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Abstract

Rationale: Extracellular vesicles (EVs) contain bioactive cargo including microRNAs (miRNAS)
and proteins that are released by cells as a form of cell-cell communication. Endothelial cells
(ECs) form the innermost lining of all blood vessels and thereby interface with cells in the
circulation as well as cells residing in the vascular wall. It is unknown whether ECs have the
capacity to release EVs capable of governing recipient cells within two separate compartments,
and how this is affected by endothelial activation commonly seen in atheroprone regions.

Objective: Given their boundary location, we propose that ECs utilize bidirectional release of
distinct EV cargo in quiescent and activated states to communicate with cells within the
circulation and blood vessel wall.

Methods and Results: EVs were isolated from primary human aortic endothelial cells (ECs) (+/-
IL-1B activation), quantified, and analysed by miRNA transcriptomics and proteomics.
Compared to quiescent ECs, activated ECs increased EV release, with miRNA and protein
cargo that were related to atherosclerosis. RNA sequencing of EV-treated monocytes and
smooth muscle cells (SMCs) revealed that EVs from activated ECs altered pathways that were
pro-inflammatory and atherogenic. Apical and basolateral EV release was assessed using ECs
on transwells. ECs released more EVs apically, which increased with activation. Apical and
basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC
activation. Notably, basolateral EC-EVs displayed greater changes in the EV secretome, with
pathways specific to atherosclerosis. In silico analysis determined that compartment-specific
cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and
SMCs, respectively.

Conclusions: The demonstration that ECs are capable of polarized EV cargo loading and
directional EV secretion reveals a novel paradigm for endothelial communication, which may
ultimately enhance our ability to design endothelial-based therapeutics for cardiovascular
diseases such as atherosclerosis where ECs are persistently activated.

Key Words: atherosclerosis, monocyte, vascular smooth muscle cell, RNAseq, proteomics
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cryo-EM
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GO
HAEC
SMC
IL-18
KEGG
LC-MS
MVB
mMiRNA
RNAseq
TEM
TIRF
mMiRNA

cryogenic electron microscopy

endothelial cell

extracellular vesicle

gene ontology

human aortic endothelial cell

human aortic vascular smooth muscle cell
interleukin 1 beta

Kyoto encyclopedia of genes and genomes
label-free liquid-chromatography mass spectrometry
multivesicular body

microRNA

RNA sequencing

transmission electron microscopy

total interal reflection fluorescence microscopy
microRNA
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Quiescent EC-EV signaling Activated EC-EV signaling

Apical/Luminal

Basolateral/Abluminal

Graphical abstract: Polarized endothelial extracellular vesicle communication with
luminal and abluminal vascular cells. Endothelial cell small extracellular vesicle (EC-EV)
release from apical (luminal) and basolateral (abluminal) surfaces in quiescence and after
endothelial activation. Quiescent EC-EVs are depicted in blue (bright blue=apical, light
blue=basolateral), while activated EC-EVs are depicted in red (bright red=apical, light
red=basolateral). Luminal monocyte is represented in purple with upregulation of pro-
inflammatory transcripts (bright purple) after uptake of activated EC-EVs from the apical
surface, compared to uptake of quiescent apical EC-EVs (light purple). Basolateral EC-EVs are
taken up by an abluminal resident smooth muscle cell depicted in yellow. Smooth muscle cell
uptake of activated basolateral EC-EVs with upregulation of pro-inflammatory/pro-atherogenic
transcripts (bright yellow), as compared to uptake of quiescent EC-EVs (light yellow).
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98 Introduction

99
100 Endothelial cells (ECs) line the entire vasculature, forming the largest distributed organ in the
101  human body with a unique secretome that maintains vascular health and regulates disease
102  pathogenesis.> 2 Given their critical interface between circulating blood and the vascular wall,
103  ECs have the potential to communicate with both luminal and abluminal cells.® Dysfunctional
104 endothelium, as seen in chronic diseases such as atherosclerosis, is one of the earliest
105 detectable pathophysiological events and contributes directly to the development of a wide
106 range of cardiovascular diseases.*’ Specifically, EC-based intercellular communication with
107  circulating cells and resident vascular cells lies at the core of atherogenesis.® Extracellular
108 vesicles (EVs) have emerged as important mediators of cell-cell communication.? ® Cells
109  produce EVs with specific cargo, such as microRNA (miRNA) and protein, based on their
110  physiologic or pathologic state, and the contents of EVs can be delivered to recipient cells to
111  mediate biologic effects.® 1 Under quiescent states, cultured ECs release EVs that tame
112  monocyte activation!! and provide atheroprotective communication to smooth muscle cellst 12
113  while EVs derived from activated endothelium stimulate monocyte adhesion®® 4 and promote
114  monocyte differentiation into inflammatory macrophages?*®. Although EC-EV based cell-cell
115 communication is emerging as an important vector mediating multicellular disease states, it
116  remains unresolved whether ECs can direct EV release in a polarized fashion to communicate
117  separately with luminal and abluminal cells.
118
119 ECs are uniquely situated at the interface of the blood vessel lumen and wall where they are
120 positioned in an asymmetrical extracellular environment. In endothelial biology there is a
121  precedent for polarized structural and functional arrangements. EC proteins are polarized to
122 luminal (apical) and abluminal (basolateral) surfaces to facilitate distinct functions (e.g.,
123  glycocalyx versus cell adhesion).'® In cardiovascular disease, endothelial polarity proteins (e.g.,
124 Scrib) play key roles in establishing endothelial identity and are atheroprotective.'’ Given their
125 location and evidence of apical-basal polarity, it is conceivable that ECs secrete EVs in a
126  polarized manner and alter cargo based on environmental cues as a mechanism for distinct
127  communication.'® Delineating polarized endothelial EV communication would fundamentally
128  alter the approach to vascular biology and cardiovascular disease.
129
130 In the current study, we demonstrate the crucial role for EC-based communication in
131 cardiovascular disease conditions using primary human aortic endothelial cells (HAECS)
132  exposed to IL-1B, a key cytokine increased in relation to disease severity in patients with
133  atherosclerosis!® and the focus of the CANTOS trial that definitively proved the role of
134  inflammation in cardiovascular events.?% 2! We determined that HAECs increase EV release
135 when activated with IL-1p and package miRNA and protein cargo that is clearly distinct from the
136 quiescent state. Notably, these EVs have functional effects, with cellular reprogramming of
137  primary human monocytes and human aortic smooth muscle cells (SMCs) as determined by
138  RNA-sequencing. Using multiple lines of evidence, we demonstrate that ECs are capable of
139 directional (i.e., apical and basolateral) EV release in both quiescent and activated states,
140  providing a mechanism for endothelial communication strategies with cells in separate
141  extracellular compartments. Moreover, ECs shuttle distinct EV-cargo to the luminal and
142  abluminal compartment that is altered upon activation. In silico analysis further determined that
143  polarized, compartment-specific EC-EVs have the capacity to communicate with monocytes and
144  SMCs — cells found in the luminal and abluminal compartments respectively — to instigate
145 unique changes in key pro-atherogenic transcripts and pathways.
146
147
148
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Methods

Detailed Materials and Methods are available in the Data Supplement. The authors declare that
all supporting data are available within the Data Supplement.

Results

A subpopulation of small EVs is increased after EC activation

‘EV’ is a broad term for bilayered nanoparticles that are secreted via several routes, including
plasma membrane-derived microparticles and small EVs (SEVs; also known as exosomes),
which are secreted from a specialized subset of endosomes called multivesicular bodies
(MVBSs).?? sEVs were enriched via serial ultracentrifugation (Online Figure | A) from media of
unstimulated (quiescent) or activated primary human aortic endothelial cells (HAECSs) (IL-1p,
100 pg/mL, 24 h; Online Figure | B-C). Activated HAECs released more sEVs (size range 30-
200 nm) than quiescent HAECs, as measured by nanoparticle tracking analysis (NTA) (Figure
1A, B). To confirm that these nanoparticles were EVs, we performed western blot analysis that
showed expression of common EV markers, including CD63, Alix, and CD9 (Figure 1C), but
only CD63-positive SEVs were significantly increased by endothelial activation (Figure 1D and
Online Figure | D). No morphological or size differences between sEV isolates from quiescent
and activated HAECs were noted using cryo-electron microscopy (cryo-EM) or NTA (Figure 1E-
F). However, TEM of activated HAECs in situ demonstrated increased MVBs positioned near
the cell surface compared to quiescent cells (Figure 1G). Increased sEV release by activated
ECs was not accompanied by increased EV biogenesis markers (e.g., TSG101, Caveolin, Flotl)
at the mRNA or protein level — consistent with publicly available data (GEO accession:
GSE89970 (Online Figure 11)).2® Together, these results demonstrated the release of CD63-
positive endothelial SEVs is significantly increased in response to a cardiovascular disease-
related stimulus and motivated us to determine whether differential EV cargo might accompany
this altered EV landscape.

sEV cargo displays a pro-atherogenic signature after EC activation

EV cargo including miRNA and proteins mediate biological effects. Next generation miRNA
sequencing of HAEC sEVs showed independent clustering of SEV-mIRNA from activated versus
guiescent states with greater heterogeneity of SEV-miRNA expression among quiescent ECs
(Figure 2A). sEVs from quiescent and activated ECs have similar distributions of miRNA
abundance (i.e., normalized miRNA counts), but EC activation drives sEV-miRNA cargo
towards a more homogenous transcriptome (i.e., reduces variation in miRNA counts between
samples) (Figure 2B). MiRNA cargo is differentially expressed in EC-sEVs, with 192 transcripts
increased in activated conditions and 305 transcripts in quiescent EC-sEVs (Figure 2C). Several
known endothelial-enriched miRNAs such as miRNA-126, miRNA-92a, and miRNA-181, were
abundantly expressed in both conditions (Online Figure Il A). To assess the functional
implications of altered sEV-miRNA cargo, we employed KEGG pathway analysis of differentially
expressed SEV-miRNAs in quiescent conditions (Online Figure 1l B). MiRNA-513a-3p, miRNA-
208b-3p, and miRNA-587 were found to govern pathways involved in cell-cell communication,
cell cycle and metabolism, and cell signaling (Figure 2D, Online Figure Il D). Conversely,
several regulators of inflammation such as miRNA-146a-5p, miRNA-146b-3p, and miRNA-98-5p
were increased in activated endothelial sEVs (Online Figure 11l C), governing proatherogenic
pathways involved in inflammatory signaling, cell death and clearance, cell matrix interactions
and cell-cell communication with circulating and resident vascular and inflammatory cells
(Figure 2E, Online Figure 1l E).
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199  Protein cargo of endothelial SEVs was assessed via label-free liquid-chromatography mass

200  spectrometry (LC-MS) and yielded several known EV markers (Online Figure IV A-B). Similar to
201  sEV-transcriptomics, distinct protein profiles were identified in activated versus quiescent HAEC
202  sEVs (Figure 2F). There were 27 and 64 EC-sEV proteins that were differentially enriched in
203  quiescent and activated states, respectively (Figure 2G). Quiescent EC-sEVs contained several
204  abundantly enriched proteins with homeostatic roles in SMCs and extracellular matrix

205  production (e.g., COL3A1, COL1A2, COL1A1), vascular endothelial maintenance (e.g., ENG,
206  VIM) and cell metabolism (TCIRG1, MDH2, TALDO1, MIF, MBOAT?7) (Figure 2H). Activated
207  EC-sEVs contained key drivers of atherosclerosis including adhesion molecules (e.g., ICAM-1),
208 inflammatory and stress proteins (e.g., ILLIRAP, IFNGR1, TNFRSF1A, DLL4, SOD2), ribosomal
209  proteins (e.g., RPS25, RPL11, RPL30, RPL34), and lipoprotein metabolism (LIPG), (Figure 2I
210  and Online Figure IV C). KEGG pathway analysis of the sEV proteome in activated HAECs

211 delineated five key pathways that were shared with predicted targets of EC-sEV miRNAs — NF-
212 kB signaling, lipid and atherosclerosis, necroptosis, cytokine-cytokine receptor interaction, and
213  cell cycle — demonstrating the shift in the sEV secretome towards an atherogenic payload

214  (Figure 2J). Given sEV-derived miRNAs and proteins may function collectively, we assessed
215 their interactions with predicted gene targets and generated sEV interactomes (Figure 2 K-L).
216  Predicted targets of SEV cargo from the quiescent endothelial state included genes involved in
217  protein folding and degradation, DNA regulation and repair, and cell proliferation and

218  differentiation (Figure 2K). The activated SEV network appeared denser than its quiescent

219  counterpart and while there was overlap between predicted targets of activated and quiescent
220 EC-sEVs, activated EC-sEVs altered genes involved in transcriptional and translational

221  regulation (Figure 2L). These data show that SEV cargo and release is substantially altered

222  upon endothelial activation and has the potential to impact communication with surrounding
223  cells to potentiate inflammatory messaging.

