

Serial Lift-Out – Sampling the Molecular Anatomy of Whole Organisms

4 Oda Helene Schiøtz^{*,1}, Christoph J.O. Kaiser^{*,1}, Sven Klumpe^{*,#1}, Dustin R. Morado², Matthias
5 Poege³, Jonathan Schneider³, Florian Beck¹, Christopher Thompson⁴, Jürgen M. Plitzko^{#,1}

¹ Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany

² Department Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany

12 ³ Department Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried,
13 Germany

⁴ Materials & Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands

17 * Co-first authors

18 # Correspondence to: klumpe@biochem.mpg.de, plitzko@biochem.mpg.de

19 **Keywords**

20 Cryo-focused ion beam (cryo-FIB), Lift-Out, *C. elegans*, cryo-electron tomography (cryo-ET)

22 **Abstract**

23 Cryo-focused ion beam milling of frozen-hydrated cells and subsequent cryo-electron tomography
24 (cryo-ET) has enabled the structural elucidation of macromolecular complexes directly inside cells.
25 Application of the technique to multicellular organisms and tissues, however, is still limited by sample
26 preparation. While high-pressure freezing enables the vitrification of thicker samples, it prolongs
27 subsequent preparation due to increased thinning times and the need for extraction procedures.
28 Additionally, thinning removes large portions of the specimen, restricting the imageable volume to the
29 thickness of the final lamella, typically < 300 nm. Here, we introduce Serial Lift-Out, an enhanced lift-
30 out technique that increases throughput and obtainable contextual information by preparing multiple
31 sections from single transfers. We apply Serial Lift-Out to *C. elegans* L1 larvae yielding a cryo-ET
32 dataset sampling the worm’s anterior-posterior axis and resolve its ribosome structure to 7 Å,
33 illustrating how Serial Lift-Out enables the study of multicellular molecular anatomy.

34 **Introduction**

35 Single particle analysis (SPA) by cryo-transmission electron microscopy (cryo-TEM) has become a
36 key technique to study the structure of isolated biological macromolecules at high-resolution
37 (Kühlbrandt 2014). While SPA routinely reaches resolutions where protein side-chains can be fitted
38 unambiguously, the reductionist approach of studying protein complexes *in vitro* loses all information
39 concerning their molecular sociology: the interaction of the molecular complexes in their natural
40 environment (Beck & Baumeister 2016). Conversely, *in situ* cryo-electron tomography (cryo-ET)
41 allows for the reconstruction of pleomorphic structures such as the crowded environment of the cell
42 at molecular resolution, maintaining the interaction and localization of protein complexes within the
43 biological system (Dietrich et al 2022, Gupta et al 2021, Hoffmann et al 2022, O'Reilly et al 2020,
44 Plitzko et al 2017, Watanabe et al 2020).

45 One of the primary factors limiting the resolution of cryo-TEM is inelastic scattering. As the
46 mean free path of an electron in vitrified biological samples is about 300-400 nm, samples beyond the
47 size of viruses and small prokaryotic cells are generally too thick for cryo-ET (Liedtke et al 2022,
48 O'Reilly et al 2020). In consequence, two main sample thinning methods to obtain electron-
49 transparent specimens for cryo-ET have been developed: cryo-ultramicrotomy and cryo-FIB milling.
50 Cryo-ultramicrotomy encompasses the thin-sectioning of vitreous cells and tissues with a diamond
51 knife (Al-Amoudi et al 2004). The shearing forces at the knife's edge, however, cause mechanical
52 artifacts such as crevices and compression in the resulting sections (Al-Amoudi et al 2003). More
53 recently, the focused ion beam (FIB) instrument has been widely adopted for sample thinning at
54 cryogenic temperatures. While not completely damage-free (Berger et al 2023, Lucas & Grigorieff
55 2023), the technique bypasses the mechanical artifacts of cryo-ultramicrotomy (Marko et al 2007,
56 Rigort et al 2012) and has been shown to yield data that can allow for the elucidation of ribosomes to
57 side-chain resolution (Hoffmann et al 2022). The automation of lamella preparation by cryo-FIB milling
58 has also reduced the need for user expertise and manual intervention (Buckley et al 2020, Klumpe et
59 al 2021, Zachs et al 2020).

60 Prior to thinning, the sample must be cryogenically fixed by cooling at a sufficiently high rate
61 to prevent ice crystal formation, resulting in a vitrified sample. There are two main methods available
62 for vitrification: plunge freezing, in which the sample is immersed at ambient pressure into liquid
63 ethane or ethane-propane mixture (Tivol et al 2008), and high pressure freezing (HPF), in which the
64 sample is cooled with a jet of liquid nitrogen at a pressure of ~2000 bar. While the former yields
65 samples that are easily FIB-milled, the sample thickness that can reliably be vitrified is limited to
66 roughly 10 µm. HPF, on the other hand, allows for the vitrification of samples up to a thickness of
67 roughly 200 µm (Dubochet 1995).

68 Consequently, HPF greatly expands the size range of biological samples that can be vitrified
69 but comes at the cost of embedding the specimen in a thick layer of ice defined by the depth of the

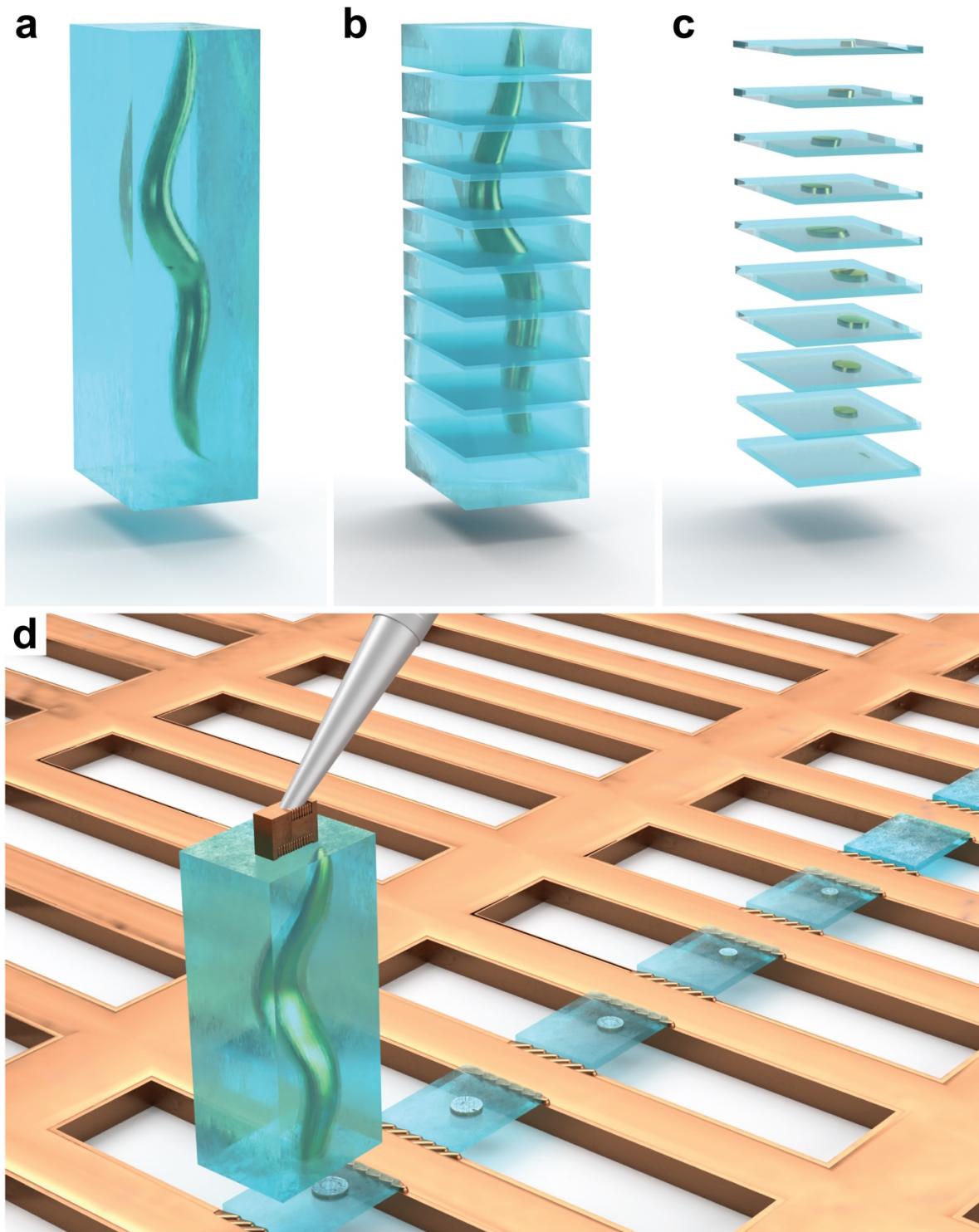
70 freezing receptacle. This increased sample thickness leads to longer milling times. While samples up
71 to a thickness of about 50 μm can be prepared by milling lamellae directly on the grid following the
72 'waffle' method (Kelley et al 2022), lamellae from thicker samples have, to date, only been prepared
73 by cryo-lift-out (Klumpe et al 2021, Kuba et al 2021, Mahamid et al 2015, Parmenter et al 2016, Rubino
74 et al 2012, Schaffer et al 2019).

75 Cryo-lift-out refers to the extraction of the material for lamella preparation from bulk HPF
76 sample and subsequent transfer and attachment to a lift-out receiver grid, conventionally a half-moon
77 shaped grid (Giannuzzi et al 2005). Two main types of micromanipulator devices are currently
78 available for cryo-lift-out: sharp needles and a cryo-gripper (Klumpe et al 2022). Initially, trenches are
79 milled around the area of interest leaving it connected to the bulk material on a single side. For
80 specimens in HPF sample carriers, the material must additionally be cleared from below. After these
81 preparatory steps, the lift-out device is brought in contact with the volume to be extracted. The
82 remaining connection to the bulk material is removed, the micromanipulator is used to transfer the
83 extracted volume and redeposition milling (Schreiber et al 2018) is used to attach the volume to the
84 receiver grid. Finally, an electron transparent lamella is prepared (Parmenter & Nizamudeen 2021).

85 While widely used in materials science at room temperature (Giannuzzi et al 2005), cryo-lift-
86 out of biological samples has remained primarily proof-of-concept (Klumpe et al 2021, Parmenter et
87 al 2016, Rubino et al 2012, Schaffer et al 2019, Schreiber et al 2018). This is due to a number of
88 factors, e.g. the need for cooled micromanipulator devices and accompanying workflow adaptations
89 required resulting in limited throughput and problems with lamella loss during transfer to the TEM
90 (Schaffer et al 2019).

