

1 **Title:** An *in vitro* assay to investigate venom neurotoxin activity on muscle-type nicotinic
2 acetylcholine receptor activation and for the discovery of toxin-inhibitory molecules

3

4 **Authors:** Rohit N Patel^{1,2}, Rachel H Clare^{1,2}, Line Ledsgaard³, Mieke Nys⁴, Jeroen Kool⁵,
5 Andreas H Laustsen³, Chris Ulens⁴ & Nicholas R Casewell^{1,2*}

6

7 *** Corresponding Author:** Nicholas R Casewell

8

9 **Affiliations:**

10 ¹Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, L3
11 5QA, UK

12 ²Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA,
13 UK

14 ³Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens
15 Lyngby, Denmark

16 ⁴Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine,
17 Faculty of Medicine, KU Leuven, Belgium

18 ⁵AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Netherlands.

19

20 **Categories:** Neuropharmacology and Toxicology

21

22 **Abstract**

23 Snakebite envenoming is a neglected tropical disease that causes over 100,000 deaths
24 annually. Envenomings result in variable pathologies, but systemic neurotoxicity is among the
25 most serious and is currently only treated with difficult to access and variably efficacious
26 commercial antivenoms. Venom-induced neurotoxicity is often caused by α -neurotoxins
27 antagonising the muscle-type nicotinic acetylcholine receptor (nAChR), a ligand-gated ion
28 channel. Discovery of therapeutics targeting α -neurotoxins is hampered by relying on binding
29 assays that do not reveal restoration of receptor activity or more costly and/or lower throughput
30 electrophysiology-based approaches. Here, we report the validation of a screening assay for
31 nAChR activation using immortalised TE671 cells expressing the γ -subunit containing muscle-
32 type nAChR and a fluorescent dye that reports changes in cell membrane potential. Assay
33 validation using traditional nAChR agonists and antagonists, which either activate or block ion
34 fluxes, was consistent with previous studies. We then characterised antagonism of the nAChR
35 by a variety of elapid snake venoms that cause muscle paralysis in snakebite victims, before
36 defining the toxin-inhibiting activities of commercial antivenoms, and new types of snakebite
37 therapeutic candidates, namely monoclonal antibodies, decoy receptors, and small molecules.
38 Our findings show robust evidence of assay uniformity across 96-well plates and highlight the
39 amenability of this approach for the future discovery of new snakebite therapeutics via
40 screening campaigns. The described assay therefore represents a useful first-step approach for
41 identifying α -neurotoxins and their inhibitors in the context of snakebite envenoming, and it
42 should provide wider value for studying modulators of nAChR activity from other sources.

43

44 **Keywords:** snake venom neurotoxin, α -neurotoxins, antivenom, nicotinic acetylcholine
45 receptor (nAChR), three-finger toxin, antibody discovery, drug discovery

46 **1. Introduction**

47 Snakebite envenoming is a neglected tropical disease that is responsible for causing
48 over 100,000 deaths and 400,000 disabilities each year [1]. To achieve the targets set out in the
49 World Health Organization's (WHO's) snakebite roadmap to halve deaths and disability by
50 2030, more effective, affordable, and accessible treatments are urgently needed [2]. However,
51 snake venom variation acts as a barrier to the development of broadly effective therapeutics
52 because inter-specific toxin variation results in a diversity of pathogenic drug targets that cause
53 variable envenoming pathologies in snakebite victims, *i.e.*, haemotoxicity, cytotoxicity, and/or
54 neurotoxicity [3]. Snake venom composition is dictated by variable representation by several
55 toxin families, such as snake venom metalloproteinases (SVMPs), snake venom serine
56 proteases (SVSPs), phospholipases A₂ (PLA₂s), and three-finger toxins (3FTxs) [4]. The latter
57 two are usually of greatest significance in medically important elapid snake venoms [5], with
58 highly abundant 3FTx isoforms often responsible for causing potentially lethal systemic
59 neurotoxicity [6].

60 3FTxs are broadly subdivided by their structure and site of action into different
61 subcategories. 3FTxs that exert their activity by binding to nicotinic acetylcholine receptors
62 (nAChRs) located on the post-synaptic membranes of neuromuscular junctions are collectively
63 known as α -neurotoxins (α -NTxs) [7]. α -NTxs are further subdivided based on their structure
64 into long-chain (Lc- α -NTx), short-chain (Sc- α -NTx), non-conventional, and weak α -NTxs [6].
65 nAChRs are pentameric ligand-gated ion channels gated by the binding of the neurotransmitter
66 acetylcholine (ACh) [8]. The nAChR located at the neuromuscular junction (referred to as
67 'muscle-type') consists of a combination of two α 1 subunits with β 1, δ , and either a γ subunit
68 during foetal development (foetal) or a ϵ subunit thereafter (adult) [9]. Muscle-type nAChR
69 activation results in skeletal muscle contraction, while binding of α -NTxs, which bind with
70 high affinity and can have lengthy dissociation times [10], prevents activation by blocking ACh

71 binding, resulting in neurotoxicity, which presents clinically in snakebite victims as ptosis,
72 muscular paralysis, and respiratory depression [11,12].

73 Commercially available antivenoms are the only approved specific treatment for
74 snakebite envenoming. They consist of polyclonal antibodies purified from the plasma/sera of
75 animals immunised with sub-toxic doses of venom [13] and have proven to be effective at
76 preventing life-threatening signs of systemic envenoming if delivered promptly [14]. However,
77 current antivenoms have several limitations associated with them, including poor dose efficacy,
78 limited cross-snake species efficacy, high frequency of adverse reactions due to their
79 heterologous nature, and low affordability and accessibility to tropical snakebite victims
80 [15,16].

81 In recent years, several new approaches to either improve, supplement, or replace
82 existing antivenoms have been described [17–21]. Because neurotoxic envenoming can rapidly
83 become life-threatening, toxins that act on the nAChR are priority targets for the discovery of
84 novel therapeutics. Investigation of snake toxin action on nAChR functioning is traditionally
85 carried out using electrophysiological recordings [22] and/or recordings from *ex vivo* nerve-
86 muscle preparations [23]. However, these techniques are laborious, low-throughput, and
87 resource-intensive, and are therefore barriers to identifying novel neurotoxin-inhibiting
88 molecules (e.g., monoclonal antibodies, peptides, and/or small molecule drugs). More recently,
89 automated patch-clamping has been introduced as a high-throughput method that allows for
90 similar types of electrophysiological recordings [24–26]. However, this approach requires
91 sophisticated equipment that is not available in most laboratories. Alternative methods to
92 investigate toxin-nAChR interactions have been developed, including the use of mimotopes of
93 the $\alpha 1$ nAChR subunit toxin binding site [27], a binding assay using purified nAChR from the
94 electric organ of *Torpedo* species [28], and the use of acetylcholine binding protein (AChBP),

95 a soluble protein from mollusc species, as a proxy for the nAChR [29]. However, each of these
96 alternative approaches examines receptor binding rather than functionality.

97 A promising approach using immortalised TE671 cells expressing the foetal muscle-
98 type nAChR [30] and a membrane potential dye to report receptor activation [31] has been
99 used to investigate the activity of a Lc- α -NTx isolated from black mamba (*Dendroaspis*
100 *polylepis*) venom [32]. The membrane potential dye moves intracellularly due to cation influx
101 after receptor activation and binds to intracellular proteins and lipids resulting in an increase in
102 fluorescence. This allows measurements of nAChR activation using an affordable plate reader
103 and without the need for specialised electrophysiology equipment or facilities. TE671 cells
104 have been widely used to investigate muscle-type nAChR function using patch-clamp
105 electrophysiology [33–35] and, with membrane potential dye, have been used to investigate
106 the nAChR activity of natural compounds [36–38], and to identify neuronal nAChR antagonists
107 of relevance for tobacco addiction [39]. In this study, we exploited the assay potential of TE671
108 cells incubated with a membrane potential dye and validated this approach as a tool for: i)
109 characterising the nAChR antagonism of crude snake venoms and isolated snake venom toxins,
110 and ii) use as a 96-well plate *in vitro* assay platform for the discovery of novel toxin-inhibiting
111 therapeutics (Fig. 1).

112

113 **2. Experimental procedures**

114 **2.1 Materials**

115 **2.1.1 Venoms**

116 Crude venoms were extracted from adult wild-caught specimens maintained in the
117 herpetarium facility of the Centre for Snakebite Research & Interventions at the Liverpool
118 School of Tropical Medicine (LSTM) (Liverpool, UK). The facility and its protocols for the

119 husbandry of snakes are approved and inspected by the UK Home Office and the LSTM and
120 University of Liverpool Animal Welfare and Ethical Review Boards. Venoms of the following
121 elapid snake species listed with their common name and country of origin were used:
122 *Dendroaspis polylepis* (black mamba, Tanzania), *Dendroaspis viridis* (Western green mamba,
123 Togo), *Dendroaspis angusticeps* (Eastern green mamba, Tanzania), *Dendroaspis jamesoni*
124 *jamesoni* (Jameson's mamba, western subspecies, Cameroon), *Dendroaspis jamesoni*
125 *kaimosae* (Jameson's mamba, eastern subspecies, Uganda), *Naja haje* (Egyptian cobra,
126 Uganda), *Naja subfulva* (brown forest cobra, Uganda), and *Naja nivea* (cape cobra, South
127 Africa). After extraction, venoms were immediately stored at -20 °C, lyophilised overnight,
128 and stored long-term at 4 °C. Subsequent lyophilised extractions from each specimen were
129 pooled with previous extractions. Concentrated stock solutions were created by reconstituting
130 the lyophilised powder in PBS (10010023, Gibco, Thermo Fisher Scientific, Paisley, UK) and
131 stored at -80 °C. Concentrations of venoms used in all experiments are expressed as the dry
132 mass of lyophilised venom per mL of diluent.

133 **2.1.2 nAChR agonists and antagonists**

134 The following nAChR agonists were commercially acquired: acetylcholine chloride
135 (A6625, Sigma-Aldrich, Gillingham, UK), nicotine ditartrate (GSK5294, Sigma-Aldrich,
136 Gillingham, UK), and epibatidine dihydrochloride (AOB5901, Aobius, Gloucester, MA,
137 USA). The Sc- α -NTx 'SHORT NEUROTOXIN alpha (NP)' (listed with the recommended
138 name 'short neurotoxin 1' (sNTx1) on the UniProt database; P01426) isolated from *Naja*
139 *pallida* venom was purchased from Latoxan (L8101, Valence, France), and the Lc- α -NTx, ' α -
140 bungarotoxin' (α -BgTx), isolated from *Bungarus multicinctus* venom was purchased from
141 Biotium (0010-1, Fremont, CA, USA).

142 **2.1.3 Toxin-inhibiting molecules**

143 The polyclonal antibody-based antivenoms EchiTAbG (batch EOG001740, expiry date
144 October 2018, MicroPharm, Newcastle Emlyn, UK) and SAIMR (South African Institute for
145 Medical Research) Polyvalent Snake antivenom (batch BF00546, expiry date November 2017,
146 South African Vaccine Producers [SAVP], Johannesburg, South Africa) were obtained from
147 the LSTM herpetarium via donation from Public Health England (London, UK). AChBP from
148 *Lymnaea stagnalis* (*Ls*-AchBP) was prepared as previously described [17], as were the fully
149 human monoclonal antibodies (mAbs) 2551_01_A12, 2554_01_D11 and 367_01_H01 in IgG1
150 format [21]. Samples of the various small molecule drugs used for screening were obtained by
151 request from the Open Chemical Repository of the Developmental Therapeutics Program
152 (<https://dtp.cancer.gov>) (Division of Cancer Treatment and Diagnosis, National Cancer
153 Institute, Rockville, MD, USA), except for nicotine (see section 2.1.2) and varespladib
154 (SML1100, Sigma-Aldrich, Gillingham, UK). These were selected based on their implied
155 potential as α -NTx-inhibitors in previous studies [40–42]. Stock solutions of small molecules
156 were created using dimethyl sulfoxide (DMSO) (D8418, Sigma-Aldrich, Gillingham, UK), and
157 working solutions did not exceed 1% DMSO.

