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ABSTRACT

Genome-wide association studies (GWAS) have identified thousands of disease-associated
non-coding variants, posing urgent needs for functional interpretation. Molecular quantitative
trait loci (xQTLS) such as eQTLs serve as an essential intermediate link between these non-
coding variants and disease phenotypes and have been widely used to discover disease-risk
genes from many population-scale studies. However, mining and analyzing the xQTLs data
presents several significant bioinformatics challenges, particularly when it comes to
integration with GWAS data. Here, we developed xQTLbiolinks as the first comprehensive
and scalable tool for xQTLs data retrieval, quality controls, and pre-processing from 75
human tissues and cell types. In addition, xQTLbiolinks provided a robust colocalization
module through integration with GWAS data. The result generated by xQTLbiolinks can be
flexibly visualized or stored in standard R objects that can easily be integrated with other R
packages and custom pipelines. We applied xQTLbiolinks to cancer GWAS summary
statistics as case studies and demonstrated its robust utility and reproducibility. xQTLbiolinks
will profoundly accelerate the interpretation of disease-associated variants, thus promoting a
better understanding of disease etiologies. xQTLbiolinks is available at
https://qgithub.com/lilab-biocinfo/xQTLbiolinks.
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INTRODUCTION

The explosion of GWAS discovery and applications across multiple disciplines yielded many
risk loci mainly located in non-coding regions, prompting the great need for functional
interpretation of these variants by revealing the underlying mechanisms and susceptibility
genes (1). The large-scale molecular QTLs data have been widely used as an essential
intermediate link of the non-coding disease risk variants to disease phenotypes. For example,
more than four million common genetic variants (minor allele frequency >0.01)associated
with the gene expression of more than 23,000 genes across 49 human tissues have been
identified by Genotype-Tissue Expression (GTEX) Consortium (2), representing a valuable
resource for the molecular interpretation of disease risk variants. eQTL catalogue (3) is
another useful resource that includes uniformly processed expression QTLs (eQTLs) and
splicing QTLs (sQTLs) based on, currently, 21 studies, and the data is still increasing.
However, exploring and mining such a massive volume of xQTLs data remains
computationally challenging. Firstly, xQTLs summaries typically contained millions of
associations between genetic variants and molecular phenotypes, making retrieving all or a
subset of xQTLs data of interest computationally expensive. Secondly, xQTLs data
generated by different analysis pipelines with varying tools often did not correctly harmonize
with rigorous quality control to boost statistical power and reduce false discovery in
downstream analysis. Thirdly, currently, no tools can seamlessly annotate the xQTLs data of

their underlying function.

Another challenge for analyzing xQTL data is that xQTLs are often integrated with
GWAS summary statistics data for colocalization analysis, widely used to link potentially
causal genes to GWAS risk loci. Several available tools can perform probabilistic
colocalization analysis between xQTLs and GWAS summary statistics, including Coloc (4),
HyPrColoc (5), ColocQuiaL (6), ezQTL (7), etc. Despite these tools being frequently used to
identify disease-risk genes in many studies, many limitations remain. For instance, relying
solely on a single colocalization tool may not identify reliable disease-related genes due to
insufficient detection power, especially in cases where the sample size is small, or the
causal variants have a relatively small effect size (8). In addition, all these tools only focus
on statistical methods without considering the upstream data processing and downstream
visualization of the results, making the colocalization analysis still computationally
challenging. To our knowledge, no comprehensive analysis pipeline can seamlessly mine
and analyze both xQTLs and GWAS data.

To address these challenges, we developed xQTLbiolinks, a user-friendly R package,
as the first end-to-end bioinformatic tool for efficient mining and analyzing public and user-

customized xQTLs data for the discovery of disease susceptibility genes. xQTLbiolinks offers
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the following unique and practical advantages: i) enables flexible accessing to xQTLs data
from 23,839 samples across 75 human tissues or cell types and provides quality control and
annotation modules for summary statistics data; ii) offers a robust colocalization pipeline that
utilizes two popular colocalization methods to streamlining identity colocalized disease-
associated genes. iii) compatible with external tools for downstream analysis and can flexibly
generate detailed outputs and ready-to-publish figures. Our package is freely available at
https://github.com/lilab-bioinfo/xQTLbiolinks.

