bioRxiv preprint doi: https://doi.org/10.1101/2023.04.28.538731,; this version posted April 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Combining LIANA and Tensor-cell2cell to decipher
cell-cell communication across multiple samples

Hratch Baghdassarian'?* Daniel Dimitrov®*, Erick Armingol’?*, Julio Saez-Rodriguez®$, Nathan
E. Lewis?*$

' Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093,
USA

2 Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA

3 Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational
Biomedicine, BioQuant, 69120, Heidelberg, Germany

4 Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA

* These authors contributed equally to this work

$ Corresponding authors: pub.saez@uni-heidelberg.de, nlewisres@ucsd.edu

Abstract

In recent years, data-driven inference of cell-cell communication has helped reveal coordinated
biological processes across cell types. While multiple cell-cell communication tools exist, results
are specific to the tool of choice, due to the diverse assumptions made across computational
frameworks. Moreover, tools are often limited to analyzing single samples or to performing
pairwise comparisons. As experimental design complexity and sample numbers continue to
increase in single-cell datasets, so does the need for generalizable methods to decipher cell-cell
communication in such scenarios. Here, we integrate two tools, LIANA and Tensor-cell2cell,
which combined can deploy multiple existing methods and resources, to enable the robust and
flexible identification of cell-cell communication programs across multiple samples. In this
protocol, we show how the integration of our tools facilitates the choice of method to infer
cell-cell communication and subsequently perform an unsupervised deconvolution to obtain and
summarize biological insights. We explain how to perform the analysis step-by-step in both
Python and R, and we provide online tutorials with detailed instructions available at
https://ccec-protocols.readthedocs.io/. This protocol typically takes ~1.5h to complete from
installation to downstream visualizations on a GPU-enabled computer, for a dataset of ~63k
cells, 10 cell types, and 12 samples.
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Introduction

Cell-cell communication (CCC) coordinates higher-order biological functions in
multicellular organisms’?, dictating phenotypes in response to different contexts such as
disease state, spatial location, and organismal life stage. In recent years, many tools have been
developed to leverage single-cell and spatial transcriptomics data to understand CCC events
driving various biological processes?. While each computational strategy contributes unique and
valuable developments, many are tool-specific and challenging to integrate due to a plethora of
different inference methods and resources housing prior knowledge®®. Moreover, most tools do
not account for the relationships of coordinated CCC events (CCC programs) across different
contexts?, either disregarding context altogether by analyzing samples individually or being
limited to pairwise comparisons. Thus, as the ability to generate large single-cell and spatial
transcriptomics datasets and the interest in studying CCC programs continues to increase®”,
the need to robustly decipher CCC is becoming essential.

Development of the protocol

We combine two independent yet highly complementary tools that leverage existing
methods to enable robust and hypothesis-free analysis of context-driven cell-cell communication
programs (Fig.1). LIANA® is a computational framework that implements multiple available
ligand-receptor resources (i.e., database of ligand-receptor interactions) and methods to
analyze CCC. In particular, the user can employ LIANA to select any method and resource of
choice or combine multiple approaches simultaneously to obtain consensus predictions.
Tensor-cell2cell® is a dimensionality reduction approach devised to uncover context-driven CCC
programs across multiple samples simultaneously. Specifically, Tensor-cell2cell uses CCC
scores inferred by any method and arranges the data into a 4D tensor to capture the
coordinated relationship between ligand-receptor interactions, communicating cell type pairs,
and samples. Together, LIANA and Tensor-cell2cell unify existing approaches to enable
researchers to easily use their preferred CCC resource and method and subsequently analyze
any number of samples into biologically-relevant CCC insights without the additional
complications of installing separate tools or reconciling discrepancies between them.

For this protocol, we adapted LIANA and Tensor-cell2cell to enable their smooth
integration. Thus, our protocol demonstrates the concerted use of both tools, describes the
insights they provide, and facilitates the interpretation of their outputs. We base this protocol on
recent best practices for single-cell transcriptomics and CCC inference®. We begin by
processing the key inputs of our tools. Then, we guide the selection of methods and
prior-knowledge resources to score intercellular communication, using LIANA's consensus
method and resource to infer the potential CCC events for each sample. We use
Tensor-cell2cell to summarize the intercellular communication events across samples, and we
describe key technical considerations to enable consistent decomposition results. Finally, we
guide the interpretation of the decomposition results, and show multiple downstream analyses
and visualizations to facilitate interpretation of the context-dependent CCC programs. For
example, we illustrate how biologically-relevant results can be obtained by coupling the outputs
with pathway-enrichment analyses. We also provide quickstart and in-depth online tutorials with
detailed descriptions of all steps described in this protocol and their crucial parameters. All
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these materials are available in both Python and R at https://ccc-protocols.readthedocs.io/.
Collectively, these materials provide a comprehensive and flexible playbook to investigate
cell-cell communication from single-cell transcriptomics.
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Figure 1. Integration of LIANA and Tensor-cell2cell to identify context-driven programs of cell-cell
communication. LIANA and Tensor-cell2cell can be used together to infer the molecular basis of cell-cell
interactions by running analysis across multiple samples, conditions or contexts. Given a method,


https://ccc-protocols.readthedocs.io/
https://doi.org/10.1101/2023.04.28.538731
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.28.538731,; this version posted April 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

resource, and expression data, LIANA outputs CCC scores for all interactions in a sample. We adapted
both tools to be highly compatible with each other, so LIANA outputs can be directly passed to
Tensor-cell2cell to detect the programs from the scores computed with LIANA. Tensor-cell2cell uses the
communication scores generated for multiple samples to identify context-driven CCC programs.

