

¹ Unsupervised segmentation of 3D microvascular photoacoustic
² images using deep generative learning

³ Paul W. Sweeney^{1,2,*}, Lina Hacker^{1,2}, Thierry L. Lefebvre^{1,2}, Emma L. Brown^{1,2},
⁴ Janek Gröhl^{1,2}, and Sarah E. Bohndiek^{1,2,*}

⁵ ¹Cancer Research UK Cambridge Institute, University of Cambridge, Robinson
⁶ Way, Cambridge, CB2 0RE, UK

⁷ ²Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge,
⁸ CB3 0HE, UK

⁹ *Corresponding authors

¹⁰ **Keywords**— Unsupervised, deep learning, segmentation, blood vessels, photoacoustics

¹¹ **Abstract**

¹² Mesoscopic photoacoustic imaging (PAI) enables label-free visualisation of vascular networks in
¹³ tissue at high contrast and resolution. The segmentation of vascular networks from 3D PAI data
¹⁴ and interpretation of their meaning in the context of physiological and pathological processes is
¹⁵ a crucial but time consuming and error-prone task. Deep learning holds potential to solve these
¹⁶ problems, but current supervised analysis frameworks require human-annotated ground-truth labels.
¹⁷ Here, we overcome the need for ground-truth labels by introducing an unsupervised image-to-image
¹⁸ translation deep learning model called the *vessel segmentation generative adversarial network* (VAN-
¹⁹ GAN). VAN-GAN integrates synthetic blood vessel networks that closely resemble real-life anatomy
²⁰ into its training process and learns to replicate the underlying physics of the PAI system in order to
²¹ learn how to segment vasculature from 3D biomedical images. With a variety of *in silico*, *in vitro*
²² and *in vivo* data, including patient-derived breast cancer xenograft models, we show that VAN-GAN
²³ facilitates accurate and unbiased segmentation of 3D vascular networks from PAI data volumes. By
²⁴ leveraging synthetic data to reduce the reliance on manual labelling, VAN-GAN lowers the barrier
²⁵ to entry for high-quality blood vessel segmentation to benefit users in the life sciences applying PAI
²⁶ to studies of vascular structure and function.

27 Introduction

28 Mesoscopic photoacoustic imaging (PAI) provides high-resolution, contrast-rich images of vascular
29 structures *in vivo* based on the absorption of light by haemoglobin. These images reveal subtle
30 changes in vascular architecture in tissues, which have demonstrated importance in diagnosis and
31 staging of a range of diseases, from diabetes to oncology^{1,2}. To quantify disease status, segmenting
32 microvascular networks from 3D image volumes is vital, however, the development of segmentation
33 frameworks has not kept pace with the rapid advancements in imaging technology. While deep
34 learning offers a promising solution³, its effective application in this field is fraught with complexities.

35 Current supervised segmentation frameworks^{4–6} typically require matched pairs of image vol-
36 umes and human-annotated ground-truth feature masks. Manually generating vascular labels is
37 time-consuming so is typically limited to a small number of image pairs. Furthermore, human anno-
38 tation is error-prone, particularly in complex pathological tissues like tumours^{7,8} or in the presence of
39 imaging artefacts, where interpretation of what constitutes a blood vessel can vary between experts.

40 Supervised blood vessel segmentation models have been demonstrated based on annotated
41 datasets in 2D retinal fluorescein angiograms^{9,10} or 3D multiphoton images of brain vasculature^{11–13}.
42 Efforts have also been made to develop semi-supervised methods, which reduce the paired dataset
43 size required^{14–18} or minimise ground-truth ambiguity¹⁸. Given the challenges associated with man-
44 ual labelling, unsupervised learning has naturally gained special attention for image segmentation
45 tasks¹⁹. In particular, cycle-consistent generative adversarial networks (CycleGAN) can be used to
46 transform images from a imaging (source) domain to a segmentation (target) domain. By assuming
47 an underlying relationship between each domain, CycleGAN performs style transfer between datasets
48 of unpaired images by allowing two neural network translators to be trained in a constrained unsu-
49 pervised and competitive manner. Modified formulations of CycleGAN have accurately segmented
50 biomedical images^{20–24}, including cell nuclei from 3D fluorescence microscopy²⁵ and blood vessels
51 in 2D X-ray angiograms²⁶.

52 To date, the application of deep learning methods in PAI has primarily focused on image recon-
53 struction^{27–29} or bridging the domain gap between simulations and experiments^{30,31}. Supervised
54 methods have not only explored the task of blood vessel segmentation from 2D photoacoustic im-
55 ages^{32–36} but have also shown promise in addressing the complexities involved in segmenting 3D
56 images, as recent work has demonstrated the potential of combining synthetic data and manual
57 annotations for effective supervised segmentation of 3D photoacoustic images³⁷. However, the tran-
58 sition to unsupervised methods in 3D PAI has been challenging due to artefacts arising from low
59 signal-to-noise ratio (SNR)³⁸ or excitation and detection geometries³⁹, which severely limit their
60 effectiveness. Whilst innovative unsupervised approaches have been applied in other 3D imaging
61 modalities^{40,41}, there remains a need for tailored unsupervised models which overcome specific chal-
62 lenges in 3D PAI.

63 In this study, we introduce VAN-GAN (*Vessel Segmentation Generative Adversarial Network*),
64 an innovative unsupervised deep learning model tailored to 3D vascular network segmentation in
65 mesoscopic PAI. Distinctly surpassing traditional supervised approaches, VAN-GAN eliminates the

66 need for human-annotated labels, employing image-to-image translation to adeptly transform PAI
67 volumes into precise 3D vascular segmentation maps. Our model leverages a synthetic dataset
68 enriched with a variety of vascular morphologies, further enhanced by advanced 3D deep residual U-
69 Net generators and cycle-consistency loss functions. A significant breakthrough of VAN-GAN is its
70 ability to segment vascular networks from tissue types beyond those included in its training dataset,
71 showcasing adaptability and precision even in low signal-to-noise ratio environments typical of PAI.
72 Demonstrating unparalleled performance on diverse *in silico* and *in vivo* PAI datasets, VAN-GAN
73 not only outperforms conventional methods but also exhibits remarkable robustness against user
74 bias and common PAI artefacts.

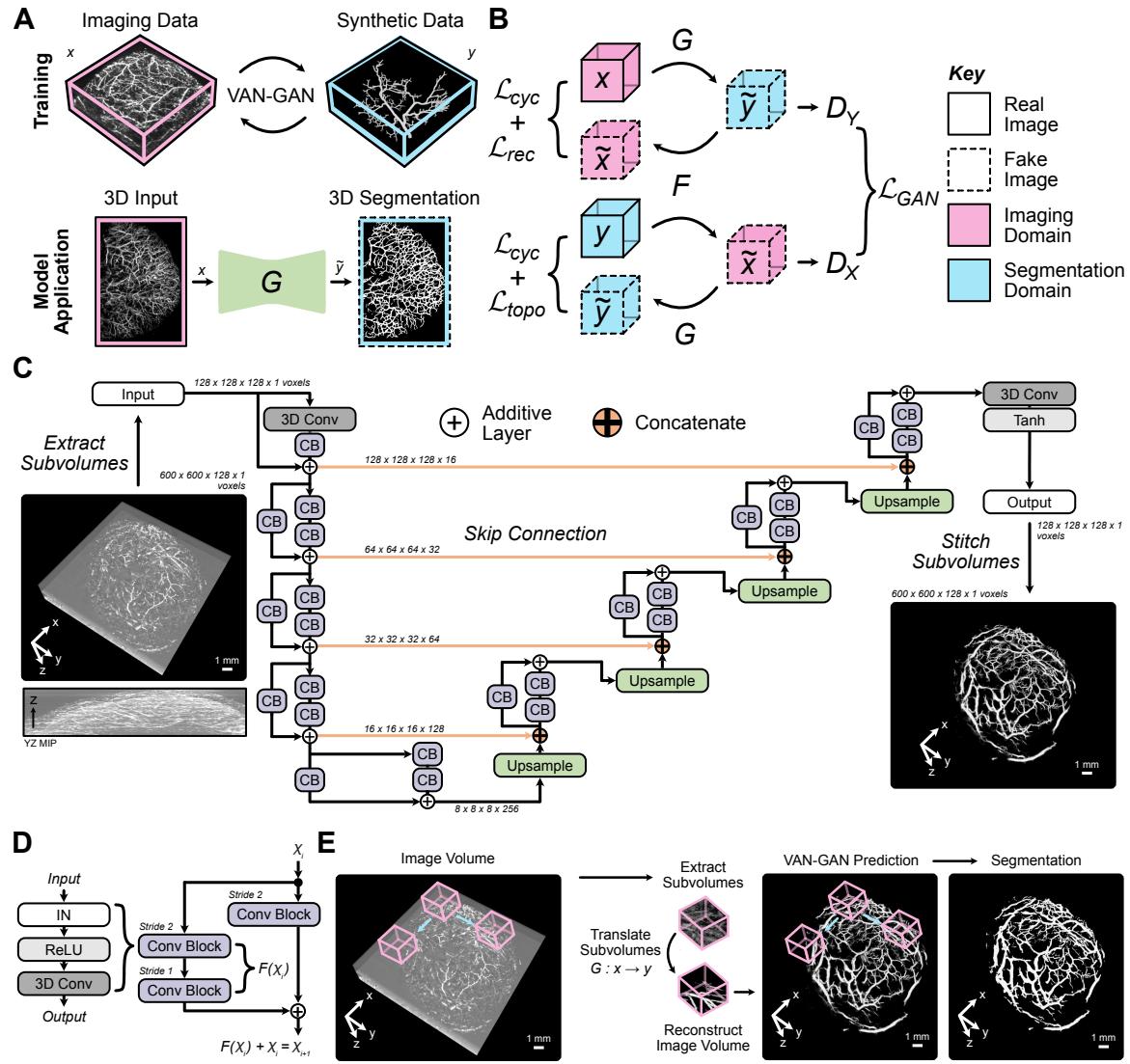
75 Results

76 Advancing 3D vessel segmentation in photoacoustic imaging using VAN- 77 GAN

78 VAN-GAN is engineered to learn mappings between the *imaging domain* and *segmentation domain*,
79 thereby training a segmenter that is adept for real-world PAI applications (Fig. 1A). The imaging
80 domain comprises PAI volumes, either generated through physics-driven simulations or acquired
81 experimentally. The segmentation domain consists of computer-generated branching blood vessel
82 structures in 3D, stochastically created based on mathematical formalisms (see Methods). Through-
83 out our study, the dataset for the segmentation domain remains consistent, and during the training
84 of VAN-GAN, the datasets for imaging and segmentation domains are treated as unpaired.

85 VAN-GAN builds upon the CycleGAN model⁴² with several key enhancements (see Methods
86 and Supplementary Methods for full details). The generator architecture integrates U-Net⁴ with
87 deep residual learning⁴³ (Supplementary Table 1), and random Gaussian noise is introduced to the
88 discriminator inputs and layers for improved training stability and regularisation (Supplementary
89 Table 2). VAN-GAN is adapted to process 3D image volumes using 3D convolutions. It incorporates
90 cycle-consistency loss functions to improve performance: a structural similarity reconstruction loss,
91 which is applied to both real and reconstructed images in the imaging domain; and a spatial and
92 topological constraint, applied to the real and reconstructed images in the segmentation domain to
93 preserve tubular structures⁴⁴ (Fig. 1B).

94 The generators consists of three parts: encoder, bridge, and decoder⁴⁵ (Fig. 1C). The encoder
95 and decoder feature four layers with residual units (Fig. 1D) connected by skip connections. The
96 convolutional block sequence includes instance normalisation⁴⁶, ReLU activation⁴⁷, and 3D con-
97 volution, with reflection padding to minimise boundary artefacts^{42,48}. VAN-GAN is trained on
98 subvolumes of images, with predictions combined using a sliding window for full volume segmenta-
99 tion (Fig. 1E, see Methods).



100

Figure 1: Vessel segmentation generative adversarial network (VAN-GAN) architecture for unsupervised segmentation of blood vessels in photoacoustic imaging (PAI) volumes. (A) The training and application process of VAN-GAN utilises two unpaired datasets (real PAI volumes, x and synthetic blood vessels, y) to train the segmentor, G , for real-world use. (B) VAN-GAN adapts the cycleGAN model and learns mappings between imaging (x) and segmentation (y) domains ($G : x \rightarrow \tilde{y}$, $F : y \rightarrow \tilde{x}$) using additional reconstruction, \mathcal{L}_{rec} , and topological, \mathcal{L}_{topo} , cycle-consistency constraints. (C) A 3D deep residual U-Net generator architectures are employed. An example, PAI subvolume input (left) and segmentation output (right) is shown. (D) Standard residual units are employed for each generator. (E) A sliding window approach is used to form a probability map that is binarised to create the final segmentation mask. CB = convolutional block; MIP = maximal

intensity projection; IN = instance normalisation.

