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Abstract11

Mesoscopic photoacoustic imaging (PAI) enables label-free visualisation of vascular networks in12

tissue at high contrast and resolution. The segmentation of vascular networks from 3D PAI data13

and interpretation of their meaning in the context of physiological and pathological processes is14

a crucial but time consuming and error-prone task. Deep learning holds potential to solve these15

problems, but current supervised analysis frameworks require human-annotated ground-truth labels.16

Here, we overcome the need for ground-truth labels by introducing an unsupervised image-to-image17

translation deep learning model called the vessel segmentation generative adversarial network (VAN-18

GAN). VAN-GAN integrates synthetic blood vessel networks that closely resemble real-life anatomy19

into its training process and learns to replicate the underlying physics of the PAI system in order to20

learn how to segment vasculature from 3D biomedical images. With a variety of in silico, in vitro21

and in vivo data, including patient-derived breast cancer xenograft models, we show that VAN-GAN22

facilitates accurate and unbiased segmentation of 3D vascular networks from PAI data volumes. By23

leveraging synthetic data to reduce the reliance on manual labelling, VAN-GAN lowers the barrier24

to entry for high-quality blood vessel segmentation to benefit users in the life sciences applying PAI25

to studies of vascular structure and function.26
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Introduction27

Mesoscopic photoacoustic imaging (PAI) provides high-resolution, contrast-rich images of vascular28

structures in vivo based on the absorption of light by haemoglobin. These images reveal subtle29

changes in vascular architecture in tissues, which have demonstrated importance in diagnosis and30

staging of a range of diseases, from diabetes to oncology1,2. To quantify disease status, segmenting31

microvascular networks from 3D image volumes is vital, however, the development of segmentation32

frameworks has not kept pace with the rapid advancements in imaging technology. While deep33

learning offers a promising solution3, its effective application in this field is fraught with complexities.34

Current supervised segmentation frameworks4–6 typically require matched pairs of image vol-35

umes and human-annotated ground-truth feature masks. Manually generating vascular labels is36

time-consuming so is typically limited to a small number of image pairs. Furthermore, human anno-37

tation is error-prone, particularly in complex pathological tissues like tumours7,8 or in the presence of38

imaging artefacts, where interpretation of what constitutes a blood vessel can vary between experts.39

Supervised blood vessel segmentation models have been demonstrated based on annotated40

datasets in 2D retinal fluorescein angiograms9,10 or 3D multiphoton images of brain vasculature11–13.41

Efforts have also been made to develop semi-supervised methods, which reduce the paired dataset42

size required14–18 or minimise ground-truth ambiguity18. Given the challenges associated with man-43

ual labelling, unsupervised learning has naturally gained special attention for image segmentation44

tasks19. In particular, cycle-consistent generative adversarial networks (CycleGAN) can be used to45

transform images from a imaging (source) domain to a segmentation (target) domain. By assuming46

an underlying relationship between each domain, CycleGAN performs style transfer between datasets47

of unpaired images by allowing two neural network translators to be trained in a constrained unsu-48

pervised and competitive manner. Modified formulations of CycleGAN have accurately segmented49

biomedical images20–24, including cell nuclei from 3D fluorescence microscopy25 and blood vessels50

in 2D X-ray angiograms26.51

To date, the application of deep learning methods in PAI has primarily focused on image recon-52

struction27–29 or bridging the domain gap between simulations and experiments30,31. Supervised53

methods have not only explored the task of blood vessel segmentation from 2D photoacoustic im-54

ages32–36 but have also shown promise in addressing the complexities involved in segmenting 3D55

images, as recent work has demonstrated the potential of combining synthetic data and manual56

annotations for effective supervised segmentation of 3D photoacoustic images37. However, the tran-57

sition to unsupervised methods in 3D PAI has been challenging due to artefacts arising from low58

signal-to-noise ratio (SNR)38 or excitation and detection geometries39, which severely limit their59

effectiveness. Whilst innovative unsupervised approaches have been applied in other 3D imaging60

modalities40,41, there remains a need for tailored unsupervised models which overcome specific chal-61

lenges in 3D PAI.62

In this study, we introduce VAN-GAN (Vessel Segmentation Generative Adversarial Network),63

an innovative unsupervised deep learning model tailored to 3D vascular network segmentation in64

mesoscopic PAI. Distinctly surpassing traditional supervised approaches, VAN-GAN eliminates the65
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need for human-annotated labels, employing image-to-image translation to adeptly transform PAI66

volumes into precise 3D vascular segmentation maps. Our model leverages a synthetic dataset67

enriched with a variety of vascular morphologies, further enhanced by advanced 3D deep residual U-68

Net generators and cycle-consistency loss functions. A significant breakthrough of VAN-GAN is its69

ability to segment vascular networks from tissue types beyond those included in its training dataset,70

showcasing adaptability and precision even in low signal-to-noise ratio environments typical of PAI.71

Demonstrating unparalleled performance on diverse in silico and in vivo PAI datasets, VAN-GAN72

not only outperforms conventional methods but also exhibits remarkable robustness against user73

bias and common PAI artefacts.74

Results75

Advancing 3D vessel segmentation in photoacoustic imaging using VAN-76

GAN77

VAN-GAN is engineered to learn mappings between the imaging domain and segmentation domain,78

thereby training a segmenter that is adept for real-world PAI applications (Fig. 1A). The imaging79

domain comprises PAI volumes, either generated through physics-driven simulations or acquired80

experimentally. The segmentation domain consists of computer-generated branching blood vessel81

structures in 3D, stochastically created based on mathematical formalisms (see Methods). Through-82

out our study, the dataset for the segmentation domain remains consistent, and during the training83

of VAN-GAN, the datasets for imaging and segmentation domains are treated as unpaired.84

VAN-GAN builds upon the CycleGAN model42 with several key enhancements (see Methods85

and Supplementary Methods for full details). The generator architecture integrates U-Net4 with86

deep residual learning43 (Supplementary Table 1), and random Gaussian noise is introduced to the87

discriminator inputs and layers for improved training stability and regularisation (Supplementary88

Table 2). VAN-GAN is adapted to process 3D image volumes using 3D convolutions. It incorporates89

cycle-consistency loss functions to improve performance: a structural similarity reconstruction loss,90

which is applied to both real and reconstructed images in the imaging domain; and a spatial and91

topological constraint, applied to the real and reconstructed images in the segmentation domain to92

preserve tubular structures44 (Fig. 1B).93

The generators consists of three parts: encoder, bridge, and decoder45 (Fig. 1C). The encoder94

and decoder feature four layers with residual units (Fig. 1D) connected by skip connections. The95

convolutional block sequence includes instance normalisation46, ReLU activation47, and 3D con-96

volution, with reflection padding to minimise boundary artefacts42,48. VAN-GAN is trained on97

subvolumes of images, with predictions combined using a sliding window for full volume segmenta-98

tion (Fig. 1E, see Methods).99
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Figure 1: Vessel segmentation generative adversarial network (VAN-GAN) archi-
tecture for unsupervised segmentation of blood vessels in photoacoustic imaging
(PAI) volumes. (A) The training and application process of VAN-GAN utilises two un-
paired datasets (real PAI volumes, x and synthetic blood vessels, y) to train the segmentor,
G, for real-world use. (B) VAN-GAN adapts the cycleGAN model and learns mappings be-
tween imaging (x) and segmentation (y) domains (G : x → ỹ, F : y → x̃) using additional
reconstruction, Lrec, and topological, Ltopo, cycle-consistency constraints. (C) A 3D deep
residual U-Net generator architectures are employed. An example, PAI subvolume input
(left) and segmentation output (right) is shown. (D) Standard residual units are employed
for each generator. (E) A sliding window approach is used to form a probability map that is
binarised to create the final segmentation mask. CB = convolutional block; MIP = maximal
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intensity projection; IN = instance normalisation.

