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Summary 
By pairing rapidly synthesized Cryo-ET data with 
computed ground truths, deep learning models can 
be trained to accurately restore and segment real 
tomograms of biological structures both in vitro and 
in situ. 
 
Abstract 
Deep learning excels at cryo-tomographic image 
restoration and segmentation tasks but is hindered by 
a lack of training data. Here we introduce cryo-
TomoSim (CTS), a MATLAB-based software 
package that builds coarse-grained models of 
macromolecular complexes embedded in vitreous ice 
and then simulates transmitted electron tilt series for 
tomographic reconstruction. We then demonstrate 
the effectiveness of these simulated datasets in 
training different deep learning models for use on 
real cryotomographic reconstructions. Computer-
generated ground truth datasets provide the means 
for training models with voxel-level precision, 
allowing for unprecedented denoising and precise 
molecular segmentation of datasets. By modeling 
phenomena such as a three-dimensional contrast 

transfer function, probabilistic detection events, and 
radiation-induced damage, the simulated cryo-
electron tomograms can cover a large range of 
imaging content and conditions to optimize training 
sets. When paired with small amounts of training 
data from real tomograms, networks become 
incredibly accurate at segmenting in situ 
macromolecular assemblies across a wide range of 
biological contexts. 
 
Introduction 
Cryo-electron tomography (cryo-ET) allows the 
direct three-dimensional imaging of purified 
macromolecules, enriched organelles, whole 
bacterial and archaeal cells, and eukaryotic cellular 
compartments in a frozen-hydrated state 1–11. It is 
only a matter of time before all biological material is 
subjected to its investigation 12–16. Cryotomograms 
can be rich with information across length scales 
spanning a few angstroms to several microns 17,18, 
but extracting all of this information automatically (if 
at all) is challenging given the variation in their 
content and complexity.  
 
Deep learning has emerged as a powerful tool for 
image restoration 19–21 and segmentation 22–25 in 
cryo-ET, but perfect ground truth datasets do not 
exist and cannot be generated experimentally. 
Collecting training data at the microscope is both 
expensive and slow, as well as a drain on valuable 
time that could be spent collecting new experimental 
datasets. Another obstacle is that a single tomogram 
rarely contains enough views from each feature-class 
to train a reliable model for their detection. Data 
augmentation is an established approach to 
increasing the dataset depth of variability (26,27), but 
the missing-wedge generates orientation-specific 
distortions in tomographic data, complicating this 
sampling problem. Finally, even if one has a good set 
of tomographic data to train on with adequate signal 
and a full angular sampling, it will need manual 
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annotation into a segmentation for supervised 
learning. 
 
Simulating accurate training data and inferring these 
networks to real data is an appealing solution 28. With 
simulated data, users could quickly generate new 
mixtures of molecules from existing structural 
models, explore a range of imaging parameters, and 
produce perfect ground truth segmentations all in a 
matter of minutes. Training with simulated cryo-ET 
data is a novel approach to overcoming limitations 
with deep learning, and currently, no software is 
dedicated to this objective. To this end, we have 
developed cryo-TomoSim (CTS), a MATLAB-based 
program that simulates tilt series from coarse-
grained models of molecular mixtures in vitreous ice 
for tomographic reconstruction. CTS provides easy 
control of a variety of modeling and simulation 
parameters that allow users to quickly generate a 
wide range of training data from any number of input 
structures. We then go on to demonstrate the 
effectiveness of CTS-generated datasets in training 
both regression denoising and semantic 
segmentation U-Net models. 

 
CTS Overview 

Software Environment 
We developed CTS in MATLAB, because it is a 
well-documented platform that is available on all 
mainstream operating systems. Matlab code is 
usually transparent and readable, so tools using it are 
relatively easy to modify for personal use cases. CTS 
can be controlled from either the MATLAB 
command line or through a dedicated graphical 
interface, making it accessible to nearly anyone with 
a modern computer. It calls on the well-known 
software suite IMOD 29 to rapidly generate 
projection images and automatically reconstruct 
simulated tilt series into tomograms, and then 
organizes them into directories containing data from 
multiple stages of the simulation process. Finally, 
CTS generates a ground truth atlas at the dimensions 
of the tomogram, with the voxels belonging to each 
feature-class precisely annotated. 