101 VAN-GAN rivals supervised learning in segmenting photoacoustic images

102 We first tested VAN-GAN using physics-driven simulations to virtually emulate PAI, giving the
103 stochastic 3D branching vessel structures from VAN-GAN's segmentation domain as simulation
104 inputs (see Methods, Supplementary Methods, Supplementary Fig. 1 and 2). In essence, this
105 created a paired *in silico* dataset of PAI volumes and their segmentations, which enables direct
106 validation of VAN-GAN's segmentation performance (Fig. 2A).

107 During training, VAN-GAN perceived images from both the imaging and segmentation domains
108 as unpaired and thus processed them in an unsupervised manner. Then during testing, the paired
109 dataset enabled us to perform an ablation study to quantitatively evaluate the impact of key VAN-
110 GAN components on the segmentation accuracy via their systematic removal from the model. The
111 ablation study indicated that VAN-GAN was able to generate fake PAI volumes that included typical
112 photoacoustic artefacts, such as those arising from limited illumination and detection views, as well
113 as shadowing from overlying absorbers³⁹ (Fig. 2B). We found that omission of discriminator noise
114 and reconstruction loss in the reduced models impeded learning of these image features, whereas the
115 addition of the topological loss provides a greater constraint to improve segmentation of vascular
116 structures (Table 1). The full VAN-GAN model achieved the highest F1 Score (0.842) and IoU
117 (0.730) for the paired dataset.

118 VAN-GAN was then benchmarked using the paired synthetic data against other deep-learning
119 models selected for their relevance and proven effectiveness in image segmentation within the scope of
120 PAI. Supervised methods included a random forest pixel classifier (RF, embedded within open-source
121 package ilastik⁴⁹) and a 3D U-Net⁵ (Supplementary Table 3). A comparison with CycleGAN⁴² was
122 also made (Supplementary Table 4), given its architectural similarities with VAN-GAN. CycleGAN
123 and VAN-GAN treated the dataset as unpaired during training, whereas full feature labels were
124 supplied to the RF and U-Net (see Supplementary Methods). The dataset consisted of 449 paired
125 images with 10% assigned for testing and the remaining 90% split between training (80%) and
126 validation (20%).

127 The results show good performance by VAN-GAN with, for example, mean F1 Score / IoU of
128 0.842 / 0.778, compared to the RF (0.792 / 0.665), U-Net (0.873 / 0.778) and CycleGAN (0.502 /
129 0.346) (Table 2). Significant differences between metrics were found when comparing VAN-GAN to
130 RF and CycleGAN (Fig. 2C,D) and due to its poor performance, CycleGAN was excluded from all
131 further analyses. Comparison to U-Net found there was no significant difference in performance in
132 these fully labeled synthetic datasets, however, in an *in vivo* context, ground-truth annotations are
133 partial at best and we found the U-Net trained on synthetic data lacked generalisability to *in vivo*
134 data (Supplementary Fig. 3), hence the U-Net model was also excluded from all further analyses.
135 RF methods are typically able to maintain performance with only partially labelled data, so RF was
136 used as a comparator in subsequent analyses in the *in vivo* setting.

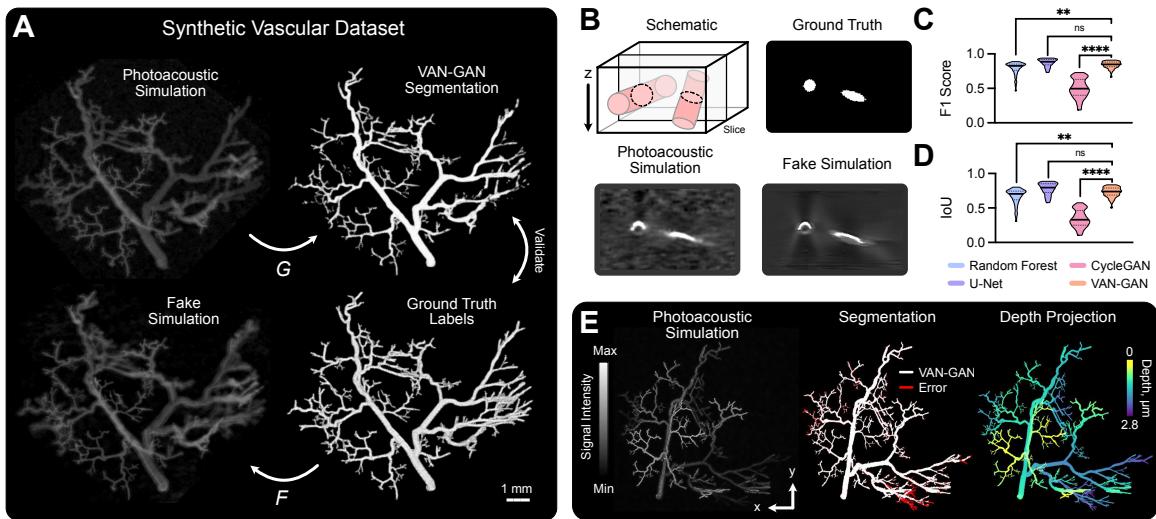


Figure 2: **VAN-GAN performance on synthetic photoacoustic data.** (A) Illustration of the paired dataset, consisting of synthetic vessel structures that form ground-truth labels and corresponding physics-driven PAI simulations. (B) Fake simulation images generated by generator F reproduce artefacts (present in our simulations) that are inherent to mesoscopic PAI and influence vessel shape and continuity. The example illustrates an artefact arising from limited angular coverage of the illumination fibres, which means the circular vessel cross-section appears as an arc in PAI. Segmentation metric distributions compare performance of a random forest pixel classifier, U-Net, CycleGAN and VAN-GAN: (C) F1 Score; and (D) Intersection over Union (IoU). (E) An example of (left) a photoacoustic simulation, (middle) the corresponding VAN-GAN segmentation labels and error with respect to the ground-truth, and (right) a colour-coded depth projection of the network. Data in (C-D) are represented by truncated violin plots with interquartile range (dotted) and median (solid) shown. Statistical significance indicated by * ($P < 0.05$), ** ($P < 0.01$), *** ($P < 0.001$) and **** ($P < 0.0001$). ns = no significance.

137 Qualitative examination of VAN-GAN segmentation predictions showed errors were largely con-
 138 fined to the smallest vessels, which exhibited relatively low SNR as they were furthest from the
 139 simulated light-source in the tissue (Fig. 2E).

Table 1: **VAN-GAN ablation study.** The following components were systematically removed to evaluate the performance of our model in their absence: 1) random Gaussian noise added to discriminator inputs and convolution layers (*Noise*); 2) a perceptual constraint on cycle reconstructed photoacoustic images (*Rec.*); and 3) a spatial and topological constrained on cycle reconstructed segmentation images (*Topo.*). In the *Base* setup, all these components are ablated. The inclusion of all three components, *Base + Noise + Rec. Loss + Top. Loss*, gives the full VAN-GAN model. Note, specificity excluded due to ~ 0.999 values for all methods.

Method	F1 Score	IoU	Sensitivity
Base	0.793	0.661	0.768
Base + Noise	0.434	0.282	0.303
Base + Rec. Loss	0.675	0.514	0.694
Base + Top. Loss	0.772	0.633	0.864
Base + Noise + Rec. Loss	0.581	0.411	0.634
Base + Noise + Top. Loss	0.760	0.618	0.793
Base + Rec. Loss + Top. Loss	0.675	0.518	0.770
Base + Noise + Rec. Loss + Top. Loss	0.842	0.730	0.834

Table 2: **Comparison of segmentation performance using PAI simulations.** F1 Score, intersection over union (IoU), sensitivity and specificity were calculated on the testing dataset. RF = random forest pixel classifier and the highest metric score per ground-truth is shown in bold. Statistical significance between VAN-GAN is indicated by * ($P < 0.05$), ** ($P < 0.01$), *** ($P < 0.001$) and **** ($P < 0.0001$). If blank, no significance was found compared to VAN-GAN.

Dataset	Method	F1 Score	IoU	Sensitivity	Specificity
Simulated	RF	0.792**	0.665**	0.748**	0.999
	U-Net	0.873	0.778	0.877	0.999
	CycleGAN	0.502****	0.346****	0.558****	0.997****
	VAN-GAN	0.842	0.730	0.834	0.999

140 **VAN-GAN avoids user bias arising from human annotations**

141 Given the need for human annotations in supervised training, we sought to compare the impact of
142 expert variability on this process. Firstly, two experts independently labelled blood vessels on 2D
143 maximum intensity projections (MIPs) generated from 3D *in vivo* PAI data from mouse ears (n=1)
144 and skin (n=4) (Fig. 3A). MIPs were specifically employed to mitigate prevalent surface illumination
145 artefacts that typically lead to only the upper part of absorbing structures being excited and detected,
146 which has been shown to result in inaccurate 3D segmentations by human annotators³⁸.

147 Comparing the two expert annotations, substantial differences were observed between their seg-
148 mentations both qualitatively (Fig. 3B) and quantitatively (F1 Score: 0.667/0.569, IoU: 0.501/0.397,
149 Specificity: 0.916/0.892 and Sensitivity: 0.754/0.659 for ear / skin), highlighting the challenges in
150 ground-truth label creation in real imaging data. These expert annotators then independently
151 trained separate 3D RF models for vessel segmentation in mouse ear and skin datasets. Compar-
152 ing these models showed no bias toward respective expert labels; each RF model performed poorly
153 against the 2D annotations (for example, F1 Score: 0.668 / 0.613 for ear / skin for the RF model and
154 ground-truths created by expert 1 - Supplementary Table 5). VAN-GAN's accuracy was also low
155 overall (F1 Score: 0.649 / 0.529 for ear / skin compared against ground-truths labelled by expert
156 1), however, it was more robust to segmentation of background noise as closer scrutiny revealed
157 limitations in RF, such as artefact segmentation and discontinuities in segmented vessels (Fig. 3C,
158 D).

159 To analyse more comprehensively the 3D morphology of vascular networks segmented by the
160 RF and VAN-GAN models, we skeletonised the 3D vessel masks (Fig. 3E) and calculated a set of
161 vascular descriptors based on topological data analysis (see Methods). Focusing on the mouse skin,
162 we found that the number of vascular subnetworks (or connected components) and network loops
163 between RF₁ and RF₂ were significantly different (Fig. 3F,G). These analyses highlight a critical
164 flaw in using supervised segmentation models - their performance is inherently limited by the quality
165 of training data. Independent training by different expert users can lead to systematically varied
166 segmentation outcomes (Fig. 3H), which could bias study interpretation. By comparison, VAN-
167 GAN predicts more larger interconnected vascular networks, with the largest subnetwork on average
168 forming 84.0% of the total subnetwork volume (Fig. 3H,I). These results indicate that VAN-GAN
169 segments more well-connected networks compared to RF, which aligns better with the expectations
170 of the biological network in healthy skin.

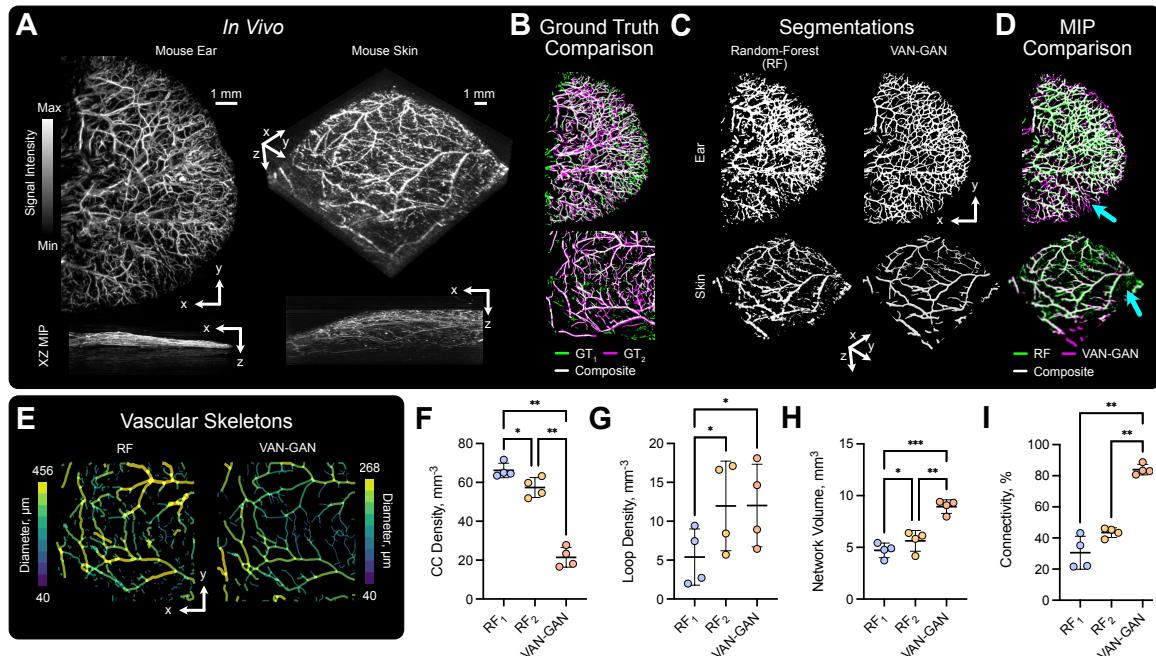


Figure 3: Unsupervised vascular segmentation overcomes user variation in human annotations. (A) Mouse ear and skin imaged *in vivo* using PAI. (B) ground-truths for XY maximal intensity projections (MIPs) were generated by two experts (indicated by subscripts 1 and 2). Visualisations indicate variability between each expert for the ear (top) and skin (bottom). (C) 3D segmentation masks predicted using RF (left) and VAN-GAN (right) for datasets shown in (A,B). (D) Comparison of MIPs generated from the 3D segmentation labels shown in (C) with arrows indicating segmented noise and vessel discontinuities using RF. (E) 2D projections of 3D vascular skeletons created from the two segmentation methods applied to mouse skin. Variability between individual users RF classifiers and VAN-GAN on the skeletonised mouse skin is indicated for a range of statistical and vascular descriptors: (F) connected component (CC) density (the number of subnetworks normalised against tissue volume, mm^{-3}); (G) loop density (the number of vessel network loops normalised against tissue volume, mm^{-3}); (H) network volume (mm^3); and (I) connectivity (the volume of the largest subnetwork normalised against total network volume, %). Mean and standard deviation of data are shown in (F-I). Statistical significance indicated by * ($P < 0.05$), ** ($P < 0.01$), *** ($P < 0.001$) and **** ($P < 0.0001$). MIP = maximal intensity projection.

