

1 **Microbes as part of ancestral neuronal circuits: Bacterial produced
2 signals affect neurons controlling eating behavior in *Hydra***

3 *Christoph Giez^{1*}, Denis Pinkle¹, Yan Giencke¹, Jörg Wittlieb¹, Eva
4 Herbst¹, Tobias Spratte², Tim Lachnit¹, Alexander Klimovich¹, Christine
5 Selhuber-Unkel², Thomas Bosch^{1*}*

6

7 1 Zoological Institute, University of Kiel, Christian-Albrechts-Platz 4, 24118
8 Kiel, Germany

9 2 Institute For Molecular Systems Engineering and Advanced Materials
10 (INSEAM), University Heidelberg, Im Neuenheimer Feld 225, 69120
11 Heidelberg, Germany

12

13 ***Corresponding Authors:**

14 Christoph Giez, cgiez@zoologie.uni-kiel.de

15 Thomas C.G. Bosch, tbosch@zoologie.uni-kiel.de

16

17

18 **Summary**

19 Although recent studies indicate the impact of microbes on the central nervous
20 systems and behavior, it remains unclear how the relationship between the
21 functionality of the nervous system, behavior and the microbiota arise. We studied
22 the eating behavior of *Hydra*, a host that has a simple nervous system and a low-
23 complexity microbiota. To identify the neuronal subpopulations involved, we used a
24 subpopulation specific cell ablation system and calcium imaging. The role of the
25 microbiota was uncovered by reducing the diversity of the natural microbiota. Here,
26 we demonstrate that different neuronal subpopulations are functioning together to
27 control the eating behavior. The microbiota participates in control of the eating
28 behavior since germ-free or mono-colonized animals have drastic difficulties in mouth
29 opening. This was restored by adding a full complement of the microbiota. In
30 summary, we provide a mechanistic explanation of how the eating behavior is
31 controlled in *Hydra* and how microbes can affect the neuronal circuit.

32

33 **Highlights**

34 - Multiple neuronal modules and their networks control complex behavior in an
35 animal lacking a central nervous system.

36 - Its associated microbes participate in these neuronal circuits and influence the
37 eating behavior.

38 - Disorganization of the microbiota negatively impacts this eating behavior.

39 - Glutamate participates in an evolutionary ancient interkingdom language.

40

41 **Keywords**

42 Microbiota, eating, evolution, nervous system, *Hydra*, Cnidaria

43

44

45 **Introduction**

46 Understanding the neuronal basis of any behavior is a challenging task, given the
47 complex interplay between neuronal circuits and the internal state of the organism
48 such as hunger, fear or motivation^{1,2}. The neuronal basis for behavior has been
49 studied in various animal hosts. In *Drosophila* larvae, food deprivation shapes the
50 olfactory behavior, highlighting the role of state-dependent neuronal circuits in
51 dynamic behaviors³. Another example is the mating and aggression behavior in mice
52 and flies, where a small number of neurons appear to control both behaviors in a
53 state-dependent manner⁴. To add another level of complexity, gut microbes can
54 affect behavior as well as activity of the nervous system^{5–9}. For instance, the gut
55 microbiota can affect aggression, fear, motivation, hunger, and emotional
56 behaviors^{10–18}. However, how microbes actively regulate the nervous system and
57 thereby affect internal states and behaviors remains mostly unknown. It can be
58 expected that the myriad of neurochemicals produced by microbes that live in close
59 association with their host can influence neuronal activity. For example,
60 muropeptides produced by the gut microbiota of mice are sensed by neurons
61 expressing the Nod2 receptor in a specific region of the brain, which affects feeding
62 behavior¹⁹.

63 Ideally, the complex interaction between behavior, internal state and microbes should
64 be studied in a host that displays complex behavioral patterns, but also has a simple
65 nervous system and a microbiota that is not too complex. Such a host is *Hydra* (Fig.
66 1A), a member of the phylum Cnidaria, which forms the sister group to the Bilateria in
67 the Eumetazoa clade, which includes one of the earliest animals with a nervous
68 system (Fig. 1B)²⁰. The nervous system of *Hydra* is composed of only two main
69 neuronal cell types, sensory and ganglion cells, that form a nerve net in the ectoderm
70 and endoderm, respectively^{21–23}. The associated microbiota colonizes the glycocalyx
71 that overlays the ectoderm and has direct contact to ectodermal sensory cells (Fig.
72 1C). There is no cephalization or ganglion formation, but regions along the body
73 column have higher or lower densities of specific neuronal subpopulations (Fig.
74 1D)^{24,25}. These represent non-overlapping neuronal networks with differential
75 activity²⁶. Already in 1744, Abraham Trembley recognized that *Hydra*'s behavior can
76 be either spontaneous (such as contractions) or stimuli-evoked²⁷. An example of the
77 latter is the eating behavior, schematically shown in Fig. 1E, that can be induced by

78 food or food-associated molecules such as reduced glutathione (GSH)^{28,29}. The
79 pattern is stereotypical and consists of three different stages: tentacle writhing,
80 tentacle ball formation, and mouth opening³⁰ (Fig. 1E, F, Suppl. Video 1). In animals
81 without nerve cells this behavior is completely absent³¹. Previous work had indicated
82 that neurons in the head region and not in the body column or tentacles were
83 involved in the eating behavior^{32,33}. More recently, single cell RNA sequencing had
84 identified different neuronal subpopulations including those in the head^{24,25,34}. This
85 elaborate behavior also responds to an internal state, since a food stimulus given to
86 well-fed animals does not result in a complete eating behavior response^{28,29,35}.

87 Interestingly, microbes present in the glycocalyx are in direct contact with the
88 ectodermal sensory neurons (Fig. 1C)³⁶. Previous studies highlighted the capability of
89 *Hydra*'s nervous system to sense and regulate this bacterial community^{25,36}. For
90 instance, it was observed that by depriving *Hydra* of its microbial symbionts,
91 spontaneous behaviors such as body contractions become less frequent³⁷.

92 Here, we studied the neuronal activity in freely moving *Hydra* during eating behavior,
93 to uncover the neural circuitry involved. For this, we traced activity of individual
94 neuronal populations using calcium imaging and interrogated their function using cell
95 ablation approach. This revealed that *Hydra*'s eating behavior is controlled by
96 multiple subpopulations of neurons that are activated in a temporally and spatially
97 ordered manner, ultimately leading to mouth opening. In complete absence of
98 microbes (germ-free animals) the mouth opening time is significantly shortened.
99 Adding the full complement of microbes back, restores this defect. Animals' mono-
100 colonized with the major colonizer *Curvibacter sp.*, also shows severe defect in
101 mouth opening, possibly caused by the production of glutamate. The results
102 demonstrate how, in an animal without a central nervous system, multiple networks
103 of neuronal subpopulations form a neuronal circuit to control a complex behavior.
104 Furthermore, the specific spatiotemporal pattern of neuron activity integrates specific
105 microbial signals, demonstrating that eating behavior does not solely depend on the
106 neuronal state of hunger or satiety: the bacterial community also modulates the
107 neuronal circuits and their state. The evolutionary importance of these observations
108 is discussed.

109 **Results:**

110 **Visualization of the neuronal subpopulations in the head of *Hydra***

111 First, we confirmed the old observation^{32,33} that removal of both the body column and
112 the tentacles of *Hydra* polyps did not affect the mouth-opening (see suppl. Video V2),
113 confirming that this property depended on head-specific neuronal regulation.

114 To visualize the various head specific neuronal subpopulations in *Hydra*, we
115 produced multiple transgenic lines using subpopulation specific genes based on
116 available single cell atlases. For this, we used the promoters of specifically expressed
117 genes, based on available single cell data sets of *Hydra*^{24,25} (See suppl. Fig. S1). The
118 RFamide neuropeptide, (RFa, preprohormone-B, transcript ID²⁴: t2059aep) is
119 exclusively expressed in the ectodermal subpopulation N6³⁸⁻⁴¹. The genetic target for
120 the ectodermal subpopulation N3 is the neuropeptide Hym-355 (transcript ID:
121 t12874aep)⁴². The marker for the endodermal neuronal subpopulation N4 is
122 annotated as neurogenic differentiation factor 1-like (e-value: 3.03E-140, t14976aep).
123 Their respective promoters were used in expression constructs to either drive the
124 expression of a calcium indicator (GCaMP6s)^{26,43} or for the NTR-MTZ cell specific
125 ablation approach (NTR-MTZ, explained below)^{44,45}.

126 Microscopic investigations of transgenic lines confirmed that the neuronal N6
127 subpopulation consists of two morphologically different cell types: sensory cells
128 present in a dense cluster in the tip of the head where the mouth will form during
129 feeding, and ganglion cells located in small packages at the basis of the head, close
130 to where the tentacles originate (Fig. 2A-G). These two neuronal N6 types are
131 interconnected by neurites that form radial connections (Fig. 2B). The ganglion cells
132 are frequently circularly connected as well (Fig. 2B, F). A two-dimensional density
133 plot confirmed the concentrated presence of N6 cells at the tip and the base of the
134 head (Fig. 2G). In contrast, N3 neurons are found throughout the body (Fig. 2H). The
135 spatial organization of N3 in the tip of the head is circular around the mouth region
136 (Fig. 2I, K, L). Their density increases at the basis of the head (Fig. 2I-L). N4 neurons
137 in the head reach the highest density at the base and between tentacles, while
138 around the mouth their density is lower (Fig. 2M-S). The morphology of N4 neurons
139 differs between body parts: around the mouth, the N4 neurites form a spider-web
140 structure (Fig. 2R) with a morphology very similar to sensory cells (Fig. 2O, Suppl.
141 Video 6). We call these N4 neurons sensory-like cells.

142 The density of N3 neurons was found the highest in the foot, followed by the head,
143 whereas in the body column their density was lower (Fig. 2T). In contrast, most N4
144 neurons were present in the head with lower and similar numbers in body and foot
145 (Fig. 2U). The distribution of the three neuron subpopulations (N6, N4 and N3) and
146 their neurite networks in the head is summarized in Figure 2V. The individual
147 subpopulations have a clear spatial distribution creating an ordered structure and
148 resulting in a network of nerves with a relatively high complexity in the head region.

149 **N6, N3 and N4 neurons are differentially active during the mouth opening**

150 Animals were observed during mouth opening as part of their eating behavior and
151 neuronal activity of head neurons was analyzed. The signals for the distinct sensory
152 and ganglion cell types of N6 and N4 were recorded separately. Following the
153 glutathione (GSH) stimulus, the mouth started to open by contraction of the
154 epithelia³², which was recorded by plotting mouth width (Fig. 3A-C).

155 After GSH stimulation, the first signal was recorded within 16.8 ± 26.5 s (n=6) for N6
156 sensory cells, whereas the N6 ganglion cells responded 9.3 ± 5.3 s later (Fig. 3A,
157 suppl. Video 3-4), at which time point the mouth started to open. As mouth opening
158 continued, N6 cells activity slowly decreased (Fig. 3A). This was in stark contrast to
159 the activity of N3 neurons, which at first sight seemed unresponsive to the GSH
160 stimulus, both in the head and the foot region (Fig. 3B, suppl. Video 5-6). The N4
161 neurons responded strongly to the GSH stimulus. A faster response was observed
162 for the N4 ganglion cells located at the base of the head, with a slower and slightly
163 weaker response of the N4 sensory-like neurons (Fig. 3C, suppl. Video 7-8). After the
164 delayed response of the N4 subpopulation, around 40s, the whole cell population
165 started to spike in a synchronous manner (Fig. 3C, suppl. Fig. 5).

166 Interestingly, N3 neurons responded opposite to N4 to GSH stimulus, as their spiking
167 frequency decreased (Fig. 3D-E). In individual polyps with a relatively frequent N3
168 spiking at the baseline (Fig. 3D), this became less frequent after glutathione
169 administration. In individual polyps with a low baseline frequency, the firing of N3
170 neurons stopped completely (Fig. 3D). This was restored to higher frequencies in the
171 late phase of feeding (330-420s post-stimulus). In contrast to N3, the firing frequency
172 of N4 neurons dramatically increased in response to GSH (Fig. 3F) and remained
173 high during late phase of feeding (Fig. 3G). Since N6 cells did not produce pulses but

174 fired more or less continuously (Fig3A), an analysis of the spiking frequency could
175 not be performed.

176 Next, we assessed whether there was a correlation between the mouth opening
177 dynamics and neuronal activity. For this, a 30s window starting at the onset of
178 neuronal activity was used and the determined change of fluorescence was
179 correlated with either the mouth width (measured in pixel, px) or speed of mouth
180 opening (px/sec, Fig. H-K). A linear positive correlation was observed for both effects,
181 in sensory as well as ganglion N6 cells (Fig. 3H-I). Fitting the N6 data in a linear
182 correlation for mouth width was better for the sensory cells than for the ganglion cells
183 ($R^2=0.23$ and 0.11, respectively, Fig. 3H), however, for mouth opening speed the
184 ganglion neurons fitted better ($R^2=0.44$ vs. $R^2=0.18$, Fig. 3I). This indicates that N6
185 sensory cells were more likely involved in the mouth opening event, while the N6
186 ganglion cells might be associated with the speed of the tissue movement. The
187 negative correlation between N3 neuron firing and mouth width (Fig. 3J) suggested
188 that a higher frequency of N3 neuron firing correlated with a smaller to no mouth
189 opening. The positive correlation between firing of the synchronous N4 neuron
190 population and mouth width fitted with the highest correlation ($R^2=0.83$, $n=4$, Fig. 3K).

191 In combination, these data suggest that during eating behavior, N6 sensory neurons
192 are active as the mouth is opening. The activity of N6 ganglion cells correlates with
193 the speed of tissue movement during mouth opening. The spiking of N3 decreases
194 during eating while N4 cells fire more frequently, sending synchronized pulses
195 through the complete polyp.

196 **Multiple neuronal subpopulations are involved in eating behavior**

197 To identify the contribution of individual neuronal subpopulation in the eating
198 behavior we used the NTR-Mtz cell ablation system. Genetic constructs were used
199 that contained nitroreductase (NTR) fused to GFP, to convert metronidazole (Mtz) to
200 a toxic product that induces apoptosis in the target cell population (suppl. Fig. 6A)⁴⁵.
201 As a control, *H. magnipapillata* strain Sf1 polyps were included that lacks interstitial
202 cells (neurons, nematocytes, gland cells and germline) after application of a
203 heatshock⁴⁶.

