
neural networks have shown promise, the labour-intensive and error-prone nature of human
annotations has limited their application to 3D images of blood vessels.

Our Solution

To overcome this constraint, we introduce VAN-GAN (Vessel Segmentation
Generative Adversarial Network), an unsupervised image-to-image translation framework,
which eliminates the need for human-annotated ground-truth labels by leveraging
mathematically derived synthetic blood vessel networks to segment 3D photoacoustic
images.

Our approach enables precise and unbiased blood vessel segmentations in 3D
bioimages, eliminating the need for manual annotations.

We demonstrate VAN-GAN'’s superior performance in accurate and standardised
segmentation of 3D vascular networks across a variety of in silico, in vitro and in vivo
datasets, including human, patient-derived breast cancer xenograft (PDX) models.

Key Novelties

e Innovative approach for PAI segmentation: VAN-GAN introduces a novel deep
generative model tailored for 3D vascular network segmentation in PAI in the
absence of human annotations.

e Rivals supervised segmentation: VAN-GAN challenges, for example, U-Net in
segmenting 3D vasculatures from physics-derived photoacoustic image volumes.

e Robustness to imaging artefacts: VAN-GAN can account for PAI artefacts (e.g.,
depth-dependent SNR and illumination artefacts) which impede human annotators.

o Versatility to features absent from training data: ER+/ER- PDX and cell-line
based models show that VAN-GAN can segment complex vasculatures that exceed
the constraints imposed by its synthetic training data.

Relevance to Readers of Nature Biomedical Engineering
We have demonstrated application here to photoacoustic imaging, which is a new imaging
modality that has been regularly featured within Nature Biomedical Engineering in both
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original research articles and reviews. We believe that the tuneability of VAN-GAN means
that our approach is likely to have a broad impact in the study of vascular networks and
biology using photoacoustics by providing a valuable tool to perform morphological analysis
reliably and consistently across multi-modal bioimages. We are also convinced that the
methodology of using physics-driven simulations in training means that the approach can
readily extrapolate to other imaging modalities so will be of broad interest.

Given the novelty, significance, and broad interest of our findings to the fields of biomedical
engineering, deep learning, and medical imaging, we believe that our manuscript is well-
suited for publication in Nature Biomedical Engineering.

Potential Reviewers

We would like to suggest the following expert reviewers for this manuscript:
1. Daniel Razansky, ETH/University of Zurich
a. danir@ethz.ch
b. Expert in photoacoustics and prior research on deep learning in
photoacoustic imaging.
2. Lena Maier-Hein, DKFZ
a. L.maier-hein@dkfz-heidelberg.de
b. Expertin data science and deep learning applied in photoacoustics.
3. Virginie Uhlimann, EMBL-EBI
a. uhlmann@ebi.ac.uk
b. Expertin morphological bioimage analysis
4. Roger Zemp, University of Alberta
a. rzemp@ualberta.ca
b. Expertin clinical applications of novel biomedical imaging techniques.
5. Andreas Hauptmann, University of Oulu
a. Andreas.hauptmann@oulu.fi
b. Expertin inverse problems in biomedical imaging.
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conflict of interest to declare. This work has not been submitted for publication elsewhere
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any Nature Biomedical Engineering editor about the work descrived in our manuscript.

We appreciate your consideration of our study and look forward to hearing from you soon.

Yours sincerely,

Prof. Sarah E Bohndiek, on behalf of all co-authors.
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