

1 **Endothelial cells secrete small extracellular vesicles bidirectionally containing distinct
2 cargo to uniquely reprogram vascular cells in the circulation and vessel wall.**

3
4 Sneha Raju^{1,2,3,4}, Steven R. Botts^{1,2,4}, Mark Blaser⁵, Kamalben Prajapati¹, Tse Wing Winnie Ho⁶,
5 Crizza Ching^{1,2}, Natalie J Galant⁷, Lindsey Fiddes⁴, Ruilin Wu^{1,8}, Cassandra L. Clift⁵, Tan
6 Pham⁵, Warren L Lee⁶, Sasha A Singh^{5,9}, Elena Aikawa^{5,9}, Jason E Fish^{1,2,8,10}, *Kathryn L
7 Howe^{1,2,3,4,10}

8
9 ¹Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.

10 ²Institute of Medical Science, University of Toronto, Toronto, Canada. ³Division of Vascular
11 Surgery, Toronto General Hospital, Toronto, Canada. ⁴Faculty of Medicine, University of
12 Toronto, Toronto ON, Canada. ⁵Center for Interdisciplinary Cardiovascular Sciences,
13 Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard
14 Medical School, Boston, MA, USA. ⁶Keenan Research Centre for Biomedical Science, St.
15 Michael's Hospital, Toronto, ON, Canada. ⁷Princess Margaret Cancer Center, Toronto, Canada.
16 ⁸Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
17 ⁹Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine,
18 Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. ¹⁰Peter Munk
19 Cardiac Centre, Toronto General Hospital, Toronto, Canada

20
21 Short Title: Directional endothelial cell-cell communication

22
23 *Corresponding Author:

24
25 Kathryn L. Howe (Kathryn.howe@uhn.ca)

26 Peter Munk Cardiac Centre, University Health Network

27 6EN 220-200 Elizabeth Street, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada

28
29
30 Total Word Count: 13515

31
32

33 **Abstract**

34 Rationale: Extracellular vesicles (EVs) contain bioactive cargo including microRNAs (miRNAs)
35 and proteins that are released by cells as a form of cell-cell communication. Endothelial cells
36 (ECs) form the innermost lining of all blood vessels and thereby interface with cells in the
37 circulation as well as cells residing in the vascular wall. It is unknown whether ECs have the
38 capacity to release EVs capable of governing recipient cells within two separate compartments,
39 and how this is affected by endothelial activation commonly seen in atheroprone regions.

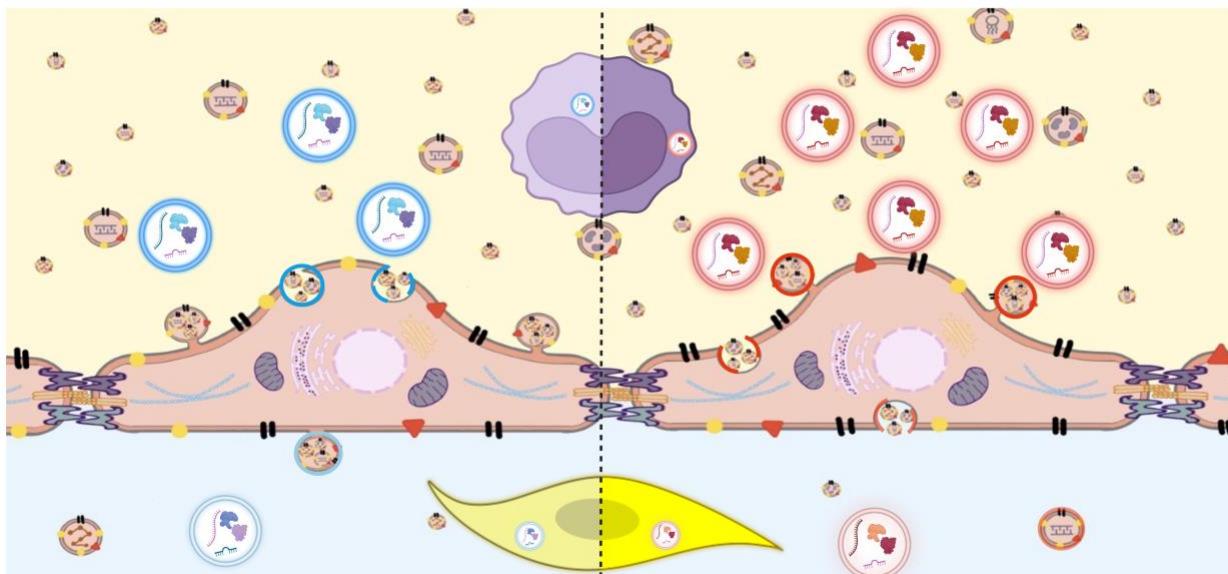
40
41 Objective: Given their boundary location, we propose that ECs utilize bidirectional release of
42 distinct EV cargo in quiescent and activated states to communicate with cells within the
43 circulation and blood vessel wall.

44
45 Methods and Results: EVs were isolated from primary human aortic endothelial cells (ECs) (+/-
46 IL-1 β activation), quantified, and analysed by miRNA transcriptomics and proteomics.
47 Compared to quiescent ECs, activated ECs increased EV release, with miRNA and protein
48 cargo that were related to atherosclerosis. RNA sequencing of EV-treated monocytes and
49 smooth muscle cells (SMCs) revealed that EVs from activated ECs altered pathways that were
50 pro-inflammatory and atherogenic. Apical and basolateral EV release was assessed using ECs
51 on transwells. ECs released more EVs apically, which increased with activation. Apical and
52 basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC
53 activation. Notably, basolateral EC-EVs displayed greater changes in the EV secretome, with
54 pathways specific to atherosclerosis. *In silico* analysis determined that compartment-specific
55 cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and
56 SMCs, respectively.

57
58 Conclusions: The demonstration that ECs are capable of polarized EV cargo loading and
59 directional EV secretion reveals a novel paradigm for endothelial communication, which may
60 ultimately enhance our ability to design endothelial-based therapeutics for cardiovascular
61 diseases such as atherosclerosis where ECs are persistently activated.

62
63
64 Key Words: atherosclerosis, monocyte, vascular smooth muscle cell, RNAseq, proteomics

66 **Non-standard Abbreviations and Acronyms**


67	cryo-EM	cryogenic electron microscopy
68	EC	endothelial cell
69	EV	extracellular vesicle
70	GO	gene ontology
71	HAEC	human aortic endothelial cell
72	SMC	human aortic vascular smooth muscle cell
73	IL-1 β	interleukin 1 beta
74	KEGG	Kyoto encyclopedia of genes and genomes
75	LC-MS	label-free liquid-chromatography mass spectrometry
76	MVB	multivesicular body
77	miRNA	microRNA
78	RNAseq	RNA sequencing
79	TEM	transmission electron microscopy
80	TIRF	total internal reflection fluorescence microscopy
81	miRNA	microRNA
82		

83

Quiescent EC-EV signaling

Activated EC-EV signaling

Apical/Luminal

Basolateral/Abluminal

84
85

86 **Graphical abstract: Polarized endothelial extracellular vesicle communication with**
87 **luminal and abluminal vascular cells.** Endothelial cell small extracellular vesicle (EC-EV)
88 release from apical (luminal) and basolateral (abluminal) surfaces in quiescence and after
89 endothelial activation. Quiescent EC-EVs are depicted in blue (bright blue=apical, light
90 blue=basolateral), while activated EC-EVs are depicted in red (bright red=apical, light
91 red=basolateral). Luminal monocyte is represented in purple with upregulation of pro-
92 inflammatory transcripts (bright purple) after uptake of activated EC-EVs from the apical
93 surface, compared to uptake of quiescent apical EC-EVs (light purple). Basolateral EC-EVs are
94 taken up by an abluminal resident smooth muscle cell depicted in yellow. Smooth muscle cell
95 uptake of activated basolateral EC-EVs with upregulation of pro-inflammatory/pro-atherogenic
96 transcripts (bright yellow), as compared to uptake of quiescent EC-EVs (light yellow).

97

98 **Introduction**

99
100 Endothelial cells (ECs) line the entire vasculature, forming the largest distributed organ in the
101 human body with a unique secretome that maintains vascular health and regulates disease
102 pathogenesis.^{1,2} Given their critical interface between circulating blood and the vascular wall,
103 ECs have the potential to communicate with both luminal and abluminal cells.³ Dysfunctional
104 endothelium, as seen in chronic diseases such as atherosclerosis, is one of the earliest
105 detectable pathophysiological events and contributes directly to the development of a wide
106 range of cardiovascular diseases.⁴⁻⁷ Specifically, EC-based intercellular communication with
107 circulating cells and resident vascular cells lies at the core of atherogenesis.³ Extracellular
108 vesicles (EVs) have emerged as important mediators of cell-cell communication.^{8,9} Cells
109 produce EVs with specific cargo, such as microRNA (miRNA) and protein, based on their
110 physiologic or pathologic state, and the contents of EVs can be delivered to recipient cells to
111 mediate biologic effects.^{9,10} Under quiescent states, cultured ECs release EVs that tame
112 monocyte activation¹¹ and provide atheroprotective communication to smooth muscle cells^{11,12},
113 while EVs derived from activated endothelium stimulate monocyte adhesion^{13,14} and promote
114 monocyte differentiation into inflammatory macrophages¹⁵. Although EC-EV based cell-cell
115 communication is emerging as an important vector mediating multicellular disease states, it
116 remains unresolved whether ECs can direct EV release in a polarized fashion to communicate
117 separately with luminal and abluminal cells.

118
119 ECs are uniquely situated at the interface of the blood vessel lumen and wall where they are
120 positioned in an asymmetrical extracellular environment. In endothelial biology there is a
121 precedent for polarized structural and functional arrangements. EC proteins are polarized to
122 luminal (apical) and abluminal (basolateral) surfaces to facilitate distinct functions (e.g.,
123 glycocalyx versus cell adhesion).¹⁶ In cardiovascular disease, endothelial polarity proteins (e.g.,
124 Scrib) play key roles in establishing endothelial identity and are atheroprotective.¹⁷ Given their
125 location and evidence of apical-basal polarity, it is conceivable that ECs secrete EVs in a
126 polarized manner and alter cargo based on environmental cues as a mechanism for distinct
127 communication.¹⁸ Delineating polarized endothelial EV communication would fundamentally
128 alter the approach to vascular biology and cardiovascular disease.

129
130 In the current study, we demonstrate the crucial role for EC-based communication in
131 cardiovascular disease conditions using primary human aortic endothelial cells (HAECS)
132 exposed to IL-1 β , a key cytokine increased in relation to disease severity in patients with
133 atherosclerosis¹⁹ and the focus of the CANTOS trial that definitively proved the role of
134 inflammation in cardiovascular events.^{20,21} We determined that HAECS increase EV release
135 when activated with IL-1 β and package miRNA and protein cargo that is clearly distinct from the
136 quiescent state. Notably, these EVs have functional effects, with cellular reprogramming of
137 primary human monocytes and human aortic smooth muscle cells (SMCs) as determined by
138 RNA-sequencing. Using multiple lines of evidence, we demonstrate that ECs are capable of
139 directional (i.e., apical and basolateral) EV release in both quiescent and activated states,
140 providing a mechanism for endothelial communication strategies with cells in separate
141 extracellular compartments. Moreover, ECs shuttle distinct EV-cargo to the luminal and
142 abluminal compartment that is altered upon activation. *In silico* analysis further determined that
143 polarized, compartment-specific EC-EVs have the capacity to communicate with monocytes and
144 SMCs – cells found in the luminal and abluminal compartments respectively – to instigate
145 unique changes in key pro-atherogenic transcripts and pathways.

146
147
148

149 **Methods**

150

151 Detailed Materials and Methods are available in the [Data Supplement](#). The authors declare that
152 all supporting data are available within the [Data Supplement](#).

153

154 **Results**

155

156 **A subpopulation of small EVs is increased after EC activation**

157 'EV' is a broad term for bilayered nanoparticles that are secreted via several routes, including
158 plasma membrane-derived microparticles and small EVs (sEVs; also known as exosomes),
159 which are secreted from a specialized subset of endosomes called multivesicular bodies
160 (MVBs).²² sEVs were enriched via serial ultracentrifugation (Online Figure I A) from media of
161 unstimulated (quiescent) or activated primary human aortic endothelial cells (HAECS) (IL-1 β ,
162 100 pg/mL, 24 h; Online Figure I B-C). Activated HAECS released more sEVs (size range 30-
163 200 nm) than quiescent HAECS, as measured by nanoparticle tracking analysis (NTA) (Figure
164 1A, B). To confirm that these nanoparticles were EVs, we performed western blot analysis that
165 showed expression of common EV markers, including CD63, Alix, and CD9 (Figure 1C), but
166 only CD63-positive sEVs were significantly increased by endothelial activation (Figure 1D and
167 Online Figure I D). No morphological or size differences between sEV isolates from quiescent
168 and activated HAECS were noted using cryo-electron microscopy (cryo-EM) or NTA (Figure 1E-
169 F). However, TEM of activated HAECS *in situ* demonstrated increased MVBs positioned near
170 the cell surface compared to quiescent cells (Figure 1G). Increased sEV release by activated
171 ECs was not accompanied by increased EV biogenesis markers (e.g., TSG101, Caveolin, Flot1)
172 at the mRNA or protein level – consistent with publicly available data (GEO accession:
173 GSE89970 (Online Figure II)).²³ Together, these results demonstrated the release of CD63-
174 positive endothelial sEVs is significantly increased in response to a cardiovascular disease-
175 related stimulus and motivated us to determine whether differential EV cargo might accompany
176 this altered EV landscape.

177

178 **sEV cargo displays a pro-atherogenic signature after EC activation**

179 EV cargo including miRNA and proteins mediate biological effects. Next generation miRNA
180 sequencing of HAECS sEVs showed independent clustering of sEV-miRNA from activated versus
181 quiescent states with greater heterogeneity of sEV-miRNA expression among quiescent ECs
182 (Figure 2A). sEVs from quiescent and activated ECs have similar distributions of miRNA
183 abundance (i.e., normalized miRNA counts), but EC activation drives sEV-miRNA cargo
184 towards a more homogenous transcriptome (i.e., reduces variation in miRNA counts between
185 samples) (Figure 2B). MiRNA cargo is differentially expressed in EC-sEVs, with 192 transcripts
186 increased in activated conditions and 305 transcripts in quiescent EC-sEVs (Figure 2C). Several
187 known endothelial-enriched miRNAs such as miRNA-126, miRNA-92a, and miRNA-181, were
188 abundantly expressed in both conditions (Online Figure III A). To assess the functional
189 implications of altered sEV-miRNA cargo, we employed KEGG pathway analysis of differentially
190 expressed sEV-miRNAs in quiescent conditions (Online Figure III B). MiRNA-513a-3p, miRNA-
191 208b-3p, and miRNA-587 were found to govern pathways involved in cell-cell communication,
192 cell cycle and metabolism, and cell signaling (Figure 2D, Online Figure III D). Conversely,
193 several regulators of inflammation such as miRNA-146a-5p, miRNA-146b-3p, and miRNA-98-5p
194 were increased in activated endothelial sEVs (Online Figure III C), governing proatherogenic
195 pathways involved in inflammatory signaling, cell death and clearance, cell matrix interactions
196 and cell-cell communication with circulating and resident vascular and inflammatory cells
197 (Figure 2E, Online Figure III E).

198

199 Protein cargo of endothelial sEVs was assessed via label-free liquid-chromatography mass
200 spectrometry (LC-MS) and yielded several known EV markers (Online Figure IV A-B). Similar to
201 sEV-transcriptomics, distinct protein profiles were identified in activated versus quiescent HAEC
202 sEVs (Figure 2F). There were 27 and 64 EC-sEV proteins that were differentially enriched in
203 quiescent and activated states, respectively (Figure 2G). Quiescent EC-sEVs contained several
204 abundantly enriched proteins with homeostatic roles in SMCs and extracellular matrix
205 production (e.g., COL3A1, COL1A2, COL1A1), vascular endothelial maintenance (e.g., ENG,
206 VIM) and cell metabolism (TCIRG1, MDH2, TALDO1, MIF, MBOAT7) (Figure 2H). Activated
207 EC-sEVs contained key drivers of atherosclerosis including adhesion molecules (e.g., ICAM-1),
208 inflammatory and stress proteins (e.g., IL1RAP, IFNGR1, TNFRSF1A, DLL4, SOD2), ribosomal
209 proteins (e.g., RPS25, RPL11, RPL30, RPL34), and lipoprotein metabolism (LIPG), (Figure 2I
210 and Online Figure IV C). KEGG pathway analysis of the sEV proteome in activated HAECs
211 delineated five key pathways that were shared with predicted targets of EC-sEV miRNAs – NF-
212 kB signaling, lipid and atherosclerosis, necroptosis, cytokine-cytokine receptor interaction, and
213 cell cycle – demonstrating the shift in the sEV secretome towards an atherogenic payload
214 (Figure 2J). Given sEV-derived miRNAs and proteins may function collectively, we assessed
215 their interactions with predicted gene targets and generated sEV interactomes (Figure 2 K-L).
216 Predicted targets of sEV cargo from the quiescent endothelial state included genes involved in
217 protein folding and degradation, DNA regulation and repair, and cell proliferation and
218 differentiation (Figure 2K). The activated sEV network appeared denser than its quiescent
219 counterpart and while there was overlap between predicted targets of activated and quiescent
220 EC-sEVs, activated EC-sEVs altered genes involved in transcriptional and translational
221 regulation (Figure 2L). These data show that sEV cargo and release is substantially altered
222 upon endothelial activation and has the potential to impact communication with surrounding
223 cells to potentiate inflammatory messaging.

224

225

226

227 ***Activated EC-sEVs uniquely reprogram circulating monocytes and resident SMCs***

228 Given activated ECs released distinct sEV cargo that reflected pro-inflammatory and
229 atherosclerosis-relevant pathways, we next determined the direct effects of these EC-sEVs on
230 human monocytes or SMCs – key cells involved in the development of chronic vascular
231 diseases such as atherosclerosis. Human primary CD14+ monocytes were treated for 24 hours
232 with sEVs isolated from activated or quiescent HAECs (Online Figure V A). Monocyte RNA was
233 isolated, and RNA sequencing (RNAseq) was performed to delineate the cellular response of
234 monocytes to EC-sEVs. Principal component analysis of RNAseq revealed distinct profiles for
235 monocytes exposed to quiescent EC-sEVs, activated EC-sEVs, and cell culture media-alone
236 control (Figure 3A). Heatmap analysis showed groups cluster separately and that most
237 transcripts lay within protein coding regions (Online Figure V B). While sEVs from activated ECs
238 had biological effects on monocytes when compared to media-alone control (Online Figure V
239 C), more remarkable was the observation that sEVs from activated ECs drove unique biological
240 activity on monocytes when compared to monocytes exposed to sEVs from quiescent ECs
241 (Figure 3B). To better understand the cellular reprogramming being initiated in monocytes,
242 pathway analysis was performed. As seen in Online Figure VD, monocytes exposed to activated
243 EC-sEVs versus media-alone control significantly upregulated pathways in migration and
244 chemotaxis, inflammation, and vascular development. To compare the specific impact of
245 endothelial activation and altered sEV cargo on recipient monocytes, we analyzed monocyte
246 responses to activated EC-sEVs versus quiescent EC-sEVs (Figure 3C): notably, pathways
247 involved in adhesion and migration, inflammation, proliferation and differentiation, and apoptosis
248 emerged. Given our well-characterized data from EC-sEV transcriptomics and proteomics, we
249 integrated sEV cargo data with our monocyte recipient cell RNAseq to create an interactome

250 that delineated differentially expressed transcripts that were likely regulated by EC-sEVs (Figure
251 3D-E). Five transcripts – down-regulation of monocyte SOX4, HIF1A, SOD2, TNFAIP3 (Figure
252 3E) and upregulation of monocyte LMNB1 (Figure 3D) by activated EC-sEVs – regulated the
253 pathways highlighted in red (Figure 3C), including inflammatory signalling with IL-12 and TNF,
254 and regulation of leukocyte proliferation and apoptosis. Overall, there was a strong intersection
255 of the sEV-miRNAome, sEV-proteome, and recipient monocyte transcriptome centering on
256 oxidative stress (e.g., HIF1A, SOD2, GNL3) under activated EC conditions (Figure 3D-E).
257 Together, these data demonstrate that several pathways identified from miRNA and proteomic
258 analysis of EC-sEVs are shared with pathways found in EV-treated monocytes, and that sEVs
259 from an activated endothelium have specific biologic effects on recipient cells that differ from
260 those derived from the quiescent state.
261

262 Since HAECS can communicate with luminal cells such as primary human monocytes via sEVs,
263 we next assessed whether EC-sEVs can also regulate abluminal cells such as SMCs (Online
264 Figure V A). Principal component and heat map analysis demonstrated that primary human
265 aortic SMCs exposed to media-alone control, quiescent EC-sEVs, and activated EC-sEVs
266 cluster distinctly with differentially expressed transcripts predominantly found within protein
267 coding regions (Figure 3F, Online Figure V E). Similar to our observations with monocytes,
268 sEVs from activated ECs had biological effect on SMCs when compared to media-alone control
269 with 324 and 303 uniquely regulated transcripts, respectively (Online Figure V F). Exposure of
270 SMCs to activated versus quiescent EC-sEVs led to shared, as well as distinct, transcript
271 changes (Figure 3G). While there were clearly shared pathways including ribosome, cellular
272 senescence, and several inflammatory signaling pathways, they varied by importance as noted
273 by FDR value, with reduction of ribosomal pathways dominating the activated EC-sEV treated
274 SMCs (Figure 3H, Online Figure V G). Unique SMC pathways regulated by activated versus
275 quiescent EC-sEVs included phagosome and p53 signaling (Figure 3H). Interactomes created
276 by integrating sEV-secretome and recipient SMC transcriptomic data identified several predicted
277 targets of sEV-miRNA and proteins that are involved in pathways highlighted in red (Figure 3H).
278 Notably, activated EC-sEVs led to a decrease in several ribosomal (RPL15, RPSA, RPL5) and
279 protein metabolism related transcripts (EEF1A1, UBC, HSP90AA1, SUMO1), while mediators of
280 inflammatory signaling (NFKB1, IKBKE, HIF1A, IRF1, SMAD3, FN1) and cell cycle regulators
281 (TP53, CEBPB, MYC, MDM2) were increased (Figure 3I-J). These data delineate several key
282 pathways and transcripts modulated by EC-sEVs demonstrating their ability to communicate
283 with SMCs and drive pro-inflammatory/pro-atherogenic changes in recipient cells. Taken
284 together, these findings underscore the significant biological potential of sEVs released by an
285 activated endothelium, with increased concentration and altered cargo capable of differentially
286 affecting cells in the circulation (e.g., circulating monocytes, apical/luminal) or cells that reside in
287 the vessel wall (e.g., SMCs, basolateral/abluminal). The directional potential for EC-sEVs as a
288 mechanism for cellular communication to discrete compartments has not previously been
289 explored.
290
291