VAN-GAN rivals supervised learning in segmenting photoacoustic images101

We first tested VAN-GAN using physics-driven simulations to virtually emulate PAI, giving the102

stochastic 3D branching vessel structures from VAN-GAN’s segmentation domain as simulation103

inputs (see Methods, Supplementary Methods, Supplementary Fig. 1 and 2). In essence, this104

created a paired in silico dataset of PAI volumes and their segmentations, which enables direct105

validation of VAN-GAN’s segmentation performance (Fig. 2A).106

During training, VAN-GAN perceived images from both the imaging and segmentation domains107

as unpaired and thus processed them in an unsupervised manner. Then during testing, the paired108

dataset enabled us to perform an ablation study to quantitatively evaluate the impact of key VAN-109

GAN components on the segmentation accuracy via their systematic removal from the model. The110

ablation study indicated that VAN-GAN was able to generate fake PAI volumes that included typical111

photoacoustic artefacts, such as those arising from limited illumination and detection views, as well112

as shadowing from overlying absorbers39 (Fig. 2B). We found that omission of discriminator noise113

and reconstruction loss in the reduced models impeded learning of these image features, whereas the114

addition of the topological loss provides a greater constraint to improve segmentation of vascular115

structures (Table 1). The full VAN-GAN model achieved the highest F1 Score (0.842) and IoU116

(0.730) for the paired dataset.117

VAN-GAN was then benchmarked using the paired synthetic data against other deep-learning118

models selected for their relevance and proven effectiveness in image segmentation within the scope of119

PAI. Supervised methods included a random forest pixel classifier (RF, embeded within open-source120

package ilastik49) and a 3D U-Net5 (Supplementary Table 3). A comparison with CycleGAN42 was121

also made (Supplementary Table 4), given its architectural similarities with VAN-GAN. CycleGAN122

and VAN-GAN treated the dataset as unpaired during training, whereas full feature labels were123

supplied to the RF and U-Net (see Supplementary Methods). The dataset consisted of 449 paired124

images with 10% assigned for testing and the remaining 90% split between training (80%) and125

validation (20%).126

The results show good performance by VAN-GAN with, for example, mean F1 Score / IoU of127

0.842 / 0.778, compared to the RF (0.792 / 0.665), U-Net (0.873 / 0.778) and CycleGAN (0.502 /128

0.346) (Table 2). Significant differences between metrics were found when comparing VAN-GAN to129

RF and CycleGAN (Fig. 2C,D) and due to its poor performance, CycleGAN was excluded from all130

further analyses. Comparison to U-Net found there was no significant difference in performance in131

these fully labeled synthetic datasets, however, in an in vivo context, ground-truth annotations are132

partial at best and we found the U-Net trained on synthetic data lacked generalisability to in vivo133

data (Supplementary Fig. 3), hence the U-Net model was also excluded from all further analyses.134

RF methods are typically able to maintain performance with only partially labelled data, so RF was135

used as a comparator in subsequent analyses in the in vivo setting.136
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Figure 2: VAN-GAN performance on synthetic photoacoustic data. (A) Illustra-
tion of the paired dataset, consisting of synthetic vessel structures that form ground-truth
labels and corresponding physics-driven PAI simulations. (B) Fake simulation images gen-
erated by generator F reproduce artefacts (present in our simulations) that are inherent
to mesoscopic PAI and influence vessel shape and continuity. The example illustrates an
artefact arising from limited angular coverage of the illumination fibres, which means the
circular vessel cross-section appears as an arc in PAI. Segmentation metric distributions
compare performance of a random forest pixel classifier, U-Net, CycleGAN and VAN-GAN:
(C) F1 Score; and (D) Intersection over Union (IoU). (E) An example of (left) a photoacous-
tic simulation, (middle) the corresponding VAN-GAN segmentation labels and error with
respect to the ground-truth, and (right) a colour-coded depth projection of the network.
Data in (C-D) are represented by truncated violin plots with interquartile range (dotted)
and median (solid) shown. Statistical significance indicated by * (P < 0.05), ** (P < 0.01),
*** (P < 0.001) and **** (P < 0.0001). ns = no significance.

Qualitative examination of VAN-GAN segmentation predictions showed errors were largely con-137

fined to the smallest vessels, which exhibited relatively low SNR as they were furthest from the138

simulated light-source in the tissue (Fig. 2E).139
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Table 1: VAN-GAN ablation study. The following components were systematically re-
moved to evaluate the performance of our model in their absence: 1) random Gaussian noise
added to discriminator inputs and convolution layers (Noise); 2) a perceptual constraint
on cycle reconstructed photoacoustic images (Rec.); and 3) a spatial and topological con-
strained on cycle reconstructed segmentation images (Topo.). In the Base setup, all these
components are ablated. The inclusion of all three components, Base + Noise + Rec. Loss
+ Top. Loss, gives the full VAN-GAN model. Note, specificity excluded due to ∼ 0.999
values for all methods.

Method F1 Score IoU Sensitivity

Base 0.793 0.661 0.768
Base + Noise 0.434 0.282 0.303
Base + Rec. Loss 0.675 0.514 0.694
Base + Top. Loss 0.772 0.633 0.864
Base + Noise + Rec. Loss 0.581 0.411 0.634
Base + Noise + Top. Loss 0.760 0.618 0.793
Base + Rec. Loss + Top. Loss 0.675 0.518 0.770
Base + Noise + Rec. Loss + Top. Loss 0.842 0.730 0.834

Table 2: Comparison of segmentation performance using PAI simulations. F1
Score, intersection over union (IoU), sensitivity and specificity were calculated on the testing
dataset. RF = random forest pixel classifier and the highest metric score per ground-truth
is shown in bold. Statistical significance between VAN-GAN is indicated by * (P < 0.05),
** (P < 0.01), *** (P < 0.001) and **** (P < 0.0001). If blank, no significance was found
compared to VAN-GAN.