224

225

226

227  Activated EC-sEVs uniquely reprogram circulating monocytes and resident SMCs

228  Given activated ECs released distinct sEV cargo that reflected pro-inflammatory and

229 atherosclerosis-relevant pathways, we next determined the direct effects of these EC-sEVs on
230  human monocytes or SMCs — key cells involved in the development of chronic vascular

231 diseases such as atherosclerosis. Human primary CD14+ monocytes were treated for 24 hours
232  with sEVs isolated from activated or quiescent HAECs (Online Figure V A). Monocyte RNA was
233 isolated, and RNA sequencing (RNAseq) was performed to delineate the cellular response of
234  monocytes to EC-sEVs. Principal component analysis of RNAseq revealed distinct profiles for
235 monocytes exposed to quiescent EC-sEVSs, activated EC-sEVs, and cell culture media-alone
236  control (Figure 3A). Heatmap analysis showed groups cluster separately and that most

237  transcripts lay within protein coding regions (Online Figure V B). While sEVs from activated ECs
238 had biological effects on monocytes when compared to media-alone control (Online Figure V
239 C), more remarkable was the observation that SEVs from activated ECs drove unique biological
240  activity on monocytes when compared to monocytes exposed to sEVs from quiescent ECs

241  (Figure 3B). To better understand the cellular reprogramming being initiated in monocytes,

242  pathway analysis was performed. As seen in Online Figure VD, monocytes exposed to activated
243  EC-sEVs versus media-alone control significantly upregulated pathways in migration and

244  chemotaxis, inflammation, and vascular development. To compare the specific impact of

245  endothelial activation and altered sEV cargo on recipient monocytes, we analyzed monocyte
246  responses to activated EC-SEVs versus quiescent EC-sEVs (Figure 3C): notably, pathways
247  involved in adhesion and migration, inflammation, proliferation and differentiation, and apoptosis
248  emerged. Given our well-characterized data from EC-sEV transcriptomics and proteomics, we
249  integrated sEV cargo data with our monocyte recipient cell RNAseq to create an interactome
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that delineated differentially expressed transcripts that were likely regulated by EC-sEVs (Figure
3D-E). Five transcripts — down-regulation of monocyte SOX4, HIF1A, SOD2, TNFAIP3 (Figure
3E) and upregulation of monocyte LMNB1 (Figure 3D) by activated EC-sSEVs — regulated the
pathways highlighted in red (Figure 3C), including inflammatory signalling with IL-12 and TNF,
and regulation of leukocyte proliferation and apoptosis. Overall, there was a strong intersection
of the sEV-miRNAome, sEV-proteome, and recipient monocyte transcriptome centering on
oxidative stress (e.g., HIF1A, SOD2, GNL3) under activated EC conditions (Figure 3D-E).
Together, these data demonstrate that several pathways identified from miRNA and proteomic
analysis of EC-sEVs are shared with pathways found in EV-treated monocytes, and that sEVs
from an activated endothelium have specific biologic effects on recipient cells that differ from
those derived from the quiescent state.

Since HAECs can communicate with luminal cells such as primary human monocytes via SEVS,
we next assessed whether EC-sEVs can also regulate abluminal cells such as SMCs (Online
Figure V A). Principal component and heat map analysis demonstrated that primary human
aortic SMCs exposed to media-alone control, quiescent EC-sEVs, and activated EC-sEVs
cluster distinctly with differentially expressed transcripts predominantly found within protein
coding regions (Figure 3F, Online Figure V E). Similar to our observations with monocytes,
SEVs from activated ECs had biological effect on SMCs when compared to media-alone control
with 324 and 303 uniquely regulated transcripts, respectively (Online Figure V F). Exposure of
SMCs to activated versus quiescent EC-sEVs led to shared, as well as distinct, transcript
changes (Figure 3G). While there were clearly shared pathways including ribosome, cellular
senescence, and several inflammatory signaling pathways, they varied by importance as noted
by FDR value, with reduction of ribosomal pathways dominating the activated EC-sEV treated
SMCs (Figure 3H, Online Figure V G). Unique SMC pathways regulated by activated versus
quiescent EC-sEVs included phagosome and p53 signaling (Figure 3H). Interactomes created
by integrating sEV-secretome and recipient SMC transcriptomic data identified several predicted
targets of SEV-miRNA and proteins that are involved in pathways highlighted in red (Figure 3H).
Notably, activated EC-sEVs led to a decrease in several ribosomal (RPL15, RPSA, RPL5) and
protein metabolism related transcripts (EEF1A1, UBC, HSP90AAL, SUMOL1), while mediators of
inflammatory signaling (NFKB1, IKBKE, HIF1A, IRF1, SMAD3, FN1) and cell cycle regulators
(TP53, CEBPB, MYC, MDM2) were increased (Figure 3I-J). These data delineate several key
pathways and transcripts modulated by EC-sEVs demonstrating their ability to communicate
with SMCs and drive pro-inflammatory/pro-atherogenic changes in recipient cells. Taken
together, these findings underscore the significant biological potential of SEVs released by an
activated endothelium, with increased concentration and altered cargo capable of differentially
affecting cells in the circulation (e.qg., circulating monocytes, apical/luminal) or cells that reside in
the vessel wall (e.g., SMCs, basolateral/abluminal). The directional potential for EC-SEVs as a
mechanism for cellular communication to discrete compartments has not previously been
explored.

ECs can direct cell-cell communication via polarized release of sEVs

Given that quiescent and activated EC-derived sEVs have distinct transcriptomic and proteomic
signatures with the capacity to alter monocyte and SMC function, we sought to determine
whether ECs release sEVs in a polarized fashion where they might participate in divergent cell-
cell communication strategies from their apical (luminal) and basolateral (abluminal) surfaces.
To explore this concept, we employed a transwell system.® 24 Maintenance of physiologic
barrier function was confirmed by VE-cadherin localization to adherens junctions and 30 nm
gold nanoparticle challenge (representing the smallest SEV) across EC monolayers (Online
Figure VI A-B). Using transwells to enrich EVs from the media in upper (apical/luminal) and
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lower (basolateral/abluminal) chambers pushed the limits of low input analyses. We therefore
employed ultracentrifugation for our initial SEV observations (NTA, cryo-EM, and EV-marker
analysis by western blot) and then progressed to size exclusion chromatography for activation
studies, and transcriptomic and proteomic analysis (Figure 4A, Online Figure IV D-E). SEVs
were identified in isolates from apical and basolateral compartments and visualized as bilayered
nanoparticles with dense cores (Figure 4B). Apical sEVs were larger than basolateral sEVs
(Figure 4C). HAECs released more sEVs to the apical compartment as determined via
nanoparticle counts (NTA) and western blot analysis of common EV markers, with a significant
increase detected in CD63-positive sEVs (Figure 4D-F). To assess whether this property of
polarized EC-sSEV release was broadly applicable to other EC types, we recapitulated the
findings with pooled human umbilical vein ECs (HUVECS) (Online Figure VI C-G). Given the
novelty of basolateral EC-SEV release, we employed total internal reflection fluorescence (TIRF)
microscopy to visualize sEV release from the basolateral surface of HAECs transiently
transfected with pHIluorin-CD63 plasmid.?® EVs were visualized when MVBs fuse with the
plasma membrane and release sEVs into the neutral extracellular milieu. Their release was
increased upon stimulation with histamine (Figure 4G-H) and was significantly inhibited upon
addition of an EV release inhibitor, GW4869 (Figure 41-J). We further delineated the role of
polarized EV release in cell-cell communication by performing a quantitative assessment of EC-
EV transfer to monocytes (Figure 4K). Using ECs transfected with exogenous C. elegans
MiRNA-39, ECs transferred miRNA-39 to monocytes in apical and basolateral compartments,
with apical monocytes receiving most of the miRNA (Figure 4K). At the ultrastructural level, TEM
images suggested that sEVs were contained within MVBs and were poised for release at both
the apical and basolateral surfaces (Figure 4L). Given our data identified polarized sEV release
by the endothelium as a putative mechanism for communication with circulating and resident
vascular cells, we guestioned whether ECs release compartment-specific cargo to communicate
differentially with vascular cells.

ECs release sEVs with distinct cargo to apical and basolateral compartments

Endothelial sEVs from the apical and basolateral compartments of quiescent and activated cells
underwent next-generation miRNA sequencing and proteomic analysis via LC-MS (Figures 5-6).
sEV miRNA cargo from quiescent ECs readily clustered by polarity (broad circles) with distinct
transcriptomes observed between apical versus basolateral sEV collection (Figure 5A). This
polarization of SEV cargo was preserved with EC activation (Figure 5A, Online Figure VII A).
Under quiescent conditions, endothelial-specific miRNA were polarized in their secretion (e.g.,
miRNA-126 2627 family apically and miRNA-14428 2% family basolaterally; Figure 5B, left panel).
This polarization was maintained upon EC activation, suggesting that these miRNAs may be
constitutively released in a polarized fashion by ECs even under inflammatory stimuli (Online
Figure VII B, right panel). Pathway analysis of sSEV-miRNA from apical and basolateral
compartments highlighted distinct compartment-specific pathways. In quiescent states, there
were 319 and 145 distinct pathways predicted to be regulated by apical and basolateral sEV-
MiRNA, respectively. Among the top pathways, those related to apoptosis, p53 signaling, and
chemokine signaling were enriched apically, while pathways related to cellular senescence, and
lipid and atherosclerosis were modulated basolaterally (Figure 5B, right panel). Notably, the
polarization of the EV-miRNA transcriptome and downstream pathways was maintained in
activated states (Online Figure VII B, left panel), suggesting the importance of distinct
directional communication in health and disease.