91 Another limitation to cryo-lift-out, as well as on-grid lamella preparation is the loss of contextual
92 information. Only a fraction of the sample volume ($\sim 1\%$ for larger eukaryotic cells, $< 1\%$ for
93 multicellular specimens) ends up inside the final lamella for cryo-ET data acquisition. Techniques exist
94 that are capable of capturing larger volumetric data and tracking morphology at comparatively large
95 volume scales. Examples of such techniques are X-ray tomography and various volume electron
96 microscopy (vEM) techniques: serial FIB milling and scanning electron microscopy, and serial
97 sectioning of plastic embedded samples imaged by TEM or STEM. These techniques, however,
98 currently cannot achieve the resolution attainable by cryo-ET at an equivalent sample preservation
99 state due to physical limitations in imaging or the necessity of fixation and contrasting (Dumoux et al
100 2023, Spehner et al 2020).

101 In this work, we describe a novel cryo-lift-out approach that creates a series of lamellae from
102 one lift-out volume that we term Serial Lift-Out. Inspired by diamond knife serial sectioning, Serial Lift-
103 Out retains more contextual information than previous procedures and increases the throughput of
104 cryo-lift-out by an order of magnitude. It sets the stage for the study of multicellular organisms and
105 tissues by cryo-ET – applications that previously seemed practically impossible (Parmenter et al
106 2016). We demonstrate Serial Lift-Out on high-pressure frozen *Caenorhabditis elegans* L1 stage


107 larvae, sampling their ultrastructure along the anterior-posterior axis by cryo-electron tomography.
108 From the resulting dataset, we reconstruct the nematode's ribosome to 7 Å resolution by
109 subtomogram averaging, exemplifying the enormous potential of Serial Lift-Out for the study of the
110 molecular anatomy of multicellular systems.

111 **Results**

112 **The concept behind Serial Lift-Out**

113 The most time-consuming steps in cryo-lift-out are the preparation of the extraction sites and
114 the transfer of the extracted volume to the receiving grid. Each repetition of the lift-out cycle therefore
115 adds significant time investment with low yield. Scaling up the extracted volume and producing
116 multiple lamellae from a single lift-out bypasses this repetitive, time-consuming trench milling and
117 transfer, increases throughput and, foremost, provides more contextual information about the targeted
118 material.

119 A specific implementation of this concept is the extraction of an entire L1 larva of *C. elegans*,
120 followed by repeated steps of attachment to the receiving grid, sectioning and transfer of the remaining
121 volume to the next attachment site (Figure 1). While material is still lost during sectioning and thinning,
122 a large fraction of the worm is made readily accessible to cryo-TEM data acquisition.

123
124 **Figure 1: A schematic of Serial Lift-Out.** An illustration of the Serial Lift-Out method, exemplified by the
125 process being performed on a *C. elegans* L1 larva embedded in an extracted volume of vitrified ice (blue). **a**,
126 The extracted volume containing the larva. **b**, **c**, Schematic representation of the resulting Serial Lift-Out
127 sections and lamellae, respectively. **d**, Illustration of the double-sided attachment Serial Lift-Out procedure. The
128 extracted volume shown in panel **a** is attached to the lift-out needle via a copper block adaptor and transferred
129 to a rectangular mesh receiver grid. Several sections are shown, obtained by the repetition of the attachment of
130 the bottom part of the volume to the grid bars and subsequent sectioning.

131

132 Previous lift-out approaches extracted volumes approximately the size of the final lamella
133 (Figure 1 - Figure Supplement 1a), with some excess material for stability during transfer and
134 attachment. In order to section multiple lamellae from a single cryo-lift-out transfer, the volume
135 extracted by cryo-lift-out needed to be increased. To ease the manipulation of such large volumes,
136 we introduced a copper block that acts as an adapter between the needle and the extracted volume.
137 This copper block is created from the receiver grid and attached to the needle before lift-out (Figure
138 1 - Figure Supplement 2, Figure 1 – Figure Supplement 3). As copper has higher redeposition rates
139 than the tungsten needle, the copper block adapter results in significantly more resilient “welding” of
140 the specimen to the micromanipulator.

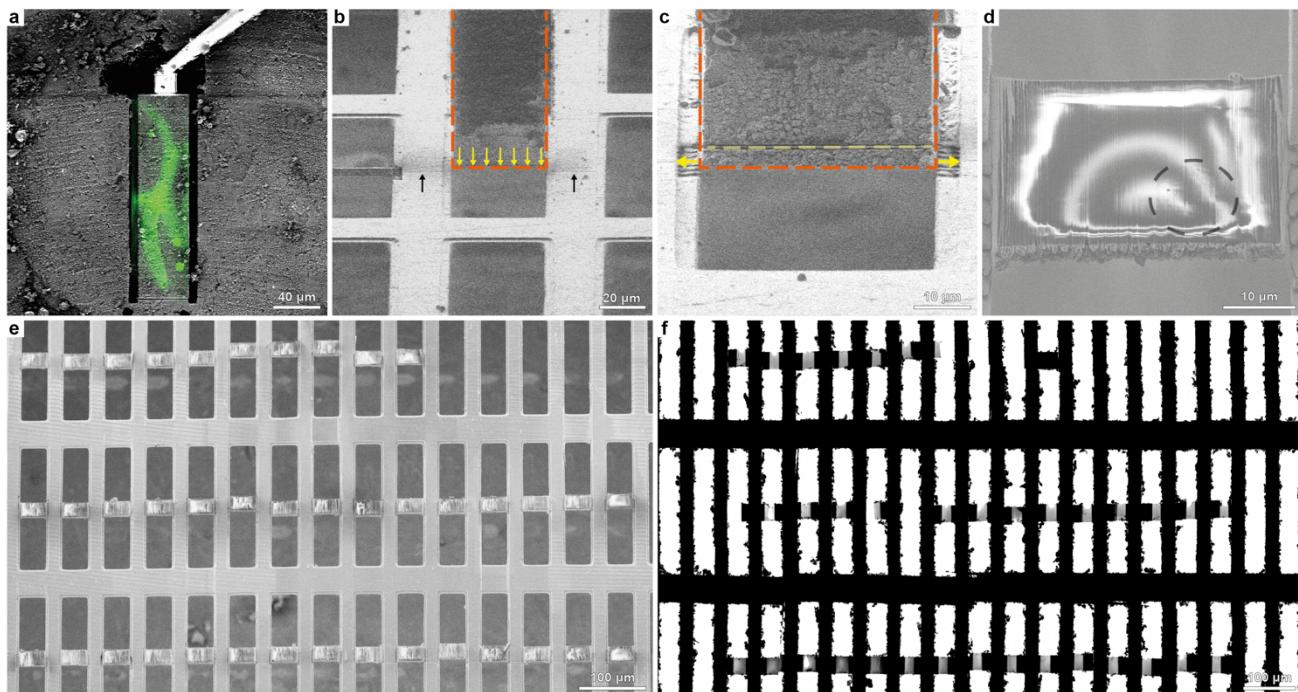
141 Another volume limiting factor is the ablation rate of the ion beam. Most cryo-FIB machines
142 are equipped with a gallium ion source rendering it impractical to mill beyond 50 μm in depth. In
143 addition, for samples frozen in HPF carriers, preparation requires an undercut, the removal of material
144 below the extracted volume, to detach the extraction volume from the bulk. In combination, these
145 factors generally result in maximum extraction volumes of approximately 20 $\mu\text{m} \times 20 \mu\text{m} \times 10-30 \mu\text{m}$
146 (length x width x height, Figure 1 - Figure Supplement 1b).

147 In order to extract larger volumes, we performed lift-out on an HPF ‘waffle’-type sample. HPF
148 ‘waffle’ samples are prepared by freezing sample on a grid that is sandwiched between HPF carriers
149 (Kelley et al 2022). The final thickness is therefore defined by the type of grid and spacer being used
150 during freezing. For a 25 μm thick specimen, extraction volumes of up to 200 $\mu\text{m} \times 40 \mu\text{m} \times 25 \mu\text{m}$
151 can easily be obtained by performing lift-out with the sample surface oriented perpendicular to the ion
152 beam (Figure 1 – Figure Supplement 1c). The same orientation is used during trench milling and will
153 be referred to as ‘trench milling orientation’ (Figure 1 – Figure Supplement 3c,f). Such large volumes
154 extracted at the trench milling orientation can yield many sections from a single lift-out which can be
155 subsequently thinned to lamellae for cryo-ET data acquisition (Figure 1b,c).

156 **Application of Serial Lift-Out to *C. elegans* L1 larvae**

157

158 To assess the feasibility of obtaining serial lamellae from a single lift-out transfer, we performed the
159 procedure on *C. elegans* L1 larvae that had been vitrified using a modified protocol of the ‘waffle’
160 method (Figure 2). The sample contained many L1 larvae embedded in an approximately 25 μm thick
161 layer of ice (Figure 2 - Figure Supplement 1). Two sites from two different grids were selected for
162 preparation by correlating cryo-fluorescence light microscopy with SEM and FIB view images.
163 Following the geometry described in Figure 1 - Supplement 1c, the sites were prepared by milling
164 trenches around the larva, yielding a 30 $\mu\text{m} \times 110 \mu\text{m} \times 25 \mu\text{m}$ and a 40 $\mu\text{m} \times 180 \mu\text{m} \times 25 \mu\text{m}$
165 extraction volume (Figure 2a, Figure 2 – Figure Supplement 3a). Two different attachment strategies


166 were explored, with resulting lamellae either being attached on one side (single-sided attachment) or
167 two sides (double-sided attachment). To extract the volumes, the needle with the copper adapter
168 (Figure 2a, Figure 2 – Figure Supplement 3b) was attached to the sample using redeposition: copper
169 material redepositing onto the surface of the extraction volume during milling. The extraction volume
170 was subsequently milled free from the bulk material and lifted out.

171 The volume was then transferred to the receiver grid. For single-sided attachment, a modified
172 grid based on customizing a standard 100 mesh copper grid (Figure 2 - Figure Supplement 2) was
173 used. Removing every second row of grid bars yielded an array of trimmed grid bars that resemble
174 the pins of a standard half-moon shaped lift-out grid (Figure 2 - Figure Supplement 2e). Alternatively,
175 a copper grid with rectangular meshes can be used for double-sided attachment of volumes roughly
176 as wide as the mesh (~40 μm for the 400/100 rectangular mesh grids used here, Figure 2b). Double-
177 sided attachment has the added benefit of increased section stability by eliminating the free-standing
178 side (Figure 2 – Figure Supplement 3f).

179 The volume's lower front edge was precisely aligned to the front edge of the attachment pin
180 (Figure 2 – Figure Supplement 3c) or a previously prepared alignment line pattern milled onto the
181 receiver grid (Figure 2b). Then, redeposition milling was used to attach the lower part of the volume
182 to the grid bar(s) (Figure 2c, Figure 2 – Figure Supplement 3d, yellow arrows). After attachment, the
183 lower part of the target material was separated from the extracted volume using a line pattern (Figure
184 2c, Figure 2 – Figure Supplement 3d, yellow dashed line), leaving a ~4 μm thick section (Figure 2d,
185 Figure 2 – Figure Supplement 3e,f). Once sectioned, the remaining volume attached to the lift-out
186 needle was transferred to the next attachment site. This procedure was iterated until no material
187 remained. As a result, many sections were produced from a single cryo-lift-out transfer (Figure 2e-f).