204 The N6 specific promoter caused a strong expression of the NTR-GFP fusion protein
205 in Rfa-positive cells in the polyp's head (Fig. 4A). Indeed, 93% of Rfa+ cells were
206 also GFP positive, indicating that the N6 line was nearly fully transgenic. Incubation
207 with 10mM Mtz eliminated the N6 neuronal subpopulation within 12h (Fig. 4A, suppl.
208 Fig. 6B). Other neuronal populations remained intact, for instance Rfa+ cells in the
209 tentacles remained detectable, demonstrating that the cell ablation was specific for
210 the target N6 subpopulation. Mtz treatment of control animals containing the
211 GCaMP6S construct had no effect (Suppl. Fig. 6D, G). Despite the absence of N6
212 neurons, the transgenic animals developed normally (Fig. 4B, compare the polyp pair
213 to the left, without and with Mtz treatment). Similar transgenic animals were produced
214 for ablation of N4 and of N3 (Suppl. Fig. 6D-I). Polyps lacking N4 neurons that are
215 normally present in head, body and foot, developed with an inflated body shape (Fig.
216 4B, middle pair) and animals lacking N3 neurons (expressed in all body parts) were
217 fully contracted (right-hand pair).

218 The effect of apoptotic removal of these different neuronal subpopulations on the
219 eating behavior of the polyps was studied in freely moving *Hydra* individuals (Suppl.
220 Fig. S7, Suppl. Video1). Following GSH stimulation, the duration of the mouth
221 opening period was recorded, as well as the response time required to initiate
222 tentacle or mouth movement. Results were reported as fold-change compared to
223 control (Fig. 4C, E, F). Interestingly when using GSH as artificial food stimulus polyps
224 attempted to ingest the chamber surface (Fig. 4D). This was additionally scored as
225 'plate eating' and described as an extremely wide mouth opening.

226 As expected, presence of neurons is a pre-requisite for the eating behavior, as their
227 absence in heat-treated Sf1 animals abolished mouth opening completely (Fig. 4C).
228 Ablation of either N6 or N4 subpopulation resulted in a severe reduction in mouth
229 opening time (fold-change compared to control: N4: 0.31 ± 0.398 , n=44, p<0.0001; N6:
230 0.32 ± 0.233 , n=46, p<0.0001; Fig. 4C). Removal of N3 caused a non-significant
231 reduction of mouth opening time (0.599 ± 0.94 , n=18, p>0.5). When N4 and N6
232 neurons were removed in combination, the transgenic animals completely stopped
233 opening their mouth (0 ± 0.09 , n=7; Fig. 4C).

234 Plate eating was observed in 65% of control animals when the freely moving polyps
235 spread their mouth wide over the surface of the chamber (Fig.4D). Ablation of N4
236 neurons completely inhibited this extreme wide opening of the mouth (Fig. 4D).

237 The response time to open the mouth after the GSH stimulus was affected by
238 removal of N4 and N6 neurons but not by removal of N3 (Fig. 4E). Absence of the
239 subpopulation N6 also strongly delayed tentacle movement ($p<0.001$, $n=46$, Fig. 4F).

240 Taken together, the data show that mouth opening duration, its response time and
241 the response time for tentacle movement during eating behavior are all controlled by
242 two distinct neuronal subpopulations N4 and N6, with a degree of redundancy that
243 adds some resilience to the functioning of this fitness-relevant and important behavior
244 as single ablation could not completely inhibit mouth opening.

245 **A global neuronal network of connected localized neuron subpopulations
246 regulates epithelial contraction**

247 To investigate if neuronal subpopulations form synaptic-like connections,
248 immunohistochemistry was performed with antibodies targeting the combined RFa+
249 neuronal subpopulations N1, N6 and N7, or the transgenic lines expressing GFP
250 (Fig. 5). This uncovered that N3 is connected to multiple other ectodermal neuronal
251 subpopulations (Fig5A-C). Contacts suggestive of synaptic-like structures between
252 N3 and $N6^{RFa+}$ neurites were identified in the head (Fig. 5A), while in the foot N3 and
253 $N1^{RFa+}$ neurons were in close proximity (Fig. 5B). In the tentacles N3 was aligned in
254 nerve bundles with neurites in contact with $N7^{RFa+}$ sensory neurons (Fig. 5C).
255 Contacts between ectodermal and endodermal neuronal subpopulations were also
256 identified, despite their separation by the mesoglea (Fig. 5D-F). For instance, we
257 identified potential contact points between endodermal N4 and ectodermal $N6^{RFa+}$ in
258 the head (Fig. 5D-E). However, in the foot region, no contact points between
259 endoderm N4 neurons and the abundant ectodermal $N1^{RFa+}$ could be identified (Fig.
260 5F).

261 To investigate the sequential activity of the neurons in the neuronal circuit, we
262 measured the time gap between the first neuronal activity and the onset of mouth
263 opening. A longer time-gap relates to an earlier response in the eating behavior.
264 Figure 5G shows that the earliest responses were observed for sensory N6 cells,
265 followed by N6 ganglion cells and then N4 ganglion cells (Fig. 5G, $n=4-7$). This
266 suggests that sensory N6 cells detect the food stimulus first, to pass the signal on to
267 ganglion N6 cells, before the N4 cells respond.

268 The number of primary neurites located in top part of the head and at its base was
269 determined for N6 and N3 (Fig. 5H). The top of the head contained the fewest N6
270 neurites, and the base contained the most (Fig. 5H). This would enable a signal
271 picked up by N6 sensory cells to be not only propagated but also enhanced via N6
272 neurites at the base, where the contact between N6 and N4 cells (cf. Fig. 5H, D-E)
273 ensures involvement of the latter. At the same time, contact between N6 and N3
274 would allow the inactivation of the N3 cells.

275 As mouth opening requires the contraction of epithelia, we also measured the time
276 required to initiate contraction of both ectoderm and endoderm involved in mouth
277 opening (see Methods for the application of calcium imaging constructs under control
278 of an actin promoter for this)⁴⁷. First, we observed that the ectoderm of the head base
279 contracted before the endoderm did (Fig. 5I, J). While the endoderm was activated in
280 the whole head region at some point during the behavior, with a faster response at
281 the top than at the base of the head (Fig. 5J), the ectoderm was only active at the
282 base of the head, close to the tentacles (Fig. 5I). The time required for ectodermal
283 contraction at the head base and for endodermal contraction till mouth opening
284 differs.

285 All data taken together suggest that the reaction flow went from the N6 sensory cells
286 to the ectodermal epithelium and to N6 ganglion cells, and from there to the N4
287 ganglion neurons and then to the endodermal epithelium. This is summarized in
288 Figure 5K.

289 **The role of bacteria: mono-association of *Curvibacter* sp. reduces mouth
290 opening.**

291 Since there are symbiotic bacteria in the immediate proximity of the head neurons³⁶,
292 we next asked whether these bacteria might have an influence on the neuronal circuit
293 identified here that control eating behavior. For this, germ-free (GF) animals were
294 compared with wildtype (Wt) and recolonized with a number of pure cultures of native
295 bacteria as described previously^{48,49}. Intriguingly, germ-free animals kept their
296 mouths open much shorter than control animals did ($p < 0.01$, Fig. 6A). Mono-
297 association of polyps with single members of the core bacterial community, (including
298 *Duganella*, *Pelomonas* or *Undibacterium* species) rescued this defect (Fig. 6A),
299 although monoassociation with *Pseudomonas* or *Acidovorax* had no effect (Fig. 6A).

300 Completely unexpected results were obtained with animals that were mono-
301 associated with *Curvibacter* sp., which is the most abundant representative in the
302 wildtype *Hydra* AEP microbiota^{48–50}. Exclusive presence of these bacteria reduced
303 the mouth opening time to nearly zero (n=47, Fig. 6A-B). The effect could be restored
304 to some degree by co-addition of a second bacterial species, whereby all tested di-
305 associations produced similar effects (Fig. 6B). The combination of *Curvibacter* with
306 *Undibacterium* and *Duganella* restored the mouth opening time to normal (Fig. 6B).

307 The strong inhibitory effect on the mouth opening time by mono-association of
308 *Curvibacter* led us to investigate the effect of these bacteria on the neuronal activity
309 during eating behavior. For this, the neuronal activity of Wt, GF and polyps mono-
310 associated with *Curvibacter* was compared by calcium imaging (Fig6 C-E). As shown
311 in Figure 6C, the activity of N6 sensory neurons in germ-free animals was much
312 lower compared to controls. Interestingly this could be restored by presence of the
313 *Curvibacter* symbiont (Fig. 6C). Likewise, *Curvibacter* restored the decreased N4
314 activity of GF polyps (Fig. 6D). Activity of N3 neurons was not affected (Fig. 6E).

315 ***Curvibacter* sp. affects neuronal cells by means of glutamate**

316 To investigate the mechanism how *Curvibacter* sp. influences the eating behavior
317 and neuron activity on a molecular level, gene expression pattern of *Curvibacter* in
318 mono-association with *Hydra* was compared to the expression profile of the bacteria
319 cultured in minimal growth medium R2A. Differentially expressed genes were
320 identified and the metabolic pathways in which these genes were involved were
321 examined. This approach identified pathways for alanine, aspartate and glutamate
322 metabolism, among others (Fig. 6F). In particular, genes associated with glutamate
323 metabolism were differentially expressed (Fig. 6F). While glutamine synthetase was
324 downregulated in presence of the *Hydra* host, glutaminase, glutamate
325 dehydrogenase (*gdhA*) and *glnM*, *glnP* and *glnQ* (glutamine transporters) were over-
326 expressed (Fig. 6F). This points to a glutamate production during host-association.
327 Since glutamine binding and uptake associated genes are also upregulated in host-
328 association, we assume that host-associated *Curvibacter* sp. secretes glutamate
329 while taking up glutamine.

330 Previous work had described a putative NMDA-like glutamate receptor in *Hydra*
331 tissues to be involved in the eating behavior^{51–53}. Since N6 sensory cells express the

332 NMDA receptor (Suppl. Fig. 8) we hypothesized that bacterial glutamate might bind
333 to the NMDA-like receptor present on N6 sensory neurons. To test this, *Curvibacter*
334 *sp.* was first cultivated *in vitro* in *Hydra* culture medium supplemented with 200 μ M
335 glutamine. The glutamate concentration in this supernatant reached 129 \pm 36.1ng/ μ L.
336 When *Curvibacter* was cultivated in *Hydra* culture medium with alanine, little
337 glutamate was secreted (Fig. 6G). Next, we tested the effect of glutamate on the
338 eating behavior. As shown in Figure 6H addition of glutamate inhibited mouth
339 opening duration. Addition of NMDA had a similar inhibitory effect, corroborating the
340 hypothesis of an NMDA-receptor being involved. Adding various other amino acids
341 had little to none effect on mouth opening duration (Fig. 6). Taken together and in
342 accordance with previous biochemical and functional evidence of the occurrence of
343 putative NMDA-like glutamate receptors in *Hydra* tissues and with the fact that N6
344 sensory cells are equipped with this receptor, we assume that *Curvibacter* produced
345 glutamate can affect the N6 neurons via this receptor.

346 **Discussion**

347 Cnidarians emerge as informative models for neuroscience, as they have surprisingly
348 complex neuronal circuits and enable the study of neuronal activity in complete
349 organisms lacking a centralized nervous system^{20,26,54,55}. Neuronal control of
350 behavior in cnidarians is dispersed and control takes place in neuronal
351 subpopulations. Recent work in *Hydra* have highlighted that simple spontaneous
352 behaviors are controlled by single neuronal subpopulations²⁶. *Hydra* has multiple
353 non-overlapping neuronal networks, each of which can regulate a single behavior,
354 but they are also collectively involved in mechanosensory processing⁵⁶. *Hydra* is also
355 a well-described metaorganism which is colonized by a stable and functionally
356 relevant microbiota^{37,48,50,57-59}. Here we studied the interplay and coordination
357 between multiple neuronal subpopulations and epithelial cells that together with the
358 microbial colonizers are involved in the eating behavior. Our work emphasizes the
359 importance of the microbiota on neuronal circuits. The results offer an opportunity to
360 unravel the evolution of the interplay between bacteria and the nervous system
361 mechanistically.

362 **The eating behavior requires coordination between multiple neuronal**
363 **subpopulations**

364 The eating behavior illustrates beautifully how, in the absence of any form of
365 centralization, different neuronal subpopulations interact with each other to
366 coordinate a complex behavior. In the presence of a chemical signal for food, for
367 which we used reduced glutathione, different neuronal subpopulations were either
368 activated or inactivated, to coordinate the epithelial movement leading to mouth
369 opening (Fig. 3, Fig. 5K). First N6 sensory cells at the tip of the head are activated,
370 followed by the N6 ganglion cells at the head base, while the local ectoderm
371 contracts. When N6 ganglion cells are activated, the frequency of N4 spiking is
372 increased and the signal spreads from the base back to the tip of the head, leading to
373 contraction of the endoderm (Fig. 3, Fig. 5K). At the same time, N3 decreases in
374 spiking frequency and the mouth is opening, suggesting these neurons have an
375 inhibitory function on mouth opening (Fig. 3). Ablating N3 neurons did not inhibit the
376 mouth opening, whereas ablating N4 and N6 did (Fig. 4C). Interestingly, these
377 neuronal subpopulations control different aspects of the mouth opening and eating
378 behavior: N4 regulates the mouth opening width (Fig. 4D), whereas N6 is involved in
379 the recruitment of the tentacles (Fig. 4F). In combination, these three different
380 neuronal subpopulations form the neuronal circuit controlling the epithelia involved in
381 the eating behavior (Fig. 5K).