158 **2.1.4 Cell line**

159 The immortalised TE671 cell line (RRID: CVCL_1756) as used in Ngum et al. [43]
160 was gifted by Dr Ian Mellor (University of Nottingham, UK) and originally obtained from the
161 European Collection of Authenticated Cell Cultures (ECACC; catalogue no. 89071904).
162 TE671 is a rhabdomyosarcoma cell line that natively expresses the foetal muscle-type nAChR
163 (γ -subunit containing) [30].

164 **2.2 Culture of TE671 cells**

165 All further reagents were acquired from Gibco, Thermo Fisher Scientific, Paisley, UK,
166 unless stated otherwise. TE671 cells were maintained using a culture medium consisting of

167 DMEM (high glucose, with GlutaMAX supplement, 10566016) supplemented with 10% FBS
168 (qualified, Brazil origin, 10270106) and 1% penicillin-streptomycin solution (5000 units/mL
169 penicillin, 5 mg/mL streptomycin, 15070063). Cells were cultured in 75 cm² cell culture flasks
170 (83.3911, Sarstedt, Nümbrecht, Germany) and incubated at 37 °C/5% CO₂ until ~90%
171 confluence was reached, upon which cells were dislodged from the flask with 4 mL TrypLE
172 express enzyme (1x, no phenol red, 12604013). The suspension was added to 10 mL culture
173 medium and centrifuged for 5 minutes (min) at 300 x g. The supernatant was removed, and the
174 pellet resuspended in 5 mL culture medium. Cell suspensions of different flasks were pooled,
175 counted using an automated cell counter (Luna II, Logos Biosystems, Villeneuve-d'Ascq,
176 France) and further culture medium added to reach a count of 3x10⁴-4x10⁴ cells/100 µL. Next,
177 100 µL cell suspension was pipetted to the wells of black walled, clear bottom, tissue culture
178 treated 96-well plates (655090, Greiner Bio One, Stonehouse, UK) and incubated overnight at
179 37 °C/5% CO₂.

180 **2.3 Membrane potential assay of nAChR activation**

181 The following method was adapted from Fitch et al. [24] and Wang et al. [25] and, as
182 in section 2.2, all reagents were acquired from Gibco, Thermo Fisher Scientific, Paisley, UK,
183 unless stated otherwise. One vial of FLIPR membrane potential dye (Component A, Explorer
184 Kit Blue, R8042, Molecular Devices, San Jose, CA, USA) was dissolved in 36 mL assay buffer
185 to create the dye solution. Assay buffer consisted of 1x HBSS (made from 10x solution
186 [14065049] as per manufacturer's instruction by diluting with distilled water and addition of
187 NaHCO₃ [7.5% solution, 25080094] to a final concentration of 4.17 mM) supplemented with
188 20 mM HEPES (1 M solution, 15630056), 0.5 µM atropine (A0132, Sigma-Aldrich,
189 Gillingham, UK), adjusted to pH 7.1 with 1 M NaOH, and then sterile filtered. Assay buffer
190 was then used to create all further solutions. Culture medium was removed from the cell plate,
191 replaced with 50 µL dye solution and incubated for 30 min at 37 °C/5% CO₂. When

192 investigating venom/toxin inhibition, the solutions of venom, toxin, toxin-inhibitor, or
193 combinations thereof were concurrently incubated for 30 min at 37 °C/5% CO₂ prior to addition
194 to the cell plate. Next, 50 µL of control or venom/toxin or venom/toxin + toxin-inhibitor
195 solutions were transferred to each well, and the cell plate further incubated for 15 min at 37
196 °C/5% CO₂. The cell plate was then acclimatised for 15 min at room temperature before
197 recording. Next, 60 µL nAChR agonist solution or assay buffer was added to the wells of a
198 clear, v-bottom 96-well plate (651201, Greiner Bio One, Stonehouse, UK) to create a reagent
199 plate and was then added to the appropriate tray, along with the cell plate and a rack of pipette
200 tips (black, 96-well configuration, 9000-0911, Molecular Devices, San Jose, CA, USA), to a
201 FlexStation 3 multi-mode microplate reader (Molecular Devices, San Jose, CA, USA)
202 controlled by SoftMax Pro 7.1 software (Molecular Devices, San Jose, CA, USA). The reader
203 records a column of the 96 well plate for a time set by the user and houses an automated
204 pipetting system that allows the addition of solution from the reagent plate to the cell plate at
205 a set time during the recording. After the column is recorded the adjacent column is then
206 recorded in the same manner. For the purposes of this study this allowed a baseline recording
207 followed by the addition of an agonist solution and the recording of changes in dye fluorescence
208 immediately following this addition. Excitation, cut-off, and emission wavelengths were set at
209 530, 550, and 565 nm respectively. Recordings of plates were carried out at room temperature
210 using a reading time of 214 seconds (s) and interval time of 2 s to give a total of 108 readings
211 per well with compound transfer (addition of agonist solution) of 50 µL to each well after 20 s
212 baseline recording.

213 **2.4 Data and Statistical Analysis**

214 Fluorescent responses for each well were measured by the software in relative
215 fluorescent units (RFUs), and values were determined by calculating the baseline fluorescence
216 (F_{baseline}, the mean of the first 20 s of responses) and subtracting this from the maximum

217 fluorescent response (F_{max}) for the remainder of the recording for each well ($F_{max} - F_{baseline}$). As
218 different wells can have different starting RFU values, this normalisation approach ensured
219 that the responses detected from each well could be compared on the same scale.

220 For experiments to profile agonists and antagonists, assay buffer alone was included as
221 a control. For all subsequent work, 10 μ M ACh was used as the control agonist, and all data
222 points normalised to this agonist alone control. For experiments with isolated α -NTxs, 10 μ M
223 ACh was applied after incubation with varying concentrations of toxin. Crude venom
224 experiments were carried out and normalised in the same way. Experiments with toxin-
225 inhibitors included the ACh control (agonist alone), antagonist (venom or toxin) + ACh, and
226 toxin-inhibitor + ACh. The screen of a panel of potential small molecule α -NTx-toxin inhibitors
227 included the above controls, as well as α -BgTx controls of 30 nM (MIN) and 3 nM (MID). For
228 all experiments with toxin-inhibitors, the concentrations of antagonist and ACh were kept
229 consistent and co-incubated with varying concentrations of toxin-inhibitor. The data was then
230 normalised to the mean ACh control (100% signal) and ACh + venom/toxin (0% signal)
231 controls using equation (1) with venom/toxin-inhibitory activity represented by recovery
232 towards the 100% ACh signal.

233
$$\% \text{ response} = \frac{(\text{Sample} - 0\% \text{ signal})}{(100\% \text{ signal} - 0\% \text{ signal})} \times 100 \quad (1)$$

234 All experiments had 3-8 replicates per plate and were repeated on three separate plates
235 using different cell passage numbers (4-12), and each repeat was carried out on a different day.
236 Normalised data was combined across plates by calculating the mean of the replicates of each
237 plate to give a single value for each plate ($n = 1$) and subsequently calculating the mean of
238 these combined values. As experiments were repeated three times, all experiments had $n = 3$,
239 and each data point was plotted as the mean \pm SD. Plate uniformity studies were carried out as
240 previously described [44], with assay quality measured using Z prime (Z') analysis with an

241 acceptance criterion of ≥ 0.4 [45]. Each data point across the three plates was plotted
242 individually (rather than mean \pm SD), so the variability of responses across the plate could be
243 visualised. All data analysis, graph plotting, and application of non-linear regression equations
244 (2) and (3) to fit curves were carried out using Prism 9 (GraphPad, San Diego, CA, USA).

245 The following non-linear regression equation was applied to fit a curve to concentration-
246 response plots to generate EC₅₀ values:

247
$$Y = Bottom + \frac{(Top - Bottom)}{1 + 10^{((LogEC50 - X)HillSlope))}} \quad (2)$$

248 The following non-linear regression equation was applied to fit a curve to concentration-
249 inhibition plots to generate IC₅₀ values:

250
$$Y = Bottom + \frac{(Top - Bottom)}{1 + 10^{((LogIC50 - X)HillSlope))}} \quad (3)$$

251

252 3. Results

253 3.1 nAChR agonists produce fluorescent responses in TE671 cells that are blocked by 254 known nAChR antagonists

255 To determine whether our modifications to the previously described assay protocols
256 produced consistent data, we validated the assay using several known nAChR agonists (ACh,
257 nicotine, and epibatidine) and antagonists (snake venom Lc- α -NTxs and Sc- α -NTxs) of the
258 muscle-type nAChR, alongside assay buffer alone (negative control). The incubation of TE671
259 cells with this negative control plus the membrane potential dye resulted in a slight decrease in
260 the RFU readings that remained slightly below F_{baseline} levels for the remainder of the recording,
261 indicating that the addition of solution itself causes a small decrease in fluorescence (Fig. 1).
262 The addition of the three nAChR agonists resulted in concentration-dependent increases in

263 fluorescence. The profile of the responses to all agonists typically reached F_{max} approximately
264 45 s after addition, followed by a slow decay for the remainder of the recording to up to 50%
265 of the peak (Fig. 2A). Concentration-response curves revealed a rank order of potency of
266 epibatidine > ACh > nicotine (Fig. 2B, Table 1). In the case of epibatidine, increasing agonist
267 concentrations beyond 10 μ M resulted in decreased responses indicating an agonist-dependent
268 antagonism (Fig. 2B). ACh was chosen as the agonist for further experiments, as the activation
269 of nAChRs by ACh is the most biologically relevant interaction for a snake toxin-inhibitor to
270 restore. 10 μ M ACh was chosen as the control concentration for further experiments, as it was
271 the lowest concentration that produced the highest level of fluorescence (typically 150-250
272 RFUs), providing the largest signal window for further experiments, while avoiding an
273 oversaturating concentration of ACh.

274 Next, we assessed the ability of the assay to detect nAChR antagonism by α -NTxs.
275 Wang et al. [25] previously demonstrated antagonism by α -BgTx, a Lc- α -NTx isolated from
276 the venom of *B. multicinctus*, to the nicotine response of TE671 cells using membrane potential
277 dye [32]. Consequently, α -BgTx was used along with a commercially available Sc- α -NTx,
278 namely sNTx1 from the venom of *N. pallida*, which was used in previous studies to investigate
279 Sc- α -NTx activity on nAChRs under the name ‘toxin α ’ and originally thought to be isolated
280 from venom of *N. nigricollis* [46]. We observed concentration-dependent antagonism of the 10
281 μ M ACh response with both α -NTxs (Fig. 2C and 2D), and α -BgTx was selected as the positive
282 control for measuring the nAChR antagonism of neurotoxic snake venoms in downstream
283 experiments due to its extensive prior characterisation [47].

284

285 **3.2 Fluorescent responses show an acceptable level of plate uniformity for assay use in**
286 **screening campaigns**

287 With the long-term goal of applying our approach as a novel toxin-inhibitor screening
288 assay, the following controls were selected to assess the uniformity of the assay; i) MAX, a
289 maximal signal produced by 10 μ M of the agonist ACh, ii) MIN, a minimal signal produced
290 by the co-application of 10 μ M ACh with 30 nM of the antagonist α -BgTx, and iii) MID, a
291 medium signal using the co-application of 10 μ M ACh with an IC₅₀ concentration of the
292 antagonist α -BgTx (3 nM). Using plates interleaved with these controls (a repeating pattern of
293 three columns occupied by one of each of the controls), inter-day and intra-96 well plate
294 uniformity of assays were performed following a previously described approach [44]. The
295 inter-day assessments validated the reproducibility between different cell populations and
296 passage numbers, whilst the intra-96 well plate experiments revealed no major edge or drift
297 effects, which would invalidate the results when utilising all wells in the plates. Examination
298 of the i) average F_{max}-F_{baseline}; ii) standard deviations (SD), and iii) coefficient of variations
299 (CV) of the control signals showed clear separation in the three control signals within all plates
300 (Fig. 3). In addition to the low CV and SD, these controls allowed for Z prime (Z') calculations
301 [45], which are common practice in industrial scale drug screening programmes to determine
302 the distribution of MIN/MAX signals and thus provide confidence that false positive or
303 negative results will not occur. The Z prime of each plate (0.56, 0.62, and 0.57) surpassed the
304 industry-accepted threshold of >0.4, as evidenced by the large signal window and small
305 variance between the MAX and MIN readings.