Applications of the protocol

LIANA and Tensor-cell2cell have been used for diverse purposes. LIANA was initially
used to compare and evaluate different ligand-receptor methods in diverse biological contexts.
Tensor-cell2cell was originally applied to link CCC programs with different severities of
COVID-19 and Autism Spectrum Disorder (ASD)?. Briefly, LIANA evaluated different methods
and showed that they have limited agreement in terms of communication mechanisms®®, while
Tensor-cell2cell revealed distinct CCC program dysregulations associated with severe
COVID-19 specifically rather than moderate cases, as well as combinations of programs
distinguishing ASD from neurotypical condition. Notably, LIANA provides a consensus resource
and can aggregate multiple methods into consensus communication scores. Additionally, there
is a natural complementarity between the two tools, as Tensor-cell2cell can use input scores
from any CCC method (Fig.1) and generates consistent decomposition results across methods.
Thus, our tools are highly generalizable and applicable to the analysis of any single-cell
transcriptomics datasets. For example, LIANA has been used for the analysis of myocardial
infarction’® and TGFp signaling in breast cancer'’, among others. Our tools are also applicable
to other data modalities containing potentially interacting cell populations. Specifically, one can
adapt LIANA or use existing spatial tools'> and combine their outputs with Tensor-cell2cell to
generate spatially-informed CCC insights across contexts. Similarly, one can also obtain
metabolite-mediated intercellular interactions™', and decompose those into patterns across
contexts with Tensor-cell2cell™. One can also apply Tensor-cell2cell to extract CCC programs
occurring at specific tissues'® or at a whole-body organism level'®"". In this protocol, we focus
on how one can leverage the different CCC methods and resources, generalized by LIANA, to
infer context-dependent CCC programs with Tensor-cell2cell from single-cell transcriptomics
data.

Comparison with other methods

A plethora of ligand-receptor methods have emerged, most of which were published with
their own resources’*®. Many of these provide distinct scoring functions to prioritize interactions,
yet studies have reported low agreement between their predictions®'®', Due to the lack of a
gold standard, the benchmark of these methods remains limited>® and it is challenging to
choose the method that works best. To this end, in addition to providing multiple individual
methods via LIANA, we also enable their consensus, which we use in this protocol, under the
assumption that the wisdom of the crowd is less biased than any individual method®.

While many methods exist to infer ligand-receptor interactions from a single sample,
fewer approaches were designed to compare CCC interactions across conditions. These
include CrossTalkeR?', which utilizes network topological measures to compare communication
patterns, CellPhoneDB??, which accepts user-provided lists of differentially-expressed genes to
return relevant ligand-receptor interactions, and scDiffCom?, which uses a combined
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permutation approach across both cell types and conditions. Still, the aforementioned
approaches are limited to pairwise comparisons. To our knowledge the only approach other than
Tensor-cell2cell that can handle more than two conditions is CellChat?; however it is still based
on pairwise comparisons, subsequently applying a manifold learning to summarize
pathway-focused similarities of contexts. A key advantage of Tensor-cell2cell is that it considers
all samples simultaneously while preserving the relationships between ligand-receptor
interactions and communicating cell-type pairs. Thus, Tensor-cell2cell preserves higher-order
CCC relationships and translates those into mechanistic CCC programs of potentially interacting
ligands, receptors and communicating cell types.

Limitations

Although our tools provide robust and flexible solutions to infer CCC patterns across
contexts, they inherit the limitations associated with inferring communication events from
transcriptomics data. These include the assumption that gene co-expression is indicative of
active signaling events, which are largely mediated by proteins and their interactions, while also
disregarding any biological processes, such as protein translation, post-translational
modifications, secretion, diffusion, and trigger of intracellular events that precede and follow the
interaction itself>>. Moreover, the aggregation of single cells into cell groups is essential when
inferring potential CCC events, which could occlude some signals in heterogeneous tissues?,
thereby biasing the insights that can be obtained. Finally, since the input of Tensor-cell2cell is a
4D-tensor, it requires that all elements are measured across all features and samples.
Consequently, one should consider how to handle missing values caused by samples that do
not present the same cell types and/or expressed genes when constructing this tensor. Deciding
whether those reflect biologically-meaningful zeroes or a technical artifact may lead to variations
in the resulting CCC patterns. We provide an discussion of the related parameter choices that
may help users decide how to handle this challenge.

Expertise needed to implement the protocol

Our protocol requires basic understanding of Python or R and single-cell data analysis.
Yet, some of the detailed tutorials also touch on considerations that would be of interest to
computational biologist power users.
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Materials

Equipment

Hardware

This protocol was run on a computer with the following specifications:
e CPU: AMD Ryzen Threadripper 3960x (24 cores)
e Memory: 128GB DDR4
e GPU: NVIDIA RTX A6000 48GB

However, the minimal requirements for running this protocol are:
CPU: 64-bit Intel or AMD processor (4 cores)

e Memory: 16GB DDR3

e GPU: NVIDIA GTX 1050 Ti (Optional)

e Storage: At least 10GB available
Software
Table 1. Required packages for the computational environment.
Package Name Package Version Language Install With
jupyter conda
ipywidgets conda
pip >=22 Python conda
scanpy >=1.9 Python conda
*cuda-toolkit conda
*pytorch-cuda 11.6 conda
*torchvision conda
*torchaudio conda
pytorch, *cuda enabled conda
scvi-tools >=0.18 Python conda
scikit-misc 0.1.4 Python conda
cell2cell 0.6.7 Python pip
liana 0.1.7 Python pip
decoupler 1.3.3 Python pip
omnipath 1.0.6 Python pip
singlecellexperiment R conda
remotes >=2 R conda
devtools >=2 R conda
seuratobject R conda
biocmanager >=1.30 R conda
seurat >=4 R conda
hd5r R conda
furrr R conda
textshape R conda
forcats R conda
rstatix R conda
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ggpubr R conda
scater R conda
zellkonverter R conda
liana Commit ID: R remotes
ab70b34066f68df60e9ed0d
0ce72b0d00f871b7e
seurat-disk Commit ID: R remotes
9b89970eac2a3bd770e744f
63c7763419486b14c
decoupleR Commit ID: R biocmanager
c17d635e0720c86f2386¢39
ad7dea8614df393f1

*: For GPU enabled use only
Python packages should always be installed. R language packages only need to be installed if planning to run the
notebooks in R.