382 The fact that several non-overlapping neuronal subpopulations are involved to control
383 different aspects of eating behavior suggests that they must be in contact with each
384 other. One of the highest densities of neurons in *Hydra* is at the tentacle-head
385 junctions at the base of the head^{60,61}. At this location, the densities of N3, N4 and N6
386 populations are particularly high, with increased numbers of primary neurites
387 compared to the body column (Fig. 2G, L, S, Fig. 5H). In addition, in this region
388 distinct contact points between neurons of different neuronal subpopulations could be
389 identified (Fig. 5A-F). In combination with the sequence of activity after glutathione
390 stimulus (Fig. 3) this led us to the conclusion that the base of the head is the region
391 where the different signals are being integrated and distributed to the endodermal
392 and ectodermal networks. The complexity of neurites and synaptic structures in this
393 region was already identified by electron microscopy⁶⁰⁻⁶⁵. Our results highlight how a
394 relatively simple neuronal network in *Hydra* can result in a stunning complexity in
395 order to process sensory information into multiple responses to control the complex
396 eating behavior. We note potential similarities to neuronal control mechanisms in the
397 jellyfish *Clytia hemisphaerica*, where an apparently diffuse network of neurons is

398 functionally subdivided into a series of spatially localized subassemblies whose
399 synchronous activation controls food transfer from the tentacles to the mouth⁵⁴.
400 However, that organism depends on functional modules, whereas in *Hydra* multiple
401 subpopulations within a single circuit coordinate the behavior.

402 **Eating behavior becomes severely impaired when the microbiota is disturbed.**

403 Polyps mono-colonized with *Curvibacter sp.* had drastically reduced mouth opening
404 time, suggesting a bacterial signal interfered with the neuronal circuit that controls
405 this fitness relevant behavior. This striking inhibitory effect was all the more
406 surprising, as *Curvibacter sp.* normally represents around 70% of the *Hydra* bacterial
407 microbiota and has not been associated previously with any negative effect on the
408 host⁵⁷. The inhibitory effect of *Curvibacter sp.* could be reversed by increasing
409 bacterial diversity while adding back specific members of the core microbial
410 community (Fig. 6B).

411 The inhibitory effect of *Curvibacter sp.* on eating behavior was not accompanied by a
412 detectable change in neuronal activity compared with the control (Fig. 6C-E). Instead,
413 mono-association of *Curvibacter sp.* reversed the effect of germ-freeness back to
414 control conditions. This highlights that *Curvibacter sp.* affects neuronal activity, and
415 also that neurons are able to sense the presence of *Curvibacter* presence. Since the
416 N6 sensory neurons are in close contact with the microbiota³⁶, their response was to
417 be expected, but a similar effect on the endodermal N4 population (Fig. 6D) was
418 rather unexpected and suggest that *Curvibacter sp.* has a more global effect on the
419 nervous system.

420 The transcriptional response of *Curvibacter sp.* to the host environment points to the
421 secretion of glutamate in the presence of glutamine, which was supported by *in vitro*
422 observations (Fig. 6G-I). The neuronal subpopulations N3, N4 and N6 express an
423 NMDA receptor that could respond to bacterial glutamate and integrates this
424 information into the neuronal circuit of the eating behavior (NMDAR and mGlu, see
425 Suppl. Fig. 8). Since N4 and N6 but not N3 neurons showed a response to
426 *Curvibacter sp.*, we assume that N4 and N6 receive and integrate the bacterial
427 signal. Our work shows that the old observation published by Lenhoff (1961)⁵² that
428 glutamate has a negative effect on eating behavior in *Hydra* may find its explanation
429 in the microbial colonization of *Hydra*.

430 **Evolutionary perspective**

431 Altogether, our findings confirm and expand on the idea that in animals without a
432 central nervous system, a complex behavior is controlled by multiple subpopulations
433 of neurons, forming circuits and modules⁵⁴. Our observations presented here show
434 that this not only requires the coordination of multiple neuronal circuits, but also that
435 signals from the microbial environment play an important role. We present data that
436 support a model (Fig. 6l) in which in the critical phase of mouth opening, can be
437 affected by microbially produced glutamate.

438 Already in 1963, the evolutionary biologist Tinbergen outlined an organizational
439 framework that would control complex behavior^{66,67}. His research involved four levels
440 of analysis: phylogenetic, developmental, functional, and mechanistic investigations.
441 Our findings of the influence of the microbiota on the neuronal control of *Hydra*'s
442 eating behavior, which co-evolved with this host^{49,57}, adds this as an additional
443 environmental perspective to be considered when studying complex behavior.

444 That bacteria are able to produce molecules that are active on neuronal cells has
445 been known for quite some time^{68,69}, but most work has been carried out in
446 mammals. Here we show that the integration of bacterial signals into neuronal circuits
447 might be as evolutionary ancient as the first nervous system, as it already exists in
448 cnidarians. Our observation that bacterial glutamate plays a crucial role in this
449 interaction, together with the numerous findings on the influence of this molecule on
450 mammalian intestinal physiology^{9,69}, support the idea that it is part of an ancestral
451 interkingdom language.

452 **Acknowledgements**

453 This work was supported in part by grants from the Deutsche
454 Forschungsgemeinschaft (DFG), the CRC 1182 "Origin and Function of
455 Metaorganisms" (to TCGB.) and the CRC 1461 "Neurotronics: Bio-Inspired
456 Information Pathways" (Project-ID 434434223 – SFB 1461) (to TCGB and AK).
457 T.C.G.B. appreciates support from the Canadian Institute for Advanced Research.
458 AK is supported by a DFG grant KL3475/2-1. C.S. and T.S. acknowledge funding by
459 the DFG under Germany's Excellence Strategy 2082/1-390761711 (3D Matter Made
460 to Order). We thank Trudy Wassenaar for critical reading of the manuscript. We
461 thank the members of the Bosch lab for support and discussion, and Andreas Tholey,

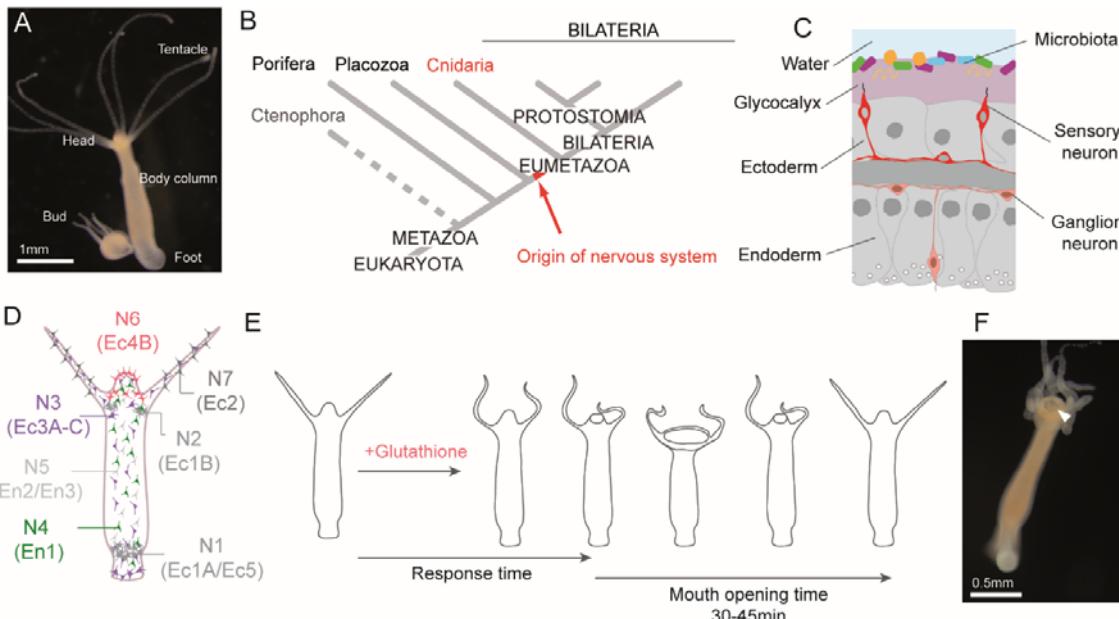
462 Christoph Kaleta, Georgios Marinos and Karlis Moors for discussion. We also thank
463 Urska Repnik and Marc Bramkamp from the Central Microscopy Facility at the
464 Biology Department of the University of Kiel for excellent technical support. We highly
465 appreciated the expertise provided by the sequencing facility at the Institute of
466 Clinical Molecular Biology (IKMB) in Kiel, Germany.

467 **Authors contribution**

468 C.G. and T.C.G.B. conceptualized the project and wrote the manuscript. T.C.G.B.,
469 J.W., A.K., Y.G., D.P. and C.G. designed and performed experiments on
470 transgenesis. T.C.G.B., D.P., C.S., T.S., E.H. and C.G. designed and performed
471 histological, behavioral experiments. C.G., E.H., T.L. and T.C.G.B. designed and
472 performed neuronal activity and microbiota experiments. T.L. and C.G. analyzed the
473 data.

474 **Declaration of interest**

475 The authors declare no competing interests.


476 **Data and code availability**

477

- 478 • Source data reported in this paper will be shared by the lead contact upon
request.
- 479 • Codes used for the analysis and statistical analysis will be shared by the lead
contact upon request.
- 480 • Any additional information required to reanalyze the data in this paper will be
shared by the lead contact upon request.

483

484

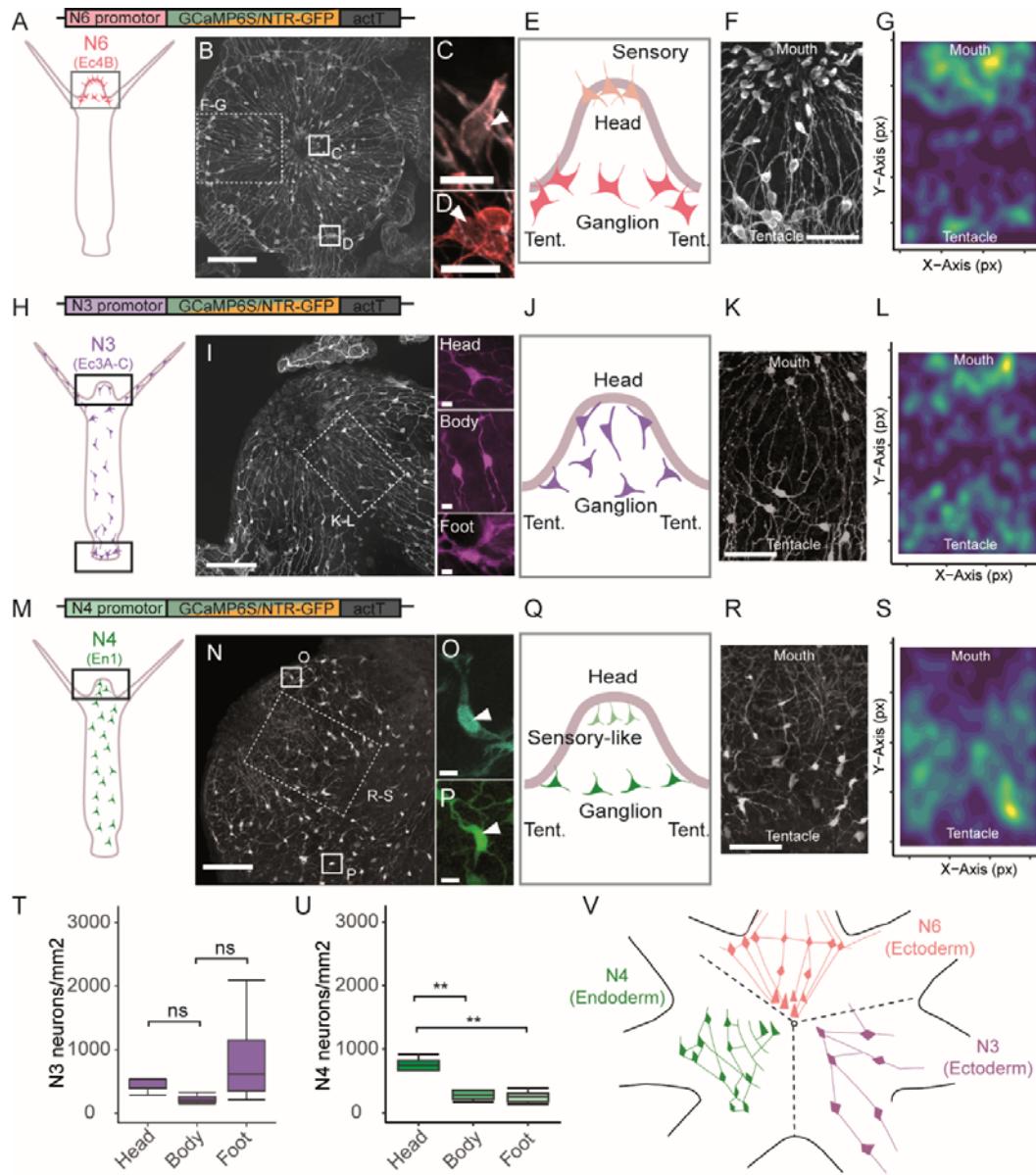
485 **Figures**

486

487 **Figure 1. *Hydra vulgaris* AEP as a model system to study neuro-bacteria interactions.**

488 **A.** *Hydra* polyp with a forming bud (asexual reproduction). Scale 1mm.

489 **B.** Phylogenetic position of *Hydra* in the phylum of Cnidaria which is the sister group of the Bilateria.

