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ABSTRACT 

Genome-wide association studies (GWAS) have identified thousands of disease-associated 

non-coding variants, posing urgent needs for functional interpretation. Molecular quantitative 

trait loci (xQTLs) such as eQTLs serve as an essential intermediate link between these non-

coding variants and disease phenotypes and have been widely used to discover disease-risk 

genes from many population-scale studies. However, mining and analyzing the xQTLs data 

presents several significant bioinformatics challenges, particularly when it comes to 

integration with GWAS data. Here, we developed xQTLbiolinks as the first comprehensive 

and scalable tool for xQTLs data retrieval, quality controls, and pre-processing from 75 

human tissues and cell types. In addition, xQTLbiolinks provided a robust colocalization 

module through integration with GWAS data. The result generated by xQTLbiolinks can be 

flexibly visualized or stored in standard R objects that can easily be integrated with other R 

packages and custom pipelines. We applied xQTLbiolinks to cancer GWAS summary 

statistics as case studies and demonstrated its robust utility and reproducibility. xQTLbiolinks 

will profoundly accelerate the interpretation of disease-associated variants, thus promoting a 

better understanding of disease etiologies. xQTLbiolinks is available at 

https://github.com/lilab-bioinfo/xQTLbiolinks. 
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INTRODUCTION 

The explosion of GWAS discovery and applications across multiple disciplines yielded many 

risk loci mainly located in non-coding regions, prompting the great need for functional 

interpretation of these variants by revealing the underlying mechanisms and susceptibility 

genes (1). The large-scale molecular QTLs data have been widely used as an essential 

intermediate link of the non-coding disease risk variants to disease phenotypes. For example, 

more than four million common genetic variants (minor allele frequency >0.01)associated 

with the gene expression of more than 23,000 genes across 49 human tissues have been 

identified by Genotype-Tissue Expression (GTEx) Consortium (2), representing a valuable 

resource for the molecular interpretation of disease risk variants. eQTL catalogue (3) is 

another useful resource that includes uniformly processed expression QTLs (eQTLs) and 

splicing QTLs (sQTLs) based on, currently, 21 studies, and the data is still increasing. 

However, exploring and mining such a massive volume of xQTLs data remains 

computationally challenging. Firstly, xQTLs summaries typically contained millions of 

associations between genetic variants and molecular phenotypes, making retrieving all or a 

subset of xQTLs data of interest computationally expensive. Secondly, xQTLs data 

generated by different analysis pipelines with varying tools often did not correctly harmonize 

with rigorous quality control to boost statistical power and reduce false discovery in 

downstream analysis. Thirdly, currently, no tools can seamlessly annotate the xQTLs data of 

their underlying function.  

Another challenge for analyzing xQTL data is that xQTLs are often integrated with 

GWAS summary statistics data for colocalization analysis, widely used to link potentially 

causal genes to GWAS risk loci. Several available tools can perform probabilistic 

colocalization analysis between xQTLs and GWAS summary statistics, including Coloc (4), 

HyPrColoc (5), ColocQuiaL (6), ezQTL (7), etc. Despite these tools being frequently used to 

identify disease-risk genes in many studies, many limitations remain. For instance, relying 

solely on a single colocalization tool may not identify reliable disease-related genes due to 

insufficient detection power, especially in cases where the sample size is small, or the 

causal variants have a relatively small effect size (8). In addition, all these tools only focus 

on statistical methods without considering the upstream data processing and downstream 

visualization of the results, making the colocalization analysis still computationally 

challenging. To our knowledge, no comprehensive analysis pipeline can seamlessly mine 

and analyze both xQTLs and GWAS data.  

To address these challenges, we developed xQTLbiolinks, a user-friendly R package, 

as the first end-to-end bioinformatic tool for efficient mining and analyzing public and user-

customized xQTLs data for the discovery of disease susceptibility genes. xQTLbiolinks offers 
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the following unique and practical advantages: i) enables flexible accessing to xQTLs data 

from 23,839 samples across 75 human tissues or cell types and provides quality control and 

annotation modules for summary statistics data; ii) offers a robust colocalization pipeline that 

utilizes two popular colocalization methods to streamlining identity colocalized disease-

associated genes. iii) compatible with external tools for downstream analysis and can flexibly 

generate detailed outputs and ready-to-publish figures. Our package is freely available at 

https://github.com/lilab-bioinfo/xQTLbiolinks. 