188 To assess the general applicability of the approach to non-'waffle' type samples, an additional
189 experiment was performed on *D. melanogaster* egg chambers, high-pressure frozen in standard
190 sample carriers. From a ~20 μm long and ~15 μm deep extracted volume we produced sections of
191 ~1-2 μm thickness (Figure 2 - Figure Supplement 4).

192
193

194

195 **Figure 2: A workflow for double-sided attachment Serial Lift-Out.** **a**, FIB image of the prepared extraction
196 site with overlaid correlated fluorescence data (green) indicating the larva being targeted. The micromanipulator
197 is attached to the extraction volume by redeposition from the copper adapter (trench milling orientation). **b**, The
198 extracted volume (orange dashed line) is lowered into position between two grid bars in lamella milling
199 orientation. The lower front edge of the volume (yellow arrows) is aligned to the pre-milled line mark (black
200 arrows). **c**, Double-sided attachment by redeposition from the grid bars (yellow arrows indicate direction of
201 milling), followed by line pattern milling releasing the section of a desired thickness (dashed yellow line). Orange
202 dashed line indicates the outline of the extracted volume. **d**, SEM image of a typical section after being released
203 from the extracted volume. Black dashed line indicates the outline of the worm cross-section. **e,f**, SEM (e) and
204 TEM (f) overview images of the 40 double-sided attached sections obtained. Figure 2 - Movie Supplement 1
205 summarizes the process.

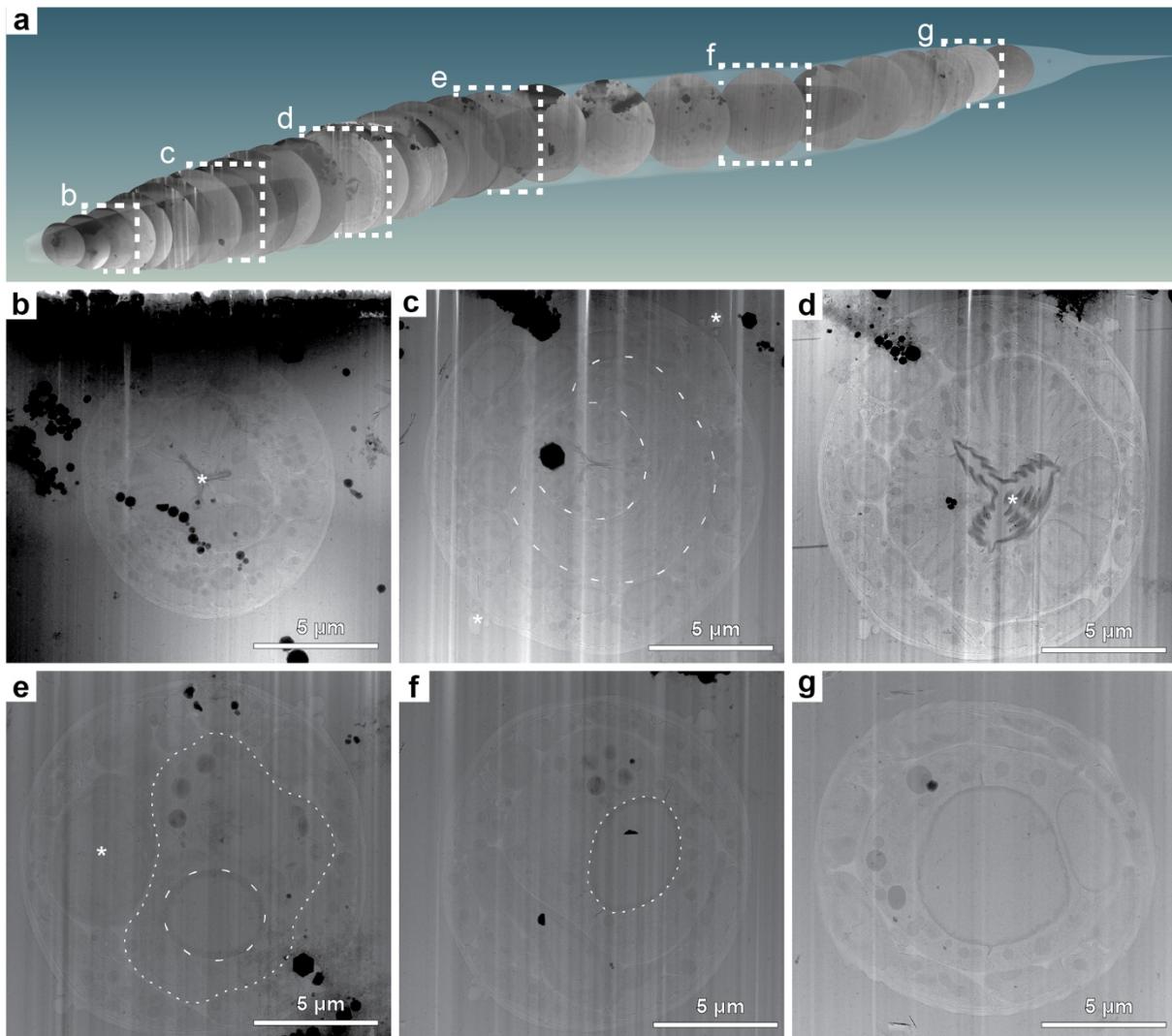
206

Sampling organismal cellular anatomy along the *C. elegans* L1 larva at molecular resolution

207

208 We prepared dozens of sections along the anterior-posterior axis of *C. elegans* L1 larvae: 12
209 single-sided attached and 40 double-sided attached lamellae (Figure 2 – Figure Supplement 3g,
210 Figure 2e). After transfer to the TEM, 8 out of 12 and 32 out of 40 lamellae were recovered,
211 respectively (Figure 3 – Figure Supplement 1a, Figure 3 – Figure Supplement 2a). Lamella loss during
212 transfer is common due to manual grid handling steps. The increased rate of successfully transferred
213 lamellae from 66% for single-sided to 80% for double-sided attachment is indicative of the increased
214 lamella stability of double-sided attachment.

215


216 From these successfully transferred lamellae, overview maps were recorded (approximately
20 $\mu\text{m} \times 25 \mu\text{m}$ in size, Figure 3 – Figure Supplement 1, Figure 3 – Figure Supplement 2) depicting
clear larval cross-sections. These overviews allowed the identification and assignment of anatomical

217 structures and tissues such as the pharynx, the body-wall muscle cells, neurons, the hypodermis and
218 seam cells. Larger organelles such as nuclei, mitochondria, Golgi cisternae, storage granules,
219 junctional regions, bundles of actin filaments and microtubules were clearly discernible (Figure 3b-g,
220 Figure3 - Movie Supplement 1). Given the stereotypic body plan of *C. elegans*, the information
221 obtained from the overviews together with the sectioning thickness was used to determine the
222 approximate location of the sections in the worm, as schematically shown in Figure 3a.

223 The biological area within each lamella can, due to the circular nature of cross sections, be
224 estimated by πr^2 , where the average radius is around 5 μm , resulting in a mean of 78.5 μm^2 imageable
225 area per lamella. For the single-sided attachment experiment, the total imageable area was ~ 630
226 μm^2 and allowed for the collection of 57 tilt series, each with a field of view of $\sim 1.2 \mu\text{m}$ in size. The
227 double-sided attachment experiment yielded $\sim 2500 \mu\text{m}^2$ imageable area from which a total of 1012
228 tilt series with a field of view of $\sim 750 \text{ nm}$ in size were collected. The double-sided attachment
229 experiment allowed us to sample a large fraction of all tissues and cell types along the anterior-
230 posterior body axis of the *C. elegans* L1 larva.

231 To illustrate the information level already present at intermediate magnification (11,500x), we
232 manually segmented a representative cross-section (Figure 4A). The segmentation illustrates that the
233 cuticle clearly delineates the body cross-section. Body-wall muscle cells are obvious due to their
234 pronounced distal actomyosin pattern. The pharyngeal lumen's trilobal structure demarcates the body
235 center and is surrounded by the three alternating pharyngeal muscle and marginal cells. Pharyngeal
236 neurons and gland cell process cross-sections are embedded in the pharyngeal muscle cells. Nuclei
237 are easy to discern due to their ribosome-decorated double-membrane and their denser, less granular
238 interior. Neurons in general can be discerned by their appearance as round or tubular cells, often
239 grouped in bundles. These clearly interpretable overviews allow targeting of tissue-specific cellular
240 structures or cellular protein complexes with known location (e.g. sarcomeric proteins).