292 **ECs can direct cell-cell communication via polarized release of sEVs**

293 Given that quiescent and activated EC-derived sEVs have distinct transcriptomic and proteomic
294 signatures with the capacity to alter monocyte and SMC function, we sought to determine
295 whether ECs release sEVs in a polarized fashion where they might participate in divergent cell-
296 cell communication strategies from their apical (luminal) and basolateral (abluminal) surfaces.
297 To explore this concept, we employed a transwell system.^{18, 24} Maintenance of physiologic
298 barrier function was confirmed by VE-cadherin localization to adherens junctions and 30 nm
299 gold nanoparticle challenge (representing the smallest sEV) across EC monolayers (Online
300 Figure VI A-B). Using transwells to enrich EVs from the media in upper (apical/luminal) and

301 lower (basolateral/abluminal) chambers pushed the limits of low input analyses. We therefore
302 employed ultracentrifugation for our initial sEV observations (NTA, cryo-EM, and EV-marker
303 analysis by western blot) and then progressed to size exclusion chromatography for activation
304 studies, and transcriptomic and proteomic analysis (Figure 4A, Online Figure IV D-E). sEVs
305 were identified in isolates from apical and basolateral compartments and visualized as bilayered
306 nanoparticles with dense cores (Figure 4B). Apical sEVs were larger than basolateral sEVs
307 (Figure 4C). HAECS released more sEVs to the apical compartment as determined via
308 nanoparticle counts (NTA) and western blot analysis of common EV markers, with a significant
309 increase detected in CD63-positive sEVs (Figure 4D-F). To assess whether this property of
310 polarized EC-sEV release was broadly applicable to other EC types, we recapitulated the
311 findings with pooled human umbilical vein ECs (HUVECs) (Online Figure VI C-G). Given the
312 novelty of basolateral EC-sEV release, we employed total internal reflection fluorescence (TIRF)
313 microscopy to visualize sEV release from the basolateral surface of HAECS transiently
314 transfected with pHluorin-CD63 plasmid.²⁵ EVs were visualized when MVBs fuse with the
315 plasma membrane and release sEVs into the neutral extracellular milieu. Their release was
316 increased upon stimulation with histamine (Figure 4G-H) and was significantly inhibited upon
317 addition of an EV release inhibitor, GW4869 (Figure 4I-J). We further delineated the role of
318 polarized EV release in cell-cell communication by performing a quantitative assessment of EC-
319 EV transfer to monocytes (Figure 4K). Using ECs transfected with exogenous *C. elegans*
320 miRNA-39, ECs transferred miRNA-39 to monocytes in apical and basolateral compartments,
321 with apical monocytes receiving most of the miRNA (Figure 4K). At the ultrastructural level, TEM
322 images suggested that sEVs were contained within MVBs and were poised for release at both
323 the apical and basolateral surfaces (Figure 4L). Given our data identified polarized sEV release
324 by the endothelium as a putative mechanism for communication with circulating and resident
325 vascular cells, we questioned whether ECs release compartment-specific cargo to communicate
326 differentially with vascular cells.

327

328

329 **ECs release sEVs with distinct cargo to apical and basolateral compartments**

330 Endothelial sEVs from the apical and basolateral compartments of quiescent and activated cells
331 underwent next-generation miRNA sequencing and proteomic analysis via LC-MS (Figures 5-6).
332 sEV miRNA cargo from quiescent ECs readily clustered by polarity (broad circles) with distinct
333 transcriptomes observed between apical versus basolateral sEV collection (Figure 5A). This
334 polarization of sEV cargo was preserved with EC activation (Figure 5A, Online Figure VII A).
335 Under quiescent conditions, endothelial-specific miRNA were polarized in their secretion (e.g.,
336 miRNA-126^{26,27} family apically and miRNA-144^{28,29} family basolaterally; Figure 5B, left panel).
337 This polarization was maintained upon EC activation, suggesting that these miRNAs may be
338 constitutively released in a polarized fashion by ECs even under inflammatory stimuli (Online
339 Figure VII B, right panel). Pathway analysis of sEV-miRNA from apical and basolateral
340 compartments highlighted distinct compartment-specific pathways. In quiescent states, there
341 were 319 and 145 distinct pathways predicted to be regulated by apical and basolateral sEV-
342 miRNA, respectively. Among the top pathways, those related to apoptosis, p53 signaling, and
343 chemokine signaling were enriched apically, while pathways related to cellular senescence, and
344 lipid and atherosclerosis were modulated basolaterally (Figure 5B, right panel). Notably, the
345 polarization of the EV-miRNA transcriptome and downstream pathways was maintained in
346 activated states (Online Figure VII B, left panel), suggesting the importance of distinct
347 directional communication in health and disease.

348

349

350 Proteomics demonstrated that sEV cargo clustered by polarity (broad circles) with distinct
351 proteomes in the apical versus basolateral compartment under quiescent conditions (Figure
352 5C), which was preserved with EC activation (Figure 5C and Online Figure VII D). While several

352 known EV proteins were detected in all sEVs, regardless of compartment, we identified
353 increased abundance in EV tetraspanins, EV-sorting and release proteins and intra-EV markers
354 in apical sEVs, consistent with our observation that more sEVs are released apically (Online
355 Figure VII C). There were 185 and 134 differentially enriched proteins in quiescent apical and
356 basolateral EC-sEVs, respectively (Figure 5D, left panel). Endothelial sEV protein cargo from
357 apical versus basolateral compartments reflected distinct pathways (Figure 5D, right panel).
358 Apically derived sEV-proteins were associated with several metabolic pathways including
359 glycolysis, protein metabolism, RNA metabolism, and maintenance of cell cytoskeleton, while
360 basolateral sEV-proteins were predominantly associated with extracellular matrix interactions,
361 cholesterol metabolism and transport, and protein degradation. There were several differentially
362 enriched EV-trafficking proteins in both compartments (e.g., Apical: RAB7A, CAV1, EHD2,4;
363 Basolateral: KRT2, LMNB1, EEA1, ANXA11), implicating them as potential mediators of
364 selective and directional EV release (Online Figure VII C). Similar to the sEV-miRNA
365 transcriptome, polarized release of sEV-proteins was maintained in activated states (Online
366 Figure VII F).

367
368 Together, these data delineated the sEV miRNA and protein cargo released from ECs towards
369 luminal and abluminal compartments. Under conditions of EC activation, polarization was
370 preserved, but subtle secretome shifts (investigated below) were noted with expected
371 consequences on cells that would typically receive EC-sEVs in the luminal circulation or
372 abluminal vessel wall. The potential discovery of a mechanism underpinning endothelial
373 communication with cells in different biological compartments that could be affected by an
374 atheroprone stimulus prompted us to formally assess how EC activation alters compartment-
375 specific sEV release, to directly compare sEV cargo between quiescent and activated states,
376 and to test putative effects on monocyte and SMC recipients by *in silico* analysis.
377

378 379 ***Luminal and abluminal cell reprogramming by polarized EC-EV cargo***

380 Given that activated ECs have increased sEV release (Figure 1), we wanted to delineate
381 whether this was a polarized phenomenon. Maintenance of a physiological barrier after IL-1 β
382 activation was similarly confirmed by VE-cadherin expression/localization and 30 nm gold
383 nanoparticle challenge (Online Figure VI A, bottom panel; Online Figure VI B). While activated
384 EC-sEVs from the apical or basolateral compartments appeared morphologically similar
385 compared to quiescent EC-sEVs and were similar in size (Online Figure VIII A), IL-1 β treatment
386 significantly increased the concentration of EVs released into the apical, but not the basolateral,
387 compartment (Figure 6A-B).
388

389 To determine the extent to which the polarized sEV-miRNA cargo profile changes when ECs are
390 activated, we made direct comparisons between quiescence and IL-1 β stimulation. sEV-miRNA
391 clustered distinctly, according to activation status (Figure 6C-D, Online Figure VIII B-C). Under
392 activated conditions, there were 23 and 93 pathways predicted by apical versus basolateral
393 sEV-miRNAs, respectively. Many of these pathways were altered in basolaterally released EV-
394 miRNA from activated ECs, emphasizing a previously undefined role for basolateral EC-sEVs
395 participating in cell-cell communication within the vessel wall interstitium (Figure 6E). To that
396 end, we delineated several key pro-atherogenic pathways that were uniquely predicted by
397 basolaterally secreted sEV-miRNA from activated ECs, including chemokine signaling,
398 response to shear stress, and lipid and atherosclerosis pathways. This implies a capacity for
399 modulating focal vascular biology, as might be found in the atherosclerotic plaque
400 microenvironment. Examining the miRNA specifically, well-known miRNA mediators of
401 inflammation, miRNA-146a,³⁰ miRNA-34c,³¹ miRNA-144,^{28,29} and miRNA-374b³² were increased
402 in apical EC-sEVs upon activation (Figure 6F). These sEV-miRNA were involved in several

403 pathways previously predicted by the effects of plate-derived EC-sEVs on primary human
404 monocytes (Figure 3C) such as apoptosis, cell proliferation and differentiation, and adhesion
405 (Figure 6F). Levels of miRNA regulators of inflammation among the basolateral EVs such as
406 miRNA-125b, miRNA-34a, miRNA-21, miRNA-24, and miRNA-126-5p were increased (Figure
407 6G). These sEV-miRNA likewise contributed to the pathways predicted by activated plate-
408 derived EC-sEVs on SMCs (Figure 3H) including inflammatory signalling, cellular senescence,
409 and cell proliferation and differentiation (Figure 6G).
410

411 We also detected distinct compartment-specific changes in the sEV-proteome with endothelial
412 activation (Figure 6H-M, Online Figure VIII D). sEV-proteins clustered distinctly, according to
413 activation status (Figure 6H,K). There were 47 sEV-proteins enriched in the apical compartment
414 (Figure 6I) known to regulate pathways previously seen to be altered in monocytes treated with
415 EC-sEVs (Figure 3), including proliferation (LAMA4/5, LAMB1, LAMC1, CSF1), inflammation
416 (ICAM1, VCAM1, CSF), and cell adhesion and migration (LMNB1, HSPG2, NID1, NID2,
417 CXCR4) (Figure 6J). While several of these pathways aligned with apically secreted sEV-
418 miRNA (such as NF- κ B and PI3K-Akt), response to oxidative stress via SOD2 secretion
419 emerged as an sEV-protein specific function. As seen with the sEV-miRNA, the basolaterally
420 secreted sEV-proteome from activated ECs predicted a diverse set of cellular functions further
421 hinting at their important role in governing disease pathogenesis within the vessel wall (Figure
422 6L-M). There were 40 sEV-proteins enriched in the basolateral compartment from activated ECs
423 (Figure 6L), many participating in pathways found predicted in EC-sEV-treated SMCs (Figure 3)
424 including protein biosynthesis (BCAT, CCT2, PPIA, TXN, CCT2), inflammatory signalling
425 (SLC2A1, CALML5, ACVR1), and PI3K-Akt signalling (COL4A2, ITGA5) (Figure 6M). Finally,
426 our compartment-specific sEV interactomes integrating differentially expressed sEV-miRNA and
427 sEV-protein from activated states further corroborated their role in inflammation, cell cycle,
428 proliferation, and transcriptional and translational regulation (Online Figure VIII E-F). Though
429 there was overlap between predicted targets of apical and basolateral EC-sEVs, endothelial
430 activation altered sEV cargo that also led to distinct targets in each compartment with the
431 basolateral interactomes emerging as denser networks.
432

433 Lastly, to discern luminal and abluminal endothelial sEV communication with relevant cell types
434 in the context of an atheroprone stimulus, we generated *in-silico* interactomes by layering apical
435 and basolateral EC-sEV cargo with the transcriptomic responses of sEV-treated monocytes and
436 SMCs respectively (Figure 3), from activated conditions (Figure 6N-O and Online Figure VIII G).
437 Apical sEV-miRNA and proteins enriched by endothelial activation (miR-146a, miR-198, miR-
438 34b, miR-575, SOD2) altered monocyte mRNA transcripts involved in apoptosis (FOXO3,
439 DDB1, PDCD61P, BIRC3), inflammatory signalling (NF- κ B associated proteins, IRF1, IRAK2),
440 adhesion and migration (MARCKSL1, NID1, CCL5), proliferation and differentiation (CCL5,
441 CXCR4), and oxidative stress (HIF1A, SOD2) (Figure 6N). Basolateral sEV-cargo altered SMC
442 mRNA transcripts known to function in activation-related pathways including protein
443 biosynthesis (S and L ribosomal proteins, SUMO1, UBC, CCT2, FAU, PSMC2, EEF1A1), cell
444 proliferation and differentiation (ITGA4, VCL, CALM2), cell senescence (HSP90AA1), and
445 phagosomes (TUBB) (Figure 6O). Together, these data delineated polarized changes to apical
446 and basolateral sEV-cargo upon EC activation with IL-1 β and revealed that the unique shift in
447 basolateral EC-sEV cargo is robust and affects athero-relevant pathways. Critically, our data
448 suggest distinct roles for compartment-specific EC-sEV cargo on recipient cells found luminally
449 in the circulation (e.g., monocytes) and abluminally within the vessel wall interstitium (e.g.,
450 SMCs) (see graphical abstract).
451

452 **Discussion**

453

454 Here we demonstrate that ECs can utilize their ability to secrete sEVs directionally to
455 communicate with luminal and abluminal cells in quiescent and activated states. This has
456 important implications for cardiovascular diseases given the change in sEV cargo upon EC
457 activation with IL-1 β , a known mediator of inflammation in atherosclerosis and other
458 cardiovascular pathologies. Primary human ECs secrete more CD63-positive sEVs upon
459 activation and notably, this increase in sEVs is seen apically suggesting that circulating
460 endothelial sEVs have the potential to serve as liquid biopsies of localized vascular disease
461 (e.g., atherosclerotic plaques) where the endothelium is activated. Additionally, although the
462 abundance of sEVs secreted basolaterally is not altered upon activation, we identify distinct
463 changes in their cargo, with implications for cell-cell communication with cells in the vessel wall.
464 ECs appear to load pro-inflammatory and atherogenic miRNAs and proteins into sEVs upon
465 activation. Functionally, endothelial sEVs communicate with primary human monocytes and
466 SMCs leading to changes in hundreds of protein coding transcripts, with unique responses
467 depending on whether the endothelium is quiescent or activated. Our discovery that the
468 endothelium is capable of directional sEV release provides a mechanism for focused
469 communication with cells in discrete compartments. To that end, we found that ECs load starkly
470 different sEV-cargo (miRNA and protein) for release apically versus basolaterally. Both apical
471 and basolateral endothelial sEV content is altered upon activation with IL-1 β , while *in silico*
472 analysis underscored the ability for apical and basolateral messaging to alter transcripts in
473 luminally and abluminally residing cells, respectively. This pronounced shift towards
474 atherosclerosis pathways in basolateral sEV cargo after endothelial activation identifies a
475 potential strategy for focal endothelial-based therapies in atherosclerotic disease.
476

477 Extracellular vesicles are known to be sentinels of disease states, and traffic biological entities
478 between cells.³³ The quantity of EVs increase and their cargo is altered in several
479 cardiovascular conditions.³⁴⁻⁴⁴ ECs are exquisitely sensitive to their surroundings and increase
480 release of EVs in the presence of inflammatory mediators,⁴⁵⁻⁴⁹ and crucially, alter EV-contents
481 (miRNA and protein) upon activation.⁵⁰⁻⁵² We found that primary human ECs have increased
482 CD63-positive sEV release when treated with IL-1 β , a pro-inflammatory cytokine with known
483 roles in mediating atherogenesis. Activated ECs secrete sEVs with miRNA and protein cargo
484 that regulate key pathways involved in the pathogenesis of atherosclerosis including cell matrix
485 interactions, cell-cell communication, cell death, protein synthesis, and inflammatory
486 signalling.⁵³⁻⁵⁶ Interestingly, sEV-miRNA and protein cargo mediate varied functions in quiescent
487 states, but the activated endothelial sEVs had denser networks and converged to modulate five
488 key pathways in activated states: NF- κ B signaling, lipid and atherosclerosis, necroptosis,
489 cytokine-cytokine receptor interaction, and cell cycle. Biologically, monocytes treated with
490 activated endothelial sEVs modulated pathways related to apoptosis, adhesion, migration, and
491 proliferation, while SMCs demonstrated altered ribosomal and cellular senescence pathways.
492 Together, sEV miRNA and protein cargo worked collectively to alter transcripts in recipient cells,
493 stressing the importance of studying sEV functions in a holistic manner. The diversity in effects
494 with the same effector is likely due, at least in part, to differences in the transcriptome of
495 monocytes and SMCs, which alters the repertoire of miRNA targets available and cell signaling
496 receptors that can respond to EV proteins. Although these data strengthened prior reports that
497 ECs can communicate with surrounding cells via EVs^{11, 12, 57}, it remained unexplored whether
498 the endothelium might strategize polarized communication to cells in separate extracellular
499 compartments.
500

501 Challenges exist for studying EV cargo selection.^{58, 59} However, the sheer number of ECs living
502 at the interface of the circulation and blood vessel wall and potential for polarized sEV

503 communication would inform several biologic processes. As a basic tenet, directional EV
504 release necessitates a polarized structure capable of maintaining discrete compartments. In
505 embryology, endothelial apical-basal polarity is a crucial component of angiogenesis with
506 negatively charged glycoproteins concentrated at the apical surface to facilitate cord
507 hollowing.^{60, 61} Proteins are segregated between the apical and basolateral surfaces in adult
508 endothelial cells,⁶²⁻⁶⁹ with several EC-secreted proteins enriched luminally⁷⁰ or abluminally⁷⁰⁻⁷³.
509 While polarized EV release has been inferred from proteomics data,⁷⁰ it has never been directly
510 demonstrated, nor has the functional relevance of directional endothelial EVs been explored.
511 We employed multiple approaches to demonstrate polarized secretion of sEVs by HAECS and
512 confirmed our findings in another primary endothelium (HUVECs). In addition to imaging
513 secreted sEVs from media (NTA and TEM), we imaged MVBs poised for release at both apical
514 and basolateral surfaces (cryo-EM) and visualized basolateral release using TIRF microscopy.
515 sEVs were quantified, profiled by miRNA and protein, and sEV interactomes generated. In
516 quiescence, ECs released more CD63-positive sEVs apically and contained cargo involved in
517 apoptosis, p53 signalling, metabolic pathways, and maintenance of cytoskeleton, while
518 basolaterally secreted EC-EVs modulated pathways related to cell senescence, lipid and
519 atherosclerosis, and cholesterol metabolism. The observation that ECs release distinct sEV
520 miRNA and protein cargo from apical and basolateral surfaces shifts the current EC-EV
521 communication paradigm, forcing a renewed consideration of cell-cell communication at this
522 boundary region.

523
524 Given that ECs are frequently activated in cardiovascular disease, we chose to consider our
525 findings in the context of atherosclerosis – the underlying cause of 19 million deaths globally per
526 year.⁷⁴ Upon activation with IL-1 β , there were increased sEVs released apically and there were
527 compartment-specific changes in the sEV-secretome with *in silico* evidence for compartment
528 specific communication with luminal (monocytes) and abluminal cells (SMCs). Apically, the large
529 pool of endothelial sEVs could represent systemic drivers of health and disease or could be
530 useful as liquid biopsies that reflect vulnerable atherosclerotic plaques. Precedence for this
531 exists in the cancer literature, where tumor derived EVs can drive metastatic disease⁷⁵ and
532 serve diagnostic roles.⁷⁵⁻⁷⁹ More striking however, was our novel finding that endothelial cells
533 release sEVs basolaterally, and that activation leads to profound changes in the cargo released
534 from the basolateral surface. This has implications for designing therapies that target
535 atherosclerotic plaque biology in a focal manner. Emerging targets such as efferocytosis (a
536 process for clearing dead cells that is defective in advanced plaques)⁸⁰⁻⁸⁷ or plaque stabilization
537 through strengthening the SMC fibrous cap formation⁸⁸ would be ideal. Alongside the
538 cholesterol metabolism pathways enriched in basolateral sEVs, it is notable that efferocytosis-
539 related proteins were seen basolaterally (LRP1, MFG-E8) but not apically (Online Figure VII F,
540 right panel). If we can determine how to harness basolateral sEV release from ECs, it might be
541 possible to deliver local plaque therapies targeting efferocytosis or cap-stabilization. To do so,
542 future studies will need to target the activated endothelium, determine exactly how the
543 endothelium designates specific cargo for loading, and to distinguish the intracellular trafficking
544 pathways utilized for apical versus basolateral release.

545
546 Utilizing their capacity for polarized sEV release, ECs can participate in systemic and local cell
547 communication. Capitalizing on this biology to modify endothelial-governed functions provides a
548 powerful approach for detecting and/or modulating cardiovascular disease states such as
549 atherosclerosis. The findings in this study provide early insights to support this exciting
550 possibility. Together, these data provide a fresh perspective on endothelial sEV-based
551 communication and the biological relevance of these messaging strategies in diseases such as
552 atherosclerosis.