 

RESULTS 

xQTLbiolinks as a comprehensive tool for exploring and mining xQTLs data 

xQTLbiolinks presents the first end-to-end solution for molecular QTL data mining and 

analyzing. Compared to previous tools, xQTLbiolinks provides comprehensive and versatile 

approaches to accessing and manipulating xQTLs summary data (Table 1). It streamlines 

the querying and retrieval of eQTL and sQTL data to meet user-customized demand from 

many xQTLs datasets in public repositories (i.e., GTEx and eQTL catalogue). Notably, it can 

also analyze user-customized xQTLs summary data. xQTLbiolinks is characterized by its 

exceptional adaptability and user-friendliness for the analysis of xQTLs data. Its key 

strengths can be attributed to the following factors: i) xQTLbiolinks was developed as a 

standardized R package which makes it easily accessible to users who are familiar with 

other R packages; ii) the utilization of xQTLs datasets in public repositories, i.e., largest atlas 

of human gene expression, eQTL and sQTL data from GTEx (2), uniformly processed 

xQTLs summary statistics across 75 distinct cell types and tissues from the eQTL Catalogue 

(3). xQTLbiolinks allows users to conveniently retrieve xQTLs data and metainformation for 

further analysis through gene names/IDs, tissue names, or genomic regions of interest. It 

also facilitates easy query and retrieval of either eQTLs or sQTLs for a specific gene or set 

of genes in particular genomic regions or all xQTLs for all genes in each tissue. Such 

flexibility saves running time and decreases the requirement of computational resources, 

thus taking full advantage of public and user-customized xQTLs data for GWAS integration 

of varying scales from candidate genes to genome-wide. 

xQTLbiolinks provides a robust colocalization module through integration with GWAS 

data 

Colocalization is a powerful approach for integrating xQTLs and GWAS signals and has 

been widely used to identify novel disease susceptibility genes (9). This approach evaluates 

whether xQTLs and GWAS signals statistically share putative causal variants and can 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.28.538654doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538654
http://creativecommons.org/licenses/by-nc-nd/4.0/


provide valuable insights into the genetic mechanisms underlying complex diseases. 

Besides, employing multiple colocalization methods can significantly improve the reliability of 

colocalized genes. Popular colocalization software such as Coloc and HyPrColoc are 

exclusively designed for only performing colocalization tests in a single condition(4,5), and 

visualization tools such as eQTpLot, and LocusCompare are solely used for visualization 

(10,11). xQTLbiolinks provides a comprehensive pipeline that can perform colocalization 

analysis across multiple tissues or cell types and handle upstream data processing and 

downstream visualization (Fig. S1). This framework offers a one-step solution of functions 

that can be used for quality control of GWAS significant variants, extraction of sentinel SNP, 

identification of trait genes, preparation of curated or user-customized xQTLs datasets, 

colocalization analysis, and visualizing the GWAS/xQTLs signals using locus zoom plot. 

Furthermore, to investigate the regulatory effect of colocalized xQTLs across multiple 

tissues/cell types, we have made a new plot by correlating xQTLs p-values with linkage 

disequilibrium (LD) bins.   

Case study 1: Quality control and functional characterization of breast cancer risk 

SNPs using xQTLbiolinks  

We first downloaded the Breast cancer GWAS summary statistics from the literature, 

representing the largest GWAS study on breast cancer conducted on more than 80,000 

individuals (12). We then performed a quality control analysis of the data. We first use 

xQTLanno_calLambda to estimate the p-values inflations, and it returns a lambda value of 

1.147, indicating no strong population stratification. Then we evaluate the quality of GWAS 

data by examining whether the observed distribution of p-values follows the expected 

distribution under the null hypothesis of no association between the genetic variants and the 

disease using xQTLvisual_qqplot; we found a significant deviation from the diagonal line, 

which indicates potential variations from the null hypothesis that may result from true 

associations or LD (Fig. 2a). xQTLvisual_PZplot is further used to investigate the normality 

of the distribution of Z-scores derived from Beta and SE, which outputs the strong 

concordance between the observed p-values and those calculated from Z-scores (Fig. 2b). 