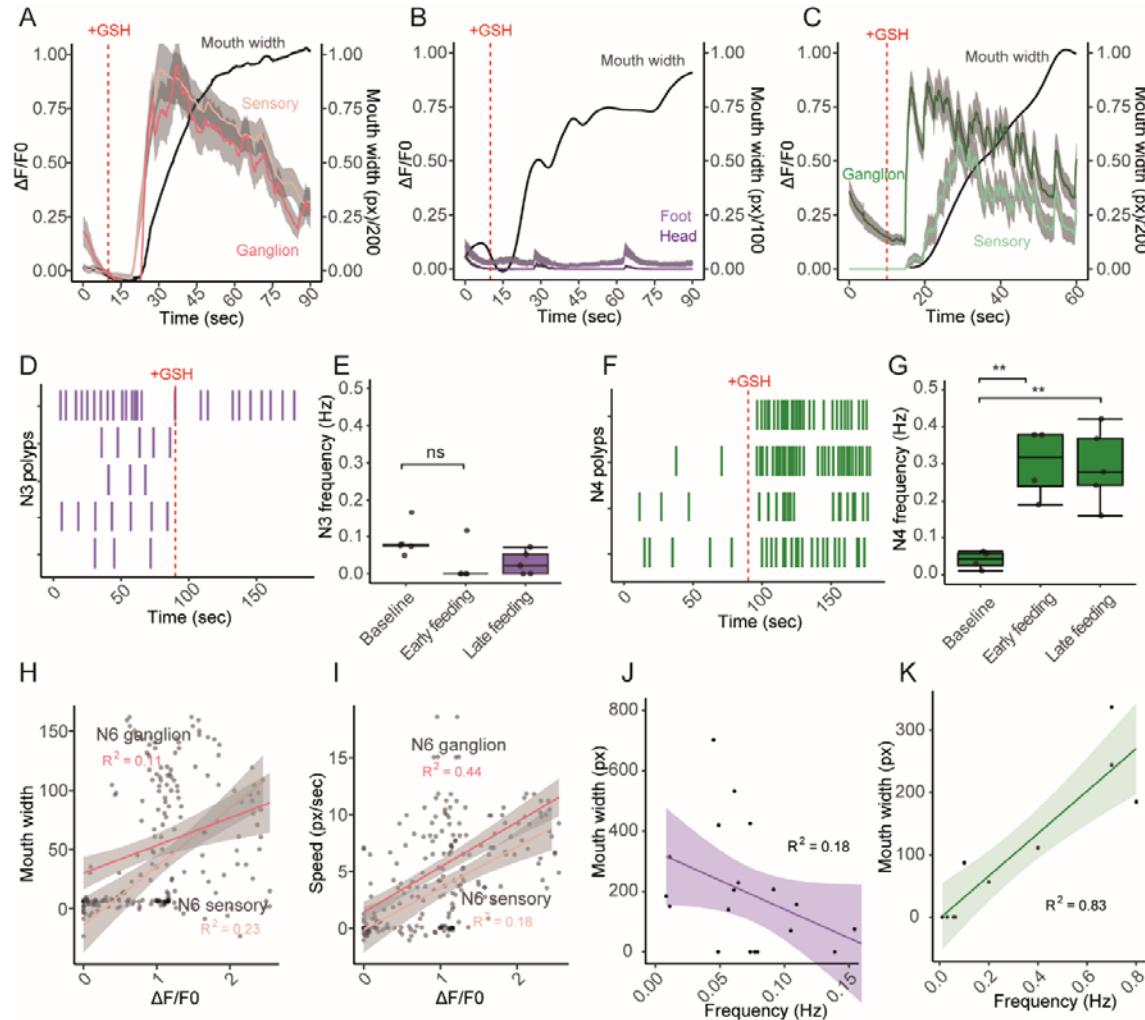

490 **C.** Tissue organization and localization of microbiota on the glycocalyx at the outside of the polyp.

491 **D.** Schematic presentation of the seven neuronal subpopulations and their distribution (after Siebert *et al.* 2019
492 and Klimovich *et al.* 2020)^{24,25}. The alternative nomenclature includes Ec for ectoderm and En for endoderm. The
493 head region contains N6, N3 and N4 neurons.

494 **E.** The eating behavior of *Hydra* towards glutathione as defined by Loomis and Lenhoff^{28,29}. It can be quantified
495 by the response time between stimulus and onset of mouth opening or tentacle movement, and by the duration of
496 the mouth-opening time.

497 **F.** Picture of *Hydra* with an opened mouth (white arrow) and tentacles forming a ball shape that is typical of eating
498 behavior. Scale 0.5mm.

499

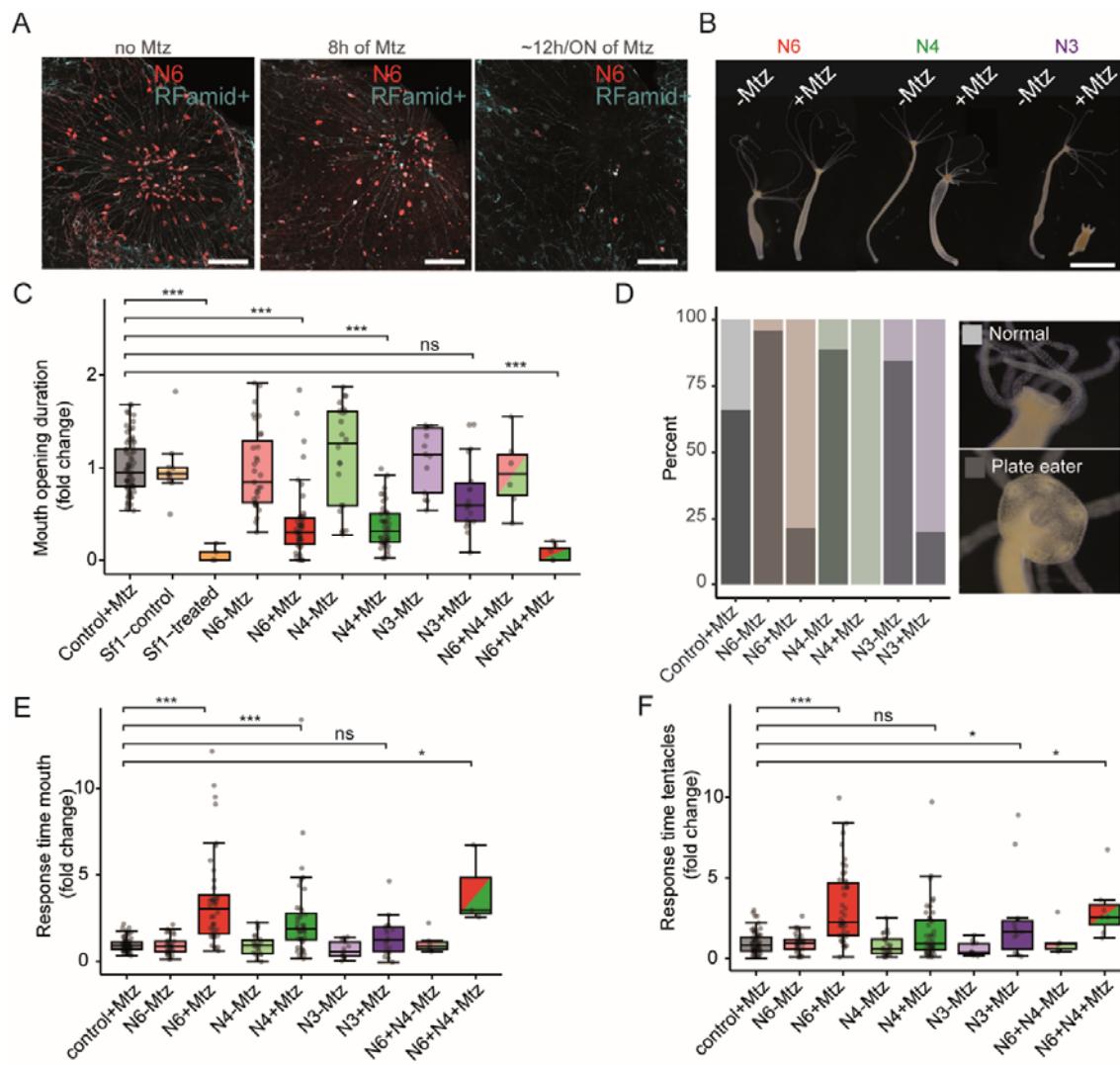

500

501 **Figure 2. Visualization of the neuronal subpopulations in the head of *Hydra*.**

502 **A-G.** Distribution, structure and morphology of ectodermal neuronal subpopulation N6. The constructs used for
 503 visualization and manipulation of N6 contains the promoter from an RFa neuropeptide (t2059aep,
 504 HVAEP9.T017227.1) regulating the expression of either GCaMP6S or NTR-GFP. **A:** Schematic of *Hydra* and the
 505 localization of N6 neurons. **B:** Immunohistochemistry of N6 neurons in the head (scale 100µm) stained with
 506 antibodies against GCaMP6S/GFP. **C-D:** Staining (artificial color added) of two representative enlargements
 507 showing the two different types of N6 neurons, with sensory neurons at the head tip (**C**) and ganglion neurons (**D**)
 508 found in groups around the head base (scale 10µm), as schematically presented in **E**. **F:** enlarged section of **A**
 509 with the neurites connecting the neurons (scale 50 µm). **G:** 2D-density plot of the distribution of neurons in a slice
 510 of the head (n=5). Higher densities of N6 neurons are present near the mouth and near the basis of the tentacles.
 511 **H-L.** Ectodermal neuronal subpopulation N3, for which the construct included the promoter of the neuropeptide
 512 Hym-355 (t12874aep, HVAEP2.T004115.1). **H:** Schematic of the localization of N3 neurons in the head (**I**, scale
 513 100µm) and in the body, tentacles and foot (scale 10µm). Their distribution in the head is summarized in **J**, with
 514 an enlarged section shown in **K** (scale 50µm). Higher densities are present in the tip and basis of the head (n=12).

515 **M-S.** Endodermal neuronal subpopulation N4 with the construct containing the promoter of a NEUROD1-like
 516 protein (t14976aep, HVAEP4.T008286.1). **M:** the localization of N4 neurons in the polyp. **N:** Overview of N4
 517 neurons in the head (scale 100µm). **O-P:** Staining (artificial color added) of two representative enlargements
 518 showing the two different types of N4 neurons, with sensory-like neurons (**O**) and ganglion neurons (**P**), scale

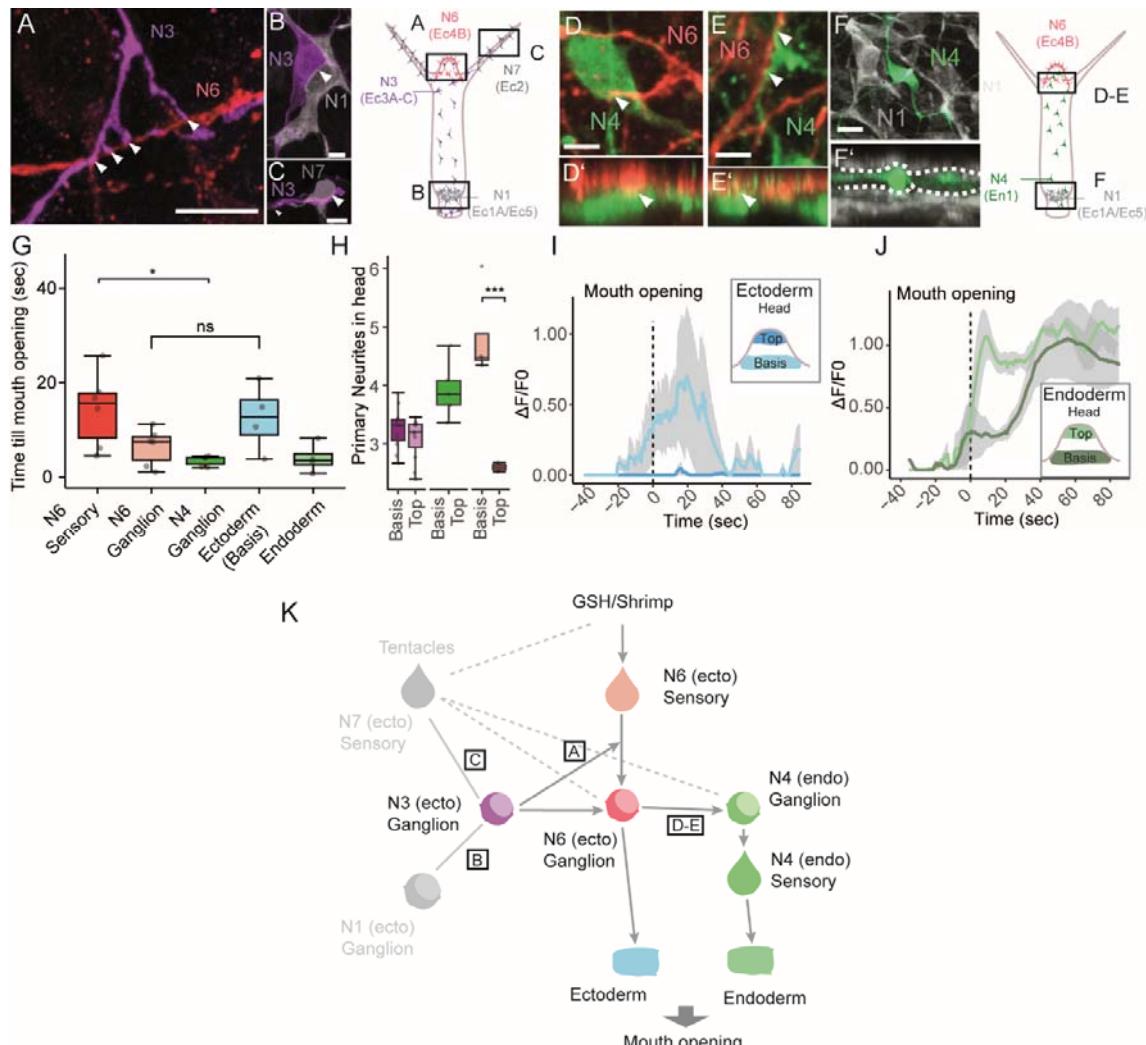
520 10 μ m). In the head region, they are mostly present at the basis of the tentacles (**Q, R**, scale 50 μ m) with a lower
 521 density at the tip of the head (**S**, n=10).
 522 **T-U.** Density of neurons/mm² in head, body and foot, for subpopulation N3 (**T**) and N4 (**U**). Highest densities of
 523 the latter are found in the head ($p<0.01$, n=5-11, ANOVA, Turkey post-hoc test).
 524 **V.** Schematic representation of the distribution and organization of the different neuron subpopulations in the
 525 head, from tip (center) to tentacle base. The overlapping locations of the three subpopulations are separated here
 526 for clarity. * $p\leq 0.05$; ** $p\leq 0.01$; *** $p\leq 0.001$



527
 528
 529 **Figure 3. Neuronal response during the eating behavior.**
 530 **A-C.** Response of neuron subpopulations to a glutathione food stimulus. **A:** N6 neurons were differentiated into
 531 the sensory (red line) and ganglion cells (orange line). The sensory cells responded before the ganglion neurons
 532 did. Lines represent the mean of either sensory or ganglion neuronal population from one representative animals
 533 with grey shading showing the standard deviation (see suppl Fig. 2 for more animals). At the same time, mouth
 534 width was recorded (black line, in pixel). **B:** the spiking activity of N3 neurons in the head and foot was less
 535 obviously affected by glutathione administration. A slightly higher fluorescence change and baseline activity was
 536 recorded for neurons in the foot than in the head (one representative animal, see suppl Fig. 3 for more animals).
 537 **C:** N4 neurons in the head responded strongly to glutathione administration, with a delay for the sensory cells
 538 (mean of population: light green line, light grey shading), whose reaction was also weaker than for the ganglion
 539 N4 neurons (dark green line, dark shading, one representative animal, see suppl. Fig. 4 for more animals).
 540 **D-G.** Spiking frequency of N3 and N4 neurons before and after glutathione administration. **D:** the spiking activity
 541 of N3 in 5 individual polyps decreased in frequency or stopped altogether after the GSH stimulus. **E:** the spiking
 542 frequency of N3 neurons at baseline (90s before glutathione, n=5) was lowered during the early feeding response
 543 and mouth opening (0-90s post glutathione, n=3) and was restored during the later feeding response (330-420s
 544 post glutathione, n=5). **F:** the spiking frequency of N4 neurons increased dramatically after glutathione
 545 administration (n= 4). **G:** This increase compared to baseline (n=4) was highly significant during early feeding

546 (n=4, p<0.01, ANOVA, Turkey post-hoc test) and persisted during the late feeding response (n=4, p<0.01,
547 ANOVA, Turkey post-hoc test).