Proteomics demonstrated that SEV cargo clustered by polarity (broad circles) with distinct
proteomes in the apical versus basolateral compartment under quiescent conditions (Figure
5C), which was preserved with EC activation (Figure 5C and Online Figure VII D). While several
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known EV proteins were detected in all SEVS, regardless of compartment, we identified
increased abundance in EV tetraspanins, EV-sorting and release proteins and intra-EV markers
in apical SEVs, consistent with our observation that more sEVs are released apically (Online
Figure VII C). There were 185 and 134 differentially enriched proteins in quiescent apical and
basolateral EC-SEVs, respectively (Figure 5D, left panel). Endothelial SEV protein cargo from
apical versus basolateral compartments reflected distinct pathways (Figure 5D, right panel).
Apically derived sEV-proteins were associated with several metabolic pathways including
glycolysis, protein metabolism, RNA metabolism, and maintenance of cell cytoskeleton, while
basolateral sEV-proteins were predominantly associated with extracellular matrix interactions,
cholesterol metabolism and transport, and protein degradation. There were several differentially
enriched EV-trafficking proteins in both compartments (e.g., Apical: RAB7A, CAV1, EHD2,4;
Basolateral: KRT2, LMNB1, EEA1, ANXA11), implicating them as potential mediators of
selective and directional EV release (Online Figure VII C). Similar to the sEV-miRNA
transcriptome, polarized release of sEV-proteins was maintained in activated states (Online
Figure VII F).

Together, these data delineated the sEV miRNA and protein cargo released from ECs towards
luminal and abluminal compartments. Under conditions of EC activation, polarization was
preserved, but subtle secretome shifts (investigated below) were noted with expected
consequences on cells that would typically receive EC-sEVs in the luminal circulation or
abluminal vessel wall. The potential discovery of a mechanism underpinning endothelial
communication with cells in different biological compartments that could be affected by an
atheroprone stimulus prompted us to formally assess how EC activation alters compartment-
specific SEV release, to directly compare sEV cargo between quiescent and activated states,
and to test putative effects on monocyte and SMC recipients by in silico analysis.

Luminal and abluminal cell reprogramming by polarized EC-EV cargo

Given that activated ECs have increased sEV release (Figure 1), we wanted to delineate
whether this was a polarized phenomenon. Maintenance of a physiological barrier after IL-13
activation was similarly confirmed by VE-cadherin expression/localization and 30 nm gold
nanoparticle challenge (Online Figure VI A, bottom panel; Online Figure VI B). While activated
EC-sEVs from the apical or basolateral compartments appeared morphologically similar
compared to quiescent EC-sEVs and were similar in size (Online Figure VIII A), IL-1f treatment
significantly increased the concentration of EVs released into the apical, but not the basolateral,
compartment (Figure 6A-B).

To determine the extent to which the polarized seV-miRNA cargo profile changes when ECs are
activated, we made direct comparisons between quiescence and IL-1 stimulation. SEV-miRNA
clustered distinctly, according to activation status (Figure 6C-D, Online Figure VIII B-C). Under
activated conditions, there were 23 and 93 pathways predicted by apical versus basolateral
sEV-miRNAs, respectively. Many of these pathways were altered in basolaterally released EV-
miRNA from activated ECs, emphasizing a previously undefined role for basolateral EC-sEVs
participating in cell-cell communication within the vessel wall interstitium (Figure 6E). To that
end, we delineated several key pro-atherogenic pathways that were uniquely predicted by
basolaterally secreted sEV-miRNA from activated ECs, including chemokine signaling,
response to shear stress, and lipid and atherosclerosis pathways. This implies a capacity for
modulating focal vascular biology, as might be found in the atherosclerotic plaque
microenvironment. Examining the miRNA specifically, well-known miRNA mediators of
inflammation, mMiRNA-146a,%° miRNA-34c¢,! miRNA-144,28 2% and miRNA-374b were increased
in apical EC-sEVs upon activation (Figure 6F). These sEV-miRNA were involved in several
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pathways previously predicted by the effects of plate-derived EC-sEVs on primary human
monocytes (Figure 3C) such as apoptosis, cell proliferation and differentiation, and adhesion
(Figure 6F). Levels of miRNA regulators of inflammation among the basolateral EVs such as
MiRNA-125b, miRNA-34a, miRNA-21, miRNA-24, and miRNA-126-5p were increased (Figure
6G). These sEV-miRNA likewise contributed to the pathways predicted by activated plate-
derived EC-sEVs on SMCs (Figure 3H) including inflammatory signalling, cellular senescence,
and cell proliferation and differentiation (Figure 6G).

We also detected distinct compartment-specific changes in the sEV-proteome with endothelial
activation (Figure 6H-M, Online Figure VIII D). sEV-proteins clustered distinctly, according to
activation status (Figure 6H,K). There were 47 seV-proteins enriched in the apical compartment
(Figure 61) known to regulate pathways previously seen to be altered in monocytes treated with
EC-sEVs (Figure 3), including proliferation (LAMA4/5, LAMB1, LAMC1, CSF1), inflammation
(ICAM1, VCAM1, CSF), and cell adhesion and migration (LMNB1, HSPG2, NID1, NID2,
CXCR4) (Figure 6J). While several of these pathways aligned with apically secreted sEV-
mMiRNA (such as NF-kB and PI3K-Akt), response to oxidative stress via SOD2 secretion
emerged as an sEV-protein specific function. As seen with the SEV-miRNA, the basolaterally
secreted sEV-proteome from activated ECs predicted a diverse set of cellular functions further
hinting at their important role in governing disease pathogenesis within the vessel wall (Figure
6L-M). There were 40 sEV-proteins enriched in the basolateral compartment from activated ECs
(Figure 6L), many participating in pathways found predicted in EC-sEV-treated SMCs (Figure 3)
including protein biosynthesis (BCAT, CCT2, PPIA, TXN, CCT2), inflammatory signalling
(SLC2A1, CALML5, ACVR1), and PI3K-Akt signalling (COL4A2, ITGA5) (Figure 6M). Finally,
our compartment-specific SEV interactomes integrating differentially expressed seV-miRNA and
sEV-protein from activated states further corroborated their role in inflammation, cell cycle,
proliferation, and transcriptional and translational regulation (Online Figure VIII E-F). Though
there was overlap between predicted targets of apical and basolateral EC-sEVs, endothelial
activation altered sEV cargo that also led to distinct targets in each compartment with the
basolateral interactomes emerging as denser networks.

Lastly, to discern luminal and abluminal endothelial SEV communication with relevant cell types
in the context of an atheroprone stimulus, we generated in-silico interactomes by layering apical
and basolateral EC-sEV cargo with the transcriptomic responses of seV-treated monocytes and
SMCs respectively (Figure 3), from activated conditions (Figure 6N-O and Online Figure VIl G).
Apical sEV-miRNA and proteins enriched by endothelial activation (miR-146a, miR-198, miR-
34b, miR-575, SOD2) altered monocyte mRNA transcripts involved in apoptosis (FOXO3,
DDB1, PDCD61P, BIRC3), inflammatory signalling (NF-kB associated proteins, IRF1, IRAK2),
adhesion and migration (MARCKSL1, NID1, CCL5), proliferation and differentiation (CCL5,
CXCR4), and oxidative stress (HIF1A, SOD2) (Figure 6N). Basolateral sEV-cargo altered SMC
MRNA transcripts known to function in activation-related pathways including protein
biosynthesis (S and L ribosomal proteins, SUMO1, UBC, CCT2, FAU, PSMC2, EEF1A1), cell
proliferation and differentiation (ITGA4, VCL, CALM2), cell senescence (HSP90AA1), and
phagosomes (TUBB) (Figure 60). Together, these data delineated polarized changes to apical
and basolateral sEV-cargo upon EC activation with IL-1 and revealed that the unique shift in
basolateral EC-sEV cargo is robust and affects athero-relevant pathways. Critically, our data
suggest distinct roles for compartment-specific EC-sEV cargo on recipient cells found luminally
in the circulation (e.g., monocytes) and abluminally within the vessel wall interstitium (e.g.,
SMCs) (see graphical abstract).
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Discussion

Here we demonstrate that ECs can utilize their ability to secrete sEVs directionally to
communicate with luminal and abluminal cells in quiescent and activated states. This has
important implications for cardiovascular diseases given the change in sEV cargo upon EC
activation with IL-1p, a known mediator of inflammation in atherosclerosis and other
cardiovascular pathologies. Primary human ECs secrete more CD63-positive sEVs upon
activation and notably, this increase in SEVs is seen apically suggesting that circulating
endothelial SEVs have the potential to serve as liquid biopsies of localized vascular disease
(e.g., atherosclerotic plaques) where the endothelium is activated. Additionally, although the
abundance of sEVs secreted basolaterally is not altered upon activation, we identify distinct
changes in their cargo, with implications for cell-cell communication with cells in the vessel wall.
ECs appear to load pro-inflammatory and atherogenic miRNAs and proteins into SEVs upon
activation. Functionally, endothelial SEVs communicate with primary human monocytes and
SMCs leading to changes in hundreds of protein coding transcripts, with unique responses
depending on whether the endothelium is quiescent or activated. Our discovery that the
endothelium is capable of directional SEV release provides a mechanism for focused
communication with cells in discrete compartments. To that end, we found that ECs load starkly
different sEV-cargo (miRNA and protein) for release apically versus basolaterally. Both apical
and basolateral endothelial SEV content is altered upon activation with IL-1, while in silico
analysis underscored the ability for apical and basolateral messaging to alter transcripts in
luminally and abluminally residing cells, respectively. This pronounced shift towards
atherosclerosis pathways in basolateral SEV cargo after endothelial activation identifies a
potential strategy for focal endothelial-based therapies in atherosclerotic disease.

Extracellular vesicles are known to be sentinels of disease states, and traffic biological entities
between cells. * The quantity of EVs increase and their cargo is altered in several
cardiovascular conditions.3*** ECs are exquisitely sensitive to their surroundings and increase
release of EVs in the presence of inflammatory mediators,*° and crucially, alter EV-contents
(miRNA and protein) upon activation.®*®52 We found that primary human ECs have increased
CD63-positive SEV release when treated with IL-1f3, a pro-inflammatory cytokine with known
roles in mediating atherogenesis. Activated ECs secrete seVs with miRNA and protein cargo
that regulate key pathways involved in the pathogenesis of atherosclerosis including cell matrix
interactions, cell-cell communication, cell death, protein synthesis, and inflammatory
signalling.53% Interestingly, SEV-miRNA and protein cargo mediate varied functions in quiescent
states, but the activated endothelial SEVs had denser networks and converged to modulate five
key pathways in activated states: NF-kB signaling, lipid and atherosclerosis, necroptosis,
cytokine-cytokine receptor interaction, and cell cycle. Biologically, monocytes treated with
activated endothelial SEVs modulated pathways related to apoptosis, adhesion, migration, and
proliferation, while SMCs demonstrated altered ribosomal and cellular senescence pathways.
Together, sEV miRNA and protein cargo worked collectively to alter transcripts in recipient cells,
stressing the importance of studying sEV functions in a holistic manner. The diversity in effects
with the same effector is likely due, at least in part, to differences in the transcriptome of
monocytes and SMCs, which alters the repertoire of miRNA targets available and cell signaling
receptors that can respond to EV proteins. Although these data strengthened prior reports that
ECs can communicate with surrounding cells via EVs! 1257 it remained unexplored whether
the endothelium might strategize polarized communication to cells in separate extracellular
compartments.