553

554

555 Acknowledgements

556

557 The authors thank Dr. Alissa Weaver for kindly providing the pHluorin-CD63 plasmid (TIRF
558 microscopy experiments) and Ms. Shiori Kuraoka for assistance with mass spectrometry. For
559 invaluable discussions, we thank the following: Drs. Paul Fraser (TEM imaging interpretation),
560 Shrey Sidwani (gold nanoparticle experiments), Dakota Gustafson (EV analysis), and Dr. Myron
561 Cybulsky (critical discussion). This work was supported by Canadian Institutes of Health
562 Research (CIHR) Project Grants PJT178006 (K. Howe) and PJT148487 (J. Fish), NIH grants
563 (R01 HL136431, R01 HL141917, R01 HL147095; E. Aikawa), as well as a Tier II Canada
564 Research Chair from CIHR (J. Fish). Additional support for this work was provided by the Heart
565 and Stroke Foundation of Canada (New Investigator Award, K. Howe), Vascular Cures (Wylie
566 Scholar Award, K. Howe), Blair Early Career Professorship in Vascular Surgery (K. Howe),
567 Peter Munk Cardiac Centre (K. Howe), and University Health Network (K. Howe) and Vanier
568 Canada Graduate Scholarship (S. Raju). Infrastructure funding was obtained from the John R.
569 Evans Leaders Fund (J. Fish). T.W.W Ho is supported by a CIHR Canada Graduate
570 Scholarship – Master’s Award. W.L.L. is supported by a Discovery Grant from the Natural
571 Sciences and Engineering Research Council (NSERC) of Canada (RGPIN 2020-04299) and a
572 Canada Research Chair in Mechanisms of Endothelial Permeability. Graphical abstract created
573 with BioRender.com.

574

575 Conceptualization and data interpretation: SR, JEF and KLH. Writing original draft: SR and KLH.
576 EV isolation, validation, and preparation for cargo interrogation: SR, KP, CC. EV
577 transcriptomics: SR, KP. EV proteomics: SR, MB, CLC, TP, SS, EA. TIRF microscopy: TWWH,
578 WL. CD63 plasmid transfection: SR, KP, RW. Electron microscopy: NLG, LF. Network analysis
579 and EV interactomes: SR, SB, KLH. Manuscript editing: SR, SB, MB, CC, RW, SS, WL, EA,
580 JEF, KLH. All authors read and approved the final manuscript. Funding acquisition: JEF and
581 KLH. Supervision of the study: KLH.

582

583 Disclosures

584

585 N. Galant is Co-Founder and CEO of Paradox Immunotherapeutics.

586

587

588

References

589

1. Vanhoutte PM, Shimokawa H, Feletou M and Tang EH. Endothelial dysfunction and vascular disease - a 30th anniversary update. *Acta Physiol (Oxf)*. 2017;219:22-96.
2. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM and Stern DM. Endothelial cells in physiology and in the pathophysiology of vascular disorders. *Blood*. 1998;91:3527-61.
3. Howe KL, Cybulsky M and Fish JE. The Endothelium as a Hub for Cellular Communication in Atherogenesis: Is There Directionality to the Message? *Front Cardiovasc Med*. 2022;9:888390.
4. Deanfield JE, Halcox JP and Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. *Circulation*. 2007;115:1285-95.
5. Gao Y and Galis ZS. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. *Arterioscler Thromb Vasc Biol*. 2021;41:179-185.
6. Davignon J and Ganz P. Role of endothelial dysfunction in atherosclerosis. *Circulation*. 2004;109:III27-32.
7. Gimbrone MA, Jr. and Garcia-Cardena G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. *Circ Res*. 2016;118:620-36.
8. Johnstone RM, Adam M, Hammond JR, Orr L and Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). *Journal of Biological Chemistry*. 1987;262:9412-9420.
9. van Niel G, D'Angelo G and Raposo G. Shedding light on the cell biology of extracellular vesicles. *Nat Rev Mol Cell Biol*. 2018;19:213-228.
10. Raposo G and Stahl PD. Extracellular vesicles: a new communication paradigm? *Nat Rev Mol Cell Biol*. 2019;20:509-510.
11. Njock M-S, Cheng HS, Dang LT, Nazari-Jahantigh M, Lau AC, Boudreau E, Roufaiel M, Cybulsky MI, Schober A and Fish JE. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. *Blood*. 2015;125:3202-3212.
12. Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA and Dommeler S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. *Nat Cell Biol*. 2012;14:249-56.
13. Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR and Leitinger N. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. *Arterioscler Thromb Vasc Biol*. 2002;22:101-7.
14. Zhan R, Leng X, Liu X, Wang X, Gong J, Yan L, Wang L, Wang Y, Wang X and Qian LJ. Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. *Biochem Biophys Res Commun*. 2009;387:229-33.
15. He S, Wu C, Xiao J, Li D, Sun Z and Li M. Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis. *Scand J Immunol*. 2018;87:e12648.
16. Wolpe AG, Ruddiman CA, Hall PJ and Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. *J Vasc Res*. 2021;58:65-91.
17. Schurmann C, Dienst FL, Palfi K, Vasconez AE, Oo JA, Wang S, Buchmann GK, Offermanns S, van de Sluis B, Leisegang MS, Gunther S, Humbert PO, Lee E, Zhu J, Weigert A, Mathoor P, Wittig I, Kruse C and Brandes RP. The polarity protein Scrib limits atherosclerosis development in mice. *Cardiovasc Res*. 2019;115:1963-1974.

637 18. van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N and
638 Heyman M. Intestinal epithelial cells secrete exosome-like vesicles. *Gastroenterology*.
639 2001;121:337-49.

640 19. Galea J, Armstrong J, Gadsdon P, Holden H, Francis SE and Holt CM. Interleukin-1 beta
641 in coronary arteries of patients with ischemic heart disease. *Arterioscler Thromb Vasc Biol*.
642 1996;16:1000-6.

643 20. Dewberry R, Holden H, Crossman D and Francis S. Interleukin-1 receptor antagonist
644 expression in human endothelial cells and atherosclerosis. *Arterioscler Thromb Vasc Biol*.
645 2000;20:2394-400.

646 21. Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T and Glynn RJ. Relationship
647 of C-reactive protein reduction to cardiovascular event reduction following treatment with
648 canakinumab: a secondary analysis from the CANTOS randomised controlled trial. *Lancet*.
649 2018;391:319-328.

650 22. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R,
651 Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H,
652 Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A,
653 Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E,
654 Boireau W, Bongiovanni A, Borras FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM,
655 Brennan MA, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Gorecka P, Buch S,
656 Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzas EI, Byrd JB, Camussi G,
657 Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A,
658 Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle
659 B, Crescitelli R, Criado MF, D'Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De
660 Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D,
661 Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte
662 FV, Duncan HM, Eichenberger RM, Ekstrom K, El Andaloussi S, Elie-Caille C, Erdbrugger U,
663 Falcon-Perez JM, Fatima F, Fish JE, Flores-Bellver M, Forsonits A, Frelet-Barrand A, Fricke F,
664 Fuhrmann G, Gabrielsson S, Gamez-Valero A, Gardiner C, Gartner K, Gaudin R, Gho YS,
665 Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Gorgens A, Gorski SM, Greening DW,
666 Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi
667 H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu
668 G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK,
669 Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A,
670 Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D,
671 Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ, 2nd,
672 Kornek M, Kosanovic MM, Kovacs AF, Kramer-Albers EM, Krasemann S, Krause M, Kurochkin
673 IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lasser C,
674 Laurent LC, Lavieu G, Lazaro-Ibanez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M,
675 Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Line A, Linnemannstons K,
676 Llorente A, Lombard CA, Lorenowicz MJ, Lorincz AM, Lotvall J, Lovett J, Lowry MC, Loyer X, Lu
677 Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-
678 Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M,
679 McGinnis LK, McVey MJ, Meckes DG, Jr., Meehan KL, Mertens I, Minciachchi VR, Moller A,
680 Moller Jorgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L,
681 Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri
682 T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-'t Hoen EN, Noren Hooten N, O'Driscoll L,
683 O'Grady T, O'Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Ostergaard O,
684 Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink
685 RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I,
686 Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo
687 G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde

688 E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saa P, Sahoo S, Salas-Huenuleo E,
689 Sanchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schoyen TH, Scott A, Shahaj
690 E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM,
691 Skowronek A, Snyder OL, 2nd, Soares RP, Sodar BW, Soekmadji C, Sotillo J, Stahl PD,
692 Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R,
693 Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P,
694 van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van
695 Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ, Jr., Veit TD, Vella LJ,
696 Velot E, Verweij FJ, Vestad B, Vinas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC,
697 Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S,
698 Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yanez-Mo M,
699 Yin H, Yuana Y, Zappulli V, Zarubova J, Zekas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR,
700 Zickler AM, Zimmermann P, Zivkovic AM, Zocco D and Zuba-Surma EK. Minimal information for
701 studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International
702 Society for Extracellular Vesicles and update of the MISEV2014 guidelines. *J Extracell Vesicles*.
703 2018;7:1535750.

704 23. Hogan NT, Whalen MB, Stolze LK, Hadeli NK, Lam MT, Springstead JR, Glass CK and
705 Romanoski CE. Transcriptional networks specifying homeostatic and inflammatory programs of
706 gene expression in human aortic endothelial cells. *eLife*. 2017;6:e22536.

707 24. Klingeborn M, Dismuke WM, Skiba NP, Kelly U, Stamer WD and Bowes Rickman C.
708 Directional Exosome Proteomes Reflect Polarity-Specific Functions in Retinal Pigmented
709 Epithelium Monolayers. *Sci Rep*. 2017;7:4901.

710 25. Sung BH, von Lersner A, Guerrero J, Krystofiak ES, Inman D, Pelletier R, Zijlstra A,
711 Ponik SM and Weaver AM. A live cell reporter of exosome secretion and uptake reveals
712 pathfinding behavior of migrating cells. *Nat Commun*. 2020;11:2092.

713 26. Fish JE and Srivastava D. MicroRNAs: opening a new vein in angiogenesis research.
714 *Sci Signal*. 2009;2:pe1.

715 27. Guo FH, Guan YN, Guo JJ, Zhang LJ, Qiu JJ, Ji Y, Chen AF and Jing Q. Single-Cell
716 Transcriptome Analysis Reveals Embryonic Endothelial Heterogeneity at Spatiotemporal Level
717 and Multifunctions of MicroRNA-126 in Mice. *Arterioscler Thromb Vasc Biol*. 2022;42:326-342.

718 28. Fu W, Liu Z, Zhang J, Shi Y, Zhao R and Zhao H. Effect of miR-144-5p on the
719 proliferation, migration, invasion and apoptosis of human umbilical vein endothelial cells by
720 targeting RICTOR and its related mechanisms. *Exp Ther Med*. 2020;19:1817-1823.

721 29. Fu X, Huang X, Li P, Chen W and Xia M. 7-Ketocholesterol inhibits isocitrate
722 dehydrogenase 2 expression and impairs endothelial function via microRNA-144. *Free Radic
723 Biol Med*. 2014;71:1-15.

724 30. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, Delgado-Olguin
725 P, Cybulsky MI and Fish JE. MicroRNA-146 represses endothelial activation by inhibiting pro-
726 inflammatory pathways. *EMBO Mol Med*. 2013;5:1017-34.

727 31. Bai X, Zhang H, Li Z, Chen O, He H, Jia X and Zou L. Platelet-derived extracellular
728 vesicles encapsulate microRNA-34c-5p to ameliorate inflammatory response of coronary artery
729 endothelial cells via PODXL-mediated P38 MAPK signaling pathway. *Nutr Metab Cardiovasc
730 Dis*. 2022;32:2424-2438.

731 32. Wang W, Ma F and Zhang H. MicroRNA-374 is a potential diagnostic biomarker for
732 atherosclerosis and regulates the proliferation and migration of vascular smooth muscle cells.
733 *Cardiovasc Diagn Ther*. 2020;10:687-694.

734 33. Shah R, Patel T and Freedman JE. Circulating Extracellular Vesicles in Human Disease.
735 *N Engl J Med*. 2018;379:958-966.

736 34. Arteaga RB, Chirinos JA, Soriano AO, Jy W, Horstman L, Jimenez JJ, Mendez A,
737 Ferreira A, de Marchena E and Ahn YS. Endothelial microparticles and platelet and leukocyte
738 activation in patients with the metabolic syndrome. *Am J Cardiol*. 2006;98:70-4.

739 35. Chironi G, Simon A, Hugel B, Del Pino M, Gariepy J, Freyssinet JM and Tedgui A.
740 Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in
741 asymptomatic subjects. *Arterioscler Thromb Vasc Biol.* 2006;26:2775-80.

742 36. Koga H, Sugiyama S, Kugiyama K, Fukushima H, Watanabe K, Sakamoto T, Yoshimura
743 M, Jinnouchi H and Ogawa H. Elevated levels of remnant lipoproteins are associated with
744 plasma platelet microparticles in patients with type-2 diabetes mellitus without obstructive
745 coronary artery disease. *Eur Heart J.* 2006;27:817-23.

746 37. Koga H, Sugiyama S, Kugiyama K, Watanabe K, Fukushima H, Tanaka T, Sakamoto T,
747 Yoshimura M, Jinnouchi H and Ogawa H. Elevated levels of VE-cadherin-positive endothelial
748 microparticles in patients with type 2 diabetes mellitus and coronary artery disease. *J Am Coll
749 Cardiol.* 2005;45:1622-30.

750 38. Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, Aime G and Ahn YS.
751 Effects of severe hypertension on endothelial and platelet microparticles. *Hypertension.*
752 2003;41:211-7.

753 39. Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-
754 Romero CA, Chen Z, Alibhai FJ, Gustafson D, Raju S, Wu R, Zarrin Khat D, Wang Y, Caballero
755 A, Meagher P, Lau E, Pepic L, Cheng HS, Galant NJ, Howe KL, Li RK, Connelly KA, Husain M,
756 Delgado-Olguin P and Fish JE. MiR-30 promotes fatty acid beta-oxidation and endothelial cell
757 dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical
758 models of diabetes. *Cardiovasc Diabetol.* 2022;21:31.

759 40. Ye W, Tang X, Yang Z, Liu C, Zhang X, Jin J and Lyu J. Plasma-derived exosomes
760 contribute to inflammation via the TLR9-NF- κ B pathway in chronic heart failure patients. *Mol
761 Immunol.* 2017;87:114-121.

762 41. Lyu L, Wang H, Li B, Qin Q, Qi L, Nagarkatti M, Nagarkatti P, Janicki JS, Wang XL and
763 Cui T. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin
764 system in cardiomyocytes. *J Mol Cell Cardiol.* 2015;89:268-79.

765 42. Emanueli C, Shearn AI, Laftah A, Fiorentino F, Reeves BC, Beltrami C, Mumford A,
766 Clayton A, Gurney M, Shantikumar S and Angelini GD. Coronary Artery-Bypass-Graft Surgery
767 Increases the Plasma Concentration of Exosomes Carrying a Cargo of Cardiac MicroRNAs: An
768 Example of Exosome Trafficking Out of the Human Heart with Potential for Cardiac Biomarker
769 Discovery. *PLoS One.* 2016;11:e0154274.

770 43. Amabile N, Cheng S, Renard JM, Larson MG, Ghorbani A, McCabe E, Griffin G, Guerin
771 C, Ho JE, Shaw SY, Cohen KS, Vasan RS, Tedgui A, Boulanger CM and Wang TJ. Association
772 of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham
773 Heart Study. *Eur Heart J.* 2014;35:2972-9.

774 44. de Hoog VC, Timmers L, Schoneveld AH, Wang JW, van de Weg SM, Sze SK, van
775 Keulen JK, Hoes AW, den Ruijter HM, de Kleijn DP and Mosterd A. Serum extracellular vesicle
776 protein levels are associated with acute coronary syndrome. *Eur Heart J Acute Cardiovasc
777 Care.* 2013;2:53-60.

778 45. Liu Y, Huang W, Zhang R, Wu J, Li L and Tang Y. Proteomic analysis of TNF- α -
779 activated endothelial cells and endothelial microparticles. *Mol Med Rep.* 2013;7:318-26.

780 46. Yamamoto S, Niida S, Azuma E, Yanagibashi T, Muramatsu M, Huang TT, Sagara H,
781 Higaki S, Ikutani M, Nagai Y, Takatsu K, Miyazaki K, Hamashima T, Mori H, Matsuda N, Ishii Y
782 and Sasahara M. Inflammation-induced endothelial cell-derived extracellular vesicles modulate
783 the cellular status of pericytes. *Sci Rep.* 2015;5:8505.

784 47. Sapet C, Simoncini S, Loriod B, Puthier D, Sampol J, Nguyen C, Dignat-George F and
785 Anfosso F. Thrombin-induced endothelial microparticle generation: identification of a novel
786 pathway involving ROCK-II activation by caspase-2. *Blood.* 2006;108:1868-76.

787 48. Wang JM, Wang Y, Huang JY, Yang Z, Chen L, Wang LC, Tang AL, Lou ZF and Tao J.
788 C-Reactive protein-induced endothelial microparticle generation in HUVECs is related to BH4-
789 dependent NO formation. *J Vasc Res.* 2007;44:241-8.

790 49. Haynes BA, Yang LF, Huyck RW, Lehrer EJ, Turner JM, Barabutis N, Correll VL,
791 Mathiesen A, McPheat W, Semmes OJ and Dobrian AD. Endothelial-to-Mesenchymal
792 Transition in Human Adipose Tissue Vasculature Alters the Particulate Secretome and Induces
793 Endothelial Dysfunction. *Arterioscler Thromb Vasc Biol.* 2019;39:2168-2191.

794 50. Chang YJ, Li YS, Wu CC, Wang KC, Huang TC, Chen Z and Chien S. Extracellular
795 MicroRNA-92a Mediates Endothelial Cell-Macrophage Communication. *Arterioscler Thromb
796 Vasc Biol.* 2019;39:2492-2504.

797 51. de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM,
798 Gucek M and van Balkom BW. Cellular stress conditions are reflected in the protein and RNA
799 content of endothelial cell-derived exosomes. *J Extracell Vesicles.* 2012;1.

800 52. Boyer MJ, Kimura Y, Akiyama T, Baggett AY, Preston KJ, Scalia R, Eguchi S and Rizzo
801 V. Endothelial cell-derived extracellular vesicles alter vascular smooth muscle cell phenotype
802 through high-mobility group box proteins. *J Extracell Vesicles.* 2020;9:1781427.

803 53. Koga M, Kai H, Yasukawa H, Kato S, Yamamoto T, Kawai Y, Kusaba K, Seki Y, Kai M,
804 Egashira K, Kataoka Y and Imaizumi T. Postnatal blocking of interferon-gamma function
805 prevented atherosclerotic plaque formation in apolipoprotein E-knockout mice. *Hypertens Res.*
806 2007;30:259-67.

807 54. Laffont B and Rayner KJ. MicroRNAs in the Pathobiology and Therapy of
808 Atherosclerosis. *Can J Cardiol.* 2017;33:313-324.

809 55. Wolfrum S, Teupser D, Tan M, Chen KY and Breslow JL. The protective effect of A20 on
810 atherosclerosis in apolipoprotein E-deficient mice is associated with reduced expression of NF-
811 kappaB target genes. *Proc Natl Acad Sci U S A.* 2007;104:18601-6.

812 56. Zhang YG, Song Y, Guo XL, Miao RY, Fu YQ, Miao CF and Zhang C. Exosomes
813 derived from oxLDL-stimulated macrophages induce neutrophil extracellular traps to drive
814 atherosclerosis. *Cell Cycle.* 2019;18:2674-2684.

815 57. Buffolo F, Monticone S, Camussi G and Aikawa E. Role of Extracellular Vesicles in the
816 Pathogenesis of Vascular Damage. *Hypertension.* 2022;79:863-873.

817 58. van Niel G, Carter DR, Clayton A, Lambert DW, Raposo G and Vader P. Challenges
818 and directions in studying cell-cell communication by extracellular vesicles. *Nat Rev Mol Cell
819 Biol.* 2022;23:369-382.

820 59. Dixson AC, Dawson TR, Di Vizio D and Weaver AM. Context-specific regulation of
821 extracellular vesicle biogenesis and cargo selection. *Nat Rev Mol Cell Biol.* 2023.

822 60. Iruela-Arispe ML and Davis GE. Cellular and molecular mechanisms of vascular lumen
823 formation. *Dev Cell.* 2009;16:222-31.

824 61. Potente M, Gerhardt H and Carmeliet P. Basic and therapeutic aspects of angiogenesis.
825 *Cell.* 2011;146:873-87.

826 62. Caldwell PR, Seegal BC, Hsu KC, Das M and Soffer RL. Angiotensin-converting
827 enzyme: vascular endothelial localization. *Science.* 1976;191:1050-1.

828 63. Figueira CD, Marchant A, Novoa U, Förstermann U, Jarnagin K, Schölkens B and
829 Müller-Esterl W. Differential Distribution of Bradykinin B(2) Receptors in the Rat and Human
830 Cardiovascular System. *Hypertension.* 2001;37:110-120.

831 64. Isakson BE, Ramos SI and Duling BR. Ca²⁺ and inositol 1,4,5-trisphosphate-mediated
832 signaling across the myoendothelial junction. *Circ Res.* 2007;100:246-54.

833 65. Muller WA and Gimbrone MA, Jr. Plasmalemmal proteins of cultured vascular
834 endothelial cells exhibit apical-basal polarity: analysis by surface-selective iodination. *J Cell Biol.*
835 1986;103:2389-402.

836 66. Ryan US, Ryan JW, Whitaker C and Chiu A. Localization of angiotensin converting
837 enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. *Tissue Cell.*
838 1976;8:125-45.

