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Summary

By pairing rapidly synthesized Cryo-ET data with
computed ground truths, deep learning models can
be trained to accurately restore and segment real
tomograms of biological structures both in vitro and
in situ.

Abstract

Deep learning excels at cryo-tomographic image
restoration and segmentation tasks but is hindered by
a lack of training data. Here we introduce cryo-
TomoSim (CTS), a MATLAB-based software
package that builds coarse-grained models of
macromolecular complexes embedded in vitreous ice
and then simulates transmitted electron tilt series for
tomographic reconstruction. We then demonstrate
the effectiveness of these simulated datasets in
training different deep learning models for use on
real cryotomographic reconstructions. Computer-
generated ground truth datasets provide the means
for training models with voxel-level precision,
allowing for unprecedented denoising and precise
molecular segmentation of datasets. By modeling
phenomena such as a three-dimensional contrast

transfer function, probabilistic detection events, and
radiation-induced damage, the simulated cryo-
electron tomograms can cover a large range of
imaging content and conditions to optimize training
sets. When paired with small amounts of training
data from real tomograms, networks become
incredibly accurate at segmenting in  situ
macromolecular assemblies across a wide range of
biological contexts.

Introduction

Cryo-electron tomography (cryo-ET) allows the
direct three-dimensional imaging of purified
macromolecules, enriched organelles, whole
bacterial and archaeal cells, and eukaryotic cellular
compartments in a frozen-hydrated state ''!. Tt is
only a matter of time before all biological material is
subjected to its investigation '*'6, Cryotomograms
can be rich with information across length scales
spanning a few angstroms to several microns 718,
but extracting all of this information automatically (if
at all) is challenging given the variation in their
content and complexity.

Deep learning has emerged as a powerful tool for
image restoration !°2! and segmentation 2%%
cryo-ET, but perfect ground truth datasets do not
exist and cannot be generated experimentally.
Collecting training data at the microscope is both
expensive and slow, as well as a drain on valuable

in

time that could be spent collecting new experimental
datasets. Another obstacle is that a single tomogram
rarely contains enough views from each feature-class
to train a reliable model for their detection. Data
augmentation 1is an established approach to
increasing the dataset depth of variability (?%27), but
the missing-wedge generates orientation-specific
distortions in tomographic data, complicating this
sampling problem. Finally, even if one has a good set
of tomographic data to train on with adequate signal
and a full angular sampling, it will need manual
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annotation into a segmentation for supervised
learning.

Simulating accurate training data and inferring these
networks to real data is an appealing solution 28, With
simulated data, users could quickly generate new
mixtures of molecules from existing structural
models, explore a range of imaging parameters, and
produce perfect ground truth segmentations all in a
matter of minutes. Training with simulated cryo-ET
data is a novel approach to overcoming limitations
with deep learning, and currently, no software is
dedicated to this objective. To this end, we have
developed cryo-TomoSim (CTS), a MATLAB-based
program that simulates tilt series from coarse-
grained models of molecular mixtures in vitreous ice
for tomographic reconstruction. CTS provides easy
control of a variety of modeling and simulation
parameters that allow users to quickly generate a
wide range of training data from any number of input
structures. We then go on to demonstrate the
effectiveness of CTS-generated datasets in training
both  regression denoising and  semantic
segmentation U-Net models.

CTS Overview

Software Environment

We developed CTS in MATLAB, because it is a
well-documented platform that is available on all
mainstream operating systems. Matlab code is
usually transparent and readable, so tools using it are
relatively easy to modify for personal use cases. CTS
can be controlled from either the MATLAB
command line or through a dedicated graphical
interface, making it accessible to nearly anyone with
a modern computer. It calls on the well-known
software suite IMOD % to rapidly generate
projection images and automatically reconstruct
simulated tilt series into tomograms, and then
organizes them into directories containing data from
multiple stages of the simulation process. Finally,
CTS generates a ground truth atlas at the dimensions
of the tomogram, with the voxels belonging to each
feature-class precisely annotated.

Cytosol
a %

cytosolic protein before modeling.