Challenges exist for studying EV cargo selection.®® %° However, the sheer number of ECs living
at the interface of the circulation and blood vessel wall and potential for polarized sV
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communication would inform several biologic processes. As a basic tenet, directional EV
release necessitates a polarized structure capable of maintaining discrete compartments. In
embryology, endothelial apical-basal polarity is a crucial component of angiogenesis with
negatively charged glycoproteins concentrated at the apical surface to facilitate cord
hollowing.% ¢ Proteins are segregated between the apical and basolateral surfaces in adult
endothelial cells,®2-%° with several EC-secreted proteins enriched luminally’™ or abluminally’®-73,
While polarized EV release has been inferred from proteomics data,’® it has never been directly
demonstrated, nor has the functional relevance of directional endothelial EVs been explored.
We employed multiple approaches to demonstrate polarized secretion of sEVs by HAECs and
confirmed our findings in another primary endothelium (HUVECS). In addition to imaging
secreted seEVs from media (NTA and TEM), we imaged MVBs poised for release at both apical
and basolateral surfaces (cryo-EM) and visualized basolateral release using TIRF microscopy.
sEVs were quantified, profiled by miRNA and protein, and sEV interactomes generated. In
guiescence, ECs released more CD63-positive SEVs apically and contained cargo involved in
apoptosis, p53 signalling, metabolic pathways, and maintenance of cytoskeleton, while
basolaterally secreted EC-EVs modulated pathways related to cell senescence, lipid and
atherosclerosis, and cholesterol metabolism. The observation that ECs release distinct sEV
miRNA and protein cargo from apical and basolateral surfaces shifts the current EC-EV
communication paradigm, forcing a renewed consideration of cell-cell communication at this
boundary region.

Given that ECs are frequently activated in cardiovascular disease, we chose to consider our
findings in the context of atherosclerosis — the underlying cause of 19 million deaths globally per
year.”* Upon activation with IL-1B, there were increased sEVs released apically and there were
compartment-specific changes in the seV-secretome with in silico evidence for compartment
specific communication with luminal (monocytes) and abluminal cells (SMCs). Apically, the large
pool of endothelial SEVs could represent systemic drivers of health and disease or could be
useful as liquid biopsies that reflect vulnerable atherosclerotic plaques. Precedence for this
exists in the cancer literature, where tumor derived EVs can drive metastatic disease” and
serve diagnostic roles.”>’® More striking however, was our novel finding that endothelial cells
release sEVs basolaterally, and that activation leads to profound changes in the cargo released
from the basolateral surface. This has implications for designing therapies that target
atherosclerotic plaque biology in a focal manner. Emerging targets such as efferocytosis (a
process for clearing dead cells that is defective in advanced plaques)®°®’ or plaque stabilization
through strengthening the SMC fibrous cap formation® would be ideal. Alongside the
cholesterol metabolism pathways enriched in basolateral SEVSs, it is notable that efferocytosis-
related proteins were seen basolaterally (LRP1, MFG-E8) but not apically (Online Figure VII F,
right panel). If we can determine how to harness basolateral SEV release from ECs, it might be
possible to deliver local plaque therapies targeting efferocytosis or cap-stabilization. To do so,
future studies will need to target the activated endothelium, determine exactly how the
endothelium designates specific cargo for loading, and to distinguish the intracellular trafficking
pathways utilized for apical versus basolateral release.

Utilizing their capacity for polarized sEV release, ECs can participate in systemic and local cell
communication. Capitalizing on this biology to modify endothelial-governed functions provides a
powerful approach for detecting and/or modulating cardiovascular disease states such as
atherosclerosis. The findings in this study provide early insights to support this exciting
possibility. Together, these data provide a fresh perspective on endothelial sEV-based
communication and the biological relevance of these messaging strategies in diseases such as
atherosclerosis.
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Figure Legends

Figure 1. Endothelial cells release increased CD63-positive SEVs in response to
activation. A, Nanoparticle tracking analysis (NTA) of EV concentration binned by particle size
after isolation from HAEC conditioned media (8 X 107 cells, from quiescent (EV-free media, 24
h) and activated (100 pg/mL IL-1B in EV-free media, 24 h) states (n=3-8). B, Quantification of
EC-EV mean concentration across all EV sizes. C, Western blot depicting EV markers (CD63,
Alix, and CD9) in EV lysates isolated from supernatants of quiescent and activated HAECs and
HAEC cell lysate (CL) control. Arrows show position of correct protein band and molecular
weights markers indicated on left. D, Densitometry of EV lysate derived CD63 normalized to
HAEC cell lysate control. E, Cryo-EM of EVs isolated from quiescent and activated HAEC cell
supernatant. Arrows indicate EV structures. Scale bar=50 nm. F, Quantification of EV mean
diameter by NTA. G, Transmission electron microscopy of 90 nm ultramicrotomed HAEC
monolayers. Dashed circles indicate multivesicular bodies. Representative image (n=3).

Bar graphs show mean + SEM. Statistical significance assessed by Mann-Whitney test (B) and
unpaired ttest (D, F).

Online Figure I. General features of SEV isolation in human aortic endothelial cells in
quiescence and after confirmed activation with IL-1f. A, Schematic for SEV enrichment.
Endothelial cells were grown to confluence and maintained in EV-free media for 24 h prior to
supernatant collection. Conditioned media was centrifuged at 500xg and 3,000xg for removal of
cell debris and apoptotic bodies, followed by filtration with 0.22 uM to generate cleared
conditioned media. EVs are enriched via ultracentrifugation at 120,000 x g for 3 h, followed by a
PBS wash, and ultrafiltration using a Amicon 10 kDa filter. EV enrichment was confirmed as per
the MISEV2018 guidelines. Created with BioRender.com. B, RT-gPCR of inflammatory
cytokines and adhesion molecules in cultured HAECs post treatment with 100 pg/mL IL-18, 24
h. mRNA abundance was normalized to GAPDH. C, HAECs were grown on coverslips, placed
in EV-free media (left) +/- IL-1p (right;100 pg/mL, 24 h) and stained for the adherens junction,
VE-Cadherin (n=3). D, Densitometry of EV lysate derived CD9 and Alix normalized to HAEC cell
lysate control.

Bar graphs show mean + SEM. Statistical significance assessed by multiple unpaired t-test with
adjustment for multiple testing with the Benjamini-Hochberg procedure.

Figure 2. Endothelial sEV miRNA and protein cargo are distinct in identity and predicted
function in activated versus guiescent conditions. A, Unfiltered principal component
analysis (PCA) showing miRNA profiles of sEVs isolated from conditioned media of activated
(red) versus quiescent (blue) HAECs (8 X 107 cells, 100 pg/mL IL-1B, 24 h). B, Rank plots using
normalized counts (arithmetic mean + SEM). Top 10 activation-and quiescence-enriched
mMiRNAs are highlighted in red and blue, respectively. C, Volcano plot of HAEC secreted EV
miRNA transcriptome with red and blue representing EV-miRNA contents enriched in activated
and quiescent states, respectively (FDR step up < 0.05, Fold Change |2|) D, Pathway analysis
of top 10 (by FDR) quiescent HAEC-EV enriched miRNAs (miRTarBase) delineated significant
KEGG pathways (FDR < 0.05) for miRNA associations of miR-208b-3p, miR-513a-3p, and miR-
587. Data points are sized by GeneRatio (genes altered in pathway/total number of unique
genes in analysis) and colour-scaled by FDR. E, Pathway analysis of top 10 (by FDR) activated
HAEC-EV enriched miRNAs (miRTarBase). Shown are individual miRNA associations of KEGG
pathways of interest. Data points are sized by GeneRatio (genes altered in pathway/total
number of unique genes in analysis) and colour-scaled by FDR. F, Unfiltered PCA showing
protein profiles of SEVs isolated from conditioned media of activated (red) versus quiescent
(blue) HAECs as in (A). G, Volcano plot of HAEC secreted EV proteome with red and blue
representing EV-protein contents enriched in activated and quiescent states, respectively
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(p< 0.05, Fold Change [1.5]). H, Proteomap (v2.0, Homo Sapiens) generated from all
differentially enriched quiescent EC-EV proteins weighted by mass abundance. KEGG orthology
terms (left) and respective proteins (right) contributing to the pathways are illustrated. I,
Proteomap (v2.0, Homo Sapiens) generated from all differentially enriched activated EC-EV
proteins calculated as in (H). J, Overlapping KEGG pathways between the top 10 (by FDR)
differentially enriched EV-proteins and all differentially enriched EV-proteins in quiescent (top,
blue) and activated states (bottom, red). K-L, EV interactome generated by capturing
differentially expressed EV-miRNA (top 25 by FDR) and all EV-proteins in quiescent (K) and
activated (L) states, followed by network reduction to retain the top 15 of each group based on
degree of interactions. EV-miRNA shown in blue or red, EV-proteins in turquoise or pink, and
predicted targets in green. Node size denotes significant value.

Data shown represent n=3-4 independent experiments. Cancer-, and infection- associated
pathways were excluded from analysis. Data is represented as mean = SEM.

Online Figure Il. sEV biogenesis is unaffected by endothelial activation.

A-B, RT-gPCR of genes known to function in EV sorting and release in cultured HAECs post
treatment with 100 pg/mL IL-1B8 at4 h (A) and 24 h (B). mRNA abundance was normalized to
the housekeeping gene, TBP. C, Western blot depicting expression of proteins involved in EV
sorting and release in HAEC cell lysate (left). Densitometric analysis of EV markers, normalized
to total protein (right). Arrows show position of correct protein band and molecular weights
markers indicated on left. D-E, Publicly available HAEC RNA-seq data (GEO accession:
GSEB89970). HAECs were isolated from aorta of adult patients and activated with IL-1( (10
ng/mL, 4 h). D, PCA analysis. E, Median Ratio normalized mRNA counts of EV biogenesis
proteins.

Bar graphs show mean + SEM. Statistical significance assessed by multiple unpaired t-test with
adjustment for multiple testing with the Benjamini-Hochberg procedure.

Online Figure lll. Additional analysis of sEV miRNA cargo in quiescent and activated
endothelium. A, Median normalized miRNA counts of endothelial enriched miRNA in quiescent
(blue) and activated (red) states. B, Median normalized miRNA counts of quiescent enriched
EV-miRNA used in KEGG pathway analysis. C, Median normalized miRNA counts of activation
enriched EV-miRNA used in KEGG pathway analysis. D-E, KEGG pathway analysis with top
FDR-based pathways of EV-miRNA enriched in quiescent (D) and activated (E) states. Data
points are sized by GeneRatio (genes altered in pathway/total number of unique genes in
analysis) and colour-scaled by FDR.