Figure 1. Modeling with CTS A) Two views from the atomic model of the dodecameric alpha-CaMKII holoenzyme, 
colorized by its catalytic (blue) and associative (orange) domains. B) Voxel based models of fields of CaMKII without 
and with ice embedding. C) CTS model built with microtubule “assembly” containing three intralumenal particles (red 
arrow heads). During placement of each microtubule, the number of intralumenal particles was randomly determined. 
D) CTS model of membranous vesicle decorated with NMDA receptors and a GPCR. CaMKII was flagged as a 
cytosolic protein before modeling. 
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Modeling schema 

Coarse-grained Model Generation 
CTS generates models as voxel-based constructs 
based on a specified pixel size and 3D volume, rather 
than generating a full atomic map. This permits low 
computational times and the ability to run on any 
modern computer, without requiring GPU 
acceleration, many CPUs, or large amounts of RAM. 
The majority of development and testing was done 
on a low-spec laptop running on an intel i5 CPU with 
4 cores and 8GB ram, which takes 5-10 minutes to 
run CTS for typical models from structure inputs to 
a complete reconstruction. 
 
Individual structure files (pdb or cif, Fig. 1A) are 
converted into coulomb potential maps, at the 
specified resolution, through the simple 
accumulation of atomic potentials in each voxel, 
approximated as the atomic number of the atom. As 
the model does not retain any atomic information and 
the simulation is performed at the voxel level, 
dispersion is not modeled due to its negligible impact 
at the resolution of a single cryo-electron tomogram.  

Handling of different particle schemes 
CTS modeling can be as simple as inputting any 
arbitrary number of independent structure files, but 
has support for several types of structured 
arrangements or special handling. For instance, 
clusters of unconstrained proteins, as well as bundles 
of linearly oriented proteins, can be generated to 
create different orders of particle packing (Fig. S1). 
Protein complexes can also be modeled, including 
partial occupancy of secondary members on a 
primary scaffold (Fig. 1C). Complexes also extend to 
subcomponents of an individual protein. Particles 
can be placed in association with, including 
transmembrane passage through, lipid membranes. 
They can also be restricted exclusively to inside or 
outside of vesicles (Fig. 1D). 

Model constraints 
After choosing input particles, model constraints 
must be set, such as the volume dimensions and 
features. If desired, constraints can be placed on the 
volume to determine which outside borders, if any, 
particles can cross during model filling. The default 
being the top and bottom of the Z plane to mimic 
cryo preparation flattening a sample within a thin 
layer of vitreous ice, while allowing proteins to clip 
out of the model area in other directions. 
 
Optionally, CTS models can include portions of a 
carbon support as well as vesicles (Fig. 2A) prior to 
model filling. Both are modeled similarly to proteins 
from structure files in that they are generated by 
accumulation of density from particles within each 
voxel. The carbon support is a perfectly flat plane of 
amorphous atomic carbon with a circular hole, offset 
so that one edge of the model is occupied by carbon 
(Fig. 2A). Vesicles are modeled as lipid density 
corresponding to a bimodal distribution across the 
radius of the vesicle shape, which can range from 
perfectly spherical to highly irregular. After model 
filling, CTS can also optionally place spherical gold 
fiducials (Fig. 2A) into the model before adding 
vitreous ice. Ice is generated as a global field of 
vitreous water applied as minimal values to voxels 
(Fig. 1A), while fiducials are gold atoms randomly 
generated in a sphere. As it would be 
computationally prohibitive, individual atoms are 
not randomly generated within these distributions 
but instead pseudo-atoms that contribute 
proportionally higher density at lower model 
resolution. 
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Brute force model filling 
After constraints and generation of initial features, 
the model is filled with the selected input particles 
(Fig. 1A). Particles are organized into several 
different ‘layers’ that are used for model filling in 
succession, to allow users more precise control over 
particle mixtures when desired. Filling is conducted 
in a brute-force approach, with placements attempted 
iteratively at semi-random locations not known to be 
occupied. Input particles are randomly selected, 
rotated, and placed into these coordinates. If this 
causes an overlap with an existing object, it is 
rejected and the process continues until a maximum 
density or number of iterations is reached. Early 
layers therefore occupy more of the volume than 
successive layers, the last of which is often useful for 
inserting small ‘distractor’ particles without 
crowding out larger structures of interest. After 
model filling, fiducials and ice are added as 

described above. It is important to note that in 
addition to the final combined model, CTS generates 
and stores per-class models of what is placed into the 
combined model that is later used to generate an atlas 
of all simulation contents. 

Simulation schema 
Proceeding from a complete model, the simulation is 
also conducted on a per-pixel level for speed, and so 
does not simulate image formation at the precision of 
an electron wave interacting with and propagating 
through individual atoms.  