839 67. Straub AC, Lohman AW, Billaud M, Johnstone SR, Dwyer ST, Lee MY, Bortz PS, Best
840 AK, Columbus L, Gaston B and Isakson BE. Endothelial cell expression of haemoglobin α
841 regulates nitric oxide signalling. *Nature*. 2012;491:473-7.

842 68. Tsukahara T, Kassell NF, Hongo K, Vollmer DG and Ogawa H. Muscarinic cholinergic
843 receptors on the endothelium of human cerebral arteries. *J Cereb Blood Flow Metab*.
844 1989;9:748-53.

845 69. van Haaren PM, VanBavel E, Vink H and Spaan JA. Localization of the permeability
846 barrier to solutes in isolated arteries by confocal microscopy. *Am J Physiol Heart Circ Physiol*.
847 2003;285:H2848-56.

848 70. Wei H, Sundararaman A, Dickson E, Rennie-Campbell L, Cross E, Heesom KJ and
849 Mellor H. Characterization of the polarized endothelial secretome. *FASEB J*. 2019;33:12277-
850 12287.

851 71. Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff
852 MI and Nelson MT. Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted
853 spaces of myoendothelial projections. *Proc Natl Acad Sci U S A*. 2008;105:9627-32.

854 72. Sporn LA, Marder VJ and Wagner DD. Differing polarity of the constitutive and regulated
855 secretory pathways for von Willebrand factor in endothelial cells. *J Cell Biol*. 1989;108:1283-9.

856 73. Verma S, Nakaoke R, Dohgu S and Banks WA. Release of cytokines by brain
857 endothelial cells: A polarized response to lipopolysaccharide. *Brain Behav Immun*. 2006;20:449-
858 55.

859 74. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a
860 systematic analysis for the Global Burden of Disease Study 2019. *Lancet*. 2020;396:1204-1222.

861 75. Wortzel I, Dror S, Kenific CM and Lyden D. Exosome-Mediated Metastasis:
862 Communication from a Distance. *Dev Cell*. 2019;49:347-360.

863 76. Gao X, Gao B and Li S. Extracellular vesicles: A new diagnostic biomarker and targeted
864 drug in osteosarcoma. *Front Immunol*. 2022;13:1002742.

865 77. Meng W, Hao Y, He C, Li L and Zhu G. Exosome-orchestrated hypoxic tumor
866 microenvironment. *Mol Cancer*. 2019;18:57.

867 78. Olioso D, Caccese M, Santangelo A, Lippi G, Zagonel V, Cabrini G, Lombardi G and
868 Dechechci MC. Serum Exosomal microRNA-21, 222 and 124-3p as Noninvasive Predictive
869 Biomarkers in Newly Diagnosed High-Grade Gliomas: A Prospective Study. *Cancers (Basel)*.
870 2021;13.

871 79. Wu Q, Zhou L, Lv D, Zhu X and Tang H. Exosome-mediated communication in the
872 tumor microenvironment contributes to hepatocellular carcinoma development and progression.
873 *J Hematol Oncol*. 2019;12:53.

874 80. Jarr KU, Kojima Y, Weissman IL and Leeper NJ. 2021 Jeffrey M. Hoeg Award Lecture:
875 Defining the Role of Efferocytosis in Cardiovascular Disease: A Focus on the CD47 (Cluster of
876 Differentiation 47) Axis. *Arterioscler Thromb Vasc Biol*. 2022;42:e145-e154.

877 81. Jarr KU, Nakamoto R, Doan BH, Kojima Y, Weissman IL, Advani RH, Iagaru A and
878 Leeper NJ. Effect of CD47 Blockade on Vascular Inflammation. *N Engl J Med*. 2021;384:382-
879 383.

880 82. Jarr KU, Ye J, Kojima Y, Nanda V, Flores AM, Tsantilas P, Wang Y, Hosseini-Nassab N,
881 Eberhard AV, Lotfi M, Käller M, Smith BR, Maegdefessel L and Leeper NJ. (18)F-
882 Fluorodeoxyglucose-Positron Emission Tomography Imaging Detects Response to Therapeutic
883 Intervention and Plaque Vulnerability in a Murine Model of Advanced Atherosclerotic Disease-
884 Brief Report. *Arterioscler Thromb Vasc Biol*. 2020;40:2821-2828.

885 83. Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ, Miller CL, Direnzo D, Nanda V,
886 Ye J, Connolly AJ, Schadt EE, Quertermous T, Betancur P, Maegdefessel L, Matic LP, Hedin U,
887 Weissman IL and Leeper NJ. CD47-blocking antibodies restore phagocytosis and prevent
888 atherosclerosis. *Nature*. 2016;536:86-90.

889 84. Wang Y, Nanda V, Direnzo D, Ye J, Xiao S, Kojima Y, Howe KL, Jarr KU, Flores AM,
890 Tsantilas P, Tsao N, Rao A, Newman AAC, Eberhard AV, Priest JR, Ruusalepp A, Pasterkamp
891 G, Maegdefessel L, Miller CL, Lind L, Koplev S, Björkegren JLM, Owens GK, Ingelsson E,
892 Weissman IL and Leeper NJ. Clonally expanding smooth muscle cells promote atherosclerosis
893 by escaping efferocytosis and activating the complement cascade. *Proc Natl Acad Sci U S A*.
894 2020;117:15818-15826.

895 85. Cai B, Thorp EB, Doran AC, Sansbury BE, Daemen MJ, Dorweiler B, Spite M, Fredman
896 G and Tabas I. MerTK receptor cleavage promotes plaque necrosis and defective resolution in
897 atherosclerosis. *J Clin Invest*. 2017;127:564-568.

898 86. Cai B, Thorp EB, Doran AC, Subramanian M, Sansbury BE, Lin CS, Spite M, Fredman
899 G and Tabas I. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates
900 tissue inflammation. *Proc Natl Acad Sci U S A*. 2016;113:6526-31.

901 87. Yurdagul A, Jr., Kong N, Gerlach BD, Wang X, Ampomah P, Kuriakose G, Tao W, Shi J
902 and Tabas I. ODC (Ornithine Decarboxylase)-Dependent Putrescine Synthesis Maintains
903 MerTK (MER Tyrosine-Protein Kinase) Expression to Drive Resolution. *Arterioscler Thromb
904 Vasc Biol*. 2021;41:e144-e159.

905 88. Newman AAC, Serbulea V, Baylis RA, Shankman LS, Bradley X, Alencar GF, Owsiany
906 K, Deaton RA, Karnewar S, Shamsuzzaman S, Salamon A, Reddy MS, Guo L, Finn A, Virmani
907 R, Cherepanova OA and Owens GK. Multiple cell types contribute to the atherosclerotic lesion
908 fibrous cap by PDGFR β and bioenergetic mechanisms. *Nat Metab*. 2021;3:166-181.

909

910

911 **Figure Legends**
912

913 **Figure 1. Endothelial cells release increased CD63-positive sEVs in response to**
914 **activation.** **A**, Nanoparticle tracking analysis (NTA) of EV concentration binned by particle size
915 after isolation from HAEC conditioned media (8×10^7 cells, from quiescent (EV-free media, 24
916 h) and activated (100 pg/mL IL-1 β in EV-free media, 24 h) states ($n=3-8$). **B**, Quantification of
917 EC-EV mean concentration across all EV sizes. **C**, Western blot depicting EV markers (CD63,
918 Alix, and CD9) in EV lysates isolated from supernatants of quiescent and activated HAECs and
919 HAEC cell lysate (CL) control. Arrows show position of correct protein band and molecular
920 weights markers indicated on left. **D**, Densitometry of EV lysate derived CD63 normalized to
921 HAEC cell lysate control. **E**, Cryo-EM of EVs isolated from quiescent and activated HAEC cell
922 supernatant. Arrows indicate EV structures. Scale bar=50 nm. **F**, Quantification of EV mean
923 diameter by NTA. **G**, Transmission electron microscopy of 90 nm ultramicrotomed HAEC
924 monolayers. Dashed circles indicate multivesicular bodies. Representative image ($n=3$).
925 Bar graphs show mean \pm SEM. Statistical significance assessed by Mann-Whitney test (B) and
926 unpaired *t* test (D, F).
927

928 **Online Figure I. General features of sEV isolation in human aortic endothelial cells in**
929 **quiescence and after confirmed activation with IL-1 β .** **A**, Schematic for sEV enrichment.
930 Endothelial cells were grown to confluence and maintained in EV-free media for 24 h prior to
931 supernatant collection. Conditioned media was centrifuged at 500xg and 3,000xg for removal of
932 cell debris and apoptotic bodies, followed by filtration with 0.22 μ M to generate cleared
933 conditioned media. EVs are enriched via ultracentrifugation at 120,000 x g for 3 h, followed by a
934 PBS wash, and ultrafiltration using a Amicon 10 kDa filter. EV enrichment was confirmed as per
935 the MISEV2018 guidelines. Created with BioRender.com. **B**, RT-qPCR of inflammatory
936 cytokines and adhesion molecules in cultured HAECs post treatment with 100 pg/mL IL-1 β , 24
937 h. mRNA abundance was normalized to GAPDH. **C**, HAECs were grown on coverslips, placed
938 in EV-free media (left) +/- IL-1 β (right; 100 pg/mL, 24 h) and stained for the adherens junction,
939 VE-Cadherin ($n=3$). **D**, Densitometry of EV lysate derived CD9 and Alix normalized to HAEC cell
940 lysate control.
941 Bar graphs show mean \pm SEM. Statistical significance assessed by multiple unpaired *t*-test with
942 adjustment for multiple testing with the Benjamini-Hochberg procedure.
943

944 **Figure 2. Endothelial sEV miRNA and protein cargo are distinct in identity and predicted**
945 **function in activated versus quiescent conditions.** **A**, Unfiltered principal component
946 analysis (PCA) showing miRNA profiles of sEVs isolated from conditioned media of activated
947 (red) versus quiescent (blue) HAECs (8×10^7 cells, 100 pg/mL IL-1 β , 24 h). **B**, Rank plots using
948 normalized counts (arithmetic mean + SEM). Top 10 activation-and quiescence-enriched
949 miRNAs are highlighted in red and blue, respectively. **C**, Volcano plot of HAEC secreted EV
950 miRNA transcriptome with red and blue representing EV-miRNA contents enriched in activated
951 and quiescent states, respectively (FDR step up ≤ 0.05 , Fold Change $|2|$) **D**, Pathway analysis
952 of top 10 (by FDR) quiescent HAEC-EV enriched miRNAs (miRTarBase) delineated significant
953 KEGG pathways (FDR ≤ 0.05) for miRNA associations of miR-208b-3p, miR-513a-3p, and miR-
954 587. Data points are sized by GeneRatio (genes altered in pathway/total number of unique
955 genes in analysis) and colour-scaled by FDR. **E**, Pathway analysis of top 10 (by FDR) activated
956 HAEC-EV enriched miRNAs (miRTarBase). Shown are individual miRNA associations of KEGG
957 pathways of interest. Data points are sized by GeneRatio (genes altered in pathway/total
958 number of unique genes in analysis) and colour-scaled by FDR. **F**, Unfiltered PCA showing
959 protein profiles of sEVs isolated from conditioned media of activated (red) versus quiescent
960 (blue) HAECs as in (A). **G**, Volcano plot of HAEC secreted EV proteome with red and blue
961 representing EV-protein contents enriched in activated and quiescent states, respectively

962 (p≤ 0.05, Fold Change |1.5|). **H**, Proteomap (v2.0, Homo Sapiens) generated from all
963 differentially enriched quiescent EC-EV proteins weighted by mass abundance. KEGG orthology
964 terms (left) and respective proteins (right) contributing to the pathways are illustrated. **I**,
965 Proteomap (v2.0, Homo Sapiens) generated from all differentially enriched activated EC-EV
966 proteins calculated as in **(H)**. **J**, Overlapping KEGG pathways between the top 10 (by FDR)
967 differentially enriched EV-proteins and all differentially enriched EV-proteins in quiescent (top,
968 blue) and activated states (bottom, red). **K-L**, EV interactome generated by capturing
969 differentially expressed EV-miRNA (top 25 by FDR) and all EV-proteins in quiescent (**K**) and
970 activated (**L**) states, followed by network reduction to retain the top 15 of each group based on
971 degree of interactions. EV-miRNA shown in blue or red, EV-proteins in turquoise or pink, and
972 predicted targets in green. Node size denotes significant value.
973 Data shown represent n=3-4 independent experiments. Cancer-, and infection- associated
974 pathways were excluded from analysis. Data is represented as mean ± SEM.
975
976
977

978 Online Figure II. sEV biogenesis is unaffected by endothelial activation.

979 **A-B**, RT-qPCR of genes known to function in EV sorting and release in cultured HAECs post
980 treatment with 100 pg/mL IL-1 β at 4 h (**A**) and 24 h (**B**). mRNA abundance was normalized to
981 the housekeeping gene, TBP. **C**, Western blot depicting expression of proteins involved in EV
982 sorting and release in HAEC cell lysate (left). Densitometric analysis of EV markers, normalized
983 to total protein (right). Arrows show position of correct protein band and molecular weights
984 markers indicated on left. **D-E**, Publicly available HAEC RNA-seq data (GEO accession:
985 GSE89970). HAECs were isolated from aorta of adult patients and activated with IL-1 β (10
986 ng/mL, 4 h). **D**, PCA analysis. **E**, Median Ratio normalized mRNA counts of EV biogenesis
987 proteins.
988 Bar graphs show mean ± SEM. Statistical significance assessed by multiple unpaired t-test with
989 adjustment for multiple testing with the Benjamini-Hochberg procedure.
990
991

992 Online Figure III. Additional analysis of sEV miRNA cargo in quiescent and activated

993 **endothelium. A**, Median normalized miRNA counts of endothelial enriched miRNA in quiescent
994 (blue) and activated (red) states. **B**, Median normalized miRNA counts of quiescent enriched
995 EV-miRNA used in KEGG pathway analysis. **C**, Median normalized miRNA counts of activation
996 enriched EV-miRNA used in KEGG pathway analysis. **D-E**, KEGG pathway analysis with top
997 FDR-based pathways of EV-miRNA enriched in quiescent (**D**) and activated (**E**) states. Data
998 points are sized by GeneRatio (genes altered in pathway/total number of unique genes in
999 analysis) and colour-scaled by FDR.
1000
1001

1002 Online Figure IV. Workflow and quality control for sEV proteomics from quiescent and

1003 **activated endothelial cells. A**, Total protein quantification in HAEC EV lysates from quiescent
1004 and activated conditions. **B**, Abundances of common EV protein in HAEC EV-enriched samples
1005 in quiescent and activated conditions (CD63, CD9, CD81, LAMP1, ITGAV, ITGA3, ITGA4, ALIX,
1006 CAV1, ANXA2/5/1). **C**, Differentially expressed proteins in activated versus quiescent conditions
1007 (p≤ 0.05, Fold Change |1.5|). Proteins involved in EV trafficking and release are labeled in red.
1008 **D**, Assessment of media-based contamination for EC-EV transwell proteomics. Workflow shown
1009 on top. Normalized peptide abundances in complete media and EV-free media (left). VENN
1010 diagram depicting total number of proteins with two unique peptides in complete versus EV-free
1011 media (right). **E**, Quantification (left) and rank plot (right) of total proteins (with 2 unique
1012 peptides) derived from serum (labelled bovine) in our EV-samples.

1013
1014

1015 **Figure 3. Endothelial sEVs distinctly alter the transcriptional landscape of recipient**
1016 **monocytes and smooth muscle cells depending on whether they are derived from**
1017 **quiescent or activated endothelium. A**, Unfiltered PCA plot depicting clustering of media
1018 control (yellow), quiescent EC-EVs (blue), and activated EC-EVs (red) treated CD14+ monocyte
1019 mRNA transcriptome ($n=3$). **B**, VENN diagram depicting number of shared and unique RNA
1020 transcripts in comparison of activated vs quiescent EC-EV treatment. **C**, GO pathway analysis
1021 of the effects of activated versus quiescent EC-EVs on the monocyte RNA transcriptome
1022 (adjusted p-values ≤ 0.05 and $|\log_2(\text{FoldChange})| > 0$). Data points are sized by GeneRatio
1023 (genes altered in pathway/total number of unique genes in analysis) and colour-scaled by FDR.
1024 Upregulated ratio was calculated by dividing the number of upregulated genes by the total
1025 number of genes known to function in each pathway. **D-E**, Interactomes integrating activated
1026 EC-EV secretome (top 15 miRNAs and all EV-proteins) with differentially expressed monocyte
1027 transcripts based on degree of interactions. Downregulated EC-EV cargo and concordant
1028 upregulated monocyte targets are depicted in **(D)**. Upregulated EC-EV cargo and concordant
1029 downregulated monocyte targets are depicted in **(E)**. **F**, Unfiltered PCA plot depicting clustering
1030 of EC-EV treated SMC mRNA transcriptome as in **A** ($n=3$). **G**, VENN diagram depicting SMC
1031 RNA transcripts as in **(B)**. **H**, KEGG pathway analysis of the effects of activated versus
1032 quiescent EC-EVs on the SMC RNA transcriptome (adjusted p-values ≤ 0.05 and
1033 $|\log_2(\text{FoldChange})| > 0$). Data visualization completed as in **(C)**. **I-J**, Interactomes as in **(D-E)**
1034 integrating differentially expressed SMC transcripts.

1035
1036

1037 **Online Figure V. Effects of endothelial sEVs on recipient monocytes and smooth muscle**
1038 **cells. A**, Schematic of experimental design. HAECs (+/- IL-1 β treatment 100 pg/mL, 24 h),
1039 conditioned media collected, cell debris removed via centrifugation, filtered for sEVs, isolated by
1040 ultracentrifugation, and concentrated until resuspension and addition to primary human CD14+
1041 monocytes (10^{9-10} sEVs added to 500,000 monocytes) or SMC (10^{9-10} sEVs added to 400,000
1042 SMCs). After 24 h sEV exposure, monocyte cell lysates were collected, RNA isolated, purity
1043 confirmed by BioAnalyzer, and sent for RNA sequencing (400 ng, Novogene). **B**, Unfiltered
1044 heatmap analysis showing transcript abundance in treatment groups. Shading represents
1045 expression levels. Right legend identifies treatment group. Bottom legend identifies transcript
1046 type (protein coding vs. non-coding). **C**, VENN diagram depicting number of shared and unique
1047 monocyte RNA transcripts in comparisons of activated vs control groups. **D**, GO pathway
1048 analysis of the effects of activated EC-EVs versus media control on the monocyte RNA
1049 transcriptome (adjusted p-values ≤ 0.05 and $|\log_2(\text{FoldChange})| > 0$). Data points are sized by
1050 GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-
1051 scaled by FDR. Upregulated ratio was calculated by dividing the number of upregulated genes
1052 by the total number of genes known to function in each pathway. **E**, Unfiltered heatmap analysis
1053 showing transcript abundance in treatment groups as in **(B)**. **F**, VENN diagram depicting
1054 number of shared and unique SMC RNA transcripts in comparisons of activated vs control
1055 groups. **G**, KEGG pathway analysis of the effects of activated EC-EVs versus media control on
1056 the SMC RNA transcriptome (adjusted p-values ≤ 0.05 and $|\log_2(\text{FoldChange})| > 0$). Data
1057 visualization completed as in **(D)**.