548 **H-K.** Linear correlations of neuron activity onset (bin=30s) with either mouth width or mouth opening speed. A
549 positive correlation was found between N6 ganglion and sensory cells with mouth width (**H**, n=7) as well as with
550 mouth opening speed (**I**). A negative linear correlation was observed between spiking frequency of N3 neurons
551 with mouth width (**J**, n=15). A positive correlation existed between N4 neurons firing and mouth width (**K**, n=6).


552 * p≤0.05; ** p≤0.01; *** p≤0.001

553

554 **Figure 4. Ablation experiments highlight specific roles of the neuronal subpopulations.**

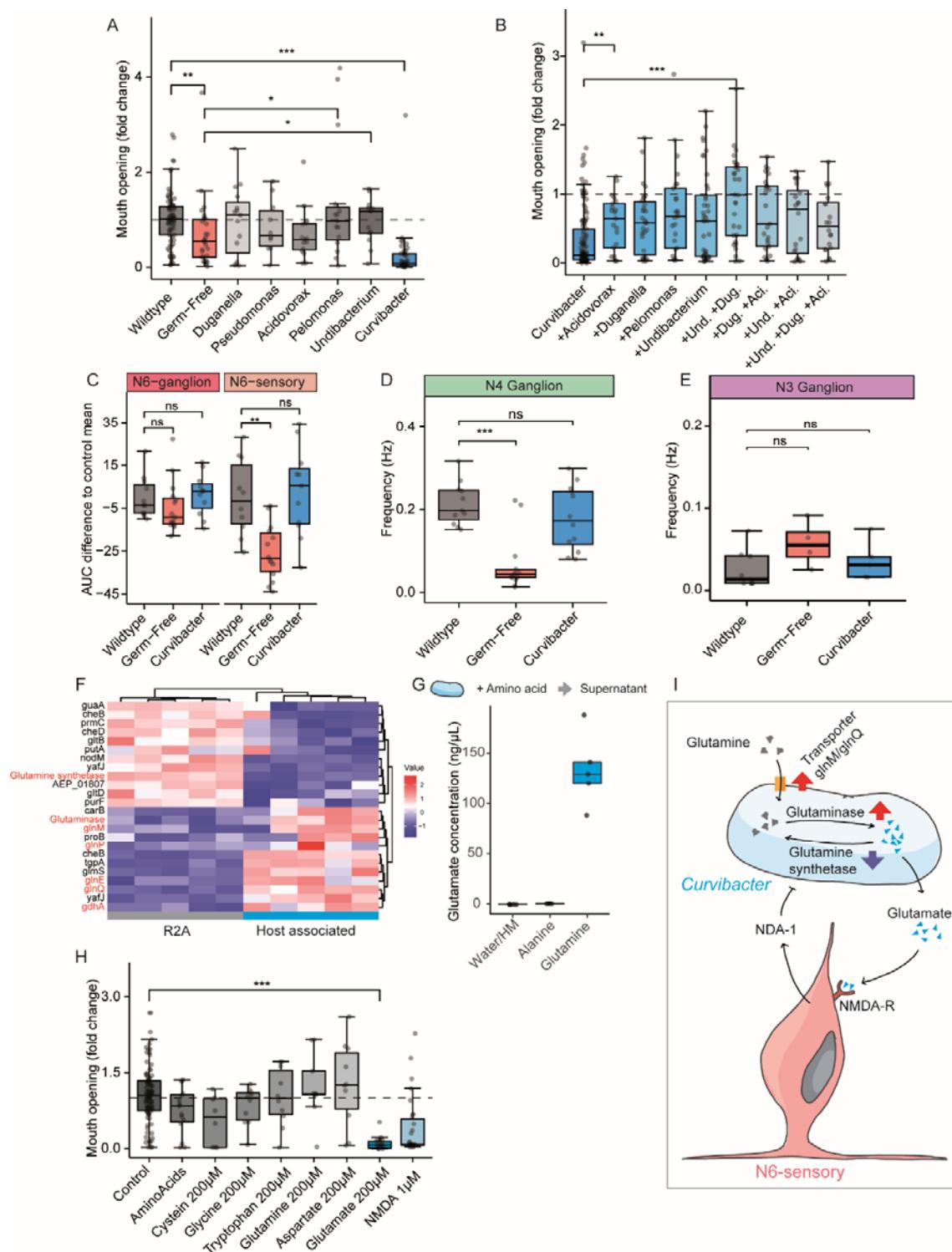
555 **A.** Immunohistochemistry staining for GFP under the promoter for N6 (red) and RFamid (turquoise; expressed in
556 N6 and other neurons) of polyp heads in absence and in presence of 10mM metronidazole (Mtz, 8h and
557 12h/overnight (ON)). Scale bar 50 μ m. Note the depletion of N6 neurons over time.
558 **B.** Different NTR transgenic lines of *Hydra* in absence and presence of 10mM Mtz for 12h. Note the inflated body
559 shape following ablation of N4 and the fully contracted body in absence of N3.
560 **C.** The effect of ablating neuronal subpopulations on the mouth opening time. The measured mouth opening time
561 was normalized to the mean response of the control within each experiment before pooling all data. The presence
562 of i-cells is essential for mouth opening. Absence of N6 and N4 significantly ($p<0.001$, N6: $n=46$; N4: $n=44$,
563 N4+N6: $n = 7$) decreased mouth opening, and when lacking in combination it abolished the behavior. Ablation of
564 N3 had no significant effect ($p>0.05$). Treatments were compared to the “control+Mtz” group.
565 **D.** The percentage of animals displaying ‘plate eating’ behavior decreased when neuronal subpopulations were
566 ablated ($n=18-44$). The ablation of N4 inhibited this behavior completely.
567 **E.** The mouth opening response time after administration of GSH was delayed following ablating of neuronal
568 subpopulations. N6 and N4, alone or in combination, had a strong impact on the response time, but N3 did not.
569 (N6: $n=46$; N4: $n=44$; N3: $n = 18$; N4+N6: $n = 3$)
570 **F.** The tentacle movement response time was also affected by ablating the neuronal subpopulations, in particular
571 by N6 (N6: $n=46$; N4: $n=44$; N3: $n = 18$; N4+N6: $n = 6$).
572 All statistical analyses are based on Kruskal-Wallis's rank sum test and Dunn test as post-hoc with Bonferroni
573 method; * $p\leq 0.05$, ** $p\leq 0.01$; *** $p\leq 0.001$.

574
575

Figure 5. The model of the neuronal circuit controlling the eating behavior in *Hydra*.

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

A-C. Identification of contact points between N3 and other ectodermal Rfa⁺ neurons by immunohistochemistry using antibodies targeting N1, N6, N7 in combination, and GFP for visualization of N3. Contact points (white arrows) are present between N3 and N6 in the head (A), where N1 and N7 are absent. In the foot (B) contact points are found between N3 and N1 and in the tentacles (C) they exist between N3 and N7.


D-F. Potential synaptic contact points (white arrows) were also identified between endodermal N4 and ectodermal neuronal populations at the base of the head. Four examples are shown in D-E, where potential contacts between endodermal N4 and N6 (white arrows) were observed. Two zoomed pictures are shown, one frontal maximum projection (D') and one orthogonal maximum projection (E', scale bar 5 μm). In the foot (F-F') there was no contact between N4 and N1.

G. Time gap between the first neuronal activity and the beginning of mouth opening. The N6 subpopulation is split into sensory and ganglion cells. A higher value indicates a faster response to the food stimulus, as seen for N6 sensory cells (n=4-7, Kruskal-Wallis and Dunn post-hoc).

H. The number of primary neurites of each subpopulation divided into head top and head lower part (basis) for N3 (purple) and N6 (red, orange). The highest number of primary neurites are found for N6 at the basis of the head (n= 4-11, ANOVA, Turkey post-hoc).

I-J. Contraction response of the epithelia to the food stimulus, with ectoderm (L) and endoderm (M). The time point when the mouth opened is indicated. No contraction of ectoderm in the head top was identified but a time relapse between contraction of endoderm at the head top and base is visible H. (n=4)

K. The model of the neuronal circuit involved in the eating behavior. N6 sensory cells detect glutathione first and propagate the signal to N6 ganglion cells, where it spreads to the endodermal N4 ganglion cells. At the same time, the signal propagates to N3 cells which modulate the response and stops firing, leading to mouth opening. Contact between N3 ganglion cells and N1 and N7 neurons ensures further spread of the signal through the body of the polyp. * p≤0.05; ** p≤0.01; *** p≤0.001

600

601 **Figure 6. Mono-association of *Curvibacter* sp. inhibits mouth opening in *Hydra* via glutamate production.**

602 **A-B.** Wildtype (Wt) *Hydra* was made germ-free (GF) with antibiotic (AB) treatment and then recolonized with
603 single constituents of its native microbiota or combinations thereof.

604 **A.** Absence of bacteria decreased the mouth opening duration during feeding. This could be partially restored by
605 recolonization with various bacterial species, but mono-association with *Curvibacter* sp. strongly inhibited mouth
606 opening. Results of replicas ($n>5$) were normalized to the respective control (dotted line: mean of the control)
607 before pooling experiments.

608 **B.** The negative effect on the mouth opening time of mono-associated *Curvibacter* sp. was rescued by other
609 bacterial species with increasing community complexity. Und: *Undibacterium* sp., Dug: *Dugonelia* sp., Ac:
610 *Acidovorax* sp. *Curvibacter* sp. was present in all.
611 **C-E.** Neuronal activity during eating behavior in transgenic animals with wildtype microbiota, germ-free animals or
612 recolonization with *Curvibacter*. **C:** the activity of N6 sensory cells was negatively affected by absence of bacteria,
613 while recolonization of *Curvibacter* rescued this effect. N6 ganglion cells were not affected, Area under the curve
614 (AUC) was calculated by taking the mean of respective controls and subtract this from treatment (n=8-10). **D:** The
615 spiking frequency of N4 was severely impaired in GF polyps which was reversed by presence of *Curvibacter*.
616 (n=10-11). **E:** Absence of bacteria or mono-association with *Curvibacter* did not affect N3 neural spiking
617 frequency during feeding (one experiment, n= 3-5).
618 **F.** Differentially expressed genes in *Curvibacter* sp. grown in minimal growth medium (R2A) and in mono-
619 association with its host. Multiple genes are involved in glutamine/glutamate binding, transport and metabolism
620 shown in red font.
621 **G.** *Curvibacter* sp. grown *in vitro* in *Hydra* culture medium supplemented with 200µM glutamine secreted
622 glutamate into the medium (n= 5), whereas addition of alanine to the medium had no effect
623 **H.** Adding glutamate to the medium strongly inhibited mouth opening, but other amino acids had no effect.
624 Addition of NMDA mimicked the glutamate inhibition (n=10).
625 **I.** Model of the mechanism how glutamate production by *Curvibacter* sp. affects its host. Red arrows indicate
626 upregulation of bacterial genes during host association, with purple arrows showing down regulation, which in
627 combination lead to higher glutamate secretion. This binds to an NMDA-receptor on N6 sensory cells to produce
628 NDA-1, an antimicrobial peptide that limits *Curvibacter* propagation³⁶.
629 Kruskal-Wallis, Wilcoxon test, * p≤0.05; ** p≤0.01; *** p≤0.001
630

631 **STAR Methods**

632

633 **Materials availability**

634 The plasmids and transgenic *Hydra vulgaris* AEP generated in this study are
635 available upon request.

636 **Code availability**

637 All codes used in this study are available upon request.

638 **Experimental Procedures**

639 ***Hydra* maintenance**

640 In this study used *Hydra* polyps (*Hydra vulgaris* AEP, *Hydra magnipapillata* sf1) were
641 cultured according to standard procedures in standard *Hydra* culture medium (CaCl₂
642 0.042g/L; MgSO₄·7H₂O 0.081g/L; NaHCO₃ 0.042g/L, K₂CO₃ 0.011g/L in dH₂O)⁷⁰.
643 The animals were kept in 250mL glass beaker at 18°C with a 12/12h light cycle. The
644 feeding regime was strictly three times per week with *Artemia* nauplii for at least two
645 weeks before any experiment. Animals were starved for 1-3 days before either an
646 ablation experiment or a calcium imaging analysis. There was no difference in the
647 mouth opening duration between 1-3 days of starvation.

648 **Generating germ-free animals and re-colonization**

649 Germ-free animals were derived by treating animals for five days with an antibiotic
650 cocktail containing rifampicin, ampicillin, streptomycin and neomycin in final
651 concentrations of 50µg/ml each and spectinomycin of 60µg/ml, as previously
652 described⁴⁹. Control polyps were incubated in 0.1% DMSO for the same time since
653 rifampicin is dissolved in DMSO. The antibiotic cocktail was replaced after 72h of
654 incubation. After 5 days in antibiotics, the animals were transferred to sterile *Hydra*
655 culture medium and incubated for another 2 days. On the second day in sterile *Hydra*
656 culture medium, animals were recolonized with defined bacteria or communities and
657 medium was exchanged. After another 3 days of incubation with defined bacteria or

658 communities, polyps were used for the behavioral assays or RNA sequencing. The
659 germ-free status was checked twice during the protocol, on the seventh day and the
660 tenth day of the protocol via plating macerated polyps on R2A-agar plates. Random
661 samples were also tested via PCR using universal rRNA primer Eub-27F and
662 Eub1492R⁷¹. No colonies formed on the R2A agar plates after one week of
663 incubation at room temperature and absence of amplification product confirmed the
664 germ-free status.