306 To assess intra-plate uniformity for each of the three plates, the controls were plotted
307 in spatial order, either by column (Fig. 3A) or row (Fig. 3B). This revealed no consistent drift
308 or edge effects, either across the plate (Fig. 3A – by columns) or down the plate (Fig. 3B – by
309 rows) for all plates. The resulting consistency confirms that responses remain consistent during
310 the read time of the full plate of approximately 40 min where there is a time difference of more
311 than 30 min between the reading of the first and last columns. This validation therefore provides

312 evidence for the use of all wells on the plate, thereby maximising the capacity for multi-plate
313 throughput in a screening campaign. However, inter-plate variation in RFU values after F_{\max} -
314 F_{baseline} calculation was observed, highlighting the need to normalise readings to the MAX
315 (100% response) and MIN (0% response) control signals to ensure robust cross-plate
316 comparisons. As the entire plate is not read at the same time and responses remain consistent
317 over the recording period, this approach allows the use of a less costly plate reader and is
318 therefore more accessible for many laboratories to implement.

319

320 **3.3 Neurotoxic snake venoms block the ACh response of TE671 cells**

321 Next, we used the developed assay to quantify nAChR antagonism by crude venoms
322 sourced from a variety of medically important African snake species. To this end, we selected
323 eight venoms from cobra (*Naja* spp.) and mamba (*Dendroaspis* spp.) species that are known to
324 contain high abundances of α -NTxs [48–50] and cause systemic neurotoxicity in snakebite
325 victims [11]. All venoms tested showed concentration-dependent antagonism of the TE671
326 ACh response after pre-incubation with the cells for 15 min (Fig. 4). However, we observed a
327 100-fold difference in potency across this group of related African elapid snakes (IC₅₀s range
328 from 0.03 – 4.49 $\mu\text{g}/\text{mL}$, Table 1, Fig. 4). Venom potency was seemingly not associated with
329 taxonomy, with the rank order of venom IC₅₀ from most to least potent being *N. subfulva*, *D.*
330 *polylepis*, *D. j. kaimosae*, *D. j. jamesoni*, *N. nivea*, *N. haje*, *D. viridis*, and *D. angusticeps* (Fig.
331 4 and Table 1).

332

333 **3.4 Different formats of snake toxin-inhibiting molecules rescue the TE671 cell ACh**
334 **response**

335 In recent years, various molecules have been explored as potential new therapies for
336 snake venom toxins (for a comprehensive overview, see [16,51]). To explore the utility of our
337 assay as a functional screen to detect novel toxin-inhibitory molecules, we selected
338 representatives of these different therapeutic formats (antivenoms, small molecule drugs,
339 nAChR-mimicking proteins, and monoclonal antibodies) and assessed their ability to inhibit
340 the nAChR antagonism stimulated by representative neurotoxic snake venoms (from *N. haje*
341 and *D. polylepis*) and α -NTxs (α -BgTx and sNTx1). In line with the WHO guidelines for
342 preclinical testing of antivenoms [13] and many other *in vitro* and *in vivo* approaches to assess
343 venom inhibition [17,21,28,52], we performed these experiments with an initial pre-incubation
344 step, where inhibitor and venom/toxin were co-incubated at 37 °C for 30 min before assaying,
345 to give the inhibitor maximal opportunity to exhibit neutralisation (Fig. 5). To that end, we also
346 performed these experiments with inhibitory molecules pre-incubated with the lowest venom
347 or toxin concentrations that exhibited maximal nAChR antagonism (6.67 μ g/mL for *N. haje*
348 venom, 0.67 μ g/mL for *D. polylepis* venom, and 30 nM for α -BgTx and sNTx1). This approach
349 ensured the largest separation between agonist only (100%) and venom/toxin only (0%) signals
350 and that there was not an oversaturating concentration of venom/toxin. In most cases, the
351 inclusion of a 30 min pre-incubation step resulted in a modest increase in the venom/toxin only
352 response (~10-15% of the agonist only response) (Fig. 5) compared to the response previously
353 observed without incubation (<5%) (i.e., Figs. 2, 3 and 4).

354 3.4.1 Commercial antivenoms

355 Commercial polyclonal antibody-based antivenoms are currently the only available
356 specific treatment for snakebite envenoming and are produced by immunising animals with
357 sub-toxic doses of either a single or multiple venoms, resulting in monovalent or polyvalent
358 antivenoms, respectively [13]. We assessed the capability of the assay to detect venom toxin
359 inhibition using SAIMR polyvalent antivenom, which is manufactured using venoms from

360 multiple African cobra and mamba species in the immunisation mixture and, based on prior
361 preclinical research, is known to inhibit venom neurotoxins [53–55]. We used the monovalent
362 antivenom EchiTAbG as a control antivenom, and we did not anticipate observing venom
363 inhibition with this product, as it is specific to the toxins found in the venom of the unrelated,
364 non-neurotoxic, saw-scaled viper, *Echis ocellatus* [56]. Serial dilutions of each antivenom were
365 co-incubated with *D. polylepis* and *N. haje* venom, and responses to ACh addition were
366 compared with responses obtained with venom alone. As anticipated, SAIMR polyvalent
367 antivenom demonstrated concentration-dependent inhibition against the nAChR antagonism
368 caused by both snake venoms, while the non-specific control antivenom EchiTAbG did not
369 show inhibitory activity at any of the concentrations tested (Fig. 5A). Interestingly, SAIMR
370 polyvalent antivenom exhibited greater inhibition against *D. polylepis* venom than *N. haje*
371 based on the lower EC₅₀ value, equating to a mass ratio of 1:11.7 (venom:antivenom) against
372 *D. polylepis* and 1:21.9 against *N. haje*, when accounting for differences in venom challenge
373 doses. These findings indicate that more SAIMR polyvalent antivenom is required to neutralise
374 the antagonism of *N. haje* venom, which might be explained by the presence of *D. polylepis*,
375 but not *N. haje* venom in the immunising mixture used to generate this antivenom (instead
376 venoms from related *Naja* spp. are used). Alternatively, the observed differences in neutralising
377 potencies could be due to the considerably higher abundance of α -NTxs in *N. haje* venom
378 [54,57].

379 3.4.2 Small molecule drug candidates

380 Next, a panel of small molecules that consisted of either a component from a plant
381 extract that previously demonstrated neutralising activity [40] or that were identified through
382 molecular docking studies of a chemical library with a Lc- α -NTx (α -BgTx or α -cobratoxin
383 from *N. kaouthia*) [41,42] were investigated for their neurotoxin-inhibiting activity (Fig. 5B).
384 Also included in the panel were known nAChR modulators and, as a control, varespladib which

385 is a small molecule inhibitor that exhibits potent inhibition of a different family of toxins found
386 in snake venoms (PLA₂s), and which is in clinical development [20]. All small molecules were
387 pre-incubated with venoms at a concentration of 100 μ M, but only brucinic acid (NSC 121865)
388 exhibited inhibitory activity. Further, inhibitory effects were only observed against *N. haje*
389 venom, where the response was recovered to 41.3% of the control response (Fig. 5B). However,
390 no α -NTx-inhibiting activity was observed for brucinic acid against *D. polylepis* venom.

391 **3.4.3 nAChR-mimicking proteins**

392 AChBPs are soluble proteins found in several mollusc species, and the variant found in
393 *Lymnaea stagnalis* (*Ls*-AChBP) shares features with the human α 7 nAChR [58]. A recent study
394 showed that *Ls*-AChBP can bind Lc- α -NTxs from various crude snake venoms, and thus shows
395 potential to act as a decoy molecule that can intercept toxins targeting nAChRs and prevent or
396 delay neurotoxicity [17]. Considering this and previous data showing that Lc- α -NTxs possess
397 a much higher affinity for the α 7 nAChR than Sc- α -NTxs [46], we measured the ability of *Ls*-
398 AChBP to inhibit the effects of α -BgTx and sNTx1 in the assay. α -NTxs were pre-incubated
399 with serial dilutions of *Ls*-AChBP, and inhibition of α -BgTx activity was detected (Fig. 5C).
400 Molar ratios were calculated based on an approximate molecular mass of 25 kDa for the *Ls*-
401 AChBP monomer, and the highest molar ratio (α -BgTx:*Ls*-AChBP) of 1:156 restored activity
402 to 86.0% of the ACh control. The lowest ratio to exhibit any restoration was 1:1.56 (16.2% of
403 ACh control). As anticipated, we observed no inhibition of the antagonism of sNTx1 at any of
404 the tested *Ls*-AChBP concentrations (Fig. 5C).

405 **3.4.4 Monoclonal antibodies**

406 A recent study identified the mAbs 2551_01_A12 and 2554_01_D11 as effective
407 inhibitors of several Lc- α -NTxs, including α -BgTx, using automated patch-clamp
408 electrophysiology and murine *in vivo* experimentation [21]. Consequently, we used our assay

409 to explore whether the α -NTx inhibition of these mAbs could also be detected in this assay,
410 using α -BgTx as our model (Fig. 5C). Pre-incubation of solutions containing 1:1.09, 1:2.19 and
411 1:4.37 molar ratios (α -BgTx:mAb), calculated based on using 150 kDa as an approximate
412 molecular mass for each IgG1 mAb, were tested, alongside a negative control mAb
413 (367_01_H01) directed against dendrotoxins from *D. polylepis* venom [59]. Concentration-
414 dependent inhibition of α -BgTx activity was observed with both antibodies directed against
415 Lc- α -NTxs (2551_01_A12 and 2554_01_D11), in line with previous electrophysiological
416 findings [21]. The mAb 2554_01_D11 was able to restore nAChR activity to a higher
417 percentage of ACh control (83.1%) than 2551_01_A12 (33.6%) at the highest dose tested. As
418 anticipated, the control anti-dendrotoxin mAb (367_01_H01) exhibited no inhibition of α -
419 BgTx antagonism of the nAChR, even at the highest concentrations tested.

420

421 **4. Discussion**

422 In this study, we developed a cell-based assay to investigate venom toxin activity on
423 muscle-type nAChR activation and explored its capability to detect inhibition by various toxin-
424 inhibiting molecules. For validation, we first quantified the effects of known nAChR agonists
425 and antagonists to ensure that their observed effects were consistent with other validated
426 experimental techniques, and that any modifications made to previously published approaches
427 [31,32] did not affect the assay (Fig. 2). The time to peak and decay of fluorescent responses
428 during the recording time (Fig. 2A) were consistent to those observed in other studies
429 employing the same experimental approach [60], though differences were observed when
430 comparing outcomes with electrophysiology approaches. Responses of muscle-type nAChRs
431 typically reach a peak and return to baseline within a few seconds in electrophysiology
432 experiments [61], while the responses observed in this assay do not return to baseline after 214

433 s of recording (Fig. 2A and 2C). This prolonged response could perhaps be due to a positive
434 allosteric modulatory effect of the dye or the activation of natively expressed voltage-gated ion
435 channels [43] after nAChR activation. Irrespectively, the profile of responses and the
436 sensitivity of the assay to traditional nAChR modulators confirms the utility of this approach
437 for measuring nAChR activation, rather than other physiological properties of the channel. The
438 EC₅₀s for agonists (Table 1) also differ from those obtained with electrophysiology approaches
439 [33,62–64], but remain consistent with those obtained in previous studies using the same
440 experimental approach [31,37]. Antagonism by α -BgTx was confirmed as in previous studies
441 (Fig. 2C and 2D) [32,65], and sNTx1 also exhibited antagonism (Fig. 2C and 2D), which was
442 anticipated given that binding of this α -NTx to the muscle-type nAChR has previously been
443 demonstrated [46]. Collectively, these data provide confidence that the developed assay is
444 informative for assessing nAChR agonism and antagonism.

