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Abstract  
Cell Painting is an image-based assay that offers valuable insights into drug mechanisms of action and 
off-target effects. However, traditional feature extraction tools such as CellProfiler are computationally 
intensive and require frequent parameter adjustments. Inspired by recent advances in AI, we trained self-
supervised learning (SSL) models DINO, MAE, and SimCLR on subsets of the JUMP-CP dataset to 
obtain powerful image representations for Cell Painting. We assessed the reproducibility and biological 
relevance of SSL features and uncovered the critical factors influencing model performance, such as 
training set composition and domain-specific normalization techniques. Our best model (DINO) surpassed 
CellProfiler in drug target and gene family classification, significantly reducing computational time and 
costs. All SSL models showed remarkable generalizability without fine-tuning, outperforming CellProfiler 
on an unseen dataset of genetic perturbations. Our study demonstrates the effectiveness of SSL methods 
for morphological profiling, suggesting promising research directions for improving the analysis of related 
image modalities. 

Introduction 

Morphological profiling uses image-based readouts to characterize the effect of chemical and 
genetic perturbations1–4 based on alterations in cell morphology. Offering high throughput and 
low cost, this technology has numerous applications in drug discovery such as mode of action 
identification5,6, off-target effect detection7,8, drug repurposing9–11 and toxicity prediction12. One 
widely used assay for morphological profiling is Cell Painting that utilizes 5 fluorescent dyes to 
stain 8 cellular compartments13, generating thousands of morphological measurements per cell 
through automated image analysis. These high-dimensional readouts are used for hypothesis-
free compound profiling, differentiating Cell Painting from target-based approaches. Despite 
significant progress in the visual representation learning field14–17, the analysis of Cell Painting 
images still largely relies on classical computer vision techniques18.  

Conventional morphological profiling starts with single-cell segmentation, using CellProfiler18 or 
similar software tools19,20. The segmented cells are characterized using hand-crafted descriptors 
such as shape, size, intensity and texture21 among others. The descriptors are then aggregated 
to obtain a single vector of morphological features for each probed condition and feature 
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selection methods are applied to reduce redundancy21. This multi-step workflow is 
computationally intensive and often requires adjustment of segmentation parameters when 
applied to new datasets. By contrast, deep learning models can offer a computationally efficient 
and segmentation-free alternative to morphological profiling. 

The limited availability of biological labels has largely restricted the application of supervised 
learning in Cell Painting. Instead, morphological profiles are used for construction of biological 
maps22,23 to identify phenotypes and modes of action using the guilt-by-association principle. 
Specifically, clustering compounds or genes by morphological similarity provides mechanistic 
insights from annotated cluster members. Alternatively, classifiers trained on extracted features 
can predict downstream tasks, such as drug toxicity24 or cell health phenotypes25. However, 
label scarcity generally precludes end-to-end supervised learning from images, with only few 
exceptions26. The recently released JUMP-CP dataset27 provides unprecedented opportunities 
for developing novel AI-based feature extraction methods. This large-scale image set (115 TB) 
contains approximately 117,000 chemical and 20,000 genetic perturbations. However, most 
compounds lack annotations, with only 4.5% having experimentally elucidated bioactivity. Thus, 
leveraging the full potential of this dataset requires techniques that do not rely on data curation 
or biological annotations. 

Self-supervised learning (SSL) methods learn feature representations from unlabeled data 
through a pretext task. Early SSL pretext tasks focused on predicting image transformations28,29. 
However, the current state-of-the-art performance has been achieved through methods that 
maximize the agreement between transformed views of the same image. For instance, PIRL30, 
MoCo31 and SimCLR15 use a contrastive loss to match paired views (“positives”) from the same 
image and repel unrelated views (“negatives”) from different images in the representation 
space. However, for optimal performance, contrastive methods require large minibatch sizes or 
memory banks, which can be computationally demanding. This limitation was overcome by 
recent non-contrastive approaches such as BYOL32 and DINO16. These approaches train a 
student network to predict the output of a teacher network while receiving different augmented 
views of an input image. Remarkably, DINO has been one of the best-performing SSL 
approaches across different domains16,33,34.  

Recent advances in the SSL field have been accelerated by the adoption of the vision 
transformer35 (ViT) architecture. ViTs operate on image patches projected into tokens and use 
self-attention36 to capture global and local relationships between patches. The high 
computational cost of training ViT architectures inspired novel reconstruction-based pretext 
tasks, such as image masking, which provides a strong supervisory signal and improves training 
efficiency. This has been demonstrated by masked autoencoders17 and masked Siamese 
networks37, which achieved state-of-the-art results on natural images. Notably, ViT performance 
scales favorably with data volume and complexity38, making these models well-suited for the 
analysis of high-throughput imaging data. 

Prior work has explored various approaches for single-cell feature extraction from high-content 
images, including transfer learning39, image inpainting40, variational autoencoders41, 
supervised42, self-supervised23,43,44 and weakly supervised learning45–47. However, existing 
single-cell methods require segmentation, leading to complex multistep workflows. Other 
approaches extract representations from whole images 48–51, but rely on scarce labels or 
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pretrained ImageNet weights, which restricts their application to 3-channel images or requires 
embedding concatenation for multichannel (> 3) applications. To date, only few approaches52,53 
learn directly from microscopy images without segmentation or manually curated annotations. 
Moreover, a systematic study evaluating the benefits of SSL methods over classical analysis 
workflows for high-content imaging data is currently missing. 

Here, we present the first comprehensive benchmark study of state-of-the-art SSL methods 
adapted for Cell Painting images. We trained all SSL models directly in the applicability domain 
and assessed their generalizability on independent datasets with chemical and genetic 
perturbations. Crucially, we examined the requirements for the successful application of SSL in 
the fluorescence microscopy domain including relevant image augmentations, model 
architecture, training set composition and feature postprocessing techniques. We assessed the 
performance gap between supervised and SSL models for compound bioactivity prediction, 
elucidating scenarios favoring each approach. Our results indicate that SSL methods provide a 
robust, efficient, and segmentation-free alternative to CellProfiler and that SSL features enable 
accurate prediction of compound properties comparable to supervised models. 

Results 

SSL framework for segmentation-free morphological profiling 

Our self-supervised learning (SSL) framework operates directly on image crops without cell 
segmentation (see Methods). We adapted 3 state-of-the-art SSL approaches (Fig. 1a) for 5-
channel Cell Painting images: SimCLR (simple framework for contrastive learning of visual 
representations)15, DINO (distillation with no labels)16 and MAE (masked autoencoder)17. We 
pretrained all SSL methods on two JUMP-CP27 data subsets: single-source and multisource 
training sets (see Methods). Using these pretrained models, we extracted features to construct 
morphological profiles of chemical and genetic perturbations in held-out evaluation sets (Fig. 
1c). We benchmarked the SSL features against two baselines (Fig. 1b): CellProfiler18, a widely 
used computational tool for morphological profiling, and transfer learning from a model 
pretrained on natural images35 (see Methods). 

We used small (ViT-S) and base (ViT-B) vision transformer architectures as SSL backbones 
that encode images into feature vectors. At inference, we split images into equally-sized crops 
that were input into a pretrained ViT, with the image feature obtained by averaging the crop 
features (see Methods). To correct for plate and experimental batch effects, we tested several 
normalization methods and selected the best postprocessing strategy for each feature type (see 
Methods and Extended Data Fig. 1-2). We generated perturbation profiles by averaging 
normalized features across replicates of the same perturbation. As JUMP-CP datasets contain 
several data sources and experimental batches (see Methods), this aggregation was conducted 
at the batch, source, and full dataset levels (see Methods), enabling assessment of 
reproducibility across batches and sources. Full dataset aggregation produced consensus 
profiles, which were used for drug target and gene family classification. 