RESULTS
XxQTLbiolinks as a comprehensive tool for exploring and mining xQTLs data

XQTLbiolinks presents the first end-to-end solution for molecular QTL data mining and
analyzing. Compared to previous tools, xQTLbiolinks provides comprehensive and versatile
approaches to accessing and manipulating xQTLs summary data (Table 1). It streamlines
the querying and retrieval of eQTL and sQTL data to meet user-customized demand from
many xQTLs datasets in public repositories (i.e., GTEx and eQTL catalogue). Notably, it can
also analyze user-customized xQTLs summary data. xQTLbiolinks is characterized by its
exceptional adaptability and user-friendliness for the analysis of xQTLs data. Its key
strengths can be attributed to the following factors: i) xQTLbiolinks was developed as a
standardized R package which makes it easily accessible to users who are familiar with
other R packages; ii) the utilization of xQTLs datasets in public repositories, i.e., largest atlas
of human gene expression, eQTL and sQTL data from GTEx (2), uniformly processed
XQTLs summary statistics across 75 distinct cell types and tissues from the eQTL Catalogue
(3). xQTLbiolinks allows users to conveniently retrieve xQTLs data and metainformation for
further analysis through gene names/IDs, tissue names, or genomic regions of interest. It
also facilitates easy query and retrieval of either eQTLs or sQTLs for a specific gene or set
of genes in particular genomic regions or all xQTLs for all genes in each tissue. Such
flexibility saves running time and decreases the requirement of computational resources,
thus taking full advantage of public and user-customized xQTLs data for GWAS integration

of varying scales from candidate genes to genome-wide.

XQTLbiolinks provides a robust colocalization module through integration with GWAS

data

Colocalization is a powerful approach for integrating xQTLs and GWAS signals and has
been widely used to identify novel disease susceptibility genes (9). This approach evaluates

whether xQTLs and GWAS signals statistically share putative causal variants and can
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provide valuable insights into the genetic mechanisms underlying complex diseases.
Besides, employing multiple colocalization methods can significantly improve the reliability of
colocalized genes. Popular colocalization software such as Coloc and HyPrColoc are
exclusively designed for only performing colocalization tests in a single condition(4,5), and
visualization tools such as eQTpLot, and LocusCompare are solely used for visualization
(10,11). xQTLbiolinks provides a comprehensive pipeline that can perform colocalization
analysis across multiple tissues or cell types and handle upstream data processing and
downstream visualization (Fig. S1). This framework offers a one-step solution of functions
that can be used for quality control of GWAS significant variants, extraction of sentinel SNP,
identification of trait genes, preparation of curated or user-customized xQTLs datasets,
colocalization analysis, and visualizing the GWAS/xQTLs signals using locus zoom plot.
Furthermore, to investigate the regulatory effect of colocalized xQTLs across multiple
tissues/cell types, we have made a new plot by correlating xQTLs p-values with linkage

disequilibrium (LD) bins.

Case study 1: Quality control and functional characterization of breast cancer risk
SNPs using xQTLbiolinks

We first downloaded the Breast cancer GWAS summary statistics from the literature,
representing the largest GWAS study on breast cancer conducted on more than 80,000
individuals (12). We then performed a quality control analysis of the data. We first use
XQTLanno_calLambda to estimate the p-values inflations, and it returns a lambda value of
1.147, indicating no strong population stratification. Then we evaluate the quality of GWAS
data by examining whether the observed distribution of p-values follows the expected
distribution under the null hypothesis of no association between the genetic variants and the
disease using xQTLvisual_qgplot; we found a significant deviation from the diagonal line,
which indicates potential variations from the null hypothesis that may result from true
associations or LD (Fig. 2a). xQTLvisual_PZplot is further used to investigate the normality
of the distribution of Z-scores derived from Beta and SE, which outputs the strong
concordance between the observed p-values and those calculated from Z-scores (Fig. 2b).
We further annotated all significant GWAS variants by genomic locations using
xQTLanno_genomic (Fig. 2c). We also retrieved eQTLs and sQTLs summary data from
GTEx Breast - Mammary tissue using xQTLdownload_eqtlAllAsso  and
xQTLdownload_sqtlAllAsso functions, respectively. In addition, we included our recently
developed 3'UTR alternative polyadenylation quantitative trait loci (3'aQTLs) as a user-
custom xQTLs dataset using xQTLdownload_xqtlAllAsso. We later performed similar quality
control analyses for these xQTLs data and found no inflation or quality issues on these

datasets. The genomic control inflation values of the xQTLs summary data are 1.149
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(eQTLs), 1.049 (sQTLs), and 1.022 (3'aQTLs), and the corresponding QQ-plots are shown
in Fig. 2d-f. We used xQTLvisual _manhattan to generate a Manhattan plot, which exhibits
strong signals of associations across all chromosomes at a genome-wide level (Fig. 2g). By
integrating with eQTL signals, we detected some significant loci that showed significant
associations with disease susceptibility but also exerted regulatory influence on gene
expression. For instance, rs8018155 was a breast cancer risk variant and an eQTL, as
illustrated in Fig. 2h. This suggests that risk variant rs8018155 plays a crucial role in
modulating the expression of gene CCDC88C and may have potentially important

implications for breast cancer.