Online Figure IV. Workflow and quality control for sEV proteomics from quiescent and
activated endothelial cells. A, Total protein quantification in HAEC EV lysates from quiescent
and activated conditions. B, Abundances of common EV protein in HAEC EV-enriched samples
in quiescent and activated conditions (CD63, CD9, CD81, LAMP1, ITGAV, ITGA3, ITGA4, ALIX,
CAV1, ANXA2/5/1). C, Differentially expressed proteins in activated versus quiescent conditions
(p= 0.05, Fold Change |1.5]). Proteins involved in EV trafficking and release are labeled in red.
D, Assessment of media-based contamination for EC-EV transwell proteomics. Workflow shown
on top. Normalized peptide abundances in complete media and EV-free media (left). VENN
diagram depicting total number of proteins with two unique peptides in complete versus EV-free
media (right). E, Quantification (left) and rank plot (right) of total proteins (with 2 unique
peptides) derived from serum (labelled bovine) in our EV-samples.
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Figure 3. Endothelial sEVs distinctly alter the transcriptional landscape of recipient
monocytes and smooth muscle cells depending on whether they are derived from
guiescent or activated endothelium. A, Unfiltered PCA plot depicting clustering of media
control (yellow), quiescent EC-EVs (blue), and activated EC-EVs (red) treated CD14+ monocyte
MRNA transcriptome (n=3). B, VENN diagram depicting number of shared and unique RNA
transcripts in comparison of activated vs quiescent EC-EV treatment. C, GO pathway analysis
of the effects of activated versus quiescent EC-EVs on the monocyte RNA transcriptome
(adjusted p-values <0.05 and |log2(FoldChange)| > 0). Data points are sized by GeneRatio
(genes altered in pathway/total number of unigue genes in analysis) and colour-scaled by FDR.
Upregulated ratio was calculated by dividing the number of upregulated genes by the total
number of genes known to function in each pathway. D-E, Interactomes integrating activated
EC-EV secretome (top 15 miRNAs and all EV-proteins) with differentially expressed monocyte
transcripts based on degree of interactions. Downregulated EC-EV cargo and concordant
upregulated monocyte targets are depicted in (D). Upregulated EC-EV cargo and concordant
downregulated monocyte targets are depicted in (E). F, Unfiltered PCA plot depicting clustering
of EC-EV treated SMC mRNA transcriptome as in A (n=3). G, VENN diagram depicting SMC
RNA transcripts as in (B). H, KEGG pathway analysis of the effects of activated versus
guiescent EC-EVs on the SMC RNA transcriptome (adjusted p-values <0.05 and
[log2(FoldChange)| > 0). Data visualization completed as in (C). I-J, Interactomes as in (D-E)
integrating differentially expressed SMC transcripts.

Online Figure V. Effects of endothelial sEVs on recipient monocytes and smooth muscle
cells. A, Schematic of experimental design. HAECs (+/- IL-1 treatment 100 pg/mL, 24 h),
conditioned media collected, cell debris removed via centrifugation, filtered for SEVs, isolated by
ultracentrifugation, and concentrated until resuspension and addition to primary human CD14+
monocytes (10°%1° sEVs added to 500,000 monocytes) or SMC (10°*° sEVs added to 400,000
SMCs). After 24 h sEV exposure, monocyte cell lysates were collected, RNA isolated, purity
confirmed by BioAnalyzer, and sent for RNA sequencing (400 ng, Novogene). B, Unfiltered
heatmap analysis showing transcript abundance in treatment groups. Shading represents
expression levels. Right legend identifies treatment group. Bottom legend identifies transcript
type (protein coding vs. non-coding). C, VENN diagram depicting number of shared and unique
monocyte RNA transcripts in comparisons of activated vs control groups. D, GO pathway
analysis of the effects of activated EC-EVs versus media control on the monocyte RNA
transcriptome (adjusted p-values <0.05 and |log2(FoldChange)| > 0). Data points are sized by
GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-
scaled by FDR. Upregulated ratio was calculated by dividing the number of upregulated genes
by the total number of genes known to function in each pathway. E, Unfiltered heatmap analysis
showing transcript abundance in treatment groups as in (B). F, VENN diagram depicting
number of shared and uniqgue SMC RNA transcripts in comparisons of activated vs control
groups. G, KEGG pathway analysis of the effects of activated EC-EVs versus media control on
the SMC RNA transcriptome (adjusted p-values <0.05 and |log2(FoldChange)| > 0). Data
visualization completed as in (D).

Figure 4. Multi-modal evidence determining quiescent endothelial cells release sEVs to
apical and basolateral compartments. A, Workflow showing EC-EV isolation from
compartments. Briefly, HAECs were seeded at confluence on semi-permeable transwell inserts
to sequester EVs from apical and basolateral compartments. EVs were isolated by
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ultracentrifugation or size exclusion chromatography, concentrated, and validated according to
MISEV2018 guidelines. Created with BioRender.com. B, Cryo-EM of representative images of
apical (top panel) and basolateral (bottom panel) quiescent EC-EVs. Arrows denote EV
structures. Scale bar 50 nm. C-D, Nanopatrticle tracking analysis quantifying the mean diameter
(C) and concentration (D) of EC-sEVs in apical and basolateral compartments. E-F, Western
blot depicting protein expression of EV markers ((positive (CD63, CD81, Alix) and negative
(Calnexin)), in cell lysate, apical EV and basolateral EV samples (E). Arrows show position of
correct protein band and molecular weights markers indicated on left. Densitometric analysis of
EV markers (F). G-J, Total internal reflection fluorescence (TIRF) microscopy. Panels depicting
ECs transfected with fluorescent plasmid (pHIuorinCD63) set for detection of basolateral EV
release +/- positive (histamine, 100 mM, 1 min) and negative (GW4869, 0.5 mM, 4 h) controls
(G, I). Quantification of basolateral EV release (H, J). For histamine stimulated cells, vesicles in
the TIRF zone were quantified and normalized to the number of cells in the field (H). For
GW4869 stimulated cells, integrated densities of CD63-pHluorin under basal conditions and
after pre-treatment was quantified (J). K, Model for exogenous miRNA transfer between ECs
and monocytes (see methods for full details). Briefly, HAECs were transfected with exogenous
mMiRNA-39 (C. elegans) and then seeded onto an inverted transwell to avoid direct cell-cell
contact with non-adherent monocytes. Monocytes were then placed either in a solitary chamber
(apical or basolateral, unilateral co-culture experiment) or simultaneously in the apical and
basolateral chambers (bilateral co-culture experiment), with monocytes harvested after 24 h,
and RNA isolated to quantify miRNA-39 expression by RT-gPCR. L, Transmission electron
microscopy of 90 nm ultramicrotomed HAEC monolayers. Embedded blocks were cut from the
basolateral surface: the first 5 mm of resin cut was discarded to get to the apical surface. Circles
indicate multivesicular bodies. Data shown represent n=3-4 independent experiments. Bar
graphs show mean = SEM. Statistical significance assessed by unpaired t test (C,D,F,J), paired
t test (H) and Mann-Whitney test (K) when data was not normally distributed.

Online Figure VI. Validation of the model for polarized sEV release from endothelial
monolayers. A-B, Endothelial cell physiologic barrier demonstration by VE-cadherin expression
(A) and 30 nm gold nanoparticle challenge (B). A, HAECs were grown on transwell supports as
described above, placed in EV-free media (top panel) +/- IL-1p (bottom panel;100 pg/mL, 24 h)
and stained for the adherens junction, VE-Cadherin. B, Gold nanopatrticle assay confirming the
smallest EV-like nanoparticle (30 nm) does not cross the EC monolayer in quiescence or after
activation with IL-1p at 100 pg/mL. C-G, HUVECSs confirm polarized release of EVs to apical and
basolateral compartments. C, Nanopatrticle tracking analysis quantifying concentration of EC-
EVs in apical and basolateral compartments. D-E, Western blot depicting protein expression of
EV markers (positive (CD63, CD81, Alix), in cell lysate, apical EV and basolateral EV samples
(D). Arrows show position of correct protein band and molecular weights markers indicated on
left. Densitometric analysis of EV markers (E). F, Nanoparticle tracking analysis quantifying the
mean EV diameter in apical and basolateral compartments. G, Cryo-EM of representative
images of apical (top) and basolateral (bottom) quiescent EC-EVs. Scale bar=50 nm.

Figure 5. Quiescent endothelial cells release sEVs containing distinct miRNA and protein
cargo to apical and basolateral compartments. A, Unfiltered PCA analysis of apical (dark
colours) and basolateral (light colours) EV-miRNA depict clustering by polarity (broad circles).

B, Volcano plot (left panel) of quiescent HAEC secreted EV-miRNA transcriptome enriched in
apical (dark shading) versus basolateral (light shading) compartments. Top miRNA, by FDR
step up, are labelled in each condition and used for downstream pathway analysis (FDR step up
< 0.05). KEGG pathway analysis of labelled miRNA in each condition (FDR < 0.05), weighted by
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number of mMiIRNAs participating in each pathway depicted by Word Cloud (right panel). C,
Unfiltered PCA analysis of apical (dark colours) and basolateral (light colours) EV-protein
profiles showing clustering by polarity (broad circles). D, Volcano plot (left panel) of quiescent
HAEC secreted EV-proteome enriched in apical (dark shading) versus basolateral (light
shading) compartments (FDR<0.05). All differentially enriched (FDR<0.05) apical versus
basolateral proteins in quiescent conditions were inputted to generate proteomaps (v2.0, Homo
Sapiens), weighted by protein mass abundance. Apical and basolateral proteomaps are
represented by top and bottom panels, respectively. KEGG orthology terms (left) and respective
proteins (right) contributing to the pathways are illustrated. *AGE-RAGE signaling in diabetic
complications.

Online Figure VII. The phenomenon of polarized sEV release with distinct apical and
basolateral miRNA and protein cargo is preserved after endothelial cell activation. A-B,
Differential expression of EV-miRNA in apical versus basolateral compartments as depicted by
unfiltered heatmap analysis (A) and KEGG pathway analysis (B). B, Volcano plot (right panel)
of activated HAEC secreted EV-miRNA transcriptome enriched in apical (dark shading) versus
basolateral (light shading) compartments. Top miRNA, by FDR step up, are labelled in each
condition and used for downstream pathway analysis (FDR step up < 0.05). KEGG pathway
analysis of labelled miRNA in each condition (FDR < 0.05), weighted by number of miRNAs
participating in each pathway depicted by Word Cloud (left panel). C, Heatmap depicting EV
protein markers (derived from EV proteomics) in apical and basolateral compartments for both
guiescent and activated states. D-F, EV-proteomic analysis comparing apical versus basolateral
EV-proteins. D, Unfiltered heatmap analysis depicting protein abundances of apical and
basolateral EC-EVs from activated states (n=5-8). E, VENN diagrams depicting number of
shared and unique proteins in comparisons of apical (open circle) versus basolateral (filled
circle) in quiescent (top) and activated (bottom) states. F, Volcano plot (right panel) of activated
HAEC secreted EV-proteome enriched in apical (dark shading) versus basolateral (light
shading) compartments (FDR<0.05). Left panel: All differentially enriched proteins (FDR<0.05)
in activated conditions were used to generate proteomaps (v2.0, Homo Sapiens), weighted by
protein mass abundance. Apical and basolateral proteomaps are represented by top and bottom
panels, respectively. KEGG orthology terms (left) and respective proteins (right) contributing to
the pathways are illustrated.