Dataset Method F1 Score IoU Sensitivity Specificity

Simulated RF 0.792∗∗ 0.665∗∗ 0.748∗∗ 0.999
U-Net 0.873 0.778 0.877 0.999

CycleGAN 0.502∗∗∗∗ 0.346∗∗∗∗ 0.558∗∗∗∗ 0.997∗∗∗∗

VAN-GAN 0.842 0.730 0.834 0.999

7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.04.30.538453doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.30.538453
http://creativecommons.org/licenses/by/4.0/


VAN-GAN avoids user bias arising from human annotations140

Given the need for human annotations in supervised training, we sought to compare the impact of141

expert variability on this process. Firstly, two experts independently labelled blood vessels on 2D142

maximum intensity projections (MIPs) generated from 3D in vivo PAI data from mouse ears (n=1)143

and skin (n=4) (Fig. 3A). MIPs were specifically employed to mitigate prevalent surface illumination144

artefacts that typically lead to only the upper part of absorbing structures being excited and detected,145

which has been shown to result in inaccurate 3D segmentations by human annotators38.146

Comparing the two expert annotations, substantial differences were observed between their seg-147

mentations both qualitatively (Fig. 3B) and quantitatively (F1 Score: 0.667/0.569, IoU: 0.501/0.397,148

Specificity: 0.916/0.892 and Sensitivity: 0.754/0.659 for ear / skin), highlighting the challenges in149

ground-truth label creation in real imaging data. These expert annotators then independently150

trained separate 3D RF models for vessel segmentation in mouse ear and skin datasets. Compar-151

ing these models showed no bias toward respective expert labels; each RF model performed poorly152

against the 2D annotations (for example, F1 Score: 0.668 / 0.613 for ear / skin for the RF model and153

ground-truths created by expert 1 - Supplementary Table 5). VAN-GAN’s accuracy was also low154

overall (F1 Score: 0.649 / 0.529 for ear / skin compared against ground-truths labelled by expert155

1), however, it was more robust to segmentation of background noise as closer scrutiny revealed156

limitations in RF, such as artefact segmentation and discontinuities in segmented vessels (Fig. 3C,157

D).158

To analyse more comprehensively the 3D morphology of vascular networks segmented by the159

RF and VAN-GAN models, we skeletonised the 3D vessel masks (Fig. 3E) and calculated a set of160

vascular descriptors based on topological data analysis (see Methods). Focusing on the mouse skin,161

we found that the number of vascular subnetworks (or connected components) and network loops162

between RF1 and RF2 were significantly different (Fig. 3F,G). These analyses highlight a critical163

flaw in using supervised segmentation models - their performance is inherently limited by the quality164

of training data. Independent training by different expert users can lead to systematically varied165

segmentation outcomes (Fig. 3H), which could bias study interpretation. By comparison, VAN-166

GAN predicts more larger interconnected vascular networks, with the largest subnetwork on average167

forming 84.0% of the total subnetwork volume (Fig. 3H,I). These results indicate that VAN-GAN168

segments more well-connected networks compared to RF, which aligns better with the expectations169

of the biological network in healthy skin.170
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Figure 3: Unsupervised vascular segmentation overcomes user variation in human
annotations. (A) Mouse ear and skin imaged in vivo using PAI. (B) ground-truths for
XY maximal intensity projections (MIPs) were generated by two experts (indicated by
subscripts 1 and 2 ). Visualisations indicate variability between each expert for the ear
(top) and skin (bottom). (C) 3D segmentation masks predicted using RF (left) and VAN-
GAN (right) for datasets shown in (A,B). (D) Comparison of MIPs generated from the
3D segmentation labels shown in (C) with arrows indicating segmented noise and vessel
discontinuities using RF. (E) 2D projections of 3D vascular skeletons created from the
two segmentation methods applied to mouse skin. Variability between individual users
RF classifiers and VAN-GAN on the skeletonised mouse skin is indicated for a range of
statistical and vascular descriptors: (F) connected component (CC) density (the number
of subnetworks normalised against tissue volume, mm–3); (G) loop density (the number of
vessel network loops normalised against tissue volume, mm–3); (H) network volume (mm3);
and (I) connectivity (the volume of the largest subnetwork normalised against total network
volume, %);. Mean and standard deviation of data are shown in (F-I). Statistical significance
indicated by * (P < 0.05), ** (P < 0.01), *** (P < 0.001) and **** (P < 0.0001). MIP =
maximal intensity projection.

9

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.04.30.538453doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.30.538453
http://creativecommons.org/licenses/by/4.0/


VAN-GAN is more robust to artefacts compared to human annotations171

Several imaging artefacts impede segmentation performance in PAI. Illumination artefacts, resulting172

from limited light coverage, cause objects to appear flattened in images (Fig. 4A), leading human173

users to annotate only the brighter top surfaces of blood vessels. In our paired synthetic dataset, we174

addressed this by training the supervised RF with full ground-truth labels, enabling it to learn the175

complete range of signal intensities expected from the reference structures. Training an RF segmenter176

with these paired synthetic data resulted in more accurate, axisymmetric vessel segmentation than177

that achieved by an RF model specialised for experimental in vivo datasets and trained by a human178
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Figure 4: VAN-GAN overcomes image artefacts in photoacoustic mesoscopy. (A)
The illumination artefact in photoacoustic mesoscopy results in the incorrect segmentation
of the top surface of blood vessels due to lower signals from underlying regions. (B) Example
image subsections highlighting the illumination artefact in each imaging domain dataset
and corresponding random forest pixel classifier (RF) and VAN-GAN segmentations. RF
models for phantom, ear and skin segmentation were trained by an expert whereas the
RF model for the synthetic data was trained using known computer-generated ground-
truths. (C) Diameters in the XY and XZ directions calculated for each dataset. For the
string phantom, the known string volume is indicated by the dotted line. Computed string
phantom volumes from (D) 3D segmented images and (E) skeletonised strings normalised
against the ground-truth value. (F) Normalised segmented volume for our synthetic dataset
with respect to tissue depth. (G) Histograms of signal intensities for each voxel segmented
by each method and for each dataset: synthetic vasculatures, in situ string phantoms and
in vivo mouse ear and skin datasets. Data in (C) is given by box and whisker plots which
display the 25 th, 50 th and 75 th quartiles, and the interquartile range. Mean and standard
deviation of data are shown in (D) and (E).
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annotator (Fig. 4B,C).179

In contrast, VAN-GAN effectively accounts for the entire signal intensity range across vessel walls180

and lumens in both in silico and in vivo datasets. When comparing diameters in the XZ-plane, VAN-181

GAN’s predictions were closer to ground-truth, outperforming the RF model (Fig. 4B,C). Accuracy182

was further validated using photoacoustic string phantoms, which consist of three non-overlapping183

strings of known size located at three separate depths parallel to the imaged surface39. Although184