1058
1059

1060 **Figure 4. Multi-modal evidence determining quiescent endothelial cells release sEVs to**
1061 **apical and basolateral compartments. A**, Workflow showing EC-EV isolation from
1062 compartments. Briefly, HAECs were seeded at confluence on semi-permeable transwell inserts
1063 to sequester EVs from apical and basolateral compartments. EVs were isolated by

1064 ultracentrifugation or size exclusion chromatography, concentrated, and validated according to
1065 MISEV2018 guidelines. Created with BioRender.com. **B**, Cryo-EM of representative images of
1066 apical (top panel) and basolateral (bottom panel) quiescent EC-EVs. Arrows denote EV
1067 structures. Scale bar 50 nm. **C-D**, Nanoparticle tracking analysis quantifying the mean diameter
1068 (**C**) and concentration (**D**) of EC-sEVs in apical and basolateral compartments. **E-F**, Western
1069 blot depicting protein expression of EV markers ((positive (CD63, CD81, Alix) and negative
1070 (Calnexin)), in cell lysate, apical EV and basolateral EV samples (**E**). Arrows show position of
1071 correct protein band and molecular weights markers indicated on left. Densitometric analysis of
1072 EV markers (**F**). **G-J**, Total internal reflection fluorescence (TIRF) microscopy. Panels depicting
1073 ECs transfected with fluorescent plasmid (pHluorinCD63) set for detection of basolateral EV
1074 release +/- positive (histamine, 100 mM, 1 min) and negative (GW4869, 0.5 mM, 4 h) controls
1075 (**G, I**). Quantification of basolateral EV release (**H, J**). For histamine stimulated cells, vesicles in
1076 the TIRF zone were quantified and normalized to the number of cells in the field (**H**). For
1077 GW4869 stimulated cells, integrated densities of CD63-pHluorin under basal conditions and
1078 after pre-treatment was quantified (**J**). **K**, Model for exogenous miRNA transfer between ECs
1079 and monocytes (see methods for full details). Briefly, HAECS were transfected with exogenous
1080 miRNA-39 (*C. elegans*) and then seeded onto an inverted transwell to avoid direct cell-cell
1081 contact with non-adherent monocytes. Monocytes were then placed either in a solitary chamber
1082 (apical or basolateral, unilateral co-culture experiment) or simultaneously in the apical and
1083 basolateral chambers (bilateral co-culture experiment), with monocytes harvested after 24 h,
1084 and RNA isolated to quantify miRNA-39 expression by RT-qPCR. **L**, Transmission electron
1085 microscopy of 90 nm ultramicrotomed HAEC monolayers. Embedded blocks were cut from the
1086 basolateral surface: the first 5 mm of resin cut was discarded to get to the apical surface. Circles
1087 indicate multivesicular bodies. Data shown represent n=3-4 independent experiments. Bar
1088 graphs show mean \pm SEM. Statistical significance assessed by unpaired *t* test (C,D,F,J), paired
1089 *t* test (H) and Mann-Whitney test (K) when data was not normally distributed.
1090
1091

1092 **Online Figure VI. Validation of the model for polarized sEV release from endothelial**
1093 **monolayers. A-B**, Endothelial cell physiologic barrier demonstration by VE-cadherin expression
1094 (**A**) and 30 nm gold nanoparticle challenge (**B**). **A**, HAECS were grown on transwell supports as
1095 described above, placed in EV-free media (top panel) +/- IL-1 β (bottom panel; 100 pg/mL, 24 h)
1096 and stained for the adherens junction, VE-Cadherin. **B**, Gold nanoparticle assay confirming the
1097 smallest EV-like nanoparticle (30 nm) does not cross the EC monolayer in quiescence or after
1098 activation with IL-1 β at 100 pg/mL. **C-G**, HUVECs confirm polarized release of EVs to apical and
1099 basolateral compartments. **C**, Nanoparticle tracking analysis quantifying concentration of EC-
1100 EVs in apical and basolateral compartments. **D-E**, Western blot depicting protein expression of
1101 EV markers (positive (CD63, CD81, Alix), in cell lysate, apical EV and basolateral EV samples
1102 (**D**). Arrows show position of correct protein band and molecular weights markers indicated on
1103 left. Densitometric analysis of EV markers (**E**). **F**, Nanoparticle tracking analysis quantifying the
1104 mean EV diameter in apical and basolateral compartments. **G**, Cryo-EM of representative
1105 images of apical (top) and basolateral (bottom) quiescent EC-EVs. Scale bar=50 nm.
1106
1107

1108 **Figure 5. Quiescent endothelial cells release sEVs containing distinct miRNA and protein**
1109 **cargo to apical and basolateral compartments. A**, Unfiltered PCA analysis of apical (dark
1110 colours) and basolateral (light colours) EV-miRNA depict clustering by polarity (broad circles).
1111 **B**, Volcano plot (left panel) of quiescent HAEC secreted EV-miRNA transcriptome enriched in
1112 apical (dark shading) versus basolateral (light shading) compartments. Top miRNA, by FDR
1113 step up, are labelled in each condition and used for downstream pathway analysis (FDR step up
1114 ≤ 0.05). KEGG pathway analysis of labelled miRNA in each condition (FDR ≤ 0.05), weighted by

1115 number of miRNAs participating in each pathway depicted by Word Cloud (right panel). **C**,
1116 Unfiltered PCA analysis of apical (dark colours) and basolateral (light colours) EV-protein
1117 profiles showing clustering by polarity (broad circles). **D**, Volcano plot (left panel) of quiescent
1118 HAEC secreted EV-proteome enriched in apical (dark shading) versus basolateral (light
1119 shading) compartments (FDR≤0.05). All differentially enriched (FDR≤0.05) apical versus
1120 basolateral proteins in quiescent conditions were inputted to generate proteomaps (v2.0, Homo
1121 Sapiens), weighted by protein mass abundance. Apical and basolateral proteomaps are
1122 represented by top and bottom panels, respectively. KEGG orthology terms (left) and respective
1123 proteins (right) contributing to the pathways are illustrated. *AGE-RAGE signaling in diabetic
1124 complications.

1125
1126 **Online Figure VII. The phenomenon of polarized sEV release with distinct apical and**
1127 **basolateral miRNA and protein cargo is preserved after endothelial cell activation. A-B,**
1128 Differential expression of EV-miRNA in apical versus basolateral compartments as depicted by
1129 unfiltered heatmap analysis (**A**) and KEGG pathway analysis (**B**). **B**, Volcano plot (right panel)
1130 of activated HAEC secreted EV-miRNA transcriptome enriched in apical (dark shading) versus
1131 basolateral (light shading) compartments. Top miRNA, by FDR step up, are labelled in each
1132 condition and used for downstream pathway analysis (FDR step up ≤ 0.05). KEGG pathway
1133 analysis of labelled miRNA in each condition (FDR ≤ 0.05), weighted by number of miRNAs
1134 participating in each pathway depicted by Word Cloud (left panel). **C**, Heatmap depicting EV
1135 protein markers (derived from EV proteomics) in apical and basolateral compartments for both
1136 quiescent and activated states. **D-F**, EV-proteomic analysis comparing apical versus basolateral
1137 EV-proteins. **D**, Unfiltered heatmap analysis depicting protein abundances of apical and
1138 basolateral EC-EVs from activated states (n=5-8). **E**, VENN diagrams depicting number of
1139 shared and unique proteins in comparisons of apical (open circle) versus basolateral (filled
1140 circle) in quiescent (top) and activated (bottom) states. **F**, Volcano plot (right panel) of activated
1141 HAEC secreted EV-proteome enriched in apical (dark shading) versus basolateral (light
1142 shading) compartments (FDR≤0.05). Left panel: All differentially enriched proteins (FDR≤0.05)
1143 in activated conditions were used to generate proteomaps (v2.0, Homo Sapiens), weighted by
1144 protein mass abundance. Apical and basolateral proteomaps are represented by top and bottom
1145 panels, respectively. KEGG orthology terms (left) and respective proteins (right) contributing to
1146 the pathways are illustrated.

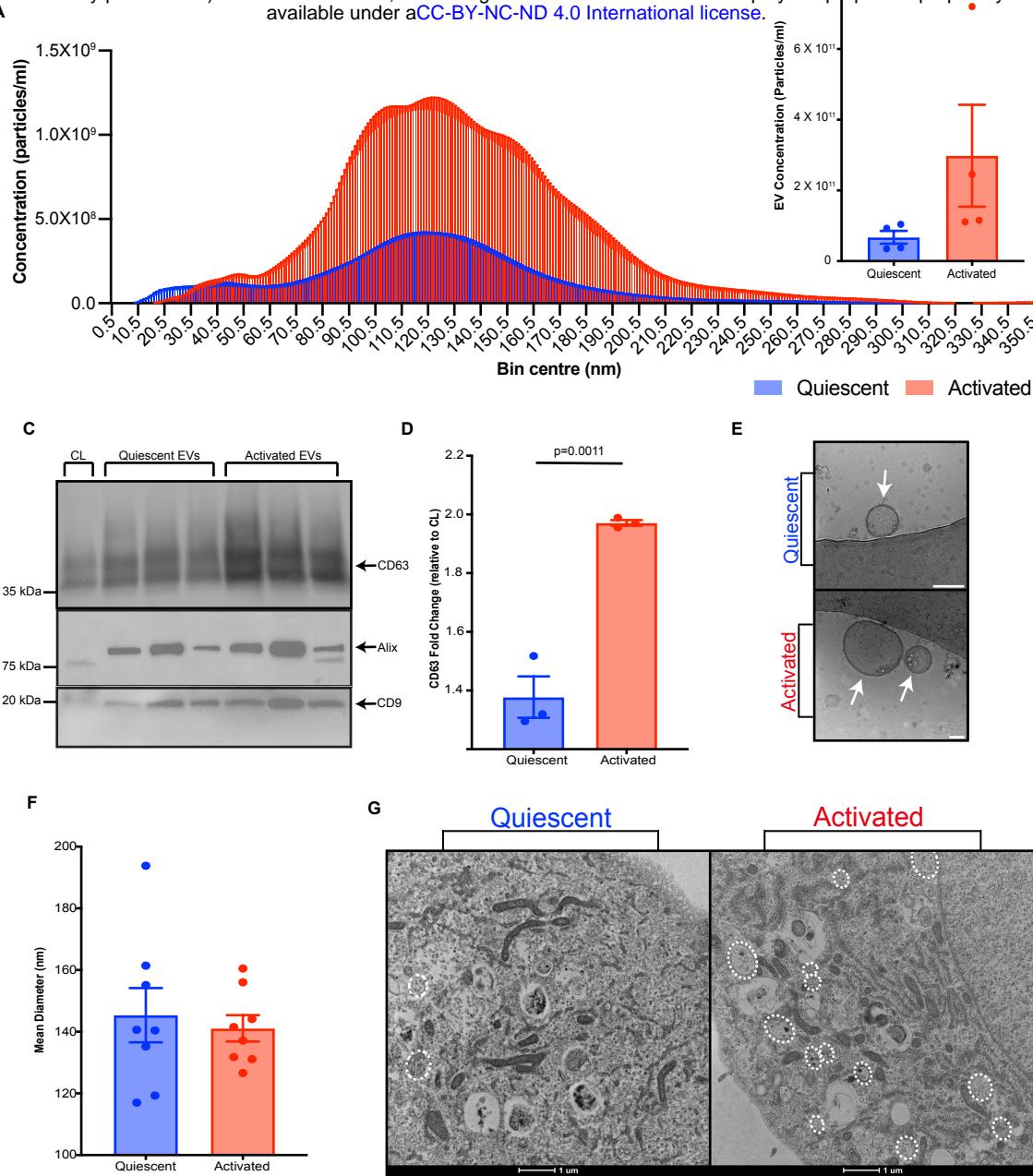
1147
1148
1149
1150 **Figure 6. Activated endothelial cells modulate sEV miRNA and protein cargo in a**
1151 **compartment-specific manner with the capacity to uniquely affect circulating monocytes**
1152 **and resident vascular smooth muscle cells. A-B**, Comparison of EC activation (red) versus
1153 quiescence (blue) on polarized sEV concentration in apical and basolateral compartments as
1154 determined by NTA (**A**) and western blot (**B**) (n=3-4). **B**, EV markers CD63, CD81, and Alix are
1155 denoted on the right, with molecular weights on the left. **C-D**, Unfiltered principal component
1156 analysis of apical (**C**) and basolateral EV-miRNA cargo (**D**) in activated versus quiescent states.
1157 **E**, KEGG pathway analysis (FDR≤0.05) of top apical (n=10) and basolaterally (n=6) enriched
1158 miRNA highlight unique and shared pathways modulated by differentially expressed EV-miRNA
1159 in activated conditions (VENN diagram, left). Unique KEGG pathways enriched by activation in
1160 apical (dark red, top graph) and basolateral (light red, bottom graph) EC-EVs shown on right.
1161 Bar graph scaled by -log10(FDR) and labelled with number of genes involved in pathway. **F-G**,
1162 Activated versus quiescent EV-miRNA analyzed in apical (**F**) and basolateral (**G**) compartments.
1163 Top 10 EV-miRNAs (by FDR) were inputted for KEGG orthology pathway analysis with the
1164 addition of miRNA-146a-5p in apical conditions. KEGG pathways (FDR ≤ 0.05) of interest
1165 showing individual miRNA associations. Data points are sized by GeneRatio (genes altered in

1166 pathway/total number of unique genes in analysis) and colour-scaled by FDR. **H-J**, EV-proteins
1167 enriched in the apical compartment by activated ECs. **H**, Unfiltered PCA analysis of apical EV-
1168 protein profiles in activated versus quiescent states ($n=7$). **I**, Volcano plot of differentially
1169 enriched EV proteins from the apical compartment in activation (red) and quiescence (blue)
1170 ($p \leq 0.05$, Fold Change $|1.5|$). Top ten differentially enriched proteins in the activated conditions
1171 are labelled. **J**, All differentially enriched proteins ($p \leq 0.05$, Fold Change $|1.5|$) from apical
1172 activated conditions were inputted to generate proteomaps (v2.0, Homo Sapiens), weighted by
1173 protein mass abundance. KEGG orthology terms (left) and respective proteins (right)
1174 contributing to the pathways are illustrated. **K-M**, EV-proteins enriched in the basolateral
1175 compartment by activated ECs. **K**, Unfiltered PCA analysis of basolateral EV-protein profiles in
1176 activated versus quiescent states. **L**, Volcano plot of differentially enriched EV proteins from the
1177 basolateral compartment as in **(I)**. **M**, Proteomap (v2.0, Homo Sapiens) of differentially enriched
1178 basolateral EV proteins in activated conditions were inputted as in **(J)**. **N**, Interactome
1179 integrating apical activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with
1180 differentially expressed monocyte transcripts based on degree of interactions. **O**, Interactome
1181 integrating basolateral activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with
1182 differentially expressed SMC transcripts based on degree of interactions. EV-miRNAs shown in
1183 red, EV-proteins in pink, and targets in green. Node size denotes significant value.
1184 *Signaling pathways regulating pluripotency of stem cells, AGE-RAGE signaling in diabetic
1185 complications.

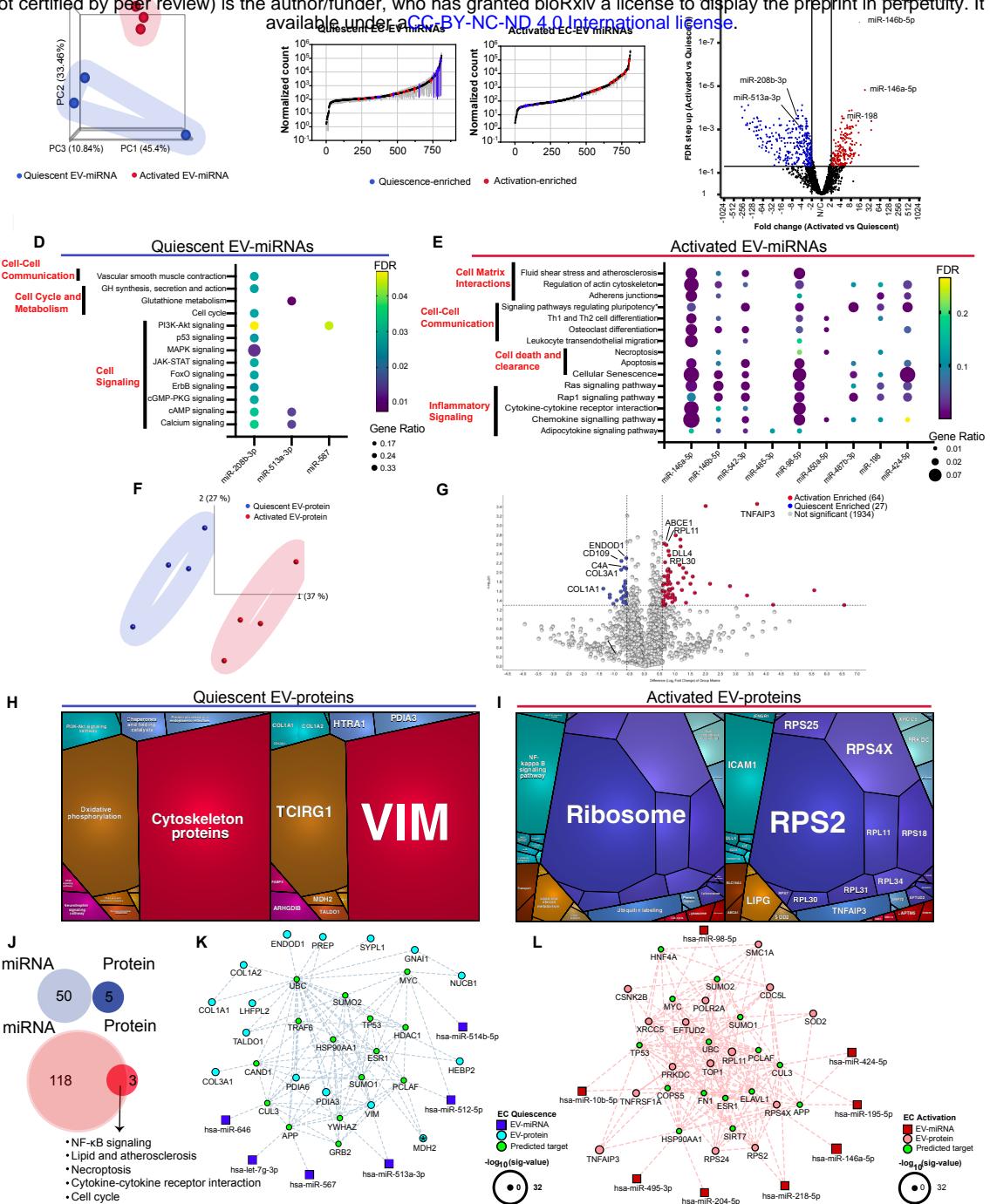
1186
1187
1188 **Online Figure VIII. Comparison of quiescent and activated endothelial sEV cargo by**
1189 **biological compartment.** **A**, Cryo-EM images of apical (left panel) and basolateral (right panel)
1190 sEVs released by quiescent (top) and activated (bottom) ECs. **B-C**, Comparison of activated
1191 versus quiescent EV-miRNA cargo in apical and basolateral sEVs. **B**, Unfiltered heatmaps of
1192 endothelial EV-miRNA transcriptome clusters by activation state in apical (top) and basolateral
1193 (bottom) sEVs. **C**, Volcano plots of activated versus quiescent HAEc secreted EV-miRNA
1194 transcriptome enriched in apical (top) and basolateral (bottom) compartments (FDR <0.05). **D**,
1195 Unfiltered heatmaps depicting EV-protein abundances in activated versus quiescent ECs by
1196 compartment (apical, top; basolateral, bottom). **E-F**, Interactomes of polarized EV release in
1197 activated conditions generated by capturing differentially expressed EV-miRNA (top 25 by FDR)
1198 and all EV-proteins, followed by network reduction to retain the top 15 of each group based on
1199 degree of interactions. **E**, Apical EV interactome with predicted targets. **F**, Basolateral EV
1200 interactome with predicted targets. **G**, Interactome integrating basolateral activated EC-EV
1201 secretome (top 15 miRNAs and all EV-proteins) with differentially expressed SMC transcripts
1202 based on degree of interactions and with inclusion of ribosomal targets. EV-miRNAs shown in
1203 red, EV-proteins in pink, and targets in green. Node size denotes significant value.
1204

1205 **NOVELTY AND SIGNIFICANCE**

1206
1207 **What is known?**


1208 • Endothelial cells (ECs) are activated in regions prone to forming atherosclerosis.
1209 • ECs release extracellular vesicles (EVs) in quiescent and activated states, implicating
1210 EC-EVs as a potential vector of cell-cell communication.
1211 • Upon uptake by recipient cells, EVs can modulate biological processes via their miRNA
1212 and protein contents.

1213
1214 **What new information does this article contribute?**


1215 • ECs are dynamic and respond to pro-atherogenic stimuli by increasing release of a
1216 specific population of small EVs (sEVs) and altering their microRNA and protein cargo.
1217 • sEVs released by ECs differentially reprogram key vascular cells such as primary human
1218 monocytes and smooth muscle cells (SMCs) towards an athero-prone signature.
1219 • ECs release sEVs bidirectionally in quiescent and activated states, with distinct cargo
1220 capable of reprogramming recipient cells located in discrete vascular compartments.

1221
1222 The endothelium is a single layer of cells lining every blood vessel that lives at the interface
1223 between two dynamic environments. Activated ECs release more sEVs, which carry altered
1224 microRNA and protein cargo capable of driving atherosclerosis. EC-EVs communicate with
1225 monocytes and SMCs – cells predominantly contained in the circulation and vessel wall
1226 respectively – leading to changes in hundreds of protein coding transcripts, with unique
1227 responses depending on whether the endothelium is quiescent or activated. ECs are capable of
1228 directional communication through their ability to release EVs bidirectionally and by directing
1229 distinct cargo to apical (circulation) and basolateral (vessel wall) compartments. Both apical and
1230 basolateral endothelial sEV content is altered upon activation, and *in silico* analysis underscored
1231 the ability for apical and basolateral sEV messaging to alter transcripts in luminal and
1232 abluminal residing cells, respectively. Activated/inflamed ECs release more sEVs with
1233 atheroprone cargo apically; however, it is the basolaterally released sEVs that demonstrate the
1234 most profound shift in EV cargo towards athero-prone and inflammatory pathways implicating
1235 them as critical players in plaque biology. Together, these findings conceptually advance our
1236 understanding of EC cell-cell communication. Harnessing bidirectional endothelial sEV release
1237 represents a new frontier in diagnostics and therapeutics for cardiovascular disease.