Inputs 
The CTS simulator has many parameters, covering 
all reasonable and many unreasonable as well as 
technically impossible imaging capabilities. The 
control parameters are the same as standard imaging 
parameters: tilt increment and limits, defocus, 
electron dose, and tilt scheme (Fig. S2 & S3). 
Advanced options include control over radiation 

Figure 2. Simulating data with CTS. A) Simulated projection through tomographic model. B) Detailed stages of output 
from the CTS workflow focused on the boxed region in (A). The progression is Model, Projection, Electron Dose, 
Contrast Transfer Function (CTF), and then Tomogram. The ground truth atlas is the final component generated. 
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damage, deviation from exact tilt angles, inelastic 
electron scattering, and generation of “ideal” images 
that lack CTF and dose sampling. 

Projecting tilt series with IMOD 
The first step of simulation is inversion of the input 
model contrast to match the standard dark-on-bright 
density scale generated by cryo-EM (Fig. 2B, 
model). The inverted model is then projected as a tilt 
series using the xyzproj command from the IMOD 29 
package along the specified tilt axis, at the specified 
tilt angles (Fig. 2B, Projection). CTS defaults expect 
balanced tomographic tilt series but can project any 
arbitrary set of tilts in any order, and so can also 
generate single micrographs. 

Dose sampling 
Image generation is simulated by sampling electrons 
from a distribution of the tilt angle’s scattering 
potential (Fig. 2B, Electron Dose). For each tilt, the 
camera-detected dose is adjusted based on the 
maximal DQE of the detector as well as inelastic 
scattering of electrons away from the path of the 
detector. This dose-adjusted scattering map is used 
as the lambda parameter of a poisson distribution 
from which detected electrons are drawn. The 
following equation is used to determine transmitted 
dose: 
𝐷𝑐 = 𝑒^(−𝑇/𝑐𝑜𝑠(𝑡ℎ𝑒𝑡𝑎) ∗ 𝑆/𝐼𝑀𝐹𝑃) ∗ 𝑑𝑜𝑠𝑒

∗ 𝐷𝑄𝐸 
 
Dc is the corrected dose transmitted, S is the 
scattering factor (1), IMFP is the inelastic mean free 
path of vitreous ice (3.8nm), T is the thickness of the 
sample, theta is the tilt angle, and DQE is the detector 
quantum efficiency of the camera. 

CTF intensity modulation 
Once tilt images are projected, they are modulated by 
a contrast transfer function (CTF) 30 based on the 
pixel size and defocus, as well as microscope 
parameters such as the accelerating voltage and 

spherical aberration (Fig. 2B, CTF). The CTF in 
Fourier space is computed according to the following 
functions: 

1. 𝐶𝑇𝐹 = 𝐸 ∗ ((1 − 𝑄)𝑠𝑖𝑛(𝑒𝑞) +
𝑄𝑠𝑐𝑜𝑠(𝑒𝑞))	 

2. 𝑒𝑞 = 𝑝𝑖/2 ∗ (𝐶𝑆 ∗ 𝐿! ∗ 𝑘" − 2 ∗ 𝐷𝑧 ∗ 𝐿 ∗
𝑘#)  

3. 𝐸 = 𝑒$(&/(()*+,∗./01)(2))!  
4. 𝐿 = 𝐻 ∗ 𝑐/𝑠𝑞𝑟𝑡(𝑒 ∗ 𝑉 ∗ (2 ∗ 𝑚 ∗ 𝑐# + 𝑒 ∗

𝑉)) 
Overall equation for the CTF profile (1), wave 
component equation (2), envelope function of the 
contrast (3), and the calculation of the relativistic 
electron wavelength (4). 
 
Where L is the relativistic electron wavelength, CS 
is spherical aberration, K is the spatial frequency, Dz 
is defocus, sigma is the envelope factor (.9), and Q is 
the amplitude contrast factor (.07). In 4, H is the 
planck constant, e the electron charge, c the speed of 
light, m the electron mass, and V the acceleration 
voltage. 
 
To account for variable defocus across a tilted 
sample, CTF modulation is applied to each tilt angle 
in a series of overlapping strips with an adjusted 
defocus value. After inversion from fourier space, 
the strips are combined by weighted average to form 
a seamless composite. 