VAN-GAN was not specifically trained on string phantom images, it more accurately predicted185

string diameters in the XZ-plane than the RF model, demonstrating its robustness and versatility186

to illumination artefacts.187

Further artefacts arise in PAI due to depth-dependent SNR. VAN-GAN demonstrated a con-188

sistent ability to accurately predict string volumes at various depths (Fig. 4D). Both VAN-GAN189

and RF models showed improved network volume predictions after applying skeletonisation, which190

presumes axisymmetric vessels (Fig. 4E). On the synthetic dataset, VAN-GAN consistently outper-191

formed RF, especially when depth exceeded 2 mm (Fig. 4F). A detailed analysis of segmented voxel192

signal intensities revealed a tendency for VAN-GAN to segment more low-intensity voxels across all193

datasets, a trend that became more pronounced for in vivo data (Fig. 4G). Compared to RF models194

with their limited receptive fields, VAN-GAN appears superior in handling complex spatially-varying195

background noise and can better learn intricate feature representations.196

VAN-GAN segments vascular topologies beyond the training dataset197

PAI is vital for monitoring blood vessel evolution in tumours, which present unique segmentation198

challenges due to their heterogeneous nature50,51. Unlike physiological tissues, tumour vascular199

architecture is chaotic with varying diameters, lengths and inter-connectivity across various spatial200

scales. These features are absent in VAN-GAN’s synthetic segmentation domain dataset since the201

method used to generate branching structures inherently leads to regular and predictable patterns.202

To evaluate the ability of VAN-GAN to segment complex pathological vascular networks, datasets203

of 3D images of oestrogen receptor positive (ER+) and negative (ER-) breast cancer tumours derived204

from both patient-derived xenograft models38,52 and cell lines (MCF7 and MDA-MB-231, respec-205

tively) were used. Segmentations made by VAN-GAN allowed hypothesised structural differences in206

vasculature between the ER+ and ER- subtypes to be identified in both tumour types (Fig. 5A and207

Supplementary Notes). In the PDX tumours, the ER- tumours exhibited significantly higher vessel208

surface area density with respect to tumour volume (P < 0.05, Fig. 5B). The ex vivo immunohisto-209

chemistry (IHC) analysis of CD31 staining, an endothelial cell marker, cross-validated this finding,210

as the ER- tumours showed significantly greater CD31 positivity (P < 0.05, Fig. 5C). Addition-211

ally, VAN-GAN indicated ER- tumours displayed a higher density of vascular looping structures212

(P < 0.01, Fig. 5D) and reduced vessel lengths (P < 0.01), which could indicate a more immature213

vascular network compared to ER+. IHC staining of α-smooth muscle actin (αSMA), a pericyte214

and smooth muscle marker, colocalised with CD31, supported this finding as ER- tumours showed215

significantly lower positivity (P < 0.01, Fig. 5E).216
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Figure 5: VAN-GAN enables quantification of pathological vascular architecture.
(A) Vascular skeletons for oestrogen receptor negative (ER-, left) and positive (ER+, right)
breast cancer patient-derived xenograft tumours. A comparison of metrics for ER- (top) and
ER+ (bottom): (B) vessel surface density (1/mm), (C) CD31 positivity (staining area with
respect to tumour area, %), (D) vessel loop density (1/mm3) and (E) α-smooth muscle
actin (αSMA) colocalisation with CD31 staining (%). (F) Vascular skeletons of MCF7
(left) and MDA-MB-231 (right) breast cancer tumours. VAN-GAN metrics for MCF7 and
MDA-MB-231 tumours: (G) vessel surface density (1/mm), (H) CD31 positivity and (I)
standard deviation (STD) of vessel diameters (µm). (J) A comparison of vessel loop density
(1/mm3) in ER+ models. Mean and standard deviation of data are shown in (C-F) and
(H-K). Statistical significance indicated by * (P < 0.05), ** (P < 0.01), *** (P < 0.001)
and **** (P < 0.0001).

VAN-GAN also showed distinct features between the cell-line derived MCF7 (ER+) and MDA-217

MB-231 (ER-) tumours (Fig. 5F) that were cross-validated by IHC, where the percentage of vessel218

wall surface was quantified on CD31 stained sections with respect to intra- and extra-vascular area.219

Here, when quantifying blood vessel network surface area with respect to the tumour volume from220

our 3D VAN-GAN segmentations, similar trends were observed (P < 0.05, Fig. 5G), with ER-221

MDA-MB-231 tumours displaying significantly elevated levels of CD31 (P = 0.0001, Fig. 5H).222

αSMA staining also indicated lower positivity for ER- MDA-MB-231 tumours (P < 0.01) but no223

significance in vessel loops or lengths between groups was found between each oestrogen receptor224

group. Vessels in the ER- MDA-MB-231 tumours exhibited greater heterogeneity (vessel diameters225

standard deviation, P < 0.0001, Fig. 5I), in contrast to the pattern observed in PDX tumours226

where greater heterogeneity was noted in ER+ tumours (P < 0.05). Observed differences between227

PDX and cell-line derived tumours were underscored by a significant difference in looping structure228

between ER+ models (P < 0.05, Fig. 5J), highlighting divergence in vascular maturity. The ER+229
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PDX tumours were likely at a more advanced stage of vascular development compared to ER+230

MCF7 tumours.231

The close relationship of the topological descriptors extracted from VAN-GAN segmentations to232

IHC analyses of the same tumours, together with common trends across different tumour models,233

indicate that VAN-GAN is able to accurate segment complex vasculatures that exceed the constraints234

imposed by the synthetic segmentation data used in its training.235

Discussion236

Here, we introduced VAN-GAN, an innovative deep learning model that segments 3D vascular237

networks imaged using PAI mesoscopy. For mesoscopic PAI, human annotations are time consuming238

and laborious due to depth-dependent SNR and subtle imaging artefacts, which make it particularly239

challenging to label pathological tissues such as tumours. Independent ground-truth labelling by240

two expert users in our study showed substantial discrepancies in both their segmentations and the241

vascular topology parameters measured from subsequent skeletonisations, highlighting the potential242

for detrimental impact of user bias on quantification of blood vessel networks.243