445 All snake venoms tested in this study (from *Naja* and *Dendroaspis* spp.) showed evidence
446 of antagonism on the muscle-type nAChR (Fig. 4). These findings were anticipated, since: (i)
447 systemic envenoming by these species result in neurotoxic clinical manifestations in snakebite
448 patients [11,12], (ii) α -NTxs have previously been identified in various mamba and cobra
449 venoms [48–50,54,55], and (iii) venoms from *N. haje* and *D. polylepis* have previously been
450 demonstrated to exhibit nAChR antagonism in functional assays [32,66]. Since there was an
451 almost 100-fold difference in potency of the crude neurotoxic venoms investigated in this
452 study, with no obvious correlation with taxonomy, investigation of additional elapid venoms
453 from diverse genera could be particularly revealing to unravel the evolutionary basis of these
454 considerable differences in venom potency. Given the medical importance of α -NTxs, the assay
455 described here could be readily used in conjunction with venom fractionation/purification and
456 identification approaches [55,67] to identify the key α -NTxs responsible for nAChR-mediated
457 neurotoxicity. Such 'toxicovenomic' profiling is important, as each snake venom can

458 potentially contain multiple α -NTxs, and these likely differ in both potency and abundance, as
459 well as they may vary both intra- and inter-specifically [49,54,68]. The identification of such
460 toxins is important for the rational selection of targets for novel therapeutics (antivenoms and
461 toxin-inhibitory molecules), and/or to either supplement or use as alternatives to, whole
462 venoms as immunogens for antivenom production [18,69]. Additionally, given that toxins
463 outside of the 3FTx family have also been demonstrated to exert nAChR antagonism [70], this
464 approach may also prove useful for identifying novel venom neurotoxins.

465 The assay was further demonstrated to be compatible with the detection of ability of various
466 therapeutic candidate molecules to inhibit the antagonism of venom neurotoxins on the nAChR
467 (Fig. 5). In several cases, pre-incubation with venom or α -NTxs resulted in a restoration to
468 >80% of the control response, demonstrating clear inhibition (e.g., SAIMR polyvalent
469 antivenom, *Ls*-AChBP, and mAb 2554_01_D11). Given the demonstrated acceptable level of
470 uniformity across a 96-well plate (Fig. 3), there is clear potential to use this assay as a screening
471 platform for the identification of novel toxin-inhibiting molecules against venom nAChR-
472 antagonists. For example, in an approach analogous to that proposed elsewhere for other venom
473 toxins [71], this assay could be implemented as a primary drug screening assay to identify α -
474 NTx-inhibiting molecules present in compound libraries consisting of drugs that are already
475 approved or in development for other indications. This ‘drug repurposing’ approach is
476 particularly attractive for snakebite envenoming, as ensuing hits have often entered at least
477 early-stage clinical trials for other indications, resulting in potentially shorter development
478 timelines compared with the development of new chemical entities, and therefore potentially
479 lower development costs [71]. Similarly, this assay could be used for aiding the discovery and
480 optimisation of cross-reactive mAbs directed against α -NTxs and other 3FTxs. Such
481 approaches currently rely on binding assays for screening [72], typically followed by complex
482 and expensive bioassays (e.g., patch-clamp electrophysiology or *in vivo* preclinical studies) to

483 assess α -NTx inhibition [21]. The same principles apply to the development of receptor-
484 mimicking peptides/proteins based around AChBP scaffolds. Recent insights into the
485 properties of Sc- α -NTx binding to muscle-type nAChRs [61] should aid the future protein
486 engineering of AChBP derivatives and receptor-mimicking peptides designed to
487 simultaneously capture both Lc- α -NTxs and Sc- α -NTxs. Such molecules could be readily
488 screened in this assay for their generic α -NTx-inhibiting activity as an initial readout to inform
489 downstream structural optimisation and lead candidate selection.

490 The use of the human muscle-type nAChR in this assay is a particular strength, as questions
491 have been raised about the appropriateness of rodent models for assessing the activity of α -
492 NTxs due to Sc- α -NTxs exhibiting enhanced potency on rodent nAChRs [73]. Investigating
493 human nAChRs in TE671 cells can help ensure that only toxins relevant to causing
494 neurotoxicity in snakebite victims are being studied. However, certain α -NTxs can exhibit
495 enhanced potency for foetal (γ subunit-containing) muscle-type nAChRs (subtype expressed
496 in TE671 cells) over the adult (ϵ subunit-containing) type, as previously observed with the Sc-
497 α -NTx ‘Nmml’ from *N. mossambica* [74]. The CN21 cell line, used in a similar cell-based
498 fluorescence assay to investigate chemicals to counteract organophosphate poisoning [75],
499 expresses the adult muscle-type nAChR and could be employed in place of TE671 cells to
500 distinguish α -NTxs selective for foetal muscle-type nAChRs. Another future expansion of this
501 assay would be to employ a more challenging model of envenoming. After identifying
502 promising α -NTx-inhibiting candidates in pre-incubation experiments, these candidates could
503 then be assessed using a model where venom/toxin is applied simultaneously or before the
504 toxin-inhibitor. This is relevant, because a major hurdle for α -NTx treatments to overcome is
505 the long dissociation time of Lc- α -NTxs once bound to the nAChR [68]. Studies using chick
506 biventer cervicis nerve-muscle preparations and commercial antivenoms have employed an
507 analogous approach and showed the ability of antivenoms to reverse α -NTx dependent

508 inhibition of nAChRs when applied after treatment with Asian cobra venoms [76] and
509 *Oxyuranus scutellatus* venom [77]. Adaptation of our assay in a similar manner could allow
510 for further discrimination between inhibitors that promote toxin dissociation from the nAChR
511 compared with those that need to intercept α -NTxs before they bind.

512 The herein described approach of measuring TE671 cell muscle-type nAChR activation
513 using membrane potential dye has enabled the assessment of nAChR antagonism by crude
514 elapid snake venoms and isolated Lc- α -NTx and Sc- α -NTxs. As both classes of α -NTxs
515 exhibited dose-dependent antagonism, the assay provides a robust platform to investigate
516 toxicity mediated by α -NTxs from the venoms of snake species found across different
517 geographical regions. This assay could also find wider utility for studying nAChR modulators,
518 whether from natural (e.g., other animal venoms or toxins) or chemical sources. In addition,
519 we demonstrated the utility of the assay for identifying α -NTx-inhibitory molecules and
520 highlight its compatibility with four major categories of snakebite therapeutics currently being
521 explored. We therefore hope that this assay will be a useful addition to the experimental toolbox
522 to identify new therapeutics against key neurotoxins from snake venoms, and that it will help
523 deliver new toxin-inhibitors that can mitigate the many life-threatening snakebite envenomings
524 that occur worldwide each year.

525

526 **Acknowledgments**

527 We thank David Richards for early discussions on the assay concept, Ian Mellor
528 (University of Nottingham, UK) for the gift of TE671 cells, and IONTAS (Cambridge, UK)
529 for facilitating access to the monoclonal antibodies. We also thank Jory van Thiel for the
530 creation of species distribution maps presented in Fig. 4, Paul Rowley and Edouard Crittenden
531 (Liverpool School of Tropical Medicine, UK) for expert maintenance of venomous snakes and

532 provision of venom samples, as well as use of photographs presented in Fig. 4, alongside those
533 generously provided by Taline Kazandjian, Steven Hall, Simon Townsley, and Wolfgang
534 Wüster. This work was supported by the Wellcome Trust funded project grants 221710/Z/20/Z
535 (CU, JK and NRC) and 221712/Z/20/Z (NRC and JK) and KU Leuven grant C32/16/035 (CU).
536 MN is a recipient of a FWO postdoctoral fellowship 12X2722N. This research was funded in
537 part by the Wellcome Trust. For the purpose of open access, the authors have applied a CC BY
538 public copyright licence to any Author Accepted Manuscript version arising from this
539 submission.

540 **References**

- 541 [1] A. Kasturiratne, A.R. Wickremasinghe, N. de Silva, N.K. Gunawardena, A.
542 Pathmeswaran, R. Premaratna, L. Savioli, D.G. Lalloo, H.J. de Silva, The Global Burden
543 of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of
544 Envenoming and Deaths, *PLoS Med.* 5 (2008) e218.
- 545 [2] D.J. Williams, M.A. Faiz, B. Abela-Ridder, S. Ainsworth, T.C. Bulfone, A.D.
546 Nickerson, A.G. Habib, T. Junghanss, H.W. Fan, M. Turner, R.A. Harrison, D.A.
547 Warrell, Strategy for a globally coordinated response to a priority neglected tropical
548 disease: Snakebite envenoming, *PLoS Negl Trop Dis.* 13 (2019) e0007059.
- 549 [3] N.R. Casewell, T.N.W. Jackson, A.H. Laustsen, K. Sunagar, Causes and Consequences
550 of Snake Venom Variation, *Trends Pharmacol Sci.* 41 (2020) 570–581.
- 551 [4] C.R. Ferraz, A. Arrahman, C. Xie, N.R. Casewell, R.J. Lewis, J. Kool, F.C. Cardoso,
552 Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to
553 Hemorrhage and Necrosis, *Front Ecol Evol.* 7 (2019) 1–19.
- 554 [5] T. Tasoulis, G.K. Isbister, A review and database of snake venom proteomes, *Toxins*
555 (Basel). 9 (2017) 1–23.
- 556 [6] S. Nirthanan, Snake three-finger α -neurotoxins and nicotinic acetylcholine receptors:
557 molecules, mechanisms and medicine, *Biochem Pharmacol.* 181 (2020) 114168.
- 558 [7] V.I. Tsetlin, I.E. Kasheverov, Y.N. Utkin, Three-finger proteins from snakes and
559 humans acting on nicotinic receptors: Old and new, *J Neurochem.* 158 (2021) 1223–
560 1235.
- 561 [8] E.X. Albuquerque, E.F.R. Pereira, M. Alkondon, S.W. Rogers, Mammalian nicotinic
562 acetylcholine receptors: From structure to function, *Physiol Rev.* 89 (2009) 73–120.

563 [9] H. Cetin, D. Beeson, A. Vincent, R. Webster, The Structure, Function, and Physiology
564 of the Fetal and Adult Acetylcholine Receptor in Muscle, *Front Mol Neurosci.* 13 (2020)
565 170.

566 [10] C.M. Barber, G.K. Isbister, W.C. Hodgson, Alpha neurotoxins, *Toxicon.* 66 (2013) 47–
567 58.

568 [11] U.K. Ranawaka, D.G. Laloo, H.J. de Silva, Neurotoxicity in Snakebite-The Limits of
569 Our Knowledge, *PLoS Negl Trop Dis.* 7 (2013) e2302.

570 [12] P.E. Bickler, M. Abouyannis, A. Bhalla, M.R. Lewin, Neuromuscular Weakness and
571 Paralysis Produced by Snakebite Envenoming: Mechanisms and Proposed Standards for
572 Clinical Assessment, *Toxins (Basel).* 15 (2023) 49.

573 [13] World Health Organization, Guidelines for the production, control and regulation of
574 snake antivenom immunoglobulins, Annex 5, TRS No 1004, 2013.

575 [14] World Health Organization, Guidelines for the management of snakebites, 2nd edition,
576 (2016). <https://www.who.int/publications/i/item/9789290225300> (accessed November
577 11, 2022).

578 [15] J. Potet, D. Beran, N. Ray, G. Alcoba, A.G. Habib, G. Iliyasu, B. Waldmann, R. Ralph,
579 M.A. Faiz, W.M. Monteiro, J. de Almeida Gonçalves Sachett, J.L. di Fabio, M. de los
580 Á. Cortés, N.I. Brown, D.J. Williams, Access to antivenoms in the developing world: A
581 multidisciplinary analysis, *Toxicon X.* 12 (2021) 100086.

582 [16] A. Laustsen, M. Engmark, C. Milbo, J. Johannessen, B. Lomonte, J. Gutiérrez, B. Lohse,
583 From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy, *Curr
584 Pharm Des.* 22 (2016) 5270–5293.

585 [17] L.O. Albulescu, T. Kazandjian, J. Slagboom, B. Bruyneel, S. Ainsworth, J. Alsolaiss,
586 S.C. Wagstaff, G. Whiteley, R.A. Harrison, C. Ulens, J. Kool, N.R. Casewell, A decoy-
587 receptor approach using nicotinic acetylcholine receptor mimics reveals their potential
588 as novel therapeutics against neurotoxic snakebite, *Front Pharmacol.* 10 (2019) 1–15.

589 [18] G. de la Rosa, F. Olvera, I.G. Archundia, B. Lomonte, A. Alagón, G. Corzo, Horse
590 immunization with short-chain consensus α -neurotoxin generates antibodies against
591 broad spectrum of elapid venomous species, *Nat Commun.* 10 (2019) 3642.