Radiation damage 
Radiation damage is modeled in a very simplified 
fashion. Before electrons are sampled for each tilt 
angle, that tilt projection is corrupted by two 
operations scaled by the cumulative electron dose 
transmitted. The first operation is a smoothing step 
that reduces signal clarity in higher-resolution 
images, and the second is a layer of gaussian noise 
applied to the whole tilt image. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.28.538636doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538636
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Tomographic reconstruction 
As CTS executes a perfectly aligned simulation with 
complete information, reconstruction of the 
tomogram requires no prior alignment steps or 
preprocessing. CTS performs reconstruction of the 
simulated tilt series (Fig. 2B, Tomogram) using 
IMOD’s tilt command and supplying the exact tilt 
angles, followed by using the IMOD command 
trimvol to rotate the tomographic reconstruction to a 
standard orientation. At present, CTS does not 
include any CTF-correction step for the output 
tomogram. 
 

Results 

Regression-Based Tomogram Restoration 
Cryo-ET image restoration by deep learning has been 
the focus of several studies in the past few years 19–

21. These approaches have found sophisticated ways 
to denoise without regression methods 31, because a 
true image “prior” cannot be experimentally derived 
in cryo-EM, due to the destructive nature of the 
beam. This is not true of CTS, which can generate 
multiple tomographic outputs from the same model, 
including a noise-free prior collected on a perfect 
“detector”.  
 
To make a generalizable cryo-ET regression 
network, we used CTS to produce three small 

Figure 3. General effectiveness of CTS-trained regression networks. A-C) Deep learning-based regression by the same 
network on actin filaments bundled by the cross-linking protein alpha-actinin in vitro, Neuronal cytoplasm, and an E. 
coli cell, respectively. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.28.538636doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538636
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

tomograms of synthetic cytoplasm (600 x 600 x 60 
voxels each at 13.2 ang/pix, Fig. S4A), which took 
approximately 10 min each. This “cytoplasm” 
included a mixture of large and small 
macromolecules commonly found in cells as well as 
simulated lipid vesicles, all tightly packed like that 
seen in real cellular tomograms (See Table S1, S2 
and S3 for all structures, modeling parameters, and 
simulation parameters used). To train the regression 
network, ideal tomogram “priors” (Fig. S4B) were 
paired with noisy synthetic tomograms from the 
same model as inputs (Fig. S4C), and network 
performance was validated by regressing the 
synthetic tomogram back to the prior state (Fig. 
S4D). The same network was then used to radically 
denoise a variety of real cryotomograms, including 
cross-linked actin-filaments in vitro, rat neuronal 
cytoplasm, and whole bacterial cells (Fig 3 A-C). 
When compared with established methods (nonlinear 
anisotropic diffusion and noise2noise deep learning), 

it is clear that regression training against CTS priors 
is superior in terms of denoising while also retaining 
structural detail (Fig. S5). 
 
Additionally, more constrained training sets can be 
generated quickly and easily for any in vitro purified 
sample. For instance, by simulating tomograms from 
a mixture of nucleosome and chromatin models (see 
Methods) we were able to restore tomograms of 
purified human chromatin to a nearly noiseless state, 
as well as restore the large tilt increments (5°) and 
missing wedge in Fourier space (Fig 4A & B).  
 
Structural features in regression restorations are 
subject to bias from the U-Net transformation 32, so 
we compared the outputs from differently trained 
networks on the same synthetic tomogram generated 
from an elongated F-actin model (Fig. S6). When 
compared to the ground truth of the simulated 
weighted back projection input, all of the trained 

Figure 4. CTS-based regression on real tomograms of purified chromatin A) 100-voxel 
(84 nm) thick slab from a weighted back projection (WBP) cryotomogram of purified 
human chromatin viewed in the XY (top panel) and XZ plane (bottom panel). B) 
Identically sized slab from the same tomogram after regression denoising. The insets in 
(A) and (B) are Fourier transforms of the images in their respective lower panels. 
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networks denoised the actin filaments well 
while maintaining the lower resolution 
details about filament helicity and actin 
monomer localization. It is obvious, 
however, from the network that has seen no 
actin filaments, that some of the 
information about monomer-to-monomer 
interactions is lost, as might be expected. 

Semantic Segmentation of Cryo-ET 
Data 
Segmentation of cryo-ET data into known 
components is a laborious task, and even if 
you employ deep learning to help in the 
process it still requires careful manual 
annotation of the training data as inputs. 
With CTS the annotated ground truth atlas 
only takes seconds to produce and can be 
used as input for training segmentation U-
Nets on the corresponding synthetic 
tomograms. Given that CTS can quickly 
derive new datasets under different 
“imaging” conditions, we took this 
opportunity to test the effects of key 
parameters of tomographic data collection 
on the inference of our trained U-Nets 
during segmentation. 
 