171 **VAN-GAN is more robust to artefacts compared to human annotations**

172 Several imaging artefacts impede segmentation performance in PAI. Illumination artefacts, resulting
 173 from limited light coverage, cause objects to appear flattened in images (Fig. 4A), leading human
 174 users to annotate only the brighter top surfaces of blood vessels. In our paired synthetic dataset, we
 175 addressed this by training the supervised RF with full ground-truth labels, enabling it to learn the
 176 complete range of signal intensities expected from the reference structures. Training an RF segmenter
 177 with these paired synthetic data resulted in more accurate, axisymmetric vessel segmentation than
 178 that achieved by an RF model specialised for experimental *in vivo* datasets and trained by a human

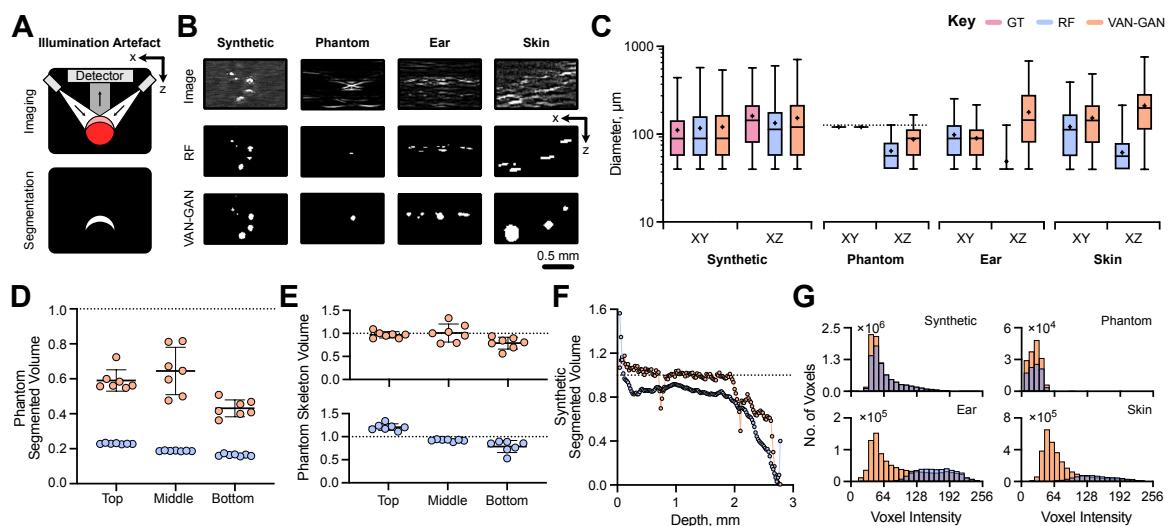


Figure 4: **VAN-GAN overcomes image artefacts in photoacoustic mesoscopy.** (A) The illumination artefact in photoacoustic mesoscopy results in the incorrect segmentation of the top surface of blood vessels due to lower signals from underlying regions. (B) Example image subsections highlighting the illumination artefact in each imaging domain dataset and corresponding random forest pixel classifier (RF) and VAN-GAN segmentations. RF models for phantom, ear and skin segmentation were trained by an expert whereas the RF model for the synthetic data was trained using known computer-generated ground-truths. (C) Diameters in the XY and XZ directions calculated for each dataset. For the string phantom, the known string volume is indicated by the dotted line. Computed string phantom volumes from (D) 3D segmented images and (E) skeletonised strings normalised against the ground-truth value. (F) Normalised segmented volume for our synthetic dataset with respect to tissue depth. (G) Histograms of signal intensities for each voxel segmented by each method and for each dataset: synthetic vasculatures, *in situ* string phantoms and *in vivo* mouse ear and skin datasets. Data in (C) is given by box and whisker plots which display the 25th, 50th and 75th quartiles, and the interquartile range. Mean and standard deviation of data are shown in (D) and (E).

179 annotator (Fig. 4B,C).

180 In contrast, VAN-GAN effectively accounts for the entire signal intensity range across vessel walls
181 and lumens in both *in silico* and *in vivo* datasets. When comparing diameters in the XZ-plane, VAN-
182 GAN's predictions were closer to ground-truth, outperforming the RF model (Fig. 4B,C). Accuracy
183 was further validated using photoacoustic string phantoms, which consist of three non-overlapping
184 strings of known size located at three separate depths parallel to the imaged surface³⁹. Although
185 VAN-GAN was not specifically trained on string phantom images, it more accurately predicted
186 string diameters in the XZ-plane than the RF model, demonstrating its robustness and versatility
187 to illumination artefacts.

188 Further artefacts arise in PAI due to depth-dependent SNR. VAN-GAN demonstrated a con-
189 sistent ability to accurately predict string volumes at various depths (Fig. 4D). Both VAN-GAN
190 and RF models showed improved network volume predictions after applying skeletonisation, which
191 presumes axisymmetric vessels (Fig. 4E). On the synthetic dataset, VAN-GAN consistently outper-
192 formed RF, especially when depth exceeded 2 mm (Fig. 4F). A detailed analysis of segmented voxel
193 signal intensities revealed a tendency for VAN-GAN to segment more low-intensity voxels across all
194 datasets, a trend that became more pronounced for *in vivo* data (Fig. 4G). Compared to RF models
195 with their limited receptive fields, VAN-GAN appears superior in handling complex spatially-varying
196 background noise and can better learn intricate feature representations.

197 **VAN-GAN segments vascular topologies beyond the training dataset**

198 PAI is vital for monitoring blood vessel evolution in tumours, which present unique segmentation
199 challenges due to their heterogeneous nature^{50,51}. Unlike physiological tissues, tumour vascular
200 architecture is chaotic with varying diameters, lengths and inter-connectivity across various spatial
201 scales. These features are absent in VAN-GAN's synthetic segmentation domain dataset since the
202 method used to generate branching structures inherently leads to regular and predictable patterns.

203 To evaluate the ability of VAN-GAN to segment complex pathological vascular networks, datasets
204 of 3D images of oestrogen receptor positive (ER+) and negative (ER-) breast cancer tumours derived
205 from both patient-derived xenograft models^{38,52} and cell lines (MCF7 and MDA-MB-231, respec-
206 tively) were used. Segmentations made by VAN-GAN allowed hypothesised structural differences in
207 vasculature between the ER+ and ER- subtypes to be identified in both tumour types (Fig. 5A and
208 Supplementary Notes). In the PDX tumours, the ER- tumours exhibited significantly higher vessel
209 surface area density with respect to tumour volume ($P < 0.05$, Fig. 5B). The *ex vivo* immunohisto-
210 chemistry (IHC) analysis of CD31 staining, an endothelial cell marker, cross-validated this finding,
211 as the ER- tumours showed significantly greater CD31 positivity ($P < 0.05$, Fig. 5C). Addition-
212 ally, VAN-GAN indicated ER- tumours displayed a higher density of vascular looping structures
213 ($P < 0.01$, Fig. 5D) and reduced vessel lengths ($P < 0.01$), which could indicate a more immature
214 vascular network compared to ER+. IHC staining of α -smooth muscle actin (α SMA), a pericyte
215 and smooth muscle marker, colocalised with CD31, supported this finding as ER- tumours showed
216 significantly lower positivity ($P < 0.01$, Fig. 5E).

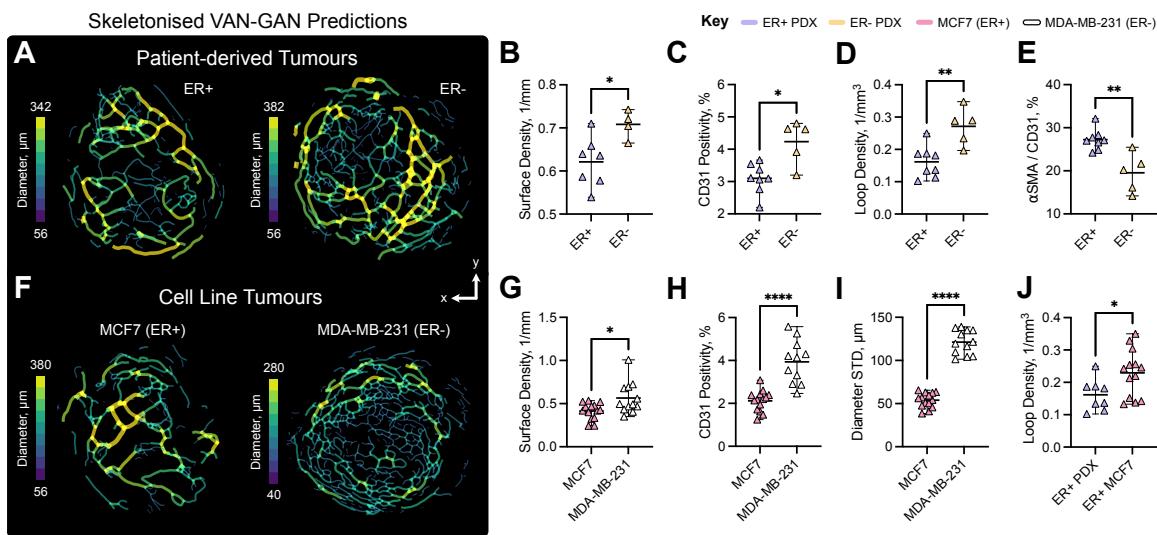


Figure 5: VAN-GAN enables quantification of pathological vascular architecture.

(A) Vascular skeletons for oestrogen receptor negative (ER-, left) and positive (ER+, right) breast cancer patient-derived xenograft tumours. A comparison of metrics for ER- (top) and ER+ (bottom): (B) vessel surface density (1/mm), (C) CD31 positivity (staining area with respect to tumour area, %), (D) vessel loop density (1/ mm³) and (E) α -smooth muscle actin (α SMA) colocalisation with CD31 staining (%). (F) Vascular skeletons of MCF7 (left) and MDA-MB-231 (right) breast cancer tumours. VAN-GAN metrics for MCF7 and MDA-MB-231 tumours: (G) vessel surface density (1/mm), (H) CD31 positivity and (I) standard deviation (STD) of vessel diameters (μ m). (J) A comparison of vessel loop density (1/ mm³) in ER+ models. Mean and standard deviation of data are shown in (C-F) and (H-K). Statistical significance indicated by * ($P < 0.05$), ** ($P < 0.01$), *** ($P < 0.001$) and **** ($P < 0.0001$).

217 VAN-GAN also showed distinct features between the cell-line derived MCF7 (ER+) and MDA-
 218 MB-231 (ER-) tumours (Fig. 5F) that were cross-validated by IHC, where the percentage of vessel
 219 wall surface was quantified on CD31 stained sections with respect to intra- and extra-vascular area.
 220 Here, when quantifying blood vessel network surface area with respect to the tumour volume from
 221 our 3D VAN-GAN segmentations, similar trends were observed ($P < 0.05$, Fig. 5G), with ER-
 222 MDA-MB-231 tumours displaying significantly elevated levels of CD31 ($P = 0.0001$, Fig. 5H).
 223 α SMA staining also indicated lower positivity for ER- MDA-MB-231 tumours ($P < 0.01$) but no
 224 significance in vessel loops or lengths between groups was found between each oestrogen receptor
 225 group. Vessels in the ER- MDA-MB-231 tumours exhibited greater heterogeneity (vessel diameters
 226 standard deviation, $P < 0.0001$, Fig. 5I), in contrast to the pattern observed in PDX tumours
 227 where greater heterogeneity was noted in ER+ tumours ($P < 0.05$). Observed differences between
 228 PDX and cell-line derived tumours were underscored by a significant difference in looping structure
 229 between ER+ models ($P < 0.05$, Fig. 5J), highlighting divergence in vascular maturity. The ER+

230 PDX tumours were likely at a more advanced stage of vascular development compared to ER+
231 MCF7 tumours.

232 The close relationship of the topological descriptors extracted from VAN-GAN segmentations to
233 IHC analyses of the same tumours, together with common trends across different tumour models,
234 indicate that VAN-GAN is able to accurately segment complex vasculatures that exceed the constraints
235 imposed by the synthetic segmentation data used in its training.