Figure 6. Activated endothelial cells modulate sV miRNA and protein cargo in a
compartment-specific manner with the capacity to uniquely affect circulating monocytes
and resident vascular smooth muscle cells. A-B, Comparison of EC activation (red) versus
guiescence (blue) on polarized sEV concentration in apical and basolateral compartments as
determined by NTA (A) and western blot (B) (n=3-4). B, EV markers CD63, CD81, and Alix are
denoted on the right, with molecular weights on the left. C-D, Unfiltered principal component
analysis of apical (c) and basolateral EV-miRNA cargo (D) in activated versus quiescent states.
E, KEGG pathway analysis (FDR<0.05) of top apical (n=10) and basolaterally (n=6) enriched
miRNA highlight unique and shared pathways modulated by differentially expressed EV-miRNA
in activated conditions (VENN diagram, left). Unigue KEGG pathways enriched by activation in
apical (dark red, top graph) and basolateral (light red, bottom graph) EC-EVs shown on right.
Bar graph scaled by -log10(FDR) and labelled with number of genes involved in pathway. F-G,
Activated versus quiescent EV-miRNA analyzed in apical (F) and basolateral (G) compartments.
Top 10 EV-miRNAs (by FDR) were inputted for KEGG orthology pathway analysis with the
addition of miRNA-146a-5p in apical conditions. KEGG pathways (FDR < 0.05) of interest
showing individual miRNA associations. Data points are sized by GeneRatio (genes altered in

26


https://doi.org/10.1101/2023.04.28.538787
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.28.538787; this version posted April 29, 2023. The copyright holder for this preprint (which

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

pathway/total number of unique genes in analysis) and colour-scaled by FDR. H-J, EV-proteins
enriched in the apical compartment by activated ECs. H, Unfiltered PCA analysis of apical EV-
protein profiles in activated versus quiescent states (n=7). |, Volcano plot of differentially
enriched EV proteins from the apical compartment in activation (red) and quiescence (blue)

(p= 0.05, Fold Change |1.5]). Top ten differentially enriched proteins in the activated conditions
are labelled. J, All differentially enriched proteins (p< 0.05, Fold Change |1.5|) from apical
activated conditions were inputted to generate proteomaps (v2.0, Homo Sapiens), weighted by
protein mass abundance. KEGG orthology terms (left) and respective proteins (right)
contributing to the pathways are illustrated. K-M, EV-proteins enriched in the basolateral
compartment by activated ECs. K, Unfiltered PCA analysis of basolateral EV-protein profiles in
activated versus quiescent states. L, Volcano plot of differentially enriched EV proteins from the
basolateral compartment as in (I). M, Proteomap (v2.0, Homo Sapiens) of differentially enriched
basolateral EV proteins in activated conditions were inputted as in (J). N, Interactome
integrating apical activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with
differentially expressed monocyte transcripts based on degree of interactions. O, Interactome
integrating basolateral activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with
differentially expressed SMC transcripts based on degree of interactions. EV-miRNAs shown in
red, EV-proteins in pink, and targets in green. Node size denotes significant value.

*Signaling pathways regulating pluripotency of stem cells, AGE-RAGE signaling in diabetic
complications.

Online Figure VIIl. Comparison of quiescent and activated endothelial sEV cargo by
biological compartment. A, Cryo-EM images of apical (left panel) and basolateral (right panel)
SEVs released by quiescent (top) and activated (bottom) ECs. B-C, Comparison of activated
versus quiescent EV-miRNA cargo in apical and basolateral sEVs. B, Unfiltered heatmaps of
endothelial EV-miRNA transcriptome clusters by activation state in apical (top) and basolateral
(bottom) sEVs. C, Volcano plots of activated versus quiescent HAEC secreted EV-miRNA
transcriptome enriched in apical (top) and basolateral (bottom) compartments (FDR<0.05). D,
Unfiltered heatmaps depicting EV-protein abundances in activated versus quiescent ECs by
compartment (apical, top; basolateral, bottom). E-F, Interactomes of polarized EV release in
activated conditions generated by capturing differentially expressed EV-miRNA (top 25 by FDR)
and all EV-proteins, followed by network reduction to retain the top 15 of each group based on
degree of interactions. E, Apical EV interactome with predicted targets. F, Basolateral EV
interactome with predicted targets. G, Interactome integrating basolateral activated EC-EV
secretome (top 15 miRNAs and all EV-proteins) with differentially expressed SMC transcripts
based on degree of interactions and with inclusion of ribosomal targets. EV-miRNAs shown in
red, EV-proteins in pink, and targets in green. Node size denotes significant value.
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NOVELTY AND SIGNIFICANCE

What is known?
e Endothelial cells (ECs) are activated in regions prone to forming atherosclerosis.
e ECsrelease extracellular vesicles (EVS) in quiescent and activated states, implicating
EC-EVs as a potential vector of cell-cell communication.
e Upon uptake by recipient cells, EVs can modulate biological processes via their miRNA
and protein contents.

What new information does this article contribute?
e ECs are dynamic and respond to pro-atherogenic stimuli by increasing release of a
specific population of small EVs (SEVs) and altering their microRNA and protein cargo.
e sEVsreleased by ECs differentially reprogram key vascular cells such as primary human
monocytes and smooth muscle cells (SMCs) towards an athero-prone signature.
e ECsrelease sEVs bidirectionally in quiescent and activated states, with distinct cargo
capable of reprogramming recipient cells located in discrete vascular compartments.

The endothelium is a single layer of cells lining every blood vessel that lives at the interface
between two dynamic environments. Activated ECs release more sEVs, which carry altered
microRNA and protein cargo capable of driving atherosclerosis. EC-EVs communicate with
monocytes and SMCs — cells predominantly contained in the circulation and vessel wall
respectively — leading to changes in hundreds of protein coding transcripts, with unique
responses depending on whether the endothelium is quiescent or activated. ECs are capable of
directional communication through their ability to release EVs bidirectionally and by directing
distinct cargo to apical (circulation) and basolateral (vessel wall) compartments. Both apical and
basolateral endothelial SEV content is altered upon activation, and in silico analysis underscored
the ability for apical and basolateral SEV messaging to alter transcripts in luminally and
abluminally residing cells, respectively. Activated/inflamed ECs release more sEVs with
atheroprone cargo apically; however, it is the basolaterally released sEVs that demonstrate the
most profound shift in EV cargo towards athero-prone and inflammatory pathways implicating
them as critical players in plaque biology. Together, these findings conceptually advance our
understanding of EC cell-cell communication. Harnessing bidirectional endothelial sEV release
represents a new frontier in diagnostics and therapeutics for cardiovascular disease.
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Figure 1. Endothelial cells release increased CD63-positive sEVs in response to activa-
tion. A, Nanoparticle tracking analysis (NTA) of EV concentration binned by particle size after
isolation from HAEC conditioned media (8 X 107 cells, from quiescent (EV-free media, 24 h)
and activated (100 pg/mL IL-1( in EV-free media, 24 h) states (n=3-8). B, Quantification of
EC-EV mean concentration across all EV sizes. C, Western blot depicting EV markers (CD63,
Alix, and CD9) in EV lysates isolated from supernatants of quiescent and activated HAECs
and HAEC cell lysate (CL) control. Arrows show position of correct protein band and molecular
weights markers indicated on left. D, Densitometry of EV lysate derived CD63 normalized to
HAEC cell lysate control. E, Cryo-EM of EVs isolated from quiescent and activated HAEC cell
supernatant. Arrows indicate EV structures. Scale bar=50 nm. F, Quantification of EV mean
diameter by NTA. G, Transmission electron microscopy of 90 nm ultramicrotomed HAEC
monolayers. Dashed circles indicate multivesicular bodies. Representative image (n=3).

Bar graphs show mean + SEM. Statistical significance assessed by Mann-Whitney test (B)
and unpaired t test (D, F).
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Figure 2. Endothelial sEV miRNA and protein cargo are distinct in identity and predicted function in activated versus quiescent
conditions. A, Unfiltered principal component analysis (PCA) showing miRNA profiles of sEVs isolated from conditioned media of activated
(red) versus quiescent (blue) HAECs (8 X 107 cells, 100 pg/mL IL-183, 24 h). B, Rank plots using normalized counts (arithmetic mean + SEM).
Top 10 activation-and quiescence-enriched miRNAs are highlighted in red and blue, respectively. C, Volcano plot of HAEC secreted EV
miRNA transcriptome with red and blue representing EV-miRNA contents enriched in activated and quiescent states, respectively (FDR step
up < 0.05, Fold Change |2|) D, Pathway analysis of top 10 (by FDR) quiescent HAEC-EV enriched miRNAs (miRTarBase) delineated
significant KEGG pathways (FDR < 0.05) for miRNA associations of miR-208b-3p, miR-513a-3p, and miR-587. Data points are sized by
GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-scaled by FDR. E, Pathway analysis of top 10 (by
FDR) activated HAEC-EV enriched miRNAs (miRTarBase). Shown are individual miRNA associations of KEGG pathways of interest. Data
points are sized by GeneRatio (genes altered in pathway/total number of unique genes in analysis) and colour-scaled by FDR. F, Unfiltered
PCA showing protein profiles of sEVs isolated from conditioned media of activated (red) versus quiescent (blue) HAECs as in (A). G, Volcano
plot of HAEC secreted EV proteome with red and blue representing EV-protein contents enriched in activated and quiescent states, respec-
tively (p< 0.05, Fold Change |1.5]). H, Proteomap (v2.0, Homo Sapiens) generated from all differentially enriched quiescent EC-EV proteins
weighted by mass abundance. KEGG orthology terms (left) and respective proteins (right) contributing to the pathways are illustrated. I,
Proteomap (v2.0, Homo Sapiens) generated from all differentially enriched activated EC-EV proteins calculated as in (H). J, Overlapping
KEGG pathways between the top 10 (by FDR) differentially enriched EV-proteins and all differentially enriched EV-proteins in quiescent (top,
blue) and activated states (bottom, red). K-L, EV interactome generated by capturing differentially expressed EV-miRNA (top 25 by FDR) and
all EV-proteins in quiescent (K) and activated (L) states, followed by network reduction to retain the top 15 of each group based on degree of
interactions. EV-miRNA shown in blue or red, EV-proteins in turquoise or pink, and predicted targets in green. Node size denotes significant
value.

Data shown represent n=3-4 independent experiments. Cancer-, and infection- associated pathways were excluded from analysis. Data is
represented as mean + SEM.


https://doi.org/10.1101/2023.04.28.538787
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.28.538787; it4erfdonosedewril 29, 2023. The copyright holder for this preprint (which

was notAcertified

® Quiescent EVs
& RuciEgs
Control

by peer revigw).is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
&ailable under aCC-BY-NC-ND 4.0 International licketbeated EVs vs. Quiescent EVs