We tested the effects of moderate changes 
in defocus (𝜇m), total electron dose (-e/Å2), 
pixel size (Å/pix), and tilt increment (°) on 
segmenting simulated tomograms of either 
actin and cofilactin filaments or CaMKII 
divided into submodels containing the 
catalytic and association domains 33. We 
also quantified the effects of “missing 
wedge” orientation with respect to the filament’s 
long axis on segmentation accuracy. All networks 
were trained with an equal amount of data (including 
data augmentation parameters), for the same number 
of epochs to ensure fair evaluation. All 
segmentations were then compared to the CTS-

generated ground truth and a Dice coefficient was 
calculated to evaluate network success. We found, 
under our training conditions, that U-nets were 
robust across all the tested parameters (Figs. S7-
S10), except for the orientation of the missing wedge 
(Fig. S11). This makes sense given that actin 
filaments oriented parallel to the tilt-axis look 

Figure 5. Segmentation of real in vitro tomograms by synthetically trained U-
Nets. A) Full 3D Segmentation of a real cryotomogram containing a mixture 
of actin (green) and cofilactin (red) filaments. The left side shows the results 
from a network trained only on CTS-derived tomograms containing actin, 
cofilactin, fiducials (purple) and a carbon support (yellow), and the right side 
shows segmentation results after a single retraining with 5 hand-corrected 
slices. B) and C) Higher magnification views of the real tomographic data and 
its segmentations by both networks. The segments shown correspond to the 
areas surrounded by dashed boxes in (A). 
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dramatically different compared to those aligned 
perpendicularly. Because of this, networks trained 
only on datasets with filaments in one orientation 
with respect to the missing wedge largely fail when 
inferred to any dataset that contains filaments in 
another orientation (Fig. S11). Therefore, it is 
important that training data contains structures with 
a broad angular distribution with respect to the 
missing wedge for robust, accurate inference, which 
is exactly what CTS was designed to provide. 

Segmenting In Vitro Data 
To segment cryotomograms of purified 
molecules captured in a thin sheet of 
vitreous ice we found that training with 
simulated data alone was surprisingly 
powerful. In an initial validation test, 
cryo-ET data was collected on purified 
actin filaments mixed with the actin 
binding protein cofilin, which formed a 
mixture of F-actin and cofilactin, a 
hyper-twisted filament formed by a 1:1 
stoichiometric binding of cofilin to F-
actin 34. In real cryotomograms, 
stretches of bare actin were clearly 
distinguishable from stretches of 
cofilactin (Fig. 5), because their helical 
repeat lengths are quite different (~37 
nm compared to ~27 nm, respectively 
35). 
 
To start, a 5-slice U-Net was trained 
against a 400 x 400 x 50 voxel CTS-
generated cryotomogram containing 
actin filaments, cofilactin, and 10-nm 
gold fiducials. The edge of a synthetic 
carbon support was also present 
because the real data contained this 
feature. Filaments were constrained 
within the 50-voxel z-height to ensure 
they lie mostly flat, as they are found 
within the real tomograms. Figure 5A depicts the 

segmentation of the entire tomogram by two related 
4-class networks. One trained by only simulated data 
(“simulation only”), and one further trained on 5 
hand-corrected slices of the real tomogram. By 
examining the “simulation only” segmentation up 
close, it is clear that the majority of misclassified 
densities are small but real protein densities 
associated with the air-water interface, and they are 
almost entirely eliminated from the background in 
the retrained network. There were small and 
uncommon misclassifications along filaments (Fig. 
5B & C), but these were also eliminated with a single 
retrain of the network. Interestingly, while there were 

Figure 6. Submodel discrimination with CTS-generated training data. A) 
segmentation of actin subunits (blue) and cofilin subunits (teal) in a mixed 
in-vitro population of bare actin and cofilin-decorated actin. B) segmentation 
of CaMK2 alpha into central association domains (green) and variously 
extended catalytic domains (red). C) segmentation of low-compaction 
chromatin, DNA in red and histone cores in green. D) segmentation of 
proteasomes into terminal alpha rings (blue) and middle beta rings (orange). 
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no transitions from actin to cofilactin 
within individual filaments in our 
training set, in the real data these 
transitions were abundant and easily 
detected by the network (Fig. 5C). 
 