592 [19] L.O. Albulescu, C. Xie, S. Ainsworth, J. Alsolaiss, E. Crittenden, C.A. Dawson, R.
593 Softley, K.E. Bartlett, R.A. Harrison, J. Kool, N.R. Casewell, A therapeutic combination
594 of two small molecule toxin inhibitors provides broad preclinical efficacy against viper
595 snakebite, *Nat Commun.* 11 (2020) 6094.

596 [20] M. Lewin, S. Samuel, J. Merkel, P. Bickler, Varespladib (LY315920) Appears to Be a
597 Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A₂ and a Possible
598 Pre-Referral Treatment for Envenomation, *Toxins (Basel).* 8 (2016) 248.

599 [21] L. Ledsgaard, J. Wade, T.P. Jenkins, K. Boddum, I. Oganesyan, J.A. Harrison, P. Villar,
600 R.A. Leah, R. Zenobi, S. Schoffelen, B. Voldborg, A. Ljungars, J. McCafferty, B.
601 Lomonte, J.M. Gutiérrez, A.H. Laustsen, A. Karatt-Vellatt, Discovery and optimization

602 of a broadly-neutralizing human monoclonal antibody against long-chain α -neurotoxins
603 from snakes, *Nat Commun* 14 (2023) 1–14.

604 [22] T. Lynagh, S. Kiontke, M. Meyhoff-Madsen, B.H. Gless, J. Johannessen, S. Kattelmann,
605 A. Christiansen, M. Dufva, A.H. Laustsen, K. Devkota, C.A. Olsen, D. Kümmel, S.A.
606 Pless, B. Lohse, Peptide Inhibitors of the α -Cobratoxin-Nicotinic Acetylcholine
607 Receptor Interaction, *J Med Chem.* 63 (2020) 13709–13718.

608 [23] B.G. Fry, *Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and*
609 *Biodiscovery*, Oxford University Press, 2015.

610 [24] L. Ledsgaard, A.H. Laustsen, U. Pus, J. Wade, P. Villar, K. Boddum, P. Slavny, E.W.
611 Masters, A.S. Arias, S. Oscoz, D.T. Griffiths, A.M. Luther, M. Lindholm, R.A. Leah,
612 M.S. Møller, H. Ali, J. McCafferty, B. Lomonte, J.M. Gutiérrez, A. Karatt-Vellatt, *In*
613 *vitro* discovery of a human monoclonal antibody that neutralizes lethality of cobra snake
614 venom, *MAbs.* 14 (2022) 2085536.

615 [25] S. Miersch, G. de la Rosa, R. Friis, L. Ledsgaard, K. Boddum, A.H. Laustsen, S.S. Sidhu,
616 Synthetic antibodies block receptor binding and current-inhibiting effects of α -
617 cobra toxin from *Naja kaouthia*, *Protein Science.* 31 (2022) e4296.

618 [26] J. Wade, C. Rimbault, H. Ali, L. Ledsgaard, E. Rivera-De-Torre, M. Abou Hachem, K.
619 Boddum, N. Mirza, M.F. Bohn, S.A. Sakya, F. Russo-Julve, J.T. Andersen, A.H.
620 Laustsen, Generation of Multivalent Nanobody-Based Proteins with Improved
621 Neutralization of Long α -Neurotoxins from Elapid Snakes, *Bioconjug Chem.* 33 (2022)
622 1494–1504.

623 [27] C.N. Zdenek, R.J. Harris, S. Kuruppu, N.J. Youngman, J.S. Dobson, J. Debono, M.
624 Khan, I. Smith, M. Yarski, D. Harrich, C. Sweeney, N. Dunstan, L. Allen, B.G. Fry, A
625 Taxon-Specific and High-Throughput Method for Measuring Ligand Binding to
626 Nicotinic Acetylcholine Receptors, *Toxins (Basel).* 11 (2019) 600.

627 [28] K. Pruksaphon, K.Y. Tanid, C.H. Tan, P. Simsiriwong, J.M. Gutiérrez, K.
628 Ratanabanangkoonid, An *in vitro* α -neurotoxin—nAChR binding assay correlates with
629 lethality and *in vivo* neutralization of a large number of elapid neurotoxic snake venoms
630 from four continents, *PLoS Negl Trop Dis.* 14 (2020) e0008581.

631 [29] J. Slagboom, R.A. Otvos, F.C. Cardoso, J. Iyer, J.C. Visser, B.R. van Doodewaerd,
632 R.J.R. McCleary, W.M.A. Niessen, G.W. Somers, R.J. Lewis, R.M. Kini, A.B. Smit,
633 N.R. Casewell, J. Kool, Neurotoxicity fingerprinting of venoms using on-line
634 microfluidic AChBP profiling, *Toxicon.* 148 (2018) 213–222.

635 [30] M.A. Luther, R. Schoepfer, P. Whiting, B. Casey, Y. Blatt, M.S. Montal, M. Montal, J.
636 Lindstrom, A muscle acetylcholine receptor is expressed in the human cerebellar
637 medulloblastoma cell line TE671, *Journal of Neuroscience.* 9 (1989) 1082–1096.

638 [31] R.W. Fitch, Y. Xiao, K.J. Kellar, J.W. Daly, Membrane potential fluorescence: A rapid
639 and highly sensitive assay for nicotinic receptor channel function, *Proc Natl Acad Sci U*
640 *S A.* 100 (2003) 4909–4914.

641 [32] C.-I.A. Wang, T. Reeks, I. Vetter, I. Vergara, O. Kovtun, R.J. Lewis, P.F. Alewood, T.
642 Durek, Isolation and Structural and Pharmacological Characterization of α -Elapitoxin-

643 Dpp2d, an Amidated Three Finger Toxin from Black Mamba Venom, *Biochemistry*. 53
644 (2014) 3758–3766.

645 [33] R.N. Patel, D.P. Richards, I.R. Duce, M.A. Birkett, D.B. Sattelle, I.R. Mellor, Actions
646 on mammalian and insect nicotinic acetylcholine receptors of harmonine-containing
647 alkaloid extracts from the harlequin ladybird *Harmonia axyridis*, *Pestic Biochem
648 Physiol.* 166 (2020) 104561.

649 [34] H. Rollema, L.K. Chambers, J.W. Coe, J. Glowa, R.S. Hurst, L.A. Lebel, Y. Lu, R.S.
650 Mansbach, R.J. Mather, C.C. Rovetti, S.B. Sands, E. Schaeffer, D.W. Schulz, F.D.
651 Tingley, K.E. Williams, Pharmacological profile of the $\alpha 4\beta 2$ nicotinic acetylcholine
652 receptor partial agonist varenicline, an effective smoking cessation aid,
653 *Neuropharmacology*. 52 (2007) 985–994.

654 [35] G.S. Taiwe, J. Montnach, S. Nicolas, S. de Waard, E. Fiore, E. Peyrin, T.M.A. El-Aziz,
655 M. Amar, J. Molgó, M. Ronjat, D. Servent, C. Ravelet, M. de Waard, Aptamer Efficacies
656 for *In Vitro* and *In Vivo* Modulation of α C-Conotoxin PrXA Pharmacology, *Molecules*
657 2019, Vol. 24, Page 229. 24 (2019) 229.

658 [36] R.L. Leong, H. Xing, J.-C. Braekman, W.R. Kem, Non-competitive Inhibition of
659 Nicotinic Acetylcholine Receptors by Ladybird Beetle Alkaloids, *Neurochem Res.* 40
660 (2015) 2078–2086.

661 [37] B.T. Green, K.D. Welch, D. Cook, D.R. Gardner, Potentiation of the actions of
662 acetylcholine, epibatidine, and nicotine by methyllycaconitine at fetal muscle-type
663 nicotinic acetylcholine receptors, *Eur J Pharmacol.* 662 (2011) 15–21.

664 [38] S.T. Lee, K. Wildeboer, K.E. Panter, W.R. Kem, D.R. Gardner, R.J. Molyneux, C.W.T.
665 Chang, F. Soti, J.A. Pfister, Relative toxicities and neuromuscular nicotinic receptor
666 agonistic potencies of anabasine enantiomers and anabaseine, *Neurotoxicol Teratol.* 28
667 (2006) 220–228.

668 [39] M. Kassner, J.B. Eaton, N. Tang, J.L. Petit, N. Meurice, H.H. Yin, P. Whiteaker, High-
669 throughput cell-based assays for identifying antagonists of multiple smoking-associated
670 human nicotinic acetylcholine receptor subtypes, *SLAS Discov.* 27 (2022) 68–76.

671 [40] T. Sivaraman, N.S. Sreedevi, S. Meenachisundharam, R. Vadivelan, Neutralizing
672 potential of *Rauvolfia serpentina* root extract against *Naja naja* venom, *Brazilian
673 Journal of Pharmaceutical Sciences.* 56 (2020) 1–10.

674 [41] M. Utsintong, T.T. Talley, P.W. Taylor, A.J. Olson, O. Vajragupta, Virtual screening
675 against alpha-cobratoxin, *J Biomol Screen.* 14 (2009) 1109–1118.

676 [42] B.K. Rajendran, M. Xavier Suresh, S.P. Bhaskaran, Y. Harshitha, U. Gaur, H.F. Kwok,
677 Pharmacoinformatic Approach to Explore the Antidote Potential of Phytochemicals on
678 Bungarotoxin from Indian Krait, *Bungarus caeruleus*, *Comput Struct Biotechnol J.* 16
679 (2018) 450–461.

680 [43] N.M. Ngum, M.Y.A. Aziz, L. Mohammed Latif, R.J. Wall, I.R. Duce, I.R. Mellor, Non-
681 canonical endogenous expression of voltage-gated sodium channel NaV1.7 subtype by
682 the TE671 rhabdomyosarcoma cell line, *J Physiol.* 600 (2022) 2499–2513.

683 [44] P.W. Iversen, B. Beck, Y.-F. Chen, W. Dere, V. Devanarayan, B.J. Eastwood, M.W.
684 Farmen, S.J. Iturria, C. Montrose, R.A. Moore, J.R. Weidner, G.S. Sittampalam, HTS
685 Assay Validation, (2012). <https://www.ncbi.nlm.nih.gov/books/> (accessed November 2,
686 2022).

687 [45] J.H. Zhang, T.D.Y. Chung, K.R. Oldenburg, A Simple Statistical Parameter for Use in
688 Evaluation and Validation of High Throughput Screening Assays, *J Biomol Screen.* 4
689 (1999) 67–73.

690 [46] D. Servent, V. Winckler-Dietrich, H.Y. Hu, P. Kessler, P. Drevet, D. Bertrand, A.
691 Ménez, Only snake curaremimetic toxins with a fifth disulfide bond have high affinity
692 for the neuronal alpha7 nicotinic receptor, *J Biol Chem.* 272 (1997) 24279–24286.

693 [47] M.M. Rahman, J. Teng, B.T. Worrell, C.M. Noviello, M. Lee, A. Karlin, M.H.B.
694 Stowell, R.E. Hibbs, Structure of the Native Muscle-type Nicotinic Receptor and
695 Inhibition by Snake Venom Toxins, *Neuron.* 106 (2020) 952-962.e5.

696 [48] T.D. Kazandjian, D. Petras, S.D. Robinson, J. van Thiel, H.W. Greene, K. Arbuckle, A.
697 Barlow, D.A. Carter, R.M. Wouters, G. Whiteley, S.C. Wagstaff, A.S. Arias, L.O.
698 Albulescu, A. Plettenberg Laing, C. Hall, A. Heap, S. Penrhyn-Lowe, C. V. McCabe, S.
699 Ainsworth, R.R. da Silva, P.C. Dorresteijn, M.K. Richardson, J.M. Gutiérrez, J.J.
700 Calvete, R.A. Harrison, I. Vetter, E.A.B. Undheim, W. Wüster, N.R. Casewell,
701 Convergent evolution of pain-inducing defensive venom components in spitting cobras,
702 *Science.* 371 (2021) 386–390.

703 [49] S. Ainsworth, D. Petras, M. Engmark, R.D. Süssmuth, G. Whiteley, L.O. Albulescu,
704 T.D. Kazandjian, S.C. Wagstaff, P. Rowley, W. Wüster, P.C. Dorresteijn, A.S. Arias,
705 J.M. Gutiérrez, R.A. Harrison, N.R. Casewell, J.J. Calvete, The medical threat of mamba
706 envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom
707 composition, toxicity and antivenomics profiling of available antivenoms, *J Proteomics.*
708 172 (2018) 173–189.