Equipment setup

To facilitate the setup of a virtual environment containing all required packages with their
corresponding versions, we provide an executable “setup_env.sh™ script together with
instructions on a Github repository we prepared for this protocol:
https://github.com/saezlab/ccc_protocols/tree/main/env_setup
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Procedure
A CRITICAL In this section we introduce our protocol (Fig.2) using Python. The same protocol
is implemented in R and is available online at

https://ccc-protocols.readthedocs.io/en/latest/notebooks/ccc  R/QuickStart.html.
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Figure 2. Overview of the protocol for inferring cell-cell communication through LIANA and
Tensor-cell2cell. Main inputs, steps, resources and options are summarized for the distinct steps of this
protocol: (a) A preprocessed gene expression matrix according to the best practices of single-cell analysis
is expected as input (step 3 in the Procedure section). (b) This input data is integrated with the
ligand-receptor resources available in LIANA to infer cell-cell communication using any of the methods
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implemented in LIANA (step 4 in the Procedure section). An output containing the cell-cell communication
scores across all interactions per sample is generated. (¢) The LIANA output is then directly passed to
Tensor-cell2cell to build the respective communication tensor used by the tensor component analysis
(steps 5.1-5.2 in the Procedure section). The output generated by Tensor-cell2cell can be later employed
for other downstream analyses (steps 5.3 and 6 in the Procedure section).

1. Installation and Environment Setup

Install Anaconda or Miniconda through the official instructions at:
https://docs.anaconda.com/anacondal/install/index.html

Then, open a terminal to create and activate a conda environment:

If you will be using a GPU, install PyTorch using conda:

conda install pytorch torchvision torchaudio pytorch-cuda .6 =¢c pytorch -c nvidia

Install Tensor-cell2cell, LIANA, and decoupler using PyPlI:

For fully reproducible runs of our Tutorials in both Python and R, we have specified the required
packages and their versions in Table 1. You can also follow instructions in the Environment
setup section to install a clean virtual environment with all package requirements.

Notebooks to run this tutorial can be created by starting jupyter notebook:

2. Initial Setups

First, if you are using a NVIDIA GPU with CUDA cores, set ‘use_gpu=True' and enable PyTorch
with the following code block. Otherwise, set "use_gpu=False" or skip this part.

use gpu = True
f use gpu:
tensorly as tl

tl.set backend('; '

Then, import all the packages we will use in this tutorial:
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callZeell as cio

liana as

pandas as pd

decoupler as de
import scanpy as sc
matplotlib.pyplot as plt
matpletlib inline
import plotnine as pd
seaborn as sns

Afterwards, specify the data and output directories:

data felder =
output folder
céc.io.directories.create_directoryidata_folder)

ciZo.io.directories.create directory (output folder)

We begin by loading the single-cell transcriptomics data. For this tutorial, we will use a lung
dataset of 63k immune and epithelial cells across three control, three moderate, and six severe
COVID-19 patients®. We use a convenient function to download the data and store it in the
AnnData format, on which the scanpy? package is built.

3. Data Preprocessing

Data preprocessing is crucial for the correct application of this (Fig.2a). Here, we only highlight
the essential steps. However, other aspects of data preprocessing should be considered and
performed according to the best practices of single-cell analysis

(https://qithub.com/theislab/single-cell-best-practices).
3.1.  Quality Control e TIMING < & min
The loaded data has already been pre-processed to a degree and comes with cell annotations.

Nevertheless, we highlight some of the key steps. To mitigate noise, we filter non-informative
cells and genes:

sc.pp.filter cells{adata, min genes= 1
sc.pp.filter genesa{adata, min cells=3)

We additionally remove a high mitochondrial content:
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adata . var|['mt' = adata.var names.str.startswith ("MT-")

sc.pp.calculate go metrics (adata,

adata = adata[adata.ocbs.pct counts mt < 15, 2]

Which is followed by removing cells with a high number of total UMI counts, potentially
representing more than one single cell (doublets):

adata adata[adata.obs.n genes < 5500

! CAUTION Here, we covered the absolute basics. We omit other common practice steps, such
as the removal of cells with high ribosomal content and the correction of ambient RNA.
Additionally, in certain scenarios, particularly in such where technical variation is expected to be
notable, the application of quality control steps by sample is desirable.

3.2. Normalization e TIMING < 2 min

We have now removed the majority of noisy readouts and we can proceed to count
normalization, as most cell-cell communication tools typically use normalized count matrices as
input. Normalized counts are usually obtained in two essential steps, the first being count depth
scaling which ensures that the measured count depths are comparable across cells. This is then
usually followed up with log1p transformation, which stabilizes the variance of the counts and
enables the use of linear metrics downstream:

adata.layers[" ints"™] adata.X.copy()

sc.pp.normalize total (adata, target sum=led)

sc.pp.loglpladata)

A CRITICAL A key parameter of this command is:
e target_sum ensures that after normalization each observation (cell) has a total count
equal to that number.

These normalization steps ensure that the aggregation of cells into cell types, a common
practice for CCC inference, is done on comparable cells with approximately normally-distributed
feature values.