241

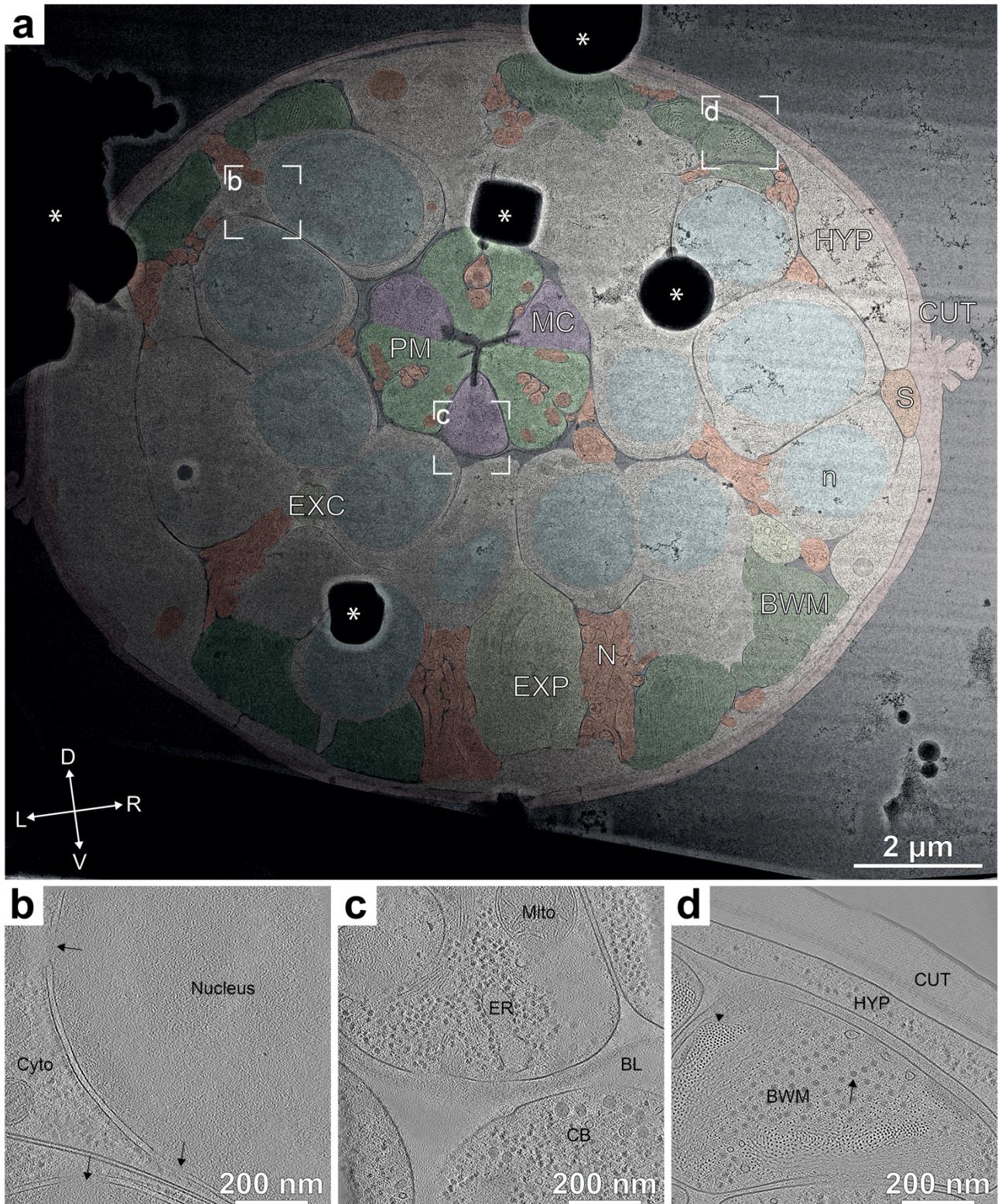
242

243 **Figure 3: Lamella TEM overviews sample the anatomy of a *C. elegans* L1 larva along the anterior-**
244 **posterior body axis.** Native tissue scattering contrast is sufficient to extract a considerable amount of
245 anatomical information from low magnification TEM overviews of the lamellae generated in the double-sided
246 attachment Serial Lift-Out experiment. **a**, Schematic representation of 29 body transverse section overviews
247 obtained from the final lamellae along the anterior-posterior body axis of an L1 larva. Anterior is located to the
248 left, posterior to the right. The OpenWorm project model of the adult *C. elegans* worm was used for illustrating
249 the possibility of back mapping since a cellular model of the L1 larva only exists for its head and not the entire
250 body (Britz et al 2021). The cross-sections were cropped from lamella overview images and mapped back to a
251 position derived from the known sectioning distance and anatomical features discernible in the corresponding
252 cross-section. The dashed white frames indicate overviews with corresponding magnified representations in
253 panels **b-g**. **b**, This lamella originates from ~15 μ m along the anterior-posterior axis. Clearly visible are the three
254 lobes of the anterior pharyngeal lumen in the center of the worm cross-section (asterisk) and the relatively
255 electron dense pharyngeal lining. **c**, Overview from the anterior part of the pharyngeal isthmus ~42 μ m along
256 the anterior-posterior axis. Note the nerve ring (dashed line) surrounding the central pharynx. Additionally, the
257 alae (asterisks) running along the left and right lateral side of the worm become obvious. **d**, Overview of a
258 lamella of roughly the center of the posterior pharyngeal bulb region. The central grinder organ is clearly

259 discernible (asterisk). This section is positioned ~65 μm along the anterior-posterior axis. **e**, A section roughly
260 mid-body. The intestinal lumen (dashed line) and intestinal cells (dotted line) are obvious. The darker cell slightly
261 left of the body center is likely one of the gonadal primordial cells (asterisk). The section is from ~115 μm along
262 the anterior-posterior axis. **f**, In this mid-body section, the intestinal lumen (dashed line) can again be clearly
263 discerned. The section can be mapped to ~132 μm along the anterior-posterior axis. **g**, Section showing the
264 intestinal lumen at ~155 μm along the anterior-posterior axis.

265 **Quality assessment and subtomogram analysis**

266 To assess the quality of lamella thinning, tomogram thickness was measured for all 57
267 tomograms from the single-sided attachment and a random subset of 132 tomograms for the double-
268 sided attachment experiment. The thickness for single-sided attachment was $253 \text{ nm} \pm 125 \text{ nm}$. The
269 thickness of the tomograms from the double-sided attachment experiment was more uniform, $303 \pm$
270 40 nm (Figure 4 – Figure Supplement 1). The broader thickness distribution in single-sided attachment
271 most likely stems from lamella bending and movement during milling due to the free-standing edge of
272 the lamella.

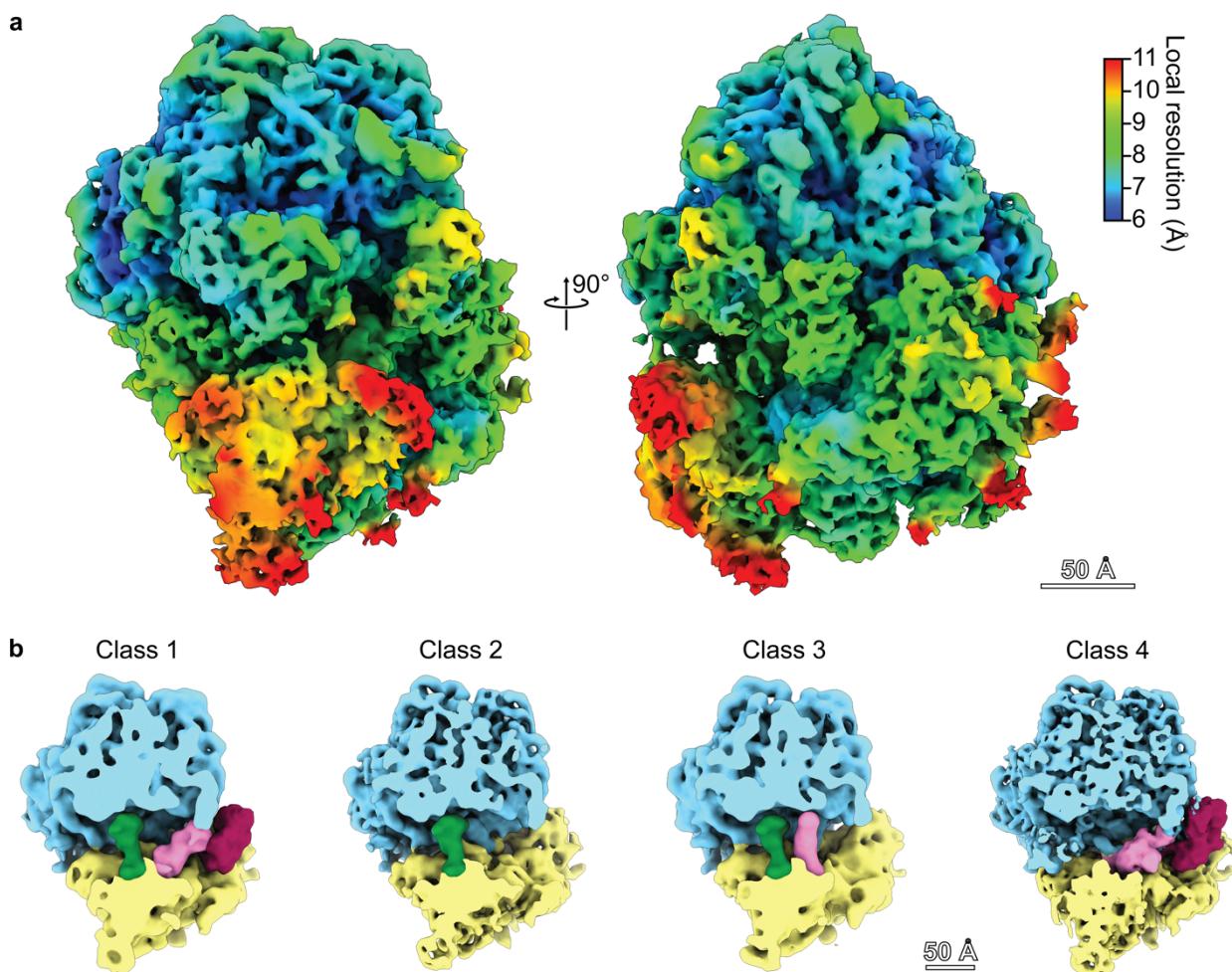

273 The tilt series we obtained allowed us to reconstruct the 3D cellular architecture of cell types
274 in different tissues such as the neuronal nuclear periphery (Figure 4b), pharyngeal marginal cells and
275 neuronal cell bodies (Figure 4c) and body wall muscle, the hypodermis and the collagenous network
276 of the cuticle (Figure 4d).

277 The sectioning plane obtained when doing Serial Lift-Out from ‘waffle’-type samples provides
278 worm cross-sections. For a number of structures, such as nuclei, the difference between oblique
279 longitudinal and transverse sectioning is minimal (Figure 4a, Figure 4 – Figure Supplement 2). When
280 investigating anisotropic structures such as the body wall muscle or pharynx, however, sectioning
281 direction can greatly impact the interpretation of higher order structure. In longitudinal sectioned
282 sarcomeres, located in body-wall muscle, appear as filaments running along the image plane. These
283 filaments show an orientational distribution strongly biased towards the side view. In contrast,
284 tomograms from Serial Lift-Out show transverse sections of the body-wall muscle. In this sectioning
285 plane, actin and myosin run often perpendicular to the image plane and can be discerned as small
286 and medium sized puncta. This more clearly reveals the organization of the acto-myosin bundling and
287 holds the potential for further analysis of their packing (Figure 4d).

288 In order to assess the quality of the data acquired, we picked 33,000 80S ribosome particles
289 from 200 randomly selected tomograms from the double-sided attachment experiment. Subtomogram
290 averaging and classification yielded a structure at a resolution of 6.9 \AA (GSFSC, Figure 5a). The
291 resolution was likely limited by lamella thickness, supported by the fact that the CTF could not be fit
292 beyond 6 \AA .

293 Classification yielded four different sub-populations in various translational states. When
294 comparing these states to the recently published ribosome state landscape from *D. discoideum* [8],
295 resemblances are apparent to the initiation state with an occupied P site (Figure 5b – Class 2), states
296 with an occupied A and P site (Figure 5b – Class 3) and elongation factor bound states (Figure 5b –
297 Class 1, Figure 5b – Class 4).