We further annotated all significant GWAS variants by genomic locations using 

xQTLanno_genomic (Fig. 2c). We also retrieved eQTLs and sQTLs summary data from 

GTEx Breast - Mammary tissue using xQTLdownload_eqtlAllAsso and 

xQTLdownload_sqtlAllAsso functions, respectively. In addition, we included our recently 

developed 3’UTR alternative polyadenylation quantitative trait loci (3’aQTLs) as a user-

custom xQTLs dataset using xQTLdownload_xqtlAllAsso. We later performed similar quality 

control analyses for these xQTLs data and found no inflation or quality issues on these 

datasets. The genomic control inflation values of the xQTLs summary data are 1.149 
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(eQTLs), 1.049 (sQTLs), and 1.022 (3'aQTLs), and the corresponding QQ-plots are shown 

in Fig. 2d-f. We used xQTLvisual_manhattan to generate a Manhattan plot, which exhibits 

strong signals of associations across all chromosomes at a genome-wide level (Fig. 2g). By 

integrating with eQTL signals, we detected some significant loci that showed significant 

associations with disease susceptibility but also exerted regulatory influence on gene 

expression. For instance, rs8018155 was a breast cancer risk variant and an eQTL, as 

illustrated in Fig. 2h. This suggests that risk variant rs8018155 plays a crucial role in 

modulating the expression of gene CCDC88C and may have potentially important 

implications for breast cancer.  

Case study 2: Identification of prostate cancer susceptibility genes using 

xQTLbiolinks 

Prostate cancer (PCa) is one of the most common cancers, the pathogenesis of which 

involves both heritable and environmental factors (13). The molecular events involved in the 

development or progression of PCa are still unclear. Here, we applied xQTLbiolinks to 

integrate the PCa GWAS dataset (14) with xQTLs data and aimed to identify putative causal 

variants and susceptibility genes associated with PCa. We first extracted 94 sentinel SNPs 

with P<5e-8 using xQTLanalyze_getSentinelSnp (Table S1). We then identified 835 genes 

for eQTLs, 1,676 genes for sQTLs, and 209 genes for 3’aQTLs using 

xQTLanalyze_getTraits (Table S2). Later, for each trait gene, we analyzed the colocalization 

pattern between PCa risk variants and xQTLs using xQTLanalyze_coloc for eQTLs and 

xQTLanalyze_coloc_diy for sQTLs and 3’aQTLs. By default, two colocalization methods 

(Coloc and HyPrColoc) are used. The colocalization analysis returns four posterior 

probabilities corresponding to four different null hypotheses; notably, the posterior probability 

under hypothesis 4 (PPH4), representing the potential same causal variants shared by 

GWAS variants with xQTLs data, was used to define significant colocalization. Using a 

PPH4 threshold of 0.75, we identified 47 colocalized genes, including 27 eQTL colocalized 

genes, 17 sQTL colocalized genes, and seven 3’aQTL colocalized genes that are 

colocalized with 38 PCa risk loci. Among these co-localized genes, many have been 

previously reported to be associated with PCa susceptibility (Table S3). For example, the 

gene MMP7, which is strongly colocalized by eQTLs, encodes a member of the peptidase 

M10 family of matrix metalloproteinases and is involved in the breakdown of extracellular 

matrix in normal physiological processes. It has been evidenced that PCa can be promoted 

via MMP7-induced epithelial-to-mesenchymal transition by Interleukin-17 (15). and serum 

MMP7 levels could guide metastatic therapy for PCa (16). Notably, xQTLs colocalized genes 

are largely non-overlapped (Fig. 3a), such as MMP7 was only significantly colocalized by 

eQTLs, AGAP10P was only colocalized by sQTLs rather than eQTLs and 3’aQTLs, 
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suggesting the substantial added value of integrating multiple types of molecular QTLs data 

for disease susceptibility gene identification.  