? TROUBLESHOOTING Expression matrices with nan or inf values causes errors. Users
should stick to common normalization techniques, and any nan, negative or inf values must be
filled to avoid errors.
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4. Inferring cell-cell communication

Following preprocessing of the single-cell transcriptomics data, we proceed to the inference of
potential CCC events (Fig.3b). In this case, we will use LIANA to infer the ligand-receptor
interactions for each sample. LIANA is available in Python and R, and supports Scanpy,
SingleCellExperiment and Seurat objects as input. LIANA is highly modularized, and it natively
implements the formulations of several methods, including CellPhoneDBv2?, Connectome?,
log2FC, NATMI?, SingleCellSignalR*, CellChat®', a geometric mean, as well as a consensus
score in the form of a rank aggregate® from any combination of methods (Fig.3). The high
modularity of LIANA further enables the straightforward addition of any other ligand-receptor
method.

LIANA classifies the scoring functions from the different methods into two categories: those that
infer the “Magnitude” and “Specificity” of interactions. The “Magnitude” of an interaction is a
measure of the strength of the interaction, and the “Specificity” of an interaction is a measure of
how specific an interaction is to a given pair of cell groups. Generally, these categories are
complementary, and the magnitude of the interaction is often in agreement with the specificity of
the interaction. In other words, a ligand-receptor interaction with a high magnitude score in a
given pair of cell types is likely to also be specific, and vice versa.

Methods
CellPhoneDB
CellChat  NATMI logFC

Clustered scRNA Data

* Resources @,

Connectome

CellTalkDB

ConnectomeDB

CellPhoneDB Ramilowski

OmniPath

CellChatDB SingleCellSignalR

+ 10 others

+ others

Cell-Cell Communication

Figure 3. LIANA is a user-friendly and modular ligand-receptor analysis framework. LIANA
provides a variety of methods and resources to infer cell-cell communication, making it easy to use
multiple existing methods in a coherent manner. It also provides consensus scores and resources to
provide generalized results. Figure adapted from®.


https://sciwheel.com/work/citation?ids=8312724&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13132639&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9778492&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8476302&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10691771&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3315303&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13133568&pre=&suf=&sa=0
https://doi.org/10.1101/2023.04.28.538731
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.28.538731,; this version posted April 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4.1.  Selecting a method to infer cell-cell communication

While there are many commonalities between the different methods implemented in LIANA,
there also are many variations and different assumptions affecting how the magnitude and
specificity scores are calculated (See Appendix 1). These variations can result in limited
agreement in inferred predictions when using different CCC methods®'®'°. To this end, in LIANA
we additionally provide a rank_aggregate score, that can be used to aggregate any of the
scoring functions above into a consensus score.

By default, LIANA calculates an aggregate rank using a re-implementation of the
RobustRankAggregate method®, and generates a probability distribution for ligand-receptors
that are ranked consistently better than expected under a null hypothesis (See Appendix 1).
The consensus of ligand-receptor interactions across methods can therefore be treated as a
P-value. We show in detail how LIANA's rank aggregate or any of the individual methods can be
used to infer communication events from a single sample or context at “Python Tutorial 02
Infer-Communication-Scores”
[https://cce-protocols.readthedocs.io/en/latest/notebooks/ccc_python/02-Infer-Communication-S
cores.html].

A CRITICAL When using LIANA with Tensor-cell2cell, we recommend selecting a scoring
function that reflects the Magnitude of the interactions, as how the interactions Specificity
relates to changes across samples is unclear. In this protocol, we will use the “magnitude _rank’
scoring function from LIANA, under the assumption that ensemble approaches are potentially
less biased than any single method alone?®.

? TROUBLESHOOTING The default decomposition method of Tensor-cell2cell is a
non-negative Tensor Component Analysis, which, as implied, expects non-negative values as
the inputs. Thus, when selecting the method of choice, make sure that you do not have negative
CCC scores. If so, you can replace them by zeros or the minimum positive value.

4.2.  Selecting ligand-receptor resources

When considering ligand-receptor prior knowledge resources, a common theme is the trade-off
between coverage and quality, and similarly each resource comes with its own biases®. LIANA
takes advantage of OmniPath*®, which includes expert-curated resources of CellPhoneDBv2%,
CellChat®', ICELLNET®**, connectomeDB2020%°, CellTalkDB*, as well as 10 others®%. LIANA
further provides a consensus expert-curated resource from the aforementioned five resources,
along with some curated interactions from SignalLink®. In this protocol, we will use the
consensus resource from LIANA, though any of the other resources are available via LIANA,
and one can also use LIANA with their own custom resource.

Selecting any of the lists of ligand-receptor pairs in LIANA can be done through the following
command:

lx FHiTE = li.resource.select resgurce(” nsensus '}
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Here ‘consensus’ indicates the use of LIANA's consensus resource , but it can be replaced by
any other available resource (e.g. ‘cellphonedb’, ‘cellchatdb’, ‘connectomeDB’, etc.).

? TROUBLESHOOTING Users should choose a resource with gene identifiers and organism
that corresponds to that of their data. By default, LIANA uses human gene symbol identifiers,
but additionally provides a murine resource as well as functionalities to convert via orthology to
other organisms.

4.3.  Running LIANA for each sample e Timing 4 minutes

Here, we will run LIANA's ‘rank_aggregate” with six methods (by default, CellPhoneDBv2,
CellChat, SingleCellSignalR, NATMI, Connectome, log2FC) on all of the samples in the dataset.

li.mt.rank aggregate.by sample{adata,

A CRITICAL Key parameters here are:
e adata stands for Anndata, the data format used by scanpy?®, and we pass here with an

object with a single sample/context.
e sample_key corresponds to the sample identifiers, available as a column in the
‘adata.obs’ dataframe.

e groupby corresponds to the cell group label stored in "adata.obs’.
resource_name - name of any of the resources available via LIANA

expr_prop is the expression proportion threshold (in terms of cells per cell type
expressing the protein) for any protein subunit involved in the interaction, according to
which we keep or discard the interactions.

e min_cells is the minimum number of cells per cell type required for a cell type to be

considered in the analysis
n_perms is the number of permutations for P-value estimation

use_raw is a boolean that indicates whether to use the "adata.raw’ slot, here the
log-normalized counts are assigned to "adata.X’, other options include passing the name
of a layer via the “layer’ parameter or using the counts stored in "adata.raw’.

verbose is a Boolean value that indicates whether to print the progress of the function

inplace indicates whether storing the results in place, i.e. to "adata.uns[“liana_res’] .