Figure 1. Modeling with CTS A) Two views from the atomic model of the dodecameric alpha-CaMKII holoenzyme,
colorized by its catalytic (blue) and associative (orange) domains. B) Voxel based models of fields of CaMKII without
and with ice embedding. C) CTS model built with microtubule “assembly” containing three intralumenal particles (red
arrow heads). During placement of each microtubule, the number of intralumenal particles was randomly determined.
D) CTS model of membranous vesicle decorated with NMDA receptors and a GPCR. CaMKII was flagged as a
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Modeling schema

Coarse-grained Model Generation

CTS generates models as voxel-based constructs
based on a specified pixel size and 3D volume, rather
than generating a full atomic map. This permits low
computational times and the ability to run on any
modern computer, without requiring GPU
acceleration, many CPUs, or large amounts of RAM.
The majority of development and testing was done
on a low-spec laptop running on an intel i5 CPU with
4 cores and 8GB ram, which takes 5-10 minutes to
run CTS for typical models from structure inputs to
a complete reconstruction.

Individual structure files (pdb or cif, Fig. 1A) are
converted into coulomb potential maps, at the
specified  resolution, through the simple
accumulation of atomic potentials in each voxel,
approximated as the atomic number of the atom. As
the model does not retain any atomic information and
the simulation is performed at the voxel level,
dispersion is not modeled due to its negligible impact
at the resolution of a single cryo-electron tomogram.

Handling of different particle schemes

CTS modeling can be as simple as inputting any
arbitrary number of independent structure files, but
has support for several types of structured
arrangements or special handling. For instance,
clusters of unconstrained proteins, as well as bundles
of linearly oriented proteins, can be generated to
create different orders of particle packing (Fig. S1).
Protein complexes can also be modeled, including
partial occupancy of secondary members on a
primary scaffold (Fig. 1C). Complexes also extend to
subcomponents of an individual protein. Particles
can be placed in association with, including
transmembrane passage through, lipid membranes.
They can also be restricted exclusively to inside or
outside of vesicles (Fig. 1D).

Model constraints

After choosing input particles, model constraints
must be set, such as the volume dimensions and
features. If desired, constraints can be placed on the
volume to determine which outside borders, if any,
particles can cross during model filling. The default
being the top and bottom of the Z plane to mimic
cryo preparation flattening a sample within a thin
layer of vitreous ice, while allowing proteins to clip
out of the model area in other directions.

Optionally, CTS models can include portions of a
carbon support as well as vesicles (Fig. 2A) prior to
model filling. Both are modeled similarly to proteins
from structure files in that they are generated by
accumulation of density from particles within each
voxel. The carbon support is a perfectly flat plane of
amorphous atomic carbon with a circular hole, offset
so that one edge of the model is occupied by carbon
(Fig. 2A). Vesicles are modeled as lipid density
corresponding to a bimodal distribution across the
radius of the vesicle shape, which can range from
perfectly spherical to highly irregular. After model
filling, CTS can also optionally place spherical gold
fiducials (Fig. 2A) into the model before adding
vitreous ice. Ice is generated as a global field of
vitreous water applied as minimal values to voxels
(Fig. 1A), while fiducials are gold atoms randomly
generated in a sphere. As it would be
computationally prohibitive, individual atoms are
not randomly generated within these distributions
but instead pseudo-atoms that contribute
proportionally higher density at lower model
resolution.
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Figure 2. Simulating data with CTS. A) Simulated projection through tomographic model. B) Detailed stages of output
from the CTS workflow focused on the boxed region in (A). The progression is Model, Projection, Electron Dose,
Contrast Transfer Function (CTF), and then Tomogram. The ground truth atlas is the final component generated.

Brute force model filling

After constraints and generation of initial features,
the model is filled with the selected input particles
(Fig. 1A). Particles are organized into several
different ‘layers’ that are used for model filling in
succession, to allow users more precise control over
particle mixtures when desired. Filling is conducted
in a brute-force approach, with placements attempted
iteratively at semi-random locations not known to be
occupied. Input particles are randomly selected,
rotated, and placed into these coordinates. If this
causes an overlap with an existing object, it is
rejected and the process continues until a maximum
density or number of iterations is reached. Early
layers therefore occupy more of the volume than
successive layers, the last of which is often useful for
inserting small ‘distractor’ particles without
crowding out larger structures of interest. After
model filling, fiducials and ice are added as

described above. It is important to note that in
addition to the final combined model, CTS generates
and stores per-class models of what is placed into the
combined model that is later used to generate an atlas
of all simulation contents.