Benchmarking feature extraction methods on JUMP-CP data 

We evaluated all feature extraction methods on 3 held-out JUMP-CP27 data subsets (Fig. 1c). 
The first two subsets contained target-annotated compounds with 2 drugs per target class (see 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2023.04.28.538691doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538691
http://creativecommons.org/licenses/by-nd/4.0/


 

Methods). This allowed us to assess the suitability of pretrained features for few-shot learning, 
an important task in morphological profiling, where only few examples per class are available. 
The third evaluation set consisted of gene overexpression perturbations (see Methods) from a 
data source not used in training. Including genetic perturbations allowed us to test the models' 
ability to generalize to previously unseen perturbations, since our SSL models were trained only 
on images of chemically perturbed cells. As all JUMP-CP perturbations were screened across 
multiple experimental batches in different laboratories (see Methods), we could also assess 
batch and data source effects. 

 

Figure 1: Self-supervised learning for morphological profiling. 
a) Schematic of the SSL models used in this study. All models are segmentation-free and use only image crops as 
input. SimCLR and DINO were trained on the pretext task of matching features from augmented views of the same 
image. MAE was trained on the image reconstruction task with partially masked input. b) Schematic of the two 
baseline methods. CellProfiler: conventional method based on single-cell segmentation and handcrafted features. 
Transfer learning: pretrained vision transformer that outputs per-channel features. c) JUMP-CP consortium data 
subsets used for training and evaluation of SSL models. SSL models were trained on two training sets: a single-
source and a multisource set. The colored points indicate which evaluation sets were used to assess the models 
trained on the single-source and multisource data. The image augmentation study was conducted only for SimCLR 
trained and evaluated on the single-source data. 

We compared feature extractors based on two key criteria: reproducibility and biological 
relevance (see Methods). To assess reproducibility, we used perturbation mAP (mAP: mean 
average precision), which quantifies the agreement between replicates of the same perturbation 
across experimental batches. Biological relevance was evaluated by the agreement between 
perturbations with the same biological annotation, using target mAP as the metric (see 
Methods). Additionally, we used nearest neighbor (NN) accuracy of matching across 
experimental batches (not-same-batch or NSB accuracy) and across experimental batches and 
distinct perturbations (not-same-batch-or-perturbation or NSBP accuracy). For genetic 
perturbations, we additionally evaluated the clustering quality with respect to gene family labels, 
using the adjusted mutual information (AMI) metric (see Methods). 
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Establishing augmentations for Cell Painting images 

SimCLR and DINO rely on image augmentations to generate views of the same image during 
training (Fig. 2a). While the relative importance of individual augmentations was previously 
determined for RGB images15, there are no prior works systematically assessing augmentations 
for multichannel microscopy images. Therefore, we conducted a comprehensive study for Cell 
Painting images to evaluate the contribution of several common augmentations. We followed a 
similar study design as in 15, probing all pairwise combinations of 5 augmentations (Fig. 2a): 
‘Resize’, ‘Color’, ‘Drop channel’, ‘Gaussian noise’ and ‘Gaussian blur’ (see Methods). Since 
color jittering15,16 is specific to RGB images, we replaced the ‘Color’ augmentation with a more 
general transform consisting of random brightness change and intensity shift applied to each 
fluorescent channel independently (see Methods). 

 

Figure 2: Augmentations for multichannel microscopy images.  
a) Schematic of the SimCLR contrastive learning framework and representative images of the tested augmentations. 
Flip: vertical and horizontal flips. Color: per-channel stochastic intensity shift and brightness adjustment. Resize: 
random crop of variable dimensions followed by rescaling to a fixed crop size. Drop: omit one color channel at 
random. Gaussian blur: Gaussian kernel smoothing. Gaussian noise: addition of Gaussian noise. For details, refer to 
the Methods section. b)-c) Performance comparison of 15 SimCLR models with different combinations of 
augmentations trained and evaluated on the single-source data. Diagonal entries report the performance of individual 
augmentations. The ‘Flip’ augmentation was applied by default. Performance is assessed based on the reproducibility 
metrics not-same-batch accuracy (NSB) and perturbation mean average precision (mAP) (see Methods).  

We pretrained 15 SimCLR models with different augmentation strategies (see Methods). A 
pairwise comparison of these models (Fig. 2b-c) revealed that the ‘Color’ augmentation had the 
greatest positive impact on performance both in terms of perturbation mAP and NSB accuracy. 
The ‘Resize’ operation, which generates image crops at different scales (see Methods), led to a 
decrease in performance compared to other augmentations. The remaining 3 augmentations 
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(‘Drop channel’, ‘Gaussian noise’, ‘Gaussian blur’) had a negligible effect on NSB accuracy and 
mAP relative to the ‘Color’ augmentation alone. Based on these findings, we established an 
augmentation pipeline for Cell Painting images that relies primarily on ‘Color’ and ‘Flip’ 
augmentations and excluded all other transforms which didn’t improve performance. This 
pipeline was adopted for DINO and SimCLR in all subsequent experiments. 

 
Figure 3: Impact of training data and model size on SSL model performance. 
Performance comparison of SSL models (DINO, MAE, and SimCLR) and two baselines (CellProfiler and transfer 
learning) for different datasets (single-source and multisource) and model architectures (ViT-S and ViT-B). Left 
panels: reproducibility metrics perturbation not-same-batch (NSB) accuracy and mean average precision (mAP). 
Right panels: biological relevance metrics target not-same-batch-or-perturbation (NSBP) accuracy and mean 
average precision (mAP). Colors indicate different models and two randomized baselines: Shuffled CellProfiler 
(CellProfiler features with shuffled labels) and Random (random normally distributed features). Dotted lines indicate 
CellProfiler performance. a)-b) Performance on the single-source evaluation set. Shapes indicate different training 
sets. Only the results for ViT-S architectures are reported. c)-d) Performance on the multisource evaluation set. 
Shapes indicate the ViT architecture. All SSL models were trained on the multisource training set. 

DINO trained on multisource data outperforms CellProfiler 

First, we evaluated the performance of DINO, MAE and SimCLR trained on different datasets 
(Fig. 3a,b). While all SSL models trained on single-source data performed worse than 
CellProfiler, models trained on multisource data match (MAE) or exceed (DINO) CellProfiler 
performance (Fig. 3a,b). DINO trained on multisource data achieved the best results among the 
SSL methods, surpassing CellProfiler. DINO features displayed better reproducibility (Fig. 3a,c) 
and biological relevance (Fig. 3b,d) compared to MAE and SimCLR. On the first evaluation set 
(Fig. 3a-b), DINO surpassed CellProfiler by a margin of 16% in perturbation mAP, 3% in NSB 
accuracy, 22% in target mAP, and 32% in NSBP accuracy. On the second evaluation set (Fig. 
3c-d), DINO outperformed CellProfiler by even greater margins: 29% in perturbation mAP, 6% 
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in NSB accuracy, 61% in target mAP, and 11% in NSBP accuracy. Notably, transfer learning 
features showed the worst performance, encouraging the use of SSL methods for morphological 
profiling. 

The superiority of DINO was even more evident in F1-score curves (Extended Data Fig. 3) and 
further confirmed by comparing reproducibility across JUMP-CP data sources (Extended Data 
Fig. 4, see Methods). DINO yielded similar or better performance to CellProfiler in 3 out of 4 
JUMP-CP data sources (Extended Data Fig. 4a-d) and achieved higher perturbation mAP 
(+73%) and NSB accuracy (+2%) on a cross-source matching task (Extended Data Fig. 4e, 
see Methods). 

Interestingly, models based on the larger ViT-B architecture only showed a marginal 
improvement over the ViT-S models (Fig. 3c,d). This was observed for both the SSL methods 
and the transfer learning baseline. Our results indicate that the biggest performance gain was 
achieved by expanding the training set to a more extensive and diverse image set as opposed 
to increasing the model size. In subsequent evaluations, we focused solely on SSL models 
trained on the multisource data using the ViT-S architecture, motivated by its lower compute 
requirements. 