A CRITICAL LIANA considers interactions as occurring only if the ligand and receptor, and all of
their subunits, are expressed in at least 10% of the cells (by default) in both clusters involved in
the interaction. Any interactions that do not pass these criteria are not returned by default. To
return those, the user can use the “return_all_Irs” parameter. These results will later be used to
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generate a tensor of ligand-receptor interactions across contexts that will be decomposed into
CCC patterns by Tensor-Cell2cell. Thus, how non-expressed interactions are handled is critical
to consider when building the tensor later on (see “Python Tutorial 03 Generate-Tensor”
[https://ccc-protocols.readthedocs.io/en/latest/notebooks/ccc _python/03-Generate-Tensor.html]).

Visualize output

One can visualize the output as a dotplot, but with the addition of the samples.

li.pl.dotplot by sample (adata=adata,

Key parameters here are:

source_labels is a list containing the names of the sender cells of interest.
target_labels is a list containing the names of the receiver cells of interest.
ligand_complex is a list containing the names of the ligands of interest.
receptor_complex is a list containing the names of the receptors of interest.
sample_key is a string containing the column name where samples are specified.

m PAUSE POINT We can export the liana results by sample to a csv, and save them for later
use:

adata.uns [ ' L Na 2'] .t cavioutput folder + "/LIANA by samg cav'y lndex=False)

Alternatively one could just export the whole AnnData object, together with the ligand-receptor
results stored at "adata.uns['liana_res’] :

adata.write hSad{output folder + "fadata -] ; i’ , compréession="gEip')

5. Comparing cell-cell communication across multiple samples
5.1.  Building a 4D-communication tensor e Timing <1 minute

First, we generate a list containing all samples from our AnnData object. For visualization
purposes we sort them according to COVID-19 severity. Here, we can find the names of each of
the samples in the ‘sample_new’ column of the adata.obs information:
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sorted samples = sorted(adata.chs['samg new'] ,unique())

Tensor-cell2cell performs a tensor decomposition to find context-dependent patterns of cell-cell
communication. It builds a 4D-communication tensor, which in this case is built from the
communication scores obtained from LIANA for every combination of ligand-receptor and
sender-receiver cell pairs per sample (Fig.2c). For this protocol and associated tutorials, we
implemented a function that facilitates building this communication tensor:

Censor li.multi.te_tenser_c2c(liana res=adata.uns[’

T f3.,
1text order=sorted samples,

? TROUBLESHOOTING Since the ‘magnitude_rank™ from LIANA represents a score where the
values closest to 0 represent the most probable communication events, we need to invert the
communication scores to use it with Tensor-cell2cell. See the parameter “inverse_fun® below for
further details for transforming this score.

A CRITICAL Key parameters here are:

e liana_res is the dataframe containing the results from LIANA, usually located in
‘adata.uns[‘liana_res’]. We can pass directly the AnnData object to the parameter adata
to this function. If the AnnData object is passed, we do not need to specify the liana_res
parameter.

e sample_key, source_key, target_key, ligand_key, receptor_key, and score_key are
the column names in the dataframe containing the samples, sender cells, receiver cells,
ligands, receptors, and communication scores, respectively. Each row of the dataframe
contains a unique combination of these elements.

e inverse_fun is the function we use to convert the communication score before building
the tensor. In this case, the 'magnitude_rank' score generated by LIANA considers low
values as the most important ones, ranging from 0 to 1. In contrast, Tensor-cell2cell
requires higher values to be the most important scores, so here we pass a function
(lambda x: 1 - x) to adapt LIANA's magnitude-rank scores (subtracts the LIANA's score
from 1). If None is passed instead, no transformation will be performed on the
communication score. If using other scores coming from one of the methods
implemented in LIANA, a similar transformation can be done depending on the
parameters and assumptions of the scoring method.

e how controls which ligand-receptor pairs and cell types to include when building the
tensor. This decision depends on whether the missing values across a number of
samples for both ligand-receptor interactions and sender-receiver cell pairs are
considered to be biologically-relevant. Options are:

o 'inner'is the most strict option since it only considers cell types and
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ligand-receptor pairs that are present in all contexts (intersection).

o ‘outer’ considers all cell types and ligand-receptor pairs that are present across
contexts (union).

o 'outer_Irs' considers only cell types that are present in all contexts (intersection),
while all ligand-receptor pairs that are present across contexts (union).

o ‘outer_cells’ considers only ligand-receptor pairs that are present in all contexts
(intersection), while all cell types that are present across contexts (union).

e outer_fraction controls the elements to include in the union scenario of the how options.
Only elements that are present at least in this fraction of samples/contexts will be
included. When this value is 0, the tensor includes all elements across the samples.
When this value is 1, it acts as using how='"inner".

e context_order is a list specifying the order of the samples. The order of samples does
not affect the results, but it is useful for posterior visualizations.

We can check the shape of this tensor to verify the number of samples, ligand-receptor pairs,
sender cells, and receiver cells, respectively:

Lensor.shapsa

In addition, optionally we can generate the metadata for coloring the elements in each of the
tensor dimensions (i.e., for each of the contexts/samples, ligand-receptor pairs, sender cells,
and receiver cells) in posterior visualizations. This metadata corresponds to dictionaries for each
of the dimensions, containing the elements and their respective major groups, such as a
signaling categories for a ligand-receptor interactions, a hierarchically more granular cell type,
or a disease condition for a sample. In cases where we do not account for such information, we
do not need to generate such dictionaries.