Simulation schema

Proceeding from a complete model, the simulation is
also conducted on a per-pixel level for speed, and so
does not simulate image formation at the precision of
an electron wave interacting with and propagating
through individual atoms.

Inputs

The CTS simulator has many parameters, covering
all reasonable and many unreasonable as well as
technically impossible imaging capabilities. The
control parameters are the same as standard imaging
parameters: tilt increment and limits, defocus,
electron dose, and tilt scheme (Fig. S2 & S3).
Advanced options include control over radiation
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damage, deviation from exact tilt angles, inelastic
electron scattering, and generation of “ideal” images
that lack CTF and dose sampling.

Projecting tilt series with IMOD

The first step of simulation is inversion of the input
model contrast to match the standard dark-on-bright
density scale generated by cryo-EM (Fig. 2B,
model). The inverted model is then projected as a tilt
series using the xyzproj command from the IMOD ?°
package along the specified tilt axis, at the specified
tilt angles (Fig. 2B, Projection). CTS defaults expect
balanced tomographic tilt series but can project any
arbitrary set of tilts in any order, and so can also
generate single micrographs.

Dose sampling

Image generation is simulated by sampling electrons
from a distribution of the tilt angle’s scattering
potential (Fig. 2B, Electron Dose). For each tilt, the
camera-detected dose is adjusted based on the
maximal DQE of the detector as well as inelastic
scattering of electrons away from the path of the
detector. This dose-adjusted scattering map is used
as the lambda parameter of a poisson distribution
from which detected electrons are drawn. The
following equation is used to determine transmitted
dose:
Dc = e™(—T /cos(theta) » S/IMFP) x dose
* DQE

Dc is the corrected dose transmitted, S is the
scattering factor (1), IMFP is the inelastic mean free
path of vitreous ice (3.8nm), 7'is the thickness of the
sample, theta is the tilt angle, and DQE is the detector
quantum efficiency of the camera.

CTF intensity modulation

Once tilt images are projected, they are modulated by
a contrast transfer function (CTF) 3° based on the
pixel size and defocus, as well as microscope
parameters such as the accelerating voltage and

spherical aberration (Fig. 2B, CTF). The CTF in
Fourier space is computed according to the following
functions:
1. CTF =E *((1 - Q)sin(eq) +
Qscos(eq))
2. eq=pi/2*(CS*L3xk*—2xDzxL
k?)
3 E= e—(k/(sigma*nyquist))2
4. L=H=xc/sqrt(e*V *(2*xm=xc?+e=*
)
Overall equation for the CTF profile (1), wave
component equation (2), envelope function of the
contrast (3), and the calculation of the relativistic
electron wavelength (4).

Where L is the relativistic electron wavelength, CS
is spherical aberration, K is the spatial frequency, Dz
is defocus, sigma is the envelope factor (.9), and Q is
the amplitude contrast factor (.07). In 4, H is the
planck constant, e the electron charge, c the speed of
light, m the electron mass, and V the acceleration
voltage.

To account for variable defocus across a tilted
sample, CTF modulation is applied to each tilt angle
in a series of overlapping strips with an adjusted
defocus value. After inversion from fourier space,
the strips are combined by weighted average to form
a seamless composite.

Radiation damage

Radiation damage is modeled in a very simplified
fashion. Before electrons are sampled for each tilt
angle, that tilt projection is corrupted by two
operations scaled by the cumulative electron dose
transmitted. The first operation is a smoothing step
that reduces signal clarity in higher-resolution
images, and the second is a layer of gaussian noise
applied to the whole tilt image.
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coli cell, respectively.

Figure 3. General effectiveness of CTS-trained regression networks. A-C) Deep learning-based regression by the same
network on actin filaments bundled by the cross-linking protein alpha-actinin in vitro, Neuronal cytoplasm, and an F.