UMAP embeddings reveal biological and technical axes of variation 

Next, we used UMAP54 (see Methods) to embed DINO, MAE, SimCLR and CellProfiler features 
in 2 dimensions. To assess whether feature embeddings produced biologically meaningful 
clusters, we highlighted a selection of 20 drug targets in the UMAP space (see Methods). All 
embeddings grouped compounds with the same target to some extent (Fig. 4). Notably, DINO 
and CellProfiler embeddings yielded well-separated clusters in the UMAP, highlighting targets 
such as NAMPT, PAK1, and RET (Fig. 4a, d). Additionally, DINO embeddings demonstrated 
superior cluster separation for KRAS, AKT1, DNMT3A, TGFBR1, CDK2, and CDK7 (Fig. 4a) 
compared with CellProfiler (Fig. 4d). These results further support that DINO features are 
biologically meaningful and at least as powerful as those of CellProfiler. 

We then examined feature robustness with respect to technical sources of variation by coloring 
UMAP embeddings by experimental batch and data source (Extended Data Fig. 5a,b). SSL 
feature embeddings were more susceptible to technical variations compared to CellProfiler, 
displaying a stronger separation between experimental subgroups. Upon closer inspection, we 
found that the most pronounced data source effects occurred within DMSO negative controls 
(Extended Data Fig. 5a,c) and that the differences strongly correlated with variations in cell 
count (Extended Data Fig. 5d). We hypothesize that CellProfiler is more robust towards cell 
count variations since the features are extracted from single cells. Additionally, we quantified the 
impact of technical variation (see Methods) and found that both SSL and CellProfiler features 
were affected by experimental batch and source effects to some extent (Extended Data Fig. 6). 
These results suggest that SSL representations capture both biological and technical axes of 
variation in the data. 
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Figure 4: UMAP embeddings of SSL and CellProfiler features reveal compound clusters. 
Two-dimensional embeddings of well-level features from SSL methods and the CellProfiler baseline on the 
multisource evaluation set. Colors highlight target labels for a selection of 20 targets (see Methods). Perturbations 
with other targets are depicted as grey hollow points. All SSL models used the ViT-S architecture.  

DINO features generalize to genetic perturbations and recapitulate gene families  

To evaluate the generalizability of SSL models, we used an independent dataset of gene 
overexpression perturbations from a new source (see Methods). As for chemical perturbations, 
DINO features demonstrated the best reproducibility (Fig. 5a), with MAE achieving comparable 
performance. We also assessed the ability to predict gene family labels (see Methods) and 
found that all SSL features outperformed CellProfiler on metrics of biological relevance (Fig. 5b-
c). The most notable improvements were seen with DINO and MAE features that improved 
gene family predictions by 41% in NSBP accuracy over CellProfiler. 
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Figure 5: Evaluation of SSL models on genetic perturbations demonstrates generalizability to unseen data. 
Evaluation of SSL models and CellProfiler on an independent gene overexpression set. SSL models were trained 
only on images of chemically perturbed cells. Colors indicate different models and two randomized baselines: 
Shuffled CellProfiler (CellProfiler features with shuffled labels) and Random (random normally distributed features). 
Dotted lines in a)-b) indicate CellProfiler performance. a) Reproducibility metrics: perturbation not-same-batch (NSB) 
accuracy and mean average precision (mAP). b) Metrics of biological relevance: gene family not-same-batch-or-
perturbation (NSBP) accuracy and mean average precision (mAP). c) F1-scores for matching gene family labels 
based on gene consensus profiles for a range of nearest neighbors k. d)-e) Hierarchical clustering of the 20 gene 
families with the highest intragroup correlations in the DINO and CellProfiler representation spaces, respectively. 
Detailed versions of the heatmaps displaying gene and gene family annotations for each row are presented in 
Extended Data Fig. 7-8. 

Using pairwise gene similarity analyses, we tested the ability of morphological features to 
recapitulate gene families. For a selection of 20 gene families (see Methods), we performed 
hierarchical clustering of gene profiles for DINO (Fig. 5d) and CellProfiler (Fig. 5e). The 
resulting similarity maps were annotated to highlight groups based on gene and gene family 
labels (see Methods). Our qualitative comparison (Fig. 5d and Extended Data Fig. 7) revealed 
that DINO features recovered a larger number of gene groups and produced more 
homogeneous clusters than CellProfiler. DINO recapitulated 11 gene groups, including MAP4K 
family, Src kinases, MAP3K family, coronins, voltage-gated potassium channels, mitochondrial 
proteins, MAP kinase phosphatases, DAN family, HOX transcription factors, 
glycosyltransferases, and interferons. By contrast, CellProfiler recovered only 3 gene groups 
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(mitochondrial proteins, interferons, and MAP kinase phosphatases) and 2 large clusters of 
mixed gene families (Fig. 5e and Extended Data Fig. 8). 

To provide a more objective assessment, we computed the adjusted mutual information (AMI) 
between cluster assignments and gene family labels (see Methods). We found that DINO (AMI 
= 0.51) outperformed CellProfiler (AMI = 0.19) on the gene clustering task, indicating that DINO 
features excel at capturing gene family information.  Since all SSL models were trained on 
images with compound-treated cells, these results demonstrate the remarkable generalizability 
of SSL models, enabling their application to unseen data sources and conditions without 
parameter adjustments. 

DINO enables bioactivity prediction comparable to supervised CNNs 

In 26, convolutional neural networks (CNNs) were used to predict compound activity across 209 
ChEMBL assays from Cell Painting images. To evaluate the performance gap between 
supervised and self-supervised learning, we compared bioactivity prediction models trained on 
DINO features versus images directly. Specifically, we assessed a neural network (NN) trained 
on DINO features (see Methods) against 6 CNNs trained on Cell Painting images from 26. We 
used DINO pretrained on the JUMP-CP data, allowing us to probe its out-of-distribution 
generalizability. As an additional baseline, a NN trained on CellProfiler features was 
incorporated from 26. 

After ranking all methods by mean AUCROC across 209 assays (see Methods), we found 
(Extended Data Table 1) that the model trained on DINO features (AUCROC = 0.72) achieved 
performance comparable to GapNet (AUCROC = 0.73), the third best method. Although the top 
3 CNNs had slightly higher mean AUCROC values, DINO outperformed 3 additional CNNs and 
a model trained on CellProfiler features (Extended Data Table 1). Among the 8 methods 
compared, DINO ranked 4th for the number of assays predicted with AUCROC above 0.7 and 
0.8. This confirms that DINO can generalize to novel datasets and tasks without fine-tuning. 

Nevertheless, the top 3 CNNs surpassed the DINO-based model in the number of assays 
predicted with AUCROC > 0.9, indicating a performance gap. Further analysis revealed that the 
model trained on DINO features offered comparable or better performance on assays with 
limited data (Extended Data Fig. 9). For assays with only few (< 100) activity labels available, 
the DINO model produced a similar number of accurate predictions as the top 3 CNNs 
(Extended Data Fig. 9a). However, on assays with 100-500 labels, the CNNs showed better 
performance than the DINO model (Extended Data Fig. 9a). When considering only assay 
predictions with AUCROC > 0.7 (Extended Data Fig. 9b), the DINO model achieved higher 
median AUCROC values for assays with few activity labels (< 50 and 50-100), consistent with 
SSL features excelling in few-shot settings55. 