. -log10(FDR)
is | _ Regulation of leukocyte apoptotic process = .
Q_EV A EV Apoptoslsl ion of apoptotic
Y i : Regulation of leukocyte differentiation = [ ]
Proliferation & | o - ation of leukocyte proliferation - ° 3.0
Differentiation IL-1 production =f L
= ‘ Cellular response to lipid = ° 25
& 555 9637 599 IL12 mediated signaling pathway . -
© Tumor necrosis factor production °
] Positive i i i ° 20
& Positive regulation of leukocyte activation =3 ° :
Regulation of T cell activation = [
Regulat v
Chronic inﬂzmmzmry’respanse - 15
. Positive regulation of cell-cell adhesion = °
Adhesion & Leukocyte cell-cell adhesion = ® Gene Ratio
Migration Leukocyte migration °
0.02
_‘__ T T
/ 0.0 0.2 . 0.05@®
e oo, Upregulated Ratio
PC1/(93.61%) n (upregulated genes/total) 009@®
D hsa-miR-153-3p E hsa-miR-335-5p
o
] ° CREBRF
P8A3 hsa-miR-510-5p 520
o HSPS0AB1 SS))xa (o)
VIM hsa-miR-143-5p PTPRJ  ZFP36L1
hsalet-7b-5p
(e} Q hsa-miR-26a-5 (o]
P
HNFQ‘PM RA3A RF90A n BAGALTS. nRCeB RPS24
° hsa-miR-339-3p hsa-miR-93-5p u RSt o RPCL)ao
o hsa-miR-103a-3p
LMNB1 (9} ]
RPSs < RPSS N - PR hsa-miR-146a-5p. PRDM1 RPS4X
] sa-miR-20a-5p 2T ST TSC22D1  cpesL
o © RPLIBA hsa-miR-497-3p
GNL3| RPL4 | ]
EFTUD2
™ o hsa-miR-27a-3p °
psamiRa2 e D o hsa-miR-156-5p u preDc O
FaL~ NCL Ec hsa-miR-16-5p ] TOP1 EC activation
activation HIF1A PDE4DIP
o hsamiR 218-1-3p ) I eV miRnA hsadet-7a-5p hsa.miR-7-5p B Ev-miRNA
EV-protein XROCS EV-protein
NUCB1 e Monocyte target MAQCKS ( ) u ¥ ® Monocyte target
o hsa-let-7g-3p -log1g(sig-value) s0D2 hamiRiZpb-3p o -log1g(sig-value)
GNAI1 o o POLR2A
™ Sle:id 32 ° . % . AZINT o 32
hsa-miR-33b-5p TNFAIPS oo sa-miR-17-5p o e
SMC1A
hsa-miR-193a-3p
PDIAS
F Treatment G H . .
JSonwol Activated EVs vs. Quiescent EVs
© Activated EVs
e oo . Tog10(FOR)
ECM-receptor interaction ° 20
Q_EV A_EV Osteoclast differentiation )
NF-kappa B signaling °
JAK-STAT signaling ®
‘ Th17 cell differentiation ° 15
<3 AGE-RAGE signaling* °
] 246 10474 306 IL-17 signaling °
s Cellular senescence °
s PI3K-Akt signaling ) 10
8 NOD-like receptor signaling °
|4 p53 signaling °
Cytokine-cytokine receptor interaction ®
TNF signaling ° 5
Oxidative phosphorylation °
ibosome
T T T Gene Ratio
o o1 T 0 0.0 0.5 1.0 002 ®
Upregulated Ratio 004 @
upregulated genesitotal X
| J lated /total] 0.07
hsa-miR-922 L}
o3 hsa-miR-26a-5p
o ™ hsa-miR-146a-5p
° MDH2 o hsa-miR-26b-5p
PDIAS Pl o
TALDO1 o GNAI1 5] ° n
2. Ngﬂ VM ™ SESN3 wegy - hsalet7b-5p
[e] FOM Q hsa-let-7g-3p hsa-miR-7-5p n
STAT3 hsa-miR-23b-3; hsa-miR-195-5y
IKBKE » > hsa-miR-33b-5p X ¥ THOBS1 i P
MYe |
COL1A2 Q© - GskB ™1 2R hsa-m\gmiia-ﬁp
MIF CEBPB, hsaumiR-429 hsa-miR-17-5p @ EEF1A1
RPL15
o o [ ]
FABP5 SMAD3 o [ | RPS6 -miR-155-
5700 cokna hsemR27a3% O vl O EsRTee SR
TPEY RPL1 RRL1& u
hsa-miR-671-5p AREY u hsa-miR-298 - RPS25 hsa-miR-107
hsa-miR-193a-3p. hsa-miR-449¢-5p (@]
) Q. hsamiR-1013p o
o RPS15A  RPL30 HSPO0AAL = l?wo EC activation
P HIF1A EC activation Q 1 M EV-miRNA
n W Ev-mirNA hsa-miR-20a-6p RPSA o EV-protein
| | A&1 hsa-miR-583 EV-protein (o} RPLS SMC target
hsa-miR-153-3p ENG i SMC target o O UBO -log g (sig-value)
O RPS7 RPS20 RPS2
™ m -log10(sig-value) RPS24 o SOD2
hsa-miR-143-5p hsa-miREE7 o %2
sa-mil » RPS4X [o} o
XRCCS PRKDC
hsa-miR-127-5p
hsa-miR-497-3p ° o o
FRMD6 POLR2A TNFAIP3

Figure 3. Endothelial sEVs distinctly alter the transcriptional landscape of recipient monocytes and smooth
muscle cells depending on whether they are derived from quiescent or activated endothelium. A, Unfiltered
PCA plot depicting clustering of media control (yellow), quiescent EC-EVs (blue), and activated EC-EVs (red) treated
CD14+ monocyte mRNA transcriptome (n=3). B, VENN diagram depicting number of shared and unique RNA
transcripts in comparison of activated vs quiescent EC-EV treatment. C, GO pathway analysis of the effects of activat-
ed versus quiescent EC-EVs on the monocyte RNA transcriptome (adjusted p-values <0.05 and |log2(FoldChange)| >
0). Data points are sized by GeneRatio (genes altered in pathway/total number of unique genes in analysis) and
colour-scaled by FDR. Upregulated ratio was calculated by dividing the number of upregulated genes by the total
number of genes known to function in each pathway. D-E, Interactomes integrating activated EC-EV secretome (top
15 miRNAs and all EV-proteins) with differentially expressed monocyte transcripts based on degree of interactions.
Downregulated EC-EV cargo and concordant upregulated monocyte targets are depicted in (D). Upregulated EC-EV
cargo and concordant downregulated monocyte targets are depicted in (E). F, Unfiltered PCA plot depicting clustering
of EC-EV treated SMC mRNA transcriptome as in A (n=3). G, VENN diagram depicting SMC RNA transcripts as in
(B). H, KEGG pathway analysis of the effects of activated versus quiescent EC-EVs on the SMC RNA transcriptome
(adjusted p-values <0.05 and |log2(FoldChange)| > 0). Data visualization completed as in (C). I-J, Interactomes as in
(D-E) integrating differentially expressed SMC transcripts.
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Figure 4. Multi-modal evidence determining quiescent endothelial cells release sEVs to apical and basolateral compartments.
A, Workflow showing EC-EV isolation from compartments. Briefly, HAECs were seeded at confluence on semi-permeable transwell
inserts to sequester EVs from apical and basolateral compartments. EVs were isolated by ultracentrifugation or size exclusion chroma-
tography, concentrated, and validated according to MISEV2018 guidelines. Created with BioRender.com. B, Cryo-EM of representative
images of apical (top panel) and basolateral (bottom panel) quiescent EC-EVs. Arrows denote EV structures. Scale bar 50 nm. C-D,
Nanoparticle tracking analysis quantifying the mean diameter (C) and concentration (D) of EC-sEVs in apical and basolateral compart-
ments. E-F, Western blot depicting protein expression of EV markers ((positive (CD63, CD81, Alix) and negative (Calnexin)), in cell
lysate, apical EV and basolateral EV samples (E). Arrows show position of correct protein band and molecular weights markers indicat-
ed on left. Densitometric analysis of EV markers (F). G-J, Total internal reflection fluorescence (TIRF) microscopy. Panels depicting ECs
transfected with fluorescent plasmid (pHIuorinCD63) set for detection of basolateral EV release +/- positive (histamine, 100 yM, 1 min)
and negative (GW4869, 0.5 uM, 4 h) controls (G, I). Quantification of basolateral EV release (H, J). For histamine stimulated cells,
vesicles in the TIRF zone were quantified and normalized to the number of cells in the field (H). For GW4869 stimulated cells, integrated
densities of CD63-pHluorin under basal conditions and after pre-treatment was quantified (J). K, Model for exogenous miRNA transfer
between ECs and monocytes (see methods for full details). Briefly, HAECs were transfected with exogenous miRNA-39 (C. elegans)
and then seeded onto an inverted transwell to avoid direct cell-cell contact with non-adherent monocytes. Monocytes were then placed
either in a solitary chamber (apical or basolateral, unilateral co-culture experiment) or simultaneously in the apical and basolateral
chambers (bilateral co-culture experiment), with monocytes harvested after 24 h, and RNA isolated to quantify miRNA-39 expression by
RT-gPCR. L, Transmission electron microscopy of 90 nm ultramicrotomed HAEC monolayers. Embedded blocks were cut from the
basolateral surface: the first 5 um of resin cut was discarded to get to the apical surface. Circles indicate multivesicular bodies. Data
shown represent n=3-4 independent experiments. Bar graphs show mean + SEM. Statistical significance assessed by unpaired t test
(C,D,F,J), paired t test (H) and Mann-Whitney test (K) when data was not normally distributed.
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Figure 5. Quiescent endothelial cells release sEVs containing distinct miRNA and protein
cargo to apical and basolateral compartments. A, Unfiltered PCA analysis of apical (dark
colours) and basolateral (light colours) EV-miRNA depict clustering by polarity (broad circles). B,
Volcano plot (left panel) of quiescent HAEC secreted EV-miRNA transcriptome enriched in apical
(dark shading) versus basolateral (light shading) compartments. Top miRNA, by FDR step up,
are labelled in each condition and used for downstream pathway analysis (FDR step up < 0.05).
KEGG pathway analysis of labelled miRNA in each condition (FDR < 0.05), weighted by number
of miRNAs participating in each pathway depicted by Word Cloud (right panel). C, Unfiltered
PCA analysis of apical (dark colours) and basolateral (light colours) EV-protein profiles showing
clustering by polarity (broad circles). D, Volcano plot (left panel) of quiescent HAEC secreted
EV-proteome enriched in apical (dark shading) versus basolateral (light shading) compartments
(FDR<0.05). All differentially enriched (FDR<0.05) apical versus basolateral proteins in quiescent
conditions were inputted to generate proteomaps (v2.0, Homo Sapiens), weighted by protein
mass abundance. Apical and basolateral proteomaps are represented by top and bottom panels,
respectively. KEGG orthology terms (left) and respective proteins (right) contributing to the
pathways are illustrated. *AGE-RAGE signaling in diabetic complications.
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Figure 6. Activated endothelial cells modulate sEV miRNA and protein cargo in a compartment-specific manner with the capacity to
uniquely affect circulating monocytes and resident vascular smooth muscle cells. A-B, Comparison of EC activation (red) versus
quiescence (blue) on polarized sEV concentration in apical and basolateral compartments as determined by NTA (A) and western blot (B)
(n=3-4). B, EV markers CD63, CD81, and Alix are denoted on the right, with molecular weights on the left. C-D, Unfiltered principal component
analysis of apical (c) and basolateral EV-miRNA cargo (D) in activated versus quiescent states. E, KEGG pathway analysis (FDR<0.05) of top
apical (n=10) and basolaterally (n=6) enriched miRNA highlight unique and shared pathways modulated by differentially expressed EV-miRNA
in activated conditions (VENN diagram, left). Unique KEGG pathways enriched by activation in apical (dark red, top graph) and basolateral
(light red, bottom graph) EC-EVs shown on right. Bar graph scaled by -log10(FDR) and labelled with number of genes involved in pathway.
F-G, Activated versus quiescent EV-miRNA analyzed in apical (F) and basolateral (G) compartments. Top 10 EV-miRNAs (by FDR) were
inputted for KEGG orthology pathway analysis with the addition of miRNA-146a-5p in apical conditions. KEGG pathways (FDR < 0.05) of
interest showing individual miRNA associations. Data points are sized by GeneRatio (genes altered in pathway/total number of unique genes
in analysis) and colour-scaled by FDR. H-J, EV-proteins enriched in the apical compartment by activated ECs. H, Unfiltered PCA analysis of
apical EV-protein profiles in activated versus quiescent states (n=7). I, Volcano plot of differentially enriched EV proteins from the apical
compartment in activation (red) and quiescence (blue) (p< 0.05, Fold Change |1.5]). Top ten differentially enriched proteins in the activated
conditions are labelled. J, All differentially enriched proteins (p< 0.05, Fold Change |1.5]) from apical activated conditions were inputted to
generate proteomaps (v2.0, Homo Sapiens), weighted by protein mass abundance. KEGG orthology terms (left) and respective proteins
(right) contributing to the pathways are illustrated. K-M, EV-proteins enriched in the basolateral compartment by activated ECs. K, Unfiltered
PCA analysis of basolateral EV-protein profiles in activated versus quiescent states. L, Volcano plot of differentially enriched EV proteins from
the basolateral compartment as in (l). M, Proteomap (v2.0, Homo Sapiens) of differentially enriched basolateral EV proteins in activated
conditions were inputted as in (J). N, Interactome integrating apical activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with
differentially expressed monocyte transcripts based on degree of interactions. O, Interactome integrating basolateral activated EC-EV
secretome (top 15 miRNAs and all EV-proteins) with differentially expressed SMC transcripts based on degree of interactions. EV-miRNAs
shown in red, EV-proteins in pink, and targets in green. Node size denotes significant value.