To understand the colocalized results, we first visualize the distribution of MMP7 gene 

expression across 49 GTEx tissues by function xQTLvisual_geneExpTissues. As shown in 

Fig. 3b, MMP7 has a relatively high expression level in the prostate and relevant tissues, 

indicating a potential essential role in these tissues. The distribution of MMP7 expression 

level in prostate tissue stratified by the genotype of the lead SNP was also presented by 

function xQTLvisual_eqtlExp (Fig. 3c). Then, we visualized the MMP7 colocalized signals by 

functions xQTLvisual_locusZoom, which reveals a high correlation between GWAS variants 

and MMP7 eQTLs (Fig. 3d). To further compare with other molecular QTLs, 

xQTLvisual_locusZoom have also implemented the functions to integrate and plot multiple 

xQTLs data (Fig. 2a). 

xQTLbiolinks is highly compatible, allowing for seamless integration of its outputs with 

external packages. For example, we performed gene ontology (GO) enrichment analyses on 

the eQTL colocalized genes with external package clusterProfiler (11). Cancer-related GO 

terms are significantly enriched, including "positive regulation of T cell receptor signaling 

pathway”, "Execution phase of apoptosis, "and "DNA replication checkpoint signaling". 

Moreover, we can also perform co-expression analysis using the corrplot package (Fig. 2b) 

(17). To investigate the regulatory sharing of colocalized variants across multiple tissues, we 

implemented xQTLvisual_coloc to visualize the correlation between p-values of xQTLs LD 

across numerous tissues/cell types (Fig. 3e). We observed that prostate tissues showed the 

strongest correlation indicating the heatmap can reveal the potential disease-relevant tissues.  

 

DISCUSSION 

Molecular Quantitative Trait Loci is a crucial step towards better understanding the effects of 

non-coding genetic variants on genes, pathways, and their function mechanism and serve as 

an essential link between genotype and disease phenotype. Although many xQTLs summary 

statistics are available, mining and analyzing these xQTLs data remains several major 

bioinformatic challenges, such as data retrieval, quality control, and pre-processing, which 

are essentially required steps to promote the reproducible use of xQTLs resources and 

accelerate disease susceptibility genes identification remains challenging. Here, we 

developed xQTLbiolinks, which is motivated by TCGAbiolinks that provides several useful 

functions to search, download and prepare TCGA samples for data analysis (18). Here, 
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xQTLbiolinks aims to “link” xQTLs data to disease genomics research by providing flexible 

interfaces to allow users to access xQTLs data from GTEx and eQTL catalogue without 

having to navigate through different data portal sites or download whole tables of millions of 

xQTLs associations. The current version of xQTLbiolinks provides access to over 4 million 

eQTLs and sQTLs in public servers. It enables manipulating user-customized xQTLs data, 

such as our recently developed 3'UTR alternative polyadenylation QTLs (3'aQTLs) (19). Our 

plan includes collecting more data resources, such as the eQTLGen and MetaBrain project 

(20,21).  

In addition, colocalization analysis is a powerful approach that has been widely used to 

identify new susceptibility genes in disease analysis by integrating xQTLs and GWAS 

signals. However, current colocalization tools have limitations in that they only focus on 

colocalization methods without considering the whole analysis pipeline and the effects of 

multiple tissue or cell types. Employing several colocalization tools in the context of 

numerous tissue or cell types is a superior option to enhance the robustness and reliability of 

the findings (8). To facilitate the identification of robust susceptibility genes in colocalization 

analysis, xQTLbiolinks provides a comprehensive pipeline that employs two popular 

colocalization methods and handles upstream data processing and downstream visualization 

of results in a one-step solution. 

xQTLbiolinks is a scalable tool that facilitates integrating and utilizing external tools or 

packages. We will also actively maintain xQTLbiolinks and respond to user inquiries. As the 

first end-to-end bioinformatic framework for mining and analyzing xQTL data for discovering 

disease susceptibility genes, it will make significant contributions toward our understanding 

of human non-coding variants, thus promoting a better understanding of disease etiologies. 