To test whether this approach is 
generalizable and to push its 
limitations, we used purely synthetic 
datasets to not only distinguish 
between actin and cofilactin, but to 
also segment the cofilin molecules 
decorating the filament (Fig. 6A). 
We then used a similar approach to 1) 
differentiate between the catalytic 
domains and the associative core 
domains in real tomograms of 
purified alpha-CaMKII (Fig. 6B), 2) 
segment histone proteins from the 
DNA strand in purified chromatin 
(Fig. 6C), and 3) target the outer 
alpha-rings and inner beta-rings of 
the 20S proteasome (Fig. 6D, EMDB 
7152).  

Segmenting Cellular Data 
 
While there are many applications for 
segmenting in vitro systems, we 
ultimately need tools for segmenting 
crowded cellular environments. 
Using our in vitro approach on 
cellular tomograms, however, did not 
directly translate. We reasoned that 
the synthetic data sets were not 
crowded enough, so we turned to our 
synthetic cytoplasm again. We trained two single 
class U-Nets: one network to recognize microtubules 
and one to recognize ribosomes within a molecularly 
crowded milieu (Fig. S12). The real neuronal 
tomogram shown in Fig. 7A was then subjected to 
segmentation by both networks, as shown in Fig. 7B. 

This composite segmentation represents the raw 
output from both trained networks overlayed and has 
experienced no postprocessing clean-up.  
 
To test the impact of including hand-annotated real 
data to the initial training set, we chose a very small 

Figure 7. Segmentation of real in situ data. A) 2D slice from a neuronal 
tomographic volume. B) 3D segmentation results for microtubules (blue) and 
ribosomes (orange) from the tomogram in (A) by two single-class U-nets 
trained specifically to find each feature within crowded CTS-derived 
synthetic cytoplasm (shown in Figure S10). C) Segmentation of 
microtubules with a network simultaneously trained dual trained on the same 
simulated microtubules plus the 64 cubic voxels of real data shown in the 
inset of (A). D) Segmentation results from a network only trained on the 64 
cubic voxels of real tomographic data 
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amount of data (64x64x64 voxel cube) that included 
a single stretch of microtubule density (Figure 7A 
inset) and combined it with our simulated 
microtubule data to perform what we refer to moving 
forward as “dual training”. In the dual trained 
microtubule segmentation, it is clear that the tubule 
walls are more fully segmented, causing them to lose 
their transparent appearance as in the “Simulation 
Only” segmentation. It’s important to note that 
training only on the small cube of real data did not 
produce a useful segmentation (Fig. 7D), proving 

that the addition of even a small 
amount of real data can fortify 
networks co-trained with simulated 
datasets. 
 
We then turned to training multiclass 
segmentation U-Nets and compared 
“simulation only” training to our dual 
trained approach (Fig. 8). For this test 
we trained a seven-class U-net 
against our synthetic cytoplasm to 
recognize actin filaments, cofilactin, 
microtubules, the chaperonin Tric, 
ribosomes, synthetic spherical 
vesicles, and background (see 
Methods for details). For the dual 
trained network, the real data used for 
augmentation was minimal. Each 
class contributed only a 64 cubic 
voxel dataset, as depicted in Fig. S13. 
From the three-dimensional renders 
(Fig.8A & B), it is simple to conclude 
that the dual trained network was 
superior in terms of segmentation 
noise. Inspection of slices through the 
segmentations, however, shows that 
the “simulation only” network 
performed surprisingly well in 
recognizing objects from different 
classes (Fig. 8C & D). While not 
perfect, we found these results 

remarkable given that both the data and ground truth 
could all be generated on a single CPU (from 
modeling to simulation to reconstruction) in under 30 
minutes. Given these results, we currently suggest a 
dual training strategy for networks meant to segment 
cellular data, but we believe there is potential for 
simulations to reach sufficient levels of realism in 
terms of molecular complexity and noise structure, 
and this will remain an active area of on-going 
research. 
  