665 Germ-free animals were monocolonized with pure bacteria cultures of the core
666 members of *Hydras* microbiota: *Curvibacter* AEP 1.3 (NCBI:txid1844971), *Duganella*
667 C 1.2 (NCBI:txid1531299), *Undibacterium* C 1.1 (NCBI:txid1531302), *Acidovorax* sp.
668 AEP 1.4, *Pelomonas* AEP 2.2 (NCBI:txid1531300) and *Pseudomonas* sp.⁵⁰. Bacteria
669 were cultured from existing isolate stocks in R2A medium at 18°C for three days and
670 subcultured the day before recolonization (dilution depending on the bacterium). In all
671 experiments we started from a fresh cryostock and identity of bacteria was regularly
672 tested. From the overnight culture approximately 10⁵-10⁶ cells were added to the
673 50mL sterile *Hydra* culture medium containing 30-50 animals. For the different
674 combinations of bacteria, each bacterium was added in at equal ratios. After three
675 days the recolonization success was checked by plating three macerated polyps per
676 treatment in a 1:1000 dilution on R2A agar plates and counting the CFUs after three
677 to four days of incubation at 18°C. Recolonized animals were only used when
678 recolonization was successful and in agreement with previous published values⁷².

679 **Promoter identification and extraction**

680 Marker genes specifically expressed in the different neuronal subpopulations were
681 identified using the single cell atlas previously published^{24,25} (suppl. Fig. 1). Genes
682 were then mapped against the different available genomes of *Hydra*
683 (nih.gov/HydraAEP) and their promotor were extracted as 1000-1500bp upstream of
684 the gene, by including the first 30bp of the open reading frame. The sequence was
685 then cloned into pGem-T Easy (Promega, cat# A1360) while restriction enzyme
686 binding sites were inserted to further clone the construct into the LigAF vector (for
687 sequences see suppl. Table 1).

688 **Transgenesis and constructs**

689 Transgenic *Hydra vulgaris* AEP were derived following the established protocol by
690 Wittlieb *et al.*^{70,73} using a modified version of the LigAF vector. Different lines were
691 produced in which the specific promotor for desired expression in the neuronal
692 subpopulation regulated either GCaMP6S (as in Dupre *et al.*²⁶) with an actin
693 terminator or the nitroreductase (NTR)⁴⁴ (*in silico* codon optimized) coupled to an
694 eGFP at the C-terminus followed by an actin terminator sequence (see suppl. Table 1
695 for sequences). As previously described, the construct was injected via microinjection
696 in embryos resulting in mosaic animals. Animals were screened for transgenic
697 neurons and selected to produce fully stable transgenic animals. We then induced
698 embryogenesis in the transgenic lines and derived F1-generations which ensured
699 that the construct was incorporated in all cells. This was successful for transgenic
700 lines N4 and N6 while for N3 reached a non-mosaic stable population only (see suppl
701 Table 1).

702 **Histology**

703 For antibody staining, *Hydra* polyps were relaxed with 2% urethan(Sigma-Aldrich, U2500) in *Hydra* culture medium for less than 2min and fixed for 2h (RT) or overnight (4°C) in Zamboni (Morphisto, cat#12773). Following 3 washes in PBS with 705 0.1% tween (PBST) followed by an incubation in PBS with 0.5% TritonX100 and an 706 1h of blocking in PBST with 1% bovine serum albumin (BSA, Roth, cat# 8076.1). 707 Animals were then incubated overnight at 4°C with the primary antibody in PBST and 708 1% BSA. Primary antibodies used in this study were: anti-GFP (Biozol, cat# GFP- 709 1010, 1:1000 dilution) and anti-FMRFamid (BMA Biomedicals, cat# T-4322, 1:1000 710 dilution). After the primary antibody incubation, four 15min washes in PBST with 711 1%BSA were performed before adding the secondary antibody. Secondary 712 antibodies used in this study were: goat anti-chicken Alexa Fluor 488 (Invitrogen, 713 cat# A11039, 1:1000 dilution) and donkey anti-rabbit Alexa Fluor 546 (Invitrogen, 714 cat# A10040, dilution 1:1000). Animals were incubated for 2h at RT with the 715 secondary antibody. After the secondary antibody another four 15min washes in 716 PBST (here 0.5% tween) with 1% BSA were performed followed by a short 5min 717 incubation in TO-PRO™-3 Iodide (642/661)(Invitrogen, cat# T3605, 1:1000 dilution). 718 The animals were mounted in moviol with DAPCO on glass slides and stored at 4°C 719 till imaging.

721 **Imaging and analysis**

722 Fixed and stained animals were imaged either with a LSM900 (Zeiss) or Axio Vert.A1 723 (Zeiss) using colibri 7 (Zeiss) as a light source. Further processing of the images was 724 performed with Zen Blue 3.4 software (Zeiss) or Fiji⁷⁴. For the analysis of neuronal 725 densities and distribution we used the Cell Counter plugin by Fiji. For counting, a 726 rectangular area was subsampled from the images to count comparable areas (see 727 Fig2B, I and N). For the densities, we calculated the density of neurons per mm². For 728 the 2D density plots (Fig2G, L and S) we aligned the rectangle area using Fiji and 729 extracted the x- and y-coordinates. Data were analyzed using R (v4.0.3)⁷⁵ over 730 RStudio IDE⁷⁶ and for the visualization the plugin tidyverse (v1.3.1)⁷⁷ was used. For 731 the characterization of the primary neurites, we counted all neurites originating from a 732 neuron soma. In all cases at least five animals were analyzed. Multicolor images 733 shown throughout are pseudo-colored composites (maximum projection), with 734 brightness and contrast adjusted for clarity.

735 **NTR and sf1 cell ablation experiments**

736 Animals were incubated overnight in 10mM Metronidazole (Sigma, cat# 737 M1547)^{44,45,54}. On the next morning animals were screened under a fluorescence 738 microscope for absence of GFP⁺ cells. Once it was determined that the ablation had 739 been successful, the animals were washed once in *Hydra* culture medium and used 740 for behavioral assays or histology on the same day. Each experiment included a 741 control of *Hydra vulgaris* wildtype and the corresponding GCaMP6S transgenic line 742 with Metronidazole and the NTR-GFP transgenic line without Metronidazole. In all 743 experiments at least 5 animals per treatment were used.

744 *Hydra magnipapillata* Sf1 were exposed to 28°C for 48h together with a control (*H.* 745 *magnipapillata*) for the heat shock and afterwards kept for 19 days under standard

746 culture conditions. Neurons were quantified on day 5, 8, 11, 14 and 19 using a cell
747 maceration protocol²². Polyps were dissociated in maceration solution (1:1:13,
748 Glycerol, Acidic acid, *Hydra* culture medium) at 32°C for 30 minutes. Afterwards cells
749 were fixed in 8% PFA and spread out on gelatin-coated slides. Counting was done
750 blinded.

751 **Behavioral analysis**

752 **Acquisition**

753 To analyze the effect of cell ablation and bacteria on the eating behavior, we
754 developed a recording system where we can observe multiple animals at once and
755 animals were minimally restrained. For this, a chamber was used where 5-6 animals
756 could be observed under controlled fluid flow (Suppl. Fig. 7). The chamber consists of
757 a two-piece aluminum case and two plexiglass pieces in which one cavity was milled
758 and the other used as a lid (see suppl. Fig. 7). These were connected and liquid tight
759 via braces. Animals could survive in the chamber for weeks as long as fresh *Hydra*
760 medium was supplied. The chamber has a height of 0.4mm and two channels on
761 both sides fitted with tubes through which medium can be manually supplied. The
762 animals were recorded at 18°C in an insulated climate chamber to avoid external
763 stimuli using M3C Wild Heerbrugg binocular microscopes and Axiocam 208 color
764 (Zeiss), taking a picture every 2 seconds.

765 **Mouth opening, tentacle response and analysis**

766 The animals were given 10 min to adapt to the recording chamber before recording
767 started and another 5-10 min before reduced glutathione (GSH, Roth, cat#6382.1)
768 was supplied via the tube system. In all assays a final concentration of 10µM GSH
769 was used, prepared in the same medium as the animals were kept in prior to the
770 experiment using a 0.1M stock solution. Each animal was only recorded once.
771 Acquired movies were blinded to their treatment and assigned with a random three-
772 digit number before analysis. The behavior was manually annotated. For the
773 following different behaviors: the mouth opening time, tentacle movement and the
774 type of mouth opening (see suppl Video 1). As some animals exhibited multiple
775 mouth openings during the assay, for the mouth opening time only the first event was
776 recorded. The raw data from the video analysis were further normalized by the mean
777 of the respective controls within each experiment to obtain the fold-change
778 information between treatments. The data were merged for analysis and plotting.

779 **Mouth opening width**

780 In order to correlate the mouth opening behavior and neuronal activity, we measured
781 the width of the mouth opening during GCaMP6S recording via automated tracking of
782 the opposite edges of the mouth. This tracking was done using *icy*⁷⁸ and the tracking
783 plugin⁷⁹. Afterwards tracks were manually cleaned, and missing links were
784 integrated. Using the track manager with the integrated function “Distance profiler”
785 the distances between the two different tracks were calculated in pixel. The tracks
786 were then smoothed using the integrated *ksmooth* function in R⁷⁵. As the mouth
787 opening onset to analyze the time sequence of neuronal activation before mouth

788 opening, the first increase in the slope was taken after the addition of GSH and
789 where there is no decrease within a 20 sec window.

790

791 **GCaMP6S imaging acquisition and calcium traces extraction**

792 To analyze the neuronal activity during the eating behavior, we developed a system
793 to record freely moving animals while adding GSH. The animals were placed in
794 commercially available channel slides with a height of 0.2mm and a width of 5mm
795 (Suppl. Fig. 7.; Ibidi, cat# 80166). After an animal was placed in the channel sled,
796 tubing was connected on both sides, and recording was started. GSH was added
797 using a 1-ml syringe attached to one tube after 2-3min, depending on the behavior of
798 the animal, and recording lasted for approximately 10min. GSH was only added when
799 the animal stayed elongated and did not show contraction or somersaulting behavior.
800 Imaging was performed using the Axio Vert. A1 (Zeiss) with the Colibri 7 as a light
801 source (Zeiss) equipped with the fluorescence filter 38 HE (Zeiss), 5x and 10x Plan
802 Apo objective, and the Axiocam 705 mono (Zeiss). Acquired videos were further
803 processed with Zen Blue 3.4 (Zeiss) to 700x600px, 8-bit and aligned with the Fiji
804 plugin Linear Stack Alignment with SIFT⁸⁰. The aligned stacks were then used for
805 tracing neurons as described by Lagach et al.⁸¹. Neurons were automatically traced
806 in icy⁷⁸ using the protocol “Detection and Tracking of neurons with emc2”⁸¹ with
807 individually adjusted parameters depending on the population, magnification, and
808 animal size. Afterwards the quality of the tracks was controlled, and missing links
809 were manually added, or false tracks were removed. For N6 and N4 neurons, tracks
810 were manually separated for the different neuronal sensory (-like) and ganglion.

811 **GCaMP6S trace analysis**

812 The raw traces were normalized to obtain the fluorescence change $\Delta F/F_0$ using the
813 background fluorescence as F_0 . This background fluorescence was taken by
814 selecting a frame without visible neuronal activity drawing the outline of the animal's
815 body column and calculating the mean grey therein via Fiji. For further analysis the
816 mean activity of each population or neuronal type was taken with the standard
817 deviation to the mean since it summarized all major events (suppl. Fig. 5). All
818 visualization and normalization were done using customized scripts in R⁷⁵. N3 and
819 N4 spiking frequency was computed using either CASCADE⁸² and/or MATLAB's
820 (Mathworks) “findpeaks” function with manually adjusted parameters. In all
821 experiments at least 4 animals were used. In Figure 3 A-C only, representative
822 polyps were shown and the mean of the whole neuronal population with the standard
823 deviation, for N4 and N6 divided into sensory and ganglion neurons. More replicates
824 shown in the suppl. Fig. 2-4.

825 The time sequence of activation of the nerve subpopulation before an opening of the
826 mouth was determined by the time difference between the first activation of the first
827 cell and the opening of the mouth. As the timepoint of first neuronal response, the
828 first activation of the first single cell was taken (shown in Fig. 5G). Higher values
829 respond to an earlier response to GSH. At least 4 animals pre transgenic line were
830 taken.

831 To find a difference in N6 between germ-free and monocolonized with *Curvibacter* or
832 wildtype microbiota, the area under the curve (AUC) was compared. For this
833 purpose, the mean value of the wildtype microbiota AUC was taken and the
834 difference to the other treatments was calculated. At least 8 animals per treatment
835 were used.

836 **GCaMP6S and mouth width analysis**

837 For calculation of positive or negative correlations between the mouth opening and
838 the mean activity of the different neuronal subpopulations, the smoothed mouth width
839 data were used. The visualization was done using R and the tidyverse package
840 (Fig2A-C) ^{75,77}. The mouth opening width was adjusted to the scale of the
841 fluorescence change as stated on the right y-axis title. To perform linear correlation
842 analysis, for N6 we compared the fluorescence changes and in case of N3 and N4
843 the frequency to the mouth opening width at the given time point. For N6, the
844 GCaMP6S traces were divided into ganglion and sensory neurons. Since a
845 continuous signal increase rather than a spiking pattern was observed in N6, we
846 selected a time window of ±15 sec around the mouth opening event and compared
847 this to the mouth width change in the same time window. For N4 and N3 we took the
848 spiking frequency and the width of the mouth opening prior the GSH stimulus and
849 post GSH stimulus. Since we observed a dynamic in the mouth width while recording,
850 we took the minimal mouth width after the mouth opened and the frequency around
851 that time point (30sec window). At least 6 animals per transgenic line were used.