Case study 2: Identification of prostate cancer susceptibility genes using
xQTLbiolinks

Prostate cancer (PCa) is one of the most common cancers, the pathogenesis of which
involves both heritable and environmental factors (13). The molecular events involved in the
development or progression of PCa are still unclear. Here, we applied xQTLbiolinks to
integrate the PCa GWAS dataset (14) with xQTLs data and aimed to identify putative causal
variants and susceptibility genes associated with PCa. We first extracted 94 sentinel SNPs
with P<5e-8 using xQTLanalyze getSentinelSnp (Table S1). We then identified 835 genes
for eQTLs, 1,676 genes for sQTLs, and 209 genes for 3'aQTLs using
xQTLanalyze_getTraits (Table S2). Later, for each trait gene, we analyzed the colocalization
pattern between PCa risk variants and xQTLs using xQTLanalyze_coloc for eQTLs and
xQTLanalyze_coloc_diy for sQTLs and 3'aQTLs. By default, two colocalization methods
(Coloc and HyPrColoc) are used. The colocalization analysis returns four posterior
probabilities corresponding to four different null hypotheses; notably, the posterior probability
under hypothesis 4 (PPH4), representing the potential same causal variants shared by
GWAS variants with xQTLs data, was used to define significant colocalization. Using a
PPH4 threshold of 0.75, we identified 47 colocalized genes, including 27 eQTL colocalized
genes, 17 sQTL colocalized genes, and seven 3'aQTL colocalized genes that are
colocalized with 38 PCa risk loci. Among these co-localized genes, many have been
previously reported to be associated with PCa susceptibility (Table S3). For example, the
gene MMP7, which is strongly colocalized by eQTLs, encodes a member of the peptidase
M10 family of matrix metalloproteinases and is involved in the breakdown of extracellular
matrix in normal physiological processes. It has been evidenced that PCa can be promoted
via MMP7-induced epithelial-to-mesenchymal transition by Interleukin-17 (15). and serum
MMP7 levels could guide metastatic therapy for PCa (16). Notably, xQTLs colocalized genes
are largely non-overlapped (Fig. 3a), such as MMP7 was only significantly colocalized by
eQTLs, AGAP10P was only colocalized by sQTLs rather than eQTLs and 3'aQTLs,
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suggesting the substantial added value of integrating multiple types of molecular QTLs data

for disease susceptibility gene identification.

To understand the colocalized results, we first visualize the distribution of MMP7 gene
expression across 49 GTEXx tissues by function xQTLvisual_geneExpTissues. As shown in
Fig. 3b, MMP7 has a relatively high expression level in the prostate and relevant tissues,
indicating a potential essential role in these tissues. The distribution of MMP7 expression
level in prostate tissue stratified by the genotype of the lead SNP was also presented by
function xQTLvisual_eqtlExp (Fig. 3c). Then, we visualized the MMP7 colocalized signals by
functions xQTLvisual_locusZoom, which reveals a high correlation between GWAS variants
and MMP7 eQTLs (Fig. 3d). To further compare with other molecular QTLS,

XQTLvisual_locusZoom have also implemented the functions to integrate and plot multiple

XQTLs data (Fig. 2a).

XQTLbiolinks is highly compatible, allowing for seamless integration of its outputs with
external packages. For example, we performed gene ontology (GO) enrichment analyses on
the eQTL colocalized genes with external package clusterProfiler (11). Cancer-related GO
terms are significantly enriched, including "positive regulation of T cell receptor signaling
pathway”, "Execution phase of apoptosis, "and "DNA replication checkpoint signaling".
Moreover, we can also perform co-expression analysis using the corrplot package (Fig. 2b)
(17). To investigate the regulatory sharing of colocalized variants across multiple tissues, we
implemented xQTLvisual_coloc to visualize the correlation between p-values of xQTLs LD
across numerous tissues/cell types (Fig. 3e). We observed that prostate tissues showed the

strongest correlation indicating the heatmap can reveal the potential disease-relevant tissues.