VAN-GAN adeptly navigates these difficulties in multiple ways. Firstly, VAN-GAN is a novel244

approach that builds on the foundation of CycleGAN by integrating 3D deep residual U-Net genera-245

tors and bespoke cycle-consistency loss functions and discriminator noise, fully leveraging the power246

of unsupervised learning for PAI image segmentation. These additional elements were found through247

an ablation study to enhance the capability of VAN-GAN in segmenting intricate vascular structures248

from synthetic PAI volumes, leading to VAN-GAN surpassing traditional supervised methods and249

rivalling the gold standard U-Net.250

Secondly, VAN-GAN is able to handle complex imaging artefacts arising from the geometry of251

the PAI system, demonstrating robustness in both synthetic and real-world datasets. VAN-GAN252

errors were generally confined to only the smallest vessels. Importantly, VAN-GAN provided realistic253

quantification of vessel lumens, which otherwise appear flattened in supervised segmentations due254

to illumination artefacts; VAN-GAN restored the segmenation that would be expected based on255

reference structures (in phantoms) and maintained lumen patency through to healthy ear and skin256

tissues. VAN-GAN also demonstrated greater robustness to depth-dependent SNR, segmenting at a257

greater depth than supervised methods and providing the most accurate quantifications with depth258

of the tested methods.259

Finally, VAN-GAN provides biologically relevant segmentations for in vivo PAI data, showing260

more interconnected and larger vascular networks in the healthy ear and skin than other methods.261

VAN-GAN also extended directly to application in pathological tissues, such as patient-derived262

breast cancer, even though the complex chaotic architectures associated with these tissue types263

were absent from the synthetic dataset used for training. Topological data analysis of skeletonised264

vascular networks derived from VAN-GAN segmentations showed biological findings consistent with265

IHC analysis conducted on ex vivo sections. Taken together, these three main findings demonstrate266
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strengths of VAN-GAN to significantly boost the precision and reliability of vascular segmentation267

in PAI, while emphasising the versatility of the approach.268

VAN-GAN has demonstrated impressive capabilities, however ,it is important to consider the269

limitations of its training. Reliance on synthetic data, though effective, may in future need fur-270

ther adaptation to encompass the full diversity of real-world vascular structures, particularly when271

considering application to human imaging data. Such adaptations could include developing more272

complex simulations to create more realistic vasculatures for simulation or integrating manual 3D273

labels from a diverse range of imaging techniques into the training data. Additionally, extending274

applicability to a wider range of tissue types and chromophores, beyond those included in its initial275

training, would be important. All of the animal studies undertaken here were in nude mice, which276

lack skin pigmentation, however, skin tone is a consideration that is gaining greater attention in the277

PAI community53 and data from a range of skin tones would be needed to maximise applicability278

of VAN-GAN in future.279

Moving forward, the potential applications of VAN-GAN extend beyond PAI. A key focus area280

for enhancement is the optimisation of training schemes and loss function weightings, which are281

crucial for ensuring the generalisability and efficacy of the model across diverse imaging contexts.282

Merging VAN-GAN with open-source bioimage platforms would also be important to democratise283

access to advanced segmentation tools, fostering wider adoption and application in the life sciences.284

Integration such as this not only aligns with the trend towards accessible, high-quality image analysis285

but also opens new avenues for research and clinical applications by providing consistent and unbiased286

results.287

In conclusion, VAN-GAN sets a new precedent in the segmentation of 3D microvascular networks288

in mesoscopic PAI. By reducing the reliance on manual labelling and leveraging synthetic data, our289

approach promises to lower the barrier to entry for high-quality blood vessel segmentation, leading290

to more robust and consistent characterisation of vascular structures. VAN-GAN could thus not291

only deepen our understanding of tumour vascular architectures but also pave the way for the292

discovery of novel vascular-targeted therapeutics and improvement of diagnostic accuracy across293

clinical applications.294

Methods295

The following details architecture and training methodology of VAN-GAN, in addition to describing296

image synthesis and preprocessing. VAN-GAN was implemented using Tensorflow54 with Keras297

backend55 and Tensorflow Addons, along with Tensorflow-MRI56. The model was trained on either:298

1) a Dell Precision 7920T with a Dual Intel Xeon Gold 5120 CPU with 128GB RAM and two NVIDIA299

Quadro GV100 32GB GPUs with NVLink; or 2) a custom built workstation with a Intel Xeon Gold300

5220 CPU with 128GB RAM and four NVIDIA RTX A6000 48GB GPUs with NVLinks. The301

optimal model for each dataset was selected for application based on qualitative image evaluation302

of generated images from the test set and a comprehensive analysis of minima for each loss function303

14

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.04.30.538453doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.30.538453
http://creativecommons.org/licenses/by/4.0/


(see Supplementary Methods and Supplementary Figs. 4-6).304

305

3D Deep Residual U-Net Generators. VAN-GAN generators use a modified version of a deep306

residual U-Net architecture45 (see Supplementary Table 2), which integrates residual units into307

a U-Net architecture to ease training and facilitate information propagation through the network308

without degradation. For the latter, it is important to use low-level details and retain high-resolution309

semantic information to improve segmentation performance4,45,57. Both the generator input and310

output tensor shapes are 128× 128× 128× 1 (depth× width× height× channel).311

312

3D PatchGAN Discriminators. The discriminators use a five layer PatchGAN architecture58313

(see Supplementary Table 3). Each layer is composed of a 3D convolutional layer, instance nor-314

malisation46, leaky ReLU59 and spatial dropout60 (a rate of 20% and excluded from first and final315

layers). Similarly to our generators, reflection padding was also used prior to convolution layers316

to reduce feature map artefacts48. Further, for additional regularisation and to limit unstable be-317

haviour of VAN-GAN during training, random Gaussian noise was added to real or fake inputs to318

the discriminator61,62 and for every proceeding layer prior to convolution blocks62 (Supplementary319

Table 4).320

321

Loss Functions. The goal is to learn the mapping functions G : X → Y and F : Y → X be-322

tween the imaging, X, and segmentation, Y , domains. In the VAN-GAN model, each generator is323

designed to minimise its own respective cycle-consistency loss, rather than collectively minimising a324

total cycle-consistency loss as in CycleGAN42. Consequently, for each domain transformation the325

corresponding generator is responsible for reducing the discrepancy between the original input and326

cycle reconstructed output. Separating total cycle consistency components enables more specialised327

optimisation of the generators by reducing the potential for conflicting domain transformation ob-328

jectives, particularly given our imaging and segmentation domains are highly disparate.329

We utilise L1-norm for forward cycle-consistency, i.e., x → G(x) → F (G(x)) ≈ x:330

LcycX (G,F, x) = Ex∼pdata(x) [||F (G(x))− x||1] , (1)

and binary cross-entropy for backward cycle-consistency, i.e., y → F (y) → G(F (y)) ≈ y:331

LcycY (G,F, y) = −Ey∼pdata(y) {y log [G(F (y))] + (1− y) log [1−G(F (y))]} . (2)

In addition to (1) and (2), two additional constraints on cycle-consistency are imposed: 1) a332

structural similarity index measure (SSIM) loss; and 2) a topology-preserving loss (centrelineDice or333

clDice44) for backward cycle-consistency. SSIM is used for forward-consistency to ensure structural334

and perceptive features in biomedical images are retained when generating fake images. Similarly,335

to preserve the morphological characteristics of vascular networks when segmenting blood vessels,336

a constraint on backward-consistency was applied that seeks to minimise differences in network337
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structure and topology.338