 

MATERIAL AND METHODS 

Implementation of xQTLbiolinks 

xQTLbiolinks, a user-friendly R package under the General Public License (GPLv3) license, 

can be installed in any operating system supporting R through the general function 

install.packages("xQTLbiolinks") from the Comprehensive R Archive Network (CRAN: 

https://cran.r-project.org/). All functions of xQTLbiolinks are available by standard R 

commands to manipulate xQTLs and GWAS data after installation and loading of the 

package. A comprehensive user manual introducing all functions and corresponding usages 

can be found in the Github repository (https://github.com/lilab-bioinfo/xQTLbiolinks). Briefly, 
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xQTLbiolinks implements four modules: data retrieval, pre-processing, colocalization 

analysis, and data visualization (Fig. 1). The functions and outputs in xQTLbiolinks are 

compatible with other functions and packages. Users can perform customized analysis with 

external R packages, including functional enrichment analysis using clusterProfiler (11), 

differential expression analysis using DESeq2 and edgeR (22,23), weighted Correlation 

Network Analysis using WGCNA (24), etc.  

Data retrieval 

The data retrieval module enables users to query and download publicly available xQTLs 

summary data. The current version supports xQTLs data from 23,839 samples across 75 

human tissues/cell types. Two commands, xQTLquery and xQTLdownload, provide flexible 

user interfaces to query and download xQTLs data by tissue, gene, SNP, or combination. 

For example, specifying a specific tissue name to the xQTLquery function will display all 

xQTLs data associated with the tissue; users can also focus only on xQTLs related to one 

single gene by specifying gene id to the function. xQTLquery is the primary function that 

executes the query of entities in xQTLs data, including genes, variants, and samples. At the 

same time, xQTLdownload allows users to retrieve xQTLs data with tailored demands, 

including eGenes/sGenes, associations between variants and expression (eQTLs) and 

splicing (sQTLs), normalized gene expressions, and linkage disequilibrium of xQTLs in 

specified genes. All retrieved xQTLs data can be handled by xQTLanalyze, xQTLvisual, and 

their sub-functions.  

Data pre-processing 

xQTLbiolinks allows users to detect possible inflation or deflation of test statistics due to 

population stratification, genotyping errors, or other sources of bias for GWAS/QTL summary 

statistics datasets, xQTLvisual_qqPlot and xQTLanno_calLambda can plot quantile-quantile 

plot (QQ plot) and calculate genomic control inflation factor, respectively. xQTLvisual_PZPlot 

plots the concordance correlation of observed P-values and P-values calculated from the Z-

score derived from Beta (representing effect size) and SE (representing standard error of 

effect size). Besides, xQTLanno_genomic enables users to functionally annotate all variants 

in GWAS/xQTLs datasets by genome location, including intron, exon, 3 'UTR, 5'UTR, 

promoter, CDS, splicing site, intergenic region, transcription factor binding sites (TFBS), 

CpG Island, and enhancer. 

Colocalization analysis 
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xQTLbiolinks implements a pipeline that contains three subfunctions to perform 

colocalization analysis following the steps (Fig. S1): (i) xQTLanalyze_getSentinelSnp 

extracts sentinel SNP, which represents the most prominent signal in a specific genome 

region, from GWAS summary statistics data. By default, it selects the variants with a p-value 

less than 5 � 10
�� within 1 million base pairs (1Mbp). (ii) xQTLanalyze_getTraits identify trait 

genes nearby sentinel SNPs within a 1Mb region by default. (iii) xQTLanalyze_coloc and 

xQTLanalyze_coloc_diy perform two commonly used colocalization methods, Coloc (4) and 

HyPrColoc (5), for each trait gene. 