SSL pipeline is significantly faster than CellProfiler 

As efficient data processing is crucial for accelerating research throughput, we additionally 
benchmarked the computation time and cloud costs of feature extraction using DINO versus 
CellProfiler. For this comparison, we used 12 GPU-accelerated cloud instances for DINO and 
12 CPU-intensive instances for CellProfiler (Extended Data Table 2). We found that DINO was 
50 times faster than CellProfiler, with an average processing time of 1.3 minutes per plate 
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(Extended Data Table 2). Despite the need for GPU resources, the cloud costs per plate were 
over 50 times lower for DINO than for CellProfiler (Extended Data Table 2). Moreover, DINO 
offers a simpler workflow which processes images end-to-end, in contrast to the multi-step 
CellProfiler workflow which requires illumination correction, segmentation, feature extraction 
and selection.  

Taken together, our findings show that image-level SSL methods are a viable alternative to 
traditional segmentation-based approaches, offering improved performance, generalizability to 
new datasets, speed, and lower workflow complexity and computational costs. 

Discussion 

To assess the applicability of SSL for Cell Painting, we trained and evaluated 3 state-of-the-art 
methods DINO, MAE, and SimCLR on complex datasets with chemical and genetic 
perturbations. Using reproducibility and biological relevance as our main criteria, we showed 
that our best model, DINO, outperformed the established feature extraction tool, CellProfiler, in 
drug target and gene family classification, with even greater improvements in gene clustering.  

Our SSL models captured informative cell-related features that generalized to unseen datasets 
without parameter fine-tuning. While trained only on compound perturbations, DINO achieved 
superior classification and clustering performance on a novel gene overexpression set, 
facilitating the construction of biological maps22. For compound activity prediction, DINO 
features transferred remarkably well to a new dataset, with the model trained on DINO features 
achieving comparable performance to CNNs26 trained on that dataset directly. We hypothesize 
that the strong transferability56 of DINO can be attributed to its image-level pretext task that 
effectively captures low-frequency signals57 associated with cellular shape. The generalizability 
of our SSL models expedites the analysis of new datasets in contrast to CellProfiler, which 
requires frequent parameter adjustments. 

Previous studies45,47,51 fine-tuned ImageNet-pretrained networks to learn representations for 
Cell Painting, often curating the training set through compound preselection. These methods 
process each channel independently and output concatenated channel representations, 
increasing computational complexity and feature redundancy. By contrast, our SSL models are 
tailored for uncurated 5-channel images, resulting in compact representations with lower 
redundancy. More recently, DINO was applied for learning single-cell morphological 
representations43,44, with 44 reporting superior performance over CellProfiler. However, unlike 
these approaches, our SSL framework operates without cell segmentation, streamlining feature 
extraction. 

Our study offers practical guidance for applying SSL methods to microscopy images. We 
systematically examined the role of augmentations, confirming the importance of 'Color' 
augmentation observed for natural images15. We found, however, that the 'Resize' 
augmentation decreased representation quality. We hypothesize that enforcing scale-
invariance is detrimental, as cell size variations in microscopy images reflect actual phenotypic 
changes. Additionally, training set size and heterogeneity played a crucial role in SSL model 
performance. Scaling from a single-source to a multisource training set improved performance 
more than using larger vision transformer architectures, which may require more training data 
and longer pretraining58. Notably, masked image modelling (MAE) performed comparably to 
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self-distillation pretraining (DINO), which suggests that combining both SSL pretext tasks could 
further improve representations as shown for natural images59,60. 

Our analysis (Extended Data Fig. 9) revealed that models trained on SSL features excel in 
bioactivity prediction when ground-truth labels are scarce, while dedicated supervised 
methods achieve superior performance given ample labeled data. Since compound 
annotations are sparse, training supervised models directly from images remains infeasible in 
most but few26 cases, which makes the use of SSL features an attractive alternative to harness 
the large-scale unlabeled data such as the JUMP-CP dataset. 

With a 50-fold reduction in compute time and costs compared to CellProfiler, SSL feature 
extraction methods can facilitate compound screening campaigns of unprecedented scale, 
revolutionizing the pace of early drug discovery. However, pretraining a DINO model demands 
substantial compute resources, requiring approximately 300 GPU hours. Given the intensive 
resource requirements, our study used only subsets of the JUMP-CP dataset, leaving room for 
exploration of the full dataset's potential. Investigating the emerging properties of larger self-
supervised ViTs trained on the complete JUMP-CP dataset offers promising research directions. 

One limitation of our segmentation-free approach is that it operates at image-crop level and 
does not provide insights into cell heterogeneity, making CellProfiler a more suitable tool for 
single-cell analyses. Additionally, CellProfiler provides interpretability, by linking individual 
features to specific microscopy channels and mathematically defined morphological 
descriptors. However, even with self-supervised ViTs, we can gain some level of interpretability 
by examining self-attention maps (see Extended Data Fig. 10). Furthermore, SSL methods 
showed higher susceptibility to experimental batch and laboratory effects compared to 
CellProfiler. Post-hoc approaches like Harmony61 can mitigate the effect of technical variation 
on SSL features. Alternatively, incorporating batch alignment as an additional objective during 
pretraining may produce more robust SSL representations. 

Our SSL models showed generalizability across Cell Painting datasets but remain limited in 
transferability across other microscopy modalities, requiring fine-tuning for assays with different 
staining than Cell Painting. Drawing inspiration from natural language and image domains62–65, 
we encourage the development of assay-agnostic foundation models for microscopy images, 
which can standardize and expedite the analysis of high-content assays across various imaging 
modalities. 

Methods 

Technical terminology 

Image features are high-dimensional readouts extracted from images using segmentation-
based or deep learning approaches. We use the terms “representations” and “features” 
interchangeably. Feature vectors can be embedded into 2 dimensions for visualization; we refer 
to these projections as embeddings. 

Cell Painting assay is conducted in 384-well plates, with each well imaged at several locations 
to produce multiple images or fields of view (FOVs). Well profiles or well features refer to 
features aggregated for each well across multiple FOVs. Cell Painting screening is performed in 
experimental batches containing groups of plates. Unless specified otherwise, the term “batch” 
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refers to an experimental batch and not to a minibatch used for training deep learning models. 
In the JUMP Cell Painting consortium, several laboratories or data sources generated the data, 
adding a hierarchical level above the plate and batch levels. 

Cells in each well are treated with a specific perturbation (e.g., compound or gene 
overexpression). This provides perturbation labels to assess reproducibility across repeated 
measurements or replicates. We used several subsets of the JUMP-CP data, which we refer to 
as datasets. Aggregating perturbation features across all replicates in a dataset produces a 
consensus profile. For a small subset of compounds, we have drug target labels, i.e., proteins 
targeted by these drugs. Gene overexpression perturbations correspond to individual genes 
which can be annotated and grouped in gene families. To evaluate biological relevance, we 
used target labels for compounds and gene family labels for genetic perturbations. 

JUMP-CP training and validation sets 

We used subsets of the JUMP Cell Painting dataset27 (cpg0016-jump) for training and 
evaluation of self-supervised learning (SSL) models. The complete JUMP-CP dataset (115 TB) 
includes 116,750 chemical perturbations, 12,602 gene overexpression and 7,975 CRISPR 
perturbations probed in a human cancer cell line (U2OS) in 5 replicates. Each chemical 
perturbation was screened by 5 out of the 10 consortium laboratories (“sources”) that used a 
standardized protocol but possibly different instrumentation. Genetic perturbations were 
screened solely by sources 4 and 7. 

For model training, we used only images of cells treated with chemical perturbations. We used 
two training sets: a single-source and a multisource training set. The single-source training set 
consists of 391,815 images from JUMP-CP source 3, corresponding to 35,892 compounds with 
1 replicate and 9 fields of view per well. The multisource training set contains 564,272 images 
from 4 JUMP-CP sources: source 2, source 3, source 6, and source 8. The multisource training 
set includes 5 replicates of 10,057 compounds from Selleckchem and MedChemExpress 
bioactive libraries, with two replicates originating from source 3. An overview of the JUMP-CP 
batches and plates used for model training is provided in Supplementary Data 1. 