1238
1239
1240
1241
1242
1243
1244

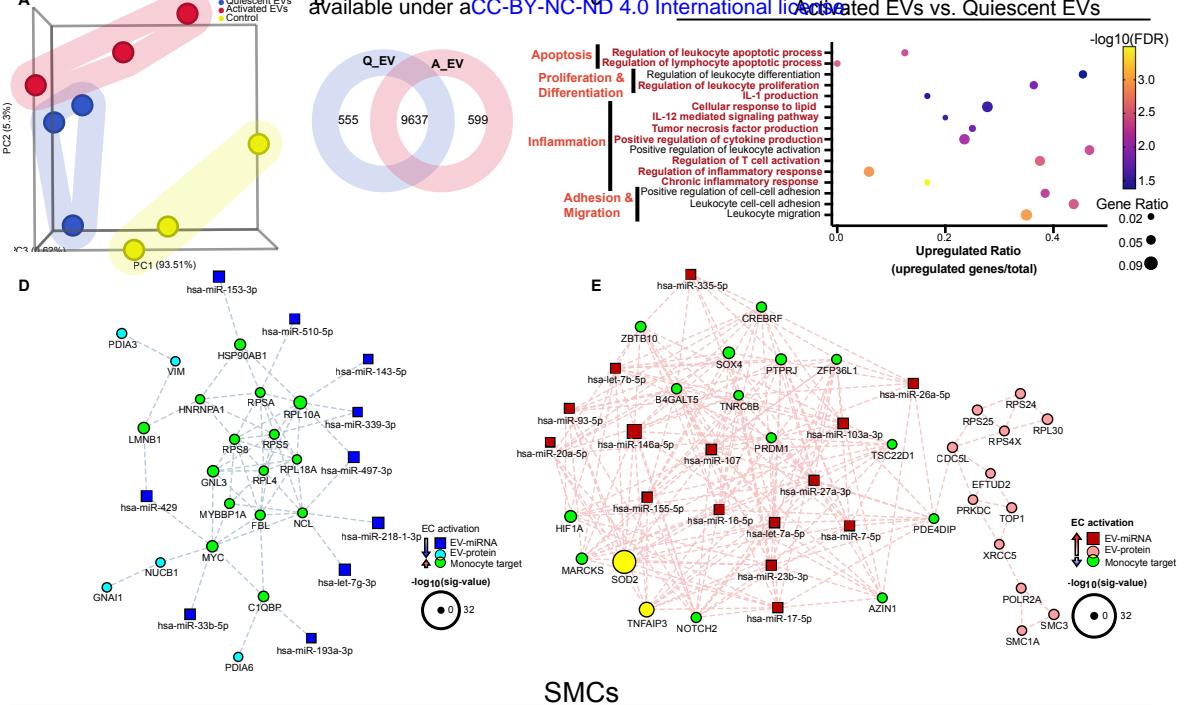


Figure 1. Endothelial cells release increased CD63-positive sEVs in response to activation. **A**, Nanoparticle tracking analysis (NTA) of EV concentration binned by particle size after isolation from HAEC conditioned media (8 \times 10⁷ cells, from quiescent (EV-free media, 24 h) and activated (100 pg/mL IL-1 β in EV-free media, 24 h) states (n=3-8). **B**, Quantification of EC-EV mean concentration across all EV sizes. **C**, Western blot depicting EV markers (CD63, Alix, and CD9) in EV lysates isolated from supernatants of quiescent and activated HAECs and HAEC cell lysate (CL) control. Arrows show position of correct protein band and molecular weight markers indicated on left. **D**, Densitometry of EV lysate derived CD63 normalized to HAEC cell lysate control. **E**, Cryo-EM of EVs isolated from quiescent and activated HAEC cell supernatant. Arrows indicate EV structures. Scale bar=50 nm. **F**, Quantification of EV mean diameter by NTA. **G**, Transmission electron microscopy of 90 nm ultramicrotomed HAEC monolayers. Dashed circles indicate multivesicular bodies. Representative image (n=3). Bar graphs show mean \pm SEM. Statistical significance assessed by Mann-Whitney test (**B**) and unpaired t test (**D**, **F**).

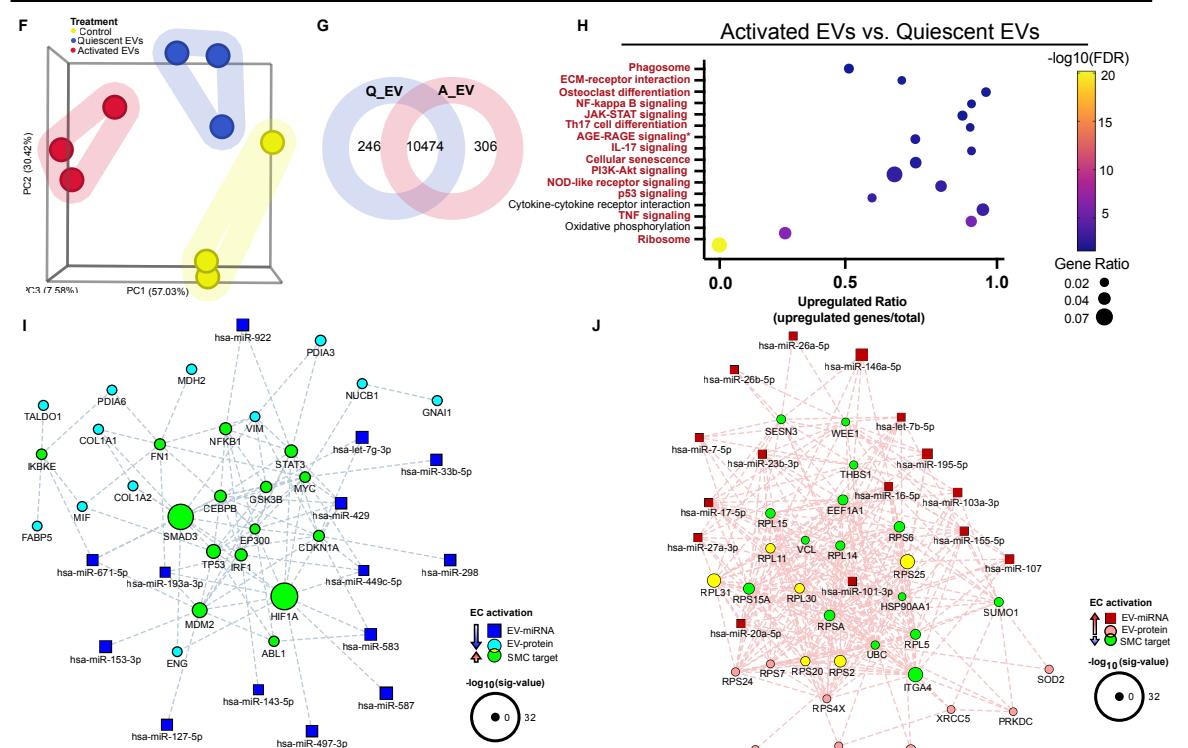
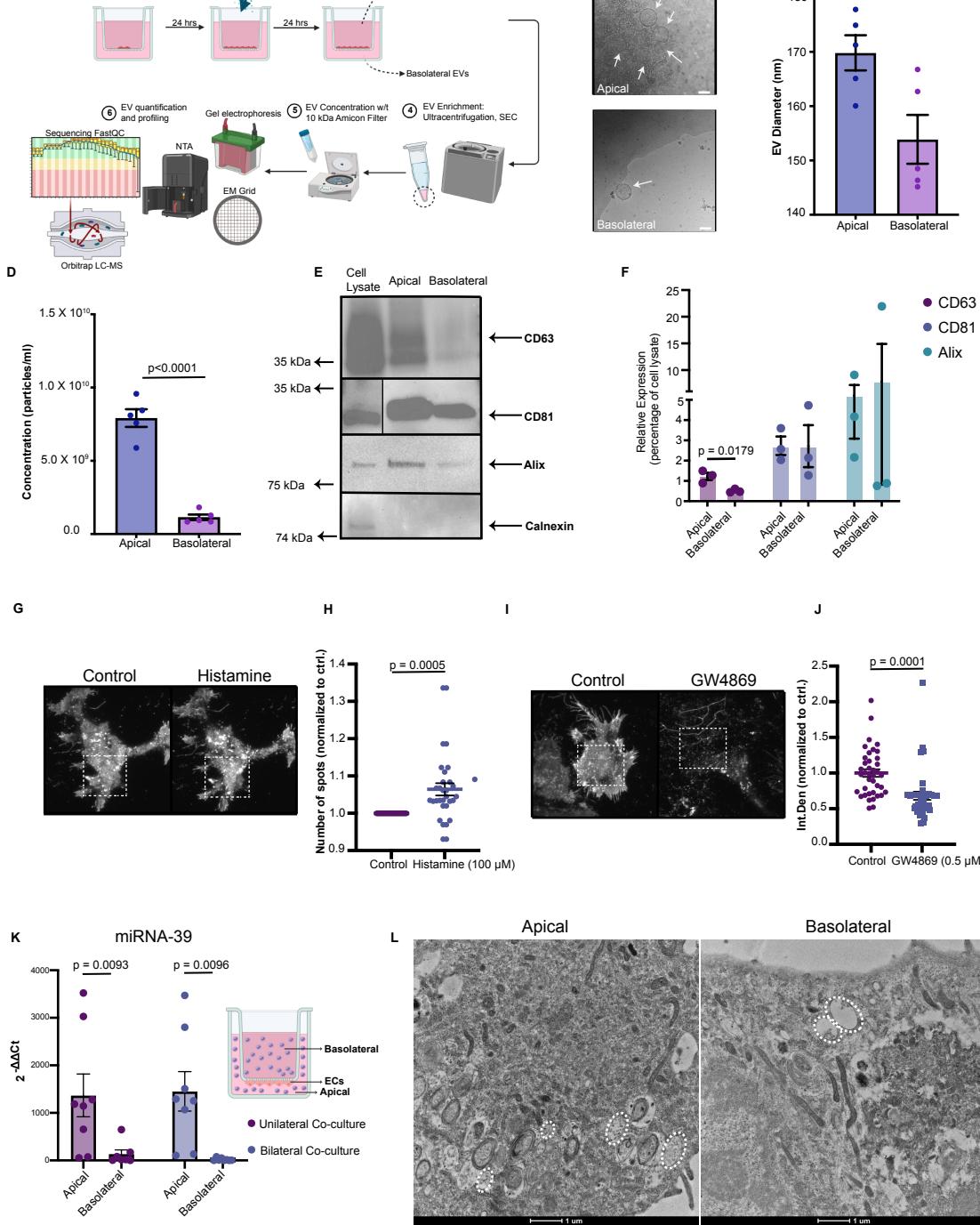


Figure 2. Endothelial sEV miRNA and protein cargo are distinct in identity and predicted function in activated versus quiescent conditions. **A**, Unfiltered principal component analysis (PCA) showing miRNA profiles of sEVs isolated from conditioned media of activated (red) versus quiescent (blue) HAECs (8 X 107 cells, 100 pg/mL IL-1 β , 24 h). **B**, Rank plots using normalized counts (arithmetic mean + SEM). Top 10 activation-and quiescence-enriched miRNAs are highlighted in red and blue, respectively. **C**, Volcano plot of HAEC secreted EV miRNA transcriptome with red and blue representing EV-miRNA contents enriched in activated and quiescent states, respectively (FDR step up ≤ 0.05 , Fold Change $|2|$). **D**, Pathway analysis of top 10 (by FDR) quiescent HAEC-EV enriched miRNAs (miRTarBase) delineated significant KEGG pathways (FDR ≤ 0.05) for miRNA associations of miR-208b-3p, miR-513a-3p, and miR-587. Data points are sized by GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-scaled by FDR. **E**, Pathway analysis of top 10 (by FDR) activated HAEC-EV enriched miRNAs (miRTarBase). Shown are individual miRNA associations of KEGG pathways of interest. Data points are sized by GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-scaled by FDR. **F**, Unfiltered PCA showing protein profiles of sEVs isolated from conditioned media of activated (red) versus quiescent (blue) HAECs as in (A). **G**, Volcano plot of HAEC secreted EV proteome with red and blue representing EV-protein contents enriched in activated and quiescent states, respectively ($p \leq 0.05$, Fold Change $|1.5|$). **H**, Proteomap (v2.0, Homo Sapiens) generated from all differentially enriched quiescent EC-EV proteins weighted by mass abundance. KEGG orthology terms (left) and respective proteins (right) contributing to the pathways are illustrated. **I**, Proteomap (v2.0, Homo Sapiens) generated from all differentially enriched activated EC-EV proteins calculated as in (H). **J**, Overlapping KEGG pathways between the top 10 (by FDR) differentially enriched EV-proteins and all differentially enriched EV-proteins in quiescent (top, blue) and activated states (bottom, red). **K-L**, EV interactome generated by capturing differentially expressed EV-miRNA (top 25 by FDR) and all EV-proteins in quiescent (K) and activated (L) states, followed by network reduction to retain the top 15 of each group based on degree of interactions. EV-miRNA shown in blue or red, EV-proteins in turquoise or pink, and predicted targets in green. Node size denotes significant value.


Data shown represent n=3-4 independent experiments. Cancer- and infection- associated pathways were excluded from analysis. Data is represented as mean \pm SEM.

SMCs

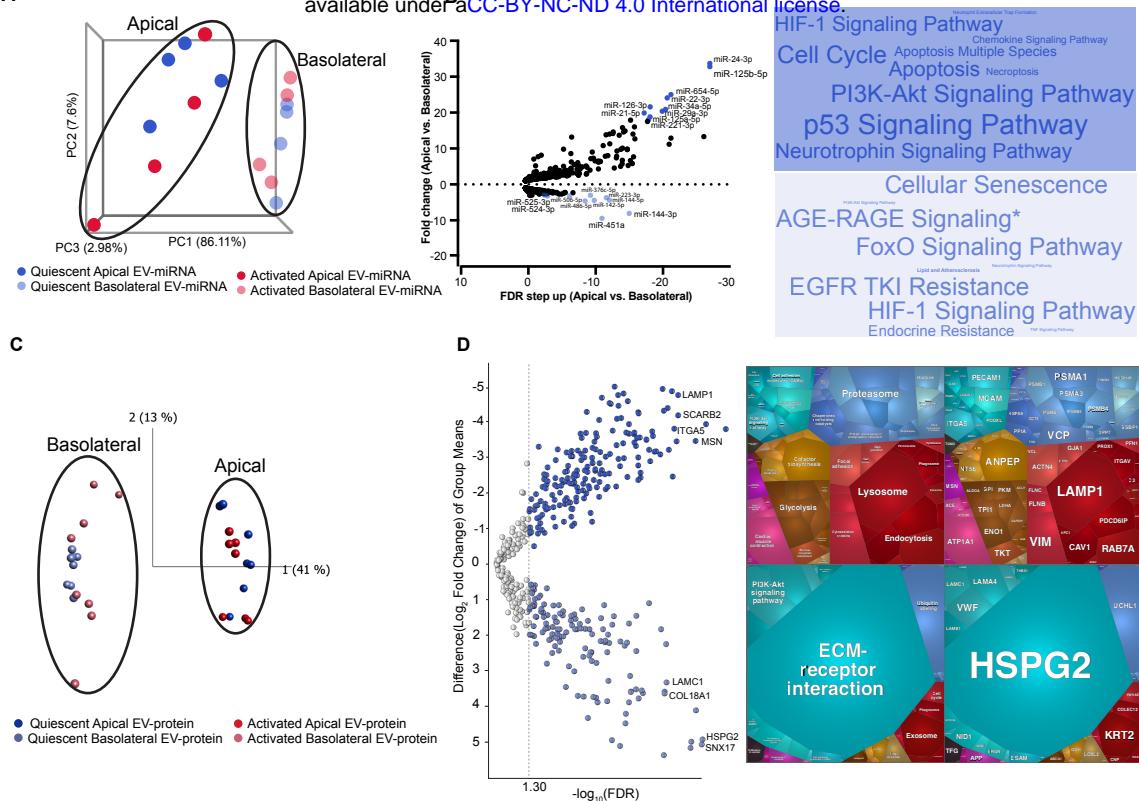


Figure 3. Endothelial sEVs distinctly alter the transcriptional landscape of recipient monocytes and smooth muscle cells depending on whether they are derived from quiescent or activated endothelium. **A**, Unfiltered PCA plot depicting clustering of media control (yellow), quiescent EC-EVs (blue), and activated EC-EVs (red) treated CD14+ monocyte mRNA transcriptome (n=3). **B**, VENN diagram depicting number of shared and unique RNA transcripts in comparison of activated vs quiescent EC-EV treatment. **C**, GO pathway analysis of the effects of activated versus quiescent EC-EVs on the monocyte RNA transcriptome (adjusted p-values ≤ 0.05 and $|\log_2(\text{FoldChange})| > 0$). Data points are sized by GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-scaled by FDR. Upregulated ratio was calculated by dividing the number of upregulated genes by the total number of genes known to function in each pathway. **D-E**, Interactomes integrating activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with differentially expressed monocyte transcripts based on degree of interactions. Downregulated EC-EV cargo and concordant upregulated monocyte targets are depicted in (D). Upregulated EC-EV cargo and concordant downregulated monocyte targets are depicted in (E). **F**, Unfiltered PCA plot depicting clustering of EC-EV treated SMC mRNA transcriptome as in **A** (n=3). **G**, VENN diagram depicting SMC RNA transcripts as in **B**. **H**, KEGG pathway analysis of the effects of activated versus quiescent EC-EVs on the SMC RNA transcriptome (adjusted p-values ≤ 0.05 and $|\log_2(\text{FoldChange})| > 0$). Data visualization completed as in **(C)**. **I-J**, Interactomes as in **(D-E)** integrating differentially expressed SMC transcripts.

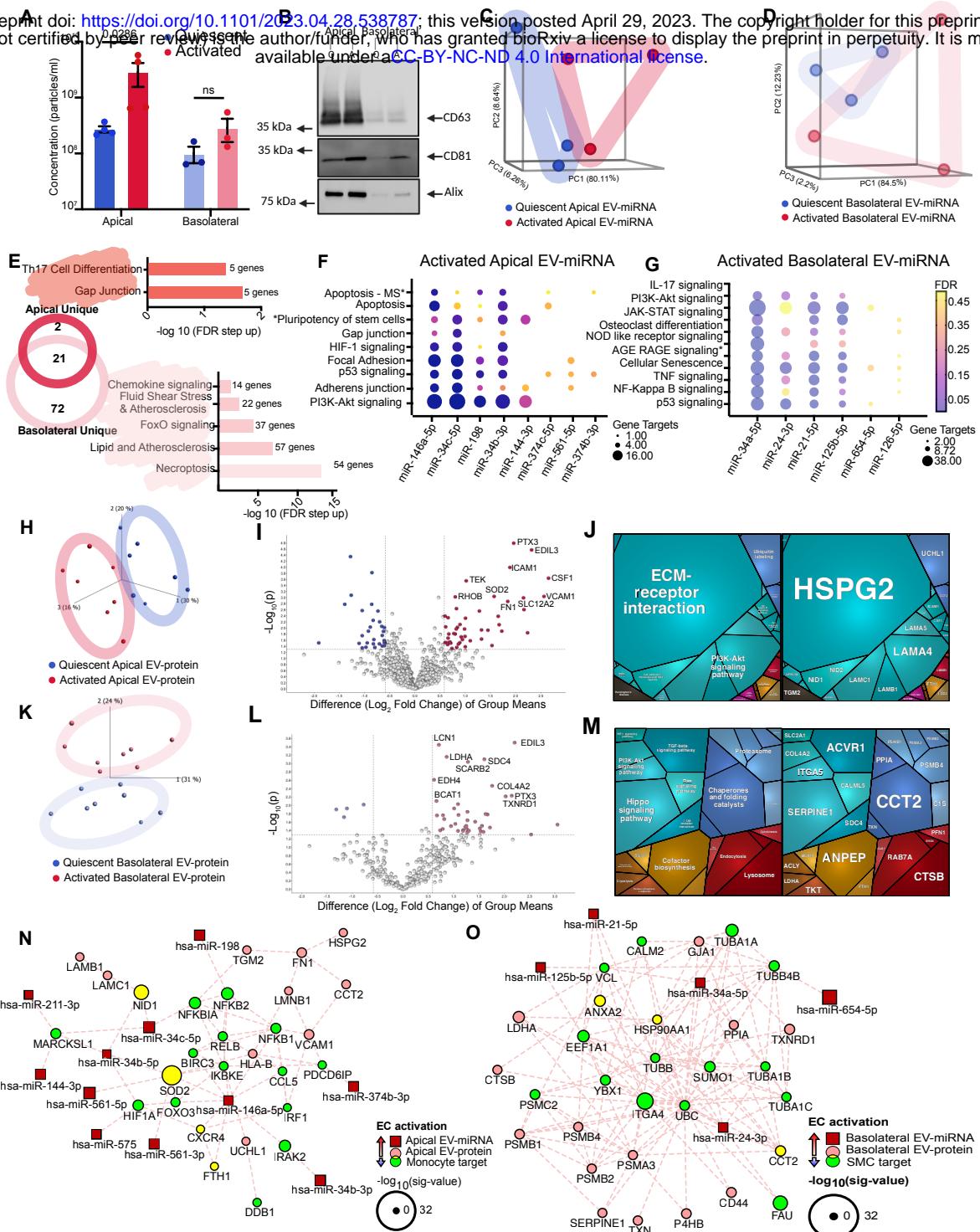


Figure 4. Multi-modal evidence determining quiescent endothelial cells release sEVs to apical and basolateral compartments.

A, Workflow showing EC-EV isolation from compartments. Briefly, HAECS were seeded at confluence on semi-permeable transwell inserts to sequester EVs from apical and basolateral compartments. EVs were isolated by ultracentrifugation or size exclusion chromatography, concentrated, and validated according to MISEV2018 guidelines. Created with BioRender.com. **B**, Cryo-EM of representative images of apical (top panel) and basolateral (bottom panel) quiescent EC-EVs. Arrows denote EV structures. Scale bar 50 nm. **C-D**, Nanoparticle tracking analysis quantifying the mean diameter (**C**) and concentration (**D**) of EC-sEVs in apical and basolateral compartments. **E-F**, Western blot depicting protein expression of EV markers ((positive (CD63, CD81, Alix) and negative (Calnexin)), in cell lysate, apical EV and basolateral EV samples (**E**). Arrows show position of correct protein band and molecular weight markers indicated on left. Densitometric analysis of EV markers (**F**). **G-J**, Total internal reflection fluorescence (TIRF) microscopy. Panels depicting ECs transfected with fluorescent plasmid (pHluorinCD63) set for detection of basolateral EV release +/- positive (histamine, 100 μ M, 1 min) and negative (GW4869, 0.5 μ M, 4 h) controls (**G**, **I**). Quantification of basolateral EV release (**H**, **J**). For histamine stimulated cells, vesicles in the TIRF zone were quantified and normalized to the number of cells in the field (**H**). For GW4869 stimulated cells, integrated densities of CD63-pHluorin under basal conditions and after pre-treatment was quantified (**J**). **K**, Model for exogenous miRNA transfer between ECs and monocytes (see methods for full details). Briefly, HAECS were transfected with exogenous miRNA-39 (*C. elegans*) and then seeded onto an inverted transwell to avoid direct cell-cell contact with non-adherent monocytes. Monocytes were then placed either in a solitary chamber (apical or basolateral, unilateral co-culture experiment) or simultaneously in the apical and basolateral chambers (bilateral co-culture experiment), with monocytes harvested after 24 h, and RNA isolated to quantify miRNA-39 expression by RT-qPCR. **L**, Transmission electron microscopy of 90 nm ultramicrotomed HAECS monolayers. Embedded blocks were cut from the basolateral surface: the first 5 μ m of resin cut was discarded to get to the apical surface. Circles indicate multivesicular bodies. Data shown represent n=3-4 independent experiments. Bar graphs show mean \pm SEM. Statistical significance assessed by unpaired t test (**C,D,F,J**), paired t test (**H**) and Mann-Whitney test (**K**) when data was not normally distributed.