709 [50] G.T.T. Nguyen, C. O'Brien, Y. Wouters, L. Seneci, A. Gallissà-Calzado, I. Campos-
710 Pinto, S. Ahmadi, A.H. Laustsen, A. Ljungars, High-throughput proteomics and *in vitro*
711 functional characterization of the 26 medically most important elapids and vipers from
712 sub-Saharan Africa, *Gigascience.* 11 (2022) 1–15.

713 [51] C. Knudsen, A.H. Laustsen, Recent Advances in Next Generation Snakebite
714 Antivenoms, *Tropical Medicine and Infectious Disease* 2018, 3 (2018) 42.

715 [52] J.M. Gutiérrez, B. Lomonte, L. Sanz, J.J. Calvete, D. Pla, Immunological profile of
716 antivenoms: Preclinical analysis of the efficacy of a polyspecific antivenom through
717 antivenomics and neutralization assays, *J Proteomics.* 105 (2014) 340–350.

718 [53] S. Ainsworth, S.K. Menzies, N.R. Casewell, R.A. Harrison, An analysis of preclinical
719 efficacy testing of antivenoms for sub-Saharan Africa: Inadequate independent scrutiny
720 and poor-quality reporting are barriers to improving snakebite treatment and
721 management, *PLoS Negl Trop Dis.* 14 (2020) e0008579.

722 [54] A.H. Laustsen, B. Lomonte, B. Lohse, J. Fernández, J.M. Gutiérrez, Unveiling the
723 nature of black mamba (*Dendroaspis polylepis*) venom through venomics and

724 antivenom immunoprofiling: Identification of key toxin targets for antivenom
725 development, *J Proteomics.* 119 (2015) 126–142.

726 [55] L.P. Lauridsen, A.H. Laustsen, B. Lomonte, J.M. Gutiérrez, Toxicovenomics and
727 antivenom profiling of the Eastern green mamba snake (*Dendroaspis angusticeps*), *J*
728 *Proteomics.* 136 (2016) 248–261.

729 [56] N.R. Casewell, D.A.N. Cook, S.C. Wagstaff, A. Nasidi, N. Durfa, W. Wüster, R.A.
730 Harrison, Pre-Clinical Assays Predict Pan-African *Echis* Viper Efficacy for a Species-
731 Specific Antivenom, *PLoS Negl Trop Dis.* 4 (2010) e851.

732 [57] B.F. Hempel, M. Damm, D. Petras, T.D. Kazandjian, C.A. Szentiks, G. Fritsch, G.
733 Nebrich, N.R. Casewell, O. Klein, R.D. Süßmuth, Spatial Venomics—Cobra Venom
734 System Reveals Spatial Differentiation of Snake Toxins by Mass Spectrometry Imaging,
735 *J Proteome Res.* 22 (2023) 26–35.

736 [58] A.B. Smit, N.I. Syed, D. Schaap, J. van Minnen, J. Klumperman, K.S. Kits, H. Lodder,
737 R.C. van der Schors, R. van Elk, B. Sorgedrager, K. Brejc, T.K. Sixma, W.P.M.
738 Geraerts, A glia-derived acetylcholine-binding protein that modulates synaptic
739 transmission, *Nature.* 411 (2001) 261–268.

740 [59] A.H. Laustsen, A. Karatt-Vellatt, E.W. Masters, A.S. Arias, U. Pus, C. Knudsen, S.
741 Oscoz, P. Slavny, D.T. Griffiths, A.M. Luther, R.A. Leah, M. Lindholm, B. Lomonte,
742 J.M. Gutiérrez, J. McCafferty, *In vivo* neutralization of dendrotoxin-mediated
743 neurotoxicity of black mamba venom by oligoclonal human IgG antibodies, *Nat*
744 *Commun.* 9 (2018) 3928.

745 [60] B.T. Green, S.T. Lee, K.D. Welch, J.A. Pfister, K.E. Panter, Fetal muscle-type nicotinic
746 acetylcholine receptor activation in TE-671 cells and inhibition of fetal movement in a
747 day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine, *J*
748 *Pharmacol Exp Ther.* 344 (2013) 295–307.

749 [61] M. Nys, E. Zarkadas, M. Brams, A. Mehregan, K. Kambara, J. Kool, N.R. Casewell, D.
750 Bertrand, J.E. Baenziger, H. Nury, C. Ulens, The molecular mechanism of snake short-
751 chain α -neurotoxin binding to muscle-type nicotinic acetylcholine receptors, *Nat*
752 *Commun.* 13 (2022) 1–12.

753 [62] R.B. Jacobsen, RD(TE671)nAChR α 1 on QPatch, Sophion Bioscience. (2010).
754 <https://sophion.com/publications/te671-nachr-a1-qpatch/> (accessed November 11,
755 2022).

756 [63] G. Gisselmann, D. Alisch, B. Welbers-Joop, H. Hatt, Effects of quinine, quinidine and
757 chloroquine on human muscle nicotinic acetylcholine receptors, *Front Pharmacol.* 9
758 (2018) 1339.

759 [64] V. Gerzanich, X. Peng, F. Wang, G. Wells, R. Anand, S. Fletcher, J. Lindstrom,
760 Comparative pharmacology of epibatidine: a potent agonist for neuronal nicotinic
761 acetylcholine receptors, *Mol Pharmacol.* 48 (1995) 774–782.

762 [65] P.J. Syapin, P.M. Salvaterra, J.K. Engelhardt, Neuronal-like features of TE671 cells:
763 Presence of a functional nicotinic cholinergic receptor, *Brain Res.* 231 (1982) 365–377.

764 [66] B. Hue, S.D. Buckingham, D. Buckingham, D.B. Sattelle, Actions of snake neurotoxins
765 on an insect nicotinic cholinergic synapse, *Invertebrate Neuroscience*. 7 (2007) 173–
766 178.

767 [67] J. Slagboom, R.J.E. Derkx, R. Sadighi, G.W. Somsen, C. Ulens, N.R. Casewell, J. Kool,
768 High-Throughput Venomics, *J Proteome Res.* In press (2023). doi:
769 10.1021/acs.jproteome.2c00780.

770 [68] A. Silva, B. Cristofori-Armstrong, L.D. Rash, W.C. Hodgson, G.K. Isbister, Defining
771 the role of post-synaptic α -neurotoxins in paralysis due to snake envenoming in humans,
772 *Cellular and Molecular Life Sciences*. 75 (2018) 4465–4478.

773 [69] K. Ratanabanangkoon, K.Y. Tan, S. Eursakun, C.H. Tan, P. Simsiriwong, T.
774 Pamornsakda, W. Wiriayarat, C. Klinpayom, N.H. Tan, A Simple and Novel Strategy for
775 the Production of a Pan-specific Antiserum against Elapid Snakes of Asia, *PLoS Negl
776 Trop Dis.* 10 (2016) e0004565.

777 [70] C.A. Vulfius, E.N. Spirova, M. v. Serebryakova, I. v. Shelukhina, D.S. Kudryavtsev, E.
778 v. Kryukova, V.G. Starkov, N. v. Kopylova, M.N. Zhmak, I.A. Ivanov, K.S.
779 Kudryashova, T. v. Andreeva, V.I. Tsetlin, Y.N. Utkin, Peptides from puff adder *Bitis
780 arietans* venom, novel inhibitors of nicotinic acetylcholine receptors, *Toxicon*. 121
781 (2016) 70–76.

782 [71] R.H. Clare, S.R. Hall, R.N. Patel, N.R. Casewell, Small Molecule Drug Discovery for
783 Neglected Tropical Snakebite, *Trends Pharmacol Sci.* 42 (2021) 340–353.

784 [72] L. Ledsgaard, T.P. Jenkins, K. Davidsen, K.E. Krause, A. Martos-Esteban, M. Engmark,
785 M.R. Andersen, O. Lund, A.H. Laustsen, Antibody Cross-Reactivity in Antivenom
786 Research, *Toxins (Basel)*. 10 (2018) 393.

787 [73] A. Silva, W.C. Hodgson, T. Tasoulis, G.K. Isbister, Rodent Lethality Models Are
788 Problematic for Evaluating Antivenoms for Human Envenoming, *Front Pharmacol.* 13
789 (2022) 202.

790 [74] H. Osaka, S. Malany, J.R. Kanter, S.M. Sine, P. Taylor, Subunit interface selectivity of
791 the alpha-neurotoxins for the nicotinic acetylcholine receptor, *J Biol Chem.* 274 (1999)
792 9581–9586.

793 [75] A. Ring, B.O. Strom, S.R. Turner, C.M. Timperley, M. Bird, A.C. Green, J.E. Chad, F.
794 Worek, J.E.H. Tattersall, Bispyridinium compounds inhibit both muscle and neuronal
795 nicotinic acetylcholine receptors in human cell lines, *PLoS One*. 10 (2015) e0135811.

796 [76] T.M. Huynh, W.C. Hodgson, G.K. Isbister, A. Silva, The Effect of Australian and Asian
797 Commercial Antivenoms in Reversing the Post-Synaptic Neurotoxicity of *O. hannah*,
798 *N. naja* and *N. kaouthia* Venoms *In Vitro*, *Toxins*. 14 (2022) 277.

799 [77] U. Madhushani, G.K. Isbister, T. Tasoulis, W.C. Hodgson, A. Silva, *In-Vitro*
800 Neutralization of the Neurotoxicity of Coastal Taipan Venom by Australian Polyvalent
801 Antivenom: The Window of Opportunity, *Toxins*. 12 (2020) 690.

802

803

804 **Table 1. The EC₅₀ and IC₅₀ values of known nAChR agonists, isolated snake venom α -
805 NTxs, and crude snake venoms obtained in this study**

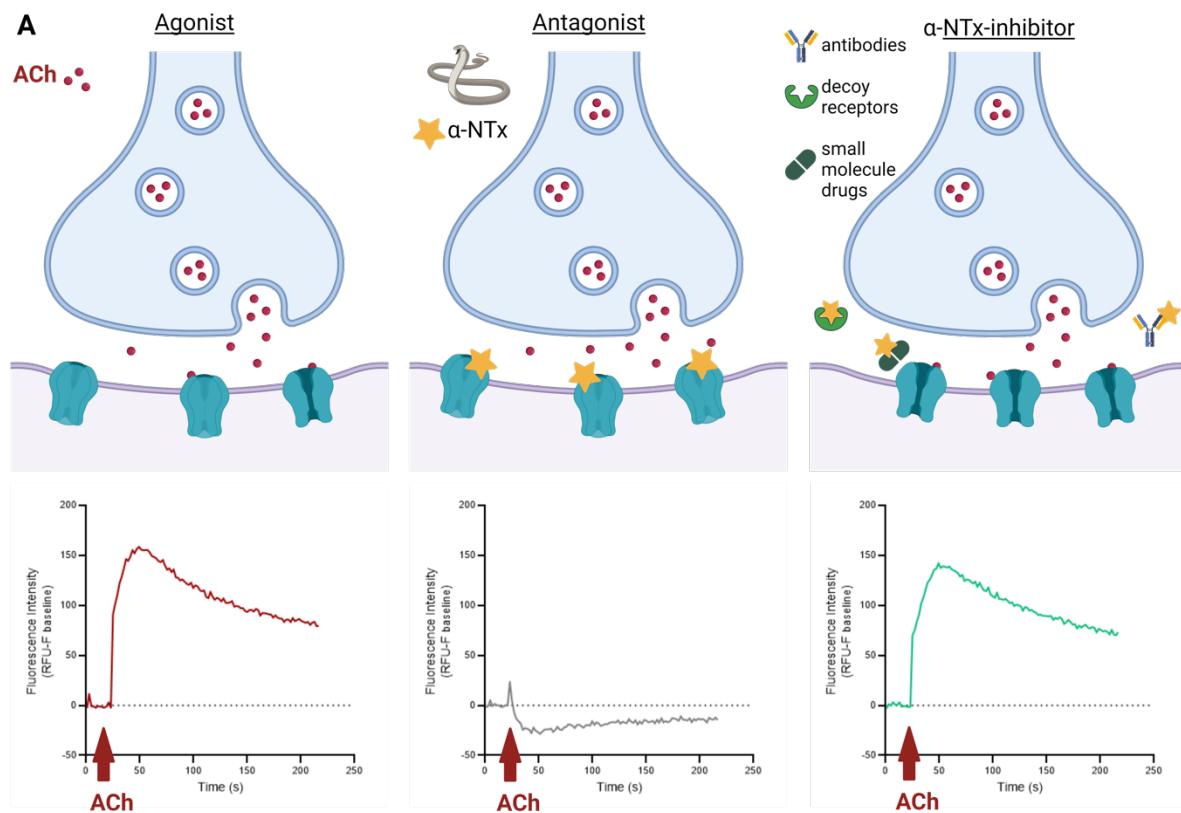
nAChR modulator	<i>EC₅₀ (μM)</i>	<i>95% CI (μM)</i>
<i>Agonist</i>		
Acetylcholine (ACh)	0.95	0.86 – 1.05
Nicotine	34.00	26.60 – 43.40
Epibatididine	0.08	0.03 – 0.23
<i>Isolated venom toxins</i>		
	<i>IC₅₀ (nM)</i>	<i>95% CI (nM)</i>
α -Bungarotoxin (α -BgTx)	1.42	0.83 – 2.44
Short neurotoxin 1 (sNTx1)	7.23	4.83 – 10.80
<i>Crude snake venom</i>		
	<i>IC₅₀ (μg/mL)</i>	<i>95% CI (μg/mL)</i>
<i>Dendroaspis polylepis</i>	0.04	0.02 – 0.06
<i>Dendroaspis j. kaimosae</i>	0.10	0.04 – 0.29
<i>Dendroaspis j. jamesoni</i>	0.14	0.08 – 0.25
<i>Dendroaspis viridis</i>	0.59	0.22 – 1.37
<i>Dendroaspis angusticeps</i>	4.49	2.24 – 9.02
<i>Naja subfulva</i>	0.03	0.02 – 0.05
<i>Naja haje</i>	0.57	0.30 – 1.08
<i>Naja nivea</i>	0.30	0.23 – 0.38