SSIM is a perceptually motivated model composed of three comparison functions: luminance,339

contrast and structure. Typically SSIM is used to assess image quality, so as a loss function can340

be used for image restoration63, such as denoising and super-resolution64,65 and pose-guided person341

image generation66. Here, SSIM adopts a sliding Gaussian window to calculate the SSIM index342

between two local patches centred around a pixel coordinate. For image patches Ip and Jp, SSIM is343

defined as

SSIM(Ip, Jp) =
(2µIµJ + C1)(2σIJ + C2)

(µ2
I + µ2

J + C1)(σ2
I + σ2

J + C2)
. (3)

Here, µI , µJ , σ
2
I and σ2

J are the mean and variance of Ip and Jp, respectively, σIJ is the covariance344

of Ip and Jp, and C1 = (0.01 · L)2 and C2 = (0.03 · L)2, where L is the dynamic range of the345

pixel-values. To maximise the SSIM of biomedical images we form the reconstruction loss:

Lrec(G,F, x, y) = 1− Ex∼pdata(x)SSIM
(
xp, F (G(x))p

)
, (4)

where the subscript p indicates image patches.346

Cycle-consistency alone does not provide sufficient spatial constraint on the network topology347

of segmented images44. Consequently, spatial and topological constraints on backward-consistency348

are added to act as additional regulatory loss function term. Here, the segmentation labels of349

synthetically-generated 3D vascular networks, y, are compared to G(F (y)) to ensure differences in350

topology are minimised. Minimisation is achieved using the connectivity-preserving metric clDice,351

which enforces topology preservation up to homotopy equivalence for binary segmentation44. Fol-352

lowing Shit et al. 44 , the loss function is a combination of soft-Dice loss and the differentiable form353

of clDice, softclDice:

Ltopo(G,F, y) = Ey∼pdata(y)

{
(1− α)

[
1− softDice

(
y,G(F (y))

)]
+α

[
1− softclDice

(
y,G(F (y))

)]}
,

(5)

where the weighting, α, is set to 0.5.354

The adversarial loss is expressed via least-squares adversarial loss67 to mitigate problems with355

vanishing gradients. In the case of the mapping G : X → Y , this is given by356

LGAN (F,DX , x, y) =
1

2
Ey∼pdata(y)

[
(DX(x+ ϵY )− 1)

2
]
+

1

2
Ex∼pdata(x)

[
(DX (F (y) + ϵX))

2
]
, (6)

where ϵX and ϵY are the randomly sampled Gaussian noise62. Here the discriminator DX aims to357

discern translated images, F (y), from real images y by minimising the objective function, whereas F358

aims to maximise it against its adversarial rival. Adversarial loss is similarly used for the mapping359

G : X → Y . Following Ihle et al. 21 , we do not impose an identity mapping loss as this constrains360

the tint of an image42 and so is not required for our greyscale and binary image volumes.361
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Thus, the objective function of VAN-GAN is given by

L(G,F,DX , DY ) = LGAN (G,DY , x, y) + LGAN (F,DX , x, y)

+ λ [LcycX (G,F, x) + LcycY (G,F, y)] + ηLrec(G,F, x) + µLtopo(G,F, y),
(7)

where the hyperparameters λ, η and µ control the relative importance between the objectives are362

set to 10, 5 and 5, respectively. We aim to solve:

G∗, F ∗ = argmin
G,F

max
DX ,DY

L(G,F,DX , DY ). (8)

363

Synthetic Vasculature. A language-theoretic model, called a Lindenmayer system (L-System)68,364

was used to generate 3D branching vascular networks (termed here as V-System). L-Systems are365

ideally suited to our segmentation task as these models have been shown to create realistic, computer-366

generated 3D vascular branching structures69,70 quickly and at scale38 (O(102) networks in O(1)367

minutes). To generate a synthetic branching network, we used a new stochastic grammar to create368

a string, which defines the complexity (in our case, the number of branching orders) of the vascular369

network, for example, branching order and angle, vessel diameter and tortuosity, and aneurysms370

or branching vessel shrinkage (see Supplementary Methods for mathematical descriptions). These371

strings are translated to graph form using a lexical and syntactic analyser and subsequently converted372

into volumetric binary segmentation masks38, forming a synthetic dataset of 459 images for network373

training.374

375

Photoacoustic Simulations. To generate a paired image dataset, we performed photoacoustic376

simulations on the segmentation volume of each image in our synthetic vascular dataset. Each377

image pair consists of a physics-driven image volume and its corresponding known segmentation378

labels. Simulations followed the method of Brown et al. 38 who used SIMPA71 (v0.1.1 with MCX379

v2020, 1.8) with the k-Wave MATLAB toolbox72 (v1.3, MATLAB v2020b, MathWorks, Natick,380

MA, USA) to predict photoacoustic signals across synthetic vasculatures under the assumption that381

they are embedded in muscular tissue. In brief, vascular planar (XY) illumination was achieved382

on an isotropic resolution with optical forward modelling assuming an absorption spectrum of 50%383

oxygenated haemoglobin in blood vessels to mimic tumours73. 3D acoustic forward modelling was384

then performed with the signal detected by a planar array of sensors positioned at the tissue surface,385

mimicking our PAI instrument (see below). The resulting photoacoustic wave-field was then recon-386

structed using a fast Fourier transform72. While the PAI instrument raster-scans, we approximated387

this process with a planar illumination due to computational restrictions (reducing simulation time388

by a factor of 6002).389

390

Experimental Imaging. PAI was performed using a commercial system (Raster-scan optoacoustic391

mesoscopy RSOM Explorer P50, iThera Medical GmbH), as described previously38. Briefly, string392
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phantoms were composed in agar mixed with intralipid (both Merck, UK) to mimic tissue-like393

scattering with red-coloured synthetic fibres (Smilco, USA) embedded at three different depths. PAI394

data were acquired at 100% laser energy with a 2kHz repetition rate. All animal procedures were395

conducted in accordance with project (PE12C2B96) and personal licenses (I544913B4, IA70F0365)396

issued under the United Kingdom Animals (Scientific Procedures) Act, 1986 and approved locally397

by the Cancer Research UK Cambridge Institute Animal Welfare Ethical Review Board.398

To generate in vivo vascular tumour models, breast PDX tumour fragments were cryopreserved399

in a freezing media consisting of heat-inactivated foetal bovine serum (10500064, GibcoTM, Fisher400