To assess our models, we used JUMP Target2 plates27 that contain 306 compounds with drug 
target labels. These plates were imaged in every experimental batch, enabling us to not only 
assess model performance using biological labels, but also evaluate batch and laboratory 
effects. Single-source (6 batches, 33,962 images) and multisource (16 batches, 75,545 images) 
validation sets were constructed using JUMP-Target2 plates from the respective sources of the 
single-source and multisource training sets. JUMP-CP batches and plates used for evaluation of 
models are listed in Supplementary Data 2. 

JUMP-CP gene overexpression test set 

The JUMP-CP27 gene overexpression data (source 4) with Open Reading Frames (ORFs) was 
used for the final assessment of SSL models. A subset of the gene overexpression data was 
constructed by selecting ORF perturbations with high replicate correlations (𝑟	 > 	0.4) in the 
CellProfiler feature space, resulting in 5,198 ORFs. Gene group memberships were assigned to 
each ORF perturbation using the HUGO Gene Nomenclature Committee (HGNC) gene 
annotation (hgnc_complete_set_2022-10-01.txt). To ensure robust evaluation based on gene 
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annotations, we selected only those gene groups with at least 4 unique ORFs. 1,970 ORF 
perturbations satisfied this criterion. The complete list of batches and plates is provided in 
Supplementary Data 2.  

Image preprocessing  

The JUMP-CP consortium27 generated Cell Painting images with 5 color channels (Mito, AGP, 
RNA, ER, DNA) that were stored as individual TIFF files. To optimize data loading, we 
combined the single-channel images into 5-channel TIFF files, resulting in a 6-fold acceleration 
in training time. Prior to storage, we preprocessed the images: for each channel, intensities 
were clipped at 0.01st and 99.9th percentiles and scaled to the range [0,1]. Additionally, we 
calculated the Otsu threshold in the DNA staining channel and saved it as image metadata. 
During training, this threshold value enabled us to sample non-empty crops based on the 
minimum percentage of foreground area in the DNA channel. 

Augmentations for multichannel images 

In the augmentation study, we trained 15 SimCLR models with the ResNet-50 backbone to test 
different image augmentation strategies. All models were trained and evaluated on the single-
source data. We probed pairwise combinations of 5 augmentations: ‘Resize’, ‘Color’, ‘Drop 
channel’, ‘Gaussian noise’ and ‘Gaussian blur’. The ‘Flip’ augmentation that rotates an image by 
180 degrees along the horizontal or vertical axes was used by default. ‘Resize’ generates crops 
with dimensions varying between 12% and 47% of the whole microscopy image and rescales 
the output to 224x224 pixels. The ‘Color’ augmentation consists of a random intensity shift: 
𝐼!,#,$ = 𝐼!,#,$ + 𝜀, 𝜀 ∈ 𝑈(−0.3, 0.3) and a random brightness change: 𝐼!,#,$ = 𝐼!,#,$

% , 𝛾 ∈ 𝑈(0.5, 1.5) 
with intensity values restricted to [0, 1]. ‘Drop channel’ omits one channel from the image at 
random with probability 𝑝	 = 	0.5. The dropped channel is padded with zeros. ‘Gaussian noise’ 
adds random noise to the image: 𝐼!,#,$ = 𝐼!,#,$ +	𝜇#,$ , 𝜇#,$ 	~	𝑁(0, 0.05). ‘Gaussian blur’ applies a 
Gaussian filter with a kernel size of 23 pixels and a standard deviation uniformly sampled from 
[0.1, 2]. Based on the results of the augmentation study, we applied only ‘Flip’ and ‘Color’ 
augmentations for training SimCLR and DINO. For training MAE, only the ‘Flip’ augmentation 
was used. 

Model training details 

During training, we sampled random crops (224x224 pixels) from the images and provided 
these as inputs to the models. We only used image crops with cells (“cell-centered crops”), 
which was ensured by imposing a lower bound of 1% on the Otsu-thresholded area in the DNA 
channel. For SimCLR and DINO, we additionally applied the augmentation pipeline, described 
in “Augmentations for multichannel images”, to generate multiple views from the sampled crops. 
All input crops were centered and scaled using channel intensity means and standard 
deviations estimated over the entire training set. We used the small (ViT-S/16) and base (ViT-
B/16) variants of the vision transformer, with a patch size of 16 pixels. The models with ViT-S/16 
were trained for 200 epochs, while those with ViT-B/16 were trained for 400 epochs. We used 
the AdamW optimizer and saved checkpoints every 20 epochs. In addition to tracking the SSL 
training loss, which can be an unreliable indicator of downstream performance, we monitored 
training progress using the mean replicate correlation on the single-source evaluation set and 
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selected the best-performing checkpoint for each model. A brief exposition of model-specific 
hyperparameters is provided below. For a comprehensive overview of training hyperparameters 
refer to Supplementary Table 1. 

DINO was trained with a minibatch size of 128 (192 for ViT-B), a learning rate of 2 ∙ 10&' (1.5 ∙
10&' for ViT-B), and a weight decay linearly increasing from 0.04 to 0.4. The learning rate 
followed a 20-epoch linear warmup followed by a cosine decay. For each image, 8 local crops 
(96x96) and 2 global crops (224x224) were sampled. DINO is a joint-embedding model with a 
student-teacher architecture16. DINO projects representations into a high-dimensional (here 
20,000-dimensional) space where the temperature-scaled cross-entropy loss is optimized using 
a temperature of 0.1 for the student and 0.04 for the teacher network. The teacher temperature 
followed a linear warmup starting from 0.01 for 30 epochs. 

Masked autoencoder (MAE) was trained with a minibatch size of 1024 (1536 for ViT-B), a 
learning rate of 6 ∙ 10&( (9 ∙ 10&( for ViT-B), and a weight decay of 0.05. The learning rate 
followed a 30-epoch linear warmup followed by a cosine decay. Given a partially masked input 
image, MAE reconstructs the missing regions using an asymmetric encoder-decoder 
architecture17, with a significantly smaller decoder. To accelerate data loading, 4 random crops 
were sampled from each image during training. The masking ratio was set to 50%, and image 
augmentation was performed using only horizontal and vertical flips. 

SimCLR was trained with a minibatch size of 256, a learning rate of 1 ∙ 10&', and a weight decay 
of 0.1. The learning rate followed a 30-epoch linear warmup followed by a cosine decay. 
SimCLR is a contrastive approach15 that aims to match augmented views from the same image 
in the representation space (“positives”), while pushing away representations from different 
images (“negatives”). The temperature-scaled cross-entropy loss was used as the objective 
function with a constant temperature value of 0.2. 

SSL inference and postprocessing 

A feature extraction model maps an input image 𝐼 ∈ 𝑅)×+×, to a d-dimensional feature space 
through a mapping function 𝑓: 𝑅)×+×, 	→ 𝑅-. In DINO, MAE, and SimCLR, the mapping 𝑓(∙) is 
performed by a vision transformer (ViT) backbone. The dimensionality 𝑑 of learned features 
depends on the network architecture, with 𝑑	 = 	384 for ViT-S and 𝑑	 = 768 for ViT-B. 

At inference, each microscopy image 𝐼, corresponding to a single field of view (FOV), was split 
into 224x224 image crops {𝑥# , 𝑖 = 1,… ,𝑁!./01}. All image crops were passed through a 
pretrained ViT backbone to generate crop features 𝑓(𝑥#). Crops with no cells were excluded 
following the same criteria used during training. The resulting image crop features were 
aggregated using the arithmetic mean: 𝑓234 =

5
6!"#$%

∑ 𝑓(𝑥#)
6!"#$%
#75 . Well features were obtained by 

taking the mean across all FOV images: 𝑓89:: =
5

6&'(
∑ 𝑓234;
6&'(
;75 .  