298



299

300 **Figure 4: Representative overview and tomograms of the L1 larval pharyngeal isthmus region. a,**
301 Overview montage (magnification 11,500x) of the head region lamella. This section is located within the
302 pharyngeal isthmus just posterior to the nerve ring. Cell types are colored according to the WormAtlas color
303 code (Altun et al 2002-2023), for nuclei and mitochondria, arbitrary colors were chosen (HYP: hypodermis, S:
304 seam cells, PM: pharyngeal muscle, MC: marginal cells, EXP: excretory pore, EXC: excretory canal, N: neuronal
305 tissue, CUT: cuticle, n: nucleus. The white dashed rectangles show the positions of the tilt series acquired and

306 corresponding reconstructions shown in **b-d**. Asterisks indicate ice contamination. The cross indicates the
307 dorsal(D)-ventral(V) and left(L)-right(R) body axes. **b**, Tomographic slice of the perinuclear region of most likely
308 a neuronal cell. The nucleus exhibits a different granularity and density than the cytoplasm (Cyto), from which
309 it is separated by the nuclear envelope, which in turn is heavily decorated with ribosomes and contains nuclear
310 pores (arrows). **c**, Tomographic slice of the pharynx. Central in the upper half is a marginal cell containing
311 endoplasmatic reticulum (ER) and mitochondria (Mito). A neighboring neuronal cell body (CB) is separated from
312 the pharynx by a diffuse density, which is the pharyngeal basal lamina (BL). **d**, Tomographic slice of a body wall
313 muscle cross section (BWM). Clearly visible are the actin filaments in top view (arrowhead) surrounding a bundle
314 of thick filaments (arrow). The thick filaments are partially interspersed with actin filaments. The muscle cell
315 neighbors a hypodermal cell (HYP), from which it is separated by a space filled with a diffuse density, likely the
316 body-wall muscle basal lamina. The next and last layer of the larval body wall is the cuticle (CUT). Most notably
317 within this chitinous/collagenous structure, a fence-like array of denser structures can be discerned, likely
318 cuticular collagen.

319

320

321 **Figure 5: Subtomogram average reconstruction of the *C. elegans* 80S ribosome from *in situ* data. a**, The
322 *C. elegans* ribosome to a resolution of 6.9 Å (GSFSC). Density map is colored by local resolution. Note that
323 protein α -helices and rRNA helices are clearly visible at this resolution. **b**, Four different ribosomal states
324 obtained through subtomogram classification: Ribosome Class 1 with occupied A, P and EF sites, Ribosome

325 Class 2 with an occupied P site, Ribosome Class 3 with occupied A and P sites, Ribosome Class with occupied
326 A and EF sites.

327 **Discussion**

328

329 In the past, cryo-lift-out has been hampered by limited throughput and low overall success rate.
330 Therefore, the technique has even been deemed 'practically impossible', or at least 'merely difficult'
331 in the literature (Parmenter et al 2016). The fact that the existing literature has not advanced beyond
332 proof-of-principle experiments underlines this evaluation. The study of multicellular organisms and
333 tissues by cryo-electron tomography, however, holds an enormous potential for biological discovery
334 and technical advances are thus needed. We anticipate the combination of recent hardware and
335 workflow improvements (Klumpe et al 2022, Parmenter & Nizamudeen 2021, Schreiber et al 2018)
336 with the increased throughput of Serial Lift-Out to make cryo-ET data acquisition from high-pressure
337 frozen material more attainable. In addition, plasma focused ion beam technology, while available for
338 some years, was recently introduced to the cryo-FIB community (Berger et al 2023, Martynowycz et
339 al 2023, Sergey et al 2018) and may further improve cryo-lift-out throughput by increased ablation
340 rates.

341 The cryo-FIB lamella milling protocols developed to date remove most of the cell during lamella
342 preparation. The final lamella represents only <1 % of a eukaryotic cell and even less for multicellular
343 organisms. While a high number of lamellae milled at different heights could restore that lost
344 information through an ensemble average (Ferguson et al 2017), Serial Lift-Out lamellae originate
345 from a single specimen, yielding a more thorough characterization of its morphology. A variety of
346 volume microscopy methods, e.g. volume electron microscopy or X-Ray tomography, retain this
347 information. They remain, however, limited in resolution when compared to cryo-ET. Serial Lift-Out
348 increases the contextual information retained in cryo-ET while preserving data acquisition at
349 molecular resolution.

350 Here, we have shown the ability to section in increments of one to four micrometers. This
351 process has two steps that contribute to specimen loss: sectioning (~300-500 nm) and lamella milling.
352 The latter can be minimized by finer sectioning. Preliminary experiments suggest that thinner
353 sectioning down to 500 nm may be achievable. Reducing the section thickness even further in order
354 to prepare lamellae directly from the extracted volume, though, will likely require major technological
355 advances of the FIB instrument. Developments in ion beam shaping could become valuable for such
356 endeavors, reducing the material lost during sectioning. Due to the physical basis of ablation in FIB
357 preparation, however, material will always be lost to the milling process itself. Therefore, truly
358 consecutive lamellae, similar to serial sections of plastic embedded samples, seem unlikely to be
359 attainable.

360 Nevertheless, the creation of multiple sections within biological material increases the
361 preparation throughput for HPF samples and adds contextual information. For model organisms with
362 a stereotypic and well-described body plan such as *C. elegans* or *Platynereis dumerilii* (Vergara et al
363 2021), Serial Lift-Out sections and tomograms may be mapped back into context using other sources
364 of volumetric data as illustrated in Figure 3a (Britz et al 2021, Dumoux et al 2023). As a result, back-
365 mapping analysis may enable label-free targeting of features and events that are tissue and cell-type
366 specific.

367 Serial Lift-Out also addresses the challenge that arises when dealing with anisotropic cells
368 and tissues. As the sectioning plane of the specimen can be adapted, fluorescence or FIB/SEM data
369 can inform the preparation of the lift-out site and, in turn, the sectioning angle. This adaptive
370 preparation strategy can give new insights into the molecular architecture as illustrated by tomograms
371 from transverse sections of muscle cells. When compared to previously obtained longitudinal sections
372 (Burbaum et al 2021, Davide et al 2023, Wang et al 2021), the transverse section shows actin-myosin
373 packing from a novel angle revealing how actin filaments surround what is likely to be myosin heads.
374 The combination of acquiring cryo-ET data on both the transverse and longitudinal sections also hold
375 the potential to improve subtomogram analysis when facing structures with preferential orientation.

376 In addition to guiding site preparation for lift-out, cryo-correlative light and electron microscopy
377 is more generally used to target specific subcellular events (Arnold et al 2016, Bieber et al 2022,
378 Klumpe et al 2021, Schaffer et al 2019). This technique, however, remains challenging for routine use
379 within larger tissues. Improvements in the operation of integrated light microscopes are therefore
380 necessary to streamline subcellular targeting in cryo-lift-out experiments. Serial Lift-Out combined
381 with in-chamber light microscopy could increase the success rate of targeting by reducing the sample
382 thickness used in the correlation, increasing the number of sections and in turn targeting attempts,
383 and enabling to regularly check the fluorescence signal throughout the milling process.

384 One limitation of cryo-lift-out is the high rate of ice contamination during transfer. As can be
385 seen in the TEM overviews (Figure 3 – Figure Supplement 1), large ice crystals tend to obstruct
386 regions of the lamellae and prevent data acquisition. Serial Lift-Out, similar to on-grid preparations,
387 compensates for the loss in imageable area through a higher yield of lamellae in comparison to
388 previous lift-out techniques. Reducing transfer contamination, however, remains highly desirable and
389 controlled environments, e.g. glove boxes (Tacke et al 2021), or other technological advances such
390 as vacuum transfers will be needed to maximize the imageable area of cryo-FIB lamellae.

391 Finally, the analysis of lamella thickness distributions and lamella survival rate suggest that
392 double-sided attachment in cryo-lift-out is advantageous. This like likely due to the reduction of lamella
393 bending during milling and greater stability during the transfer to the TEM.

394 With the methodological advances of Serial Lift-Out, the existing hurdles of lift-out have been
395 greatly diminished, enabling data quality, throughput, and success rate in cryo-lift-out that permits the
396 mapping of large tissue regions and whole organisms at the molecular level. Tomography on lamellae

397 of an L1 larva obtained with our Serial Lift-Out method elucidated its ribosome to 6.9 Å resolution and
398 uncovered four different translational states. Taken together, Serial Lift-Out demonstrates enormous
399 potential to discern and study the molecular anatomy of native tissues and small multicellular
400 organisms.

401 **Acknowledgement**

402 We thank Jonathan Wagner, Adriana Prajica, Philipp S. Erdmann, Johann Brenner, Meijing Li, David
403 Klebl, Alexander Rigort, Bernhard Hämperle, Martin Beck, and Reinhard Fässler for invaluable input
404 and support. We thank the *Caenorhabditis* Genetics Center and Bloomington *Drosophila* Stock Center
405 for providing *C. elegans* and *D. melanogaster* strains, respectively. This study used the infrastructure
406 of the Department of Cell and Virus Structure at the MPI of Biochemistry. SK was supported by the
407 International Max Planck Research School for Molecular and Cellular Life Sciences. JMP
408 acknowledges funding from the Max-Planck Society.

409 **Competing interests**

410 JMP holds a position on the advisory board of Thermo Fisher Scientific. CT is an employee of Thermo
411 Fisher Scientific. The other authors declare that no competing interests exist.

412 **Data availability**

413 Tomograms have been deposited in the Electron Microscopy Data Bank (EMDB) under accession
414 codes: EMD-17246, EMD-17247, EMD-17248, Subtomogram averages have been uploaded under
415 accession numbers: EMD-17241, EMD-17242, EMD-17243, EMD-17244, EMD-17245 and will be
416 released upon publication.

417

418 **Materials and Methods**

419

420 **Sample Vitrification**

421 *C. elegans* strains AM140 (allele *rmls132[unc-54p::Q35::YFP]*) and NK2476 (allele *qy46[ina-1::mKate+loxP]*) were cultivated according to standard methods on rich NGM (Brenner 1974). To
423 obtain a synchronous population of animals, gravid young adult worms were washed from five petri
424 dishes (6 cm) with M9 medium. The worms were pooled into 15 mL centrifuge tubes and centrifuged
425 at 175x g. Excess supernatant was removed and the worm suspension was mixed with bleach solution
426 (3.75 mL 1M NaOH, 3.0 mL household bleach, 8.25 mL H₂O (Sulston & Hodgkin 1988) and swiftly
427 vortexed. Bleaching was continued with intermittent vortexing and checking on a stereomicroscope.
428 As soon as roughly 50% of worms appeared broken, the bleaching procedure was stopped by the

429 addition of egg-buffer (118 mM NaCl, 48 mM KCl, 2 mM CaCl₂, 2 mM MgCl₂, 25 mM HEPES, pH
430 7.3) and centrifugation at 175g for 1 minute. The supernatant was swiftly removed and the egg/worm
431 carcass solution was washed another four times with egg-buffer. The egg/worm carcass mixture was
432 then floated on 60 % sucrose solution and purified eggs were withdrawn from the surface (Strange et
433 al 2007). The egg solution was washed in M9 buffer and larvae were allowed to hatch at 20 °C for 24
434 hours.