236 Discussion

237 Here, we introduced VAN-GAN, an innovative deep learning model that segments 3D vascular
238 networks imaged using PAI mesoscopy. For mesoscopic PAI, human annotations are time consuming
239 and laborious due to depth-dependent SNR and subtle imaging artefacts, which make it particularly
240 challenging to label pathological tissues such as tumours. Independent ground-truth labelling by
241 two expert users in our study showed substantial discrepancies in both their segmentations and the
242 vascular topology parameters measured from subsequent skeletonisations, highlighting the potential
243 for detrimental impact of user bias on quantification of blood vessel networks.

244 VAN-GAN adeptly navigates these difficulties in multiple ways. Firstly, VAN-GAN is a novel
245 approach that builds on the foundation of CycleGAN by integrating 3D deep residual U-Net genera-
246 tors and bespoke cycle-consistency loss functions and discriminator noise, fully leveraging the power
247 of unsupervised learning for PAI image segmentation. These additional elements were found through
248 an ablation study to enhance the capability of VAN-GAN in segmenting intricate vascular structures
249 from synthetic PAI volumes, leading to VAN-GAN surpassing traditional supervised methods and
250 rivalling the gold standard U-Net.

251 Secondly, VAN-GAN is able to handle complex imaging artefacts arising from the geometry of
252 the PAI system, demonstrating robustness in both synthetic and real-world datasets. VAN-GAN
253 errors were generally confined to only the smallest vessels. Importantly, VAN-GAN provided realistic
254 quantification of vessel lumens, which otherwise appear flattened in supervised segmentations due
255 to illumination artefacts; VAN-GAN restored the segmentation that would be expected based on
256 reference structures (in phantoms) and maintained lumen patency through to healthy ear and skin
257 tissues. VAN-GAN also demonstrated greater robustness to depth-dependent SNR, segmenting at a
258 greater depth than supervised methods and providing the most accurate quantifications with depth
259 of the tested methods.

260 Finally, VAN-GAN provides biologically relevant segmentations for *in vivo* PAI data, showing
261 more interconnected and larger vascular networks in the healthy ear and skin than other methods.
262 VAN-GAN also extended directly to application in pathological tissues, such as patient-derived
263 breast cancer, even though the complex chaotic architectures associated with these tissue types
264 were absent from the synthetic dataset used for training. Topological data analysis of skeletonised
265 vascular networks derived from VAN-GAN segmentations showed biological findings consistent with
266 IHC analysis conducted on *ex vivo* sections. Taken together, these three main findings demonstrate

267 strengths of VAN-GAN to significantly boost the precision and reliability of vascular segmentation
268 in PAI, while emphasising the versatility of the approach.

269 VAN-GAN has demonstrated impressive capabilities, however ,it is important to consider the
270 limitations of its training. Reliance on synthetic data, though effective, may in future need fur-
271 ther adaptation to encompass the full diversity of real-world vascular structures, particularly when
272 considering application to human imaging data. Such adaptations could include developing more
273 complex simulations to create more realistic vasculatures for simulation or integrating manual 3D
274 labels from a diverse range of imaging techniques into the training data. Additionally, extending
275 applicability to a wider range of tissue types and chromophores, beyond those included in its initial
276 training, would be important. All of the animal studies undertaken here were in nude mice, which
277 lack skin pigmentation, however, skin tone is a consideration that is gaining greater attention in the
278 PAI community⁵³ and data from a range of skin tones would be needed to maximise applicability
279 of VAN-GAN in future.

280 Moving forward, the potential applications of VAN-GAN extend beyond PAI. A key focus area
281 for enhancement is the optimisation of training schemes and loss function weightings, which are
282 crucial for ensuring the generalisability and efficacy of the model across diverse imaging contexts.
283 Merging VAN-GAN with open-source bioimage platforms would also be important to democratise
284 access to advanced segmentation tools, fostering wider adoption and application in the life sciences.
285 Integration such as this not only aligns with the trend towards accessible, high-quality image analysis
286 but also opens new avenues for research and clinical applications by providing consistent and unbiased
287 results.

288 In conclusion, VAN-GAN sets a new precedent in the segmentation of 3D microvascular networks
289 in mesoscopic PAI. By reducing the reliance on manual labelling and leveraging synthetic data, our
290 approach promises to lower the barrier to entry for high-quality blood vessel segmentation, leading
291 to more robust and consistent characterisation of vascular structures. VAN-GAN could thus not
292 only deepen our understanding of tumour vascular architectures but also pave the way for the
293 discovery of novel vascular-targeted therapeutics and improvement of diagnostic accuracy across
294 clinical applications.

295 Methods

296 The following details architecture and training methodology of VAN-GAN, in addition to describing
297 image synthesis and preprocessing. VAN-GAN was implemented using Tensorflow⁵⁴ with Keras
298 backend⁵⁵ and Tensorflow Addons, along with Tensorflow-MRI⁵⁶. The model was trained on either:
299 1) a Dell Precision 7920T with a Dual Intel Xeon Gold 5120 CPU with 128GB RAM and two NVIDIA
300 Quadro GV100 32GB GPUs with NVLink; or 2) a custom built workstation with a Intel Xeon Gold
301 5220 CPU with 128GB RAM and four NVIDIA RTX A6000 48GB GPUs with NVLinks. The
302 optimal model for each dataset was selected for application based on qualitative image evaluation
303 of generated images from the test set and a comprehensive analysis of minima for each loss function

304 (see Supplementary Methods and Supplementary Figs. 4-6).

305

306 **3D Deep Residual U-Net Generators.** VAN-GAN generators use a modified version of a deep
307 residual U-Net architecture⁴⁵ (see Supplementary Table 2), which integrates residual units into
308 a U-Net architecture to ease training and facilitate information propagation through the network
309 without degradation. For the latter, it is important to use low-level details and retain high-resolution
310 semantic information to improve segmentation performance^{4,45,57}. Both the generator input and
311 output tensor shapes are $128 \times 128 \times 128 \times 1$ (*depth* \times *width* \times *height* \times *channel*).

312

313 **3D PatchGAN Discriminators.** The discriminators use a five layer PatchGAN architecture⁵⁸
314 (see Supplementary Table 3). Each layer is composed of a 3D convolutional layer, instance nor-
315 malisation⁴⁶, leaky ReLU⁵⁹ and spatial dropout⁶⁰ (a rate of 20% and excluded from first and final
316 layers). Similarly to our generators, reflection padding was also used prior to convolution layers
317 to reduce feature map artefacts⁴⁸. Further, for additional regularisation and to limit unstable be-
318 haviour of VAN-GAN during training, random Gaussian noise was added to real or fake inputs to
319 the discriminator^{61,62} and for every proceeding layer prior to convolution blocks⁶² (Supplementary
320 Table 4).

321

322 **Loss Functions.** The goal is to learn the mapping functions $G : X \rightarrow Y$ and $F : Y \rightarrow X$ be-
323 tween the imaging, X , and segmentation, Y , domains. In the VAN-GAN model, each generator is
324 designed to minimise its own respective cycle-consistency loss, rather than collectively minimising a
325 total cycle-consistency loss as in CycleGAN⁴². Consequently, for each domain transformation the
326 corresponding generator is responsible for reducing the discrepancy between the original input and
327 cycle reconstructed output. Separating total cycle consistency components enables more specialised
328 optimisation of the generators by reducing the potential for conflicting domain transformation ob-
329 jectives, particularly given our imaging and segmentation domains are highly disparate.

330 We utilise L_1 -norm for forward cycle-consistency, i.e., $x \rightarrow G(x) \rightarrow F(G(x)) \approx x$:

$$\mathcal{L}_{cyc_X}(G, F, x) = \mathbb{E}_{x \sim p_{data}(x)} [||F(G(x)) - x||_1], \quad (1)$$

331 and binary cross-entropy for backward cycle-consistency, i.e., $y \rightarrow F(y) \rightarrow G(F(y)) \approx y$:

$$\mathcal{L}_{cyc_Y}(G, F, y) = -\mathbb{E}_{y \sim p_{data}(y)} \{y \log [G(F(y))] + (1 - y) \log [1 - G(F(y))]\}. \quad (2)$$

332 In addition to (1) and (2), two additional constraints on cycle-consistency are imposed: 1) a
333 structural similarity index measure (SSIM) loss; and 2) a topology-preserving loss (centrelineDice or
334 clDice⁴⁴) for backward cycle-consistency. SSIM is used for forward-consistency to ensure structural
335 and perceptive features in biomedical images are retained when generating fake images. Similarly,
336 to preserve the morphological characteristics of vascular networks when segmenting blood vessels,
337 a constraint on backward-consistency was applied that seeks to minimise differences in network

338 structure and topology.

339 SSIM is a perceptually motivated model composed of three comparison functions: luminance,
 340 contrast and structure. Typically SSIM is used to assess image quality, so as a loss function can
 341 be used for image restoration⁶³, such as denoising and super-resolution^{64,65} and pose-guided person
 342 image generation⁶⁶. Here, SSIM adopts a sliding Gaussian window to calculate the SSIM index
 343 between two local patches centred around a pixel coordinate. For image patches I_p and J_p , SSIM is
 defined as

$$\text{SSIM}(I_p, J_p) = \frac{(2\mu_I\mu_J + C_1)(2\sigma_{IJ} + C_2)}{(\mu_I^2 + \mu_J^2 + C_1)(\sigma_I^2 + \sigma_J^2 + C_2)}. \quad (3)$$

344 Here, μ_I , μ_J , σ_I^2 and σ_J^2 are the mean and variance of I_p and J_p , respectively, σ_{IJ} is the covariance
 345 of I_p and J_p , and $C_1 = (0.01 \cdot L)^2$ and $C_2 = (0.03 \cdot L)^2$, where L is the dynamic range of the
 pixel-values. To maximise the SSIM of biomedical images we form the reconstruction loss:

$$\mathcal{L}_{rec}(G, F, x, y) = 1 - \mathbb{E}_{x \sim p_{data}(x)} \text{SSIM}(x_p, F(G(x))_p), \quad (4)$$

346 where the subscript p indicates image patches.

347 Cycle-consistency alone does not provide sufficient spatial constraint on the network topology
 348 of segmented images⁴⁴. Consequently, spatial and topological constraints on backward-consistency
 349 are added to act as additional regulatory loss function term. Here, the segmentation labels of
 350 synthetically-generated 3D vascular networks, y , are compared to $G(F(y))$ to ensure differences in
 351 topology are minimised. Minimisation is achieved using the connectivity-preserving metric **clDice**,
 352 which enforces topology preservation up to homotopy equivalence for binary segmentation⁴⁴. Following
 353 Shit et al.⁴⁴, the loss function is a combination of soft-Dice loss and the differentiable form
 of **clDice**, *softclDice*:

$$\mathcal{L}_{topo}(G, F, y) = \mathbb{E}_{y \sim p_{data}(y)} \left\{ (1 - \alpha) \left[1 - \text{softDice}(y, G(F(y))) \right] + \alpha \left[1 - \text{softclDice}(y, G(F(y))) \right] \right\}, \quad (5)$$

354 where the weighting, α , is set to 0.5.

355 The adversarial loss is expressed via least-squares adversarial loss⁶⁷ to mitigate problems with
 356 vanishing gradients. In the case of the mapping $G : X \rightarrow Y$, this is given by

$$\mathcal{L}_{GAN}(F, D_X, x, y) = \frac{1}{2} \mathbb{E}_{y \sim p_{data}(y)} \left[(D_X(x + \epsilon_Y) - 1)^2 \right] + \frac{1}{2} \mathbb{E}_{x \sim p_{data}(x)} \left[(D_X(F(y) + \epsilon_X))^2 \right], \quad (6)$$

357 where ϵ_X and ϵ_Y are the randomly sampled Gaussian noise⁶². Here the discriminator D_X aims to
 358 discern translated images, $F(y)$, from real images y by minimising the objective function, whereas F
 359 aims to maximise it against its adversarial rival. Adversarial loss is similarly used for the mapping
 360 $G : X \rightarrow Y$. Following Ihle et al.²¹, we do not impose an identity mapping loss as this constrains
 361 the tint of an image⁴² and so is not required for our greyscale and binary image volumes.