852 **RNA sequencing and analysis**

853 Transcriptional analysis of *Curvibacter* sp. AEP1.3 was performed by RNA
854 sequencing of bacteria in association with their host and when cultured in R2A
855 without the host (Neogen, cat#NCM0188A). For the latter, 4mL of culture was
856 collected before stationary phase was reached, at an OD₆₀₀ of 0.2-0.3, and
857 centrifuged (4°C, 12000xg). For samples from host-associated *Curvibacter*, 5x500
858 mono-colonized polyps were prepared as described previously⁸³. *Curvibacter* was
859 washed off these animals with PBS and the supernatant was collected and
860 centrifuged (4°C, 12000xg). The bacterial pellet was dissolved in 750µL Trizol by
861 vortexing and 250µL of chloroform was added and samples were centrifuged
862 (12.000xg at 4°C). The aqueous phase was collected and 400µL of 99.9% ethanol
863 was added. The solution was then transferred to silica columns of the ambion
864 PureLink™ RNA Mini Kit (Thermo scientific). RNA was eluted with 35µL RNase free
865 water and stored at -80°C until samples were submitted for sequencing.

866 Prior to sequencing isolated RNA was treated using the TruSeq stranded total RNA
867 kit (Illumina) and Ribo-Zero Plus kit (Illumina). The remaining RNA was paired end
868 sequenced using a NovaSeq 6000 (Illumina) with 2x150 bp. RNA sequences were
869 analyzed using the platform Galaxy⁸⁴. The sequences were trimmed using
870 CutAdapt⁸⁵ and Trimmomatic⁸⁶, and MultiQC for quality control⁸⁷. We aligned the
871 reads against the public available *Curvibacter* sp. AEP1.3 genome (ASM216371v1)⁸³
872 using Bowtie2⁸⁸. Reads were counted with featureCounts⁸⁹. The normalization of
873 reads and differential gene expression analysis was done using the DeSeq2 pipeline

874 in R^{75,90} and data were visualized using tidyverse in R⁷⁷. All raw RNA-sequence read
875 counts and analyzed data can be found in supplement table 2.

876 **Statistics**

877 All statistics were done using R and R-studio as IDE^{75,76}. In all cases data were
878 tested for their equal variance using Levene's test and their normal distribution using
879 Shapiro test. Depending on the outcome of those tests either a parametric (t-test,
880 ANOVA, Turkey test) or non-parametric test (Kruskal-Wallis, (pairwise-) Wilcox test,
881 Dunn test) were used. Correction for multiple testing was done using Bonferroni. The
882 replicate number (n) for each dataset is indicated in the figure legends, along with the
883 statistical method used for each comparison and the p value. The cutoff for a
884 significant difference was set as an $\alpha < 0.05$. Throughout the text, values are
885 reported as median \pm standard deviation.

886

887

888

889 **Supplemental Material**

890

891 **References**

- 892 1. Flavell, S.W., Gogolla, N., Lovett-Barron, M., and Zelikowsky, M. (2022). The emergence and
893 influence of internal states. *Neuron* **110**, 2545–2570. [10.1016/J.NEURON.2022.04.030](https://doi.org/10.1016/J.NEURON.2022.04.030).
- 894 2. Kennedy, A., Asahina, K., Hoopfer, E., Inagaki, H., Jung, Y., Lee, H., Remedios, R., and
895 Anderson, D.J. (2014). Internal States and Behavioral Decision-Making: Toward an Integration
896 of Emotion and Cognition. *Cold Spring Harb Symp Quant Biol* **79**, 199–210.
897 [10.1101/SQB.2014.79.024984](https://doi.org/10.1101/SQB.2014.79.024984).
- 898 3. Vogt, K., Zimmerman, D.M., Schlichting, M., Hernandez-Nunez, L., Qin, S., Malacon, K.,
899 Rosbash, M., Pehlevan, C., Cardona, A., and Samuel, A.D.T. (2021). Internal state configures
900 olfactory behavior and early sensory processing in drosophila larvae. *Sci Adv* **7**,
901 [10.1126/sciadv.abd6900](https://doi.org/10.1126/sciadv.abd6900).
- 902 4. Anderson, D.J. (2016). Circuit modules linking internal states and social behaviour in flies and
903 mice. *Nature Reviews Neuroscience* **2016** **17**:11 17, 692–704. [10.1038/nrn.2016.125](https://doi.org/10.1038/nrn.2016.125).
- 904 5. Eisthen, H.L., and Theis, K.R. (2016). Animal–microbe interactions and the evolution of
905 nervous systems. *Philosophical Transactions of the Royal Society B: Biological Sciences* **371**,
906 [10.1098/RSTB.2015.0052](https://doi.org/10.1098/RSTB.2015.0052).
- 907 6. Carrier, T.J., and Bosch, T.C.G. (2022). Symbiosis: the other cells in development.
908 *Development* **149**. [10.1242/dev.200797](https://doi.org/10.1242/dev.200797).
- 909 7. Sharon, G., Sampson, T.R., Geschwind, D.H., and Mazmanian, S.K. (2016). The Central Nervous
910 System and the Gut Microbiome. *Cell* **167**, 915–932. [10.1016/J.CELL.2016.10.027](https://doi.org/10.1016/J.CELL.2016.10.027).
- 911 8. Masuzzo, A., Montanari, M., Kurz, L., and Royet, J. (2020). How Bacteria Impact Host Nervous
912 System and Behaviors: Lessons from Flies and Worms. *Trends Neurosci* **43**, 998–1010.
913 [10.1016/J.TINS.2020.09.007](https://doi.org/10.1016/J.TINS.2020.09.007).

914 9. Nagpal, J., and Cryan, J.F. (2021). Microbiota-brain interactions: Moving toward mechanisms
915 in model organisms. *Neuron* 109, 3930–3953. 10.1016/J.NEURON.2021.09.036.

916 10. Needham, B.D., Funabashi, M., Adame, M.D., Wang, Z., Boktor, J.C., Haney, J., Wu, W.L.,
917 Rabut, C., Ladinsky, M.S., Hwang, S.J., et al. (2022). A gut-derived metabolite alters brain
918 activity and anxiety behaviour in mice. *Nature* 2022 602:7898 602, 647–653. 10.1038/s41586-
919 022-04396-8.

920 11. Ogbonnaya, E.S., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F., and O'Leary, O.F. (2015).
921 Adult hippocampal neurogenesis is regulated by the microbiome. *Biol Psychiatry* 78, e7–e9.
922 10.1016/j.biopsych.2014.12.023.

923 12. Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E.F., Wang, J., Tito, R.Y., Schiweck, C.,
924 Kurilshikov, A., Joossens, M., Wijmenga, C., et al. (2019). The neuroactive potential of the
925 human gut microbiota in quality of life and depression. *Nature Microbiology* 2019 4:4 4, 623–
926 632. 10.1038/s41564-018-0337-x.

927 13. Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., Zeng, L., Chen, J., Fan, S., Du, X., et al.
928 (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway
929 mediated by the host's metabolism. *Molecular Psychiatry* 2016 21:6 21, 786–796.
930 10.1038/mp.2016.44.

931 14. Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L.,
932 Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development
933 and behavior. *Proc Natl Acad Sci U S A* 108, 3047–3052. 10.1073/pnas.1010529108.

934 15. Mao, J.H., Kim, Y.M., Zhou, Y.X., Hu, D., Zhong, C., Chang, H., Brislaw, C., Langley, S., Wang,
935 Y., Peisl, B.Y.L., et al. (2020). Genetic and metabolic links between the murine microbiome and
936 memory. *Microbiome* 8, 1–14. 10.1186/s40168-020-00817-w.

937 16. Jia, Y., Jin, S., Hu, K., Geng, L., Han, C., Kang, R., Pang, Y., Ling, E., Tan, E.K., Pan, Y., et al.
938 (2021). Gut microbiome modulates Drosophila aggression through octopamine signaling.
939 *Nature Communications* 2021 12:1 12, 1–12. 10.1038/s41467-021-23041-y.

940 17. Dohnalová, L., Lundgren, P., Carty, J.R.E., Goldstein, N., Wenski, S.L., Nanudorn, P.,
941 Thiengmag, S., Huang, K.P., Litichevskiy, L., Descamps, H.C., et al. (2022). A microbiome-
942 dependent gut-brain pathway regulates motivation for exercise. *Nature* 2022 612:7941 612,
943 739–747. 10.1038/s41586-022-05525-z.

944 18. Han, H., Yi, B., Zhong, R., Wang, M., Zhang, S., Ma, J., Yin, Y., Yin, J., Chen, L., and Zhang, H.
945 (2021). From gut microbiota to host appetite: gut microbiota-derived metabolites as key
946 regulators. *Microbiome* 2021 9:1 9, 1–16. 10.1186/S40168-021-01093-Y.

947 19. Gabanyi, I., Lepousez, G., Wheeler, R., Vieites-Prado, A., Nissant, A., Wagner, S., Moigneau, C.,
948 Dulauroy, S., Hicham, S., Polomack, B., et al. (2022). Bacterial sensing via neuronal Nod2
949 regulates appetite and body temperature. *Science* (1979) 376. 10.1126/SCIENCE.ABJ3986.

950 20. Bosch, T.C.G., Klimovich, A., Domazet-Lošo, T., Gründer, S., Holstein, T.W., Jékely, G., Miller,
951 D.J., Murillo-Rincon, A.P., Rentzsch, F., Richards, G.S., et al. (2017). Back to the Basics:
952 Cnidarians Start to Fire. *Trends Neurosci* 40, 92–105. 10.1016/j.tins.2016.11.005.

953 21. Lentz, T.L., and Barnett, R.J. (1965). FINE STRUCTURE OF THE NERVOUS SYSTEM OF HYDRA.
954 *Integr Comp Biol* 5, 341–356. 10.1093/ICB/5.3.341.

955 22. David, C.N. (1973). A Quantitative Method for Maceration of Hydra Tissue. *Wilhelm Roux' Archiv* 171, 259–268. 10.1007/BF00577724.

957 23. Epp, L., and Tardent, P. (1978). Roux's Archives of Developmental Biology The Distribution of Nerve Cells in *Hydra attenuata* Pall. *Wilhelm Roux's Archives* 185, 185–193.

959 24. Siebert, S., Farrell, J.A., Cazet, J.F., Abeykoon, Y., Primack, A.S., Schnitzler, C.E., and Juliano, C.E. (2019). Stem cell differentiation trajectories in *Hydra* resolved at single-cell resolution. *Science* (1979) 365, eaav9314. 10.1126/science.aav9314.

962 25. Klimovich, A., Giacomello, S., Björklund, Å., Faure, L., Kaucka, M., Giez, C., Murillo-Rincon, A.P., Matt, A.-S., Willoweit-ohl, D., and Crupi, G. (2020). Prototypical pacemaker neurons interact with the resident microbiota. *Proceedings of the National Academy of Sciences* 117, 17854–17863. 10.1073/pnas.1920469117.

966 26. Dupre, C., and Yuste, R. (2017). Non-overlapping neural networks in *Hydra vulgaris*. *Current Biology* 27, 1085–1097. 10.1016/j.cub.2017.02.049.

968 27. Trembley, A. (1744). Mémoires, pour servir à l'histoire d'un genre de polypes d'eau douce, à bras en forme de cornes (Chez Jean & Herman Verbeek).

970 28. Lenhoff, H.M. (1961). Activation of the feeding reflex in *Hydra littoralis*: I. Role played by reduced glutathione, and quantitative assay of the feeding reflex. *J Gen Physiol* 45, 331–344. 10.1085/jgp.45.2.331.

973 29. Loomis, W.F. (1955). Glutathione Control of the Specific Feeding Reactions of *Hydra*. *Ann N Y Acad Sci* 62, 211–227. 10.1111/j.1749-6632.1955.tb35372.x.

975 30. Koizumi, O., Haraguchi, Y., and Ohuchida, A. (1983). Reaction chain in feeding behavior of *Hydra*: Different specificities of three feeding responses. *Journal of Comparative Physiology A* 150, 99–105. 10.1007/BF00605293.

978 31. Campbell, R.D., Josephson, R.K., Schwab, W.E., Rushforth, N.B., and Campbell, R. D., et al. (1976). Excitability of nerve-free hydra. *Nature* 262, 388. 10.1038/262388a0.

980 32. Carter, J.A., Hyland, C., Steele, R.E., and Collins, E.M.S. (2016). Dynamics of Mouth Opening in *Hydra*. *Biophys J* 110, 1191–1201. 10.1016/j.bpj.2016.01.008.

982 33. Lauro, B.M., and Kass-Simon, G. (2018). *Hydra*'s feeding response: Effect of GABAB ligands on GSH-induced electrical activity in the hypostome of *H. vulgaris*. *Comp Biochem Physiol A Mol Integr Physiol* 225, 83–93. 10.1016/j.cbpa.2018.07.005.

985 34. Cazet, J.F., Siebert, S., Little, H.M., Bertemes, P., Primack, A.S., Ladurner, P., Achrainer, M., Fredriksen, M.T., Moreland, R.T., Singh, S., et al. (2023). A chromosome-scale epigenetic map of the *Hydra* genome reveals conserved regulators of cell state. *Genome Res*, gr.277040.122. 10.1101/GR.277040.122.

989 35. Koizumi, O., and Maeda, N. (1981). Rise of feeding threshold in satiated *Hydra*. *J Comp Physiol* 142, 75–80. 10.1007/BF00605478.

991 36. Augustin, R., Schröder, K., Rincón, A.P.M., Fraune, S., Anton-Erxleben, F., Herbst, E.-M., Wittlieb, J., Schwentner, M., Grötzingler, J., and Wassenaar, T.M. (2017). A secreted antibacterial neuropeptide shapes the microbiome of *Hydra*. *Nat Commun* 8, 1–9. 10.1038/s41467-017-00625-1.

995 37. Murillo-Rincon, A.P., Klimovich, A., Pemöller, E., Taubenheim, J., Mortzfeld, B., Augustin, R.,
996 and Bosch, T.C.G. (2017). Spontaneous body contractions are modulated by the microbiome
997 of *Hydra*. *Sci Rep* 7, 1–9. 10.1038/s41598-017-16191-x.

998 38. Darmer, D., Hauser, F., Nothacker, H.P., Bosch, T.C.G., Williamson, M., and Grimmelikhuijen,
999 C.J.P. (1998). Three different prohormones yield a variety of *Hydra*-RFamide (Arg-Phe-NH2)
1000 neuropeptides in *Hydra magnipapillata*. *Biochemical Journal* 332, 403–412.
1001 10.1042/BJ3320403.