 
We tested several feature postprocessing methods (Extended Data Fig. 1-2) and chose 
“sphering + MAD robustize” for SSL features. First, we removed well features with variance less 
than 1 ∙ 10&<. We then applied a sphering transformation39 Φ to the remaining well features, 
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followed by normalization using whole-plate median (𝑚𝑒𝑑) and median absolute deviation 
(𝑀𝐴𝐷): 

𝑓	>?@3 =
Φ(𝑓89::) − 𝑚𝑒𝑑RΦ(𝑓89::)S

𝑀𝐴𝐷(Φ(𝑓89::))
 

To generate perturbation profiles for downstream analyses, we averaged normalized well 
features 𝑓	>?@3 across multiple replicates. Aggregation was performed at several levels: batch-
aggregated profiles average all replicates within an experimental batch, source-aggregated 
profiles average all replicates within a JUMP-CP data source, and consensus profiles average 
all replicates within an entire dataset (single-source/multisource/gene overexpression). 

CellProfiler features 

We used CellProfiler features provided by the JUMP-CP consortium 
(https://registry.opendata.aws/cellpainting-gallery/, for details see 27). CellProfiler features were 
normalized using whole-plate median and MAD (“MAD robustize” normalization), which was the 
best postprocessing method for CellProfiler features (Extended Data Fig. 1e). We tested 
several feature selection approaches (Extended Data Fig. 2) and selected the set of 560 
features from the CPJUMP1 study66, in which low-variance and redundant features were 
removed based on a dataset with chemical and genetic (ORF and CRISPR) perturbations. 

Transfer learning 

A vision transformer35 (ViT-S/16 or ViT-B/16) pretrained on the image classification task on 
ImageNet-1K was used to extract ‘transfer learning’ features. Each of the 5 channels was 
duplicated 3 times to generate pseudo-RGB images, which were individually passed through a 
pretrained ViT. The transfer learning features were obtained by concatenating individual 
channel features, resulting in 5 ∙ 384 = 1920-dimensional feature vectors. As for SSL methods, 
low variance features (< 	1 ∙ 10&<) were removed before normalization. The transfer learning 
features were normalized using whole-plate median and MAD (“MAD robustize” normalization), 
which was the best postprocessing method for transfer learning (Extended Data Fig. 1d). 

Evaluation of reproducibility and biological relevance 

We evaluated all features based on two key criteria: reproducibility using perturbation labels and 
biological relevance using drug target or gene family labels (see “Technical terminology”). To 
assess the sensitivity and precision of inferring ground-truth labels based on pairwise feature 
distances 𝐷R𝑓# , 𝑓$S, we followed an approach similar to 66. For each perturbation 𝑖, we define a 
neighborhood 𝑁#,- = {𝑗		|	𝐷R𝑓# , 𝑓$S ≤ 	𝑑} consisting of all other perturbations 𝑗 within a cosine 
distance threshold 𝑑 of perturbation 𝑖. We then compared the label 𝑦# of perturbation 𝑖 with the 
labels 𝑦$ of its nearest neighbors {	𝑗 ∈ 𝑁#,-}. The precision 𝑃#,- and recall 𝑅#,- of matching labels 
for perturbation 𝑖 at distance threshold 𝑑 were calculated as: 

𝑃#,- =	
∑ 𝐼(𝑦# = 𝑦$)$∈6)

|𝑁#,-|
 

𝑅#,- =	
∑ 𝐼(𝑦# = 𝑦$)$∈6)
∑ 𝐼(𝑦# =	𝑦$)$B#
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where 𝐼 is an indicator function, and |𝑁#,-| is the size of the neighborhood of perturbation 𝑖. 

Average precision (𝐴𝑃#) was computed for each perturbation by varying the distance threshold 𝑑 
of the neighborhood 𝑁#,-: 

𝐴𝑃# =	ZR𝑅#,- − 𝑅#,-&C-S𝑃#,-
-

 

Mean average precision (mAP) was then calculated by averaging the AP values across all 
perturbations: 

𝑚𝐴𝑃 =	
1
𝑛
Z𝐴𝑃#

D

#75

 

Perturbation mAP, measuring reproducibility, was estimated on batch-aggregated profiles (see 
“SSL inference and postprocessing”), thus quantifying the ability to match perturbations across 
batches. Target mAP was estimated on consensus profiles (see “SSL inference and 
postprocessing”) using drug target labels, focusing on biological content after technical 
variations were averaged out. For genetic perturbations, biological relevance was estimated 
using gene family mAP, calculated on consensus profiles with gene family labels. To evaluate 
the cross-source matching ability of features (Extended Data Fig. 4e), perturbation mAP was 
calculated on source-aggregated profiles. Along with AP values, F1-scores at k nearest 
neighbors were computed and visualized (Extended Data Fig. 3) to investigate whether some 
features worked better in specific k ranges. 

The second class of metrics, widely used in morphological profiling39,53,67, reports the nearest 
neighbor (NN) accuracy estimated on well profiles with restrictions on the possible match. To 
evaluate reproducibility, the not-same-batch (NSB) accuracy restricts true positive matches to 
well profiles from different experimental batches. The not-same-batch-or-perturbation (NSBP) 
accuracy restricts true positive matches to profiles from both different batches and distinct 
perturbations. We used perturbation NSB accuracy to evaluate feature reproducibility across 
batches and target NSBP accuracy to evaluate biological relevance. 

UMAP embeddings 

To visualize features in 2 dimensions, we generated UMAP (Uniform Manifold Approximation 
and Projection)54 embeddings using the first 200 principal components as input, with the 
correlation distance as the metric. For optimal visualization, we set the number of nearest 
neighbors to 50 and the minimum distance between points to 0.7 in the UMAP algorithm. 

We selected the 20 drug targets with the highest mean F1-scores from the JUMP-Target2 
plate27 annotation set. The F1-scores were determined by performing target classification using 
CellProfiler and DINO features. Supplementary Table 2 provides the list of these 20 targets 
and their F1-scores stratified by feature type. 

Quantification of technical biases 

The impact of technical variation was assessed by examining well profiles of the multisource 
validation dataset, which contained 24 replicates of each perturbation (see “Technical 
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terminology”). To quantify batch and source effects for each feature type, we compared within- 
and between-cluster similarity and connectivity, using batch and source information as cluster 
labels.  We used 3 metrics: Silhouette scores68, Graph Connectivity (GC)69 and Local Inverse 
Simpson's Index (LISI)69.  

The silhouette score measures the similarity of an observation 𝑖 to its own cluster (batch/source) 
relative to the nearest cluster68.  It calculates the relative difference between the mean intra-
cluster distance 𝑎(𝑖) and the mean nearest-cluster distance 𝑏(𝑖): 

𝑠(𝑖) = 	
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
 

The silhouette score ranges from -1 to 1, with higher values indicating the observation is well 
matched to its own cluster and poorly matched to neighboring clusters. We compared 
distributions of silhouette scores for all well profiles clustered by batch or source (Extended 
Data Fig. 6c,f). 

The GC and LISI metrics are based on a k-nearest neighbor (kNN) graph G(V, E). This graph 
consists of vertices V corresponding to well profiles. Each vertex is connected to its k nearest 
neighbors based on pairwise cosine distances defining the edge set E. Let 𝐶 be a set of 
clusters, such as batches or sources. Taking only the vertices of a specific cluster 𝑐 ∈ 𝐶	 induces 
a subgraph 𝐺!(𝑉! , 𝐸!). GC measures the ratio between the number of vertices in the largest 
connected component (LCC) of 𝐺! 	and the total number of vertices in 𝐺!, averaged across all 
clusters: 

 𝐺𝐶  = 5
|)|
  ∑ FG))HI*(K* , M*)OF

|K*|
 
!∈) . 