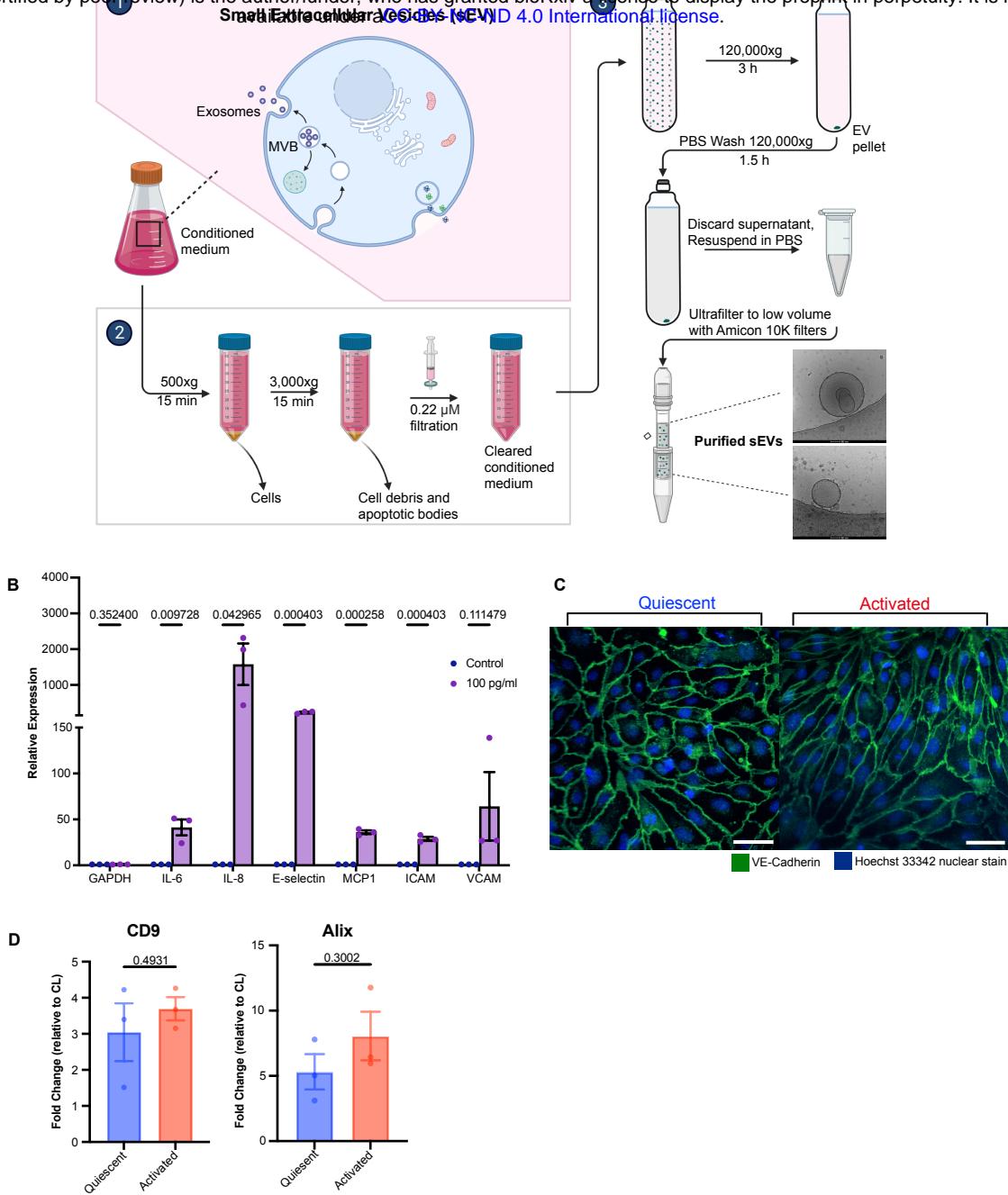
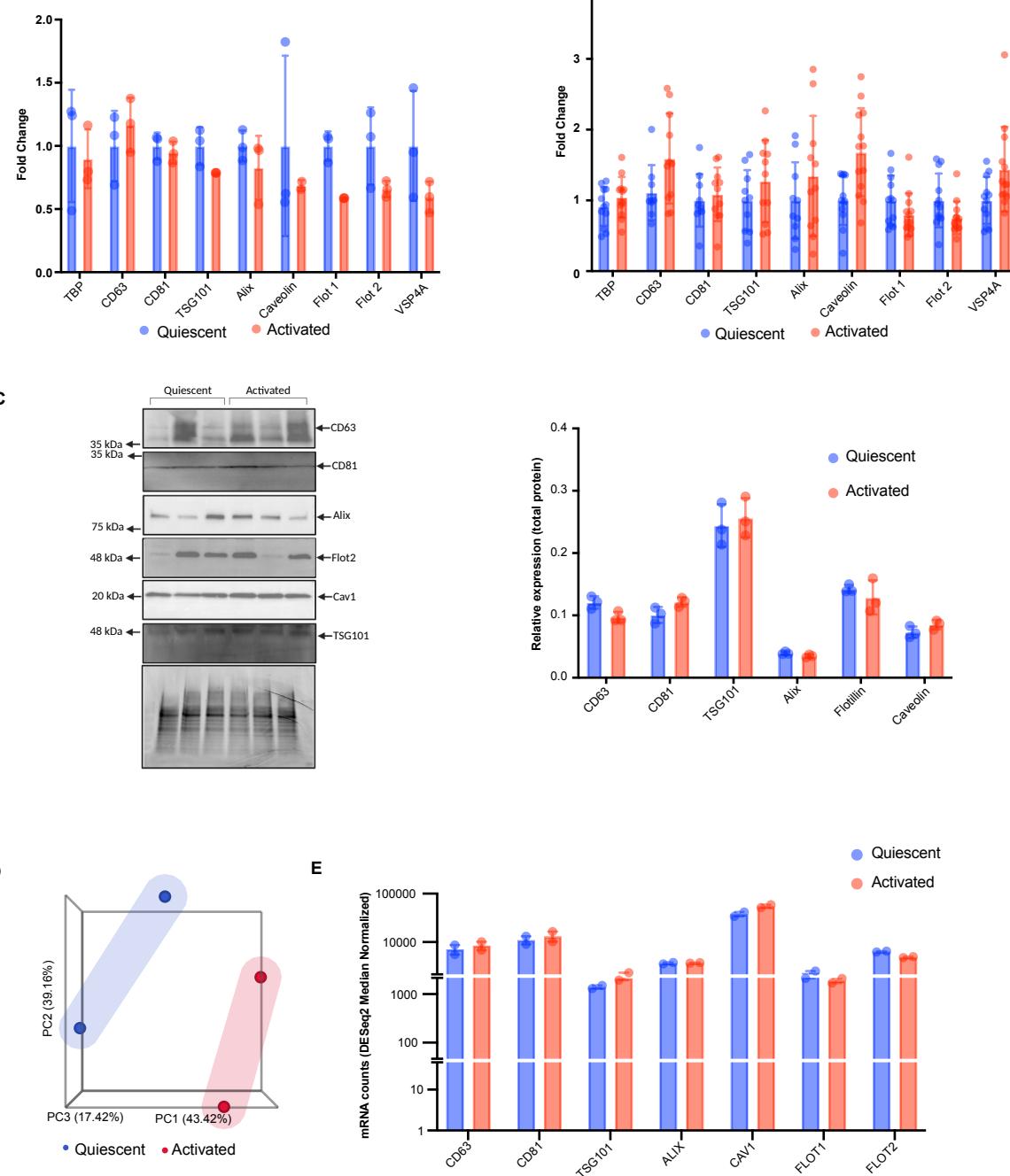
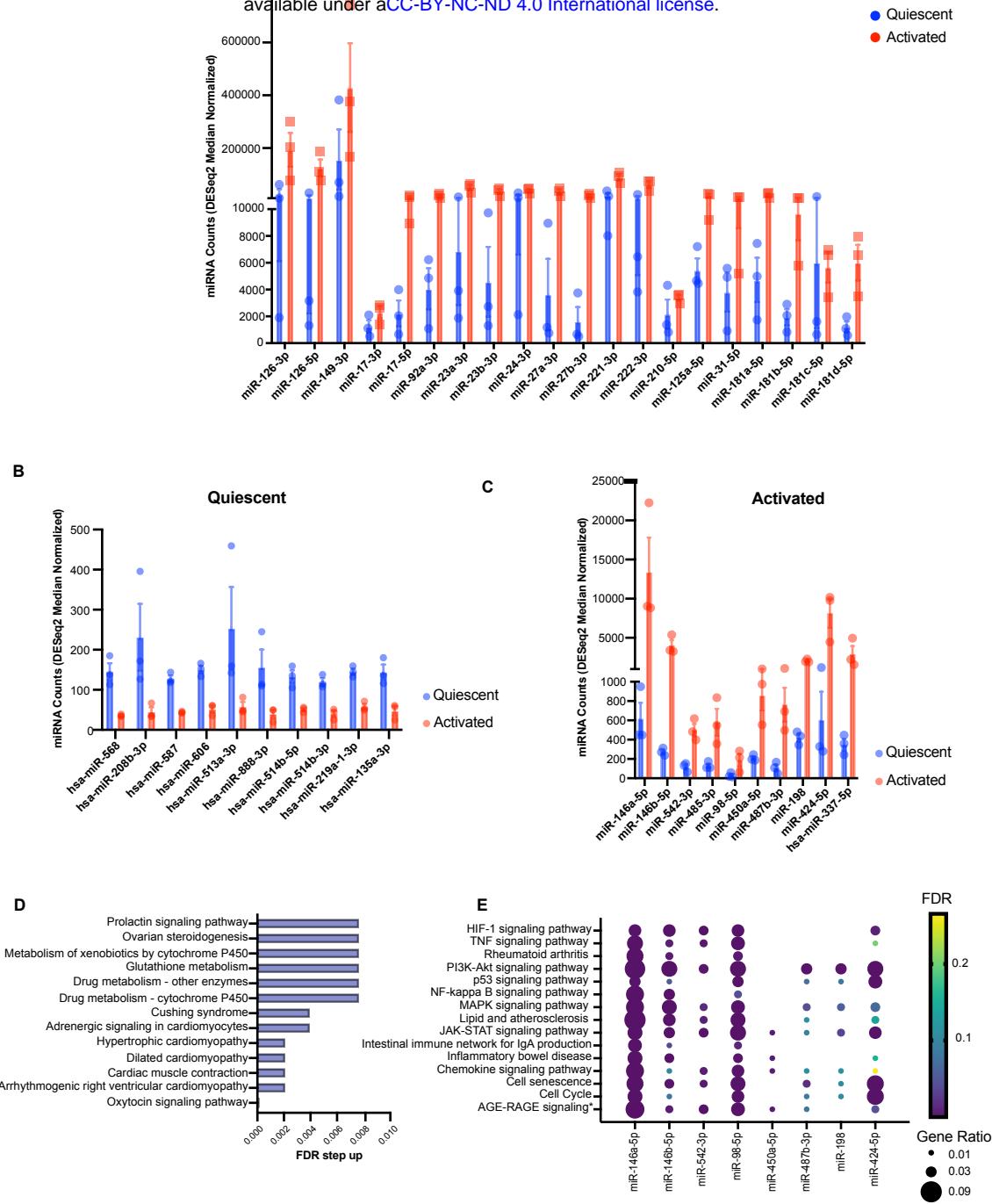


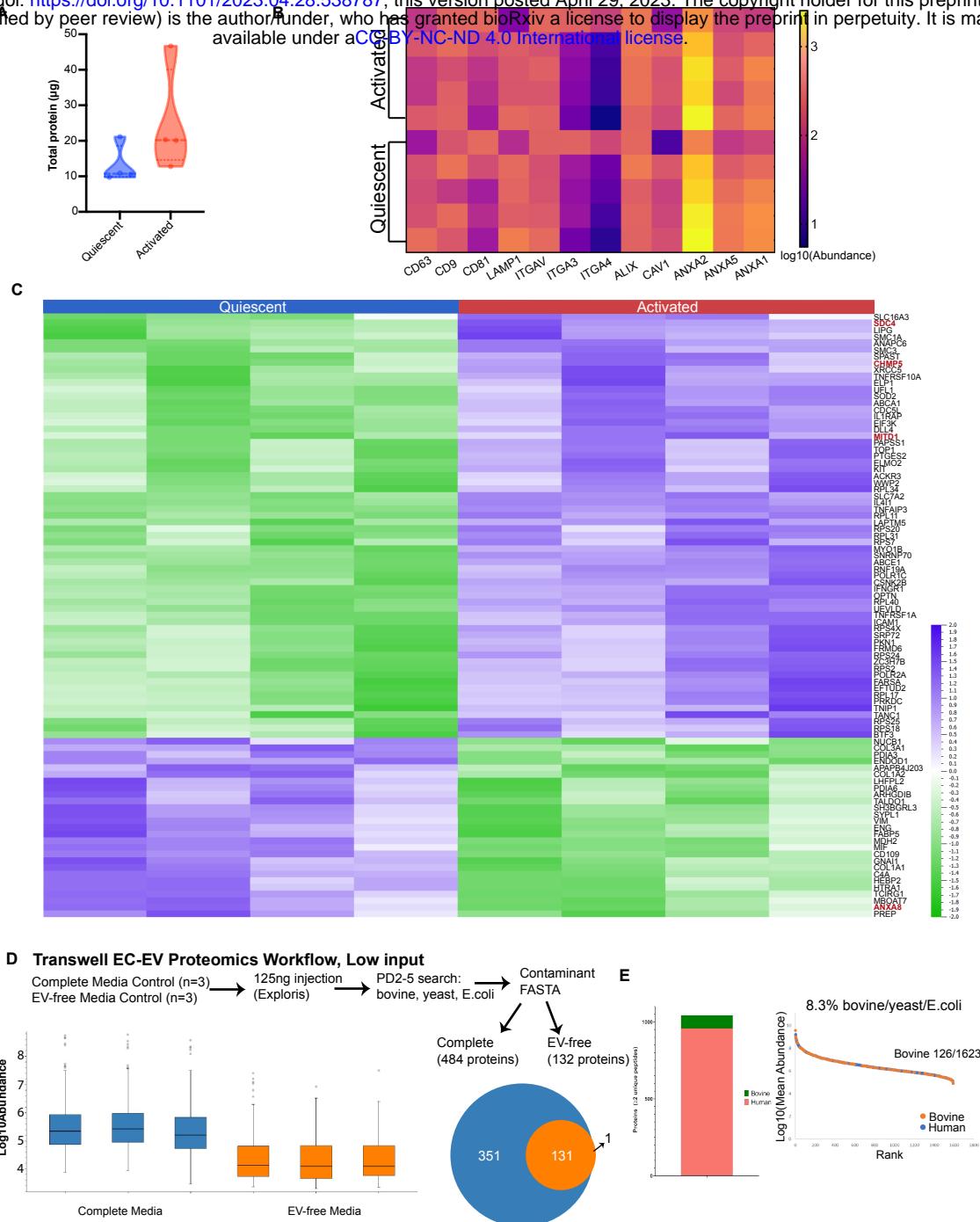
Figure 5. Quiescent endothelial cells release sEVs containing distinct miRNA and protein cargo to apical and basolateral compartments. A, Unfiltered PCA analysis of apical (dark colours) and basolateral (light colours) EV-miRNA depict clustering by polarity (broad circles). B, Volcano plot (left panel) of quiescent HAEC secreted EV-miRNA transcriptome enriched in apical (dark shading) versus basolateral (light shading) compartments. Top miRNA, by FDR step up, are labelled in each condition and used for downstream pathway analysis (FDR step up ≤ 0.05). KEGG pathway analysis of labelled miRNA in each condition (FDR ≤ 0.05), weighted by number of miRNAs participating in each pathway depicted by Word Cloud (right panel). C, Unfiltered PCA analysis of apical (dark colours) and basolateral (light colours) EV-protein profiles showing clustering by polarity (broad circles). D, Volcano plot (left panel) of quiescent HAEC secreted EV-proteome enriched in apical (dark shading) versus basolateral (light shading) compartments (FDR ≤ 0.05). All differentially enriched (FDR ≤ 0.05) apical versus basolateral proteins in quiescent conditions were inputted to generate proteomaps (v2.0, Homo Sapiens), weighted by protein mass abundance. Apical and basolateral proteomaps are represented by top and bottom panels, respectively. KEGG orthology terms (left) and respective proteins (right) contributing to the pathways are illustrated. *AGE-RAGE signaling in diabetic complications.

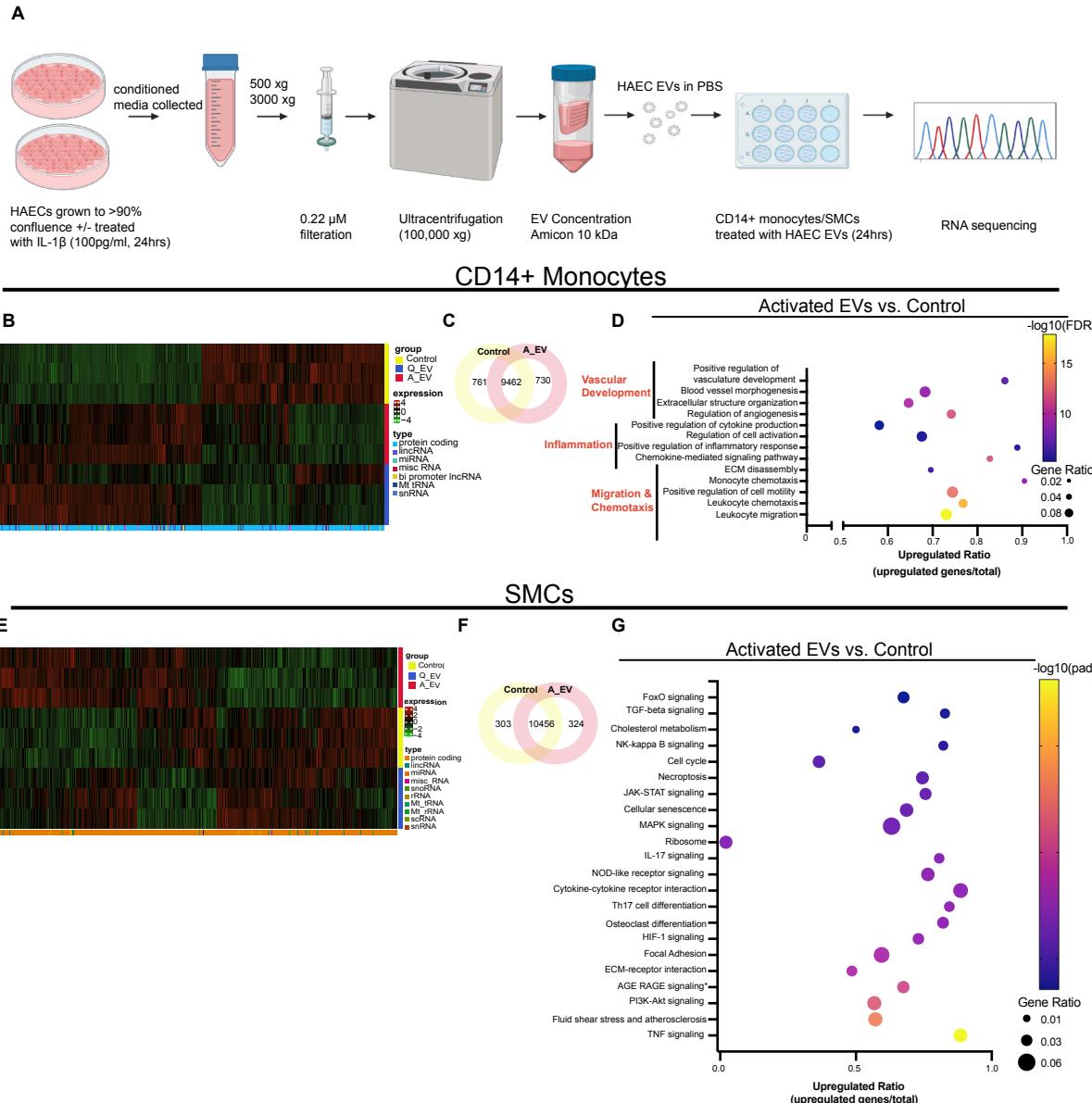

Figure 6. Activated endothelial cells modulate sEV miRNA and protein cargo in a compartment-specific manner with the capacity to uniquely affect circulating monocytes and resident vascular smooth muscle cells. **A-B**, Comparison of EC activation (red) versus quiescence (blue) on polarized sEV concentration in apical and basolateral compartments as determined by NTA (**A**) and western blot (**B**) (n=3-4). **B**, EV markers CD63, CD81, and Alix are denoted on the right, with molecular weights on the left. **C-D**, Unfiltered principal component analysis of apical (**C**) and basolateral EV-miRNA cargo (**D**) in activated versus quiescent states. **E**, KEGG pathway analysis (FDR≤0.05) of top apical (n=10) and basolaterally (n=6) enriched miRNA highlight unique and shared pathways modulated by differentially expressed EV-miRNA in activated conditions (VENN diagram, left). Unique KEGG pathways enriched by activation in apical (dark red, top graph) and basolateral (light red, bottom graph) EC-EVs shown on right. Bar graph scaled by -log10(FDR) and labelled with number of genes involved in pathway. **F-G**, Activated versus quiescent EV-miRNA analyzed in apical (**F**) and basolateral (**G**) compartments. Top 10 EV-miRNAs (by FDR) were inputted for KEGG orthology pathway analysis with the addition of miRNA-146a-5p in apical conditions. KEGG pathways (FDR ≤ 0.05) of interest showing individual miRNA associations. Data points are sized by GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-scaled by FDR. **H-J**, EV-proteins enriched in the apical compartment by activated ECs. **H**, Unfiltered PCA analysis of apical EV-protein profiles in activated versus quiescent states (n=7). **I**, Volcano plot of differentially enriched EV proteins from the apical compartment in activation (red) and quiescence (blue) (p≤ 0.05, Fold Change |1.5|). Top ten differentially enriched proteins in the activated conditions are labelled. **J**, All differentially enriched proteins (p≤ 0.05, Fold Change |1.5|) from apical activated conditions were inputted to generate proteomaps (v2.0, Homo Sapiens), weighted by protein mass abundance. KEGG orthology terms (left) and respective proteins (right) contributing to the pathways are illustrated. **K-M**, EV-proteins enriched in the basolateral compartment by activated ECs. **K**, Unfiltered PCA analysis of basolateral EV-protein profiles in activated versus quiescent states. **L**, Volcano plot of differentially enriched EV proteins from the basolateral compartment as in (**I**). **M**, Proteomap (v2.0, Homo Sapiens) of differentially enriched basolateral EV proteins in activated conditions were inputted as in (**J**). **N**, Interactome integrating apical activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with differentially expressed monocyte transcripts based on degree of interactions. **O**, Interactome integrating basolateral activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with differentially expressed SMC transcripts based on degree of interactions. EV-miRNAs shown in red, EV-proteins in pink, and targets in green. Node size denotes significant value.