1002 39. Fujisawa, T. (2008). *Hydra Peptide Project 1993–2007*. *Dev Growth Differ* 50, S257–S268.
1003 10.1111/j.1440-169X.2008.00997.X.

1004 40. Moosler, A., Rinehart, K.L., and Grimmelikhuijen, C.J.P. (1996). Isolation of Four Novel
1005 Neuropeptides, the *Hydra*-RFamides I–IV, from *Hydra magnipapillata*. *Biochem Biophys Res
1006 Commun* 229, 596–602. 10.1006/BBRC.1996.1849.

1007 41. Norgaard Hansen, G., Williamson, M., and Grimmelikhuijen, C.J.P. (2000). Two-color double-
1008 labeling in situ hybridization of whole-mount *Hydra* using RNA probes for five different *Hydra*
1009 neuropeptide preprohormones: Evidence for colocalization. *Cell Tissue Res* 301, 245–253.
1010 10.1007/s004410000240.

1011 42. Takahashi, T., Koizumi, O., Ariura, Y., Romanovitch, A., Bosch, T.C.G., Kobayakawa, Y., Mohri,
1012 S., Bode, H.R., Yum, S., Hatta, M., et al. (2000). A novel neuropeptide, Hym-355, positively
1013 regulates neuron differentiation in *Hydra*. *Development* 127, 997–1005.
1014 10.1242/DEV.127.5.997.

1015 43. Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr,
1016 R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging
1017 neuronal activity. *Nature* 499, 295–300. 10.1038/nature12354.

1018 44. Guise, C.P., Grove, J.I., Hyde, E.I., and Searle, P.F. (2007). Direct positive selection for
1019 improved nitroreductase variants using SOS triggering of bacteriophage lambda lytic cycle.
1020 *Gene Therapy* 2007 14:8 14, 690–698. 10.1038/sj.gt.3302919.

1021 45. Curado, S., Stainier, D.Y.R., and Anderson, R.M. (2008). Nitroreductase-mediated cell/tissue
1022 ablation in zebrafish: a spatially and temporally controlled ablation method with applications
1023 in developmental and regeneration studies. *Nature Protocols* 2008 3:6 3, 948–954.
1024 10.1038/nprot.2008.58.

1025 46. Sugiyama, T., and Fujisawa, T. (1978). Genetic analysis of developmental mechanisms in
1026 *Hydra*. II. Isolation and characterization of an interstitial cell-deficient strain. *J Cell Sci* 29, 35–
1027 52. 10.1242/JCS.29.1.35.

1028 47. Yamamoto, W., and Yuste, R. (2020). Whole-body imaging of neural and muscle activity during
1029 behavior in *Hydra vulgaris*: effect of osmolarity on contraction bursts. *eNeuro*.

1030 48. Franzenburg, S., Fraune, S., Altrock, P.M., Künzel, S., Baines, J.F., Traulsen, A., and Bosch,
1031 T.C.G. (2013). Bacterial colonization of *Hydra* hatchlings follows a robust temporal pattern.
1032 *The ISME Journal* 2013 7:4 7, 781–790. 10.1038/ismej.2012.156.

1033 49. Franzenburg, S., Walter, J., Künzel, S., Wang, J., Baines, J.F., Bosch, T.C.G., and Fraune, S.
1034 (2013). Distinct antimicrobial peptide expression determines host species-specific bacterial
1035 associations. *Proc Natl Acad Sci U S A* 110. 10.1073/pnas.1304960110.

1036 50. Fraune, S., Anton-Erxleben, F., Augustin, R., Franzenburg, S., Knop, M., Schröder, K., Willoweit-
1037 Ohl, D., and Bosch, T.C.G. (2015). Bacteria-bacteria interactions within the microbiota of the
1038 ancestral metazoan *Hydra* contribute to fungal resistance. *ISME Journal* *9*, 1543–1556.
1039 10.1038/ismej.2014.239.

1040 51. Pierobon, P., Sogliano, C., Minei, R., Tino, A., Porcu, P., Marino, G., Tortiglione, C., and Concas,
1041 A. (2004). Putative NMDA receptors in *Hydra*: A biochemical and functional study. *European*
1042 *Journal of Neuroscience* *20*, 2598–2604. 10.1111/j.1460-9568.2004.03759.x.

1043 52. Lenhoff, H.M., and Bovaird, J. (1961). Action of glutamic acid and glutathione analogues on
1044 the *Hydra* glutathione-receptor. *Nature* *189*, 486–487. 10.1038/189486a0.

1045 53. Pierobon, P. (2012). Coordinated modulation of cellular signaling through ligand-gated ion
1046 channels in *Hydra vulgaris* (Cnidaria, Hydrozoa). *International Journal of Developmental*
1047 *Biology* *56*, 551–565. 10.1387/ijdb.113464pp.

1048 54. Weissbourd, B., Momose, T., Nair, A., Kennedy, A., Hunt, B., and Anderson, D.J. (2021). A
1049 genetically tractable jellyfish model for systems and evolutionary neuroscience. *Cell* *184*,
1050 5854–5868.e20. 10.1016/j.cell.2021.10.021.

1051 55. Wang, H., Swore, J., Sharma, S., Szymanski, J.R., Yuste, R., Daniel, T.L., Regnier, M., Bosma,
1052 M.M., and Fairhall, A.L. (2023). A complete biomechanical model of *Hydra* contractile
1053 behaviors, from neural drive to muscle to movement. *Proceedings of the National Academy of*
1054 *Sciences* *120*, e2210439120. 10.1073/PNAS.2210439120.

1055 56. Badhiwala, K.N., Primack, A.S., Juliano, C., and Robinson, J.T. (2021). Multiple neuronal
1056 networks coordinate *hydra* mechanosensory behavior. *Elife* *10*. 10.7554/ELIFE.64108.

1057 57. Fraune, S., and Bosch, T.C.G. (2007). Long-term maintenance of species-specific bacterial
1058 microbiota in the basal metazoan *Hydra*. *Proceedings of the National Academy of Sciences*
1059 *104*, 13146–13151. 10.1073/pnas.0703375104.

1060 58. Bosch, T.C.G. (2013). Cnidarian-microbe interactions and the origin of innate immunity in
1061 metazoans. *Annu Rev Microbiol* *67*, 499–518. 10.1146/annurev-micro-092412-155626.

1062 59. Bosch, T.C.G. (2014). Rethinking the role of immunity: lessons from *Hydra*. *Trends Immunol*
1063 *35*, 495–502. 10.1016/j.it.2014.07.008.

1064 60. Kinnamon, J.C., and Westfall, J.A. (1982). Types of neurons and synaptic connections at
1065 hypostome-tentacle junctions in *Hydra*. *J Morphol* *173*, 119–128. 10.1002/jmor.1051730110.

1066 61. Kinnamon, J.C., and Westfall, J.A. (1981). A three dimensional serial reconstruction of
1067 neuronal distributions in the hypostome of a *Hydra*. *J Morphol* *168*, 321–329.
1068 10.1002/jmor.1051680308.

1069 62. Westfall, J.A. (1973). Ultrastructural evidence for a granule-containing sensory-motor-
1070 interneuron in *Hydra littoralis*. *J Ultrastruct Res* *42*, 268–282. 10.1016/S0022-5320(73)90055-
1071 5.

1072 63. Westfall, J.A., Yamataka, S., and Enos, P.D. (1971). ULTRASTRUCTURAL EVIDENCE OF
1073 POLARIZED SYNAPSES IN THE NERVE NET OF HYDRA. *Journal of Cell Biology* *51*, 318–323.
1074 10.1083/JCB.51.1.318.

1075 64. Davis, L.E., Burnett, A.L., Haynes, J.F., Osborne, D.G., and Spear, M. Lou (1968). Histological
1076 and ultrastructural study of the muscular and nervous systems in *Hydra*. II. Nervous system.
1077 *Journal of Experimental Zoology* 167, 295–331. 10.1002/jez.1401670305.

1078 65. Westfall, J.A., and Kinnamon, J.C. (1978). A second sensory-motor-interneuron with
1079 neurosecretory granules in *Hydra*. *J Neurocytol* 7, 365–379. 10.1007/BF01176999.

1080 66. Pfaff, D., Tabansky, I., and Haubensak, W. (2019). Tinbergen's challenge for the neuroscience
1081 of behavior. *Proceedings of the National Academy of Sciences* 116, 9704–9710.
1082 10.1073/PNAS.1903589116.

1083 67. Tinbergen, N. (1963). On aims and methods of Ethology. *Z Tierpsychol* 20, 410–433.
1084 10.1111/j.1439-0310.1963.tb01161.x.

1085 68. Reigstad, C.S., Salmonson, C.E., Rainey, J.F., Szurszewski, J.H., Linden, D.R., Sonnenburg, J.L.,
1086 Farrugia, G., and Kashyap, P.C. (2015). Gut microbes promote colonic serotonin production
1087 through an effect of short-chain fatty acids on enterochromaffin cells. *FASEB Journal* 29,
1088 1395–1403. 10.1096/fj.14-259598.

1089 69. Mazzoli, R., and Pessione, E. (2016). The neuro-endocrinological role of microbial glutamate
1090 and GABA signaling. *Front Microbiol* 7, 1–17. 10.3389/fmicb.2016.01934.

1091 70. Klimovich, A., Wittlieb, J., and Bosch, T.C.G. (2019). Transgenesis in *Hydra* to characterize gene
1092 function and visualize cell behavior. *Nature Protocols* 2019 14:7 14, 2069–2090.
1093 10.1038/s41596-019-0173-3.

1094 71. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. (1991). 16S ribosomal DNA
1095 amplification for phylogenetic study. *J Bacteriol* 173, 697–703. 10.1128/JB.173.2.697-
1096 703.1991.

1097 72. Wein, T., Dagan, T., Fraune, S., Bosch, T.C.G., Reusch, T.B.H., and Hülter, N.F. (2018). Carrying
1098 capacity and colonization dynamics of *Curvibacter* in the *hydra* host habitat. *Front Microbiol*
1099 9, 1–10. 10.3389/fmicb.2018.00443.

1100 73. Wittlieb, J., Khalturin, K., Lohmann, J.U., Anton-Erxleben, F., and Bosch, T.C.G. (2006).
1101 Transgenic *Hydra* allow *in vivo* tracking of individual stem cells during morphogenesis. *Proc
1102 Natl Acad Sci U S A* 103, 6208–6211. 10.1073/pnas.0510163103.

1103 74. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
1104 Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-
1105 image analysis. *Nature Methods* 2012 9:7 9, 676–682. 10.1038/nmeth.2019.

1106 75. Team, R.C. (2020). R Core Team R: a language and environment for statistical computing.
1107 Foundation for Statistical Computing.

1108 76. Team, R.S. (2022). RStudio: integrated development environment for R. R Studio, PBC, Boston,
1109 Massachusetts, United States of America.

1110 77. Wickham, H., Averick, M., Bryan, J., Chang, W., D', L., McGowan, A., François, R., Grolemund,
1111 G., Hayes, A., Henry, L., et al. (2019). Welcome to the Tidyverse. *J Open Source Softw* 4, 1686.
1112 10.21105/JOSS.01686.

1113 78. De Chaumont, F., Dallongeville, S., Chenouard, N., Hervé, N., Pop, S., Provoost, T., Meas-Yedid,
1114 V., Pankajakshan, P., Lecomte, T., Le Montagner, Y., et al. (2012). Icy: an open bioimage

1115 informatics platform for extended reproducible research. *Nature Methods* 2012 9:7 9, 690–
1116 696. 10.1038/nmeth.2075.

1117 79. Chenouard, N., Bloch, I., and Olivo-Marin, J.C. (2013). Multiple hypothesis tracking for
1118 cluttered biological image sequences. *IEEE Trans Pattern Anal Mach Intell* 35, 2736–2750.
1119 10.1109/TPAMI.2013.97.

1120 80. Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. *Int J Comput Vis*
1121 60, 91–110. 10.1023/B:VISI.0000029664.99615.94.

1122 81. Lagache, T., Hanson, A., Pérez-Ortega, J.E., Fairhall, A., and Yuste, R. (2021). Tracking calcium
1123 dynamics from individual neurons in behaving animals. *PLoS Comput Biol* 17, e1009432.
1124 10.1371/JOURNAL.PCBI.1009432.

1125 82. Rupprecht, P., Carta, S., Hoffmann, A., Echizen, M., Blot, A., Kwan, A.C., Dan, Y., Hofer, S.B.,
1126 Kitamura, K., Helmchen, F., et al. (2021). A database and deep learning toolbox for noise-
1127 optimized, generalized spike inference from calcium imaging. *Nature Neuroscience* 2021 24:9
1128 24, 1324–1337. 10.1038/s41593-021-00895-5.

1129 83. Pietschke, C., Treitz, C., Forêt, S., Schultze, A., Künzel, S., Tholey, A., Bosch, T.C.G., and Fraune,
1130 S. (2017). Host modification of a bacterial quorum-sensing signal induces a phenotypic switch
1131 in bacterial symbionts. *Proc Natl Acad Sci U S A* 114, E8488–E8497.
1132 10.1073/pnas.1706879114.

1133 84. Batut, B., van den Beek, M., Doyle, M.A., and Soranzo, N. (2021). RNA-Seq Data Analysis in
1134 Galaxy. *Methods in Molecular Biology* 2284, 367–392. 10.1007/978-1-0716-1307-8_20.

1135 85. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
1136 reads. *EMBnet J* 17, 10–12. 10.14806/EJ.17.1.200.

1137 86. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
1138 sequence data. *Bioinformatics* 30, 2114–2120. 10.1093/BIOINFORMATICS/BTU170.

1139 87. Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize analysis
1140 results for multiple tools and samples in a single report. *Bioinformatics* 32, 3047–3048.
1141 10.1093/BIOINFORMATICS/BTW354.

1142 88. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient
1143 alignment of short DNA sequences to the human genome. *Genome Biol* 10: R25. 10.1186/gb-
1144 2009-10-3-r25.

1145 89. Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program
1146 for assigning sequence reads to genomic features. *Bioinformatics* 30, 923–930.
1147 10.1093/BIOINFORMATICS/BTT656.

1148 90. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
1149 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15, 1–21. 10.1186/s13059-014-0550-
1150 8.

1151