Thus, the objective function of VAN-GAN is given by

$$\begin{aligned}\mathcal{L}(G, F, D_X, D_Y) = & \mathcal{L}_{GAN}(G, D_Y, x, y) + \mathcal{L}_{GAN}(F, D_X, x, y) \\ & + \lambda [\mathcal{L}_{cyc_X}(G, F, x) + \mathcal{L}_{cyc_Y}(G, F, y)] + \eta \mathcal{L}_{rec}(G, F, x) + \mu \mathcal{L}_{topo}(G, F, y),\end{aligned}\quad (7)$$

362 where the hyperparameters λ , η and μ control the relative importance between the objectives are set to 10, 5 and 5, respectively. We aim to solve:

$$G^*, F^* = \arg \min_{G, F} \max_{D_X, D_Y} \mathcal{L}(G, F, D_X, D_Y). \quad (8)$$

363

364 **Synthetic Vasculature.** A language-theoretic model, called a Lindenmayer system (L-System)⁶⁸,
365 was used to generate 3D branching vascular networks (termed here as *V-System*). L-Systems are
366 ideally suited to our segmentation task as these models have been shown to create realistic, computer-
367 generated 3D vascular branching structures^{69,70} quickly and at scale³⁸ ($O(10^2)$ networks in $O(1)$
368 minutes). To generate a synthetic branching network, we used a new stochastic grammar to create
369 a string, which defines the complexity (in our case, the number of branching orders) of the vascular
370 network, for example, branching order and angle, vessel diameter and tortuosity, and aneurysms
371 or branching vessel shrinkage (see Supplementary Methods for mathematical descriptions). These
372 strings are translated to graph form using a lexical and syntactic analyser and subsequently converted
373 into volumetric binary segmentation masks³⁸, forming a synthetic dataset of 459 images for network
374 training.

375

376 **Photoacoustic Simulations.** To generate a paired image dataset, we performed photoacoustic
377 simulations on the segmentation volume of each image in our synthetic vascular dataset. Each
378 image pair consists of a physics-driven image volume and its corresponding known segmentation
379 labels. Simulations followed the method of Brown et al.³⁸ who used SIMPA⁷¹ (v0.1.1 with MCX
380 v2020, 1.8) with the k-Wave MATLAB toolbox⁷² (v1.3, MATLAB v2020b, MathWorks, Natick,
381 MA, USA) to predict photoacoustic signals across synthetic vasculatures under the assumption that
382 they are embedded in muscular tissue. In brief, vascular planar (XY) illumination was achieved
383 on an isotropic resolution with optical forward modelling assuming an absorption spectrum of 50%
384 oxygenated haemoglobin in blood vessels to mimic tumours⁷³. 3D acoustic forward modelling was
385 then performed with the signal detected by a planar array of sensors positioned at the tissue surface,
386 mimicking our PAI instrument (see below). The resulting photoacoustic wave-field was then recon-
387 structed using a fast Fourier transform⁷². While the PAI instrument raster-scans, we approximated
388 this process with a planar illumination due to computational restrictions (reducing simulation time
389 by a factor of 600²).

390

391 **Experimental Imaging.** PAI was performed using a commercial system (Raster-scan optoacoustic
392 mesoscopy RSOM Explorer P50, iThera Medical GmbH), as described previously³⁸. Briefly, string

393 phantoms were composed in agar mixed with intralipid (both Merck, UK) to mimic tissue-like
394 scattering with red-coloured synthetic fibres (Smilco, USA) embedded at three different depths. PAI
395 data were acquired at 100% laser energy with a 2kHz repetition rate. All animal procedures were
396 conducted in accordance with project (PE12C2B96) and personal licenses (I544913B4, IA70F0365)
397 issued under the United Kingdom Animals (Scientific Procedures) Act, 1986 and approved locally
398 by the Cancer Research UK Cambridge Institute Animal Welfare Ethical Review Board.

399 To generate *in vivo* vascular tumour models, breast PDX tumour fragments were cryopreserved
400 in a freezing media consisting of heat-inactivated foetal bovine serum (10500064, GibcoTM, Fisher
401 Scientific, Göteborg Sweden) and 10% dimethyl sulfoxide (D2650, Merck). The fragments were then
402 defrosted at 37°C, washed with Dulbecco's Modified Eagle Medium (41965039, GibcoTM), mixed
403 with matrigel (354262, Corning, NY, USA), and surgically implanted into the flank of 6–9 week-
404 old NOD scid gamma (NSG) mice (#005557, Jax Stock, Charles River, UK), following standard
405 protocols^{38,52}. The implantation involved one oestrogen receptor negative (ER-, n=6) PDX model
406 and one oestrogen receptor positive (ER+, n=8) PDX model. After the tumours had reached an
407 average diameter of ~ 1 cm, the mice were imaged and then sacrificed, with the tumours collected
408 in formalin for IHC analysis.

409 For the remaining breast cancer cell lines, seven-week old immuno-deficient female nude (BALB/c
410 nu/nu) mice (Charles River) were inoculated orthotopically in the mammary fat pad of both flanks
411 1·100⁶ cells (either MCF7, n=7, or MDA-MB-231, n=6, random group assignment) in a final volume
412 of 100 µL of 1:1 phosphate-buffered saline (PBS, Gibco) and matrigel (BD). For MCF7, oestrogen
413 implants (E2-M - 127 β-estradiol 90 days release, daily dose: 41.2-105.6 pg/ml, Belma Technologies)
414 were implanted subcutaneously in the scruff of the neck 3 days before tumour cell injection.

415 For animal imaging, were mice anaesthetised using 3-5% isoflurane in 50% oxygen and 50%
416 medical air. Mice were shaved and depilatory cream applied to remove hair that could generate
417 image artefacts; single mice were placed into the PAI system, on a heat-pad maintained at 37°C.
418 Respiratory rate was maintained between 70-80 bpm using isoflurane (~ 1 – 2% concentration)
419 throughout image acquisition. PAI data were acquired at 80% laser energy at 1kHz.

420 For string phantom imaging, phantoms were prepared following standard protocols⁷⁴ using agar
421 mixed with intralipid (both Merck, UK) to mimic tissue-like scattering with red-coloured synthetic
422 fibres (Smilco, USA) embedded at three different depths (top: 0.5 mm, middle: 1 mm, bottom: 2
423 mm).

424

425 **Immunohistochemistry.** The tumour tissues, obtained for *ex vivo* validation, were processed by
426 sectioning formalin-fixed paraffin-embedded (FFPE) samples. After deparaffinisation and rehydration,
427 IHC analysis was performed on the tissues using the following antibodies: CD31 (anti-mouse
428 77699, Cell Signalling, London, UK), αSMA (anti-mouse ab5694, Abcam, Cambridge, UK), and
429 carbonic anhydrase-IX (CAIX) (anti-human AB1001, Bioscience Slovakia, Bratislava, Slovakia), at
430 concentrations of 1:100, 1:500, and 1:1000, respectively. The analysis was carried out using a BOND
431 automated stainer, with a bond polymer refine detection kit (Leica Biosystems, Milton Keynes,

432 UK), and 3,3'-diaminobenzidine as a substrate. The stained FFPE sections were scanned at a magnification of 20x using an Aperio ScanScope (Leica Biosystems, Milton Keynes, UK) and analysed with either ImageScope software or HALO Software (v2.2.1870, Indica Labs, Albuquerque, NM, USA). Regions of interest (ROIs) were drawn over the entire viable tumour area, and the built-in algorithms were customised to analyse the following: CD31 positive area (μm^2) normalised to the ROI area (μm^2) (reported as CD31 positivity (%)), area of CD31 positive pixels (μm^2) colocalised on adjacent serial section with α SMA positive pixels/CD31 positive area (μm^2).

439

440 **Datasets and Preprocessing.** Image volume datasets were split into two categories: synthetic 441 or experimental datasets (see Supplementary Table 6 for overview). The synthetic datasets were 442 comprised of binary labels of 3D mathematically-generated vascular networks, which are paired with 443 computer-simulated photoacoustic image volumes (n=449 for each). Here, physics-driven predictions 444 are performed on the spatial architecture of the synthetic vasculature provided by the V-System in 445 each binary image volume. The experimental datasets consisted of a string phantom (n=7), mouse 446 ears (n=32), mouse skin (n=41) and breast cancer patient-derived xenograft (PDX) tumours in mice 447 (n=445), and MCF7 and MDA-MB-231 tumours derived from breast cancer cell lines (n=204), all 448 imaged *in vivo*. These datasets represent the *imaging domain* in VAN-GAN where n indicates the 449 number of image volumes used. Note, the string phantoms were not used for training.

450 All photoacoustic datasets were stored as 32-bit greyscale $600 \times 600 \times 140 \mu\text{m}^3$ (real) and 451 $512 \times 512 \times 140 \mu\text{m}^3$ (simulated) voxel tiff stacks with an isotropic voxel size of $20 \times 20 \times 20 \mu\text{m}^3$ in 452 the X-, Y- and Z-directions, where the Z-axis is perpendicular to the surface. All synthetic images 453 were stored in an 8-bit format and generated with dimensions $512 \times 512 \times 140 \mu\text{m}^3$ and an equal 454 isotropic voxel size. As VAN-GAN trains on image subvolumes of size $128 \times 128 \times 128 \times 1$ voxels, 455 all datasets were downsampled to 128 voxels in the Z-axis using a combination of maximum and 456 bicubic downsampling, to ensure that depth-dependent SNR information is retained for training. 457 All real and simulated photoacoustic images were normalised by performing XY slice-wise Z-score 458 normalisation followed by thresholding of the top and bottom 0.05% of pixel intensities to correct 459 for uneven illumination with respect to depth. Finally, datasets were normalised to a pixel intensity 460 range of $[-1, 1]$. Datasets were partitioned with 10% assigned for testing and with the remaining 461 90% split 80/20 between training/validation.

462

463 **Network Training.** Image patches were randomly sampled with a global batch size of two. Due to 464 the sparsity of vessels with respect to the background for all datasets, a mapping function was applied 465 when images were retrieved from the synthetic segmentation dataset. Here, the function detected 466 whether a sampled volume contained any vessels to ensure VAN-GAN learnt how to segment vessels 467 rather than just background. For 90% of sampled volumes, if no vessel was detected, a new image 468 volume was sampled. In addition, to artificially extend the size of our datasets, all images were 469 augmented via a rotation about the Z-axis randomly sampled from the set $\{0, \pi/2, \pi, 3\pi/2, 2\pi\}$.

470 All convolutional kernels were initialised using a He-normal initialiser and our loss functions

471 hyperparameters were set to default values^{42,44} $\alpha = 0.5$, $\lambda = 10$ and $\eta = \mu = 5$. Following Zhu
472 et al.⁴², training was performed for 200 epochs using the Adam optimizer⁷⁵ with a learning rate of
473 2×10^{-4} and 1st and 2nd moment estimates of 0.5 and 0.9, for both generators and discriminators.
474 Each generator and discriminator was given a linear learning rate decay to 0 from the 100th epoch.

475 Training was stabilised in two ways. Firstly, noise was applied to the real and fake input images
476 to the discriminators⁶². Noise was sampled from a Gaussian distribution with a mean and variance,
477 σ , of 0.0 and 0.8^i , where i was the i^{th} epoch, and so σ is annealed during training. Secondly, to avoid
478 exploding gradients, a gradient clip normalisation strategy⁷⁶ where all gradients of each weight was
479 individually clipped so that its norm is no higher than 100.

480

481 **Postprocessing.** To reconstruct whole image volumes from generator output a sliding-window
482 approach was employed³⁴. In summary, a sliding-window of size $128 \times 128 \times 128$ voxels was strided
483 across each inputted image with a stride length of 25 voxels in each XY direction. Output intensities
484 were summed and the mean value calculated for each voxel location by tracking the number of times
485 the window passed across a given voxel. To reduce edge artefacts, symmetric padding was used to
486 ensure the sliding-window passed over each voxel for an equal number of instances. For segmenting an
487 image, this reconstruction method results in a 32-bit 3D greyscale image where intensities indicate a
488 probability that a voxel is a blood vessel. Consequently, following bicubic upsampling to an isotropic
489 voxel size (140 voxels in the Z-axis), images were then thresholded based on the histogram of voxel
490 intensities to binarise the image.

491

492 **Evaluation Metrics.** Common machine learning metrics do not provide a complete picture of image
493 segmentation performance for tubular-like structures⁷⁷. To evaluate our results, we calculated both
494 standard segmentation metrics and a set of vascular descriptors^{38,78} to provide a deeper insight
495 into how well network morphology is predicted. The standard segmentation metrics used comprised
496 of: F1 Score = $2 \cdot (precision \cdot sensitivity) / (precision + sensitivity)$; Intersection over Union (IoU)
497 = $TP / (TP + FP + FN)$; Sensitivity = $TP / (TP + FN)$ and Specificity = $TN / (TN + FP)$, where
498 TP = true positive, TN = true negative, FP = false positive and FN = false negative.