435 This population of developmentally arrested L1 larvae was used for vitrification, carried out
436 following a modified version of Mahamid, *et al.* (Mahamid et al 2015) on a Leica EM-ICE (Leica
437 Microsystems, Wetzlar, Germany). Sample carriers Type B (Leica Microsystems, Wetzlar, Germany)
438 with a diameter of 6 mm were coated with a separating layer of cetyl palmitate solution (0.5% w/v in
439 diethylether) by dipping the carriers briefly into the solution and placing them, cavity side down, on
440 filter papers to let the solvent evaporate. A 2 µL drop of 20% (v/v) Ficoll 400 in M9 was applied to the
441 flat side of the sample carrier and a Formvar-coated grid (50 mesh square or 75 mesh hexagonal
442 mesh) was floated on this drop with the support film facing the liquid. Any excess cryoprotectant below
443 the grid was wicked away, using pieces of Whatman No 1 filter paper (Whatman, Maidstone, UK).
444 Next, synchronized L1 larvae were mixed with an equal amount of 40% Ficoll 400 in M9 medium to
445 reach a final concentration of 20% cryoprotectant. 2µL of this sample solution was applied onto the
446 grid and the sandwich was completed by addition of a second 6 mm sample carrier Type B, cavity-
447 side up. The sample was immediately high-pressure-frozen. Grids were removed from the HPF
448 sample carriers and stored in LN₂ until further use. EM-grids were clipped into Thermo Fisher Scientific
449 cartridges for FIB-milling. To be able to locate the biological material (L1 larvae) in the ice layer,
450 clipped grids were either previously mapped in a Leica SP8 confocal microscope equipped with a
451 cryostage or directly transferred into a FIB-SEM instrument with an integrated light microscope.

452 *Drosophila* samples were prepared as previously described (Klumpe et al 2021). In brief, fly
453 strains were maintained at 22 °C on standard cornmeal agar. 24 hours prior to dissection of egg
454 chambers, the flies were transferred into a new vial supplemented with yeast paste. Egg chambers
455 were dissected in Schneider's medium. For high-pressure freezing, 3 mm HPF carriers were soaked
456 in hexadecene and blotted on filter paper. Depending on the egg chamber stage, the dissected
457 material was subsequently transferred into the 100 µm or 150 µm cavity of a 3 mm Type A or Type C
458 HPF sample carrier (Engineering office M. Wohlwend, Sennwald, Switzerland), respectively. The
459 filling medium was 20% Ficoll (70 kDa) in Schneider's medium. The flat surface of a Type B HPF
460 Planchette was used to close the HPF assembly for freezing in the Leica EM ICE high-pressure
461 freezer (Leica Microsystems, Wetzlar, Germany). The sample was subsequently pre-trimmed using a
462 45° diamond knife (Diatome, Nidau, Switzerland) in a cryo-microtome (EM UC6/FC6 cryo-microtome,
463 Leica Microsystems) at a temperature of -170 °C and used for further FIB preparation.

464
465 **Cryo-fluorescence microscopy**

466 Grids were clipped in Thermo Fisher Scientific (TFS) cartridges and imaged using a Leica TCS SP8
467 laser confocal microscope (Leica Microsystems, Wetzlar, Germany) fitted with a Leica cryo-stage
468 (Schorb et al 2017). Imaging was performed with a 50x 0.90 NA objective and HyD detectors.

469 Tile set montages of the NK2476 strain sample were collected using a pinhole size of 4.85 AU
470 and a voxel size of 0.578 μm x 0.578 μm x 2.998 μm . The tile sets were merged and maximum
471 intensity projections for each channel calculated using LAS X (Leica, Wetzlar, Germany).
472 Autofluorescence imaging was performed for the double-sided attachment experiment. The 488 nm
473 laser line at 2.5 % total power was used for excitation and the emission was detected from 501 nm to
474 535 nm. The reflection channel was excited at 552 nm and 2% total laser power and detected with an
475 emission range of 547 nm to 557 nm.

476 Tile set montages of the AM140 strain were collected at a pinhole size of 1 AU and a voxel
477 size of 0.578 μm x 0.578 μm x 1.03 μm . The tile sets were merged and maximum intensity projections
478 for each channel were calculated using LAS X (Leica, Wetzlar, Germany). Q35-YFP was excited at
479 488 nm and 0.5 % total laser power and emission was detected from 509 nm to 551 nm. Reflection
480 was recorded with 638 nm excitation at 0.83 % total laser power and the emission range set to 633
481 nm to 643 nm.

482

483 **Serial Lift Out - Single Side Attachment**

484

485 **Lift-In Grid Preparation**

486 100 square mesh Cu grids (Agar Scientific, Stansted, UK) were assembled into TFS cartridges. The
487 cartridges were marked for manual alignment during sample loading. These markings were aligned
488 to where the grid bars intersect the cartridge marks. The marks were also used for grid orientation
489 during loading. The grids were then loaded into a FIB-SEM 45° pre-tilt cryo-shuttle such that the grid
490 bars are aligned vertically and horizontally.

491 Once loaded, 14-pin grids were prepared by rotating the grid plane to be normal to the ion
492 beam (trench milling orientation) and milling out two combs of horizontal grid bars. This yielded grids
493 with 14 pins that can be used for 28 lamella attachments (Figure 2 - Figure Supplement 2). A horizontal
494 grid bar was used to prepare 20 μm x 10 μm x 5 μm copper blocks for attachment to the lift-out needle
495 by redeposition milling using single-pass regular cross-sections directed away from the needle (Figure
496 1 – Figure Supplement 2, Figure 2 – Figure Supplement 5a). Note, that the copper block attached to
497 the needle can be re-used several times. The lower section of the copper block used for the previous
498 attachment can be milled away leaving a clean surface for the next attachment.

499 As the FIB-SEM does not have to be cooled during lift-in grid milling, we recommend the
500 preparation of several lift-in grids ahead of time in order to reduce workload during the serial lift-out
501 session.

502

503 **Lift-Out, Sectioning and Milling Procedure**

504 Serial lift-out was performed on an Aquilos 2 FIB-SEM instrument (Thermo Fisher Scientific, Waltham,
505 MA, U.S.A.) equipped with an EasyLift system. To facilitate lift-out, the EasyLift needle was modified
506 by attaching a copper block adapter (see ‘lift-in grid preparation’) using redeposition. The copper
507 adapter has a higher sputter yield and, thus, increased redeposition compared to tungsten and
508 vitreous ice. Additionally, the block increases the surface area available for attachment to the biology,
509 and reduces the wear of the needle over time.

510 After copper block attachment, the volume to be extracted was prepared by milling trenches
511 around the region of interest in trench milling orientation. The fluorescence data acquired of the L1
512 ‘waffle’ samples was correlated to the ion beam images using MAPS version 3.14 (Thermo Fisher
513 Scientific, Waltham, MA, U.S.A.). The grid was coated with a protective metal-organic platinum layer
514 using a gas injection system (GIS) heated to 27°C at a stage working distance of 9.72 mm and a
515 stage tilt of 45° for 90s. Trenches were milled with the grid perpendicular to the ion beam (trench
516 milling orientation) after which the EasyLift needle was inserted. In order to increase the redeposition
517 yield for attachment, the copper block needs to be aligned below the sample surface and flush to the
518 surface exposed by trench milling. Redeposition from the copper block onto the extraction volume
519 was achieved using single-pass patterns of regular cross-sections instead of the default multi-pass
520 mode to avoid re-milling previously redeposited material. These patterns were placed at the interface
521 of the two surfaces on the copper adapter with the milling direction for these patterns directed away
522 from the extraction volume (Figure 2 – Figure Supplement 5b). The extraction volume was then
523 released through milling the last connection to the bulk sample with a line pattern. The 30 µm x 110
524 µm x 25 µm extracted volume was subsequently lifted from the bulk sample.

525 After the extraction of the volume, the shuttle was returned to the lamella milling orientation
526 (18° in a system with a 45° pre-tilt) and the stage translated to the receiver grid. The lower edge of
527 the extracted volume and the corner of the pin were aligned in both electron and ion beam images.
528 Attachment was performed by redeposition, using single-pass regular cross-section patterns directed
529 away from the extracted volume (Figure 2 – Figure Supplement 5d). Once attached, the EasyLift
530 system was maneuvered by a 50 nm step horizontally and vertically away from the pin in horizontal
531 direction in order to create a small amount of strain. Subsequently, the lower 4 µm of the volume were
532 sectioned from the rest of the volume using a line pattern. This process was iterated until the entire
533 extracted volume had been sectioned.

534

535 **Serial Lift-Out: Double-Sided Attachment**

536

537 **Lift-In Grid Preparation**

538 For double-sided attachment, 100/400 rectangular mesh copper grids (Gilder, Grantham, UK) were
539 used as the receiver grid. These were clipped into standard TFS cartridges that marked such that the

540 400 mesh bars were in line with the bottom mark and the 100 mesh bars were in line with the side
541 markings. This grid was loaded into the FIB shuttle and 20 μm x 10 μm x 5 μm copper block adapters
542 were prepared as described above.

543 During the preparation of the receiver grid, roughly 5 μm deep line patterns were milled across
544 the horizontal 400 mesh grid bars in trench milling orientation to divide the rectangles approximately
545 $\frac{1}{3}$ and $\frac{2}{3}$. These marker lines are intended to guide the alignment of the extracted volume by providing
546 a reference visible in both the electron and ion beams during the attachment process.

547

548 **Lift Out, Sectioning and Milling Procedure**

549 Lift-out site preparation for double-sided attachment was performed on an Aquilos 1 FIB-SEM
550 instrument (Thermo Fisher Scientific, Waltham, MA, U.S.A.) equipped with a METEOR in-chamber
551 fluorescence light microscope (Delmic, Delft, Netherlands)(Smeets et al 2021). The the GIS was
552 employed for 90 s at 27°C with at a stage working distance set to 10.6 mm and the grid normal to the
553 GIS needle to apply a layer of protective metal-organic platinum. The METEOR in-chamber
554 microscope was used in conjunction with previously acquired cryo-confocal data to localize the larva
555 of interest and produce an extraction volume of 42 μm x 180 μm x 20 μm . A width of 40 μm is
556 necessary in order to span the space between the grid bars of a 100/400 rectangular mesh grid. A
557 slight excess of width of the extraction volume is preferable, since a too narrow block will not allow for
558 double-sided attachment, while material can be ablated during sectioning.

559 The lift-out and receiver grid were subsequently transferred into an Aquilos 2 FIB-SEM
560 instrument (Thermo Fisher Scientific, Waltham, MA, U.S.A.) equipped with an EasyLift system. Lift-
561 out was otherwise performed as stated in the section for single-sided attachment. In brief, the volume
562 was attached to the needle via the copper adapter, the volume was released, the needle retracted,
563 and the shuttle was returned to the lamella milling orientation at the receiver grid. The extracted
564 volume was re-inserted, and its lower edge was positioned in-between two grid bars. In the case when
565 the volume was slightly too wide, material was ablated from its sides as necessary. To allow for proper
566 attachment, the volume's lower edge was aligned to the reference line on the receiver grid in both,
567 the electron and ion beam images and the volume was attached on both sides by redeposition from
568 the grid bars. To achieve this, single-pass cross-section patterns were placed on the grid bars above
569 the marker lines in in close proximity of the interface between the grid bars and extracted volume,
570 while the milling was directed away from the volume (Figure 2 – Figure Supplement 5c). Once
571 attached, the EasyLift system was maneuvered up in the z-direction by 50-100 nm in order to create
572 a small amount of strain. Subsequently, a section was released from the extracted volume by milling
573 a line pattern at 4 μm above the volume's lower edge. This process was iterated until the entire
574 extracted volume had been sectioned.