DISCUSSION

Molecular Quantitative Trait Loci is a crucial step towards better understanding the effects of
non-coding genetic variants on genes, pathways, and their function mechanism and serve as
an essential link between genotype and disease phenotype. Although many xQTLs summary
statistics are available, mining and analyzing these xQTLs data remains several major
bioinformatic challenges, such as data retrieval, quality control, and pre-processing, which
are essentially required steps to promote the reproducible use of xQTLs resources and
accelerate disease susceptibility genes identification remains challenging. Here, we
developed xQTLbiolinks, which is motivated by TCGAbiolinks that provides several useful

functions to search, download and prepare TCGA samples for data analysis (18). Here,
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XQTLbiolinks aims to “link” xQTLs data to disease genomics research by providing flexible
interfaces to allow users to access xQTLs data from GTEx and eQTL catalogue without
having to navigate through different data portal sites or download whole tables of millions of
XQTLs associations. The current version of xQTLbiolinks provides access to over 4 million
eQTLs and sQTLs in public servers. It enables manipulating user-customized xQTLs data,
such as our recently developed 3'UTR alternative polyadenylation QTLs (3'aQTLs) (19). Our
plan includes collecting more data resources, such as the eQTLGen and MetaBrain project
(20,21).

In addition, colocalization analysis is a powerful approach that has been widely used to
identify new susceptibility genes in disease analysis by integrating xQTLs and GWAS
signals. However, current colocalization tools have limitations in that they only focus on
colocalization methods without considering the whole analysis pipeline and the effects of
multiple tissue or cell types. Employing several colocalization tools in the context of
numerous tissue or cell types is a superior option to enhance the robustness and reliability of
the findings (8). To facilitate the identification of robust susceptibility genes in colocalization
analysis, xQTLbiolinks provides a comprehensive pipeline that employs two popular
colocalization methods and handles upstream data processing and downstream visualization

of results in a one-step solution.

XQTLbiolinks is a scalable tool that facilitates integrating and utilizing external tools or
packages. We will also actively maintain xQTLbiolinks and respond to user inquiries. As the
first end-to-end bioinformatic framework for mining and analyzing xQTL data for discovering
disease susceptibility genes, it will make significant contributions toward our understanding

of human non-coding variants, thus promoting a better understanding of disease etiologies.

MATERIAL AND METHODS
Implementation of xQTLbiolinks

XQTLbiolinks, a user-friendly R package under the General Public License (GPLv3) license,
can be installed in any operating system supporting R through the general function
install.packages("xQTLbiolinks") from the Comprehensive R Archive Network (CRAN:
https://cran.r-project.org/). All functions of xQTLbiolinks are available by standard R
commands to manipulate xQTLs and GWAS data after installation and loading of the
package. A comprehensive user manual introducing all functions and corresponding usages

can be found in the Github repository (https://github.com/lilab-bioinfo/xQTLbiolinks). Briefly,
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XQTLbiolinks implements four modules: data retrieval, pre-processing, colocalization
analysis, and data visualization (Fig. 1). The functions and outputs in xQTLbiolinks are
compatible with other functions and packages. Users can perform customized analysis with
external R packages, including functional enrichment analysis using clusterProfiler (11),
differential expression analysis using DESeq2 and edgeR (22,23), weighted Correlation
Network Analysis using WGCNA (24), etc.

Data retrieval

The data retrieval module enables users to query and download publicly available xQTLs
summary data. The current version supports xQTLs data from 23,839 samples across 75
human tissues/cell types. Two commands, xQTLquery and xQTLdownload, provide flexible
user interfaces to query and download xQTLs data by tissue, gene, SNP, or combination.
For example, specifying a specific tissue name to the xQTLquery function will display all
XQTLs data associated with the tissue; users can also focus only on xQTLs related to one
single gene by specifying gene id to the function. xQTLquery is the primary function that
executes the query of entities in XxQTLs data, including genes, variants, and samples. At the
same time, xQTLdownload allows users to retrieve xQTLs data with tailored demands,
including eGenes/sGenes, associations between variants and expression (eQTLs) and
splicing (sQTLs), normalized gene expressions, and linkage disequilibrium of xQTLs in
specified genes. All retrieved xQTLs data can be handled by xQTLanalyze, xQTLvisual, and
their sub-functions.

Data pre-processing

xQTLbiolinks allows users to detect possible inflation or deflation of test statistics due to
population stratification, genotyping errors, or other sources of bias for GWAS/QTL summary
statistics datasets, xQTLvisual_qgPlot and xQTLanno_calLambda can plot quantile-quantile
plot (QQ plot) and calculate genomic control inflation factor, respectively. xQTLvisual_PZPlot
plots the concordance correlation of observed P-values and P-values calculated from the Z-
score derived from Beta (representing effect size) and SE (representing standard error of
effect size). Besides, xQTLanno_genomic enables users to functionally annotate all variants
in GWAS/xQTLs datasets by genome location, including intron, exon, 3 'UTR, 5UTR,
promoter, CDS, splicing site, intergenic region, transcription factor binding sites (TFBS),

CpG Island, and enhancer.