Scientific, Göteborg Sweden) and 10% dimethyl sulfoxide (D2650, Merck). The fragments were then401

defrosted at 37°C, washed with Dulbecco’s Modified Eagle Medium (41965039, GibcoTM), mixed402

with matrigel (354262, Corning, NY, USA), and surgically implanted into the flank of 6–9 week-403

old NOD scid gamma (NSG) mice (#005557, Jax Stock, Charles River, UK), following standard404

protocols38,52. The implantation involved one oestrogen receptor negative (ER-, n=6) PDX model405

and one oestrogen receptor positive (ER+, n=8) PDX model. After the tumours had reached an406

average diameter of ∼ 1 cm, the mice were imaged and then sacrificed, with the tumours collected407

in formalin for IHC analysis.408

For the remaining breast cancer cell lines, seven-week old immuno-deficient female nude (BALB/c409

nu/nu) mice (Charles River) were inoculated orthotopically in the mammary fat pad of both flanks410

1·1006 cells (either MCF7, n=7, or MDA-MB-231, n=6, random group assignment) in a final volume411

of 100 µL of 1:1 phosphate-buffered saline (PBS, Gibco) and matrigel (BD). For MCF7, oestrogen412

implants (E2-M - 127 β-estradiol 90 days release, daily dose: 41.2-105.6 pg/ml, Belma Technologies)413

were implanted subcutanaously in the scruff of the neck 3 days before tumour cell injection.414

For animal imaging, were mice anaesthetised using 3-5% isoflurane in 50% oxygen and 50%415

medical air. Mice were shaved and depilatory cream applied to remove hair that could generate416

image artefacts; single mice were placed into the PAI system, on a heat-pad maintained at 37°C.417

Respiratory rate was maintained between 70-80 bpm using isoflurane (∼ 1 − 2% concentration)418

throughout image acquisition. PAI data were acquired at 80% laser energy at 1kHz.419

For string phantom imaging, phantoms were prepared following standard protocols74 using agar420

mixed with intralipid (both Merck, UK) to mimic tissue-like scattering with red-coloured synthetic421

fibres (Smilco, USA) embedded at three different depths (top: 0.5 mm, middle: 1 mm, bottom: 2422

mm).423

424

Immunohistochemistry. The tumour tissues, obtained for ex vivo validation, were processed by425

sectioning formalin-fixed paraffin-embedded (FFPE) samples. After deparaffinisation and rehydra-426

tion, IHC analysis was performed on the tissues using the following antibodies: CD31 (anti-mouse427

77699, Cell Signalling, London, UK), αSMA (anti-mouse ab5694, Abcam, Cambridge, UK), and428

carbonic anhydrase-IX (CAIX) (anti-human AB1001, Bioscience Slovakia, Bratislava, Slovakia), at429

concentrations of 1:100, 1:500, and 1:1000, respectively. The analysis was carried out using a BOND430

automated stainer, with a bond polymer refine detection kit (Leica Biosystems, Milton Keynes,431
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UK), and 3,3’-diaminobenzadine as a substrate. The stained FFPE sections were scanned at a mag-432

nification of 20x using an Aperio ScanScope (Leica Biosystems, Milton Keynes, UK) and analysed433

with either ImageScope software or HALO Software (v2.2.1870, Indica Labs, Albuquerque, NM,434

USA). Regions of interest (ROIs) were drawn over the entire viable tumour area, and the built-in435

algorithms were customised to analyse the following: CD31 positive area (µm2) normalised to the436

ROI area (µm2) (reported as CD31 positivity (%)), area of CD31 positive pixels (µm2) colocalised437

on adjacent serial section with αSMA positive pixels/CD31 positive area (µm2).438

439

Datasets and Preprocessing. Image volume datasets were split into two categories: synthetic440

or experimental datasets (see Supplementary Table 6 for overview). The synthetic datasets were441

comprised of binary labels of 3D mathematically-generated vascular networks, which are paired with442

computer-simulated photoacoustic image volumes (n=449 for each). Here, physics-driven predictions443

are performed on the spatial architecture of the synthetic vasculature provided by the V-System in444

each binary image volume. The experimental datasets consisted of a string phantom (n=7), mouse445

ears (n=32), mouse skin (n=41) and breast cancer patient-derived xenograft (PDX) tumours in mice446

(n=445), and MCF7 and MDA-MB-231 tumours derived from bread cancer cell lines (n=204), all447

imaged in vivo. These datasets represent the imaging domain in VAN-GAN where n indicates the448

number of image volumes used. Note, the string phantoms were not used for training.449

All photoacoustic datasets were stored as 32-bit greyscale 600 × 600 × 140 µm3 (real) and450

512× 512× 140 µm3 (simulated) voxel tiff stacks with an isotropic voxel size of 20× 20× 20 µm3 in451

the X-, Y- and Z-directions, where the Z-axis is perpendicular to the surface. All synthetic images452

were stored in an 8-bit format and generated with dimensions 512 × 512 × 140 µm3 and an equal453

isotropic voxel size. As VAN-GAN trains on image subvolumes of size 128 × 128 × 128 × 1 voxels,454

all datasets were downsampled to 128 voxels in the Z-axis using a combination of maximum and455

bicubic downsampling, to ensure that depth-dependent SNR information is retained for training.456

All real and simulated photoacoustic images were normalised by performing XY slice-wise Z-score457

normalisation followed by thresholding of the top and bottom 0.05% of pixel intensities to correct458

for uneven illumination with respect to depth. Finally, datasets were normalised to a pixel intensity459

range of [−1, 1]. Datasets were partitioned with 10% assigned for testing and with the remaining460

90% split 80/20 between training/validation.461

462

Network Training. Image patches were randomly sampled with a global batch size of two. Due to463

the sparsity of vessels with respect to the background for all datasets, a mapping function was applied464

when images were retrieved from the synthetic segmentation dataset. Here, the function detected465

whether a sampled volume contained any vessels to ensure VAN-GAN learnt how to segment vessels466

rather than just background. For 90% of sampled volumes, if no vessel was detected, a new image467

volume was sampled. In addition, to artificially extend the size of our datasets, all images were468

augmented via a rotation about the Z-axis randomly sampled from the set {0, π/2, π, 3π/2, 2π}.469

All convolutional kernels were initialised using a He-normal initialiser and our loss functions470
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hyperparameters were set to default values42,44 α = 0.5, λ = 10 and η = µ = 5. Following Zhu471

et al. 42 , training was performed for 200 epochs using the Adam optimizer75 with a learning rate of472

2× 10−4 and 1st and 2nd moment estimates of 0.5 and 0.9, for both generators and discriminators.473

Each generator and discriminator was given a linear learning rate decay to 0 from the 100th epoch.474

Training was stabilised in two ways. Firstly, noise was applied to the real and fake input images475

to the discriminators62. Noise was sampled from a Gaussian distribution with a mean and variance,476