For example, we can build a dictionary for the contexts/samples dictionary by using the
metadata in the AnnData object. In this example dataset, we can find samples in the column
‘sample_new’, while their majors groups (representing COVID-19 severity) are found in the
column ‘condition’:

context dict adata.obs.sort values (by="'samy new')
get index ('samj new" ) [

.to_dict ()

Then, the metadata can be generated with:

dimension dicts [context_dict, Wone, None, Hone]
meta tensor = cic.Lensor.generate Censor_metadata(interaction tensor=Lensor,
tadata dicts=dimension dicts,

rder elements=True

Notice that the None elements in the variable dimensions_dicts represent the dimensions where
we are not including additional metadata. If you want to include metadata about major groups
for those dimensions, you have to replace the corresponding None by a dictionary as described
before.
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m PAUSE POINT We can export our tensor and its metadata for performing the tensor
decomposition later:

cdc.lo.export_variable with pickle{variable=tensocr,

filer :':-—OL.l__f':-.IL_fI'.:].ﬂE'I. ¢ S Ter -Pkl")
ci2c.lo.export_variable with pickle(variable=meta tensor,

filename=cutput folder + "/T: Metadata.pkl')

Then, we can load them with:

Censor cic.io.read_data.load tensor (output_folder + '/Ter "

meta_ tensor = cdc.lo.load variable with_ pickle (output_folder + '/Ten: Metadata.pkl')

5.2. Running Tensor-cell2cell across samples o Timing 5 minutes with a
‘regular’ run or 40 minutes with a ‘robust’ run (using a GPU in both cases)

Now that we have built the tensor and its metadata, we can run Tensor Component Analysis via
Tensor-cell2cell with one simple command that we implemented for our unified tools:

c2c.analysis.run_tensor celllcell pipeline(interaction_ tensorstensor,
| tadata=merCa Lensor,

=T
¥

older=output felder,

A CRITICAL Key parameters of this command are:

e rank is the number of factors or latent patterns we want to obtain from the analysis. You
can either indicate a specific number or leave it as None to perform the decomposition
with a suggested number from an elbow analysis.

e tf optimization indicates whether running the analysis in the 'regular’ or the 'robust'
way. The regular way runs the tensor decomposition fewer times than the robust way to
select an optimal result. Additionally, the former employs less strict convergence
parameters to obtain optimal results than the latter, which is also translated into a faster
generation of results.

e random_state is the seed for randomization. It controls the randomization used when
initializing the optimization algorithm that performs the tensor decomposition. It is useful
for reproducing the same result every time that the analysis is run. If None, a different
randomization will be used each time.

e device indicates whether we are using the 'cpu’ or a GPU with 'cuda’ cores. See the
Installation section of this tutorial for instructions to enable the use of GPU(s).

e output_folder is the full path to the folder where the results will be saved. Make sure
that this folder exists before passing it here.

This command will output three main results: a figure with the elbow analysis for suggesting a
number of factors (only if rank=None), a figure with the loadings assigned to each element
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within a tensor dimension per factor obtained, and an excel file containing the values of these
loadings.

? TROUBLESHOOTING Elbow analysis returns a rank equal to one, or the curve is increasing
instead of decreasing. This may be due to high sparsity in the tensor. The sparsity can be
decreased by re-building the 4D tensor after re-running LIANA (Step 4.3) with a smaller
‘expr_prop’ (e.g. ‘expr_prop=0.05") or by only re-building the tensor (Step 5.1) with a higher
‘outer_fraction™ (e.g. “outer_fraction=0.8").

5.3. Downstream visualizations: Making sense of the factors e Timing <2
minutes

The figure representing the loadings in each factor generated in the previous section can be
interpreted by interconnecting all dimensions within a single factor. For example, if we take
Factor 4 in Fig.4, the CCC program here occurs in each sample in a manner proportional to
their loadings, here correlated with COVID-19 severity. Relevant interactors can be interpreted
according to their loadings (i.e. ligand-receptor pairs, sender cells, and receiver cells with high
loadings play a more prominent role in an identified CCC program). Ligands in high-loading
ligand-receptor pairs are sent predominantly by high-loading sender cells, and interact with the
cognate receptors on the high-loadings receiver cells. In this factor, the program would be
predominantly driven by changes in the receptor expression of receiver cells such as
macrophages, neutrophils and myeloid dendritic cells.

We can access the loading values of samples in each of the factors with:
tensor.factors['Cont: ']

In this case we obtain a dataframe where rows represent the samples, columns the factors
generated by the decomposition, and entries are the loadings of each element within the
corresponding factor. We can also access the loadings for the elements in the other dimensions
by replacing ‘Contexts’ with ‘Ligand-Receptor Pairs’, ‘Sender Cells’, or ‘Receiver Cells’. Then,
we can use these loadings to perform various downstream analyses (Fig.5).
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Figure 4. Cell-cell communication programs obtained by combining LIANA and Tensor-cell2cell.
After inferring cell-cell communication with LIANA from the COVID-19 data, and running a Tensor

Component Analysis with Tensor-cell2cell,

11 factors were obtained (rows here), each of which
represents a different cell-cell communication program. Within a factor, loadings (y-axis) are reported for
each element (x-axis) in every tensor dimension (columns). Elements here are colored by their major
groups as indicated in the legend.
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Figure 5. Examples of downstream analyses performed on the results from the LIANA and
Tensor-cell2cell framework. Downstream analyses can be performed by using the loadings of one of
the tensor dimensions. Context or sample loadings (a-b) can be used to (a) compare statistically different
condition groups within the same cell-cell communication program or (b) to group samples across all
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programs. (c-e) Similarly, ligand-receptor interactions can be analyzed from their loadings per or across
factors. (c) Key ligand-receptor pairs whose loadings are above a threshold can be clustered depending
on their importance across all cell-cell communication programs. They can also be ranked according to
their loadings within a factor (factor-specific analyses), and this information can be used to run an
enrichment analysis such as (d) GSEA or (e) PROGENYy to associate each of the programs with different
functions or pathways. (f) Finally, cell type loadings can be jointly used within a factor to have an overall
representation of the cell-cell communication (i.e., a factor-specific network of communication).