If the LCC of 𝐺!  is almost as large as 𝐺! itself, this indicates that vertices from the same cluster 
are close together – a sign of batch/source effects. We reported GC for k = 1, 2, 3, 5, 10, 15 
(Extended Data Fig. 6a,d). 

LISI quantifies neighborhood diversity in the kNN-graph G using the inverse Simpson's index: 

 𝐿𝐼𝑆𝐼 = 5
∑ 0(!), 
*∈.

,  

where 𝑝(𝑐) is the relative abundance of cluster 𝑐. LISI can be interpreted as the expected 
number of profiles to be sampled before two are drawn from the same cluster61. Higher LISI 
implies more diverse neighborhoods and lower batch/source effects. LISI was calculated for k = 
15, 30, 60, 90 (Extended Data Fig. 6b,e). For both GC and LISI, the values for k are based on 
69. 

For the sake of interpretability, we incorporated two baselines: 1) a Gaussian baseline, which 
simulates non-overlapping Gaussian (𝜎 = 1) clusters with the number of clusters equal to the 
number of batches/sources and with feature dimensionality identical to that of CellProfiler 
features; 2) a random baseline, which corresponds to the Gaussian baseline but with 
randomized cluster assignments. 

Hierarchical clustering of genetic perturbations 
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For the clustering analysis, we only considered HGNC gene families (see “Gene overexpression 
data”) that contained between 4 and 10 unique ORF perturbations. Since many of the gene 
families were heterogeneous and uncorrelated, we only selected the top 20 gene families with 
the highest within-family correlations in the respective feature space, resulting in 2 gene sets for 
DINO and CellProfiler (Supplementary Data 3).  

To cluster these gene sets, we calculated the gene-gene correlation matrix within the respective 
representation space, which was then provided as input for hierarchical clustering using the 
complete linkage method and the Euclidean distance metric. To highlight biologically meaningful 
clusters in box frames, adjacent gene groups with at least 3 perturbations were identified 
visually and labeled with the majority gene family label. 

To evaluate the quality of hierarchical clustering of genetic perturbations, we used adjusted 
mutual information (AMI). For a given number of clusters, mutual information (MI) quantifies the 
dependence between cluster assignment labels 𝑋 and gene family labels 𝑌: 

𝑀𝐼(𝑋, 𝑌) = ZZ𝑃(Q,R)(𝑥, 𝑦) log(
𝑃(Q,R)(𝑥, 𝑦)
𝑃Q(𝑥)𝑃R(𝑦)

)
S∈QT∈R

 

Adjusting mutual information (MI) for random chance results in AMI: 

𝐴𝑀𝐼(𝑋, 𝑌) =
𝑀𝐼(𝑋, 𝑌) − 𝐸{𝑀𝐼(𝑋, 𝑌)}

max{𝐻(𝑋), 𝐻(𝑌)} − 𝐸{𝑀𝐼(𝑋, 𝑌)}
 

 

Assessing the performance gap between supervised and self-supervised learning 

We used DINO pretrained on the multisource JUMP-CP dataset to extract morphological 
features from Cell Painting images from a dataset of 30,000 small-molecule perturbations70. For 
bioactivity prediction, we only used 10,000 compounds with activity labels from a study26, in 
which convolutional neural networks (CNNs) were trained to predict compound activity across 
209 ChEMBL assays. We trained a 3-layer fully connected neural network (FNN) on the 
extracted DINO features to predict compound activity. To ensure comparability with the CNNs 
trained on Cell Painting images directly, we used the same code base (https://github.com/ml-
jku/hti-cnn), activity labels and train/validation/test splits as 26. 

We included 6 CNNs from 26 as fully supervised baselines for bioactivity prediction: GapNet, 
ResNet, DenseNet, MIL-Net, M-CNN and SC-CNN. All CNNs, except Single-Cell CNN (SC-
CNN), were trained end-to-end on Cell Painting images without segmentation. A 3-layer FNN 
trained on CellProfiler features was incorporated as an additional baseline from 26. The results 
for the CNNs and CellProfiler FNN were taken from the original publication. For details on the 
CNN and FNN architectures and training methodology, refer to 26. 

Following 26, we evaluated the performance of the FNN trained on DINO features using area 
under the receiver operating characteristic curve (AUCROC) as the primary metric. The 
AUCROC values for each assay were obtained by averaging across 3 test splits. The mean 
AUCROC across 209 assays and the standard deviation are reported in Extended Data Table 
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1. Similarly, F1-scores were computed and the mean and standard deviation across all assays 
are also provided. To illustrate the performance gap across different data availability regimes, 
we grouped the assays into 5 bins based on the number of activity labels: [< 50, 50-100, 100-
500, 500-1000, 1000-3000]. AUCROC values were visualized for these 5 assay groups in 
Extended Data Figure 9. 

Implementation details 

All self-supervised learning (SSL) models were implemented in Python 3.9.7 using PyTorch71 
v1.10.2 and PyTorch Lightning v1.6.3. SSL model training and inference were conducted on 
NVIDIA Tesla V100 GPUs with a VRAM of 32GB. Feature postprocessing (sphering, MAD 
robustize, standardize) was carried out using pycytominer v0.2.0. Mean average precision 
(mAP), NSB and NSBP accuracies were computed using custom Python functions, with 
average precision (AP) and accuracy scores computed using the scikit-learn72 v1.0.2 
implementation. PCA and UMAP were performed using scikit-learn v1.0.2 and umap-learn 
v0.5.3.  The silhouette scores, kNN graphs, and the simulated Gaussian baseline for batch and 
source effect quantification were computed using scikit-learn v1.0.2. The LISI scores were 
calculated using HarmonyPy61 v0.0.9. Adjusted mutual information (AMI) of gene family 
clustering was calculated using scikit-learn v1.0.2. The visualization of UMAP was performed 
using matplotlib v3.5.0 and seaborn v0.11.2.  The visualization of evaluation metrics and 
hierarchical clustering of ORF perturbations was performed in R 4.1.2. 

Software availability 

The code for training, inference, and evaluation of the self-supervised learning (SSL) models 
used in this study is provided in Supplementary Code and will be made publicly available on 
GitHub upon publication. The code is distributed under the BSD 3-Clause License. The model 
weights are provided and intended for non-commercial use only. 
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Extended Data Figures 

 
Extended Data Figure 1: Comparison of postprocessing methods for various representations. 
Impact of normalization methods on reproducibility metrics not-same-batch (NSB) accuracy and perturbation mean 
average precision (mAP) computed on the multisource evaluation set. SSL models were trained on the multisource 
training set with the ViT-S architecture. Pairwise combinations of 3 normalization methods were tested. MAD 
robustize: center and scale each feature using plate median and median absolute deviation (MAD). Standardize: 
center and scale each feature using DMSO negative control mean and standard deviation. Sphering: center and 
scale using DMSO negative control mean and standard deviation and transform the data using the eigenvector matrix 
of the DMSO covariance matrix. 
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Extended Data Figure 2: Comparison of feature selection methods for various representations. 
Impact of feature selection methods on reproducibility metrics not-same-batch (NSB) accuracy and perturbation 
mean average precision (mAP) computed on the multisource evaluation set. SSL models were trained on the 
multisource training set with the ViT-S architecture. Two normalization methods were tested: Variance threshold was 
used to remove low-variance features, and variance threshold + correlation threshold was used to further eliminate 
redundant features. For CellProfiler, the CPJUMP1 feature set was also included, selected based on the CPJUMP1 
dataset1, which comprises chemical, ORF, and CRISPR perturbations. 