575

576 **Table 1: Milling pattern parameters for Serial Lift-Out.** The table summarizes the parameters used
577 for the milling steps necessary to perform a Serial Lift-Out experiment. The corresponding pattern
578 geometries are illustrated in Figure 2 – Figure Supplement 5. All patterns were milled at 30.00 kV FIB
579 acceleration voltage. Pattern files for Thermo Fisher Scientific instruments are provided in Figure 2 –
580 Pattern Files Supplement. These templates and the milling parameters may need adjustment for
581 different projects and for FIB-SEM instruments from other manufacturers, specifically concerning
582 differing scanning strategies deployed by the microscope manufacturer.

583

Step	Pattern Type	Beam Current	Multipass Number	Approximate Time
Copper block milling	Regular Cross-section	5-65 nA	4	20 mins
Copper block attachment	Regular Cross-section	1 nA	1	3 mins
Trench milling	Regular Cross-section	3 nA	4	N/A
Extraction volume attachment	Regular Cross-section	1 nA	1	3 mins
Extraction volume attachment	Line	3 nA	N/A	10 mins
Pin or grid bar attachment	Regular Cross-section	1 nA	1	4-8 mins
Sectioning	Line	0.5-1 nA	N/A	8-12 mins

584

585 **Fine milling of lift-out sections**

586 For both single-sided and double-sided attachment, the initial 4 μ m sections were thinned in two steps:
587 rough milling and fine milling. Rough milling was performed using regular cross-section patterns at a
588 beam current of 1 nA to a thickness of 1.5 μ m, 0.5 nA to 1.2 μ m lamella thickness, 0.3 nA to 0.8 μ m
589 lamella thickness. After rough milling all of the sections, fine milling was performed using regular
590 rectangle patterns at a beam current of 0.1 nA to 0.4 μ m and 50 pA to final thickness. Over-tilting and
591 under-tilting by up to 1° was used for beam convergence compensation. The double-sided attached

592 lamellae were sputter coated with platinum after fine milling for 4 seconds, at a chamber pressure of
593 0.20 mbar and a current of 15.0 mA.

594

595 **Serial lift-out from high-pressure frozen *D. melanogaster* egg chambers**

596 Lift-out experiments of high-pressure frozen *D. melanogaster* egg chambers were performed on a
597 Scios FIB-SEM instrument (Thermo Fisher Scientific, Waltham, MA, U.S.A.) equipped with an EasyLift
598 needle. The preparation of the lift-out volume as described previously (Klumpe et al 2021). In brief,
599 an approximately 20 μ m x 20 μ m volume of target material was prepared using regular cross-section
600 patterns in trench milling orientation in a horseshoe-like shape. The trenches were ~20 μ m wide,
601 except for the region that needed to be accessed by the lift-out needle, which was ~35 μ m wide. The
602 extraction volume was undercut at a stage tilt of 45°, or the highest tilt reachable for the specific
603 position. This preparation leaves the extraction volume attached to the bulk material on a single side.
604 Subsequently, the procedure for single-sided attachment was performed as described above.
605 Sectioning was performed in increments of 1-3 μ m using a line pattern milled at a beam current of at
606 0.3 nA. After section preparation, fine milling was performed by sequentially decreasing the beam
607 current: 0.3 nA to 800 nm, 0.1 nA to 500 nm, 50 pA to 350 nm and 30 pA to < 300 nm. The final step
608 was judged by the loss of contrast in SEM imaging at 3 kV acceleration voltage and a beam current
609 of 13 pA.

610

611 **Lamella preparation by the ‘waffle’ milling method**

612 For preparation of lamellae directly on the high-pressure frozen grid, vitrified as described above, we
613 followed a similar workflow as published as the ‘waffle’ method (Kelley et al 2022). The grid was
614 coated with a metal-organic platinum layer by GIS deposition for 20 s at a stage working distance of
615 10.6 mm. Milling was performed on a gallium FIB-SEM Aquilos 2 (Thermo Fisher Scientific, Waltham,
616 MA, U.S.A.) instrument. Initial trenches were milled in trench milling orientation at a beam current of
617 3 nA using regular cross-section patterns. To avoid damaging the region of interest by milling at high
618 beam currents, 2 μ m of buffer distance were left around the region of interest. Trenches were
619 extended to 15 μ m on the backside of the subsequent lamella and 30 μ m on the front side. In a next
620 step, the trenches were extended to 1 μ m closer to the region of interest at a beam current of 1 nA
621 and in a last step the final dimension of the lamella region was defined milling at 0.5 nA. After trench
622 milling, another layer of protective metal-organic platinum was deposited on the sample (20 s
623 deposition time, 10.6 mm stage working distance, three consecutive times). The stage was rotated
624 into lamella milling orientation and a notch was milled with line patterns at 0.3 nA as previously
625 described (Kelley et al 2022). The preparation of the final lamella was carried out by removing material
626 above and below of the region of interest at a beam current of 0.3 nA, until a final lamella thickness
627 of 2 μ m was reached. In sequential steps of decreasing beam current (to 0.8 μ m thickness at 0.1 nA

628 beam current, to 0.4 μm at 50 pA), the remnant material was ablated. The lamella was polished to a
629 final thickness of about 200-250 nm at 30 pA beam current.

630

631 **TEM Data Acquisition**

632 TEM data acquisition was performed on a Titan Krios G4 at 300 kV equipped with a Selectris X energy
633 filter and a Falcon 4i camera (Thermo Fisher Scientific, Eindhoven, The Netherlands). Lamella
634 overview montages were recorded by stage-driven tiling at 11,500x nominal magnification (pixel size
635 2.127 nm). Tomograms were recorded using the Tomo5 software package version 5.12.0 (Thermo
636 Fisher Scientific, Eindhoven, The Netherlands) using the EER file format.

637 Two acquisition strategies were deployed. For the tomograms of the single-sided attachment
638 and 'waffle' preparation tilt series were acquired at a nominal magnification of 42,000x resulting in a
639 pixel size at the sample of 2.93 \AA . A dose-symmetric tilt scheme was used with an angular increment
640 of 2°, a dose of 2 $\text{e}^-/\text{\AA}^2$ per tilt and a target defocus of -4 to -5.5 μm . Tilt series were collected in a tilt
641 range of -70° to 50° due to the lamellae pre-tilt and with a total dose of 120 $\text{e}^-/\text{\AA}^2$.

642 For the tomograms collected of the double-sided attachment lamellae, that were subsequently
643 used for subtomogram analysis, tilt series were acquired at a nominal magnification of 64,000x,
644 resulting in a pixel size of 1.89 \AA . Data was collected using a dose-symmetric tilt scheme with an
645 angular increment of 3°, a dose of 3.23 $\text{e}^-/\text{\AA}^2$ per tilt and a target defocus range of -1 to -4 μm . Angles
646 of -70° to 50° were acquired, resulting in a total dose of 132 $\text{e}^-/\text{\AA}^2$.

647

648 **Tomogram Reconstruction, Visualization and Subtomogram Analysis**

649 Data was processed using the Tomoman version 0.7 pipeline
650 (<https://github.com/williamnwan/TOMOMAN>). 14 frames with a dose of 0.23 $\text{e}^-/\text{\AA}^2$ per frame were
651 rendered from the EER files. These were used for motion correction in MotionCor2 version 1.4.7
652 (Zheng et al 2017) and CTF estimation with CTFFIND4 version 4.14 (Rohou & Grigorieff 2015). Bad
653 tilts were removed after manual inspection using the Tomoman script. Dose-weighting was performed
654 at 3.23 $\text{e}^-/\text{\AA}^2$ per tilt using either Tomoman or Warp. For denoising, tilt series were separated into odd
655 and even tilts during motion correction and the resulting stacks were processed using Cryo-CARE
656 (Buchholz et al 2019). Tomogram reconstructions for visualization were done in IMOD version
657 4.12.32. Tilt series were aligned with AreTomo version 1.3.3. CTF-corrected tomograms for template
658 matching were reconstructed in IMOD version 4.12.32 (Kremer et al 1996, Mastronarde & Held 2017)
659 at eight times binning, resulting in a pixel size of 15.6 \AA .

660 Initial template matching was performed in STOPGAP version 0.7 (Wan et al 2020) on a
661 subset of 70 tomograms at bin8 using PDB 4V4B as a reference filtered to 35 \AA (Spahn et al 2004).
662 16,420 particles were extracted and aligned in STOPGAP to generate the *C. elegans* 80S ribosome
663 template. The template was subsequently used to repeat template matching on 200 tomograms at
664 bin8. 65,451 particles were extracted and cleaned by projecting the subtomogram along the Z-axis

665 and subsequent 2D classification in Relion version 4.0. The remaining data set contained 37,026
666 particles. The retained particles were reprocessed in Warp version 1.0.9, cleaned to remove particles
667 with inadequate CTF resolution and astigmatism. The resulting 35,350 particles were extracted with
668 a pixel size of 2.98 Å and a boxsize of 160 pixels. Relion version 3.0 with a spherical mask of 340 Å
669 radius was used to align the subtomograms. Finally, the particles were imported into M version 1.0.9
670 and geometric and CTF parameters were sequentially refined. Corrected subtomograms were
671 extracted from M and classified in Relion 3.0. Two rounds of classification with a spherical mask of
672 340 Å in diameter resulted in 8,256 particles being removed. The second step was a focused
673 classification with a spherical mask around the A/P/E-site. The resulting 5 classes were combined
674 into 2 classes according to the small subunit rotation. Each of these 2 merged classes were subjected
675 to another round of 3D classification with a mask around the elongation factor binding site. The final
676 classes were manually pooled according to structural similarity yielding 5 classes with 2,175, 20,638,
677 877, 1,119, and 2,285 particles, of which the class with 877 particles was neglected. Segmentation of
678 the elongation factor and tRNAs was done with the Segger tool in Chimera. ChimeraX version 1.3
679 was used for visualization (Pettersen et al 2021).