Tomographic reconstruction

As CTS executes a perfectly aligned simulation with
complete information, reconstruction of the
tomogram requires no prior alignment steps or
preprocessing. CTS performs reconstruction of the
simulated tilt series (Fig. 2B, Tomogram) using
IMOD’s tilt command and supplying the exact tilt
angles, followed by using the IMOD command
trimvol to rotate the tomographic reconstruction to a
standard orientation. At present, CTS does not
include any CTF-correction step for the output
tomogram.

Results

Regression-Based Tomogram Restoration

Cryo-ET image restoration by deep learning has been
the focus of several studies in the past few years '*-
21, These approaches have found sophisticated ways
to denoise without regression methods 3!, because a
true image “prior” cannot be experimentally derived
in cryo-EM, due to the destructive nature of the
beam. This is not true of CTS, which can generate
multiple tomographic outputs from the same model,
including a noise-free prior collected on a perfect
“detector”.

To make a generalizable cryo-ET regression
network, we used CTS to produce three small
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Figure 4. CTS-based regression on real tomograms of purified chromatin A) 100-voxel
(84 nm) thick slab from a weighted back projection (WBP) cryotomogram of purified
human chromatin viewed in the XY (top panel) and XZ plane (bottom panel). B)
Identically sized slab from the same tomogram after regression denoising. The insets in
(A) and (B) are Fourier transforms of the images in their respective lower panels.

tomograms of synthetic cytoplasm (600 x 600 x 60
voxels each at 13.2 ang/pix, Fig. S4A), which took
approximately 10 min each. This “cytoplasm”
included a mixture of large and small
macromolecules commonly found in cells as well as
simulated lipid vesicles, all tightly packed like that
seen in real cellular tomograms (See Table S1, S2
and S3 for all structures, modeling parameters, and
simulation parameters used). To train the regression
network, ideal tomogram “priors” (Fig. S4B) were
paired with noisy synthetic tomograms from the
same model as inputs (Fig. S4C), and network
performance was validated by regressing the
synthetic tomogram back to the prior state (Fig.
S4D). The same network was then used to radically
denoise a variety of real cryotomograms, including
cross-linked actin-filaments in vitro, rat neuronal
cytoplasm, and whole bacterial cells (Fig 3 A-C).
When compared with established methods (nonlinear
anisotropic diffusion and noise2noise deep learning),

it is clear that regression training against CTS priors
is superior in terms of denoising while also retaining
structural detail (Fig. S5).

Additionally, more constrained training sets can be
generated quickly and easily for any in vitro purified
sample. For instance, by simulating tomograms from
a mixture of nucleosome and chromatin models (see
Methods) we were able to restore tomograms of
purified human chromatin to a nearly noiseless state,
as well as restore the large tilt increments (5°) and
missing wedge in Fourier space (Fig 4A & B).

Structural features in regression restorations are
subject to bias from the U-Net transformation ¥, so
we compared the outputs from differently trained
networks on the same synthetic tomogram generated
from an elongated F-actin model (Fig. S6). When
compared to the ground truth of the simulated
weighted back projection input, all of the trained
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networks denoised the actin filaments well
while maintaining the lower resolution
details about filament helicity and actin

monomer localization. It is obvious,
however, from the network that has seen no
actin filaments, that some of the

information about monomer-to-monomer
interactions is lost, as might be expected.

Semantic Segmentation of Cryo-ET
Data

Segmentation of cryo-ET data into known
components is a laborious task, and even if
you employ deep learning to help in the
process it still requires careful manual
annotation of the training data as inputs.
With CTS the annotated ground truth atlas
only takes seconds to produce and can be
used as input for training segmentation U-
Nets on the corresponding synthetic
tomograms. Given that CTS can quickly
derive new datasets under different
“imaging” conditions, we took this
opportunity to test the effects of key
parameters of tomographic data collection
on the inference of our trained U-Nets
during segmentation.