806

807

808

809

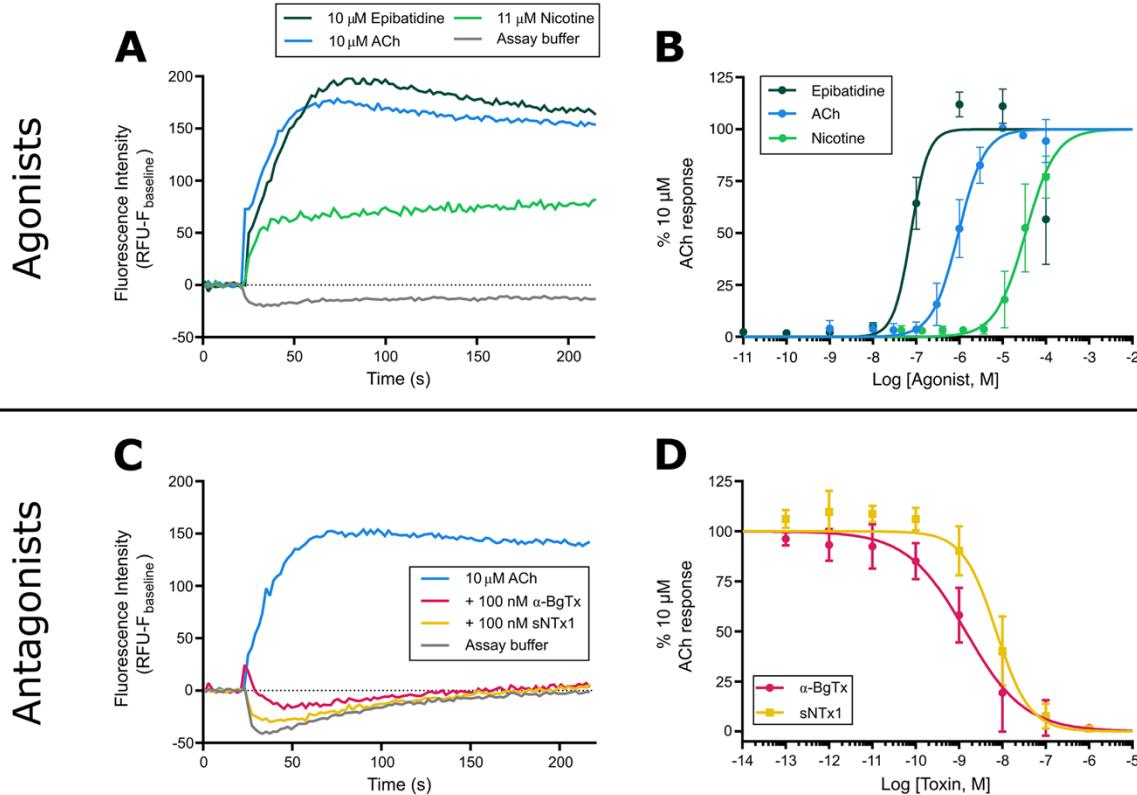

810

811

812

813

814



815

816 **Fig. 1. Schematic of the neuromuscular junction and overview of corresponding readouts**
817 **from the developed assay of nAChR activation.** The schematics of the neuromuscular
818 junction (top panels) demonstrate the release of ACh from the pre-synaptic neuron and binding
819 of ACh to the post-synaptic membrane in the absence of α-NTxs (left, Agonist), in the presence
820 of α-NTxs (middle, Antagonist), and in the presence of both α-NTxs and α-NTx-inhibitors
821 (right, α-NTx-inhibitor). Underneath each illustration is the typical fluorescent response using
822 the assay of a well in a 96-well plate containing TE671 cells when ACh alone (Agonist), ACh
823 and α-NTx (Antagonist) and ACh, α-NTx and α-NTx-inhibitors (α-NTx-inhibitors: antibodies,
824 decoy receptors, and small molecules) are added. All schematics were created with BioRender.

825

826

827

828 **Fig. 2. Known nAChR agonists and antagonists show expected action on TE671 nAChR**

829 activation when using membrane potential dye. (A) Representative traces showing changes

830 in fluorescence intensity of TE671 cells upon addition of nAChR agonists epibatidine (10 μ M,

831 dark green), ACh (10 μ M, blue), and nicotine (11 μ M, light green), as well as assay buffer only

832 (grey), after 20 s baseline recording. (B) Concentration-response plots showing the changes in

833 the peak fluorescence intensity after addition of serial dilutions of epibatidine (dark green),

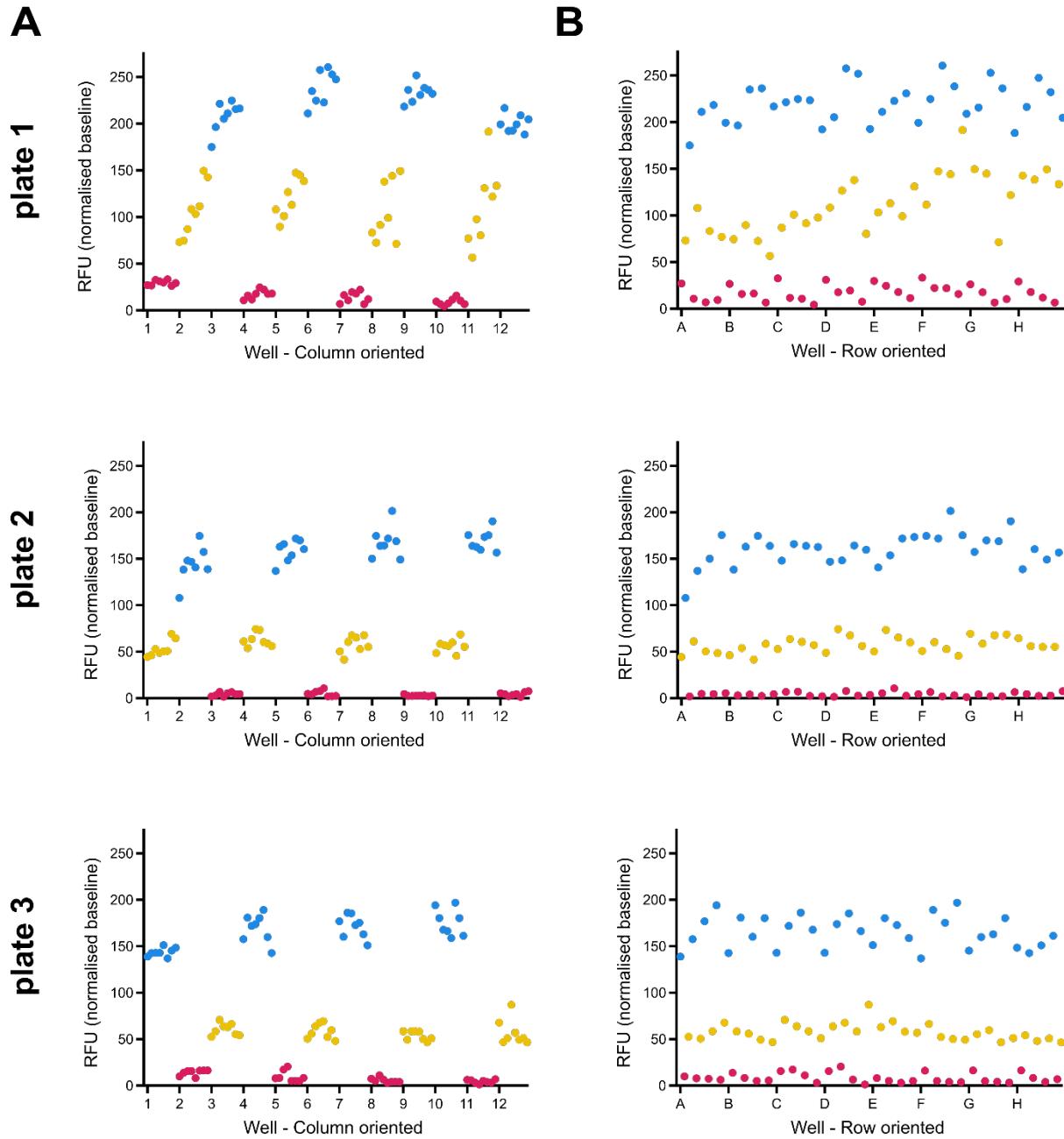
834 ACh (blue), and nicotine (light green). (C) Representative traces showing changes in

835 fluorescence intensity of TE671 cells after 15 min pre-incubation with 100 nM of the isolated

836 Lc- α -NTx α -BgTx (red) and the Sc- α -NTx sNTx1 (yellow), followed by addition of 10 μ M

837 ACh after 20 s baseline recording. Representative traces of 10 μ M ACh control (blue) and

838 assay buffer (grey) are also included. (D) Concentration-inhibition plots showing the inhibition


839 of peak fluorescence intensity of the 10 μ M ACh response after the pre-incubation of serial

840 dilutions of α -BgTx (red) and sNTx1 (yellow). Each data point in (B) and (D) represents the

841 mean (\pm SD) of three independent experiments (n=3).

842

843

C

plate	Mean RFU			SD			CV			Mean RFU normalised to Max and Min controls		
	MIN	MID	MAX	MIN	MID	MAX	MIN	MID	MAX	MIN	MID	MAX
	1	17.5	111.2	220.1	8.7	31.2	21.3	8.8	5.0	1.7	0.0	46.2
2	4.1	57.4	160.0	2.2	8.5	17.5	9.3	2.6	1.9	0.0	34.2	100.0
3	8.5	57.4	165.0	5.2	8.9	17.3	10.9	2.7	1.9	0.0	31.2	100.0

844 **Fig. 3. Responses of TE671 nAChRs with membrane potential dye are consistent across**
 845 **a 96-well plate.** Scatter plots of the fluorescent response of TE671 cells from wells of a 96-
 846 well plate pre-incubated with concentrations of α -BgTx that either give maximal inhibition (30
 847 nM, MIN, red), a middle level of inhibition (3 nM, MID, yellow), or no inhibition (none, MAX,
 848

849 blue), followed by the addition of 10 μ M ACh. Each condition was applied to alternating
850 columns of three separate plates (n=3). Each row of plots contains data generated from one
851 plate. Each plate was recorded on a different day with cells of a different passage number and
852 the assigned MIN, MID, and MAX columns were changed on each plate. Each data point is
853 the resulting RFU value after calculating $F_{\text{max}} - F_{\text{baseline}}$ and are plotted by column (A) or by row
854 (B). (C) Summary table of the RFU mean, standard deviation (SD) and coefficient of variance
855 (CV) for each control (MIN, MID, MAX) for each plate. The final column presents the RFU
856 mean once normalised to the MIN and MAX controls.