For example, we can use loadings to compare groups of samples (Fig.5a-b) with box plots and
statistical tests:

groups order [ * Coo 'r "Mod @ COVID-15°, ‘& » COVID-18']
fig filename = output folder + °

= gZeo.plotting.context boxplot (context loadings=tensor.factors['C
metadict=context dict,
nrows=3,
ize= (16, 1
irder=groups order,
!

1 L i 1 1
¥

1g filename

A CRITICAL In this case, we can change the statistical test and the multiple-test correction with
the parameters statistical_test” and “pval_correction’. Here we used an independent t-test and
a Benjamini-Hochberg correction. Additionally, we can set verbose=True to print exact test
statistics and P-values.

We can also generate heatmaps for the elements with loadings above a certain threshold in a

given dimension (Fig.5b,c,f). Furthermore, we can cluster these elements by the similarity of
their loadings across all factors:

fig filename output folder + ° 1starmap-LES

cic.plotting.leading clustermap {loadings=tensor.factors([” T I-Receptor 115" ],

igsize=(28, 8),
name=fig filename,

ster=Falsa

? TROUBLESHOOTING Note that here we plot the loadings of the dimension representing the
ligand-receptor pairs. In addition, we prioritize the pairs with high loadings using the parameter
‘loading_threshold=0.1". In this case, the elements are included only if they are greater than or
equal to that threshold in at least one of the factors. If we use “loading_threshold=0", we would
consider all of the elements. Considering all of the elements would require modifying the
parameter “figsize" to enlarge the figure.

! CAUTION Changing the parameter "use_zscore™ to True would standardize the loadings of


https://doi.org/10.1101/2023.04.28.538731
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.28.538731,; this version posted April 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

one element across all factors. This is useful to compare an element across factors and
highlight the factors in which that element is most important. Modifying ‘row_cluster’ to True
would also cluster the factors depending on the elements that are important in each of them.

6. Pathway Enrichment Analysis: Interpreting the context-driven
communication

The decomposition of ligand-receptor interactions across samples into loadings associated with
the conditions reduces the dimensionality of the inferred interactions substantially. Nevertheless,
we are still working with 1,054 interactions across multiple factors associated with the disease
labels. To this end, as is commonly done when working with omics data types, we can perform
pathway enrichment analysis to identify the general biological processes of interest. By using
the loadings for each ligand-receptor pair, we can rank them within each factor and use this
ranking as input to enrichment analysis (Fig.5d-e). Pathway enrichment thus serves two
purposes; it further reduces the dimensionality of the inferred interactions, and it enhances the
biological interpretability of the inferred interactions.

Here, we will show the application of classical gene set enrichment analysis on the
ligand-receptor loadings. We will use GSEAY with KEGG Pathways*®, as well as a multivariate
linear regression from decoupler-py* with the PROGENYy pathway resource®.

First, we assign ligand-receptor loadings to a variable:

lr loadings tensor.factors[ 'l 3 T Becept 1irs']

6.1. Classic Pathway Enrichment

For the pathway enrichment analysis, we use ligand-receptor pairs instead of individual genes.
KEGG was initially designed to work with sets of genes, so first we need to generate
ligand-receptor sets for each of its pathways. A ligand-receptor pair is assigned as part of a
pathway set if all of the genes in the pair are part of the gene set of such pathway:

lr list = ['"*'".join{row} for idx, row in lr pairs.iterrows|()
organism = "
pathwaydb = "KE !
lr set = pic.external.generate lr geneset{lr list,
= L "
am=grganism,
pathwaydb=pathwaydb,
bl me= 12,
L] folder=output folder

Note that we use the "Ir_pairs® database that we loaded in the Selecting ligand-receptor
resources section.
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A CRITICAL Key parameters of this command are:
e complex_sep indicates the symbol separating the gene names in the protein complex.
e Ir_sep is the symbol separating a ligand and a receptor complex.
e organism is the organism matching the gene names in the single-cell dataset. It could
be either “human” or “mouse”.
e pathwaydb is the name of the database to be loaded, provided with the cell2cell
package. Options are “GOBP”, “KEGG”, and “Reactome”.

Run GSEA via cell2cell which calls the "gseapy.prerank” function internally e Timing < 1 minute

pvals, scores, gsea df = cle.external.run_gsea (loadings=1r_ leadings,
et=1r set,

der=cutput folder,

A CRITICAL Key parameters of this command are:

e Ir_setis a dictionary associating pathways (keys) with ligand-receptor pairs (values).

e weight represents the original parameter p in GSEA. It is an exponent that controls the
importance of the ranking values (loadings in our case).

e min_size indicates the minimum number of LR pairs that a set has to contain to be
considered in the analysis.

e permutations indicates the number of permutations to perform to generate the null
distribution.

e random_state is the reproducibility seed.

e significance_threshold is the P-value threshold to consider significance.

Now that we have obtained the normalized-enrichment scores (NES) and corresponding
P-values from GSEA, we can plot those using the following function from cell2cell:

pathway label = ' Annotations'. format (pathwaydh)
fig filename = output folder + EA-Dot t 1f '

th sns.axes_style({"darkg &

dotplot = cdc.plotting.pval plot.generate dot plot (pval df=pvals,

me=fig filanams
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6.2. Footprint enrichment analysis

In footprint enrichment analysis, instead of considering the genes whose products (proteins) are
directly involved in a process of interest, we consider the genes affected by it - i.e. those that
change downstream as a consequence of the process*'. In this case, we will use the PROGENy
resource to infer the pathways driving the identified context-dependent patterns of
ligand-receptor pairs. PROGENy was built in a data-driven manner using perturbation data*.
Consequently, it assigns different weights to each gene in its pathway genesets according to its
importance. Thus, we need an enrichment method that can account for weights. To do so, we
will use a multivariate linear regression implemented in decoupler-py*.