Colocalization analysis
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XQTLbiolinks implements a pipeline that contains three subfunctions to perform
colocalization analysis following the steps (Fig. S1): (i) xQTLanalyze getSentinelSnp
extracts sentinel SNP, which represents the most prominent signal in a specific genome
region, from GWAS summary statistics data. By default, it selects the variants with a p-value
less than 5 x 10~ within 1 million base pairs (1Mbp). (i) xQTLanalyze getTraits identify trait
genes nearby sentinel SNPs within a 1Mb region by default. (iii) xQTLanalyze coloc and
xQTLanalyze_coloc_diy perform two commonly used colocalization methods, Coloc (4) and
HyPrColoc (5), for each trait gene.

Visualization

The visualization module contains a main function xQTLvisual and several sub-functions that
allow users to visualize the results with publication-ready plots, such as heatmap, boxplot,
scatter plot, and locus zoom plot. xQTLvisual_genesExp and xQTLvisual_geneExpTissues
are used to plot the distribution of gene expression for the queried gene(s). Sub-functions
XQTLvisual_eqtlExp and xQTLvisual_sqtlExp can plot the association between genotypes
and molecular phenotypes with a grouped boxplot by genotypes. xQTLbiolinks also contains
three sub-functions XQTLvisual_locusZoom and XQTLvisual_locusCompare,
XQTLvisual_coloc visualizing the colocalization results. The first two subfunctions can plot
publication-ready locus zoom on specific GWAS and xQTLs signals. And xQTLvisual_coloc
can visualize the regulatory sharing effects of colocalized variants across multiple tissues or
cell types.

DATA AVAILABILITY

XQTLbiolinks and the standard manual (version 1.5.2) are publicly available at CRAN
https://cran.r-project.org/web/packages/xQTLbiolinks. The source codes of the latest version
of xQTLbiolinks can be found in Github repository https://github.com/lilab-
bioinfo/xQTLbiolinks.
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TABLE AND FIGURES LEGENDS
Table 1. A comparison of different tools for retrieving and analysis of xQTLs data
The first two columns of the table represent features and detailed features for each tool,

respectively. The cell checked with "V"indicates features that exist in the tool.
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Fig. 1 Overview of xQTLbiolinks data and functions, including four main function categories:
Data retrieval, Pre-processing, Analysis, and Visualization.
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Fig. 2 Quality control and annotation of breast cancer and xQTLs summary statistics data.
(a). QQ-plot labeled with inflation factor. (b). PZ-plot, the x-axis stands for the normalized p-
values estimated by the z-score derived from beta and standard error, and the y-axis stands
for the raw normalized p-values. (c). Genomic annotation of significant breast cancer risk
SNPs. (d) QQ-plot for eQTLs. (e) QQ-plot for sQTLs. (f) QQ-lot for 3'aQTLs. (g) Manhattan
plot of the GWAS study of breast cancer. The strongest signals on each chromosome are
labeled. (h) Boxplot of normalized expression of eQTL rs8018155—-CCDC88C in the Breast -

Mam

mary Tissue.
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Fig.3 Integrative analysis of GWAS study of prostate cancer. (a) Venn plot of 47 xQTLs
colocalized genes. (b) Gene expression levels of MMP7 among 54 GTEX tissues. (c) Boxplot
of normalized expression of eQTL rs11568818—-MMP7 in the prostate. (d) Distribution of
GWAS and eQTL signals within a genome region of MMP7. (e) heatmap of eQTL
(rs11568818—MMP7) p-values in different LD bins across 40 tissues/cell types. The y-axis
represents the tissues/cell types, and the x-axis represents LD bins. The green-blue color
bar indicates the median normalized eQTL p-values in different LD bins. The blue-red color
bar represents the Pearson correlation between normalized eQTL p-values and values of r-
squared of LD.
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Fig. S1. The processing flow of colocalization analysis in xQTLbiolinks. The framework takes
in a GWAS summary statistics dataset as input. The output is a list of colocalized genes and
causal SNPs, which can be visualized through locus zoom, boxplot, and heatmap. Data pre-
processing and analysis are conducted in the following steps: quality control, removal of
missing values and duplicates, extracting sentinel SNPs and trait genes, retrieval of xQTLs
summary statistics dataset, and colocalization analysis.
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Fig. S2. (a). Colocalization of signals of GWAS and xQTLs (eQTLs, sQTLs, and 3'aQTLS)
for gene MMP7 with prostate cancer-associated loci. (b). Co-expression analysis of 47 xQTL

colocalized genes.
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