Figure 8. Multi-class segmentation within crowded cellular tomograms. A) 
3D segmentation results from a 7-class network (actin, cofilactin, 
microtubules, TriC, ribosomes, membrane, and background) that was trained 
solely on these features within crowded synthetic cytoplasm. B) 
Segmentation of the same tomogram by a U-net dual trained on the same 
simulated dataset plus six small (64 cubic voxel) hand segmented inputs 
containing each class (see Fig. S11). C and D) Higher zoom overlays of 
central a slice through the tomogram with the multi-class segmentation 
results. 
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Discussion 
We have showcased CTS, a combined suite for 
generating models of frozen-hydrated samples and 
their cryotomographic simulation. It is capable of 
generating synthetic cryo-ET datasets within minutes 
from structures of interest, paired with both ground 
truth segmentations and matched tomograms of ideal 
to perfect SNR. The simulated datasets and ground 
truth segmentations can train robust semantic 
segmentation networks that surpass expert hand 
segmentations of in-vitro samples, and in cellular 
samples permit training networks more quickly than 
manual training, either with retraining or by 
augmenting with a small amount of target cellular 
data. Regression denoising is almost impossible to 
perform without simulated data and has proven to be 
surprisingly generalizable to different particle 
mixtures. The intensity of denoising is also 
manipulable with such easy training, allowing both 
potent SNR maximizing and gentler denoising that 
better retains high-resolution information. 
 
Each of these applications highlight how CTS can 
help fill the gap between the glut of cryo-ET data 
available and powerful deep learning tools that have 
the potential to analyze those large datasets.  
Considering the standard of computer hardware 
required for collecting and processing cryo-ET data, 
the technical requirements of CTS are no obstacle, 
and it can improve resource use by focusing expert 
microscopists on data collection and analysis rather 
than manual annotation. Further applications we 
have not yet explored include training deep learning 
particle picking tools and directly comparing 
different reconstruction, denoising, and 
enhancement techniques quantitatively with known 
ground truth information. Finally, we have not 
performed head-to-head comparisons with other 
deep learning based denoisers or particle classifiers 
on the same real tomographic data. For instance, it 
may prove interesting to do in depth comparisons of 
CTS-trained regression networks to the IsoNet 21 

approach for missing wedge restoration, or to 
experiment with the usefulness of training IsoNet 
networks with simulated data.  
 
While CTS has enabled fast prototyping and 
powerful deep learning applications, it is deliberately 
simplified for speed and ease of use. It cannot replace 
full physics-based all-atom simulators like parakeet 
36 for quantitative accuracy, especially of very high-
resolution data. In the future, CTS could adopt more 
complete simulation functions to improve rigor and 
accuracy at the potential cost of longer processing 
times. More fundamentally, CTS in its current form 
cannot model ‘true’ cellular or biological 
superstructures that are often of interest in cryo-ET 
(mitochondria, Golgi, synapses, etc.), nor does it 
simulate dynamic molecular properties or 
interactions. 
 
Despite these limitations, it is remarkable that such 
small amounts of CTS-generated data can be used to 
train such powerful and generalizable U-Nets for 
both image regression and semantic segmentation. 
Perhaps more important is the ability to derive new 
training sets, in a matter of minutes, on a single CPU 
core. This means that anyone can use the wealth of 
existing structural data (https://www.rcsb.org/, 
https://alphafold.ebi.ac.uk/, 
https://opm.phar.umich.edu/, etc.) to quickly iterate 
different modeling and simulation parameters to 
systematically test the efficacy of datasets for 
training neural networks. Additionally, on the 
modeling side of CTS, users are only limited by their 
skills and creativity when it comes to building atomic 
models. Finally, while we have tested the impact of 
changing basic imaging parameters on a network’s 
inferability using simulated data, this was only done 
with U-Net architectures under relatively constrained 
hyper-parameters. Moving forward, CTS could be 
used to characterize, optimize, and inform deep 
learning practices in the cryo-EM field more fully. 
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Materials and Methods 

Protein Purification 
Purified non-muscle actin (Cat # BK013), cofilin 
(Cat # CF01-A), and alpha-actinin (Cat # AT01) 
were purchased from Cytoskeleton, Inc. (Denver, 
CO). Native Chromatin was isolated and mnase-
treated according to the detailed methods described 
in 37. Alpha-CamKII holoenzymes were purified on 
a CaM-Sepharose column, as described in detail in 
38. 