857

858

859

860

861

862

863

864

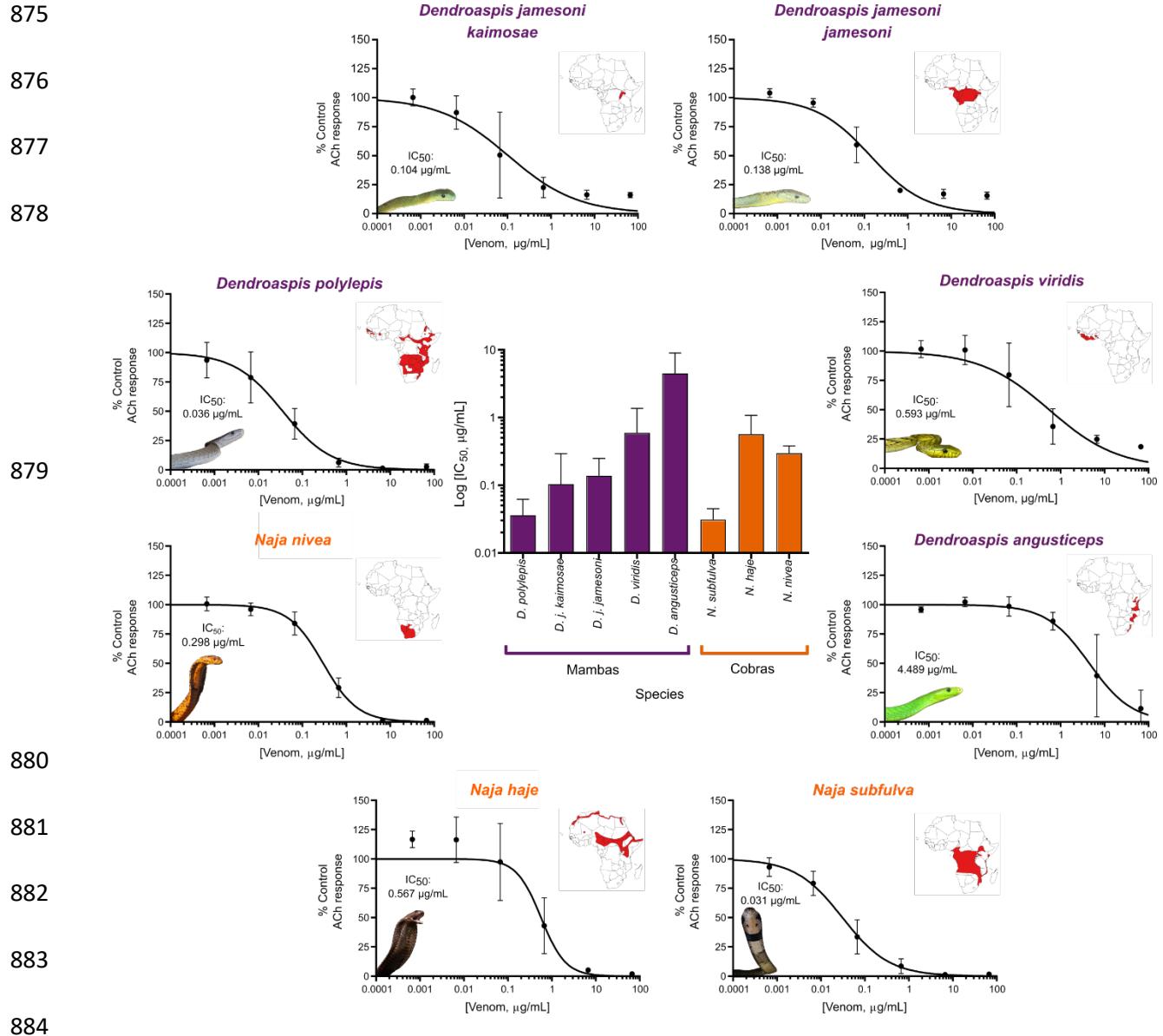
865

866

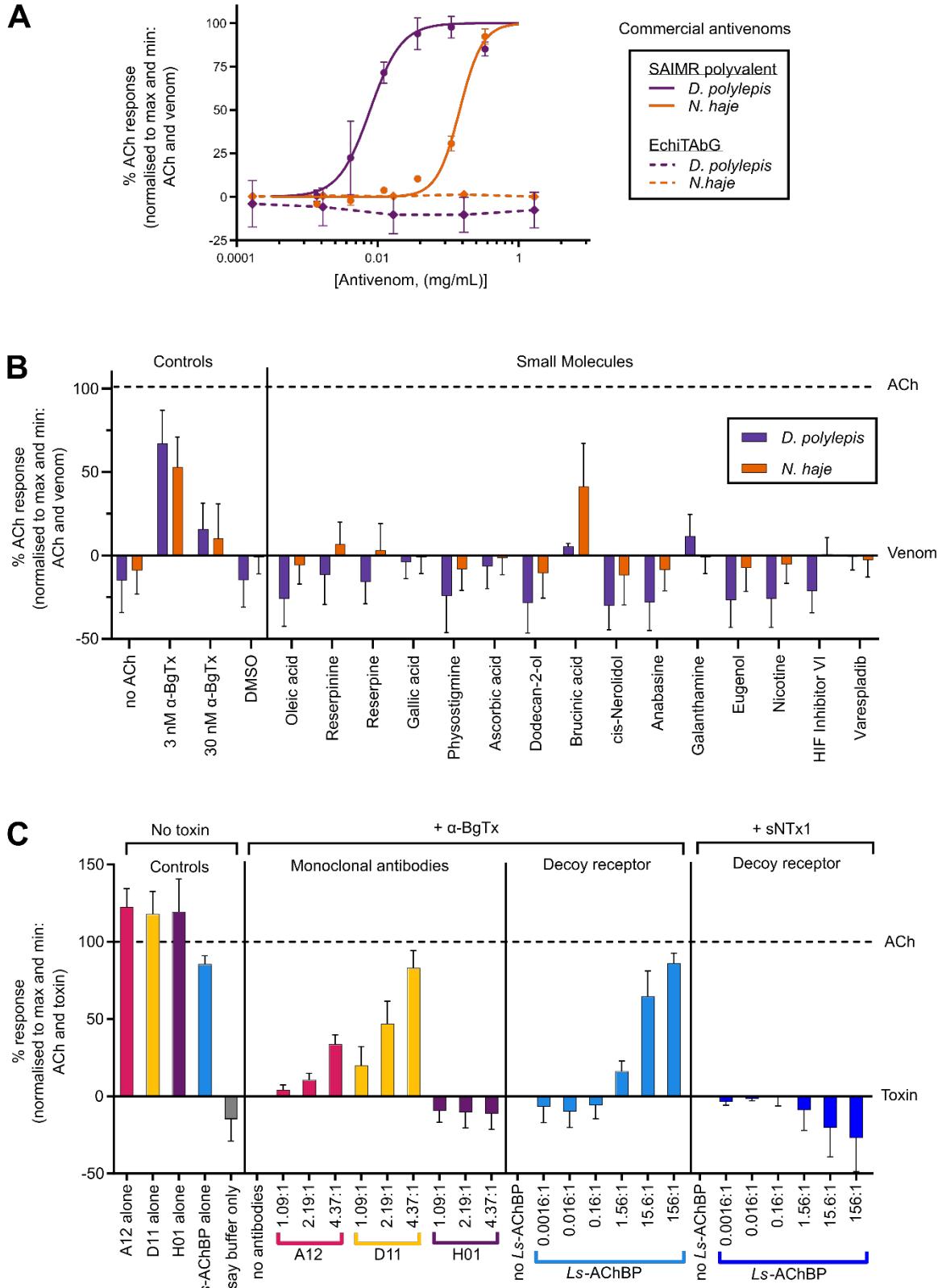
867

868

869


870

871


872

873

874

Fig. 4. Crude snake venoms show antagonism on nAChRs expressed in TE671 cells. Serial dilutions of crude venom (66.7 – 0.00067 µg/mL) extracted from neurotoxic elapid snake species with geographical distributions covering different regions of the African continent were pre-incubated with TE671 cells for 15 min followed by the addition of 10 µM ACh to create concentration-inhibition plots for each venom (outer ring). Each data point represents the mean (±SD) of three independent experiments (n=3). To the top right of each plot on the outer ring are maps of the African continent highlighting in red the geographical distribution of each species. Maps were generated using QGIS, based on the 2019 International Union for Conservation of Nature Red List of Threatened Species. The central plot compares the IC₅₀ values (±95% CI) obtained from mamba (purple) and cobra (orange) venoms and IC₅₀ values are displayed above images of snakes inset to the bottom left of each plot.

896

897 **Fig. 5. Inhibition of venom or isolated α-NTxs by commercial antivenom, small**
 898 **molecules, monoclonal antibodies, and decoy receptors.** α-NTx-inhibitors of various

899 formats were co-incubated with concentrations of crude venom (0.67 µg/mL for *D. polylepis*
900 and 6.67 µg/mL for *N. haje*) or isolated α -NTx (30 nM) that gave approximate maximal
901 inhibition prior to application to TE671 cells. All data points represent the mean (\pm SD) of three
902 independent experiments (n=3) and are normalised to 10 µM ACh (100% signal) and ACh +
903 venom/ α -NTx (0% signal) controls with α -NTx-inhibitory activity represented by recovery
904 towards the 100% ACh signal. Venom/ α -NTx concentrations were constant at 6.67 and 0.67
905 µg/mL for *N. haje* and *D. polylepis* respectively. (A) Concentration-response curves showing
906 TE671 ACh response after crude *D. polylepis* (purple) and *N. haje* (orange) venoms were co-
907 incubated with serial dilutions of SAIMR polyvalent antivenom (solid lines, 333.3 – 1.4
908 µg/mL) and EchiTABG (dotted lines, 1670.0 – 0.2 µg/mL). Only SAIMR polyvalent antivenom
909 showed α -NTx-inhibiting activity with EC₅₀s of 7.8 µg/mL for *D. polylepis* and 146.1 µg/mL
910 for *N. haje*. (B) Screening of a panel of rationally selected small molecules at 100 µM co-
911 incubated with crude *D. polylepis* (purple) and *N. haje* (orange) venom. Each experiment
912 included controls of assay buffer only (no ACh), 3 nM and 30 nM α -BgTx, and 1% DMSO as
913 the drug vehicle control (DMSO). Only brucinic acid (NSC 121865) showed α -NTx-inhibiting
914 activity after incubation with *N. haje* venom, but *D. polylepis* venom was not inhibited. (C)
915 Serial dilutions of the ‘decoy receptor’ *Ls*-AChBP were pre-incubated with either 30 nM α -
916 BgTx or 30 nM sNTx1 at molar ratios ranging from 156:1 – 0.0016:1 and dilutions of the mAbs
917 2551_01_A12 (A12) and 2554_01_D11 (D11) specific to Lc- α -NTXs, and 367_01_H01 (H01)
918 specific to dendrotoxins were co-incubated with 30 nM α -BgTx at molar ratios of 4.37:1, 2.19:1
919 and 1.09:1. Inhibition of α -BgTx activity was observed after *Ls*-AChBP was co-incubated with
920 α -BgTx at molar ratios of 156:1 – 1.56:1 but no inhibition of sNTx1 was observed after further
921 dilution. Inhibition of α -BgTx activity was observed with only 2554_01_D11 (restoration to
922 83.1% of control ACh response with 4.37:1 ratio) and 2551_01_A12 mAbs, with
923 2554_01_D11 showing a greater level of α -NTx inhibition than 2551_01_A12 (restored to
924 83.1% of control response as opposed to 33.6% with 4.37:1 ratio). To ensure the α -NTx-
925 inhibitors themselves had no effect on nAChR activation, controls of mAb only
926 (2551_01_A12, 2554_01_D11, and 367_01_H01 alone) and *Ls*-AChBP only at the highest
927 concentrations used for pre-incubation with α -NTXs were also included.