*Signaling pathways regulating pluripotency of stem cells, AGE-RAGE signaling in diabetic complications.
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Online Figure I. General features of sEV isolation in human aortic endothelial cells
in quiescence and after confirmed activation with IL-1B. A, Schematic for sEV
enrichment. Endothelial cells were grown to confluence and maintained in EV-free
media for 24 h prior to supernatant collection. Conditioned media was centrifuged at
500xg and 3,000xg for removal of cell debris and apoptotic bodies, followed by filtration
with 0.22 uM to generate cleared conditioned media. EVs are enriched via ultracentrifu-
gation at 120,000xg for 3 h, followed by a PBS wash, and ultrafiltration using a Amicon
10 kDa filter. EV enrichment was confirmed as per the MISEV2018 guidelines. Created
with BioRender.com. B, RT-qPCR of inflammatory cytokines and adhesion molecules in
cultured HAECs post treatment with 100 pg/mL IL-1B, 24 h. mRNA abundance was
normalized to GAPDH. C, HAECs were grown on coverslips, placed in EV-free media
(left) +/- IL-1B (right;100 pg/mL, 24 h) and stained for the adherens junction, VE-Cadher-
in (n=3). D, Densitometry of EV lysate derived CD9 and Alix normalized to HAEC cell
lysate control.

Bar graphs show mean + SEM. Statistical significance assessed by multiple unpaired
t-test with adjustment for multiple testing with the Benjamini-Hochberg procedure.
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Online Figure Il. sEV biogenesis is unaffected by endothelial activation.

A-B, RT-gPCR of genes known to function in EV sorting and release in cultured HAECs
post treatment with 100 pg/mL IL-1B at 4 h (A) and 24 h (B). mRNA abundance was
normalized to the housekeeping gene, TBP. C, Western blot depicting expression of
proteins involved in EV sorting and release in HAEC cell lysate (left). Densitometric
analysis of EV markers, normalized to total protein (right). Arrows show position of
correct protein band and molecular weights markers indicated on left. D-E, Publicly
available HAEC RNA-seq data (GEO accession: GSE89970). HAECs were isolated
from aorta of adult patients and activated with IL-18 (10 ng/mL, 4 h). D, PCA analysis. E,
Median Ratio normalized mRNA counts of EV biogenesis proteins.

Bar graphs show mean + SEM. Statistical significance assessed by multiple unpaired
t-test with adjustment for multiple testing with the Benjamini-Hochberg procedure.
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Online Figure lll. Additional analysis of sEV miRNA cargo in quiescent and activat-
ed endothelium. A, Median normalized miRNA counts of endothelial enriched miRNA in
quiescent (blue) and activated (red) states. B, Median normalized miRNA counts of
quiescent enriched EV-miRNA used in KEGG pathway analysis. C, Median normalized
miRNA counts of activation enriched EV-miRNA used in KEGG pathway analysis. D-E,
KEGG pathway analysis with top FDR-based pathways of EV-miRNA enriched in quies-

cent (D) and activated

(E) states. Data points are sized by GeneRatio (genes altered in

pathway/total number of unique genes in analysis) and colour-scaled by FDR.
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Online Figure IV. Workflow and quality control for sEV proteomics from quiescent and
activated endothelial cells. A, Total protein quantification in HAEC EV lysates from quies-
cent and activated conditions. B, Abundances of common EV protein in HAEC EV-enriched
samples in quiescent and activated conditions (CD63, CD9, CD81, LAMP1, ITGAV, ITGAS3,
ITGA4, ALIX, CAV1, ANXA2/5/1). C, Differentially expressed proteins in activated versus
quiescent conditions (p< 0.05, Fold Change |1.5|). Proteins involved in EV trafficking and
release are labeled in red. D, Assessment of media-based contamination for EC-EV transwell
proteomics. Workflow shown on top. Normalized peptide abundances in complete media and
EV-free media (left). VENN diagram depicting total number of proteins with two unique
peptides in complete versus EV-free media (right). E, Quantification (left) and rank plot (right)
of total proteins (with 2 unique peptides) derived from serum (labelled bovine) in our EV-sam-
ples.
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Online Figure V. Effects of endothelial sEVs on recipient monocytes and smooth muscle cells. A, Schematic of experimen-
tal design. HAECs (+/- IL-1p treatment 100 pg/mL, 24 h), conditioned media collected, cell debris removed via centrifugation,
filtered for SEVs, isolated by ultracentrifugation, and concentrated until resuspension and addition to primary human CD14+
monocytes (10%'° sEVs added to 500,000 monocytes) or SMC (10%'° sEVs added to 400,000 SMCs). After 24 h sEV exposure,
monocyte cell lysates were collected, RNA isolated, purity confirmed by BioAnalyzer, and sent for RNA sequencing (400 ng,
Novogene). B, Unfiltered heatmap analysis showing transcript abundance in treatment groups. Shading represents expression
levels. Right legend identifies treatment group. Bottom legend identifies transcript type (protein coding vs. non-coding). C, VENN
diagram depicting number of shared and unique monocyte RNA transcripts in comparisons of activated vs control groups. D, GO
pathway analysis of the effects of activated EC-EVs versus media control on the monocyte RNA transcriptome (adjusted p-values
<0.05 and |log2(FoldChange)| > 0). Data points are sized by GeneRatio (genes altered in pathway/total number of unique genes
in analysis) and colour-scaled by FDR. Upregulated ratio was calculated by dividing the number of upregulated genes by the total
number of genes known to function in each pathway. E, Unfiltered heatmap analysis showing transcript abundance in treatment
groups as in (B). F, VENN diagram depicting number of shared and unique SMC RNA transcripts in comparisons of activated vs
control groups. G, KEGG pathway analysis of the effects of activated EC-EVs versus media control on the SMC RNA transcrip-
tome (adjusted p-values <0.05 and |log2(FoldChange)| > 0). Data visualization completed as in (D).
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Online Figure VI. Validation of the model for polarized sEV release from endothelial monolayers.
A-B, Endothelial cell physiologic barrier demonstration by VE-cadherin expression (A) and 30 nm gold
nanoparticle challenge (B). A, HAECs were grown on transwell supports as described above, placed in
EV-free media (top panel) +/- IL-1f3 (bottom panel;100 pg/mL, 24 h) and stained for the adherens junction,
VE-Cadherin. B, Gold nanoparticle assay confirming the smallest EV-like nanoparticle (30 nm) does not
cross the EC monolayer in quiescence or after activation with IL-13 at 100 pg/mL. C-G, HUVECs confirm
polarized release of EVs to apical and basolateral compartments. C, Nanoparticle tracking analysis quanti-
fying concentration of EC-EVs in apical and basolateral compartments. D-E, Western blot depicting protein
expression of EV markers (positive (CD63, CD81, Alix), in cell lysate, apical EV and basolateral EV sam-
ples (D). Arrows show position of correct protein band and molecular weights markers indicated on left.
Densitometric analysis of EV markers (E). F, Nanoparticle tracking analysis quantifying the mean EV
diameter in apical and basolateral compartments. G, Cryo-EM of representative images of apical (top) and
basolateral (bottom) quiescent EC-EVs. Scale bar=50 nm.
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Online Figure VII. The phenomenon of polarized sEV release with distinct apical and basolat-
eral miRNA and protein cargo is preserved after endothelial cell activation. A-B, Differential
expression of EV-miRNA in apical versus basolateral compartments as depicted by unfiltered heat-
map analysis (A) and KEGG pathway analysis (B). B, Volcano plot (right panel) of activated HAEC
secreted EV-miRNA transcriptome enriched in apical (dark shading) versus basolateral (light shad-
ing) compartments. Top miRNA, by FDR step up, are labelled in each condition and used for down-
stream pathway analysis (FDR step up < 0.05). KEGG pathway analysis of labelled miRNA in each
condition (FDR < 0.05), weighted by number of miRNAs participating in each pathway depicted by
Word Cloud (left panel). C, Heatmap depicting EV protein markers (derived from EV proteomics) in
apical and basolateral compartments for both quiescent and activated states. D-F, EV-proteomic
analysis comparing apical versus basolateral EV-proteins. D, Unfiltered heatmap analysis depicting
protein abundances of apical and basolateral EC-EVs from activated states (n=5-8). E, VENN
diagrams depicting number of shared and unique proteins in comparisons of apical (open circle)
versus basolateral (filled circle) in quiescent (top) and activated (bottom) states. F, Volcano plot (right
panel) of activated HAEC secreted EV-proteome enriched in apical (dark shading) versus basolateral
(light shading) compartments (FDR<0.05). Left panel: All differentially enriched proteins (FDR<0.05)
in activated conditions were used to generate proteomaps (v2.0, Homo Sapiens), weighted by
protein mass abundance. Apical and basolateral proteomaps are represented by top and bottom
panels, respectively. KEGG orthology terms (left) and respective proteins (right) contributing to the
pathways are illustrated.
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Online Figure VIIl. Comparison of quiescent and activated endothelial sEV cargo by biologi-
cal compartment. A, Cryo-EM images of apical (left panel) and basolateral (right panel) sEVs
released by quiescent (top) and activated (bottom) ECs. B-C, Comparison of activated versus
quiescent EV-miRNA cargo in apical and basolateral sEVs. B, Unfiltered heatmaps of endothelial
EV-miRNA transcriptome clusters by activation state in apical (top) and basolateral (bottom) sEVs.
C, Volcano plots of activated versus quiescent HAEC secreted EV-miRNA transcriptome enriched in
apical (top) and basolateral (bottom) compartments (FDR<0.05). D, Unfiltered heatmaps depicting
EV-protein abundances in activated versus quiescent ECs by compartment (apical, top; basolateral,
bottom). E-F, Interactomes of polarized EV release in activated conditions generated by capturing
differentially expressed EV-miRNA (top 25 by FDR) and all EV-proteins, followed by network reduc-
tion to retain the top 15 of each group based on degree of interactions. E, Apical EV interactome
with predicted targets. F, Basolateral EV interactome with predicted targets. G, Interactome integrat-
ing basolateral activated EC-EV secretome (top 15 miRNAs and all EV-proteins) with differentially
expressed SMC transcripts based on degree of interactions and with inclusion of ribosomal targets.
EV-miRNAs shown in red, EV-proteins in pink, and targets in green. Node size denotes significant
value.
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