499 To calculate vascular descriptors, all segmentations were skeletonised using the open-source
500 package Russ-learn^{79,80}. The vascular skeletons allowed us to perform structural and topological
501 data analyses on the vascular skeletons^{78,81}. The metrics were use are: number of vessels and
502 branching nodes, vessel mean and standard deviation of diameters and lengths, network volume,
503 surface density (the surface area of the vascular network normalised against the tissue volume),
504 whereas topological descriptors consisted of connected components (or subnetworks, Betti-0) and
505 looping structures (Betti-1) and network connectivity (the volume of the largest vascular subnetwork
506 normalised against total network volume).

507

508 **Statistical Analysis.** Statistical analyses were conducted using Prism (v9, GraphPad Software,
509 San Diego, CA, USA). Comparisons of metrics between synthetic segmentations were computed using

510 the non-parametric Friedman test. Comparisons of vascular descriptors for *in vivo* ear datasets were
511 performed using either paired parametric or non-parametric t-tests depending on data satisfying
512 normality. Comparison of vascular descriptors for *in vivo* tumour datasets were performed using
513 Wilcoxon tests, with comparisons between ER- and ER+ or MCF7 and MDA-MB-231 tumour
514 types made using unpaired non-parametric t-tests (Mann-Whitney tests). Statistical outliers were
515 identified by five non-parametric tests: 1) Tukey's fences; 2) Median Absolute Deviation (MAD);
516 3) Modified Z-Score; 4) percentiles (5th and 95th percentile cutoffs) and 5) Hampel identifier. All
517 P-values < 0.05 were considered statistically significant.

518 **Code Availability**

519 All our software are open-source and available in Github repositories. VAN-GAN (2023, Version
520 1.0) [Computer software - <https://github.com/psweens/VAN-GAN>]. V-System (2022, Version 2.0)
521 [Computer Software - <https://github.com/psweens/V-System>]. Vascular Topological Data Analysis
522 (2022, Version 2.0) [Computer Software - <https://github.com/psweens/Vascular-TDA>].

523 **Data Availability**

524 Scientific data supporting the findings of this study will be made available upon publication via the
525 University of Cambridge Research Data Repository at: <https://doi.org/10.17863/CAM.96379>.

526 **Acknowledgements**

527 PWS, TLL, LH, ELM, and SEB acknowledge the support from Cancer Research UK under grant
528 numbers C14303/A17197, C9545/A29580, C47594/A16267, C197/A16465, C47594/A29448, and
529 Cancer Research UK RadNet Cambridge under the grant number C17918/A28870. PWS acknowl-
530 edges the support of the Wellcome Trust and University of Cambridge through an Interdisciplinary
531 Fellowship under grant number 204845/Z/16/Z. TLL is supported by the Cambridge Trust. LH
532 was funded from NPL's MedAccel programme financed by the Department of Business, Energy and
533 Industrial Strategy's Industrial Strategy Challenge Fund. JG acknowledges funding from the Walter
534 Benjamin Stipendium of the Deutsche Forschungsgemeinschaft. SEB is also funded by the EPSRC
535 (EP/R003599/1). We thank the Cancer Research UK Cambridge Institute Biological Resources
536 Unit and Imaging Core for their support in conducting this research. We also thank the laboratory
537 of Prof. Carlos Caldas for their provision of the patient-derived xenograft material and support in
538 establishing the models. For the purpose of open access, the corresponding author has applied a
539 Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.

540 Competing Interests

541 The authors have no conflict of interest related to the present manuscript to disclose.

542 Author Contributions

543 Conceptualisation: PWS, SEB

544 Methodology: PWS, JG

545 Software: PWS

546 Validation: PWS, SEB

547 Formal Analysis: PWS

548 Investigation: PWS, LH

549 Resources: SEB

550 Data Collection: PWS, LH, TLL, ELB

551 Data Curation: PWS

552 Writing - original draft: PWS

553 Writing - review & editing: PWS, LH, TLL, ELB, JG, SEB

554 Visualisation: PWS

555 Project Administration: PWS, SEB

556 Funding Acquisition: PWS, SEB

557

558 References

559 [1] Hailong He, Ludwig Englert, and Vasilis Ntziachristos. Optoacoustic Endoscopy of the Gas-
560 trointestinal Tract, 3 2023. ISSN 23304022.

561 [2] Hailong He, Nikolina Alexia Fasoula, Angelos Karlas, Murad Omar, Juan Aguirre, Jessica
562 Lutz, Michael Kallmayer, Martin Füchtenbusch, Hans Henning Eckstein, Annette Ziegler, and
563 Vasilis Ntziachristos. Opening a window to skin biomarkers for diabetes stage with opto-
564 acoustic mesoscopy. *Light: Science and Applications*, 12(1):1–15, 9 2023. ISSN 20477538. doi:
565 10.1038/s41377-023-01275-3.

566 [3] Erik Meijering. A bird's-eye view of deep learning in bioimage analysis, 1 2020. ISSN 20010370.

567 [4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. *U-Net: Convolutional Networks for*
568 *Biomedical Image Segmentation*. Springer International Publishing, 2015. ISBN 9783319245737.
569 doi: 10.1007/978-3-319-24574-4_28.

570 [5] Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ronneberger.
571 3D U-net: Learning dense volumetric segmentation from sparse annotation. In *Medical Image*

572 Computing and Computer-Assisted Intervention – MICCAI 2016., volume 9901. Springer, 2016.
573 ISBN 9783319467221. doi: 10.1007/978-3-319-46723-8_49.

574 [6] Fausto Milletari, Nassir Navab, and Seyed Ahmad Ahmadi. V-Net: Fully convolutional
575 neural networks for volumetric medical image segmentation. In *Proceedings - 2016 4th
576 International Conference on 3D Vision*, pages 565–571. Institute of Electrical and Elec-
577 tronics Engineers Inc., 6 2016. ISBN 9781509054077. doi: 10.1109/3DV.2016.79. URL
578 <https://arxiv.org/abs/1606.04797v1>.

579 [7] Angela D’Esposito, Paul W. Sweeney, Morium Ali, Magdy Saleh, Rajiv Ramasawmy,
580 Thomas A. Roberts, Giulia Agliardi, Adrien Desjardins, Mark F. Lythgoe, R. Barbara Pedley,
581 Rebecca Shipley, and Simon Walker-Samuel. Computational fluid dynamics with imaging of
582 cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours.
583 *Nature Biomedical Engineering*, 2(10):773–787, 10 2018. ISSN 2157-846X. doi: 10.1038/s41551-
584 018-0306-y.

585 [8] A A Folarin, M A Konerding, J Timonen, S Nagl, and R B Pedley. Three-dimensional anal-
586 ysis of tumour vascular corrosion casts using stereomicroscopy and micro-computed tomography.
587 *Microvascular research*, 80(1):89–98, 2010. ISSN 1095-9319. doi: 10.1016/j.mvr.2010.03.007.

588 [9] Joes Staal, Michael D. Abràmoff, Meindert Niemeijer, Max A. Viergever, and Bram Van Gin-
589 neken. Ridge-based vessel segmentation in color images of the retina. *IEEE Transactions on
590 Medical Imaging*, 23(4):501–509, 4 2004. ISSN 02780062. doi: 10.1109/TMI.2004.825627.

591 [10] Adam Hoover. Locating blood vessels in retinal images by piecewise threshold probing of a
592 matched filter response. *IEEE Transactions on Medical Imaging*, 19(3):203–210, 2000. ISSN
593 02780062. doi: 10.1109/42.845178.

594 [11] Petteri Teikari, Marc Santos, Charissa Poon, and Kullervo Hynynen. Deep Learning
595 Convolutional Networks for Multiphoton Microscopy Vasculature Segmentation. *arXiv*,
596 6 2016. doi: 10.48550/arxiv.1606.02382. URL <https://arxiv.org/abs/1606.02382v1>
597 <http://arxiv.org/abs/1606.02382>.

598 [12] Mohammad Haft-Javaherian, Linjing Fang, Victorine Muse, Chris B. Schaffer, Nozomi
599 Nishimura, and Mert R. Sabuncu. Deep convolutional neural networks for segmenting
600 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models. *PLoS
601 ONE*, 14(3):e0213539, 3 2019. ISSN 19326203. doi: 10.1371/journal.pone.0213539. URL
602 <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213539>.

603 [13] Mohammad Haft-Javaherian, Martin Villiger, Chris B Schaffer, Nozomi Nishimura, Polina Gol-
604 land, and Brett E Bouma. A topological encoding convolutional neural network for segmentation
605 of 3D multiphoton images of brain vasculature using persistent homology. In *IEEE Computer*

606 *Society Conference on Computer Vision and Pattern Recognition Workshops*, volume 2020-
607 June, pages 4262–4271, 2020. ISBN 9781728193601. doi: 10.1109/CVPRW50498.2020.00503.
608 URL <https://github.com/mhaft/DeepVess>.

609 [14] Dali Chen, Yingying Ao, and Shixin Liu. Semi-supervised learning method of U-net deep
610 learning network for blood vessel segmentation in retinal images. *Symmetry*, 12(7):1067, 6
611 2020. ISSN 20738994. doi: 10.3390/SYM12071067.

612 [15] Zailiang Chen, Yuchen Xiong, Hao Wei, Rongchang Zhao, Xuanchu Duan, and Hailan Shen.
613 Dual-consistency semi-supervision combined with self-supervision for vessel segmentation in
614 retinal OCTA images. *Biomedical Optics Express*, 13(5):2824, 5 2022. ISSN 2156-7085. doi:
615 10.1364/boe.458004.

616 [16] Soumick Chatterjee, Kartik Prabhu, Mahantesh Pattadkal, Gerda Bortsova, Chompunuch
617 Sarasaen, Florian Dubost, Hendrik Mattern, Marleen de Bruijne, Oliver Speck, and Andreas
618 Nürnberg. DS6, Deformation-Aware Semi-Supervised Learning: Application to Small Vessel
619 Segmentation with Noisy Training Data. *Journal of Imaging*, 8(10), 10 2022. ISSN 2313433X.
620 doi: 10.3390/jimaging8100259.

621 [17] Ning Shen, Tingfa Xu, Ziyang Bian, Shiqi Huang, Feng Mu, Bo Huang, Yuze Xiao, and
622 Jianan Li. SCANet: A Unified Semi-Supervised Learning Framework for Vessel Segmenta-
623 tion. *IEEE Transactions on Medical Imaging*, 42(9):2476–2489, 9 2023. ISSN 1558254X. doi:
624 10.1109/TMI.2022.3193150.

625 [18] Fengming Lin, Yan Xia, Nishant Ravikumar, Qiongyao Liu, Michael MacRaild, and Alejandro F
626 Frangi. Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous Labels.
627 *arXiv*, 8 2023.

628 [19] Yingxue Pang, Jianxin Lin, Tao Qin, and Zhibo Chen. Image-to-Image Translation: Meth-
629 ods and Applications. *IEEE Transactions on Multimedia*, 2021. ISSN 19410077. doi:
630 10.1109/TMM.2021.3109419.

631 [20] Arnab Kumar Mondal, Aniket Agarwal, Jose Dolz, and Christian Desrosiers.
632 Revisiting CycleGAN for semi-supervised segmentation. *arXiv*, 2019. URL
633 <http://arxiv.org/abs/1908.11569>.

634 [21] Stephan J. Ihle, Andreas M. Reichmuth, Sophie Girardin, Hana Han, Flurin Stauffer, Anne
635 Bonnin, Marco Stampanoni, Karthik Pattisapu, János Vörös, and Csaba Forró. Unsupervised
636 data to content transformation with histogram-matching cycle-consistent generative adversarial
637 networks. *Nature Machine Intelligence* 2019 1:10, 1(10):461–470, 9 2019. ISSN 2522-5839. doi:
638 10.1038/s42256-019-0096-2. URL <https://www.nature.com/articles/s42256-019-0096-2>.

639 [22] Faisal Mahmood, Daniel Borders, Richard J. Chen, Gregory N. Mckay, Kevan J. Salimian,
640 Alexander Baras, and Nicholas J. Durr. Deep Adversarial Training for Multi-Organ Nuclei

641 Segmentation in Histopathology Images. *IEEE transactions on medical imaging*, 39(11):3257–
642 3267, 11 2020. ISSN 1558254X. doi: 10.1109/TMI.2019.2927182.

643 [23] Thomas de Bel, John Melle Bokhorst, Jeroen van der Laak, and Geert Litjens. Residual cyclegan
644 for robust domain transformation of histopathological tissue slides. *Medical Image Analysis*,
645 70:102004, 5 2021. ISSN 13618423. doi: 10.1016/j.media.2021.102004.

646 [24] Ricky Chen, Timothy T. Yu, Gavin Xu, Da Ma, Marinko V. Sarunic, and Mirza Faisal Beg.
647 Domain Adaptation via CycleGAN for Retina Segmentation in Optical Coherence Tomography.
648 *arXiv*, 7 2021. doi: 10.48550/arxiv.2107.02345. URL <https://arxiv.org/abs/2107.02345v1>
649 <http://arxiv.org/abs/2107.02345>.