We tested the effects of moderate changes
in defocus (um), total electron dose (-e/A?),
pixel size (A/pix), and tilt increment (°) on
segmenting simulated tomograms of either
actin and cofilactin filaments or CaMKII
divided into submodels containing the
catalytic and association domains 3. We
also quantified the effects of “missing

wedge” orientation with respect to the filament’s
long axis on segmentation accuracy. All networks
were trained with an equal amount of data (including
data augmentation parameters), for the same number
evaluation.
segmentations were then compared to the CTS-

of epochs to ensure fair
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Figure 5. Segmentation of real in vitro tomograms by synthetically trained U-
Nets. A) Full 3D Segmentation of a real cryotomogram containing a mixture
of actin (green) and cofilactin (red) filaments. The left side shows the results
from a network trained only on CTS-derived tomograms containing actin,
cofilactin, fiducials (purple) and a carbon support (yellow), and the right side
shows segmentation results after a single retraining with 5 hand-corrected
slices. B) and C) Higher magnification views of the real tomographic data and
its segmentations by both networks. The segments shown correspond to the
areas surrounded by dashed boxes in (A).

generated ground truth and a Dice coefficient was
calculated to evaluate network success. We found,
under our training conditions, that U-nets were
robust across all the tested parameters (Figs. S7-
S10), except for the orientation of the missing wedge
(Fig. S11). This makes sense given that actin
filaments oriented parallel to the tilt-axis look

All
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dramatically different compared to those aligned
perpendicularly. Because of this, networks trained
only on datasets with filaments in one orientation
with respect to the missing wedge largely fail when
inferred to any dataset that contains filaments in
another orientation (Fig. S11). Therefore, it is
important that training data contains structures with
a broad angular distribution with respect to the
missing wedge for robust, accurate inference, which
is exactly what CTS was designed to provide.

Segmenting In Vitro Data

To segment cryotomograms of purified
molecules captured in a thin sheet of
vitreous ice we found that training with
simulated data alone was surprisingly
powerful. In an initial validation test,
cryo-ET data was collected on purified
actin filaments mixed with the actin
binding protein cofilin, which formed a
mixture of F-actin and cofilactin, a
hyper-twisted filament formed by a 1:1
stoichiometric binding of cofilin to F-
actin 3. In real cryotomograms,
stretches of bare actin were clearly |
distinguishable from stretches of
cofilactin (Fig. 5), because their helical
repeat lengths are quite different (~37

nm compared to ~27 nm, respectively
35).

To start, a 5-slice U-Net was trained
against a 400 x 400 x 50 voxel CTS-
generated cryotomogram containing
actin filaments, cofilactin, and 10-nm
gold fiducials. The edge of a synthetic

feature. Filaments were constrained
within the 50-voxel z-height to ensure

segmentation of the entire tomogram by two related
4-class networks. One trained by only simulated data
(“simulation only”), and one further trained on 5
hand-corrected slices of the real tomogram. By
examining the “simulation only” segmentation up
close, it is clear that the majority of misclassified
densities are small but real protein densities
associated with the air-water interface, and they are
almost entirely eliminated from the background in
the retrained network. There were small and
uncommon misclassifications along filaments (Fig.
5B & C), but these were also eliminated with a single

retrain of the network. Interestingly, while there were
- > ! S o s it .(" -...“,‘

Figure 6. Submodel discrimination with CTS-generated training data. A)
segmentation of actin subunits (blue) and cofilin subunits (teal) in a mixed
in-vitro population of bare actin and cofilin-decorated actin. B) segmentation
carbon support was also present | of CaMK2 alpha into central association domains (green) and variously
because the real data contained this | extended catalytic domains (red). C) segmentation of low-compaction
chromatin, DNA in red and histone cores in green. D) segmentation of
proteasomes into terminal alpha rings (blue) and middle beta rings (orange).

they lie mostly flat, as they are found
within the real tomograms. Figure 5A depicts the
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no transitions from actin to cofilactin
within individual filaments in our
training set, in the real data these
transitions were abundant and easily
detected by the network (Fig. 5C).