*Signaling pathways regulating pluripotency of stem cells, AGE-RAGE signaling in diabetic complications.

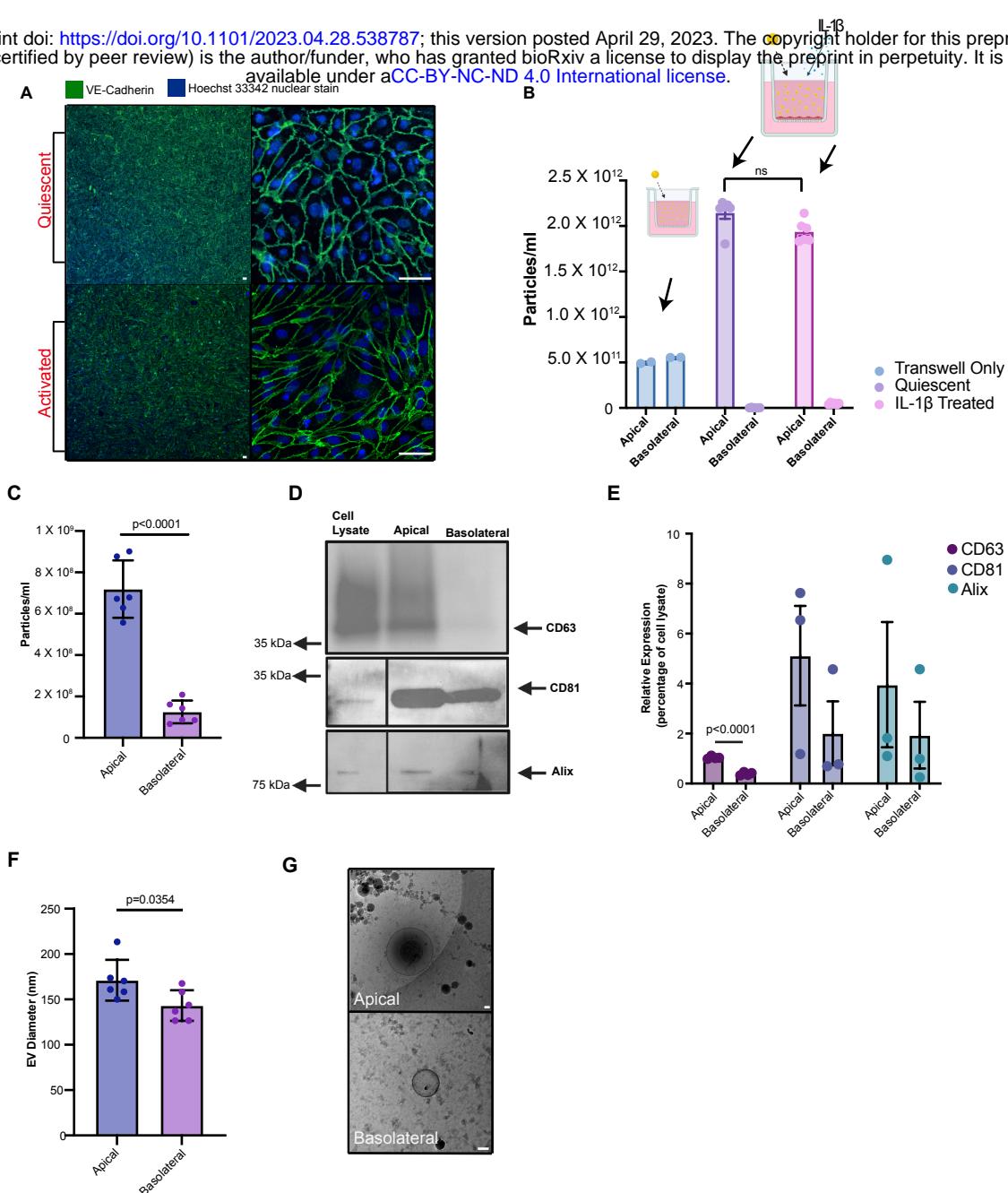

Online Figure I. General features of sEV isolation in human aortic endothelial cells in quiescence and after confirmed activation with IL-1 β . **A.**, Schematic for sEV enrichment. Endothelial cells were grown to confluence and maintained in EV-free media for 24 h prior to supernatant collection. Conditioned media was centrifuged at 500xg and 3,000xg for removal of cell debris and apoptotic bodies, followed by filtration with 0.22 µM to generate cleared conditioned media. EVs are enriched via ultracentrifugation at 120,000xg for 3 h, followed by a PBS wash, and ultrafiltration using a Amicon 10 kDa filter. EV enrichment was confirmed as per the MISEV2018 guidelines. Created with BioRender.com. **B.**, RT-qPCR of inflammatory cytokines and adhesion molecules in cultured HAECS post treatment with 100 pg/mL IL-1 β , 24 h. mRNA abundance was normalized to GAPDH. **C.**, HAECS were grown on coverslips, placed in EV-free media (left) +/- IL-1 β (right; 100 pg/mL, 24 h) and stained for the adherens junction, VE-Cadherin (n=3). **D.**, Densitometry of EV lysate derived CD9 and Alix normalized to HAEC cell lysate control.

Bar graphs show mean \pm SEM. Statistical significance assessed by multiple unpaired t-test with adjustment for multiple testing with the Benjamini-Hochberg procedure.

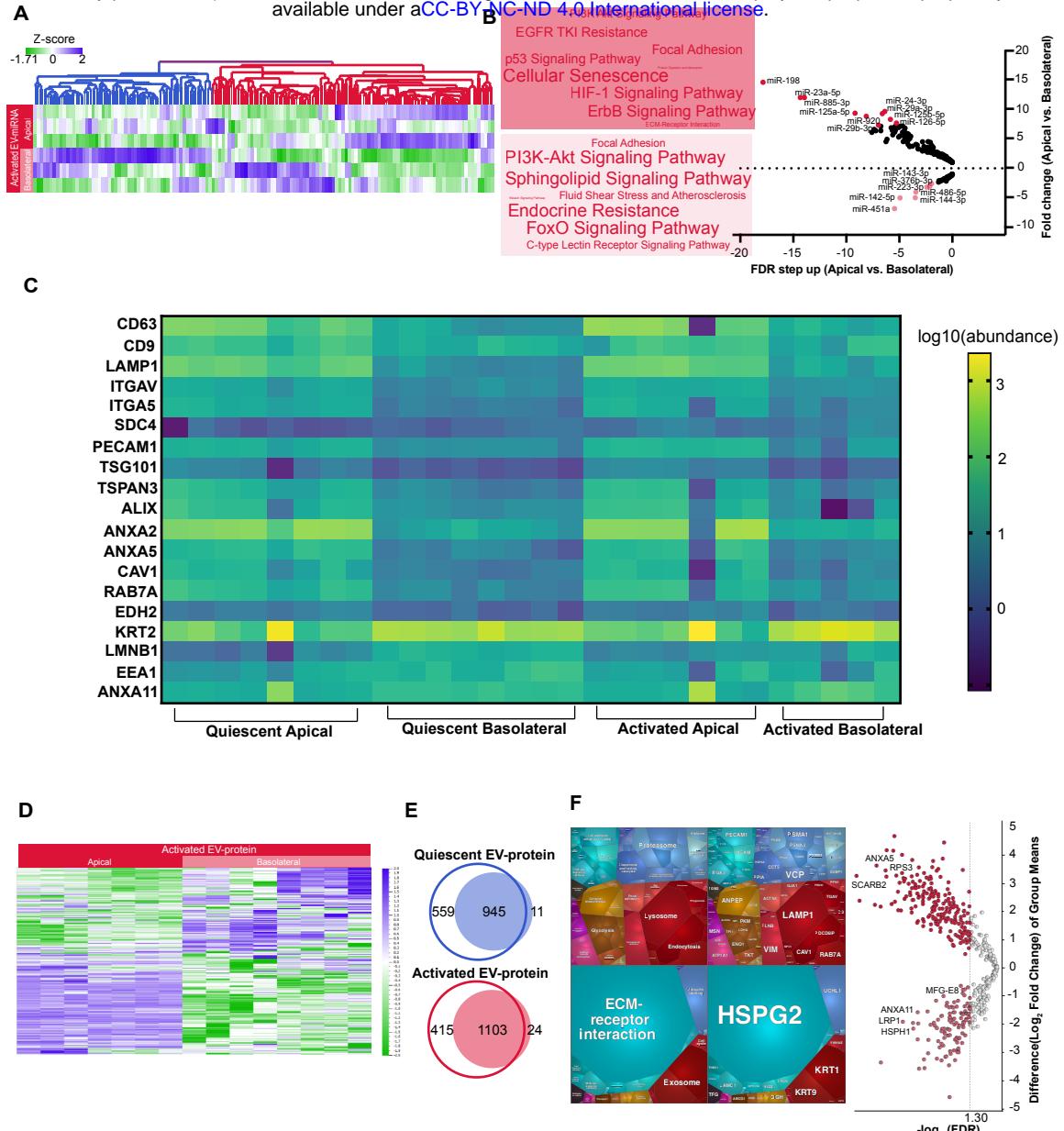



Online Figure II. sEV biogenesis is unaffected by endothelial activation.

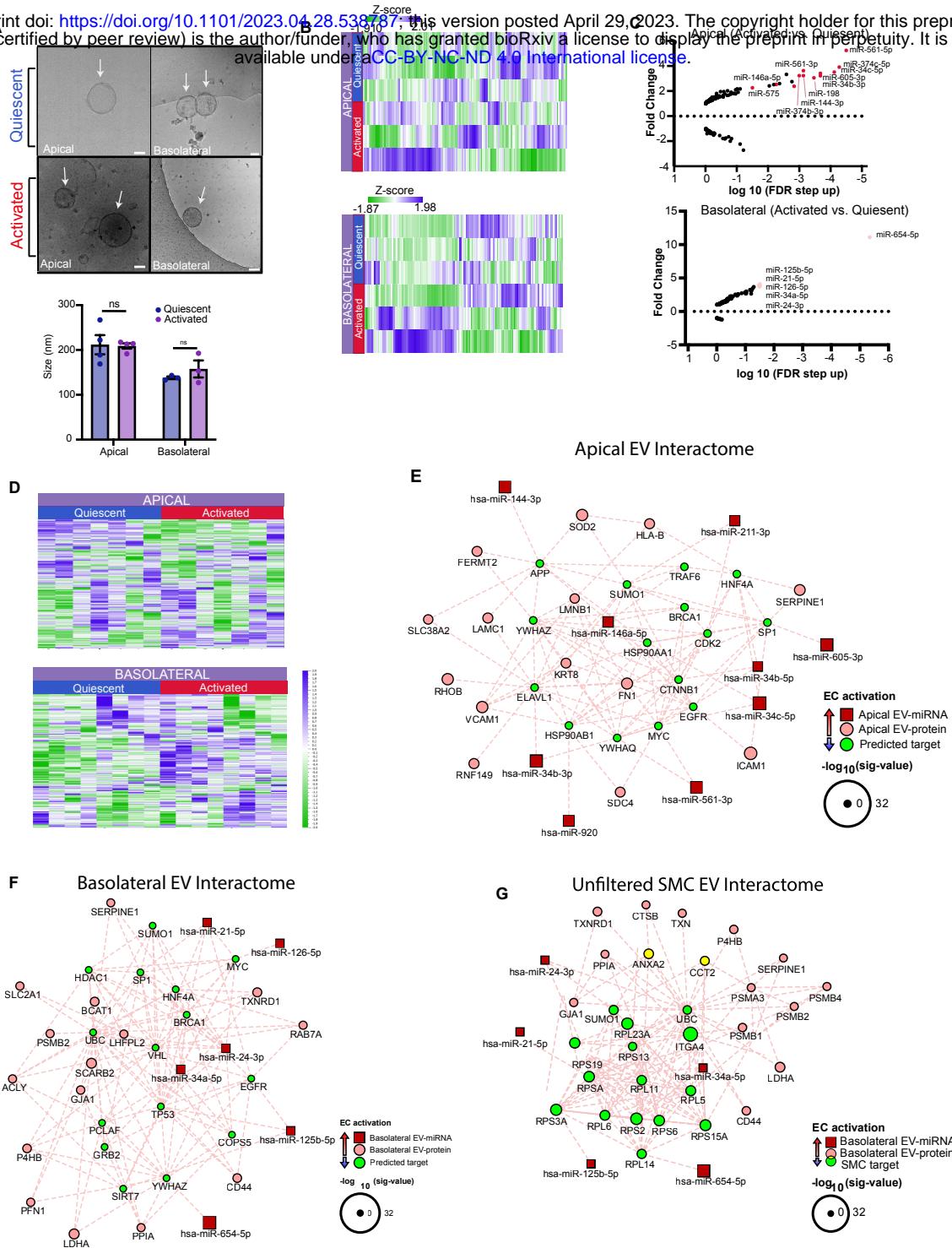
A-B, RT-qPCR of genes known to function in EV sorting and release in cultured HAECS post treatment with 100 pg/mL IL-1 β at 4 h (A) and 24 h (B). mRNA abundance was normalized to the housekeeping gene, TBP. **C**, Western blot depicting expression of proteins involved in EV sorting and release in HAEC cell lysate (left). Densitometric analysis of EV markers, normalized to total protein (right). Arrows show position of correct protein band and molecular weights markers indicated on left. **D-E**, Publicly available HAEC RNA-seq data (GEO accession: GSE89970). HAECs were isolated from aorta of adult patients and activated with IL-1 β (10 ng/mL, 4 h). **D**, PCA analysis. **E**, Median Ratio normalized mRNA counts of EV biogenesis proteins. Bar graphs show mean \pm SEM. Statistical significance assessed by multiple unpaired t-test with adjustment for multiple testing with the Benjamini-Hochberg procedure.



Online Figure III. Additional analysis of sEV miRNA cargo in quiescent and activated endothelium. **A**, Median normalized miRNA counts of endothelial enriched miRNA in quiescent (blue) and activated (red) states. **B**, Median normalized miRNA counts of quiescent enriched EV-miRNA used in KEGG pathway analysis. **C**, Median normalized miRNA counts of activation enriched EV-miRNA used in KEGG pathway analysis. **D-E**, KEGG pathway analysis with top FDR-based pathways of EV-miRNA enriched in quiescent (**D**) and activated (**E**) states. Data points are sized by GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-scaled by FDR.



Online Figure V. Effects of endothelial sEVs on recipient monocytes and smooth muscle cells. **A**, Schematic of experimental design. HAECS (+/- IL-1 β treatment 100 pg/mL, 24 h), conditioned media collected, cell debris removed via centrifugation, filtered for sEVs, isolated by ultracentrifugation, and concentrated until resuspension and addition to primary human CD14+ monocytes (10^{9-10} sEVs added to 500,000 monocytes) or SMC (10^{9-10} sEVs added to 400,000 SMCs). After 24 h sEV exposure, monocyte cell lysates were collected, RNA isolated, purity confirmed by BioAnalyzer, and sent for RNA sequencing (400 ng, Novogene). **B**, Unfiltered heatmap analysis showing transcript abundance in treatment groups. Shading represents expression levels. Right legend identifies treatment group. Bottom legend identifies transcript type (protein coding vs. non-coding). **C**, VENN diagram depicting number of shared and unique monocyte RNA transcripts in comparisons of activated vs control groups. **D**, GO pathway analysis of the effects of activated EC-EVs versus media control on the monocyte RNA transcriptome (adjusted p-values ≤ 0.05 and $|\log_2(\text{FoldChange})| > 0$). Data points are sized by GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-scaled by FDR. Upregulated ratio was calculated by dividing the number of upregulated genes by the total number of genes known to function in each pathway. **E**, Unfiltered heatmap analysis showing transcript abundance in treatment groups as in **(B)**. **F**, VENN diagram depicting number of shared and unique SMC RNA transcripts in comparisons of activated vs control groups. **G**, KEGG pathway analysis of the effects of activated EC-EVs versus media control on the SMC RNA transcriptome (adjusted p-values ≤ 0.05 and $|\log_2(\text{FoldChange})| > 0$). Data visualization completed as in **(D)**.



Online Figure VI. Validation of the model for polarized sEV release from endothelial monolayers.

A-B, Endothelial cell physiologic barrier demonstration by VE-cadherin expression (**A**) and 30 nm gold nanoparticle challenge (**B**). **A**, HUVECs were grown on transwell supports as described above, placed in EV-free media (top panel) +/- IL-1 β (bottom panel; 100 pg/mL, 24 h) and stained for the adherens junction, VE-Cadherin. **B**, Gold nanoparticle assay confirming the smallest EV-like nanoparticle (30 nm) does not cross the EC monolayer in quiescence or after activation with IL-1 β at 100 pg/mL. **C-G**, HUVECs confirm polarized release of EVs to apical and basolateral compartments. **C**, Nanoparticle tracking analysis quantifying concentration of EC-EVs in apical and basolateral compartments. **D-E**, Western blot depicting protein expression of EV markers (positive (CD63, CD81, Alix), in cell lysate, apical EV and basolateral EV samples (**D**). Arrows show position of correct protein band and molecular weights markers indicated on left. Densitometric analysis of EV markers (**E**). **F**, Nanoparticle tracking analysis quantifying the mean EV diameter in apical and basolateral compartments. **G**, Cryo-EM of representative images of apical (top) and basolateral (bottom) quiescent EC-EVs. Scale bar=50 nm.

Online Figure VII. The phenomenon of polarized sEV release with distinct apical and basolateral miRNA and protein cargo is preserved after endothelial cell activation. **A-B**, Differential expression of EV-miRNA in apical versus basolateral compartments as depicted by unfiltered heatmap analysis (**A**) and KEGG pathway analysis (**B**). **B**, Volcano plot (right panel) of activated HAEC secreted EV-miRNA transcriptome enriched in apical (dark shading) versus basolateral (light shading) compartments. Top miRNA, by FDR step up, are labelled in each condition and used for downstream pathway analysis (FDR step up ≤ 0.05). KEGG pathway analysis of labelled miRNA in each condition ($\text{FDR} \leq 0.05$), weighted by number of miRNAs participating in each pathway depicted by Word Cloud (left panel). **C**, Heatmap depicting EV protein markers (derived from EV proteomics) in apical and basolateral compartments for both quiescent and activated states. **D-F**, EV-proteomic analysis comparing apical versus basolateral EV-proteins. **D**, Unfiltered heatmap analysis depicting protein abundances of apical and basolateral EC-EVs from activated states ($n=5-8$). **E**, VENN diagrams depicting number of shared and unique proteins in comparisons of apical (open circle) versus basolateral (filled circle) in quiescent (top) and activated (bottom) states. **F**, Volcano plot (right panel) of activated HAEC secreted EV-proteome enriched in apical (dark shading) versus basolateral (light shading) compartments ($\text{FDR} \leq 0.05$). Left panel: All differentially enriched proteins ($\text{FDR} \leq 0.05$) in activated conditions were used to generate proteomaps (v2.0, Homo Sapiens), weighted by protein mass abundance. Apical and basolateral proteomaps are represented by top and bottom panels, respectively. KEGG orthology terms (left) and respective proteins (right) contributing to the pathways are illustrated.

Online Figure VIII. Comparison of quiescent and activated endothelial sEV cargo by biological compartment. **A**, Cryo-EM images of apical (left panel) and basolateral (right panel) sEVs released by quiescent (top) and activated (bottom) ECs. **B-C**, Comparison of activated versus quiescent EV-miRNA cargo in apical and basolateral sEVs. **B**, Unfiltered heatmaps of endothelial EV-miRNA transcriptome clusters by activation state in apical (top) and basolateral (bottom) sEVs. **C**, Volcano plots of activated versus quiescent HAECS secreted EV-miRNA transcriptome enriched in apical (top) and basolateral (bottom) compartments ($FDR < 0.05$). **D**, Unfiltered heatmaps depicting EV-protein abundances in activated versus quiescent ECs by compartment (apical, top; basolateral, bottom). **E-F**, Interactomes of polarized EV release in activated conditions generated by capturing differentially expressed EV-miRNA (top 25 by FDR) and all EV-proteins, followed by network reduction to retain the top 15 of each group based on degree of interactions. **E**, Apical EV interactome with predicted targets. **F**, Basolateral EV interactome with predicted targets. **G**, Interactome integrating basolateral activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with differentially expressed SMC transcripts based on degree of interactions and with inclusion of ribosomal targets. EV-miRNAs shown in red, EV-proteins in pink, and targets in green. Node size denotes significant value.