650 [25] Chichen Fu, Soonam Lee, David Joon Ho, Shuo Han, Paul Salama, Kenneth W Dunn,
651 and Edward J Delp. Three dimensional fluorescence microscopy image synthesis and seg-
652 mentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recog-
653 nition Workshops*, volume 2018-June, pages 2302–2310, 2018. ISBN 9781538661000. doi:
654 10.1109/CVPRW.2018.00298.

655 [26] Yuxin Ma, Yang Hua, Hanming Deng, Tao Song, Hao Wang, Zhengui Xue, Heng Cao, Ruhui
656 Ma, and Haibing Guan. Self-Supervised Vessel Segmentation via Adversarial Learning. In
657 *Proceedings of the IEEE International Conference on Computer Vision*, pages 7516–7525. In-
658 stitute of Electrical and Electronics Engineers (IEEE), 2 2021. ISBN 9781665428125. doi:
659 10.1109/ICCV48922.2021.00744.

660 [27] Janek Gröhl, Kris K. Dreher, Melanie Schellenberg, Alexander Seitel, and Lena Maier-Hein.
661 SIMPA: an open source toolkit for simulation and processing of photoacoustic images. *Photons
662 Plus Ultrasound Imaging Sens.*, 2021.

663 [28] Hengrong Lan, Kang Zhou, Changchun Yang, Jun Cheng, Jiang Liu, Shenghua Gao, and
664 Fei Gao. Ki-GAN: Knowledge infusion generative adversarial network for photoacoustic image
665 reconstruction in vivo. In *Lecture Notes in Computer Science (including subseries Lecture Notes
666 in Artificial Intelligence and Lecture Notes in Bioinformatics)*, volume 11764 LNCS, pages 273–
667 281. Springer Science and Business Media Deutschland GmbH, 2019. ISBN 9783030322380. doi:
668 10.1007/978-3-030-32239-7_31.

669 [29] Tong Lu, Tingting Chen, Feng Gao, Biao Sun, Vasilis Ntziachristos, and Jiao Li. LV-GAN: A
670 deep learning approach for limited-view optoacoustic imaging based on hybrid datasets. *Journal
671 of Biophotonics*, 14(2):e202000325, 2 2021. ISSN 18640648. doi: 10.1002/jbio.202000325.

672 [30] Ciaran Bench and Ben T. Cox. Enhancing synthetic training data for quantita-
673 tive photoacoustic tomography with generative deep learning. *arXiv*, 5 2023. URL
674 <http://arxiv.org/abs/2305.04714>.

675 [31] Janek Grohl, Thomas R. Else, Lina Hacker, Ellie V. Bunce, Paul W. Sweeney, and Sarah E.
676 Bohndiek. Moving beyond simulation: data-driven quantitative photoacoustic imaging using
677 tissue-mimicking phantoms. *IEEE Transactions on Medical Imaging*, 6 2023. ISSN 1558254X.
678 doi: 10.1109/TMI.2023.3331198. URL <https://arxiv.org/abs/2306.06748v1>.

679 [32] Alan Yilun Yuan, Yang Gao, Liangliang Peng, Lingxiao Zhou, Jun Liu, Siwei Zhu, and Wei
680 Song. Hybrid deep learning network for vascular segmentation in photoacoustic imaging.
681 *Biomedical Optics Express*, 11(11):6445, 11 2020. ISSN 2156-7085. doi: 10.1364/boe.409246.

682 [33] Melanie Schellenberg, Kris K. Dreher, Niklas Holzwarth, Fabian Isensee, Annika Reinke,
683 Nicholas Schreck, Alexander Seitel, Minu D. Tizabi, Lena Maier-Hein, and Janek Gröhl. Se-
684 mantic segmentation of multispectral photoacoustic images using deep learning. *Photoacoustics*,
685 26:100341, 6 2022. ISSN 22135979. doi: 10.1016/j.pacs.2022.100341.

686 [34] Cao Duong Ly, Van Tu Nguyen, Tan Hung Vo, Sudip Mondal, Sumin Park, Jaeyeop Choi, Thi
687 Thu Ha Vu, Chang Seok Kim, and Junghwan Oh. Full-view in vivo skin and blood vessels profile
688 segmentation in photoacoustic imaging based on deep learning. *Photoacoustics*, 25:100310, 3
689 2022. ISSN 22135979. doi: 10.1016/j.pacs.2021.100310.

690 [35] Ya Gao, Wenyi Xu, Yiming Chen, Weiya Xie, and Qian Cheng. Deep Learning-Based Photo-
691 acoustic Imaging of Vascular Network Through Thick Porous Media. *IEEE Transactions on
692 Medical Imaging*, 41(8):2191–2204, 8 2022. ISSN 1558254X. doi: 10.1109/TMI.2022.3158474.

693 [36] Angelos Karlas, Nikoletta Katsouli, Nikolina Alexia Fasoula, Michail Bariotakis, Nikolaos Kos-
694 mas Chlis, Murad Omar, Hailong He, Dimitrios Iakovakis, Christoph Schäffer, Michael Kall-
695 mayer, Martin Füchtenbusch, Annette Ziegler, Hans Henning Eckstein, Leontios Hadjileon-
696 tiadis, and Vasilis Ntziachristos. Dermal features derived from optoacoustic tomograms via
697 machine learning correlate microangiopathy phenotypes with diabetes stage. *Nature Biomedical
698 Engineering*, 7(12):1667–1682, 12 2023. ISSN 2157846X. doi: 10.1038/s41551-023-01151-w.

699 [37] Hailong He, Johannes C. Paetzold, Nils Borner, Erik Riedel, Stefan Gerl, Simon Schneider,
700 Chiara Fisher, Ivan Ezhov, Suprosanna Shit, Hongwei Li, Daniel Ruckert, Juan Aguirre,
701 Tilo Biedermann, Ulf Darsow, Bjoern Menze, and Vasilis Ntziachristos. Machine learning
702 analysis of human skin by optoacoustic mesoscopy for automated extraction of psoriasis and
703 aging biomarkers. *IEEE Transactions on Medical Imaging*, 2024. ISSN 1558254X. doi:
704 10.1109/TMI.2024.3356180.

705 [38] Emma L. Brown, Thierry L. Lefebvre, Paul W. Sweeney, Bernadette J. Stolz, Janek Gröhl,
706 Lina Hacker, Ziqiang Huang, Dominique Laurent Couturier, Heather A. Harrington, Helen M.
707 Byrne, and Sarah E. Bohndiek. Quantification of vascular networks in photoacoustic mesoscopy.
708 *Photoacoustics*, 26:100357, 6 2022. ISSN 22135979. doi: 10.1016/j.pacs.2022.100357.

709 [39] Lina Hacker, Emma L. Brown, Thierry L. Lefebvre, Paul W. Sweeney, and Sarah E. Bohndiek.
710 Evaluation of precision and sensitivity in mesoscopic photoacoustic imaging. *bioRxiv*, 2022.

711 [40] Shir Gur, Lior Wolf, Lior Golgher, and Pablo Blinder. Unsupervised microvascular image seg-
712 mentation using an active contours mimicking neural network. In *Proceedings of the IEEE Inter-*
713 *national Conference on Computer Vision*, volume 2019-Octob, pages 10721–10730, 2019. ISBN
714 9781728148038. doi: 10.1109/ICCV.2019.01082. URL <https://github.com/shirgur/UMIS>.

715 [41] Hengfei Cui, Chang Yuwen, and Lei Jiang. Unsupervised Three-Dimensional Tubular Struc-
716 ture Segmentation via Filter Combination. *International Journal of Computational Intelli-
717 gence Systems*, 14(1):1–12, 12 2021. ISSN 18756883. doi: 10.1007/s44196-021-00027-8. URL
718 <https://link.springer.com/article/10.1007/s44196-021-00027-8>.

719 [42] Jun Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-Image
720 Translation Using Cycle-Consistent Adversarial Networks. In *Proceedings of the IEEE Inter-*
721 *national Conference on Computer Vision*, pages 2242–2251, 2017. ISBN 9781538610329. doi:
722 10.1109/ICCV.2017.244.

723 [43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
724 recognition. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and*
725 *Pattern Recognition*, pages 770–778. IEEE Computer Society, 12 2016. ISBN 9781467388504.
726 doi: 10.1109/CVPR.2016.90.

727 [44] Suprosanna Shit, Johannes C Paetzold, Anjany Sekuboyina, Ivan Ezhov, Alexander Unger,
728 Andrey Zhylka, Josien P W Pluim, Ulrich Bauer, and Bjoern H Menze. cIDice-a Novel Topology-
729 Preserving Loss Function for Tubular Structure Segmentation. In *Proceedings of the IEEE/CVF*
730 *Conference on Computer Vision and Pattern Recognition*, pages 16560–16569, 2021.

731 [45] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road Extraction by Deep Residual U-Net.
732 *IEEE Geoscience and Remote Sensing Letters*, 15(5):749–753, 5 2018. ISSN 15580571. doi:
733 10.1109/LGRS.2018.2802944.

734 [46] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normalization: The Miss-
735 ing Ingredient for Fast Stylization. *arXiv*, 7 2016. doi: 10.48550/arxiv.1607.08022. URL
736 <https://arxiv.org/abs/1607.08022v3> <http://arxiv.org/abs/1607.08022>.

737 [47] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve Restricted Boltzmann ma-
738 chines. In *ICML 2010 - Proceedings, 27th International Conference on Machine Learning*, pages
739 807–814, 2010. ISBN 9781605589077.

740 [48] Bilal Alsallakh, Narine Kokhlikyan, Facebook Ai, Vivek Miglani, Jun Yuan, and Orion
741 Reblitz-Richardson. Mind the Pad – CNNs can Develop Blind Spots. In *9th Interna-
742 tional Conference on Learning Representations (ICLR)*, Vienna, Austria, 10 2021. URL
743 <https://arxiv.org/abs/2010.02178v1>.

744 [49] Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N. Straehle, Bernhard X. Kausler,
745 Carsten Haubold, Martin Schiegg, Janez Ales, Thorsten Beier, Markus Rudy, Kemal Eren,
746 Jaime I. Cervantes, Buote Xu, Fynn Beuttenmueller, Adrian Wolny, Chong Zhang, Ullrich
747 Koethe, Fred A. Hamprecht, and Anna Kreshuk. ilastik: interactive machine learning for
748 (bio)image analysis. *Nature Methods*, 16(12):1226–1232, 12 2019. ISSN 15487105. doi:
749 10.1038/s41592-019-0582-9. URL <https://pubmed.ncbi.nlm.nih.gov/31570887/>.

750 [50] Gael Diot, Stephan Metz, Aurelia Noske, Evangelos Liapis, Barbara Schroeder, Saak V.
751 Ovsepian, Reinhard Meier, Ernst Rummeny, and Vasilis Ntziachristos. Multispectral Opto-
752 acoustic Tomography (MSOT) of human breast cancer. *Clinical Cancer Research*, 23(22):
753 6912–6922, 11 2017. ISSN 15573265. doi: 10.1158/1078-0432.CCR-16-3200.

754 [51] Katja Haedicke, Lilach Agemy, Murad Omar, Andrei Berezhnoi, Sheryl Roberts, Camila Longo-
755 Machado, Magdalena Skubal, Karan Nagar, Hsiao Ting Hsu, Kwanghee Kim, Thomas Reiner,
756 Jonathan Coleman, Vasilis Ntziachristos, Avigdor Scherz, and Jan Grimm. High-resolution
757 optoacoustic imaging of tissue responses to vascular-targeted therapies. *Nature Biomedical
758 Engineering*, 4(3):286–297, 3 2020. ISSN 2157846X. doi: 10.1038/s41551-020-0527-8. URL
759 <https://pubmed.ncbi.nlm.nih.gov/32165736/>.

760 [52] Alejandra Bruna, Oscar M. Rueda, Wendy Greenwood, Ankita Sati Batra, Maurizio Callari,
761 Rajbir Nath Batra, Katherine Pogrebniak, Jose Sandoval, John W. Cassidy, Ana Tufegdzic-
762 Vidakovic, Stephen John Sammut, Linda Jones, Elena Provenzano, Richard Baird, Peter Eirew,
763 James Hadfield, Matthew Eldridge, Anne McLaren-Douglas, Andrew Barthorpe, Howard Light-
764 foot, Mark J. O’Connor, Joe Gray, Javier Cortes, Jose Baselga, Elisabetta Marangoni, Alana L.
765 Welm, Samuel Aparicio, Violeta Serra, Mathew J. Garnett, and Carlos Caldas. A Biobank of
766 Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Com-
767 pounds. *Cell*, 167(1):260–274, 9 2016. ISSN 10974172. doi: 10.1016/j.cell.2016.08.041.

768 [53] Thomas R. Else, Lina Hacker, Janek Gröhl, Ellie V. Bunce, Ran Tao, and Sarah E. Bohndiek.
769 Effects of skin tone on photoacoustic imaging and oximetry. *Journal of Biomedical Optics*, 29
770 (S1):S11506, 12 2023. ISSN 15602281. doi: 10.1117/1.jbo.29.s1.s11506.