σ, of 0.0 and 0.8i, where i was the ith epoch, and so σ is annealed during training. Secondly, to avoid477

exploding gradients, a gradient clip normalisation strategy76 where all gradients of each weight was478

individually clipped so that its norm is no higher than 100.479

480

Postprocessing. To reconstruct whole image volumes from generator output a sliding-window481

approach was employed34. In summary, a sliding-window of size 128× 128× 128 voxels was strided482

across each inputted image with a stride length of 25 voxels in each XY direction. Output intensities483

were summed and the mean value calculated for each voxel location by tracking the number of times484

the window passed across a given voxel. To reduce edge artefacts, symmetric padding was used to485

ensure the sliding-window passed over each voxel for an equal number of instances. For segmenting an486

image, this reconstruction method results in a 32-bit 3D greyscale image where intensities indicate a487

probability that a voxel is a blood vessel. Consequently, following bicubic upsampling to an isotropic488

voxel size (140 voxels in the Z-axis), images were then thresholded based on the histogram of voxel489

intensities to binarise the image.490

491

Evaluation Metrics. Common machine learning metrics do not provide a complete picture of image492

segmentation performance for tubular-like structures77. To evaluate our results, we calculated both493

standard segmentation metrics and a set of vascular descriptors38,78 to provide a deeper insight494

into how well network morphology is predicted. The standard segmentation metrics used comprised495

of: F1 Score = 2 · (precision · sensitivity)/(precision+ sensitivity); Intersection over Union (IoU)496

= TP/(TP + FP + FN); Sensitivity = TP/(TP + FN) and Specificity = TN/(TN + FP ), where497

TP = true positive, TN = true negative, FP = false positive and FN = false negative.498

To calculate vascular descriptors, all segmentations were skeletonised using the open-source499

package Russ-learn79,80. The vascular skeletons allowed us to perform structural and topological500

data analyses on the vascular skeletons78,81. The metrics were use are: number of vessels and501

branching nodes, vessel mean and standard deviation of diameters and lengths, network volume,502

surface density (the surface area of the vascular network normalised against the tissue volume),503

whereas topological descriptors consisted of connected components (or subnetworks, Betti-0) and504

looping structures (Betti-1) and network connectivity (the volume of the largest vascular subnetwork505

normalised against total network volume).506

507

Statistical Analysis. Statistical analyses were conducted using Prism (v9, GraphPad Software,508

San Diego, CA, USA). Comparisons of metrics between synthetic segmentations were computed using509
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the non-parametric Friedman test. Comparisons of vascular descriptors for in vivo ear datasets were510

performed using either paired parametric or non-parametric t-tests depending on data satisfying511

normality. Comparison of vascular descriptors for in vivo tumour datasets were performed using512

Wilcoxon tests, with comparisons between ER- and ER+ or MCF7 and MDA-MB-231 tumour513

types made using unpaired non-parametric t-tests (Mann-Whitney tests). Statistical outliers were514

identified by five non-parametric tests: 1) Tukey’s fences; 2) Median Absolute Deviation (MAD);515

3) Modified Z-Score; 4) percentiles (5th and 95th percentile cuttoffs) and 5) Hampel identifier. All516

P-values < 0.05 were considered statistically significant.517

Code Availability518

All our software are open-source and available in Github repositories. VAN-GAN (2023, Version519

1.0) [Computer software - https://github.com/psweens/VAN-GAN]. V-System (2022, Version 2.0)520

[Computer Software - https://github.com/psweens/V-System]. Vascular Topological Data Analysis521

(2022, Version 2.0) [Computer Software - https://github.com/psweens/Vascular-TDA].522

Data Availability523

Scientific data supporting the findings of this study will be made available upon publication via the524

University of Cambridge Research Data Repository at: https://doi.org/10.17863/CAM.96379.525
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7th February 2024 

 
Dear Dr Pep Pàmies, 
 

We are pleased to submit our manuscript entitled ‘Unsupervised segmentation of 3D 
microvascular photoacoustic images using deep generative learning’ for consideration for 
publication in Nature Biomedical Engineering. Our study introduces a novel multidisciplinary 
approach that leverages machine learning for the analysis of medical images obtained 
through photoacoustic imaging (PAI) to explore vascular structure and function. Our 
innovative solution stands to significantly benefit your readership by advancing research and 
diagnostics in fields that utilise PAI. 
 
Current Challenge 

Microvascular network segmentation from image volumes presents a unique 
obstacle in biological research due to their complex 3D structures. This challenge is 
particularly evident in PAI, where photoacoustic artefacts significantly hinder the accurate 
and robust extraction of vascular parameters from high-resolution in vivo and ex vivo 
images, thus limiting their study in animal models and humans. While supervised deep 
neural networks have shown promise, the labour-intensive and error-prone nature of human 
annotations has limited their application to 3D images of blood vessels. 
 
Our Solution 

To overcome this constraint, we introduce VAN-GAN (Vessel Segmentation 
Generative Adversarial Network), an unsupervised image-to-image translation framework, 
which eliminates the need for human-annotated ground-truth labels by leveraging 
mathematically derived synthetic blood vessel networks to segment 3D photoacoustic 
images.  

 
Our approach enables precise and unbiased blood vessel segmentations in 3D 

bioimages, eliminating the need for manual annotations. 
 
We demonstrate VAN-GAN’s superior performance in accurate and standardised 

segmentation of 3D vascular networks across a variety of in silico, in vitro and in vivo 
datasets, including human, patient-derived breast cancer xenograft (PDX) models. 
 
Key Novelties 

 
• Innovative approach for PAI segmentation: VAN-GAN introduces a novel deep 

generative model tailored for 3D vascular network segmentation in PAI in the 
absence of human annotations. 

• Rivals supervised segmentation: VAN-GAN challenges, for example, U-Net in 
segmenting 3D vasculatures from physics-derived photoacoustic image volumes. 

• Robustness to imaging artefacts: VAN-GAN can account for PAI artefacts (e.g., 
depth-dependent SNR and illumination artefacts) which impede human annotators. 

• Versatility to features absent from training data: ER+/ER- PDX and cell-line 
based models show that VAN-GAN can segment complex vasculatures that exceed 
the constraints imposed by its synthetic training data. 
 

Relevance to Readers of Nature Biomedical Engineering 
We have demonstrated application here to photoacoustic imaging, which is a new imaging 
modality that has been regularly featured within Nature Biomedical Engineering in both 
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original research articles and reviews. We believe that the tuneability of VAN-GAN means 
that our approach is likely to have a broad impact in the study of vascular networks and 
biology using photoacoustics by providing a valuable tool to perform morphological analysis 
reliably and consistently across multi-modal bioimages. We are also convinced that the 
methodology of using physics-driven simulations in training means that the approach can 
readily extrapolate to other imaging modalities so will be of broad interest. 
 
Given the novelty, significance, and broad interest of our findings to the fields of biomedical 
engineering, deep learning, and medical imaging, we believe that our manuscript is well-
suited for publication in Nature Biomedical Engineering. 
 
Potential Reviewers 
 
We would like to suggest the following expert reviewers for this manuscript: 

1. Daniel Razansky, ETH/University of Zurich 
a. danir@ethz.ch 
b. Expert in photoacoustics and prior research on deep learning in 

photoacoustic imaging. 
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