 

 

 

 

 

 

 
1 Chandrasekaran, S. N. et al. Three million images and morphological profiles of cells treated with matched chemical 
and genetic perturbations. 2022.01.05.475090 Preprint at https://doi.org/10.1101/2022.01.05.475090 (2022). 
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Extended Data Figure 3: F1-scores of SSL models on single-source and multisource evaluation sets. 
F1-score curves for matching perturbation (left) and target (right) labels for a range of nearest neighbors k. SSL 
models were trained on the multisource training set. Colors indicate different models and two randomized baselines: 
Shuffled CellProfiler (CellProfiler features with shuffled labels) and Random (random normally distributed features).  

a) Performance of ViT-S architectures on the single-source evaluation set. 

b) Performance of ViT-S architectures on the multisource evaluation set. 

c) Performance of ViT-B architectures on the multisource evaluation set. 
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Extended Data Figure 4: Evaluation of SSL methods for individual JUMP-CP data sources. 
Perturbation reproducibility metrics computed on the multisource evaluation set for 4 JUMP-CP consortium data 
sources. SSL models were trained on the multisource training set. Shapes indicate the ViT architecture and colors 
indicate the model. Two randomized baselines were included: Shuffled CellProfiler (CellProfiler features with shuffled 
labels) and Random (random normally distributed features). 

a)-d) Matching of perturbation labels for each individual JUMP-CP source. 

e) Matching of perturbation labels across all 4 sources. Mean average precision (mAP) was computed on source-
aggregated profiles. Not-same-source (NSS) accuracy quantifies the accuracy of matching well profiles across 
different data sources using a nearest neighbor classifier.  
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Extended Data Figure 5: UMAP projections of the multisource evaluation set reveal batch and source effects. 
UMAP projections of well representations for SSL models and the CellProfiler baseline. All SSL models were trained 
on the multisource training set with the ViT-S architecture. The points, corresponding to wells, are colored by a) 
treatment (DMSO negative control vs drug), b) batch, c) source, and d) cell count. 
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Extended Data Figure 6: Quantitative assessment of batch and laboratory effects for SSL and baseline 
methods.  
Impact of technical variation on SSL and baseline representations assessed on the multisource evaluation set. SSL 
models were trained on the multisource training set with the ViT-S architecture. Batch and laboratory (source) effects 
were assessed using graph connectivity, Local Inverse Simpson's Index (LISI), and silhouette scores. For reference, 
two synthetic representations were included: ‘Gaussian’ with non-overlapping Gaussian clusters and ‘Random’ with 
shuffled Gaussian cluster labels. a)-c) Metrics for batch effects. d)-f) Metrics for source effects.  
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Extended Data Figure 7: Hierarchical clustering of DINO representations for selected genetic perturbations. 
Hierarchical clustering of the pairwise correlation matrix of DINO representations for the subset of 20 gene families 
with the highest within-group correlations in the DINO feature space. Rows are labeled with perturbation and gene 
family names separated by an underscore (e.g. "HOXA9_HOXL subclass homeoboxes"). Clusters recapitulating 
gene groups, such as “HOX transcription factors” and “mitochondrial proteins”, are highlighted. DINO was trained on 
the multisource data with the ViT-S architecture. 
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Extended Data Figure 8: Hierarchical clustering of CellProfiler representations for selected genetic 
perturbations. 
Hierarchical clustering of the pairwise correlation matrix of CellProfiler representations for the subset of 20 gene 
families with the highest within-group correlations in the CellProfiler feature space. Rows are labeled with perturbation 
and gene family names separated by an underscore (e.g. “IFNA2_Interferons”). Clusters recapitulating gene groups, 
such as “mitochondrial proteins” and “MAP kinase phosphatases”, are highlighted. 
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Extended Data Figure 9: Performance of bioactivity prediction models stratified by assay data abundance. 
Compound activity prediction performance was compared between a neural network (NN) trained on DINO features 
and the top 3 convolutional neural networks (CNNs) from Hofmarcher et al.2 across 209 ChEMBL assays grouped by 
the number of available activity labels (x-axis). Models were evaluated by the area under the receiver operating 
characteristic curve (AUCROC, y-axis). Assay AUCROC values are plotted for each model, with median and 
upper/lower quartile values summarized in boxplots. Only assays with a) AUCROC > 0.9 and b) AUCROC > 0.7 were 
considered. The numbers above boxplots indicate the assay counts per group. 

 

 

 

 

 

 

 
2 Hofmarcher, M., Rumetshofer, E., Clevert, D.-A., Hochreiter, S. & Klambauer, G. Accurate Prediction of 
Biological Assays with High-Throughput Microscopy Images and Convolutional Networks. J Chem Inf 
Model 59, 1163–1171 (2019). 
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Extended Data Figure 10: DINO self-attention maps. 
Cell Painting image crops and self-attention maps of the DINO attention heads in the last layer. Example images for 
DMSO, FK-866 and NVS-PAK1-1. The color scale in the self-attention maps represents the level of attention from the 
DINO [CLS] token, with lighter areas indicating higher attention. DINO was trained on the multisource data with the 
ViT-S architecture. 
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Extended Data Tables 

 
Extended Data Table 1: Performance comparison of bioactivity prediction models using Cell Painting. 
Eight deep learning methods were used to predict bioactivity labels for 209 ChEMBL assays using Cell Painting (see 
Methods). The methods included a neural network (NN) trained on DINO features, 6 convolutional neural networks 
(CNNs) trained directly on Cell Painting images, and an NN trained on CellProfiler features. Performance was 
evaluated on held-out test data, reporting means and standard deviations of AUCROC and F1-score values across all 
assays. Additionally, the number of assays with AUCROC above 0.9, 0.8, and 0.7 is reported for each method. The 
DINO results were obtained by applying a DINO model pretrained on the JUMP-CP data to the same dataset used in 
Hofmarcher et al.3 The remaining results are from Table 1 of Hofmarcher et al.3 Methods marked with †  require cell-
level segmentation, while the others use whole images as input. AUCROC: area under the receiver operating 
characteristic curve. 

 

 

 

 

 

 

 

Extended Data Table 2: Inference speed and cloud cost comparison for DINO and CellProfiler. 
Comparison of processing speed and cloud costs between DINO and CellProfiler pipelines for the analysis of 28 
plates in the AWS cloud. The cloud costs include only EC2 instance charges. 

 
3 Hofmarcher, M., Rumetshofer, E., Clevert, D.-A., Hochreiter, S. & Klambauer, G. Accurate Prediction of 
Biological Assays with High-Throughput Microscopy Images and Convolutional Networks. J Chem Inf 
Model 59, 1163–1171 (2019). 

Method Input Arch. AUCROC F1-score AUC > 0.9 AUC > 0.8 AUC > 0.7 
ResNet Images CNN 0.731 ±  0.19 0.508 ± 0.30 68 94 119 
DenseNet Images CNN 0.730 ±  0.19 

 
0.530 ± 0.30 
 

61 98 121 

GapNet Images CNN 0.725 ±  0.19 
 

0.510 ± 0.29 
 

63 94 117 

DINO 
 

SSL features NN 
 

0.723 ±   0.18 
 

0.507 ± 0.31 56 84 108 

MIL-Net Images CNN 0.711 ±  0.18 0.445 ± 0.32 61 81 105 
M-CNN Images CNN 0.705 ±  0.19 0.482 ± 0.31 57 78 105 
SC-CNN† Images CNN 0.705 ±  0.20 0.362 ± 0.29 61 83 109 
CellProfiler† 

 
Handcrafted 
features 

NN 
 

0.675 ±  0.20 0.361 ± 0.31 
 

55 71 90 

Method Average 
time per 
plate 

Processing 
time for 28 
plates 

AWS EC2 
instance type 

Cloud 
cost per 
plate 

DINO 1.3 min. 36.6 min. 12 x g4dn.xlarge $0.17 

CellProfiler 66.7 min. 1867.2 min. 8 x r5.24xlarge + 
4x r5.8xlarge 

$10 
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