To test whether this approach is
generalizable and to push its
limitations, we used purely synthetic
datasets to not only distinguish
between actin and cofilactin, but to
also segment the cofilin molecules
decorating the filament (Fig. 6A).
We then used a similar approach to 1)
differentiate between the catalytic
domains and the associative core
domains in real tomograms of
purified alpha-CaMKII (Fig. 6B), 2)
segment histone proteins from the
DNA strand in purified chromatin
(Fig. 6C), and 3) target the outer
alpha-rings and inner beta-rings of
the 20S proteasome (Fig. 6D, EMDB
7152).

Segmenting Cellular Data

While there are many applications for
segmenting in Vvitro systems, we
ultimately need tools for segmenting
crowded cellular environments.
Using our in vitro approach on
cellular tomograms, however, did not
directly translate. We reasoned that
the synthetic data sets were not
crowded enough, so we turned to our

synthetic cytoplasm again. We trained two single
class U-Nets: one network to recognize microtubules
and one to recognize ribosomes within a molecularly

‘o Simulation Only
B 1 R

&

ned §

Figure 7. Segmentation of real in situ data. A) 2D slice from a neuronal
tomographic volume. B) 3D segmentation results for microtubules (blue) and
ribosomes (orange) from the tomogram in (A) by two single-class U-nets
trained specifically to find each feature within crowded CTS-derived
synthetic cytoplasm (shown in Figure S10). C) Segmentation of
microtubules with a network simultaneously trained dual trained on the same
simulated microtubules plus the 64 cubic voxels of real data shown in the
inset of (A). D) Segmentation results from a network only trained on the 64

cubic voxels of real tomographic data

This composite segmentation represents the raw
output from both trained networks overlayed and has
experienced no postprocessing clean-up.

crowded milieu (Fig. S12). The real neuronal

tomogram shown in Fig. 7A was then subjected to
segmentation by both networks, as shown in Fig. 7B.

To test the impact of including hand-annotated real
data to the initial training set, we chose a very small
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microtubules, TriC, ribosomes, membrane, and background) that was trained
solely on these features within crowded synthetic cytoplasm. B)
Segmentation of the same tomogram by a U-net dual trained on the same
simulated dataset plus six small (64 cubic voxel) hand segmented inputs
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central a slice through the tomogram with the multi-class segmentation
results.

Figure 8. Multi-class segmentation within crowded cellular tomograms. A)
3D segmentation results from a 7-class network (actin, cofilactin,

that the addition of even a small
amount of real data can fortify
networks co-trained with simulated
datasets.

We then turned to training multiclass
segmentation U-Nets and compared
“simulation only” training to our dual
trained approach (Fig. 8). For this test
we trained a seven-class U-net
against our synthetic cytoplasm to
recognize actin filaments, cofilactin,
microtubules, the chaperonin Tric,
ribosomes,  synthetic  spherical
vesicles, and background (see
Methods for details). For the dual
trained network, the real data used for
augmentation was minimal. Each
class contributed only a 64 cubic
voxel dataset, as depicted in Fig. S13.
From the three-dimensional renders
(Fig.8A & B), it is simple to conclude
that the dual trained network was
superior in terms of segmentation
noise. Inspection of slices through the
segmentations, however, shows that
the “simulation network
performed surprisingly well in
recognizing objects from different
classes (Fig. 8C & D). While not
perfect, we found these results

only”

amount of data (64x64x64 voxel cube) that included
a single stretch of microtubule density (Figure 7A
inset) and combined it with our simulated
microtubule data to perform what we refer to moving
forward as “dual training”. In the dual trained
microtubule segmentation, it is clear that the tubule
walls are more fully segmented, causing them to lose
their transparent appearance as in the “Simulation
Only” segmentation. It’s important to note that
training only on the small cube of real data did not
produce a useful segmentation (Fig. 7D), proving

remarkable given that both the data and ground truth
could all be generated on a single CPU (from
modeling to simulation to reconstruction) in under 30
minutes. Given these results, we currently suggest a
dual training strategy for networks meant to segment
cellular data, but we believe there is potential for
simulations to reach sufficient levels of realism in
terms of molecular complexity and noise structure,
and this will remain an active area of on-going
research.
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Discussion