Visualization  

The visualization module contains a main function xQTLvisual and several sub-functions that 

allow users to visualize the results with publication-ready plots, such as heatmap, boxplot, 

scatter plot, and locus zoom plot. xQTLvisual_genesExp and xQTLvisual_geneExpTissues 

are used to plot the distribution of gene expression for the queried gene(s). Sub-functions 

xQTLvisual_eqtlExp and xQTLvisual_sqtlExp can plot the association between genotypes 

and molecular phenotypes with a grouped boxplot by genotypes. xQTLbiolinks also contains 

three sub-functions xQTLvisual_locusZoom and xQTLvisual_locusCompare, 

xQTLvisual_coloc visualizing the colocalization results. The first two subfunctions can plot 

publication-ready locus zoom on specific GWAS and xQTLs signals. And xQTLvisual_coloc 

can visualize the regulatory sharing effects of colocalized variants across multiple tissues or 

cell types. 

 

DATA AVAILABILITY 

xQTLbiolinks and the standard manual (version 1.5.2) are publicly available at CRAN 

https://cran.r-project.org/web/packages/xQTLbiolinks. The source codes of the latest version 

of xQTLbiolinks can be found in Github repository https://github.com/lilab-

bioinfo/xQTLbiolinks.  
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TABLE AND FIGURES LEGENDS 

Table 1. A comparison of different tools for retrieving and analysis of xQTLs data 

The first two columns of the table represent features and detailed features for each tool, 

respectively. The cell checked with "√"indicates features that exist in the tool. 
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          √ 

Annotation Genomic annotation           √ 

Analysis Colocalization analysis √ √ √     √ 

Visualization Locuszoom     √ √ √ √ 

Genotype-
expression/splicing 
boxplot 

          √ 

Manhattan plot           √ 
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Fig. 1 Overview of xQTLbiolinks data and functions, including four main function categories: 
Data retrieval, Pre-processing, Analysis, and Visualization. 
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Fig. 2 Quality control and annotation of breast cancer and xQTLs summary statistics data. 
(a). QQ-plot labeled with inflation factor. (b). PZ-plot, the x-axis stands for the normalized p-
values estimated by the z-score derived from beta and standard error, and the y-axis stands 
for the raw normalized p-values. (c). Genomic annotation of significant breast cancer risk 
SNPs. (d) QQ-plot for eQTLs. (e) QQ-plot for sQTLs. (f) QQ-lot for 3’aQTLs. (g) Manhattan 
plot of the GWAS study of breast cancer. The strongest signals on each chromosome are 
labeled. (h) Boxplot of normalized expression of eQTL rs8018155–CCDC88C in the Breast - 
Mammary Tissue.  
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Fig.3 Integrative analysis of GWAS study of prostate cancer. (a) Venn plot of 47 xQTLs 
colocalized genes. (b) Gene expression levels of MMP7 among 54 GTEx tissues. (c) Boxplot 
of normalized expression of eQTL rs11568818–MMP7 in the prostate. (d) Distribution of 
GWAS and eQTL signals within a genome region of MMP7. (e) heatmap of eQTL 
(rs11568818–MMP7) p-values in different LD bins across 40 tissues/cell types. The y-axis 
represents the tissues/cell types, and the x-axis represents LD bins. The green-blue color 
bar indicates the median normalized eQTL p-values in different LD bins. The blue-red color 
bar represents the Pearson correlation between normalized eQTL p-values and values of r-
squared of LD. 
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Fig. S1. The processing flow of colocalization analysis in xQTLbiolinks. The framework takes 
in a GWAS summary statistics dataset as input. The output is a list of colocalized genes and 
causal SNPs, which can be visualized through locus zoom, boxplot, and heatmap. Data pre-
processing and analysis are conducted in the following steps: quality control, removal of 
missing values and duplicates, extracting sentinel SNPs and trait genes, retrieval of xQTLs 
summary statistics dataset, and colocalization analysis.  
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Fig. S2. (a). Colocalization of signals of GWAS and xQTLs (eQTLs, sQTLs, and 3'aQTLs) 

for gene MMP7 with prostate cancer-associated loci. (b). Co-expression analysis of 47 xQTL 

colocalized genes. 
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