771 [54] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
772 Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
773 fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
774 Kaiser, Manjunath Kudlur, Josh Levenberg, Danelion Mané, Mike Schuster, Rajat Monga,
775 Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
776 Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
777 Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
778 qiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems. In *12th
779 USENIX Symposium on Operating Systems Design and Implementation*, pages 265–278, 2015.
780 ISBN 978-1-931971-33-1. URL tensorflow.org.

781 [55] François Chollet and Others. Keras, 2015. URL <https://keras.io>.

782 [56] Javier Montalt Tordera. TensorFlow MRI, 12 2021. URL
783 <https://zenodo.org/record/5752336>.

784 [57] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
785 segmentation. *2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
786 pages 3431–3440, 6 2015. ISSN 1063-6919. doi: 10.1109/CVPR.2015.7298965.

787 [58] Phillip Isola, Jun Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
788 conditional adversarial networks. *Proceedings - 30th IEEE Conference on Computer Vision and*
789 *Pattern Recognition, CVPR 2017*, pages 5967–5976, 11 2017. doi: 10.1109/CVPR.2017.632.

790 [59] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural
791 network acoustic models. In *ICML Workshop on Deep Learning for Audio, Speech and Language*
792 *Processing*, 2013.

793 [60] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient
794 Object Localization Using Convolutional Networks. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pages 648–656. IEEE
795 Computer Society, 11 2014. ISBN 9781467369640. doi: 10.1109/CVPR.2015.7298664. URL
796 <https://arxiv.org/abs/1411.4280v3>.

797 [61] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised map inference for image super-resolution. In *5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings*, 2017. URL
798 <https://www.repository.cam.ac.uk/handle/1810/304913>.

799 [62] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks. In *5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings*, 2017.

800 [63] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss Functions for Image Restoration
801 With Neural Networks. *IEEE Transactions on Computational Imaging*, 3(1):47–57, 12 2016.
802 ISSN 2573-0436. doi: 10.1109/TCI.2016.2644865.

803 [64] Abdul Rehman, Mohammad Rostami, Zhou Wang, Dominique Brunet, and
804 Edward R. Vrscay. SSIM-inspired image restoration using sparse representation. *Eurasip Journal on Advances in Signal Processing*, 2012(1):1–12, 1
805 2012. ISSN 16876172. doi: 10.1186/1687-6180-2012-16/FIGURES/5. URL
806 <https://asp-eurasipjournals.springeropen.com/articles/10.1186/1687-6180-2012-16>.

807 [65] Dam Ja Ba Nay. Single Image Super Resolution using ESPCN – With SSIM
808 Loss. *SSRN Electronic Journal*, 1 2021. doi: 10.2139/SSRN.3898913. URL
809 <https://papers.ssrn.com/abstract=3898913>.

816 [66] Haoyue Shi, Le Wang, Nanning Zheng, Gang Hua, and Wei Tang. Loss functions for pose
817 guided person image generation. *Pattern Recognition*, 122:108351, 2 2022. ISSN 0031-3203.
818 doi: 10.1016/J.PATCOG.2021.108351.

819 [67] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and Stephen Paul Smol-
820 ley. Least Squares Generative Adversarial Networks. In *IEEE International Conference on*
821 *Computer Vision (ICCV)*, pages 2813–2821, Venice, Italy, 2017. ISBN 9781538610329. doi:
822 10.1109/ICCV.2017.304.

823 [68] Aristid Lindenmayer. Mathematical models for cellular interactions in development I. Filaments
824 with one-sided inputs. *Journal of Theoretical Biology*, 18(3):280–299, 1968. ISSN 10958541.
825 doi: 10.1016/0022-5193(68)90079-9.

826 [69] Miguel A. Galarreta-Valverde. *Geração de redes vasculares sintéticas tridimensionais utilizando*
827 *sistemas de Lindenmayer estocásticos e parametrizados*. PhD thesis, Instituto de Matemática
828 e Estatística, 2012.

829 [70] Miguel A. Galarreta-Valverde, Maysa M. G. Macedo, Choukri Mekkaoui, and Marcel P. Jack-
830 owski. Three-dimensional synthetic blood vessel generation using stochastic L-systems. In
831 *Medical Imaging 2013: Image Processing*, page 86691I, 2013. ISBN 9780819494436. doi:
832 10.1117/12.2007532.

833 [71] Janek Gröhl, Kris K. Dreher, Melanie Schellenberg, Tom Rix, Niklas Holzwarth, Patricia Vi-
834 eten, Leonardo Ayala, Sarah E. Bohndiek, Alexander Seitel, and Lena Maier-Hein. SIMPA: an
835 open-source toolkit for simulation and image processing for photonics and acoustics. *Journal*
836 *of Biomedical Optics*, 27(8):083010, 4 2022. ISSN 1083-3668. doi: 10.1117/1.JBO.27.8.083010.

837 [72] Bradley E. Treeby and B. T. Cox. k-Wave: MATLAB toolbox for the simulation and recon-
838 struction of photoacoustic wave fields. *Journal of Biomedical Optics*, 15(2):021314, 2010. ISSN
839 10833668. doi: 10.1117/1.3360308. URL <https://pubmed.ncbi.nlm.nih.gov/20459236/>.

840 [73] Isabel Quiros-Gonzalez, Michal R Tomaszewski, Sarah J Aitken, Laura Ansel-Bollepalli,
841 Leigh Ann McDuffus, Michael Gill, Lina Hacker, Joanna Brunker, and Sarah E Bohndiek.
842 Optoacoustics delineates murine breast cancer models displaying angiogenesis and vascu-
843 lar mimicry. *British Journal of Cancer*, 118(8):1098–1106, 2018. ISSN 15321827. doi:
844 10.1038/s41416-018-0033-x.

845 [74] James Joseph, Michal R. Tomaszewski, Isabel Quiros-Gonzalez, Judith Weber, Joanna Brunker,
846 and Sarah E. Bohndiek. Evaluation of precision in optoacoustic tomography for preclinical
847 imaging in living subjects. *Journal of Nuclear Medicine*, 58(5):807–814, 5 2017. ISSN 2159662X.
848 doi: 10.2967/jnumed.116.182311.

849 [75] Diederik P. Kingma and Jimmy Lei Ba. Adam: A Method for Stochastic Optimization. *3rd*
850 *International Conference on Learning Representations, ICLR 2015 - Conference Track Proceed-*
851 *ings*, 12 2014. URL <https://arxiv.org/abs/1412.6980v9>.

852 [76] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
853 neural networks. In *30th International Conference on Machine Learning, ICML 2013*, pages
854 2347–2355, 2013.

855 [77] Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Evangelia Christodoulou,
856 Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A.
857 Riegler, Manuel Wiesenfarth, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-
858 Nötzel, A. Emre Kavur, Tim Rädsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon
859 Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Beth Cimini,
860 Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert
861 Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E.
862 Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam,
863 Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Ben-
864 nnett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Matt-
865 son, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan
866 Nichyporuk, Felix Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez,
867 Clarisa Sánchez Gutiérrez, Shravya Shetty, Maarten van Smeden, Carole H. Sudre, Ronald M.
868 Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben Van Calster, Gaël Varoquaux, and Paul F.
869 Jäger. Metrics reloaded: Pitfalls and recommendations for image analysis validation. *arXiv*, 6
870 2022. doi: 10.48550/arxiv.2206.01653. URL <https://arxiv.org/abs/2206.01653v3>.

871 [78] Bernadette J. Stoltz, Jakob Kaeppler, Bostjan Markelc, Franziska Braun, Florian Lipsmeier,
872 Ruth J. Muschel, Helen M. Byrne, and Heather A. Harrington. Multiscale topology characterizes
873 dynamic tumor vascular networks. *Science Advances*, 8(23):2456, 6 2022. ISSN 23752548. doi:
874 10.1126/sciadv.abm2456. URL <https://www.science.org/doi/10.1126/sciadv.abm2456>.

875 [79] Russell Bates. *Learning to Extract Tumour Vasculature: Techniques in Machine Learning for*
876 *Medical Image Analysis*. PhD thesis, University of Oxford, 2017.

877 [80] Russell Bates. Russ-learn: set of tools for application and training of deep
878 learning methods for image segmentation and vessel analysis, 2018. URL
879 <https://ibme-gitcvs.eng.ox.ac.uk/RussellB/unet-test>.

880 [81] Moo K. Chung, Hyekyoung Lee, Alex Di Christofano, Hernando Ombao, and Victor Solo. Exact
881 topological inference of the resting-state brain networks in twins. *Network Neuroscience*, 3(3):
882 674–694, 7 2019. ISSN 24721751. doi: 10.1162/netn_a_00091.

7th February 2024

Dear Dr Pep Pàmies,

We are pleased to submit our manuscript entitled '*Unsupervised segmentation of 3D microvascular photoacoustic images using deep generative learning*' for consideration for publication in *Nature Biomedical Engineering*. Our study introduces a novel multidisciplinary approach that leverages machine learning for the analysis of medical images obtained through photoacoustic imaging (PAI) to explore vascular structure and function. Our innovative solution stands to significantly benefit your readership by advancing research and diagnostics in fields that utilise PAI.

Current Challenge

Microvascular network segmentation from image volumes presents a unique obstacle in biological research due to their complex 3D structures. This challenge is particularly evident in PAI, where photoacoustic artefacts significantly hinder the accurate and robust extraction of vascular parameters from high-resolution *in vivo* and *ex vivo* images, thus limiting their study in animal models and humans. While supervised deep neural networks have shown promise, the labour-intensive and error-prone nature of human annotations has limited their application to 3D images of blood vessels.

Our Solution

To overcome this constraint, we introduce VAN-GAN (*Vessel Segmentation Generative Adversarial Network*), an unsupervised image-to-image translation framework, which eliminates the need for human-annotated ground-truth labels by leveraging mathematically derived synthetic blood vessel networks to segment 3D photoacoustic images.

Our approach enables precise and unbiased blood vessel segmentations in 3D bioimages, eliminating the need for manual annotations.

We demonstrate VAN-GAN's superior performance in accurate and standardised segmentation of 3D vascular networks across a variety of *in silico*, *in vitro* and *in vivo* datasets, including human, patient-derived breast cancer xenograft (PDX) models.

Key Novelties

- **Innovative approach for PAI segmentation:** VAN-GAN introduces a novel deep generative model tailored for 3D vascular network segmentation in PAI in the absence of human annotations.
- **Rivals supervised segmentation:** VAN-GAN challenges, for example, U-Net in segmenting 3D vasculatures from physics-derived photoacoustic image volumes.
- **Robustness to imaging artefacts:** VAN-GAN can account for PAI artefacts (e.g., depth-dependent SNR and illumination artefacts) which impede human annotators.
- **Versatility to features absent from training data:** ER+/ER- PDX and cell-line based models show that VAN-GAN can segment complex vasculatures that exceed the constraints imposed by its synthetic training data.

Relevance to Readers of *Nature Biomedical Engineering*

We have demonstrated application here to photoacoustic imaging, which is a new imaging modality that has been regularly featured within *Nature Biomedical Engineering* in both

original research articles and reviews. We believe that the tuneability of VAN-GAN means that our approach is likely to have a broad impact in the study of vascular networks and biology using photoacoustics by providing a valuable tool to perform morphological analysis reliably and consistently across multi-modal bioimages. We are also convinced that the methodology of using physics-driven simulations in training means that the approach can readily extrapolate to other imaging modalities so will be of broad interest.

Given the novelty, significance, and broad interest of our findings to the fields of biomedical engineering, deep learning, and medical imaging, we believe that our manuscript is well-suited for publication in *Nature Biomedical Engineering*.

Potential Reviewers

We would like to suggest the following expert reviewers for this manuscript:

1. Daniel Razansky, ETH/University of Zurich
 - a. danir@ethz.ch
 - b. Expert in photoacoustics and prior research on deep learning in photoacoustic imaging.
2. Lena Maier-Hein, DKFZ
 - a. L_maier-hein@dkfz-heidelberg.de
 - b. Expert in data science and deep learning applied in photoacoustics.
3. Virginie Uhlmann, EMBL-EBI
 - a. uhlmann@ebi.ac.uk
 - b. Expert in morphological bioimage analysis
4. Roger Zemp, University of Alberta
 - a. rzemp@ualberta.ca
 - b. Expert in clinical applications of novel biomedical imaging techniques.
5. Andreas Hauptmann, University of Oulu
 - a. Andreas.hauptmann@oulu.fi
 - b. Expert in inverse problems in biomedical imaging.

I can confirm that the manuscript has been seen and approved by all authors. We have no conflict of interest to declare. This work has not been submitted for publication elsewhere and no results are reproduced from another source. We have had no prior discussions with any *Nature Biomedical Engineering* editor about the work described in our manuscript.

We appreciate your consideration of our study and look forward to hearing from you soon.

Yours sincerely,

Prof. Sarah E Bohndiek, on behalf of all co-authors.