We have showcased CTS, a combined suite for
generating models of frozen-hydrated samples and
their cryotomographic simulation. It is capable of
generating synthetic cryo-ET datasets within minutes
from structures of interest, paired with both ground
truth segmentations and matched tomograms of ideal
to perfect SNR. The simulated datasets and ground
truth segmentations can train robust semantic
segmentation networks that surpass expert hand
segmentations of in-vitro samples, and in cellular
samples permit training networks more quickly than
manual training, either with retraining or by
augmenting with a small amount of target cellular
data. Regression denoising is almost impossible to
perform without simulated data and has proven to be
surprisingly generalizable to different particle
mixtures. The intensity of denoising is also
manipulable with such easy training, allowing both
potent SNR maximizing and gentler denoising that
better retains high-resolution information.

Each of these applications highlight how CTS can
help fill the gap between the glut of cryo-ET data
available and powerful deep learning tools that have
the potential to analyze those large datasets.
Considering the standard of computer hardware
required for collecting and processing cryo-ET data,
the technical requirements of CTS are no obstacle,
and it can improve resource use by focusing expert
microscopists on data collection and analysis rather
than manual annotation. Further applications we
have not yet explored include training deep learning
particle picking tools and directly comparing
different reconstruction, denoising, and
enhancement techniques quantitatively with known
ground truth information. Finally, we have not
performed head-to-head comparisons with other
deep learning based denoisers or particle classifiers
on the same real tomographic data. For instance, it
may prove interesting to do in depth comparisons of
CTS-trained regression networks to the IsoNet 2!

approach for missing wedge restoration, or to
experiment with the usefulness of training IsoNet
networks with simulated data.

While CTS has enabled fast prototyping and
powerful deep learning applications, it is deliberately
simplified for speed and ease of use. It cannot replace
full physics-based all-atom simulators like parakeet
36 for quantitative accuracy, especially of very high-
resolution data. In the future, CTS could adopt more
complete simulation functions to improve rigor and
accuracy at the potential cost of longer processing
times. More fundamentally, CTS in its current form
cannot model ‘true’ cellular or biological
superstructures that are often of interest in cryo-ET
(mitochondria, Golgi, synapses, etc.), nor does it
simulate  dynamic molecular properties or
interactions.

Despite these limitations, it is remarkable that such
small amounts of CTS-generated data can be used to
train such powerful and generalizable U-Nets for
both image regression and semantic segmentation.
Perhaps more important is the ability to derive new
training sets, in a matter of minutes, on a single CPU
core. This means that anyone can use the wealth of
existing structural data (https://www.rcsb.org/,
https://alphafold.ebi.ac.uk/,
https://opm.phar.umich.edu/, etc.) to quickly iterate
different modeling and simulation parameters to
systematically test the efficacy of datasets for
training neural networks. Additionally, on the
modeling side of CTS, users are only limited by their
skills and creativity when it comes to building atomic
models. Finally, while we have tested the impact of
changing basic imaging parameters on a network’s
inferability using simulated data, this was only done
with U-Net architectures under relatively constrained
hyper-parameters. Moving forward, CTS could be
used to characterize, optimize, and inform deep
learning practices in the cryo-EM field more fully.
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Materials and Methods

Protein Purification

Purified non-muscle actin (Cat # BKO013), cofilin
(Cat # CFO1-A), and alpha-actinin (Cat # ATOI)
were purchased from Cytoskeleton, Inc. (Denver,
CO). Native Chromatin was isolated and mnase-
treated according to the detailed methods described
in 37. Alpha-CamKII holoenzymes were purified on