680

681 References

682 Al-Amoudi A, Norlen LPO, Dubochet J. 2004. Cryo-electron microscopy of vitreous sections of
683 native biological cells and tissues. *Journal of Structural Biology* 148: 131-35
684 Al-Amoudi A, Studer D, Dubochet J. 2003. Cryo-electron microscopy of vitreous sections of
685 biological specimens. *Microscopy and Microanalysis* 9: 372-73
686 Altun ZF, Herndon LA, Wolkow CA, Crocker C, Lints R, Hall DH. 2002-2023. WormAtlas.
687 <http://www.wormatlas.org>
688 Arnold J, Mahamid J, Lucic V, de Marco A, Fernandez JJ, et al. 2016. Site-Specific Cryo-focused
689 Ion Beam Sample Preparation Guided by 3D Correlative Microscopy. *Biophys J* 110: 860-9
690 Beck M, Baumeister W. 2016. Cryo-Electron Tomography: Can it Reveal the Molecular Sociology of
691 Cells in Atomic Detail? *Trends Cell Biol.* 26: 825-37
692 Berger C, Dumoux M, Glen T, Yee NB, Mitchels JM, et al. 2023. Plasma FIB milling for the
693 determination of structures in situ. *Nat Commun* 14: 629
694 Bieber A, Capitanio C, Erdmann PS, Fiedler F, Beck F, et al. 2022. In situ structural analysis reveals
695 membrane shape transitions during autophagosome formation. *Proc Natl Acad Sci U S A*
696 119: e2209823119
697 Brenner S. 1974. The genetics of *Caenorhabditis elegans*. *Genetics* 77: 71-94
698 Britz S, Markert SM, Witvliet D, Steyer AM, Tröger S, et al. 2021. Structural Analysis of the
699 *Caenorhabditis elegans* Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning
700 Electron Microscopy. *Front. Neuroanat.* 0
701 Buchholz TO, Jordan M, Pigino G, Jug F. 2019 *IEEE 16th International Symposium on Biomedical*
702 *Imaging (ISBI 2019)* 2019: 502-06.
703 Buckley G, Gervinskas G, Taveneau C, Venugopal H, Whisstock JC, de Marco A. 2020. Automated
704 cryo-lamella preparation for high-throughput in-situ structural biology. *J. Struct. Biol.* 210:
705 107488
706 Burbaum L, Schneider J, Scholze S, Bottcher RT, Baumeister W, et al. 2021. Molecular-scale
707 visualization of sarcomere contraction within native cardiomyocytes. *Nat Commun* 12: 4086
708 Davide T, Zhexin W, Thorsten W, Sebastian T, Markus S, et al. 2023. In situ structures from relaxed
709 cardiac myofibrils reveal the organization of the muscle thick filament. *bioRxiv*:
710 2023.04.11.536387

711 Dietrich HM, Righetto RD, Kumar A, Wietrzynski W, Trischler R, et al. 2022. Membrane-anchored
712 HDCR nanowires drive hydrogen-powered CO fixation. *Nature* 607: 823-30
713 Dubochet J. 1995. High-pressure freezing for cryoelectron microscopy. *Trends Cell Biol.* 5: 366-68
714 Dumoux M, Glen T, Smith JLR, Ho EML, Perdigao LMA, et al. 2023. Cryo-plasma FIB/SEM volume
715 imaging of biological specimens. *Elife* 12
716 Ferguson S, Steyer AM, Mayhew TM, Schwab Y, Lucocq JM. 2017. Quantifying Golgi structure
717 using EM: combining volume-SEM and stereology for higher throughput. *Histochem Cell Biol*
718 147: 653-69
719 Giannuzzi LA, Kempshall BW, Schwarz SM, Lomness JK, Prentitzer BI, Stevie FA. 2005. FIB Lift-
720 Out Specimen Preparation Techniques In *Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice*, ed. LA Giannuzzi, FA Stevie, pp. 201-28.
721 Boston, MA: Springer US
722 Gupta TK, Klumpe S, Gries K, Heinz S, Wietrzynski W, et al. 2021. Structural basis for VIPP1
723 oligomerization and maintenance of thylakoid membrane integrity. *Cell* 184: 3643-59.e23
724 Hoffmann PC, Kreysing JP, Khusainov I, Tuijtel MW, Welsch S, Beck M. 2022. Structures of the
725 eukaryotic ribosome and its translational states in situ. *Nat Commun* 13: 7435
726 Kelley K, Raczkowski AM, Klykov O, Jaroenlak P, Bobe D, et al. 2022. Waffle Method: A general
727 and flexible approach for improving throughput in FIB-milling. *Nat. Commun.* 13: 1857
728 Klumpe S, Fung HK, Goetz SK, Zagoriy I, Hampelz B, et al. 2021. A modular platform for
729 automated cryo-FIB workflows. *Elife* 10
730 Klumpe S, Kuba J, Schioetz OH, Erdmann PS, Rigort A, Plitzko JM. 2022. Recent Advances in Gas
731 Injection System-Free Cryo-FIB Lift-Out Transfer for Cryo-Electron Tomography of
732 Multicellular Organisms and Tissues. *Microscopy Today* 30: 42-47
733 Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer visualization of three-dimensional
734 image data using IMOD. *J. Struct. Biol.* 116: 71-76
735 Kuba J, Mitchels J, Hovorka M, Erdmann P, Berka L, et al. 2021. Advanced cryo-tomography
736 workflow developments - correlative microscopy, milling automation and cryo-lift-out. *J. Microsc.* 281: 112-24
737 Kühlbrandt W. 2014. Biochemistry. The resolution revolution. *Science* 343: 1443-44
738 Liedtke J, Depelteau JS, Briegel A. 2022. How advances in cryo-electron tomography have
739 contributed to our current view of bacterial cell biology. *J Struct Biol X* 6: 100065
740 Lucas BA, Grigorieff N. 2023. Quantification of gallium cryo-FIB milling damage in biological lamella.
741 *bioRxiv*: 2023.02.01.526705
742 Mahamid J, Schampers R, Persoon H, Hyman AA, Baumeister W, Plitzko JM. 2015. A focused ion
743 beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas
744 from multicellular organisms. *J. Struct. Biol.* 192: 262-69
745 Marko M, Hsieh C, Schalek R, Frank J, Mannella C. 2007. Focused-ion-beam thinning of frozen-
746 hydrated biological specimens for cryo-electron microscopy. *Nat. Methods* 4: 215-17
747 Martynowycz MW, Shiriaeva A, Clabbers MTB, Nicolas WJ, Weaver SJ, et al. 2023. A robust
748 approach for MicroED sample preparation of lipidic cubic phase embedded membrane
749 protein crystals. *Nat Commun* 14: 1086
750 Mastronarde DN, Held SR. 2017. Automated tilt series alignment and tomographic reconstruction in
751 IMOD. *J. Struct. Biol.* 197: 102-13
752 O'Reilly FJ, Xue L, Graziadei A, Sinn L, Lenz S, et al. 2020. In-cell architecture of an actively
753 transcribing-translating expressome. *Science* 369: 554-57
754 Parmenter CD, Nizamudeen ZA. 2021. Cryo-FIB-lift-out: practically impossible to practical reality. *J.*
755 *Microsc.* 281: 157-74
756 Parmenter CDJ, Fay MW, Hartfield C, Eltaher HM. 2016. Making the practically impossible "Merely
757 difficult"--Cryogenic FIB lift-out for "Damage free" soft matter imaging. *Microsc. Res. Tech.*
758 79: 298-303
759 Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, et al. 2021. UCSF ChimeraX:
760 Structure visualization for researchers, educators, and developers. *Protein Sci* 30: 70-82
761 Plitzko JM, Schuler B, Selenko P. 2017. Structural Biology outside the box-inside the cell. *Curr.*
762 *Opin. Struct. Biol.* 46: 110-21
763

765 Rigort A, Bäuerlein FJB, Villa E, Eibauer M, Laugks T, et al. 2012. Focused ion beam
766 micromachining of eukaryotic cells for cryoelectron tomography. *Proc. Natl. Acad. Sci. U. S.*
767 A. 109: 4449-54

768 Rohou A, Grigorieff N. 2015. CTFFIND4: Fast and accurate defocus estimation from electron
769 micrographs. *J. Struct. Biol.* 192: 216-21

770 Rubino S, Akhtar S, Melin P, Searle A, Spellward P, Leifer K. 2012. A site-specific focused-ion-
771 beam lift-out method for cryo Transmission Electron Microscopy. *J. Struct. Biol.* 180: 572-76

772 Schaffer M, Pfeffer S, Mahamid J, Kleindiek S, Laugks T, et al. 2019. A cryo-FIB lift-out technique
773 enables molecular-resolution cryo-ET within native *Caenorhabditis elegans* tissue. *Nat.*
774 *Methods* 16: 757-62

775 Schorb M, Gaechter L, Avinoam O, Sieckmann F, Clarke M, et al. 2017. New hardware and
776 workflows for semi-automated correlative cryo-fluorescence and cryo-electron
777 microscopy/tomography. *J. Struct. Biol.* 197: 83-93

778 Schreiber DK, Perea DE, Ryan JV, Evans JE, Vienna JD. 2018. A method for site-specific and
779 cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography.
780 *Ultramicroscopy* 194: 89-99

781 Sergey G, Denis K, Ava H, Gediminas G, Viola O, et al. 2018. Oxygen plasma focused ion beam
782 scanning electron microscopy for biological samples. *bioRxiv*

783 Smeets M, Bieber A, Capitanio C, Schioetz O, van der Heijden T, et al. 2021. Integrated cryo-
784 correlative microscopy for targeted structural investigation in situ. *Micros. Today* 29: 20-25

785 Spahn CMT, Gomez-Lorenzo MG, Grassucci RA, Jørgensen R, Andersen GR, et al. 2004. Domain
786 movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA
787 translocation. *EMBO J.* 23: 1008-19

788 Spehner D, Steyer AM, Bertinetti L, Orlov I, Benoit L, et al. 2020. Cryo-FIB-SEM as a promising tool
789 for localizing proteins in 3D. *J Struct Biol* 211: 107528

790 Strange K, Christensen M, Morrison R. 2007. Primary culture of *Caenorhabditis elegans* developing
791 embryo cells for electrophysiological, cell biological and molecular studies. *Nat Protoc* 2:
792 1003-12

793 Sulston J, Hodgkin J. 1988. In *The Nematode Caenorhabditis elegans*, ed. WB Wood, pp. 587.
794 New York: Cold Spring Harbor Laboratory Press

795 Tacke S, Erdmann P, Wang Z, Klumpe S, Grange M, et al. 2021. A streamlined workflow for
796 automated cryo focused ion beam milling. *J. Struct. Biol.* 213: 107743

797 Tivol WF, Briegel A, Jensen GJ. 2008. An improved cryogen for plunge freezing. *Microsc Microanal*
798 14: 375-9

799 Vergara HM, Pape C, Meechan KI, Zinchenko V, Genoud C, et al. 2021. Whole-body integration of
800 gene expression and single-cell morphology. *Cell* 184: 4819-37.e22

801 Wan W, Khavnekar S, Wagner J, Erdmann P, Baumeister W. 2020. STOPGAP: A Software
802 Package for Subtomogram Averaging and Refinement. *Microanal* 26: 2516-16

803 Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. 2021. The molecular basis for
804 sarcomere organization in vertebrate skeletal muscle. *Cell* 184: 2135-50 e13

805 Watanabe R, Buschauer R, Böhning J, Audagnotto M, Lasker K, et al. 2020. The In Situ Structure of
806 Parkinson's Disease-Linked LRRK2. *Cell* 182: 1508-18.e16

807 Zachs T, Schertel A, Medeiros J, Weiss GL, Hugener J, et al. 2020. Fully automated, sequential
808 focused ion beam milling for cryo-electron tomography. *Elife* 9

809 Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA. 2017. MotionCor2:
810 anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat.*
811 *Methods* 14: 331-32

812