As we did in GSEA using Tensor-cell2cell, we first have to generate ligand-receptor gene sets
while also assigning a weight to each ligand-receptor interaction. This is done by taking the
mean between the ligand and receptor weights. For ligand and receptor complexes, we first
take the mean weight for all subunits. We keep ligand-receptor weights only if all the proteins in
the interaction are sign-coherent and present for a given pathway.

Load the PROGENYy genesets and then convert them to sets of weighted ligand-receptor pairs:

net = dc.get progeny{organism='human', top= |
1r progeny = li.funcomics.generate lr geneseti(lr palrs, net, 1 separator=""")

Run footprint enrichment analysis using the 'mim" method from decoupler-py e Timing < 1
minute:

estimate, pvals = dc.run mlm{lr loadings.transpose(),
lr progeny,

Here, "estimate’ and "pvals™ correspond to the t-values and P-values assigned to each pathway.

Finally, we generate Heatmap for the 14 Pathways in PROGENYy across all Factors:

fig filename = output folder +
_ = sns.clustermap{estimate, xticklabels=estimate.columns, cmap='c warm', = score=4)
plt.savefig(fig filename, dpi= box inches= £')

From the heatmap, we can also generate a Barplot for the PROGENy pathways for a specific
factor:
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salected factor = 'Factor 10
fig filename = cutput folder + '/PROGEMy-{}.pdf'.focrmat(selected factor.replace(' ",
=t

dc.plot_barpleot (estimate,
selected facteor,
vertical=True,
cmap="coalwarm’,

save=fig filename}
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Troubleshooting

Troubleshooting advice is summarized in Table 2.

Table 2. Troubleshooting.

Step Problem Possible reason Solution

3 &4 | Error: Expression matrix Mishandling counts Ensure that the matrix containing
contains non-finite values processing normalized counts is passed.
(nan or inf) Replace nan and inf values by

zeros.
Warning: Make sure that
normalized counts are
passed

4.1 Negative values in LIANA Using preprocessed data Avoid using preprocessing

outputs with negative expression methods that generate negative
values. values (e.g. centering the data to
the mean values, using
batch-corrected expression
values, etc.).

4.2 Not enough ligand-receptor | Mismatched symbol IDs LIANA by default uses a
pairs in the data for the resource with gene symbol IDs.
analysis When working with e.g. Ensembl

IDs users need to provide an
external resource; see
https://ccc-protocols.readthedocs
.io/en/latest/notebooks/ccc pytho
n/02-Infer-Communication-Score
s.html

51 CCC scores representing When using Build the 4D tensor using an
opposed importance ‘magnitude_rank’ scores ‘inverse_fun® to make lower

from LIANA, lower values values to be the most important
are more important. scores.

However, Tensor-cell2cell

prioritizes high values as

the important ones.

5.2 Rank selection through the High sparsity or number of | Re-run LIANA with less stringent
elbow analysis is not missing values in the tensor | parameters (e.g. smaller
behaving properly expr_pror). Re-build the tensor

with more strict how parameters
(e.g. using how=inner’ or
increasing outer_fraction).

5.3 Visualization of loadings are | Too many or few elements | To visualize all elements, use the
not properly displayed in in the dimension to parameter ‘loading_threshold=0"
heatmaps visualize to create the heatmaps. If you

have too many elements, you
can prioritize those with high
loadings, so a threshold can be
set. E.g., ‘loading_threshold=0.1"
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Timing

Step 1. Installation of Anaconda/Miniconda and Python packages: 5-30 mins.

Step 2. Initial setups: ~1 min.

Step 3. Deciphering cell-cell communication with LIANA: ~5 min.

Step 4. Comparing cell-cell communication across multiple samples with Tensor-cell2cell: Rank
estimation with elbow analysis takes 5 min, while the tensor decomposition 40 min.

Step 5. Downstream visualizations: 1 min.

Step 6. Functional Enrichment Analysis of KEGG and PROGENy pathways respectively using
GSEA and linear regression take 1 min each.

Anticipated Results

Deciphering cell-cell communication with LIANA yields all ligand-receptor interactions, defined in
the prior knowledge resource, for every pair of cell types within the dataset. For each
interaction, a set of statistics is assigned. These typically include a value that reflects the
magnitude and specificity of interaction depending on the method of choice. The magnitude
scores for each interaction in each sample are transformed into a 4D tensor that is then
decomposed by Tensor-cell2cell. Prior to decomposition, it is recommended to estimate the
optimal number of factors required to reconstruct the original tensor. For each output factor, we
obtain four vectors that represent the sample, ligand-receptor interaction, sender cell type, and
receiver cell type loadings. We can interpret the loadings as the relative importance of each
element in each dimension of the original tensor. Together, the four vectors in a given factor
constitute the CCC programs. The vectors are interconnected such that their combination
across dimensions define a CCC program, with loadings in the sample dimension representing
the context-dependence of the program and elements from each of the other dimensions
(ligand-receptor interactions and cell types) with high loadings being key mediators of this
program. By focusing on sample loadings associated with a given condition label, we can thus
identify the cell types and interactions also associated with that label. To aid the interpretation of
LIANA and Tensor-cell2cell results, we also provide a wide range of visualizations and
strategies to summarize the interaction loadings into biologically-meaningful insights. We
anticipate that our unified protocol will aid the scientific community in studying CCC using large
single-cell datasets with a high number of samples and biological conditions.
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