Specimen preparation, Image Collection and 
Reconstruction 
Stock actin (10 mg/ml) was diluted 1:10 into ATP-
supplemented general actin buffer from 
Cytoskeleton Inc. (Cat # BSA01-001, 5mM Tris-HCl 
pH 8.0, 0.2 mM CaCl2, and 0.2 mM ATP), and left 
on ice for 30 min. Next, 10 ul of actin polymerization 
buffer (Cat # BSA02-001, 50 mM KCl, 20 mM 
MgCl2, and 1 mM ATP) was added, mixed well, and 
placed at RT for one hour to polymerize. After 
polymerization, 2.5 l of Cofilin (5 mg/ml) was added 
to a tube and diluted in 10 ul of 20 mM Tris-HCl 6.6 
Buffer, before adding 12.5 ul of polymerized actin 
and letting it sit for 30 min at RT. For Alpha-actinin, 
40 ul of F-actin was placed in a tube and 10 ul of 
alpha-actinin (1 mg/ml stock) was added for a final 
concentration of 200 ug/ml. Add 2 ul of Tris pH 6.5, 
and leave at RT for 30 min. Before vitrifying 
CaMKII, stock aliquots dialyzed in 10 mM HEPES, 
pH 7.4, 0.1 mM EGTA, 200 mM KCl, and 20% 
glycerol, were thawed and diluted from 3.4 mg/ml to 
1 mg/ml in dialysis buffer. Chromatin was prepared 
according to the detailed protocol in 37 
 
All samples were plunge frozen on R2/2 200 mesh 
Quantifoil EM grids, using a Vitrobot Mark IV 
(Thermo Fisher). Copper grids were used for purified 
particles in suspension and gold grids were used for 

culturing neurons. For purified actin/cofilactin and 
actin/actinin, chromatin and alpha-CaMKII, 3 
microliters of sample were applied to freshly glow-
discharged grids and blotted for 3.5 s with force 5. 
For neurons cultured on grids, we followed the 
protocol described in detail here 39. Briefly, E18 
Sprague Dawley rat hippocampi were grown to 
either DIV 1 or 2 before being picked up in forceps 
and loaded on the Vitrobot. Grids were hand-blotted 
through the side port, from the back, using forceps 
holding blotting paper. After plunge-freezing, 
samples were stored in liquid nitrogen until they 
were loaded into the cryo-TEM for tilt series 
collection. 
 
Tilt series were collected on a Titan Krios (Thermo 
Fisher) 300 kV cryo-TEM, equipped with a 
Bioquantum energy filter (Gatan) and either a K2 or 
K3 direct electron detector. Using Tomography 5 
(Thermo Fisher), data was collected from -60 to 60 
degrees in either a dose-symmetric scheme or a split 
scheme with 2-degree increments for everything 
except purified chromatin, which was imaged with 5-
degree tilt increments. Total electron dose was 
maintained between 60-150 electrons/Å2, and 
defocus was maintained at ~5 microns. A range of 
magnifications were used, depending on the sample, 
from 3.3 - 1.35 Å/pix2. Tomographic alignment and 
reconstruction were carried out using IMOD. All 
tomograms were reconstructed with weighted back 
projection and binned 4x before denoising or 
segmentation. 

PDB structures 
See Table S1 for PDBs used and a description of their 
modifications. 

Generating Synthetic Training Data 
Modeling Parameters 
Tomogram models were generated using the 
parameters in Table S2. If not listed in the table, the 
default values were used. 
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Simulation Parameters 
Simulations were generated using the parameters in 
Table S3. If not listed in the table, the default values 
were used. 
 
Ground Truths 
For regression networks the ground truth was 
simulated as tomograms with no CTF corruption or 
radiation damage, no signal loss at the “detector”, 
and nearly full angular sampling (-89° to +89° with 
1° increments). The full 90 degrees was not used due 
to limitations imposed by IMOD’s XYZProject 
function. For segmentation networks, the atlases 
output from CTS during the simulation phase were 
used as a ground truth for training. The exact 
specifications of the simulations can be found in 
Table S3. 

Deep Learning 
All U-Net building, training, application, and 
performance testing were done within the Dragonfly 
2022.1 software suite by Object Research Systems. 
Non-commercial licenses are available through their 
website at www.theobjects.com, and an open source 
tutorial video can be found at 
www.jove.com/t/64435/deep-learning-based-
segmentation-of-cryo-electron-tomograms. 
 
In all cases 5-slice U-Nets were used with default 
architecture and the following hyperparameters: 
Patch Size = 64 or 128 pixels2, Stride Ratio = 1, 
Batch Size = 32, Epochs = 100-300. The loss 
function used for regression was Dragonfly’s 
“MixedORSgradientLoss”, and for semantic 
segmentation it was “CategoricalCrossEntropy”. For 
both, the optimization algorithm used was 
“adadelta”. 

Software Download 
CTS can be downloaded from its Github page. The 
github project also contains installation instructions, 

required software, and preliminary tutorials on its 
use. 
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