a CaM-Sepharose column, as described in detail in
38

Specimen preparation, Image Collection and
Reconstruction

Stock actin (10 mg/ml) was diluted 1:10 into ATP-
supplemented  general actin  buffer from
Cytoskeleton Inc. (Cat# BSA01-001, SmM Tris-HCl
pH 8.0, 0.2 mM CaCly, and 0.2 mM ATP), and left
on ice for 30 min. Next, 10 ul of actin polymerization
buffer (Cat # BSA02-001, 50 mM KCI, 20 mM
MgCl,, and 1 mM ATP) was added, mixed well, and
placed at RT for one hour to polymerize. After
polymerization, 2.5 1 of Cofilin (5 mg/ml) was added
to a tube and diluted in 10 ul of 20 mM Tris-HCl 6.6
Buffer, before adding 12.5 ul of polymerized actin
and letting it sit for 30 min at RT. For Alpha-actinin,
40 ul of F-actin was placed in a tube and 10 ul of
alpha-actinin (1 mg/ml stock) was added for a final
concentration of 200 ug/ml. Add 2 ul of Tris pH 6.5,
and leave at RT for 30 min. Before vitrifying
CaMKI]I, stock aliquots dialyzed in 10 mM HEPES,
pH 7.4, 0.1 mM EGTA, 200 mM KCI, and 20%
glycerol, were thawed and diluted from 3.4 mg/ml to
1 mg/ml in dialysis buffer. Chromatin was prepared
according to the detailed protocol in ¥’

All samples were plunge frozen on R2/2 200 mesh
Quantifoil EM grids, using a Vitrobot Mark IV
(Thermo Fisher). Copper grids were used for purified
particles in suspension and gold grids were used for

culturing neurons. For purified actin/cofilactin and
actin/actinin, chromatin and alpha-CaMKII, 3
microliters of sample were applied to freshly glow-
discharged grids and blotted for 3.5 s with force 5.
For neurons cultured on grids, we followed the
protocol described in detail here 3°. Briefly, E18
Sprague Dawley rat hippocampi were grown to
either DIV 1 or 2 before being picked up in forceps
and loaded on the Vitrobot. Grids were hand-blotted
through the side port, from the back, using forceps
holding blotting paper. After plunge-freezing,
samples were stored in liquid nitrogen until they
were loaded into the cryo-TEM for tilt series
collection.

Tilt series were collected on a Titan Krios (Thermo
Fisher) 300 kV cryo-TEM, equipped with a
Bioquantum energy filter (Gatan) and either a K2 or
K3 direct electron detector. Using Tomography 5
(Thermo Fisher), data was collected from -60 to 60
degrees in either a dose-symmetric scheme or a split
scheme with 2-degree increments for everything
except purified chromatin, which was imaged with 5-
degree tilt increments. Total electron dose was
maintained between 60-150 electrons/A2, and
defocus was maintained at ~5 microns. A range of
magnifications were used, depending on the sample,
from 3.3 - 1.35 A/pix®. Tomographic alignment and
reconstruction were carried out using IMOD. All
tomograms were reconstructed with weighted back
projection and binned 4x before denoising or
segmentation.

PDB structures

See Table S1 for PDBs used and a description of their
modifications.

Generating Synthetic Training Data

Modeling Parameters
Tomogram models were generated using the

parameters in Table S2. If not listed in the table, the
default values were used.
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Simulation Parameters

Simulations were generated using the parameters in
Table S3. If not listed in the table, the default values
were used.

Ground Truths

For regression networks the ground truth was
simulated as tomograms with no CTF corruption or
radiation damage, no signal loss at the “detector”,
and nearly full angular sampling (-89° to +89° with
1° increments). The full 90 degrees was not used due
to limitations imposed by IMOD’s XYZProject
function. For segmentation networks, the atlases
output from CTS during the simulation phase were
used as a ground truth for training. The exact
specifications of the simulations can be found in
Table S3.

Deep Learning

All U-Net building, training, application, and
performance testing were done within the Dragonfly
2022.1 software suite by Object Research Systems.
Non-commercial licenses are available through their
website at www.theobjects.com, and an open source
tutorial video can be found at
www.jove.com/t/64435/deep-learning-based-

segmentation-of-cryo-electron-tomograms.

In all cases 5-slice U-Nets were used with default
architecture and the following hyperparameters:
Patch Size = 64 or 128 pixels?, Stride Ratio = 1,
Batch Size = 32, Epochs = 100-300. The loss
function used for regression was Dragonfly’s
“MixedORSgradientLoss”, and for semantic
segmentation it was “CategoricalCrossEntropy”. For
both, the optimization algorithm wused was
“adadelta”.

Software Download

CTS can be downloaded from its Github page. The
github project also contains installation instructions,

required software, and preliminary tutorials on its
use.
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